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1 Introduction

Since a large time-dependent CP asymmetry through the B; — J/¥ K¢ mode was observed
at the BaBar [1] and BELLE [2] experiments, it is certain that the origin of the observed CP
violation at colliders, including the indirect (ex) and direct (Re(€}y/ex)) CP violation in
the K-meson, mainly stems from the unique CP phase of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [3, 4] in the standard model (SM).

Recently, the RBC-UKQCD collaboration reported the surprising lattice QCD results
on the matrix elements of K — mm and Re(ey /ex) [5-9], where the Kaon direct CP
violation and the contribution from the electroweak penguin to it are respectively given
as [8, 9]:

Re(eéh e ) = 1.38(5.15)(4.59) x 10™*,  Re(eéy/ex)mwp = —(6.6 £1.0) x 107*, (1.1)

whereas the average of the NA48 [10] and KTeV [11, 12] results is Re(e} /ex) = (16.6 £
2.3) x 1074, That is, a 2.10 below the experimental value is obtained using the lattice
calculations.

Intriguingly, the recent theoretical calculations of Re(e)/ex) using a large N, dual
QCD approach [13, 14], which was developed by [15-19], support the RBC-UKQCD results,
and the results are obtained as:

Re(ehe /e )sm = (8.6 £3.2) x 1074, (BSY? = BP? = 1), (1.2)
Re(ehe /e )sn = (6.0 £2.4) x 1074, (BS? = BP? = 0.76), (1.3)



where Bél/ 2 and Bég/ 2 denote the non-perturbative parameters of gluon and electroweak

penguin operators, respectively. It is found that both approaches obtain consistent values
of Bélm) and B§3/2) as [13]:

B (m,) =057 +0.19, B¥?(m,) =0.76 £ 0.05 (RBC-UKQCD),
B < BB <1, B (m,) =0.80+£0.1. (large N,). (1.4)

Since the main contributions to Re(€ /ex ) in the SM are dictated by Bél/ 2 and Bé?’/ 2), and
there is a cancellation between gluon and electroweak penguin contribution, thus, a smaller
Bélﬂ) leads to a Re(€/ex)sm below the experimental value of 20. The small Re(e) /ex),
which results from a QCD based approach and arises from the short-distance (SD) effects,
could be compensated for by other sources in the SM, such as chromomagnetic dipole effects
and long-distance (LD) final state interactions (FSIs). However, according to the recent
study in [21], the contribution to Re(€) /ex) from the gluonic dipole operators in the SM
should be less than 10~% and cannot explain the data. In addition, the conclusion about the
LD contribution is still uncertain, where the authors in [20] obtained negative result, but
the authors in [22] obtained Re(e’ /ex) = (154+7) x 10~% when the SD and LD effects were
considered. Hence, in spite of the large uncertainty of the current lattice calculations, if we
take the RBC-UKQCD'’s central result, which basically includes all nonperturbative QCD
effects, as the tendency of the SM, the alternative source for the insufficient Re (€} /ex)
can be attributed to a new physics effect [23-37], which we will focus on in this study.

In rare K decays, two important unobserved processes are K™ — 7tvi and Kj —
70u, where the former is a CP-conserving channel, and the latter denotes a CP-violation.
The NA62 experiment at CERN plans to measure the branching ratio (BR) for KT —
7t v, which can reach the SM result with a 10% precision [47, 48], and the KOTO experi-
ment at J-PARC will observe the K, — 7%vi decay [49, 50]. In addition to their sensitivity
to new physics, their importance is that the SM predictions are theoretically clean, where
the QCD corrections at the next-to-leading-order (NLO) [38-40] and NNLO [41-43] and
the electroweak corrections at the NLO [44-46] have been calculated. The SM predic-
tions are [23]:

BR(KT — ntwp) = (9.114+0.72) x 1071 (1.5)
BR(Kp — 7v) = (3.00 £ 0.31) x 10711 (1.6)
whereas the current experimental situations are BR(K+ — ntup)™P = (17.37153) x

107! [51] and BR(K — 7vp)™P < 2.6 x 107® [52]. Recently, NA62 reported its first
result using the 2016 taken data. It was found that one candidate event of K+ — 7T v is
observed and that the upper bound of BR is given by BR(K+ — 7ntvp) < 14 x 10710 at
a 95% confidence level (CL) [53].

To pursue new physics contributions to the Re(€}/ex) and rare K decays, in this
work, we investigate the influence of a charged-Higgs in a generic two-Higgs-doublet model
(2HDM), i.e., the type-III 2HDM, where global symmetry is not imposed on the Yukawa
sector. As a result, flavor changing neutral currents (FCNCs) in such models can arise at



the tree level. To reasonably suppress the tree-level FCNCs for the purpose of satisfying
the constraints from the B and K systems, such as AMp, p,, B — Xy, AMg, and €k, we
can adopt the so-called Cheng-Sher ansatz [54], where the neutral scalar-mediated flavor-
changing effects are dictated by the square-root of the mass product of the involved flavors,
denoted by /mypmy; /v. Thus, we can avoid extreme fine-tuning of the free parameters
when they contribute to the rare K and B decays. The alternative approach for suppressing
the FCNCs using 't Hooft’s naturalness criterion [55] can be found in [56], where more
related flavor phenomena were studied in detail.

From a phenomenological viewpoint, the reasons why the charged-Higgs effects in
the type-IIT 2HDM are interesting can be summarized as follows: firstly, Re(€}y/ex) and
K — mvv in the SM are all dictated by the product of the CKM matrix elements Vi and
Via- The same CKM factor automatically appears in the charged-Higgs Yukawa couplings
without introducing any new weak CP-violation phase; thus, we can avoid the strict limits
from the time-dependent CP asymmetries in the By and B, systems. Secondly, unlike the
type-II 2HDM, where the charged-Higgs mass is bounded to be mpg+ > 580 GeV via the
B — X,y decay [57, 58], the charged-Higgs in the type-III model can be much lighter than
that in the type-II model, due to the modification of the Yukawa couplings [58]. Thirdly,
a peculiar unsuppressed Yukawa coupling /me/m;Vey /Vig Xt (see the later discussions),
which originates from the FCNCs, also appears in the charged-Higgs couplings to the top-
quark and down-type quarks [58, 59]. The effects play a key role in enhancing Re(€/ex)
and K — wvr in this model. Fourthly, the charged-Higgs effects can naturally provide the
lepton-flavor universality violation and can be used to resolve the puzzles in the semileptonic
B decays, such as R(D), R(K™), and large BR(B;, — ) [58-67].

Since the charged-Higgs effects have a strong correlation with different phenomena,
the new free parameters are not constrained by only one physical observable. Therefore,
the involved new parameters are strictly limited and cannot be arbitrarily free. It is found
that when the constraints of AB = 2, AK = 2, B — X7, and e are simultaneously
taken into account, the charged-Higgs contribution to the direct CP violation of K-meson
can reach Re(ef/ex)p+ ~ 8 x 107% (not including the SM contribution), and the BR
for Kt — 77w can be BR(KT™ — ntvw) ~ 13 x 10711, while BR(K, — 7vp) ~
3.6 x 1071,

The paper is organized as follows: in section 2, we briefly review the charged-Higgs
and neutral scalar Yukawa couplings to the fermions with the Cheng-Sher ansatz in the
type-III 2HDM. In section 3, we formulate AMy, ek, and Re(€}/ex) in the 2HDM. The
charged-Higgs contributions to the rare K — wvv decays are shown in section 4. The
detailed numerical analysis is shown in section 5, where the constraints from AMp, g,
B — Xy, AMg, and e€x are included. A conclusion is given in section 6.

2 Charged and neutral Higgs couplings to the quarks and leptons

In this section, we summarize the Yukawa couplings of the neutral Higgses and charged-
Higgs to the quarks and leptons in the generic 2HDM. The Yukawa couplings without



imposing extra global symmetry can be in general written as:

Ly = QLY DrH1 + QLYs'DrHs + QrY{"UrHy + Q1 Y5'UrH,
+ LY{{RrH,| + LY{{rHy + H.c., (2.1)

where all flavor indices are hidden; Py = (1 £75)/2; Q1 and Ly, are the SU(2), quark
and lepton doublets, respectively; fr (f = U, D,{) denotes the singlet fermion; Ylf o are
the 3 x 3 Yukawa matrices, and H; = iToH. There are two CP-even scalars, one CP-odd
pseudoscalar, and two charged-Higgs particles in the 2HDM, and the relations between
physical and weak states can be expressed as:

h = —s401+ cad2,
H = Ca¢1 + 5a¢2 )
H*(A) = —sp¢7 (m) + cpdy (m2) (2.2)

where ¢;(n;) and nfﬁ denote the real (imaginary) parts of the neutral and charged compo-
nents of Hj, respectively; cq(sqa) = cosa(sina), cg = cos f = v1 /v, and sg = sin § = v /v,
v; are the vacuum expectation values (VEVs) of H;, and v = \/v} + v3 ~ 246 GeV. In this
study, h is the SM-like Higgs while H, A, and HT are new particles in the 2HDM.

Introducing the unitary matrices VLf7 p to diagonalize the quark and lepton mass ma-
trices, the Yukawa couplings of scalars H and A can then be obtained as:

—Eﬁ’A =1y [samu + %X“} upH +d, {chmd - %Xd] drH
sg veg

’USﬁ C/j
— Xu
+ 45 [Camg — %Xe] lrH +iup, |:—Cﬁmu + :| upA
’L)Cﬁ CB v SB
STt X [t X*
+idy [—ﬁmd + ] drA +ily, {—5mg + ] (rA+He., (2.3)
v Cﬁ v Clg

where my¢ is the diagonalized fermion mass matrix; tg = sg/cg = va/v1; cgq = cos(f — a);
Sga = sin(f — ), and X7 are defined as:

xu = vp Xyt xa Yyt g e ¥ (2.4)
_LﬁR’ _L\/ﬁR’ _L\/§R' )

We can also obtain the Higgs Yukawa couplings; however, it is found that the associated
X7 terms are always related to caB, Which is strictly bound by the current precision Higgs
data. For simplicity, we take the alignment limit with c,g = 0 in the following analysis.
Thus, the Higgs couplings are the same as those in the SM. The charged-Higgs Yukawa
couplings to fermions are found as:

- 1 X
g ANCY A [—mu + ] upH™
vig 83

t X4
+ \/iﬂLV {—ﬁmd + :| dpH™
v Cﬂ

t X*¢
+ \/§I7L |:—’Bmz + :| (rRHT +H.c. , (2.5)
v CB



where V = VL“VLdT stands for the CKM matrix. Except the factor v/2 and CKM matrix,
the Yukawa couplings of charged Higgs are the same as those of pseudoscalar A.

From eq. (2.3), the FCNCs at the tree level can be induced through the Xf terms. To
suppress the tree-induced AF = 2 (F = K, By, D) processes, we employ the Cheng-Sher
ansatz [54] as:

/T
Xij;‘ = T]X{J ) (2-6)
I
ij
of scalars H and A to the down-type quarks can be straightforwardly obtained as:

where ;. are the new free parameters. With the Cheng-Sher ansatz, the Yukawa couplings

—,Cg’A = %BJZL mdidij - ?nj/;%xgj de(H — lA) + H.c., (27)
where the CKM matrix elements are not involved.

Since the charged-Higgs interactions are associated with the CKM matrix elements,
the couplings involving the third generation quarks may not be small; therefore, for the
K-meson decays, it is worth analyzing the charged-Higgs Yukawa couplings of the d- and s-
quark to the top-quark, i.e., tdH ' and tsH™". According to eq. (2.5), the tgd, H™ coupling
can be written and simplified as

V2 1 Xt MEMe mym "
tpdpHY : 2= | — = 28 ) my Vg — 55 Cth Ved — T"xzt Vid

v tg sg
L
my 1 Xtd L uk Me VVCd wk
~V2—Vy [ — -2 ) = — 2.8
V2 " td <t6 55 > Xtd = Xt T+ s Vig Xct (2.8)

where we have dropped the xif term because its coeflicient is a factor of 4 smaller than
the x¢ term. In addition to the m; enhancement, the effect associated with ¢ is
Vme/me|Vea/Vialx =~ 2.4x%°, which is in principle not suppressed. Intriguingly, the
charged-Higgs coupling is comparable to the SM gauge coupling of (g/v/2)V;4. Because
mqVig < /MsmqVis < /mymqVyp, the trdg H' coupling can be approximated as:

t d v
trdpHT < —y/2 08 [T Xpa 7t (2.9)
v my Sp

Although there is no V4 suppression, because ng ~ O(1072) is constrained by the By
mixing [58], the coupling of tdrH* is somewhat smaller than that of tgd;, Ht, even with
the large value of tg, e.g. tg ~ 50. Using my|Vis| ~ 6.72 GeV < \/mem; Vs ~ 14.8 GeV and
msVis < /msmp Vi, ~ 0.66 GeV, the tsH™ coupling can be similarly obtained as:

L
mt 1 Xt L * mc ‘/cs *
tprsp HT 1 V2— Vs [ — — 28 = — 2\ 2.10
RSL V2 oVt (t . ) v Xts = Xt T e VtsXctv ( )
B B
mpt m xd Vip
tLSRH+ c—V2 B |25 Xbs .
) my  Sg

The detailed analysis for the other charged-Higgs couplings can be found in [58]. In sum,
the charged-Higgs couplings to the d(s)- and top-quark in the type-III 2HDM can be



formulated as:

L 5 X2VigE (il Pr — Gy Pr) o HY + Hee, (2.11)

where the parameters C£ are defined as:

L
1 Xtq' (e Vegr
U q L wk c Veq'  ux
/. — 5 7 + - ,
th tﬂ Sﬁ th Xtt . 1 rtq/ Xet

g Vv qu
=1 . 2.12
Gy =ty ol 2 (2.12)

For the lepton sector, we use the flavor-conserving scheme with ij = (my,/ U)Xfidgigj, ie.
l
Xt

7

= Xgi 06,5 as a result, the Yukawa couplings of H * to the leptons can be expressed as:

t
clify = _ BB b (2.13)
v

with (f =1- Xf /sp. The suppression factor my/v could be moderated using a large value
of tan 8. In this work, we use the interactions shown in eqs. (2.7), (2.11), and (2.13) to
study the influence on the K° — K° mixing AMp, ek, ¢ /ex, and K — v decays.

3 Formulations of AMk, €k, and €} /ex in the generic 2HDM

3.1 AMg and €k

To study the new physics contributions to AMyg and ex, we follow the notations in [69]
and write the effective Hamiltonian for AS = 2 as:

L, @ i
2yAS=2 _ ﬁmgy Z VexmCi(p) Qi 5 (3.1)

where Vi are the involved CKM matrix elements; C;(u) are the Wilson coefficients at
the p scale, and the relevant operators (); are given as:

[ = (5% Ppd®) (579" Prd’)
QLR (897, PLd”) (579" Prd”) .
= (s*Ppd®) (s Prd’),
SLL = (5°Ppd*)(s° Prd’)
QSLL (5%0,, Prd®)(5° o™ Prd?). (3.2)

The operators QY #f and QfRR can be obtained from Q}** and QfLL by switching Pgr
and Py, respectively.

In the type-IIT 2HDM, the AS = 2 process can arise from the H/A-mediated tree
FCNCs and the H*-mediated box diagrams, for which the representative Feynman dia-
grams are sketched in figure 1. According to the interactions in eq. (2.7), the H/A-induced
effective Hamiltonian can be expressed as:

G2
HAS 2 _ 16 [C:glLLQSLL+C§{%RQ§RR+C§§Q§R] ’ (33)
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Figure 1. Sketched Feynman diagrams for the AS = 2 process.

where the subscript S denotes the scalar and pseudoscalar contributions. Clearly, no CKM
matrix elements are involved in the tree FCNCs. Since the involved operators are QSLL SRR
and QL% the corresponding Wilson coefficients at the g scale are obtained as:

1 1
csttors (- L)t

my mA
1 1
SRR _ L 2
S1 rs m12q mA (Xsd)
1 1
Céi=rg <mz + 2 > 2x4xax
H A
rg = WA BB o ((tan? B (3.4
5= Grsp 502sg )’ '

with z, = mg /m¥,. It can be seen from rg that although the H/A effects are suppressed
by mgms/ m%,[,, due to the tan § enhancement, the AMy through the intermediates of H
and A becomes sizable. We then can use the measured A Mg to bound the parameters ng
and xﬁ If we take my = m4 and Xsd de’ it can be seen that CSLL CSRR =0 and
that 052 x ngxg: |Xsd|2 is a real parameter; under this condition, €x that has arisen
from the neutral scalars will be suppressed.

From the charged-Higgs interactions in eq. (2.11), we find that with the exception of
QELL, the WH-H*, G*-H*, and H*-H* box diagrams can induce all operators shown in
eq. (3.2); the associated CKM matrix element factor is Vi = (ViiVig)?, and the Wilson

coeflicients at the y = my+ scale can be expressed as:

CHEy =4 2021 (g yw) + ey (g, yw)) GGl + 2aeye (GG I ()
CrT = 2wy (Gl i) I ()

Crlty = 433byt( LG (Car e ™ (ye)

Cii,=— ( ) (et VT (s yw) + 203 (ye, yw))

— 85%,%( PG (SR T (ye)



ik =t (G G ().
CP = —dayy? (G 13 (ye) (3.5)

where the subscript H* denotes the charged-Higgs contributions, Yqg = mg / m%i, and the
loop integral functions are defined as:

o) = [ <yt2&fv;t)>12nyt 86
2
) = ]~ T P
) %2% - 2)2_(5: )i}v;v)vl;yt (3.6b)
0 = 3 e
gy — 2 Oty o

(1—yt)? (1—y)?

We note through box diagrams that the couplings of sbH (A) and dbH (A) can induce AS =
2; however, because the involved quark in the loop is the bottom-quark, the effects should
be much smaller than those from the top-quark loop. Here, we ignore their contributions.

To obtain AMp and ex, we define the hadronic matrix element of K-K mixing to be:

M, = (ROHAI=2KO). (3.7)

Accordingly, the K-meson mixing parameter and indirect CP violating parameter can be
obtained as:
eiw/4
AMK ~ 2R€M12 s K~ m]lig s (38)

where we have ignored the small contribution of ImAy/ReAy from K — 77 in €x. Since
A My is experimentally measured well, we will directly take the AMp data for the denom-
inator of €x. It has been found that the short-distance SM result on AMy can explain
the data by ~ 70%, and the long-distance effects may contribute another 20 — 30% with
a large degree of uncertainty [73]. In this work, we take AM" as an input to bound the
new physics effects; using the constrained parameters, we then study the implications on
the other phenomena.

To estimate the Mo defined in eq. (3.7), we need to run the Wilson coefficients from a
higher scale to a lower scale using the renormalization group (RG) equation. In addition, we
also need the hadronic matrix elements of (K°|Q;|K?). In order to obtain this information,
we adopt the results shown in [69], where the RG and nonperturbative QCD effects have
been included. Accordingly, the AS = 2 matrix element can be expressed as:

= — GV
<K0’HAS_2’KO>: T FVCKM 2 KfK{ VLL[ VLL(Mt>+CVRR( )]

482
+ PLRCE (1) + Py OES () + PPE [CREE (1) + CR1 ™ ()]
+Py PR [Cp5" () + O3 (mo)] } (3.9)



where the Wilson coefficients CY, are taken at the my scale with F' = S(H¥), and the
values of P* at =2 GeV are [69]:

PVl ~0.48, PHt~ —36.1, PFP~x~593,
PP~ 181, Pyl ~322. (3.10)

It can be seen that the values of P, which are related to the scalar operators, are one to
two orders of magnitude larger than the value of Plv LL " \where the enhancement factor is
from the factor m% /(ms + mgq)?. The similar enhancement factor in the B-meson system
is just slightly larger than one. Although the new physics scale is dictated by pgg+)
(1s(m+) > me), as indicted in [69], the RG running of the Wilson coefficients from pg(g+)
to my is necessary only when pgg+) > 4my. To estimate the new physics effects, we
will take pgg+) < 800 GeV and ignore the running effect between pgy+) and my scale.
In eq. (3.9), we have explicitly shown the CKM factor to be Vegy = 1 for FF = S and
Voxum = (ViiVig)? for F = HE.

3.2 Re(€x/ek) from the charged-Higgs induced QCD and electroweak pen-
guins

Using isospin decomposition, the decay amplitudes for K — 77w can be written as [70]:

AKT — 7nt7%) = gAgei‘SQ ,
A(KY — nr77) = Age™ + \/gAgei‘sz ,
A(K® = 7%7%) = Age'® — V24,62 (3.11)

where A2 denotes the isospin I = 0(2) amplitude; dy(2) is the strong phase, and the
measurement is dp — da = (47.5 £ 0.9)° [70]. In terms of the isospin amplitudes, the direct
CP violating parameter in K system can be written as [14]:

€ aw [ImA A 1 ImAs
Re| &) =— 1— Q) — — , 3.12

<6K> V2|ek| [Rer( ) a ReA, (3.12)

where a = 1.017 [71] and Qg = (14.8 + 8.0) x 1072 [14] include the isospin breaking

corrections and the correction of Al =5/2, and

w ReAy; 1
T ReAy 2246

(3.13)

With the normalizations of Ag2 used in [14], the experimental values of ReAy and ReA,
should be taken as:

(ReA)™P = 33.22(1) x 1078 GeV, (Reds)®™ =1.479(3) x 1078 CeV . (3.14)

Although the uncertainty of the predicted ReAg in the SM is somewhat large, the results of
Re Ay obtained by the dual QCD approach [73] and the RBC-UKQCD collaboration [5-7]
were consistent with the experimental measurement. Thus, we can use the (ReAs2)*P to



limit the new physics effects. Then, the explanation of the measured Re(e) /ex) will rely
on the new physics effects that contributes to I'mAy and ImAs.

From eq. (2.7), the couplings ggH(A) with Cheng-Sher ansatz indeed are suppressed
by mg() tan B/v ~ 103 (tan 3/50). If we take mp4) to be heavier, the effects will be
further suppressed. Thus, in the following analysis, we neglect the neutral scalar boson
contributions to the K — 7w processes. According to the results in [58], the couplings
ud(s)H* as compared with the SM are small; therefore, we also drop the tree-level charged-
Higgs contributions to K — mm. Accordingly, the main contributions to the €} are from
the top-quark loop QCD and electroweak penguins. Since the induced operators are similar
to the SM, in order to consider the RG running of the Wilson coefficients, we thus write
the effective Hamiltonian for AS =1 in the form of the SM as [79]:

HAS:I

—V* Vud Z 2 () + Ty ()] Qi (1) (3.15)

where 7 = =V Viq/ (V.5 Via), and z;(p) and y;(u) are the Wilson coefficients at the p scale.
The effective operators for (V — A) ® (V — A) are given as:

Q1 = (5°u’)y_a(@d*)y_a, Q2= (Su)y_a(ud)y_a, (3.16)

where a, 8 are color indices; the color indices in gq’ are suppressed, and (q¢')y+a =

qvu(1 £5)¢. For the QCD penguin operators, they are:

Qs = (Sd)v-a Y (q@)v-a, Qi=(5"d")v_a > (q)v-a,
Qs = (5d)v-a Y (q@)v+a, Qs = (5*d")v-a D (q)via, (3.17)

where ¢ in the sum includes u, d, s, ¢, and b quarks. For the electroweak penguins, the
effective operators are:

3
Q7 = 5(5d)va Zq: eq(qq)via,

Qo= (54> eqlav-a,

q

where e, is the g-quark electric charge.

expressed as [79]:

3 e B a
Qs =5(5 V-2 e @q*)via,
q

Qo= S(°d)v s qu e @dv_n,  (318)

The H*-mediated Wilson coefficients can be

o) = = )+ S ) = 2 ),
B () =~ ), o ) = Y gy (319)

vt () = 2= (ACu (e y0) + Dirlyr)) -

4aCr (e, Yt )

H* _ H* .
Yo (nm)=yr (wm) 6 s Oy

~10 -



ys(um) = y1o(nm) = 0, and the functions Dy, Cy, and Ep are given by [74, 75]:

W Ty zylny
Outeni) = 5 5~ 6y 1
Daly) = w Y 47y? — 79y + 38 —3y?’+6y—41 y
a ts Stdg | 736y — 1)3 6(y — 1) ’
weu [Y(TY2 =29y +16)  y(3y —2)

To calculate ¢/, in addition to the Wilson coefficients, we need the hadronic matrix
elements of the effective operators. The ()12 matrix elements can be obtained from ReAg
and ReAs through the parametrizations [14]:

ReAy ~ i;/gVJSVud (24(Q+)0 + 2-(Q-)o)

_ igv;svuda + )2 Q).

G
ReAy ~ TZ;VJSVUdZ+<Q+>27 (3.21)

where we ignore the small imaginary part in V), V,,4; the Wilson coefficients and the matrix
elements of the effective operators are taken at the pu = m, scale; the subscripts of the
brackets denote the isospin states I = 0 and I = 2; z4 = 29 + 21, Q1+ = (Q2 £ Q1)/2,
z1(me) = —0.4092, z2(m.) = 1.2120, and ¢ = 24-(Q+)o/(2—{(Q-)o). In the isospin limit,
the hadronic matrix elements of Q4910 can be related to Q4 — [72]. Therefore, we show
the matrix elements for isospin I = 0 as [14, 72]:

(@s)o=2(Q )0, (Qo)o = 5((@+)o — (@)o),
(Q10)o = ;<Q+>o + %<Q7>07

2 2
(Qs)o = —4h < (mc)> (= B¢,
2

(@s)o =2h ( T )> FB{M?, (3.22)
for isospin I = 2, they are given as:
(@)2 = (@u)2 = 5(Q 1)
(@s)2 = V2h < mic )2 f-BE (3.23)

ms(me) + ma(me)

where h = 1/3/2; the small matrix elements for (357 are neglected; Bél/Q) =0.57 £0.19,
B§3/2) = 0.76 £ 0.05, and Bél/Q) = 1.0 £ 0.2 [23], which are extracted from the lattice
calculations [8, 9].
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Using the introduced hadronic matrix elements and eq. (3.12), the direct CP violating
parameter via the charged-Higgs contributions can be expressed as:

k)  _ o o p(/2) | p3/2)
re() = (o ap )] o
Pg’f) _ a(()3/2)(Hi) n aé3/2)(Hi)Bé3/2)7 (3.24¢)

where Ay = ViiVia, af! are defined as [14]:

H* H* H*
(1/2) 7+ dyy' —b(3yy —yip ) a+ (Qs)o
H*) =~ o
aO ( ) rl 2(1 + q)Z_ + rQ by8 ReAO )
1/2 +  (Qe)o
aé/)(Hi)%rzyé{ %,
BG Rer
H:l: H:t
oD (HE) 2y 200 2+y10 )
Z+
(3/2) (7t H* (Qs)2
a (HS) mrays —mm—— (3.25)
* * BP/PRes,
with b = ]_/((1(1 - Qeff))a
w wGp
Fl= e A 64545, T = ot~ 1.165 x 1074 GeV 2. 3.26
VAT = Dex] 20

We note that the Wilson coefficients in eq. (3.25) should be taken at the u = m, scale
through the RG running.

4 Charged-Higgs on the K — wvv decays

To investigate the new physics contributions to the rare K decays, we adopt the

ImXeg\? [ ReA ReXen )’

< v ) +< 3 P.(X) + e . (4.1)
ImXeg ) 2

AP ’
where X is the Wolfenstein parameter; Agy = —0.003; P.(X) = 0.404 + 0.024 denotes the
charm-quark contribution [23, 76, 77]; Xcg = VtSV}d[XEM(K) + X1 (K)+ Xg(K)] combines
the new physics contributions and the SM result of XM (K) = 1.481 +0.009 [24], and the
values of k4 1, are given as:

parametrizations shown in [24] as:

BR(K’Jr — 7T+DV) = /i.:,_(l + AEM)

BR(K[ — ') = K, < (4.2)

A 8
_ —11
Ky = (5.173 £0.025) x 10 <0'225> ,

A 8
kr = (2.231 4 0.013) x 10710 (()225) . (4.3)
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Figure 2. Sketched Feynman diagrams for the K — 7o process.

Here, X1 (K) and Xg(K) denote the contributions from the left-handed and right-handed
quark currents, respectively.

The neutral scalar bosons H and A do not couple to neutrinos; therefore, the rare
K — mvw decays can be generated by the Z-mediated electroweak penguins and the TW=*-
and H*-mediated box diagrams, for which the representative Feynman diagrams are shown
in figure 2. Since the dominant H* contributions are from the left-handed quark currents,
we only show the X (K) results in the following analysis. Using the H* Yukawa couplings
in eq. (2.11), the Z-penguin contribution can be obtained as:

+ *
Xﬁ en — gECtus Ctudxtytjl (yt) ) (44)

1 1 In gy,
Jl(yt) - _4 (1_yt + (1 _yt>2> )

where g} is the Z-boson coupling to the left-handed up-type quarks and is given as g} =
1/2 — 2sin? Oy /3 with sin? fy ~ 0.23, and J1(y;) is the loop integral function.

According to the intermediated states in the loops, there are three types of box dia-
grams contributing to the d — svi process: WTH*, G*H*, and H* H*. Their results
are respectively shown as follows. For the W*H* diagrams, the result is obtained as:

Lty 1 .
Xt = =Gt + GG Yot oy ) (45)

Jo(ye, yw) = Lo(ye, yw) — I2(yt,0),
1 2-u

w
I =_ Iny; — 1 4.6
2(Yes yw) T —ow) [T 0 T g 0w | (4.6)

where z, = m? /m%v, and the function Jy is the loop integration. The result of G*H*
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diagrams is given as:

+ g+
XLGBg( f= (CtdCe + G eyt g I3 (v yw) (4.7)
1
J3(ye, yw) / d96'1/ d$2/ d:r3 .
(1 —y)z1 — (v — yw)r2 — yws

It can be seen that except the loop functions, XfBg( and X XV];EOIZ * have the common factor

from the charged-Higgs effect. The pure H*-loop contribution to the box diagram can be

written as:
HiHi,f 1 wk ~U 0 2 2
XL,BOX = _% ts Gid ‘ zey; tan® BJ4(y)
1 1 Yy In
J S — 4.8
1) =33 [1 “u (g (48)

Because the lepton Yukawa coupling is proportional to the lepton mass, all of the box dia-
grams depend on x, = m% / m%V; therefore, they are dominated by the 7-lepton. Although
the WtH* and GtH* diagrams have a tan 3 enhancement, the enhancement factor of
H*H?* is tan? §; that is, the H¥ H* contribution overwhelms the W*H* and G*H*.

5 Numerical analysis

5.1 Numerical inputs

The new free parameters considered in this study are xy; ., ng,bs,bd’ x4, tg, and mp o pr+-
In addition to AMp and eg, the charged-Higgs related parameters also contribute to the
AMp a(s) and B — X,y processes, so we have taken these observables into account to
constrain the parameters. Thus, the experimental data used to bound the free parameters
are [68]:

AME?P ~ 3.48 x 107" GeV, AMpEP = (3.3324+0.0125) x 107" GeV
AMEP = (1.168 £0.014) x 107" GeV, BR(B — X,7)™® = (3.49 £0.19) x 10~
€nP ~2.228 x 1072 (5'1)

Since ek in the SM fits well with the experimental data [79], we use
P = ke x 1073 with |ke| < 0.4 (5.2)

to constrain the new physics effects [26]. The uncertainties of NLO [82] and NNLO [83]
QCD corrections to the short-distance contribution to AMg in the SM are somewhat
large, we take the combination of the short-distance (SD) and long-distance (LD) effects as
AMM(SD + LD) = (0.80 & 0.10)AM P [73]. Accordingly, the new physics contribution
to AM is limited to:

AMRY = re AMGP with |rg| < 0.2. (5.3)
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Although the charged-Higgs can generally contribute to the tree-level processes and
contaminate the determination of CKM matrix elements, the charged-Higgs-induced tree
processes indeed can be ignored because these processes, which can determine Vg cs, Vud,cd,
and Vi b, will be suppressed by 1 — Xﬁ /53 when Xﬁ ~ 1 are taken. Then, the CKM matrix
elements mentioned above can be taken the same as those obtained in the SM. With the
Wolfenstein parametrization [84], the CKM matrix elements can be taken as:

Via = Ves = 1— )22, Vs & —Vog = X = 0.225,
Vi &~ 0.0407, Vi = 0.0038¢ 13 | b3 = 73.5°, (5.4)

where V, and V,; are taken from the averages of inclusive and exclusive semileptonic
decays [23], and the ¢3 angle is the central value averaged by the heavy flavor averaging
group (HFLAV) through all charmful two-body B-meson decays [85]. In terms of the CKM
matrix elements shown in eq. (5.4), we can obtain the other CKM matrix elements and CP
phase of V4 as [23]:

A2\ Vil
Ry~ (1—— ~ 0.40
’ ( 2 ) Ve ’

Rt:(1+R§—2Rbcos¢3)l/2%0.96, Vis = =V, Vib=1,
1-R
[Vial = [Vas | Ve By ~ 0.0088, 62 = arccot (LT gg 40 (55)
Ry sin ¢3

where Re(ViViq) ~ —3.3x10~% and Im(V;%V;q) ~ 1.4 x 10~ are close to those values used
in [14].
The particle masses used to estimate the numerical values are given as:

mg ~0.489 GeV, mp,~5.28 GeV, mp, ~5.37 GeV, my ~ 80.385 GeV,
my ~ 165 GeV, me~1.3 GeV, ms(me)~0.109 GeV, mgy(m.)~5.44 MeV.
(5.6)

In the 2HDM, the mass spectra of H, A and HT are not independent parameters, and
they are correlated through the parameters in the Higgs potential and constrained by the
vacuum stability, Peskin-Takeuchi parameters [86], and Higgs precision measurements [87].
Following the results in [87], the maximum mass difference |m g 4)—mg=| should be around
100 GeV when mpy = my4 is adopted. Since the interesting region of mg+ in this study is
near 200 GeV, we take mp(4) = 300 GeV as the input to show the numerical analysis.

5.2 Direct bound on mg+ from the LHC

According to eq. (2.13), if we take Xf = 1, the H* Yukawa coupling to the tau-lepton is
suppressed by 1 — x%/ sg; therefore, in our case, the charged-Higgs with my+ ~ 200 GeV
predominantly decays to the ¢b final state. Thus, the experimental limit on m g+ is from the
CMS data at /s = 8 TeV [88], and the upper bound for my+ = 200 GeV and BR(H' —
th) = 11is o(pp — t(b)H*) < 1.53 pb [89], where the cross section o(pp — #(b) HF) includes
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Figure 3. Production cross-section of pp — #(b)H™ (solid) at /s = 8 TeV as a function of (a) x¥%
and (b) tg, where the fixed values of parameters are given in the plots, K = 1.3 is the K-factor for
the radiative QCD corrections, and the dashed line denotes the CMS upper bound.

the pp — t(b)H* and pp — t(b)H~ contributions. From the Yukawa sector, the tbH*
couplings can be expressed as:

/5

2. _
cH 5 Vit (mtg;gPL + mbggPR) b+He.,

ux d
G g (1222 (5.7
Accordingly, the main charged-Higgs production channel is gg — tbH™ in four-flavor
scheme (4FS) and is gb — tH™ in five-flavor scheme (5FS), where the 4FS and 5FS are
used to avoid double counting, which happens when the b-quark final state in gg — tbH™
escapes detection [90-92].

To estimate the production cross-section for pp — t(b)H + we employ CalcHEP [93]
associated with the CTEQ6L parton distribution functions (PDFs) [94]. Using tz = 30,
X = 0.5, and my+ = 200 GeV, the o(pp — t(b)HT) at /s = 8 TeV as a function of y} is
shown in figure 3(a), where the dashed line is the CMS upper limit, and K = 1.3 denotes
the K-factor for the radiative QCD corrections [95]. The dependence of o(pp — t(b)H?)
on tg is shown in figure 3(b), where xj; = 0.5, ng = 0.5, mg+ = 200GeV, and K = 1.3
are used. From the plots, it can be seen that taking proper values of xj; and ng, both
mpy+ ~ 200 GeV and large tg value can still satisfy the upper limit from the direct search.

5.3 Constraints from AMg g, B =+ X7, and ek

Since the free parameters for the tree-induced AS = 2 are different from those that are
box-induced, we analyze them separately. According to eq. (3.4), in addition to the tg
parameter, the main parameters in the H/A-mediated Mo are x% x4, = |x% x4, le~"0cP,
where Ocp is the weak CP-violation phase. Using eq. (3.9) and the taken input values,
AMp (solid) and ex (dashed) as a function of |x%x%,| (in units of 107%) and Ocp are

shown in figure 4, where we only show the range of Ocp = [0, 7] and fix tg3 = 30. It is
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Figure 4. Contours for the H/A-mediated AMy (in units of 1071%) and ex (in units of 1073) as

a function of |y3*x4,| scaled by 10=* and fcp.

seen that the typical value of ’XZs,sd’ constrained by the K° — K° mixing is ~ 4.5 x 1073.
Because the ex and AMpg both arise from the same complex parameter XﬁllZngv to obtain
ex of O(1073), the CP-violation phase fcp inevitably has to be of O(107%) away from
zero or m when the |ngx‘sid] of O(107°) is taken. Intriguingly, the small cp may not
be a fine-tuning result in the case of my = my. If the Yukawa matrices Y;f in eq. (2.2)
are symmetric matrices, due to Véc = V]f *, XS in eq. (2.4) also being symmetric, we can
obtain ng = ng and fcp = 0. Hence, a small 8cp can be ascribed to a slight break in a
symmetric Yukawa matrix.

Next, we analyze the charged-Higgs loop contributions to AMg and €. According
to egs. (2.11) and (2.12), the relevant Yukawa couplings are xj; ., and ng,bs- However,
the same parameters also contribute to AMp, , and B — Xy, where the former can arise
from the tree H/A-mediated and charged-Higgs-mediated box diagrams, and the latter is
from the H*-penguin loop diagrams [58]. Thus, we have to constrain the free parameters
by taking the AMp, p, and B — X,y data into account. To scan the parameters, we set
the ranges of the scanned parameters to be:

-1< Xzthta tha Xlaylb <1, —-0.05< ng,ng < 0.05,
20 <tg <50, 200 < mpy= [GeV] < 230. (5.8)

€} /€x can be significantly enhanced only by the light H *+. therefore, we set my+ around
200 GeV.

In order to consider the constraints from the B-meson decays, we use the formulae and
results obtained in [58]. To understand the influence of B and K systems on the parameters,
we show the constraints with and without the AMyg and e constraints. Thus, for the
AMp, g, and B — X,y constraints only, we respectively show the allowed ranges of xj;
and x% and the allowed ranges of x{, and x¢, in figure 5(a) and (b), where the sampling
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Figure 5. Constraints from AMp, g, and B — X7, where the plots (a) and (b) denote the
allowed ranges of xi; and x% and the allowed ranges of ng and ng, respectively. The number of
sample points used for the scan is 5 - 106.
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Figure 6. Based on the results in figure 5, the constraints from the H*-induced AMy and e are
included.

data points for the scan are 5-10%. When the AMy and e constraints are included, the
corresponding situations are shown in figure 6(a) and (b), respectively. From the plots, it
can be clearly seen that K-meson data can further constrain the free parameters. We note
that the results of figure 6 do not include the tree-induced AS = 2 because the involved
parameters are different.

It was studied that the charged-Higgs and neutral Higgs bosons h, H and A can
also have significant contributions to the rare By — pu*pu~ decay through loop and tree
Feynman diagrams in the type-III 2HDM [96-99] when a large ¢g scheme is applied, where
the current LHCb measurement is BR(Bs — ptpu™) = (3.0 4 0.6703) x 107 [100] and the
SM prediction is BR(Bs — putu~) = (3.65 4 0.23) x 1072 [101]. The small difference in
BR(Bs — p ™) between experimental and theoretical result leads to a strict constraint
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on the new physics contribution. From the Yukawa couplings shown in egs. (2.3) and (2.5),
it can be seen that under the alignment limit (i.e., 5 — a = 7/2), which we adopt in the
paper, H*, H, and A bosons coupling to the leptons are all proportional to 1 — Xﬁ/ 58
when the Cheng-Sher ansatz is applied. That is, the contributions to the By — pu™u~
decay, which arise from the H*-induced box diagrams and H(A)-penguin and H(A)-tree
diagrams, can be suppressed in the type-III 2HDM when X,l; ~ 1 is taken. The choice of
X,é ~ 1 matches with the condition of Xﬁ ~ 1 used for taking the SM CKM matrix elements
as the numerical inputs. Hence, in this study, we do not include the constraint from the
By — ptu~ decay.

5.4 Re(€y/ek) in the 2HDM

In this subsection, we analyze the charged-Higgs effect on Re(€}/ex)y+ in detail. To
estimate Re(€el/ex )+, we need to run the Wilson coefficients from the py scale to the
@ = m, scale. For new physics effects, we use the LO QCD corrections to the QCD
and electroweak penguin operators [79]; as a result, the relevant Wilson coefficients at the
1 = m. scale can be obtained as:

i (me) ~ —0.6y5 () + 10Tyl () + 00852 ()

+ 04658 () + 0.016y5 (jzr) +0.068y8 (uurr)
Y (me) ~ —0.1y5" (upr) + 0.388y5 " (ugr) + 0.794y 5™ (1)

+ 2,872 () + 0.0295 (pr) + 019487 ()
yd" (me) ~ 0.904y5 (ugr) . yd (me) ~ 131987 () |

ylh (me) ~ —0.58ud" (). (5.9)
where the A scale in o is determined by aéfzg]) (mz) =0.118.

According to the parametrization of Re(¢/ex) defined in eq. (3.24), four pieces con-
tribute to the direct CP violation; two of them, aél/Q)(Hi) and aélﬂ)(Hi)Bél/Q), are from
ng), and the other two, agg/ 2) (H*) and aés/ 2) (H jE)Bé?’/ 2), are from Psf). To understand
their contributions to €} /ex, we show each individual effect as a function of x¥% in figure 7,
where for numerical illustration, we have fixed x}; = 0.3, tg = 30, and mpy+ = 200 GeV.
From the results, it can be seen that ag/ 2Bg’/ 2, which arises from the electroweak penguin
Qs operator, dominates the others.

From our analysis, it was found that to enhance (¢ /ex) g+, xj and x% prefer to be
opposite in sign. In the following numerical analysis, we narrow the scan ranges of xy; and

X to be:
04 <x;4 <08, —08<x¢ <0.1. (5.10)

In order to include the tree-induced AS = 2 effects shown in eq. (3.3), we set the relevant
parameters as:

IXGixal <0.8x107%, [fop| <. (5.11)
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Figure 7. Each contribution of aé/2(Hi), aé/Q(Hi)Bél/Q), ag/2(Hi), and azm(Hi)B;’/2 defined
in eq. (3.25), where we fixed x}, = 0.3, tg = 30, and mpy+ = 200 GeV.

Since we now need to combine the H*-induced box diagrams and the H(A)-induced tree
diagrams for the AS = 2 process, to satisfy the constraints of AMg and ex and enhance
e /e, the taken values of [y x| are smaller than those shown in figure 4. When the
constraints from the B and K systems are taken into account, in which the sampling data
points for the scan are 2.5 - 107, the dependence of Re(e}/ex )+ (in units of 107*) on
the parameters is given as follows: figure 8(a) shows Re(¢/ex)y+ as a function of mp+;
figure 8(b) and (c) are the dependence of % and x{,, respectively, and figure 8(d) shows
the correlation between Re(€}/ex)y+ and ef(JrHi = e} + eI}i (in units of 1073). Since
the dependence of ng is similar to that of chylsv we do not show the case for ng. From these
plots, we see that although we cannot push (€ /ex) g+ up to O(1073), the charged-Higgs
effects can lead to (€} /ex )= ~ 8 x 1074,

5.5 Charged-Higgs contributions to K — wvi

In this subsection, we discuss the charged-Higgs contributions to the K™ — 7w and
K1 — 70 processes. As mentioned before, the W*H* and GT*H®* box diagrams are
suppressed by m2/ m%,vg‘ftg, where although there is a t3 enhancement factor, their contri-
butions are still small and negligible. The Wilson coefficient from the H*H* box diagram
can be enhanced through the (Cftg)g factor; however, its sign is opposite to that of the SM,
so that it has a destructive effect on the SM results. Thus, we cannot rely on H*H* to
enhance BR(K+ — 7tvp) and BR(K — mvv). Hence, the main charged-Higgs effect
on the d — svv process is derived from the Z-penguin diagram.

With the input parameter values, the BRs for the KT — ntvy and K; — 70w
processes in the SM can be estimated to be BR(K+ — 77vi) ~ 8.8x 107 and BR(K —
mlui) ~ 2.9 x 107!, Using the parameter values, which are constrained by the B-meson
and K-meson data, we calculate the charged-Higgs contributions to K™ — 77vi and
K, — 7%, where the BRs (in units of 107!!) as a function of x% are shown in figure 9(a)
and (b). In order to suppress the contribution from the H*H* diagram, we take ! = 1.
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Figure 8. Re(el /ex)p+ (in units of 107%) as a function of (a) mpy=, (b) x%, and (c) x&,, and (d)

+
the correlation between Re(€l /ex )+ and €57 (in units of 1073).

From the plots, we clearly see that BR(K™ — 77vi) can be enhanced to ~ 13 x 10!
while BR(K, — 7%v) is enhanced to ~ 3.6 x 107!, Since the CP violating source in the
charged-Higgs loop is the same as that of the SM, the K; — 7’v¥ enhancement is limited.
Although the charged-Higgs cannot enhance K+ — 7T v by a factor of 2, it can increase
the SM result by 60%. For clarity, we show the correlation between BR(KT — mTvi) and

BR(K[, — mvp) in figure 10. In addition, the correlations between the rare K decays and
(€} /€x )+ are also given in figure 11(a) and (b).

6 Conclusion

We comprehensively studied the Re(el/ex) and the rare K (K) — 7 (79)vv decays in
the type-1I1 2HDM, where the Cheng-Sher ansatz was applied, and the main CP-violation
phase was still from the CKM matrix element V;4 when the Wolfenstein parametrization was
taken. We used [AMREY| < 0.2AME® and |eff'| < 0.4x 1073 to bound the free parameters.

The charged-Higgs related parameters, which contribute to AMg and eg, also con-
tribute to AMp, g, and B — X,y processes. When the constraints from the K and B
systems are satisfied, we found that it is possible to obtain (€} /ex )+ ~ 8 x 1074 in the
generic 2HDM, where the dominant effective operator is from the electroweak penguin ()g.
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The dominant contribution to the rare K — wvv decays in the type-1II 2HDM is

the H*-loop Z-penguin diagram. With the same set of constrained parameters, we found
that K — 7'vi can be slightly enhanced to BR(K — 7%vi) ~ 3.6 x 1071}, whereas
K* — 7tvp can be enhanced to BR(KT — ntvw) ~ 13 x 10711, Although the BRs of
the rare K — wvr decays cannot be enhanced by one order of magnitude in the type-III
2HDM, the results are still located within the detection level in the KOTO experiment at
J-PARC and the NA62 experiment at CERN.
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