
J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

Published for SISSA by Springer

Received: April 12, 2018

Accepted: August 1, 2018

Published: August 22, 2018

Infinite distances in field space and massless towers of

states

Thomas W. Grimm,a Eran Paltib and Irene Valenzuelaa

aInstitute for Theoretical Physics, Utrecht University,

Princetonplein 5, 3584 CE Utrecht, The Netherlands
bMax-Planck-Institut für Physik (Werner-Heisenberg-Institut),
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Abstract: It has been conjectured that in theories consistent with quantum gravity in-

finite distances in field space coincide with an infinite tower of states becoming massless

exponentially fast in the proper field distance. The complex-structure moduli space of

Calabi-Yau manifolds is a good testing ground for this conjecture since it is known to

encode quantum gravity physics. We study infinite distances in this setting and present

new evidence for the above conjecture. Points in moduli space which are at infinite proper

distance along any path are characterised by an infinite order monodromy matrix. We

utilise the nilpotent orbit theorem to show that for a large class of such points the mon-

odromy matrix generates an infinite orbit within the spectrum of BPS states. We identify

an infinite tower of states with this orbit. Further, the theorem gives the local metric on

the moduli space which can be used to show that the mass of the states decreases exponen-

tially fast upon approaching the point. We also propose a reason for why infinite distances

are related to infinite towers of states. Specifically, we present evidence that the infinite

distance itself is an emergent quantum phenomenon induced by integrating out at one-loop

the states that become massless. Concretely, we show that the behaviour of the field space

metric upon approaching infinite distance can be recovered from integrating out the BPS

states. Similarly, at infinite distance the gauge couplings of closed-string Abelian gauge

symmetries vanish in a way which can be matched onto integrating out the infinite tower

of charged BPS states. This presents evidence towards the idea that also the gauge theory

weak-coupling limit can be thought of as emergent.
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1 Introduction

Quantum field theory and gravity are notoriously difficult to combine at high energy scales

close to the Planck mass Mp. However, at low energies, there might appear to be no

consistency constraints limiting which effective quantum field theories can be coupled to

gravity.1 This apparent freedom is deeply tied to the difficulty of obtaining universal pre-

dictions from string theory. In recent years there has been significant interest in proposals

for such consistency constraints on effective field theories that can be coupled to quantum

gravity. Quantum field theories which violate such constraints are termed to be in the

Swampland [1]. The most studied such proposed constraint is the Weak Gravity Conjec-

ture [2]. A different constraint, proposed in [3], is that in an effective quantum field theory

that can arise from string theory and therefore can be consistently coupled to quantum

gravity, infinite distances in moduli space lead to an infinite tower of states becoming

massless exponentially fast in the proper field distance. So if we consider two points in

field space P and Q, with a geodesic proper distance between them of d (P,Q), then there

should exist an infinite tower of states with characteristic mass scale m such that

m (P )

m (Q)
→ e−γd(P,Q) as d (P,Q)→∞ . (1.1)

Here γ is some positive constant which depends on the choice of P and Q but which is not

specified in generality. The conjecture (1.1) was referred to as the Swampland Conjecture

in [4]. Since there are more conjectures appearing recently to distinguish between the

string landscape and the swampland, here we will rename this specific conjecture as the

Swampland Distance Conjecture (SDC) to avoid confusion. This conjecture will form the

focus of this paper. One of the consequences of the conjecture is a limit on moduli space

distances within any effective field theory which is consistent with string theory and has

a finite cut-off. It is therefore of both formal and conceptual interest and of potential

phenomenological importance in the context of large field inflation.

The evidence for the conjecture is primarily based on case-by-case examples in string

theory. There is some evidence, which does not rely on string theory, relating the Swamp-

land Distance Conjecture to the Weak Gravity Conjecture [5] and to black hole physics [4].

It is also worth noting that the evidence appears to support a stronger statement, that the

exponential behaviour of the mass of the states is reached at finite proper distance of order

the Planck mass and that it holds for any scalar field not just moduli. This was denoted

as the Refined Swampland (Distance) Conjecture in [4]. In [6, 7] the behaviour of so-called

closed-string monodromy axions in type IIA string theory was shown to be consistent with

this stronger statement. Further evidence for the conjecture was found in [8–10] in the con-

text of studying open-string monodromy axions, although the breakdown of the effective

theory there manifests in a more subtle way. In [5] the Swampland Distance Conjecture

was shown to hold for string moduli in the large volume or large complex-structure regime

of Calabi-Yau compactifications for certain paths in moduli space defined by the variation

of only a linear combination of the moduli. In [11] further evidence was presented in the

1Mixed gauge-gravitational anomalies providing a notable exception.
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context of closed string axions belonging to the complex structure sector of certain Type

IIB string theory flux compactifications. In [12] a similar bound was found for the reduced

Kähler moduli space obtained from Type IIB compactified on a certain type of Calabi-

Yau threefolds. Further studies, over the full complex-structure moduli space of type IIB

Calabi-Yau compactifications, will be reported in [13].

In this paper we will adopt a general approach to studying the Swampland Distance

Conjecture where we do not rely on explicit example compactifications but rather on general

properties of a large and rich class of moduli spaces in string theory. We will consider the

complex-structure moduli spaces of Calabi-Yau (CY) manifolds in compactifications of

type IIB string theory. These moduli spaces are excellent testing grounds for aspects of

quantum gravity as they are known to encode highly non-trivial quantum gravity physics

in their geometry. A CY complex-structure moduli space also has a very rich structure of

loci that are at infinite distance. By this we mean points in the moduli space which are at

infinite proper distance, as measured by the metric on the moduli space, along any path.

There are also substantial mathematical tools for studying these moduli spaces which will

allow us to show general results rather than a case-by-case analysis.

Furthermore, most of the recent work has been focused on the parametric behaviour

of the field metric, but very little is known about the nature of the tower of states becom-

ing light. We will also focus on studying the properties of this tower of states, providing

a candidate set of stable states which become massless at infinite distances. Specifically,

we will consider the tower to be formed of BPS states, which in type IIB are D3-branes

wrapping special Lagrangian three-cycles. Once this tower is identified, we will show that

the exponential mass behaviour of the Swampland Distance Conjecture can be proven in

generality due to a powerful mathematical theorem, termed the Nilpotent Orbit Theo-

rem [14], which, among other things, gives a general expression for the asymptotic infinite

distance form of the field space metric. Identifying the tower requires an understanding

of the BPS state spectrum upon approaching infinite distance. The infinite distance point

is singular and there is a monodromy upon circling it. It can be mathematically proven

that this monodromy must be of infinite order. We will propose to identify an infinite

tower of states by using the monodromy transformation acting on the states of the theory

upon circling the infinite distance locus. By introducing significant further mathematical

technology, particularly relating to Mixed Hodge Structures, we will be able to identify

this tower quite precisely. Our analysis will be performed completely generally, for any CY

moduli space and at any point in that moduli space. But we will restrict to one-parameter

degeneration models, which means that the point of interest will belong to only one sin-

gular divisor, leaving more complicated configurations for future work. Because these are

rich field spaces, possibly involving hundreds of coupled scalar fields, the analysis necessi-

tates powerful mathematical machinery. A significant part of the paper will therefore be

dedicated to introducing these tools and how they can be used in this context.

Our results can be summarised as follows. A locus of infinite distance in moduli space

is labelled by an integer d which can take the values 1, 2 or 3. For d = 3 loci we will identify

quite precisely and generally a tower of BPS states which become massless exponentially

fast in the proper distance. This is one of the central results of the paper. For d < 3 loci we

– 3 –
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will also propose candidates for the tower of BPS states. However, proving the existence

of this tower can not be done with the same generality as for d = 3 due to dependence on

the global structure of the moduli space. Studying the generality of the results for such

cases will require further work.

We will also provide evidence for a proposal for the underlying reason as to why the

Swampland Distance Conjecture holds. We will show that integrating out the tower of

BPS states induces a logarithmic distance divergence in the moduli space. Since it is well

known that CY moduli spaces are quantum in nature, so that they already have integrated

out the BPS states of wrapped branes, this divergence is naturally identified with the

infinite distance in the moduli space. We therefore propose that this could be a general

phenomenon, that infinite distances are quantum in nature and emerge from integrating

out an infinite number of states.2 Interestingly, the logarithmic divergence in the proper

field distance requires that the number of stable BPS states grows as we approach the

singularity, becoming infinite at infinite distance. By studying the distribution of walls

of marginal stability for BPS states, we will show that the tower of states induced by

the monodromy transformation exhibits precisely the right rate of increase in the stable

states to match onto the integrating out requirements. It also implies that the cut-off due

to quantum gravity physics decreases when we approach the singularity at a rate which

coincides with the species bound relating to the tower of BPS states.

Our results also have natural interpretations relating to other general ideas about quan-

tum gravity. We will show in generality that infinite distances are loci in field space where

a global symmetry emerges. Since the effective theory entirely breaks down at the infinite

distance singularities, the emergence of these global symmetries is blocked by string theory.

Because the complex-structure moduli are in vector multiplets our results have a natu-

ral connection to the Weak Gravity Conjecture. We will show that at infinite distance the

gauge couplings of the Abelian gauge fields in the vector multiplets vanish exponentially

fast in the proper distance. This matches the proposal in [4]. We will show that this

behaviour can be recovered in detail in terms of integrating out a tower of charged BPS

states. It therefore presents evidence that also the weak coupling limit is emergent in the

same way as the infinite field distance. This emergence property will naturally tie into the

Weak Gravity Conjecture. This matches general ideas proposed in [16].

The paper is organised as follows. In section 2 we introduce the mathematical technol-

ogy required to analyse infinite distance points in the moduli space of Calabi-Yau manifolds.

We will introduce the Nilpotent Orbit Theorem of Schmid [14] and how it can be used to

characterise infinite distance loci and study them generally. In particular, we will introduce

the relation between infinite distance loci and infinite order monodromy transformations

about those loci. In section 3 we will introduce some relevant results about BPS states.

We will discuss the relation between the monodromy transformation and the spectrum of

BPS states. In particular, we will introduce the notion of an infinite monodromy orbit of

massless BPS states, and show that this orbit forms a primary candidate for a subset of the

spectrum of states which become massless on the monodromy locus. In section 4 we will

2This possibility was first mentioned in [3], and also a similar proposal was reached independently in [15].
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singular locus

P

Q

Figure 1. Smooth path connecting a regular point Q to a singular point P which might be at

infinite distance in moduli space.

introduce the technology of Mixed Hodge Structures and their utilisation in the Sl2-orbit

theorem of Schimd [14]. This will then allow us to study when an infinite monodromy orbit

through massless BPS states exists and to identify it quite precisely. We will present general

results on this, and also study some particular examples. In sections 5 and 6 we will discuss

some of the physics associated to our results. In particular, the relation between integrating

out states, infinite distances, gauge couplings and global symmetries, as described above.

We will also discuss the relation of the Swampland Distance Conjecture to the Weak Grav-

ity Conjecture and the idea that they are both implied by the emergent nature of infinite

field distance and weak gauge couplings. Finally, section 7 contains our conclusions.

2 Infinite distance divisors in Calabi-Yau moduli space

In this section we introduce the mathematical concepts that allow us to study points in

moduli space that are at infinite geodesic distance with respect to some specific metric

g. We denote a point of infinite distance as one for which all paths γ to such a point are

infinitely long when measured with the metric g. Hence we want to make statements about

the length of any smooth path γ connecting P,Q given by

dγ(P,Q) =

∫
γ

√
gIJ ẋI ẋJds , (2.1)

where xI(s) embeds the path and ẋI = ∂xI/∂s. The key point will be to translate the

information about being at infinite distance into a more algebraic statement. Firstly, we

note that infinite geodesic distances can only occur when connecting a path to a singular

point P in moduli space as indicated in figure 1. Secondly, we will see that such points are

characterised by the existence of an infinite order monodromy matrix T and by the action

of the logarithm N = log(T ) of the monodromy matrix acting on the unique holomorphic

three-form at this point. This will allow us to identify the universal asymptotic behaviour

of the field metric g when approaching such infinite distance points.

2.1 Complex structure moduli space and monodromy

To start with we recall some basic facts about the complex structure moduli spaceMcs and

introduce its natural metric, the Weil-Petersson metric gWP. The complex structure moduli

space for a Calabi-Yau manifold YD of complex dimension D is a hD−1,1(YD)-dimensional
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Kähler manifold. Locally, it can be parametrised by coordinates zI , I = 1, . . . , hD−1,1(YD),

which are often called the complex structure deformation moduli. The metric on Mcs

is determined by the holomorphic (D, 0)-form Ω. The metric gWP is Kähler and locally

obtained from the Kähler potential [17, 18]

K = − log

[
− iD

∫
YD

Ω ∧ Ω̄

]
, (2.2)

i.e. one finds that gWP has components gIJ̄ = ∂zI∂z̄JK.

The holomorphic (D, 0)-form Ω can be expanded into an appropriate real integral basis

γI . It is a non-trivial task to identify such an ‘appropriate’ integral basis γI . We refer to the

literature discussing Calabi-Yau threefold and fourfolds for more details on its construction.

Furthermore, one can show that Ω depends holomorphically on the coordinates zI . Hence,

we write

Ω = ΠI(z) γI ≡ ΠTγ , ΠI =

∫
ΓI

Ω , (2.3)

where γI integrates to δJI over the cycle ΓJ . The holomorphic functions ΠI are called

the periods of Ω. In order to rewrite intersection products it will be also convenient to

introduce the intersection matrix η with components

ηIJ =

∫
YD

γI ∧ γJ , (2.4)

which is anti-symmetric for D odd and symmetric for D even. In Calabi-Yau threefolds,

i.e. D = 3, the matrix ηIJ is anti-symmetric and the basis γI can be chosen to be sym-

plectic. Hence, we can pick

γI = (αL, β
K) ,

∫
Y3

αL ∧ βK = δKL ,

∫
Y3

αL ∧ αK =

∫
Y3

βL ∧ βK = 0 . (2.5)

Let us stress that the coordinates zI , periods Π(z)I , and the basis γI are adapted to the

considered patch inMcs and can very non-trivially change when moving to different regions

in Mcs. With this definitions at hand we can write (2.2) as

K = − log
[
− iDΠT ηΠ̄

]
. (2.6)

It is crucial for our considerations that the complex structure moduli space Mcs is not

generally smooth, but will admit special singular points. These can always be made to lie

on divisors that intersect normally.3 The periods Π are in fact multi-valued and experience

monodromies along paths encircling such special divisors. To make this more precise, let us

introduce local coordinates zI , such that the considered singular divisor is given by zj = 0

for some j ∈ {1, . . . , hD,1(YD)}. Note that we can consider several intersecting divisors. We

encircle zj = 0 by sending zj → e2πizj . In general the periods will non-trivially transform

with a matrix Ti under this identification

Π(. . . , e2πizj , . . .) = Tj Π(. . . , zj , . . .) . (2.7)

3To be mathematically more precise, it was shown [19] that one can resolve the moduli space such that

all special points are on divisors that intersect normally.
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Two facts about the Tj will be important for us in the next sections [14, 20]

each Tj is quasi-unipotent : ∃mj , nj ∈ Z : (Tmj+1 − Id)nj+1 = 0 , (2.8)

Tj locally arising at a point commute : [Ti, Tj ] = 0 . (2.9)

Collecting all such Ti throughout the moduli space Mcs one obtains a group Γ known

as the monodromy group.4 In general, the elements of Γ will not commute, and (2.9) only

holds for the elements Ti at a point in a higher-dimensional moduli space. However, we

will not need a detailed global understanding of the moduli space and therefore restrict

most of our discussion to a local patch around such special points. It is important to note

that the infinite distance in the metric gWP will be picked up in such a local patch if the

special point satisfies certain criteria. This will be discussed in the next subsections.

2.2 The local Kähler potential and a necessary condition for infinite distance

Our next goal is to find a local expression for the Kähler potential (2.6) near the special

points in moduli space with non-trivial monodromy matices Ti. In order to do that we again

introduce an appropriate set zI of local coordinates. We first split them into two types

zI = (zj , ζM ) , (2.10)

such that the special divisors are, as above, locally given by zj = 0. The complex coordi-

nates ζM will be included to keep the situation general. We will be interested in the point

P given by

P : zj = 0, ζM = 0 , (2.11)

and expand the Kähler potential (2.6) around this point. By definition this point lies on

the special singular divisors zj = 0. Here ζM can take any value, so we have chosen ζM = 0

without loss of generality.

The coordinates zj are not yet convenient for our purposes. The reason for this is that

part of the monodromy matrix Ti introduced when circling zj → e2πizj as in (2.7) will play

no important role when evaluating the distance. To identify this part, we note that the

property (2.8) implies that each Ti can be decomposed as

Ti = T
(s)
i · T

(u)
i , (2.12)

with T
(s)
i and T

(u)
i having the following special properties. Each matrix T

(s)
i is of finite

order, i.e. there exists an integer mi such that (T
(s)
i )mi−1 6= Id and (T (s))mi = Id. In

contrast, for each matrix T
(u)
i is unipotent, i.e. T

(u)
i is either the identity matrix or there

exists an integer ni > 0 such that

(T
(u)
i − Id)ni 6= 0 , (T

(u)
i − Id)ni+1 = 0 . (2.13)

If T
(u)
i is not the identity a unipotent matrix will be of infinite order, i.e. there exists no ki

such that T kii = Ti. This property will be of crucial importance below. The precise form of

4Strictly speaking the monodromy group can be defined by considering a certain representation T JI of

π1(Mcs) acting on the period vectors.
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T
(s)
i will not be relevant in the local expression of the Kähler potential. To avoid including

factors of mi all over the place we therefore redefine

zj → (zj)mj , (2.14)

but name, by an abuse of notation, the resulting coordinate zj .5 In terms of this new

coordinate, the monodromy matrix is only given by its infinite order part.

We are now ready to display the local form of the periods and the Kähler potential.

To do that we first define

Ni = log T
(u)
i =

∞∑
k=1

(−1)k+1 1

k
(T

(u)
i − Id)k =

1

mi
log Tmii , (2.15)

which should be read as a matrix equation. One can easily check that the so-defined matrix

Ni is nilpotent with

Nni
i 6= 0 , Nni+1

i = 0 , (2.16)

where ni was already introduced in (2.13). Using these nilpotent matrices it was shown by

Schmid [14] that locally around the point P given in (2.11) the periods take the form

Π(z, ζ) = exp

[∑
j

1

2πi
(log zj)Nj

]
A(z, ζ) , (2.17)

with A being holomorphic at P . In other words, the non-trivial part of this statement is

that a crucial part of the information about the singularity is in the matrices Nj . The

vector A(z, ζ) is regular at P and admits an expansion

A(z, ζ) = a0(ζ) + aj(ζ)zj + ajk(ζ)zjzk + ajkl(ζ)zjzkzl + . . . (2.18)

The name ‘nilpotent orbit’ refers to the approximation exp
[∑

j
1

2πi(log zj)Nj

]
a0(ζ) of the

full period Π(z, ζ).6

To display the Kähler potential we note that the monodromies Ti preserve η,

i.e. T Ti ηTi = η, and therefore one has

NT
i η = −ηNi . (2.19)

Using this fact and the expansion (2.17) the Kähler potential (2.6) takes the form

e−K = −iDAT η exp

[
−
∑
j

1

2πi
(log |zj |2)Nj

]
Ā . (2.20)

To write this in a more practical form we define

tj =
1

2πi
log zj . (2.21)

5In mathematical terms this transformation corresponds to a base change.
6Schmid gives an estimate how well this expression approximates the full period.
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Clearly, this redefinition implies that the point under consideration is now given by

P : tj = i∞, ζM = 0 . (2.22)

In these coordinates all t-dependence in A arises via exponentials e2πit. There are, how-

ever, polynomial terms in t − t̄ arising in e−K due to the exponential containing Ni. In-

serting (2.21) in (2.20) one finds

e−K = −iDAT η exp

[∑
j

(t̄j − tj)Nj

]
Ā (2.23)

= −iDaT0 η exp

[∑
j

(t̄j − tj)Nj

]
ā0 +O(e2πit) , (2.24)

≡ p(Im ti, ζ) +O(e2πit) (2.25)

Due to the fact that the Nj are nilpotent, p is simply a polynomial in Im tj .

This form of the Kähler potential allows us to make a couple of important observations.

We note that near a singular point the Kähler potential K depends on Im tj through a

polynomial p as well as exponentially suppressed corrections O(e−Im tj ). In contrast, the

coordinates Re ti only appear in the exponentially suppressed terms in (2.25). This implies

that if the degree of the polynomial p is larger or equal to one in some variable Im tj then

at large Im tj the Kähler potential enjoys an approximate shift symmetry

Re tj → Re tj + cj , cj ∈ R , (2.26)

which is only broken by exponentially suppressed corrections to the discrete shifts with

cj ∈ Z. In physical terms one thus would identify Re tj as an axion. This agrees with the

observation made in [21] that axion in complex structure moduli space arise at special points

that have infinite order monodromy. Here we have shown this completely generally, by

noting that Nj only exists in these situations. Crucial is, however, that the polynomial has

a non-vanishing degree. To determine its degree we first introduce the integers di such that

Ndi
j a0 6= 0 , Ndi+1

j a0 = 0 . (2.27)

One might be tempted to assert that the degree of p in Im tj is simply dj , but this statement

is far from trivial since the degree could be lowered by a vanishing of the inner product in-

volving a0 and Nk
i a0. We will discuss in detail in subsection 2.3 (and prove it in section 4.2),

that at least for a one-dimensional degeneration the degree of the polynomial p is indeed d.

While it is hard to analyse infinite distance paths in the generality, it is possible to

give a rather simple necessary criterion when the point P is at infinite distance [22]. Since

the complex structure moduli space is Kähler, the length (2.1) of a path γ is measured by

the integral

dγ(P,Q) =

∫
γ

√
2gIJ̄ ż

I ˙̄z
J
ds , (2.28)

where gIJ̄ is the Kähler metric derived from (2.25) evaluated along the path. The necessary

condition on dγ being infinite is

P at infinite distance ⇒ ∃Ni : Nia0 6= 0 . (2.29)

– 9 –
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In other words, there has to be at least one monodromy Ti of infinite order that allows us

to define the Ni satisfying (2.29). Furthermore this infinite order Ti must act non-trivially

on a0. To show (2.29) it is easier to show the equivalent statement that if for all Ni one

has Nia0 = 0 then there is a path to the point which has a finite distance. So let us assume

that this latter statement is true. Then the Kähler potential (2.25) has no pure polynomial

terms in ti. Furthermore, one can use the tools presented in the next subsection to show

that p is constant in ti and does not vanish at P . Then one can focus on one specific path,

namely the path (ti(s), ζM (s)) = (is, . . . , is, 0, . . . , 0), and rather straightforwardly check

that the integral (2.28) is finite when integrating from s0 to ∞ [23]. Since there is at least

one path to the point which has finite distance, the point is said to be at finite distance in

field space.

Let us end this section by pointing out that it is crucial to keep in mind that the arrow

in (2.29) points only in one direction. It was, however, conjectured in [23] that the opposite

direction is also true:

Conjecture: P at infinite distance ⇐⇒ ∃Ni : Nia0 6= 0 . (2.30)

The above sketch of a proof of (2.29) indicates why the other direction is much more

involved. In the proof one has to construct one path which has finite length, which then

implies that the point cannot be at infinite geodesic distance. Proving the opposite direction

would require to study features of all possible paths, which is enormously complicated since

many non-trivial cancellations can take place. In fact, this complication indicates a crucial

problem that one is facing whenever one tries to analyse field space distances: there are

many possible paths and it can be hard to disentangle features of a path from actual

features of the metric.

In the next subsection we will see that in the case in which the point P lies on only

a single special divisor, we can supply the relevant mathematics and study the paths in

more detail. In fact, the conjecture (2.30) can then be proved and we will comment on

the details of this proof. The assumption of P being only on a single divisor reduces the

problem to a complex one-dimensional problem in which it becomes tractable.

2.3 Infinite distance paths in one-parameter degenerations

In the following we like to continue our study of infinite paths in the complex structure space

Mcs. In order to do this in detail we will impose restrictions on the points P we consider.

Our restriction will be that they only lie on a single special divisors. In this case we can

study infinite distance paths in detail and indicate how the conjecture (2.30) is proved.

In the considered special case, we can pick local complex coordinates (2.10) that are

now split as zI = (z, ζM ), in which the special singular divisor is locally given by z = 0.

This local coordinates are also chosen, such that the point of interest is put at the origin

P : z = 0, ζM = 0. Since we are dealing with a single divisor only, there is only a single

monodromy matrix T around z = 0, and a single nilpotent matrix N (2.15). Recall that

N is given by

N = log T (u) =
1

m
log Tm , (2.31)
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where T (u) is the unipotent part of T . As above we perform a coordinate transformation

z → zm to remove factors of m and work only with T (u), N . For completeness, let us also

display the periods near P again

Π(z, ζ) = exp

[
1

2πi
(log z)N

]
A(z, ζ) , (2.32)

with

A(z, ζ) = a0(ζ) + a1(ζ)z + a2(ζ)z2 + a3(ζ)z3 + . . . , (2.33)

where the aj are holomorphic functions of ζM near P . In the coordinate t = 1
2πi log z this

implies that the Kähler potential takes the form

e−K = −iDaT0 η exp
[
− 2i Im tN

]
ā0 +O(e2πit, ζ) ≡ p(Im t, ζ) +O(e2πit, ζ) . (2.34)

The first term on the right is a polynomial in Im t and has again been denoted by p(Im t, ζ).

We are interested in the degree of the polynomial p. Therefore, as in (2.27), we first

define an integer d as

Nda0 6= 0 , Nd+1a0 = 0 , (2.35)

and note that since N is nilpotent with Nn+1 = 0 one has d ≤ n. Recall from (2.29) that if

d = 0 one has that the point P is at finite distance. We are interested, however, in infinite

distance points and therefore want to determine the degree of p in Im t. In order to do

that, we expand the exponential in p and write

p = −iD
d∑
j=0

1

j!
(−2i Im t)j Sj(a0, ā0) , (2.36)

where we defined the inner product

Sj(a,b) ≡ aT ηN jb . (2.37)

Note that we will sometimes denote S0 (., .) as S (., .). In order to study the degree we need

to determine the highest j such that Sj(a0, ā0) is non-vanishing. It will turn out that this

highest j is precisely d defined in (2.35). In fact, we will discuss in section 4.2 how one proves

iD−dSd(a0, ā0) > 0 . (2.38)

It is then possible to prove [22, 24]

Theorem: P at infinite distance ⇐⇒ Na0 6= 0 . (2.39)

In other words, there is some d > 0 for which (2.35) is satisfied. Let us stress that this is a

special case of the conjecture (2.30). One can prove (2.39), since the one-modulus case with

only Im t appearing in (2.36) allows one to avoid issues related to path-dependence. Let

us remark, though, that we are requiring the point to belong to a single singular divisor,

but this divisor can be embedded in a higher dimensional moduli space parametrised
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by additional coordinates ζM . Our results will, therefore, be also valid for Calabi-Yau

manifolds of complex dimension D with hD,1(YD) > 1.

In order to determine the properties of Sj(·, ·) acting on a0, and subsequently prov-

ing (2.38), (2.39), we need to dive further into mathematics and introduce so-called mixed

Hodge structures. This will be done in subsections 4.1 and 4.2. But before that, we can

already discuss the physical states becoming massless at the singular divisors and show

the exponential mass behaviour of these states when approaching infinite distance points

in moduli space, as stated by the Swampland Distance Conjecture.

3 Massless BPS states

Having established the formalism for the structure of the moduli space around points

of infinite distance, in this section we consider the physical states near such points. The

Swampland Distance Conjecture implies that we expect an infinite number of exponentially

light states near such points of infinite distance. In general, it is not clear precisely which

types of states should be becoming massless. However, for the specific setting of the

complex-structure moduli space of Calabi-Yau threefolds there is a very natural class of

states which are candidates. If we consider type IIB string theory then there are physical

states corresponding to D3 branes wrapped on special Lagrangian three-cycles whose mass

depends on the complex structure moduli. These are BPS states. In this paper we propose

that an infinite number of such BPS states becomes exponentially light and eventually

massless as we approach a locus at infinite distance.

A mass scale is dimensionful and so we should define it relative to a reference mass.

In specifying the mass of a state we will do so relative to the Planck mass Mp. Therefore,

by states becoming massless we mean that the ratio of the physical mass of a state to the

Planck mass goes to zero. In compactifications of type IIB string theory on Calabi-Yau

three-folds there is a decoupling, due to N = 2 supersymmetry, between the complex-

structure moduli space and the dilaton and Kähler moduli space. The latter two param-

eterise the string scale relative to the Planck scale. This means that our results will be

decoupled from such scales, or in other words, rescaling the volume of the Calabi-Yau or

the string coupling will not affect our results on the complex-structure moduli space. It

would only modify the reference mass scale Mp. Therefore, we can trust our results even

in exotic limits of complex-structure moduli space. Further, the mass of BPS states, which

form the focus of our study, is given precisely by the central charge at all loops. This means

that loop corrections to the mass only feed in through the corrections to the elements in

the central charge. These properties will give us good control over the states.

We will sometimes move between this type IIB setting and the mirror picture in type

IIA. There, the relevant states are bound states of D0-D2-D4-D6 branes on even dimen-

sional cycles whose mass depends on the Kähler moduli. More precisely, the branes are

objects in the derived category of coherent sheaves. Note that one universal point of in-

finite distance in Kähler moduli space is the large volume limit. It may appear a little

strange to propose that branes wrapping infinitely large cycles become massless in this

limit. However, the way we define the mass as relative to the Planck mass implies that
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this is perfectly consistent and can be understood as the statement that the Planck mass

diverges faster than the BPS mass of some states. The more exotic seeming behaviour is

due to the fact that in type IIA the Kähler moduli control both the BPS mass of states

and the ratio of the String scale to the Planck scale. So the decoupling we have in type

IIB between the moduli space controlling BPS masses and the moduli space controlling

the string scale is not present. This property means that one is able to probe quite exotic

physics in type IIA string theory by using mirror symmetry with the relatively straight-

forward type IIB setting. Indeed, some of the BPS states which will become massless in

the IIA setting will actually still be infinitely heavier than the string scale. The fact that

the states become massless in the sense of keeping Mp finite matches the idea that the

Swampland Distance Conjecture is gravitational in origin. Indeed, one infinite distance

locus is the so-called geometric engineering limit where the massless spectrum reduces to

that of a gauge theory with a finite number of states. However, this is only true in the

sense that one simultaneously decouples gravity Mp →∞.

The mass of particles corresponding to wrapped D3 branes is given by the volume of

the special Lagrangian cycle that the D3 branes are wrapping. Because the setting has

N = 2 supersymmetry these states are BPS which means that their mass is also given by

the central charge. Either way, the mass formula is

Mq = |Zq| = e
K
2 |S (q,Π)| . (3.1)

Here q is an integer vector specifying the charges of the particle under the U(1) symmetries

in the vector multiplets of the complex-structure moduli. In the geometric formulation in

terms of special Lagrangian cycles it corresponds to the homology class of the special

Lagrangian in the symplectic three-cycle basis. The mass of the particle is Mq and the

central charge is Zq. The symplectic inner product S (q,Π) is define in (2.37) (as S0 (q,Π)).

The mass formula (3.1) gives us a powerful handle on the BPS states. However, it only

tells us what the mass of a would-be BPS state of a given charge is. It does not tell us if such

a state is actually present in the theory at a given point in complex-structure moduli space.

Geometrically, since special Lagrangian cycles are not classified topologically, the presence

of such a cycle in a given homology class depends on the value of the complex-structure

moduli.7 The dependence of the spectrum of BPS states on the complex-structure moduli

is framed in the context of the stability of BPS states upon variations in complex-structure

moduli. Over certain loci in moduli space, termed curves of marginal stability, some BPS

states become unstable to decay to others. After crossing such a threshold line the would-

be BPS state which decayed is no longer present in the theory. In other words, the state

of that charge is no longer BPS but some unstable configuration of two other stable BPS

states. Therefore, a given point in the charge lattice specified by q may or may not support

an actual BPS state. We would like to identify an infinite number of BPS states which

are becoming exponentially light upon approaching the point of infinite distance. The

7It also depends on the Kähler moduli. For example, special Lagrangian cycles can be identified explicitly

as fixed loci of isometric anti-holomorphic involutions. The isometric condition depends on the Kähler

moduli, though it was shown in [25] that there always exists a choice of Kähler moduli which renders any

anti-holomorphic involution also isometric.
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primary challenge in doing so is determining which charges support BPS states near the

infinite distance point. Explicitly determining the special Lagrangian cycles geometrically

is not possible with current technology. Instead, we will utilise the monodromies to gain

some insights into the BPS spectrum. This will be a two-step process, with the first step

discussed in section 3.1 and the second in section 3.2.

3.1 Monodromy orbits and massless states

In this section we consider properties of would-be BPS states near a monodromy locus. So

we will work directly with the charges q without specifying if there is a BPS state of that

charge in the theory. The point is to identify certain sets of charges by their properties

near the monodromy locus. In section 3.2 we will then relate these sets of charges to the

actual BPS spectrum.

Consider the monodromy transformation (2.7). We will restrict to a one-parameter

degeneration for now so that the transformation is

Π
(
ze2πi

)
= T Π (z) . (3.2)

It is simple to check using (2.6) that the moduli space metric is invariant under this trans-

formation. It therefore appears like a redundancy in our description of the system which

hints at an underlying gauge symmetry origin. Indeed, the monodromies are discrete rem-

nants of higher dimensional continuous local symmetries. In type IIB they are embedded

in higher dimensional diffeomorphisms. Since a gauge transformation can not change any

physical properties of the theory neither should the monodromies. However, the BPS mass

formula (3.1) is not invariant under a monodromy transformation on the period vector and

so the monodromy leads to a physical change in the mass of a state.

The only way to make the physical change in the mass of states due to the monodromy

action consistent with the idea that a monodromy action should not lead to a physical

change in the theory is to propose that the monodromy action also rearranges the states in

the theory. So while the mass of one state changes, there is another state which takes its

place and so the full spectrum of states remains unchanged. To deduce the relation between

these two states consider the BPS mass formula (3.1). We see that its transformation allows

one to associate a monodromy action on the charges

Mq = e
K
2 |S (q,Π)| T−→ e

K
2 |S (q, TΠ)| = e

K
2

∣∣S (T−1q,Π
)∣∣ . (3.3)

Therefore, if the theory contains a BPS state of charge q, then after the monodromy there

must be a BPS state of charge Tq of mass equal to the original state. This defines an

action of the monodromy on the charges. We can keep applying the monodromy transfor-

mation which generates a monodromy orbit through the charge space. Specifically, for a

monodromy matrix T , and a representative charge element qs inside the orbit, the orbit is

defined as

OT [qs] ≡
{
q ∈ H3(Y3,Z) : q = Tmqs for some m ∈ Z

}
. (3.4)

It will be later convenient for us to study the difference between a charge vector qs and its

image under T k, we therefore introduce the notation

δkq = T kq− q . (3.5)
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Note that if we consider T (u) = eN one finds δkq = kNq +O(N2).

An important point is that a given set OT [qs] can have an infinite number of charge

elements. We denote a monodromy orbit that is infinite as O∞T [qs]. A necessary condition

for the existence of an infinite orbit O∞T [qs] is that T is of infinite order. This relates

naturally to infinite distance since the result (2.39) implies that at infinite distance points

the monodromy matrix T is of infinite order.8,9 We can also state a sufficient condition for

a monodromy orbit OT [qs] to be infinite, by requiring10

T (u)qs 6= qs ⇔ Nqs 6= 0 . (3.6)

Therefore, a monodromy orbit at infinite distance OT [qs] is either infinite, if (3.6) is satis-

fied, or is composed solely of qs and its finitely many images under T (s).

Having defined the set of charges in a monodromy orbit, we now consider another set

of charges which are those associated to a vanishing BPS mass on the monodromy locus.

It is important to note that at this stage what we mean by this are charges q which lead to

a vanishing central charge, and therefore the mass of a would-be BPS state, on the mon-

odromy locus. We do not consider yet if there is a BPS state with that charge. Consider

the BPS mass formula (3.1) around the monodromy point. We can evaluate this by util-

ising the mathematical tools introduced in section 2 and, in particular, in subsection 2.3.

We restrict our considerations to points in moduli space that are characterised by a single

monodromy matrix T and corresponding N . As in subsection 2.3 we choose coordinates

t = 1
2πi log z such that the infinite distance point is reached at Im t→∞. The moduli space

can be multi-dimensional with additional directions parametrised by other coordinates ζM .

While expansion coefficients, such as the vectors a0 in (2.33), in general can depend on the

ζM , we will suppress this dependence in the notation. We can use the nilpotent orbit theo-

rem to expand the period vector as in (2.32) with (2.33), and the leading behaviour of the

Kähler potential from (2.34), (2.36). Together, they imply the form for the central charge

Zq =

∑d
j=0

1
j! t

j Sj (q,a0)(
i
∑d

j=0
1
k!(−2i Im t)k Sk(a0, ā0)

) 1
2

+O
(
e2πit

)
. (3.7)

This expression simplifies further if we focus only on the leading terms. Recall that d

is defined as the maximum integer for which Nda0 6= 0 and that (4.40) ensured that

i3−dSd(a0, ā0) > 0. Hence, in the denominator of (3.7) it is simply the term proportional

to (Im t)d/2 that dominates. In the numerator we realise that the holomorphic structure,

and the fact that we restrict to singularity defined by a single coordinate t, allows us to

8This can be inferred by noting that the existence of a non-zero nilpotent N implies that T contains

a unipotent part that is not the identity matrix. Therefore, it can be split as in (2.12), T = T (u) · T (s),

with T (u) being unipotent. Furthermore, any non-trivial unipotent matrix is of infinite order. Note that

for T (u) = eN one finds that T (u) is unipotent if and only if N is nilpotent. Further, we have introduced

coordinates z and t after (2.31) such that the corresponding monodromy is the unipotent T (u).
9After publishing this work we became aware that in [26] some similar ideas were proposed in the context

of supergravity theories with more than 8 supercharges.
10Noting that a unipotent matrix has all eigenvalues equal to 1 and a nilpotent matrix all eigenvalues

equal to 0, this equation can equally be stated by demanding that qs is not an eigenvector.
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drop the Re t-terms. This is because they are always dominated by the Im t-terms with

the same coefficient. Therefore, we find that the leading terms in the central charge in the

limit Im t→∞ are

Z lead
q =

∑d
j=0

1
j! (i Im t)j Sj (q,a0)(

−2di3−d

d! (Im t)d Sd(a0, ā0)
) 1

2

+O
(
e2πit

)
, (3.8)

where we have indicated the appearance of the exponential terms relevant if Sj (q,a0) = 0

for all j. Finally, the leading behaviour of the mass is simply extracted through

M lead
q =

∣∣Z lead
q

∣∣.
Using the expression for the mass of a state of charge q (3.8) we can determine the set

of charges which lead to vanishing BPS mass on the monodromy locus Im t → ∞. Let us

denote this set of charges as M, i.e. we define

M≡
{

q ∈ H3(Y3,Z) : Sj (q,a0) = 0 , for all j ≥ d

2

}
. (3.9)

Note that this space forms a sublattice of the full space of charges. The central charge of

these charges will either vanish polynomial or exponentially fast. We want to distinguish

these two cases. The first set of charges which lead to massless states are elements of MI

and are denoted as type I. We specify

MI ≡
{

q ∈M : Sj (q,a0) 6= 0 for some j <
d

2

}
. (3.10)

Note that this space is not properly a sublattice of M. States of type I become massless

at the monodromy locus due to the denominator in the first term of (3.8). Their mass

decreases as a power law in Im t. The space of charges with exponentially vanishing central

charge will be denoted by MII. This space is clearly a sublattice MII ⊂M and explicitly

specified by

MII ≡ {q ∈M : Sj (q,a0) = 0 , for all j ≥ 0 } , (3.11)

and calling these states to be of type II. For states of type II the first term in (3.8) vanishes

identically and they therefore become massless exponentially fast11 in Im t. Clearly, with

these definitions of the two subsets MI and MII one can decompose

M =MI ⊕MII , (3.12)

with a summation performed with integer coefficients.

In the next section we will consider BPS states and we will propose to use the mon-

odromy transformations to identify a candidate set of stable BPS massless states at the

singularity. Hence, we need to combine the concepts introduced in this section and identify

monodromy orbits within the sets of massless charges M, MI, and MII. First note that

Sj (Nq,a0) = −Sj+1 (q,a0) , (3.13)

11Do not confuse this exponential growth with the exponential mass behaviour stated by the Swampland

Distance Conjecture. The latter is in terms of the proper field distance, while this one is in terms of the

coordinate Im t. In fact, we will see in section 3.3 that the states of type I are the ones exhibiting the mass

behaviour expected by the Swampland Distance Conjecture.
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as can be deduced from S(N ·, ·) + S(·, N ·) = 0, already given in (2.19). This implies that

if qs ∈ M then OT [qs] ⊂ M. Further, if qs ∈ MI,II then OT [qs] ⊂ MI,II. In words, if a

state is massless then all the states in its orbit are massless. If a state becomes massless

exponentially fast in Im t, then all the states in its orbit become massless exponentially

fast. If a state becomes massless as a power law, then all the states in its orbit become

massless as a power law.

Furthermore, the mass difference between two states qs ∈M and Tqs ∈M is

∆Z =
S0(Nqs,a0)(

−2di3−d

d! (Im t)d Sd(a0, ā0)
) 1

2

+O
(
e2πit

)
(3.14)

where S0(Nqs,a0) = −S1(qs,a0) due to (3.13). Therefore, states satisfying S1(qs,a0) = 0

have a mass difference visible only at exponential order.

Our considerations in the next section suggest that it is natural to introduce an equiv-

alence relation on the set of massless states M. Namely, we like to identify two charges

q1 ' q2 if q1 − q2 ∈MII. In mathematical terms this defines a quotient space

MQ =M/MII , (3.15)

which is identical to using the equivalence relation on MI . The elements of this quotient

space are equivalence classes, which we denote by

[q] = {q′ ∈M : q′ − q ∈MII} . (3.16)

We will propose that this quotient carries non-trivial information about the presence of

stable BPS massless states at the singularity. We note that one can write [Tq] = T [q] and

[Nq] = N [q], since N,T map states of MII into MII.

Combining the quotient construction with the construction of the monodromy or-

bit (3.4), we next introduce the quotient monodromy orbit. We will denote this orbit by

QT [qs] ≡ {[q] ∈MQ : [q] = Tm[qs] for some m ∈ Z} (3.17)

≡ {[q] ∈MQ : q ∈ OT [qs]} .

This definition simply means that the quotient monodromy orbit is defined by first

restricting to massless charges in M and then identifying two elements in the orbit if they

differ by a type II charge. Again, if this restriction has infinite elements then we denote it

by Q∞T [qs]. It is important to note that even if the monodromy orbit OT [qs] has infinite

elements the quotient monodromy orbit need not.

We will then propose that if a given class [q] ∈ QT [qs] actually contains a charge vector

corresponding to a BPS state in the theory, then at the monodromy locus each class of

the monodromy quotient orbit will contain a BPS state. Therefore, we need to identify an

infinite massless quotient monodromy orbit Q∞T,qs satisfying (3.6) at the infinite distance

points. We will show in section 3.3 that these states indeed exhibit an exponential mass

behaviour in terms of the proper field distance, which further motivates their identification

as the infinite tower of states of the Swampland Distance Conjecture. However, in order
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Figure 2. Figure showing the states in the theory at z = z0 and z = z0e
2πi. The labels x and y

track each physical state. The state y of charge q is BPS at z = z0 and the state x of charge Tq

is BPS at z = z0e
2πi. In the last step the charges of all the states are simultaneously relabelled so

that the spectrum matches the one before the monodromy.

to identify this orbit, we need to introduce further mathematical tools involving the SL2

orbit theorem and the so called mixed Hodge structures. This will be the topic of section 4,

although the results will already be outlined at the end of the next section.

3.2 The monodromy orbit and BPS states

In the previous section we introduced the relevant structures in the charges, we now go on

to discuss their relation to the BPS spectrum. In (3.3) we introduced the natural action of

the monodromy matrix T on the charge vector q. The underlying gauge symmetry nature

of monodromy transformations implies that upon circling the monodromy locus the full

spectrum of states should remain unchanged up to a possible global re-labelling of the

charges. Let us be explicit about what this implies. We consider a monodromy about a

locus z = 0. Then the statement is that the theory should be the same at z = z0 and at

z = z0e
2πi, where z0 is an arbitrary reference value for z. Then say we have a BPS state of

charge q at z = z0. We should have a BPS state of the same mass at z = z0e
2πi. Using (3.3)

this means that this BPS state should have charge Tq. So far we have only referred to a

single state at each value of z. But there is another natural state in the spectrum at each

point, specifically the state of charge q at z = z0e
2πi and the state of charge Tq at z = z0.

All these states, and the action of the monodromy and the re-labelling are shown in figure 2.

The data we have about the BPS spectrum at z = z0, specifically that state q is BPS,

allows us to deduce the existence of one BPS state at z = z0e
2πi, of charge Tq, by utilising

the gauge transformation nature of the monodromy. However, we can also explicitly track

how the BPS state of charge q behaves as we send z → ze2πi. The crucial question is

whether this state remains BPS throughout the path in moduli space. If that is the case

then we can deduce the existence of two BPS states at z = z0e
2πi, of charges (before

relabelling) q and Tq. Since the theory is invariant under the monodromy, this holds

equally at z = z0. Therefore, in such a situation we know that both q and Tq are BPS

states. If this also holds for the full infinite orbit generated by T , denoted O∞T [q], then we

can deduce the existence of an infinite number of BPS states. This will be our strategy.
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To determine the fate of the BPS state over the path z → ze2πi we need to determine

if it crosses a wall of marginal stability along this path. Let us review first some statements

about such walls, see for example [27–35]. Consider three BPS states of charges qA, qB
and qC . We have the relation between state A and the anti-state Ā such that qA = −qĀ.

Now let the charges be related as

qC = qB + qĀ . (3.18)

Because the central charge is linear in the charges, the masses of BPS states of these charges

are related through an inequality

MqC ≤MqB +MqĀ . (3.19)

Let us define the grade ϕ, introduced in [30], associated to a state labelled A which is the

phase of the central charge

ϕ (A) =
1

π
Im logZqA . (3.20)

Note that ϕ (A) = ϕ
(
Ā
)

+ 1, and that we have the identification ϕ (A) ∼ ϕ (A) + 2. The

inequality (3.19) is saturated for ϕ (B) − ϕ (A) = 1. This is termed a curve of marginal

stability. For A and B co-prime this is a co-dimension one locus in moduli space, otherwise

it is the full moduli space. The central point is that in crossing such curves the spectrum of

BPS states can change by a BPS state decaying to two other BPS states. In this case the

state C can decay into B and Ā. Conversely, a BPS state remains stable over a continuous

path in moduli space if the path does not intersect a curve of marginal stability.

We can now apply this to the set of states near the monodromy locus by utilising

the asymptotic form of the central charge (3.8). In particular, we are interested in the

stability of BPS states within the monodromy orbit OT [q]. More specifically, in the orbit

associated to a charge which leads to a vanishing BPS mass on the monodromy locus, so

that OT [q] ⊂ M. First note that, as we approach the monodromy locus, charges in M
are much lighter than any charges not in M and so can never decay to them. So given

a BPS state in M, corresponding to state C in the discussion above, over a monodromy

path we need to consider if it crosses a curve of marginal stability with respect to decay

to two other states in M, which are states B and Ā above. At this point the splitting of

the states into type I and type II in section 3.1 manifests strongly. This is because in (3.8)

circling the singularity corresponds to Re t→ Re t+ 1. Under this we see that the grade,

as defined in (3.20), for states of type I remains invariant to leading order while for states

of type II it undergoes a full transformation

ϕI → ϕI +O
(

1

Im t

)
, ϕII → ϕII + 2 +O

(
1

Im t

)
. (3.21)

We therefore observe that if states B and Ā are of type I and type II respectively then the

state C must cross a curve of marginal stability upon circling the monodromy locus. This

tells us that the curve of marginal stability for states that can be written as a sum of a

type I and type II state intersects the monodromy locus. On the other hand, if B and Ā
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are both of type I then the BPS state C will not cross a curve of marginal stability along

the monodromy path.

Therefore, as we circle the monodromy locus, with a radius arbitrarily close to the

monodromy locus, a type I BPS state will cross a curve of marginal stability to decay to

a type I and a type II state, but not to two type I or two type II states.12,13 This gives us

a physics interpretation of the quotient space MQ in (3.15). Since in this space two type

I states which differ by a type II state are identified, we have that each equivalence class

of type I states in the quotient is stable against decay over the monodromy path. A decay

will only move between different representatives in that class.

We can now return to our original motivation and determine the fate of the BPS state

with charge q at z = z0 over the monodromy path. We know that it will remain stable

within its class inMQ. Therefore, the only thing to check is that the state Tq is not in the

same equivalence class. But this is precisely the case for states corresponding to separate

elements in the quotient monodromy orbit QT [q] defined in (3.18). So within this quotient

monodromy orbit, we determine that inequivalent elements q and Tq are both BPS states,

sufficiently close to the monodromy locus, as long as one of them is. The same conclusion

holds for the full orbit, including the case when it is infinite. Therefore, if there exists an

infinite quotient monodromy orbit Q∞T [q], and if it contains at least one BPS state then,

sufficiently close to the monodromy locus, we deduce the existence of an infinite number

of BPS states spanning the full orbit.

Note that the existence of an infinite quotient monodromy orbit QT [q], and a single

BPS state in that orbit, is a sufficient condition to identify the infinite tower of BPS states,

but it is not a necessary one for the existence of such a tower. In particular, the quotient

by all type II charges can be too strong since some of those charges may not contain BPS

states. Even more generally, it is possible that there is an infinite tower of BPS states

which become massless at infinite distance that is not related to any monodromy orbit.

Note also that at finite distance away from the monodromy locus the infinite quotient

monodromy orbit will not fully consist of BPS states. More explicitly, under n monodromy

transformations the grade (3.20) for type I states transforms as

ϕI → ϕI −
n

πIm t
+O

(
1

(Im t)2

)
. (3.22)

Therefore, say we consider the initial BPS state as state qC in (3.18), and take qB and qĀ
as type I states. After n monodromy transformations, at finite distance, the relative phase

of qB and qĀ will change as in (3.22). When n ∼ Im t this relative phase change is of order

one and so qC will cross a line of marginal stability. Hence, the number of states which

are stable BPS particles, by the argument presented, behaves as Im t and only diverges at

the monodromy locus Im t → ∞. In section 5 we will integrate out only the part of the

tower which correspond to stable states to recover, this way, the logarithmic divergence

12The latter can also be easily seen by noting that type I states are exponentially heavier than type II

states, and that the possible decay can only be marginal.
13In the case of a decay to more than two states the condition for marginal stability becomes only stronger

than the two-body decay, and so the conclusion that it is not possible to decay to two type I states still holds.

– 20 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

in the field distance when approaching the singularity. Interestingly, this linear growth of

the number of stable BPS states is the same that we will obtain from imposing the species

bound, i.e. by considering only states which lie below the cut-off scale above which gravity

becomes strongly coupled.

In summary, we deduce that if there exists an infinite quotient monodromy orbit

Q∞T [q] and if it includes at least one BPS state, then sufficiently close to the monodromy

locus the full infinite orbit is populated by BPS states. These are the candidate infinite

number of BPS states which become massless on the monodromy locus. We will make

some comments in section 4 regarding the existence of a single BPS state in the orbit.

However, it is essentially an assumption of our construction. On the other hand, we will

study in great detail in section 4 the first condition relating to the existence of an infinite

orbit. Before that, we can already note a relation to infinite distances. If we consider a

monodromy locus at finite distance, then d = 0. Inspecting the BPS mass (3.8) we see

that only type II states become massless on the monodromy locus. Therefore, there are no

type I states MI = ∅. Hence, the quotient massless set MQ and the associated quotient

monodromy orbit Q∞T [q] must also be empty. So there does not exist an infinite massless

quotient monodromy orbit at finite distance points in moduli space.

To show the existence of an infinite quotient monodromy orbit at infinite distance will

require introducing significant mathematical machinery. This is performed in section 4.

However, the results can be summarised concisely and so we do so here. We find that there

exists an infinite massless quotient monodromy orbit Q∞T [q], where we specify precisely

the possible charges q, for the case of a monodromy with maximum nilpotency order

n = d = 3. This forms a central result of the paper and, when combined with the analysis

of this section, forms strong evidence for the existence of an infinite number of massless

BPS states on such loci.

The quotient monodromy orbit is empty for d < 3 and any n. More precisely, the orbit

generated by the monodromy associated to the infinite distance locus is empty. This is a

striking result which appears to go against the Swampland Distance Conjecture in some

ways. However, it is important to state that the existence of an infinite quotient monodromy

orbit is only a sufficient, but not necessary, condition for having an infinite number of

massless BPS states. More generally, the quotient space MQ forms a good candidate for

containing an infinite number of BPS states. We know from the monodromy action on the

central charge that states inMQ have no walls of marginal stability around the monodromy

locus. So they are promising candidates for BPS states.14 The quotient space is also infinite

for any infinite distance locus because Nda0 is non-vanishing and is inM but not inMII .

In fact, we will show that there could still be an infinite set of charges in MQ induced

by a monodromy transformation. However, this transformation is associated to a different

locus which intersects the infinite distance locus. Due to the global nature in moduli space

of this mechanism we are not able to show that this happens generally, but will show it for

interesting examples, as well as discuss possible counter-examples, in section 4.4.

14In the case of d = 3 we have that type I states with S1 (q,a0) 6= 0 are stable within a region of order

Im t, while states with only S0 (q,a0) 6= 0 are stable within an exponentially large range. This suggests

that, since the former states decay to the latter at polynomial distance from the monodromy locus, while

the latter are stable at exponential distances, type I states with S1 (q,a0) = 0 are very good candidates for

BPS states even without being part of a monodromy orbit.
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3.3 The exponential mass behaviour

The Swampland Distance Conjecture implies that the mass of the states should be expo-

nentially decreasing in the proper distance upon approaching the infinite distance point.

Note that this naturally assumes a geodesic approach towards the point. It is not practical

to identify such geodesics in general Calabi-Yau moduli space, but the asymptotic approach

to infinity is a one-parameter variation Im t→∞ which makes the analysis feasible. Note

that this assumes that we are approaching a generic point on an infinite distance locus.

Special points, where multiple infinite distance divisors intersect, are more complicated to

analyse because then two parameters are approaching infinity. While the results of sec-

tion 3.1 about the massless states at infinity will hold generally, in this section we only

consider generic points. With this assumption we proceed to show that the mass of the

BPS states which become massless decreases exponentially in the proper distance upon

approaching such points, in accordance with the conjecture.

As we revisited in section 2, the nilpotent orbit theorem implies that the Kähler po-

tential takes the following simple form near a singular point in one-parameter models,

e−K = p(Im t) +O(e2πit) , (3.23)

where p(Im t) is a polynomial of degree d = max{l|N la0 6= 0}. The Weil-Petersson metric

is then given by

gtt̄ = ∂t∂t̄K =
1

4

p′2 − p′′

p2
+O(e2πit) =

1

4

d

Im t2
+

#

Im t3
+ · · ·+O(e2πit) . (3.24)

While the subleading terms are sensitive to the particular structure of the moduli space

near the singularity (encoded in the explicit form of p(Im t)), the leading term is universal

and only depends on the degree d. This universal term is quadratic in 1/Im t implying that

the proper field distance grows logarithmically

dγ(P,Q) =

∫ P

Q

√
gtt̄ |dt| ∼

√
d

2
log(Im t) |PQ →∞ (3.25)

for any smooth path γ connecting P,Q and diverges when approaching the singularity

at Im t → ∞. Hence, the singularity is at infinite distance if d 6= 0. This proves the

Theorem (2.39) for one-parameter models and the result is completely general for any

one-parameter Kähler-Einstein manifold of any space-time dimensionality [22].

For a Calabi-Yau compactification preserving N = 2 supersymmetry, we have seen

in (3.8) that BPS states becoming massless at the singularity have a mass going as

Mq '
∑

j
1
j!(Im t)jSj (q,a0)

(2d/d!)1/2 (Im t)
d
2

, with 0 ≤ j < d

2
, (3.26)

for large Im t. In section 3 we motivated candidates for these states as those belonging to

an infinite quotient monodromy orbit Q∞T,q, which we argued to exist at infinite distance

singularities. However, the behaviour of the mass (3.26) is universal for any BPS states

becoming massless, and the results of this section will therefore also be universal.
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If we compare the effective theory at two different points P,Q in the moduli space along

a path γ approaching the singularity, the mass of these BPS states decreases exponentially

fast in terms of the proper field distance between the two points,

Mq(P )

Mq(Q)
'

(Im t)s|Q
(Im t)s|P

' e−λ dγ(P,Q) , (3.27)

where λ = s
√

2/d with s = 1, 1/2 for d even or odd respectively. This is precisely the

exponential mass behaviour predicted by the Swampland Distance Conjecture.

The above result can be generalised to higher-dimensional moduli spaces if the special

point belongs only to one singular divisor, or in other words, it is a generic point of the

singular locus. As explained in section 2.3, the Kähler potential reads

e−K = p(Im t, ζ) +O(e2πit, ζ) , (3.28)

where ζ denotes additional spectator coordinates. For convenience, we will denote the

expansion of the polynomial as p(Im t, ζ) =
∑d

l=0 fl(ζ)(Im t)l. We now split the index

range for the metric as 1 denoting the t coordinate, and i, j denoting the other directions

in field space. The different components of the metric read

g11 =
d

(Im t)2
− 2fd−1

fd(Im t)3
+ . . . ,

g1j =
Cj

(Im t)2
− 2fd−1fdCj

(Im t)3
+ . . . , where Cj =

∂jfd−1fd + ∂jfdfd−1

f2
d

,

gij̄ =
−(∂jfd−1 + ∂jfd(Im t))2 + (∂2

j fd−1 + ∂2
j fd(Im t))(fd−1 + fd(Im t))

(fd−1 + fd(Im t))2
. (3.29)

Using the above metric, it is possible to prove [24] that any real curve approaching a generic

point of the divisor has infinite length,∫
γ
ds ≥

∫ √
d− εM
(Im t)

d(Im t)± finite terms→∞ , (3.30)

as stated in the Theorem (2.39). Here M = hD,1(YD) − 1 and ε is picked small enough

such that d − εM > 0. The BPS mass formula is slightly modified when including the

dependence on the spectator moduli ζ, but this can all be absorbed in the coefficients a(ζ).

Therefore, it is again satisfied that the mass of these BPS states decreases exponentially

fast in the proper field distance when Im t→∞,

Mq(P )

Mq(Q)
∼ Sjmax (q,a0(ζP ))

Sjmax (q,a0(ζQ))
e−λ dγ(P,Q) , (3.31)

as stated by the Swampland Distance Conjecture. Here jmax = {j | j < d/2} and λ ≤
s
√

2/(d− εM) with s = 1, 1/2 for d even or odd respectively.

To summarise, in this section we have shown that BPS states becoming massless at

an infinite distance locus have a mass which decays exponentially fast in the proper field

distance when approaching the singularity. This mass behaviour is due to the universal

behaviour of the field metric near infinite distance singularities. Our results therefore

show that upon establishing candidate BPS states that become massless, the exponential

behaviour of the Swampland Distance Conjecture will be present.

– 23 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

3.4 Microscopic physics for BPS stability

The argument presented in the previous section for the stability of the BPS states over the

monodromy orbit only utilised N = 2 supersymmetry. There is a deeper, more microscopic

understanding of the relation between monodromy and BPS states which we discuss in this

section. In particular, we can track more precisely what happens when a BPS state does

encounter a curve of marginal stability over the monodromy path. The subtlety is that,

while at finite distance monodromy loci the analysis appears to capture the correct physics,

its application to infinite distance is less clear. However, we will present some evidence

that at least the aspects of it most relevant to this paper may also hold at infinite distance.

Consider the states A, B and C satisfying the charge relation (3.18). In string theory

these are D3 branes wrapping special Lagrangian three-cycles. The branes can form bound

states. If we consider the charges of the states we see that C is potentially a bound state

of an anti-A and B while B is potentially a bound state of A and C. Then the statement

of [30] is that, in general, branes B and anti-A form a bound state if

ϕ (B)− ϕ (A) < 1 . (3.32)

We can utilise this to see how the bound state spectrum changes under monodromy. Let

us consider a setup where brane A is massless, or at least much lighter than branes B and

C. The prototypical example is being close to the conifold locus in moduli space where a

brane becomes almost massless, and then considering the monodromy action on massive

branes B and C. Since brane A is massless, we can parameterise how its central charge

behaves as we circle the monodromy locus by an angle θ as Z (A) → |Z (A)| e−iπθ. Now,

importantly, branes B and C are massive, and therefore their central charge angles will

remain approximately constant upon circling the monodromy locus. This then implies that

the bound states are stable for the values

C stable for θ > ϕ (B)|θ=0 − ϕ (A)|θ=0 − 1 , (3.33)

B stable for θ < ϕ (B)|θ=0 − ϕ (A)|θ=0 . (3.34)

Therefore, as we circle the monodromy locus B becomes unstable and C becomes stable.

It is important to note that the fact that MqC � MqA and MqB � MqA was crucial

in the above analysis. It implied that upon circling the monodromy locus one inevitably

crosses a curve of marginal stability. We therefore find, for this case, the picture that states

related by a monodromy transformation which differ by the charge of a massless state are

mutually unstable, in the sense that only one of them can be stable at any point in moduli

space. This picture has been generalised to having more than one but still a finite number

of massless particles at the singularity in terms of multicentered BPS solutions [35]. In

terms of the discussion of section 3.2, we see that when we have a monodromy action

mapping a type I charge to a charge which differs only by a type II charge from the initial

one, then the initial BPS state is replaced by a BPS state which is a bound state of the

initial state and the type II state.

The physics behind (3.32) is that the mass of an open string stretching between anti-

brane Ā and brane B is given by m2 ∼ ϕ (B)−ϕ (A)− 1 [30, 32]. If the string is tachyonic
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then the branes form a bound state. Indeed, if the singularity inducing the monodromy

is due to only the state A becoming massless, then the monodromy action on the branes

can be understood rather explicitly in terms of strings stretching between them. Consider

the monodromy transformation on a massive BPS state of charge qB such that it maps to

qC = TqB. For such simple cases, we can relate the monodromy action to the charges

qC = TqB = qB − S (qA,qB) qA . (3.35)

The appearance of the inner product S (qA,qB) in (3.35) can be understood in three

ways. The first is in terms of mutual locality of the states A and B. It amounts to the

statement that a state should only undergo a monodromy transformation about a state

which is not mutually local to it. The prototypical example being an electron-monopole

pair. The second way to understand it is geometrically. Recall that the charge vectors are

the homology classes of the three-cycles that the branes are wrapping, and S (qA,qB) is

their intersection number. It therefore amounts to the statement that a cycle undergoes a

monodromy only if it intersects the cycles which vanishes on the monodromy locus. The

third way is by noting that these intersections between cycles are associated to the strings

stretching between the branes wrapping them.

So far this presents quite a coherent picture of the underlying microscopic physics.

However, at infinite distance where an infinite number of states become massless, this

can not be the full story. If we consider how charges transform under infinite distance

monodromies T kq = q + δkq, as already defined in (3.5), then one can show that charges

exists such that the monodromy action satisfies S (δkq,q) = 0. Therefore, for such charges,

the monodromy action can never be written in the form (3.35). This implies that the physics

at infinite distances has some qualitative differences to physics at finite distances. However,

in the analysis of section 3.2 we motivated the quotient monodromy orbit, where charges

which differ by a type II charge are identified, by considering the curve of marginal stability

for a type I state which can be written as a sum of a type I and type II states. In terms

of the monodromy action (3.35) this amounts to taking B and C as type I states and A as

type II. In section 4 we will show that in such a setup S (δkq,q) 6= 0, while in appendix A

we show that S (δkq,q) = 0 if B, C and A are type I states. Therefore, at least with

respect to this type of interaction between BPS states and monodromy, the microscopic

physics picture described in this section may indeed hold. If this is the case, then we can

determine that the quotient by type II states is physically mapped to the statement that

only one state in each equivalence class is a stable BPS state at any point in moduli space.

It is informative to consider some examples of BPS spectra which support our propos-

als. Consider a simple model studied in [29] of type IIA on a non-compact Calabi-Yau given

by a bundle over P2. This is mirror to our type IIB setting, but the physics is the same.

It is a one-parameter moduli space, parameterising the volume of the P2 and the value of

the Neveu-Schwarz B-field, with a complex modulus z. The large volume limit is at z = 0

with an associated infinite order monodromy. There is a Z3-orbifold limit at z = ∞ with

an associated finite Z3 monodromy. The most directly relevant region is the large volume

limit which is at infinite distance. The brane spectrum is given by coherent sheaves but for

P2 these are always just bundles. So in the large volume regime we can consider the brane
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spectrum as corresponding to D4 branes wrapping the P2 and supporting stable bundles.

The infinite monodromy action corresponds to integer shifts of the Neveu-Schwarz B-field

which is equivalent to changing the bundle on the D4 by tensoring it with a line bundle.

The bundle stability condition is unchanged by this action and therefore, given a stable

bundle or brane state, the infinite monodromy generates an infinite orbit through BPS

states in the theory in the large volume limit.

We can also see where the quotient construction is important. At the conifold locus

there is a massless state and a massive monodromy orbit where the difference between the

charges in the orbit is given by the charge of the massless state. The states in this infinite

orbit all decay to a product of states, including the massless state, at the conifold point.

The orbifold point is physically different to the other two because there are no massless

states associated to the monodromy. It is consistent with the monodromy orbit correspond-

ing to BPS states in the following sense. Consider the region in moduli space near the

orbifold locus. Moving away from the orbifold point corresponds to a particular resolution

of the orbifold singularity which breaks the Z3 symmetry. It was shown in [29] that for each

state which is present at the orbifold locus, there exists a path moving out from the orbifold

point in moduli space on which it is stable. The angle of the path corresponds to the stable

state on that path, and the Z3 monodromy action rotates between three angles and thereby

the three different stable states. At the orbifold point all of the different states which were

permuted become stable and the resulting theory contains a Z3 permuting different BPS

states. It is interesting, however, as an illustration of why the quotient monodromy orbit

can be a constraint which is too strong. The three different BPS states are type I states

which differ by a type II charge. So the quotient monodromy orbit would identify them.

However, there is no BPS state corresponding to the type II charge, it would be a massless

state at the orbifold locus. Therefore, all the states in the full monodromy orbit are BPS.

4 Infinite monodromy orbits and mixed Hodge structures

In this section we introduce a mathematical machinery that appears to be tailor made to

analyse the setting outlined in sections 2 and 3. One of its most foundational results is the

Nilpotent Orbit theorem, already introduced in section 2, but we will see that it goes far

beyond that. The most important fact that we will use is that there is a natural ‘split’ of

the forms in the middle cohomology of any manifold YD near the singularity that is finer

than the normal (p, q)-decomposition and allows us to analyse the behaviour of the metric,

central charge, and Hodge norm in detail. While we have a first glance at this structure

in subsection 4.1, we will introduce the precise definition of the underlying limiting mixed

Hodge structure in subsection 4.2. We will apply the results to Calabi-Yau threefolds

in subsection 4.3, thereby showing the statements about the quotient monodromy orbit of

candidate BPS states summarised at the end of subsection 3.2. It is important to stress that

most of our discussion will consider one-modulus degenerations in moduli space. A small

glance on what can happen in multi-moduli degenerations will be given in subsection 4.4.
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4.1 A coarse introduction to the refined Hodge structure

Before introducing the precise mathematical machinery to discuss the periods at singular-

ities in moduli space, we use this introductory section to give a more intuitive overview

of the appearing structures hopefully useful to physicists who worked on Calabi-Yau com-

pactifications. For clarity we will restrict our attention to Calabi-Yau threefolds Y3 and

hence concentrate on the middle cohomology H3(Y3,C). Given a fixed complex structure

this middle cohomology splits by the Hodge-decomposition

H3(Y3,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 , (4.1)

where the spaces Hp,q are complex and spanned by (p, q)-forms that are closed but not

exact. The dimensions hp,q = dimCH
p,q are the Hodge numbers. For a Calabi-Yau threefold

one has h3,0 = 1, while h2,1 is not a priori fixed. It turns out to be useful to define the spaces

F 3 = H3,0 , F 2 = H3,0 ⊕H2,1 , (4.2)

F 1 = H3,0 ⊕H2,1 ⊕H1,2 , F 0 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 .

They form a filtration F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0. On a smooth manifold the decomposi-

tion (4.1) defines a so-called ‘pure polarized Hodge-structure’ and (4.2) a ‘pure Hodge

filtration’ as we discuss in more detail in subsection 4.2.1. One can show that the F i vary

holomorphically in the complex structure deformations zI . Furthermore, the derivatives

of F 3 with respect to the fields zI yield an element of the lower F i, since one shows that

∂zIF
p ⊂ F p−1. The vector spaces F p and their variation over the space Mcs give us a

more abstract way of thinking about the variations of Ω with respect to zI . This implies,

in particular, that varying the complex structure keeping Y3 smooth, one can define the

non-degenerate and positive-definite Weil-Petersson metric gWP, introduced after (2.2),

on the moduli space of complex structure deformations using (2, 1)- and (3, 0)-forms.

On a singular space Y3 this simple structure ceases to be sufficient to capture what

happens with the metric. This is clear, for example, from the periods (2.32), which diverge

at the singular loci and hence force the (3, 0)-form to develop singularities. At the singular-

ity the information about the split (4.1) seems lost. However, we have seen in section 2 that

the crucial elements in the behaviour of the metric at the singular loci are the monodromy

matrix T , or rather the nilpotent matrix N defined in (2.31), and the leading coefficient a0

in the expansion of the periods (2.32). The underlying mathematical structure is captured

by a so-called ‘limiting mixed Hodge-structure’ first introduced by Schmid in [14], build-

ing on Deligne’s work [36]. Focusing as in subsection 2.3 on one-parameter degenerations

z → 0, the important objects are the spaces

F p∞ = lim
z→0

exp

[
− 1

2πi
(log z)N

]
F p . (4.3)

Despite the fact that this removes the overall divergent factor, it turns out that the vector

spaces F p∞ and the corresponding Hp,q
∞ are no longer a Hodge filtration and Hodge structure

for the full space H3(Y3,C).
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The basic idea of the mixed Hodge structure is to add some finer structure capturing

the influence of the matrix N . More precisely, one further splits up the Hp,q in (4.1)

near the singularity, after removing the singular terms, to define new Ir,s with a broader

allowed index structure. This splitting is called Deligne splitting [36] and will be discussed

in more detail below. While the Hp,q have p+ q = 3, the Ir,s have r + s ∈ {0, . . . , 6}, but

still span H3(Y3,C) =
⊕

p,q I
p,q. For example, the H3,0 ‘splits’ at the singularity to have

contributions in potentially the following spaces

H3,0 → {I3,3 , I3,2 , I3,1 , I3,0} . (4.4)

To determine where the original form Ω ∈ H3,0 actually resides in the limit depends on

the type of singularity. We will discuss this in more detail in subsection 4.2. In fact,

introducing the dimensions ip,q = dimC(Ip,q) one finds∑
q

ip,q = hp,3−p . (4.5)

The spaces Ip,q capture the non-trivial information about the nilpotent matrix N . In

particular, they are constructed such that

NIp,q ⊂ Ip−1,q−1 . (4.6)

One can work with forms in Ip,q to some extend analogously to the standard (p, q)-

forms. In particular, we will see in more detail below that

S(Ip,q, Ir,s) = 0 , unless p+ r = 3 and q + s = 3 . (4.7)

This condition corresponds to the statement that one only can integrate a top form of

weight (3, 3) to a non-vanishing number. The conditions (4.7) are the implied orthogonality

relations. More non-trivial is are the statements of when the inner product of two (p, q)-

elements does not vanish. In order to give such a criterion one needs to identify a subset of

so-called primitive forms P p,q ⊂ Ip,q for p+ q ≥ 3, by demanding that all elements in this

space satisfy Np+q−2P p,q = 0. One can then show that each Ip,q admits a decomposition

into a direct sum of the spaces N jP p−j,q−j , where we point out that this respects (4.30).

For these primitive forms one then finds the positivity condition

v ∈ P p,q , v 6= 0 ⇒ ip−qSp+q−3(v, v̄) > 0 , (4.8)

with Sj(·, ·) ≡ S(·, N j ·) as introduced in (2.37). While these properties are all similar to

standard (p, q)-forms, there is a crucial difference between the two notions. Namely, in

general one finds Ip,q 6= Iq,p, but rather that Ip,q yields in addition to Iq,p also elements in

the lower Ir,s with r < q and s < p. Hence, the Ip,q, defined at the singular locus, are not

a standard Hodge decomposition.

Consider now, for example, an element v ∈ I3,d. By construction one can use the

identity (4.30) to conclude Nd+1v = 0. Furthermore, it is immediate that v is in I3,d
prim,

following simply from the definition. Hence, we can apply (4.8) to conclude that its inner
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product i3−dSd(v, v̄) is non-vanishing and positive. This will be precisely what we need

in order to address the properties of the a0-coefficient appearing in (2.32). The Calabi-

Yau condition on Y3 restricts the possible splits into a mixed Hodge structure significantly.

Since h3,0 = 1 there are only 4 cases to consider

a0 ∈ I3,d = P 3,d , d = 0, 1, 2, 3 . (4.9)

For each of these cases one can study how h2,1 can split into i2,q, which leads to a classifi-

cation of possibly allowed Hodge diamonds ip,q [37].

4.2 Mathematical machinery of mixed Hodge structures

In this subsection we introduce in more detail the mathematical machinery to define and

study the mixed Hodge structure Hp,q, and associated Deligne splitting Ip,q, on the middle

cohomology HD(YD,C) of a Calabi-Yau D-fold. The reader feeling sufficiently informed

by subsection 4.1 or already familiar with these mathematical structures can safely skip to

subsection 4.3.

4.2.1 Polarized pure Hodge structures

To start with a more familiar concept let us first recall some facts about a pure Hodge

structure and Hodge filtration. A pure Hodge structure of weight w is defined on a vector

space VC, if it admits a Hodge decomposition

VC = Hw,0 ⊕Hw−1,1 ⊕ . . .⊕H1,w−1 ⊕H0,w , (4.10)

with the subspaces satisfying Hp,q = Hq,p. The weight w is the sum of the p, q for the sum-

mands in (4.10). Using the Hp,q one can also define a Hodge filtration as F p = ⊕i≥pHi,w−i.
It is called a filtration since

VC = F 0 ⊃ F 1 ⊃ . . . ⊃ Fw−1 ⊃ Fw = Hw,0 , (4.11)

and is required to satisfy Hp,q = F p ∩ F̄ q. Clearly, the existence of such F p is equivalent

to the existence of a pure Hodge structure (4.10). A prominent examples of a pure Hodge

structure and Hodge filtration arises on the middle cohomology VC ≡ HD(YD,C) of a

smooth manifold YD. The weight of this pure Hodge structure is then w = D and the

spaces Hp,q = Hp,q are the cohomology groups of (p, q)-forms spanning Hp,q.

In a next step we introduce the notion of a polarized pure Hodge structure. This

concept essentially states that there is an appropriate bilinear form S(., .) on VC. More

precisely, one demands that there exists an S such that:

(1) S(Hp,q,Hr,s) = 0 , for p 6= s, q 6= r; (4.12)

(2) v ∈ Hp,q v 6= 0, ip−qS(v, v̄) > 0 .

Let us note that this implies that it makes sense to introduce the Hodge norm

||v||2 = S(Cv, v̄) , v ∈ VC , (4.13)
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where C is a linear operator acting as ip−q on elements of Hp,q. The familiar example for a

polarized pure Hodge structure is again the middle cohomology HD(YD,C) for which the

bilinear form is given by

S(α, β) =

∫
YD

α ∧ β . (4.14)

The operator C is nothing but the familiar Hodge-star in this case.

On a smooth Calabi-Yau manifold we can identify Hp,q = Hp,q using the (D, 0)-form

Ω as a representative of FD. Its derivatives with respect to the fields zI yield an element of

the lower F i, since one shows that ∂zIF
p ⊂ F p−1. The vector spaces F p and their variation

over the spaceMcs give us a more abstract way of thinking about the variations of Ω with

respect to zI . The problem is to follow the Hodge structure Hp,q filtration F p to the singular

divisor z = 0. Clearly, as we have seen from the example of Ω with periods (2.32) the periods

generally diverge in the limit z → 0. Nevertheless, one can define an appropriate limiting

value of the F p, denoted by F p∞ as in (4.3). These limiting values still give a filtration

HD(YD,C) = F 0
∞ ⊃ F 1

∞ ⊃ . . . ⊃ FD−1
∞ ⊃ FD∞ . (4.15)

However, it turns out that the vector spaces F p∞ and the corresponding Hp,q
∞ are no longer

a Hodge filtration and Hodge structure for the full space HD(YD,C). In particular, S(·, ·)
does not have the above non-degeneracy on Hp,q

∞ .

4.2.2 Monodromy weight filtrations and mixed Hodge structures

The properties of Sj(·, ·) = S(·, N j ·) are important when making contact with subsec-

tion 2.3 and section 3. To address the problem of degeneracy and orthogonality we

thus want to mix this information with the structure that N induces on the space

VC ≡ HD(YD,C). The main fact that we will exploit is that the nilpotent operator N

acting on a vector space VC induces a unique monodromy weight filtration Wj(N), which

consists of complex vector subspaces of VC. These form a filtration

W−1 ≡ 0 ⊂ W0 ⊂ W1 ⊂ . . . ⊂ W2D−1 ⊂ W2D = VC . (4.16)

This filtration becomes unique if one imposes that the following defining properties

1.) NWi ⊂Wi−2 (4.17)

2.) N j : GrD+j → GrD−j is an isomorphism, (4.18)

where we have defined the graded spaces

Grj ≡Wj/Wj−1 . (4.19)

Note that the uniqueness of this filtration can be inferred from analysing the Jordan form

of N . The quotient in (4.19) indicates that in order to construct Gri one considers elements

of Wi and takes them to be in the same equivalence class if they only differ by an element

of Wi−1. We have used a similar quotient construction in (3.15) for MQ =M/MII.
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Let us discuss some of the properties of the Wi. Firstly, we note that there is a simple

representation of the Wi in terms of the kernels kerN j and images imN j as

W0 = imND , W1 = imND−1 ∩ kerN ,

W2 = imND−2 ∩ kerN ⊕ imND−1 ∩ kerN2 , . . . , W2D−1 = kerND . (4.20)

This implies immediately that if the unipotency index is smaller than the complex dimen-

sion of the manifold, n < D, some of the previous subspaces will be empty. In particular,

for all j > n we have WD+j = WD+n and WD−j = 0. Such that the filtration looks like

0 = W0 = W1 = . . . = WD−n−1 ⊂ . . . ⊂ WD+n = WD+n+1 = . . . = W2D = VC , (4.21)

and the non-trivial information about the filtration is in the vector spaces

WD−n, . . . ,WD+n. Using the uniqueness of the filtration it is also not difficult to study

orthogonality relations among the Wi as

S(Wi,W2D−i−j) = 0 , j > 0 , (4.22)

with the bilinear form S(., .) introduced in (2.37) having components η.

We now have the required background to state a main result of Schmid [14] for the

one-modulus case. Namely, Schmid proved the Sl2-orbit theorem, which has as one of its

consequences that the induced Hodge filtration F p∞ defined in (4.3) and the monodromy

weight filtration Wp defined after (4.16) form a mixed Hodge structure (W,F∞, N) on the

vector space HD(YD,C).15 This structure is well-defined for YD being singular. Such mixed

Hodge structures have numerous applications in mathematics [38].

The crucial feature of this data is that each Grj defined in (4.19) admits an induced

Hodge filtration

F pGrj ≡ (F p∞ ∩Wj)/(F
p
∞ ∩Wj−1) . (4.23)

This implies that on a singular space YD we can deal with a pure Hodge structure of weight j

when restricting to the spaces Grj .
16 In other words, in the notation of (4.10) we have to set

V j
C = Grj =

⊕
p+q=j

Hp,q , Hp,q = F pGrj ∩ F qGrj , (4.24)

where we recall that w = p + q is the weight of the corresponding Hodge structure. The

operator N is a morphism among these pure Hodge structures. Since N(F j∞) ⊂ F j−1
∞ and

N(Wj) ⊂Wj−2 one finds

NGrj ⊂ Grj−2 , NHp,q ⊂ Hp−1,q−1 . (4.25)

15It is important to stress that one wants to restrict considerations to forms that are primitive with

respect to the Kähler form J on the Calabi-Yau D-fold. For the middle cohomology HD(YD,C) these are

the forms that are trivial upon wedging with J . For Calabi-Yau threefolds this condition is trivial and

one finds the whole space H3(Y3,C), while for fourfolds this gives a non-trivial restriction to a subspace

H4
prim(Y4,C). While we work with these Kähler primitive forms in the following, we will abuse notation

and drop the subscript ‘prim’.
16Note that the filtration {F p∞} in (4.3) is not invariant under rescalings of the parameter z and so there

is no canonical choice for it. In fact this rescaling freedom can be used to set some components of elements

in one of the {F p∞} to zero. However, the restriction of the filtration to the Grj is invariant under such a

rescaling. It is this restriction which has a good geometric meaning.
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Note that this induces a jump in the weight of the pure Hodge structure by −2. However,

the mixed Hodge structure is preserved by N .

Finally, it will be important for us to use the fact that (W,F∞, N) is actually a polarized

mixed Hodge structure [14]. While giving the relevant definitions here briefly, we will intro-

duce the for us relevant form of this fact in a slightly different reincarnation and in more de-

tail in subsection 4.2.3. To identify a polarized mixed Hodge structure, one first introduces

the primitive subspaces Pi ⊂ Gri, by setting PD+j ≡ ker{N j+1 : GrD+j → GrD−j−2} , j ≥
0 and PD+j ≡ 0, for j < 0. In fact, one shows that each space Grj decomposes as Grj =⊕

i≥max(D−j,0) N
iPj+2i. Importantly, the Pj can be shown to carry a pure Hodge structure

of weight j, polarized with respect to the bilinear forms Sj−D(., .) introduced in (2.37).

4.2.3 Deligne splitting

Having defined a mixed Hodge structure (W,F,N), we can now introduce the finer split of

the complex vector space VC = HD(YD,C). Deligne defined in [36] a splitting

VC =
⊕
p,q

Ip,q , (4.26)

where

Ip,q = F p ∩Wp+q ∩
(
F̄ q ∩Wp+q +

∑
j≥1

F̄ q−j ∩Wp+q−j−1

)
. (4.27)

While complicated looking at first, it turns out that it is the unique splitting [39] with the

following properties

F p =
⊕
s

⊕
r≥p

Ir,s , Wl =
⊕
p+q≤l

Ip,q , (4.28)

and

Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s . (4.29)

One can also easily infer in analogy to (4.25) that

NIp,q ⊂ Ip−1,q−1 . (4.30)

Note that the Ip,q might be viewed as the analogs to the Hp,q. In fact, one can show

that there exists an isomorphism identifying these spaces. The Ip,q have the advantage

that they yield a straightforward decomposition (4.26) of VC = HD(YD,C), but have the

disadvantage (in contrast to the Hp,q) that they only satisfy (4.29). In other words, for the

Ip,q-decomposition the usual rules for complex conjugation of (p, q)-forms are not satisfied.

This complicates the identification of real elements. If a splitting satisfies Ip,q = Iq,p it is

called split over R. Remarkably, as was shown in [39], there is always a unique map of δ,

with properties described in [39], such that (W, eiδF,N) is admitting a Deligne splitting

that is split over R. In the following we will not work with the R-split case, but it can be

useful to keep in mind that such a transformation always exists.

To study the positivity properties of elements in Ip,q, we next introduce the primitive

subspaces P p,q ⊂ Ip,q by defining

P p,q = Ip,q ∩ kerNp+q−D+1 . (4.31)
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One can now check that the Ip,q can be decomposed in terms of the P p,q as

Ip,q =
⊕
i≥0

N i(P p+i,q+i) . (4.32)

The P p,q inherit a polarization relation if the underlying mixed Hodge structure is polarized.

Concretely, one has (see e.g. [40])

Sl(P
p,q, P r,s) = 0 for r + s = D + l = p+ q; (p, q) 6= (s, r) , (4.33)

ip−qSl(v, v̄) > 0 for v ∈ P p,q , v 6= 0 . (4.34)

These conditions use the forms Sl(·, ·) = S(·, N l·) introduced in (2.37). While (4.33)

describes the orthogonality relations among (p, q)-forms and (r, s) with p + q = r + s one

can also study the orthogonality if this condition is violated. Using the definition (4.27),

the property (4.30), and the orthogonality (4.22) one finds

Sj(I
p,q, Ir,s) = 0 unless p+ r − j = D and q + s− j = D , (4.35)

which essentially states that integrals like (4.14) defining S(·, ·) can only be performed over

top-forms.

Let us stress that the Deligne splitting is a finer split of the usual Hodge structure on

HD(YD,C). In fact, one finds that the Hodge numbers hp,D−p = dimHp,D−p are related

to the dimensions of Ip,q by

D∑
q=0

ip,q = hp,D−p , ip,q = dim Ip,q . (4.36)

The numbers ip,q are sometimes referred to as Hodge-Deligne numbers and form a Hodge

diamond as familiar from the hp,q. The described construction implies that they satisfy

the conditions

ip,q = iq,p = iD−p,D−q . (4.37)

Clearly, for a Calabi-Yau manifold one has hD,0 = 1, such that (4.36) are further constraints

for these geometries. A detailed account of these facts can be found in [37], where also

Calabi-Yau threefolds are discussed in much detail. We will only summarise some relevant

facts about a0 introduced in (2.33).

4.2.4 Properties of a0

Having introduced the mathematical machinery of mixed Hodge structures and the asso-

ciated Deligne splitting, we are now in the position to apply them to the coefficients in

the nilpotent orbit (4.28). Note that the mixed Hodge structure under consideration is

(W,F∞, N), i.e. the limiting mixed Hodge structure at the singular locus. Since a0 ∈ F 3
∞

we can use (4.28) to infer

a0 ∈ ID,0 ⊕ ID,1 ⊕ . . .⊕ ID,D . (4.38)
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The Calabi-Yau condition hD,0 = 1 together with (4.36) implies that only one of these

spaces can be non-trivial. In fact, it follows from (2.35) that

a0 ∈ ID,d = PD,d . (4.39)

To see this, we note that Nda0 6= 0 implies that a0 has non-trivial parts in ID,d ⊕ . . . ⊕
ID,D, since otherwise all components of a0 would be shifted to zero by Nd due to the

property (4.30). Furthermore, the condition Nd+1a0 = 0 implies that a0 is trivial in

ID,d+1 ⊕ . . . ⊕ ID,D. To see this, note that by the definition (2.11) and (4.30) one has

ID,d+i = PD,d+i for i ≥ 0. However, the polarization condition (4.34) implies that a0 has

to be trivial in PD,d+1 ⊕ . . .⊕ PD,D, since otherwise one contradicts Nd+1a0 = 0.

Having identified the location of a0 ∈ ID,d = PD,d, we can evaluate its properties when

inserted into Sl. Firstly, note that the polarization condition (4.34) directly implies

iD−dSd(a0, ā0) > 0 . (4.40)

This result can be used in (2.36) to conclude that the degree of the polynomial p is actually

exactly d and that the coefficient of the leading monomial is positive. Using these facts it is

not hard to show (2.39) and (2.29), i.e. one can derive the metric and check that an infinite

distance point implies d > 0. These results can be readily shown to hold for any D and n.

One might also wonder about the inner product S(a0, ā0). Naively applying the intuition

for (p, q)-forms suggest that it should vanish. However, this is not the case in general

(unless the Ip,q are split over R as discussed in subsection 4.2.3), since by (4.29) one has

ā0 ∈ Id,D
⊕

r<d,s<D

Ir,s . (4.41)

Hence, one has to evaluate S(a0, ā0) using all lower Ir,s, which implies that the vanishing

conditions (4.33) and (4.35) are in general violated and the inner product can be

non-vanishing.

Let us stress again that the mathematical machinery introduced in this section is,

on the one hand, crucial to show (2.39), and, on the other hand, has to be employed to

determining the monodromy orbits in subsections 3.1 and 3.2. We will focus on the latter

in the next subsection. It might appear, however, rather involved when approached in

these abstract terms. Therefore, in appendix B we discuss some simple examples.

4.2.5 Growth of the Hodge norm

To close this mathematical section we will state yet another result that will tie in nicely

with the discussion of the gauge coupling function later in section 6. More precisely, we

will discuss the growth of the Hodge norm

||v||2 =

∫
YD

v ∧ ∗v̄ , (4.42)

for a complex D-form v, when moving along a path in moduli space. This norm has already

been introduced in (4.13), ||v||2 = S(Cv, v̄). In the following we discuss its behaviour in
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the local geometry when approaching the singular locus. These results are non-trivial and

follow from the SL2 orbit theorem [14].

To begin with we recall that we can consider a variation of Hodge structures, i.e. how

the standard Hp,q change when varying the complex structure moduli. Packaged into the

F p as given before (4.11) (see also (4.2)), one thus defines the a bundle, with fibers varying

holomorphically overMcs. As in the previous discussion we will consider a small variation

in the local coordinates t, ζM used in subsection 2.3. Now one can pick any D-form v(t, ζ),

which comprises a flat section of the above bundle. The growth of v(t, ζ) is in direct

correspondence with the property of v having support in certain spaces Wj . Namely one

has v(t) ∈Wj if and only if the forms behaves near the singularity as

||v(t)||2 = cj(Im t)j−D + cj−1(Im t)j−D−1 + . . .+ c0(Im t)−D +O(e−Im t) , (4.43)

for Im t→∞, Re t fixed. Note that the coefficients cj can be zero in this expression, which

is in accordance with Wj−1 ⊂ Wj . The form (4.43) can be readily used to determine the

growth of an element in Ip,q with p + q = j, since the definition (4.27) of these spaces

contains an intersection with Wp+q or a lower Wi, i < p + q − 1. Formulated in terms of

the Grj defined in (4.19), one has

||v(t)||2 = c̃j(Im t)j−D + . . .+ c̃0(Im t)−D +O(e−Im t) ⇐⇒ v(t) ∈ Grj , (4.44)

which now gives precisely the leading term of the growth near the singularity, i.e. c̃j > 0,

while the dots indicate all sub-leading contributions. It is important to stress, that the

t-dependence not only arises from v(t), but also from the norm itself. To check that (4.44)

is compatible with what we said before, consider v(t) = Ω. We have argued in analysing the

polynomial p in (2.36) that the leading term in iD
∫
YD

Ω∧Ω̄ is (Im t)d. This is precisely what

follows from (4.44) if Ω(t) ∈ GrD+d compatible with our identification of the location of a0.

The growth theorem immediately implies that there are three cases for the growth of

forms to consider

(1) v ∈ GrD+i , i > 0 norm goes to infinity as Im t→∞ , (4.45)

(2) v ∈ GrD , sub-leading terms are relevant , (4.46)

(3) v ∈ GrD−i , i > 0 norm goes to zero as Im t→∞ , (4.47)

We will see in subsection 4.3 and section 6 that the split into the different Grj or Ip,q with

p+ q = j can be used to define a natural split into electric and magnetic states.

4.3 Infinite monodromy orbits at singular loci

In the section 3.1 we discussed special sets in charge space defined by monodromy orbits

OT [qs] and by the condition for a vanishing BPS mass on the monodromy locus MI and

MII. These objects admit a finer structure induced by the mixed Hodge structure, intro-

duced in subsection 4.1 and 4.2, on the monodromy locus. In this section we analyse the fea-

tures of such monodromy orbits for the case of Calabi-Yau threefolds. We discuss the four

possible cases d = 0, 1, 2, 3 and confirm the statements made at the end of subsection 3.2.

– 35 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

⊕
p+q=j I

p,q

j = 6 P 3,3

j = 5 P 3,2 P 2,3

j = 4 P 3,1 P 2,2 ⊕NP 3,3 P 1,3

j = 3 P 3,0 P 2,1 ⊕NP 3,2 P 1,2 ⊕NP 2,3 P 0,3

j = 2 NP 3,1 NP 2,2 ⊕N2P 3,3 NP 1,3

j = 1 N2P 3,2 N2P 2,3

j = 0 N3P 3,3

Table 1. The table shows the general from of a Deligne splitting of the third cohomology H3(Y3,C),

induced by mixed Hodge structure, at the singular locus. The rows correspond to the decomposition

of (p, q)-forms with p + q = j into the primitive spaces P p,q. Note that the associated Hodge

diamond with ip,q = dimCI
p,q decomposition is symmetric about the middle row and the diagonal

due to (4.37). We indicated in blue the possible locations for a0, i.e. the limiting value of Ω ∈ H3,0.

It is worth more explicitly evaluating the mixed Hodge structure, or rather the as-

sociated Deligne splitting Ip,q, in this case. This is shown in table 1. In relating to

Hodge structures, both q and a0 represent three-forms when using a real integral basis

of (2.3), (2.5). However, while a0 is generally complex, the charge vector q is quantised

and real. We therefore embed it into the complex-vector space (4.26) by taking the real

part. This implies that in order to exploit the orthogonality relations (4.33), (4.35) we have

to decompose each q into a elements of Ip,q plus its complex conjugate. It is crucial to

realise that one thus has to account for the property (4.29), i.e. that complex conjugation

of Ip,q does not only lead to elements in Iq,p but also forms with lower (r, s)-weight.

It will also turn out to be convenient for us to introduce an adapted real symplectic

basis (αK , β
K), with properties as stated in (2.5), adapted to the Deligne splitting. In the

absence of a singularity the splitting only reduces to the middle row in table 1. At the

singularity we have the refined split of table 1. Essentially we want to use some of the

αK to span the spaces in the upper rows Ip,q, p + q > 3, and some of the βK to span the

spaces in the lower rows Ip,q, p + q < 3, and the remaining (αK , β
K) to span the middle

row. Unfortunately, again the introduction of the (αK , β
K) basis is complicated by the

fact that it is real and one generally has (4.29). We will introduce the appropriate bases

for the following cases in turn.

4.3.1 The case a0 ∈ I3,3

Let us first consider the case d = 3, as already noted in (4.9) this implies that a0 ∈ P 3,3.

Since P 3,3 thus has to have complex dimension 1, we find that all other P 3,i with i 6= 3 are

empty and table 1 simplifies further. We would now like to construct the sets of massless
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charges M, MI and MII. To do this we will assume that a0 is a generic element in P 3,3.

This will lead to subsets of the full possible M, MI and MII, but it will suffice for our

purposes. The orthogonality relations that identify massless charges are in (3.9), (3.10)

and (3.11). To determine the space Md=3
I we thus impose S3(q,a0) = S2(q,a0) = 0 and

use the orthogonality relations (4.33), (4.35) of the Deligne splitting. Since N3a0 and N2a0

are of type (0, 0) and (1, 1), respectively, we have to exclude charges of type (3, 3) and (2, 2).

Using table 1 the remaining choices are

Md=3 = Re
(
P 2,1 ⊕NP 2,2 ⊕N2P 3,3 ⊕N3P 3,3

)
, (4.48)

where we indicated that the charges are real numbers and hence one has to consider ele-

ments in the space plus its complex conjugate. Note that one has to use (4.29) to evaluate

the complex conjugate. This yields

I2,1 = P 2,1 = P 1,2 , (4.49)

I1,1 ⊂ I1,1 ⊕ I0,0 = NP 2,2 ⊕N2P 3,3 ⊕N3P 3,3 , (4.50)

where one uses i3,2 = i0,1 = 0. The condition (3.10) defining the space Md=3
I implies that

the charge has support in at least one of the last three subspaces in (4.48). Clearly, the

condition (3.11), i.e. Sj(q,a0) = 0 for j = 0, 1, 2, 3, is more restrictive and we find

Md=3
II = Re

(
P 2,1

)
. (4.51)

In section 3 we showed that a charge qs will induce an infinite monodromy orbit through

massless charges O∞T [qs] if it is not annihilated by N . Utilising (4.30) we see that a

sufficiently generic element in the massless charges in (4.48) will generate such an infinite

orbit. Specifically, the component N2P 3,3 is not annihilated by N . This follows because

we know that N3a0 6= 0 and so N3P 3,3 is not empty.

Having established the existence of an infinite massless monodromy orbit O∞T [qs] we

next need to study the quotient monodromy orbit Q∞T [qs]. Recall that the quotient con-

struction ensures that the elements in the orbit are BPS states. Evaluating the difference

between charges in the orbit δkqs as defined in (3.5), we have that

δkqs ∈ Re
(
N3P 3,3

)
. (4.52)

The quotient of this by Md=3
II , as in (4.51), is not empty. Indeed, the fact that the vector

space is a direct sum decomposition in the P p,q implies that the quotient has infinite

elements. The quotient monodromy orbit is therefore also infinite Q∞T [qs], as claimed at

the end of subsection 3.1.17 For concreteness:

qs ∈ Re
(
P 2,1 ⊕NP 2,2 ⊕N2P 3,3 ⊕N3P 3,3

)
⇒ Q∞T,qs 6= 0 (4.53)

where we have underlined N2P 3,3 to indicate that the charge qs must have support in this

subspace in order to generate an infinite quotient monodromy orbit. This presents one of

17Note that we can also explicitly see that S (q, δq) = 0 which, following the discussion in section 3.4,

provides some further evidence for the stability of the orbit elements.
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the primary results of the paper. We explicitly identified an infinite tower of BPS states

which become massless exponentially fast in the proper distance upon approaching any

infinite distance d = 3 locus on Calabi-Yau threefolds.

We can also present this result in an adapted real symplectic basis (αK , β
K). Let us

define this basis by first introducing

span{β1} = Re
(
N2P 3,3

)
, span{β0 ≡ Nβ1} = Re

(
N3P 3,3

)
, (4.54)

span{βα} = Re
(
NP 2,2

)
, span{βa} = Re

(
P 2,1

)
,

where α = 1, . . . , i2,2 − 1 and a = 1, . . . , i2,1 with ip,q = dimCI
p,q. It is not hard to check

that indeed S(βK , βL) = 0, due to the orthogonality relations (4.33), (4.35) . The basis

elements αK are then defined via the symplectic pairing S(·, ·), i.e. they are those real

elements that exactly obey (2.5). Note, however, that it is not easy, in general, to state

the span of the αK , since Re(Ip,q), p + q > 0 can contain the lower Ir,s. In this adapted

basis the charge vector (4.53) reads

qs = q0β
0 + q1β

1 + qαβ
α + qaβ

a , q1 6= 0 . (4.55)

The orbit is then generated by the action of T , the differences (3.5) are readily evaluated

to be δkqs = kq1β
0, with k ∈ Z.

4.3.2 The case a0 ∈ I3,2

Let us next consider the case d = 2. In this case we have a0 ∈ P 3,2 and the P 3,i with i 6= 2

are empty. We find for the massless spaces

Md=2 = Re
(
P 2,2 ⊕NP 2,2 ⊕N2P 3,2

)
, (4.56)

Md=2
II = Re

(
P 2,2 ⊕NP 2,2

)
. (4.57)

Note that for d < 3 we require that Sj(q,a0) = 0 for j = 1, 2, 3. Also note that a charge

having support in Re
(
N2P 3,2

)
has S(q,a0) 6= 0 and so is of type I. There is an infinite

monodromy orbit O∞T [qs], however its elements differ by

δkqs ∈ Re
(
NP 2,2

)
⊆Md=2

II . (4.58)

Therefore, the quotient monodromy orbit contains only a single element. Therefore, for the

case d = 2, we find that there does not exist an infinite quotient monodromy orbit. Note

that we have in this case S(δkqs,qs) 6= 0. This lends further evidence from the microscopic

perspective, as discussed in section 3.4, for considering the quotient monodromy orbit.

Again we can introduce an adopted basis (αK , β
L) to preset the above result. We first

define

span{β1} = Re
(
NP 3,2

)
, span{β0 ≡ Nβ1} = Re

(
N2P 3,2

)
, (4.59)

span{βα} = Re
(
NP 2,2

)
, span{βa} = Re

(
P 2,1

)
,

where α = 1, . . . , i2,2 and a = 1, . . . , i2,1−1, and introduce basis elements αK to obey (2.5).

In this adapted basis a charge vector generating an infinite orbit takes the form

qs = q0β
0 + qαβ

α + q̃ααα , q̃α 6= 0 , (4.60)
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where we indicated that there is a component along P 2,2 parametrised by q̃α.18 However,

using (3.5) one has δkqs = kq̃αNαα, which is trivial in the quotient M/Md=2
II .

4.3.3 The case a0 ∈ I3,1

Let us also comment on the case d = 1 which is the remaining case for which one finds

infinite distance paths according to (2.39). In this case we have a0 ∈ P 3,1 and the P 3,i

with i 6= 1 are empty. We find for the spaces of candidate massless states

Md=1 = Re
(
P 2,2 ⊕NP 2,2 ⊕NP 3,1 ⊕ P 2,1

)
, (4.61)

Md=1
II = Re

(
P 2,2 ⊕NP 2,2 ⊕ P 2,1

)
. (4.62)

There is an infinite monodromy orbit O∞T [qs], however its elements differ by

δkqs ∈ Re
(
NP 2,2

)
⊆Md=1

II . (4.63)

Therefore, again, the quotient monodromy orbit contains only a single element. Also note

that again S(δkqs,qs) 6= 0.

The adopted basis (αK , β
L) is now defined by choosing

span{β0} = Re
(
NP 3,1

)
, span{βα} = Re

(
NP 2,2

)
, span{βa} = Re

(
P 2,1

)
, (4.64)

where α = 1, . . . , i2,2 and a = 1, . . . , i2,1, and introduce basis elements αK to obey (2.5).

In this adapted basis a charge vector generating an infinite orbit takes the form

qs = q0β
0 + qαβ

α + qaβ
a + q̃ααα , q̃α 6= 0 . (4.65)

where the same cautionary remark as in (4.60) concerning the αα applies. However, one

has δkqs = kq̃αNαα, which is trivial in the quotient M/Md=1
II .

4.3.4 The case a0 ∈ I3,0

Finally, we include a brief discussion of the case d = 0, in which the points on the singular

locus are not at infinite distance. Clearly, we have a0 ∈ P 3,0 with all other P 3,i empty. In

this case there is only one set of massless states

Md=0 =Md=0
II = Re

(
P 2,2 ⊕NP 2,2 ⊕ P 2,1

)
. (4.66)

The set Md=0
I is empty, since all states in Md=0 have exponentially vanishing central

charge. Note that this result trivialises further if N = 0, i.e. n = 0, since then the mixed

Hodge structure reduces to a pure Hodge structure and P 2,2 does not exist. The adopted

basis (αK , β
L) is defined as

span{β0} = Re
(
P 3,0

)
, span{βα} = Re

(
NP 2,2

)
, span{βa} = Re

(
P 2,1

)
, (4.67)

18Note that Re
(
P 2,2

)
also contains the lower Ir,s with r < 2, s < 2. While αα generally has support in

the Re
(
P 2,2

)
it might require to include terms involving the βK to actually span Re

(
P 2,2

)
.

– 39 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

d ||β0||2 ||β1||2 ||βα||2 ||α0||2 ||α1||2 ||αα||2

0 unknown / (Imt)−1 unknown / (Imt)1

1 (Imt)−1 / (Imt)−1 (Imt)1 / (Imt)1

2 (Imt)−2 unknown (Imt)−1 (Imt)2 unknown (Imt)1

3 (Imt)−3 (Imt)−1 (Imt)−1 (Imt)3 (Imt)1 (Imt)1

Table 2. Table showing the leading growth behaviour of the charge symplectic basis (αK , β
K).

where α = 1, . . . , i2,2 and a = 1, . . . , i2,1. The basis elements αK are defined to obey (2.5).

In this adapted basis a charge vector generating an infinite orbit takes the form

qs = qαβ
α + qaβ

a + q̃ααα , q̃α 6= 0 . (4.68)

It is obvious that there is no quotient monodromy orbit in this case.

This completes the analysis of the quotient monodromy orbits for the different possible

(generic points on) infinite distance loci. We find that only d = 3 loci support such an

infinite orbit. This result is not ideal because it is more difficult to identify an infinite

number of massless BPS states near loci with d < 3. However, in the next section we

show that one can still utilise other monodromies in the complex-structure moduli space

to identify the BPS states.

For later use, we also provide here the growth of the charge vectors spanning the

different spaces Re(P p,q). The real symplectic basis is given in (4.54), (4.59) and (4.64) for

the different cases d = 3, 2, 1 and the leading behaviour of the Hodge norm is given in the

growth theorem in (4.44). We note that it is crucial for us to determine the highest Ip,q,

j = p+ q in which the elements in the basis (αK , β
L) have non-trivial support. This allows

us to identify them as representatives of Grj and then to apply (4.44). For example, for

d = 3 we have span{β0} = Re
(
N3P 3,3

)
so j = p+ q = 0 and β0 has support in Gr0, which

implies ||β0||2 ∼ (Imt)j−3 ∼ (Imt)−3. The rest of the cases are given in table 2. Notice

that we do not include the growth for (αa, β
a) since they belong to Gr3 (case (2) in (4.46))

and therefore the growth is unknown since it is completely determined by the sub-leading

terms. The results for the growth of these charge vectors will be used in section 6 when

computing the leading order behaviour of the gauge kinetic function.

The charge symplectic basis (αK , β
K) clearly has a natural interpretation in terms

of electric and magnetic states. We denote the states associated to β charges as electric,

while the states associated to α charges as magnetic. It is interesting to note that for

d < 3 type II states are such that both electric and magnetic states become massless on

the monodromy locus. They therefore lead to Argyres-Douglas type theories, though we

expect that the theories in the infinite distance limit are even more exotic.

Let us finally remark about the additional condition required beyond the existence of

an infinite quotient monodromy orbit which is that there should be at least one BPS state
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in the orbit.19 It is clear that there is at least one BPS state becoming massless since the

monodromy locus corresponds to a singular point of the moduli space. But we do not know

how to prove that such a state resides in the monodromy orbit. However, we can motivate

it in terms of the Completeness Hypothesis [41] and the Weak Gravity Conjecture [2]. For

the case d = 3 above we see that this amount to requiring a BPS state with a charge that

has a non-vanishing component in Re
(
N2P 3,3

)
. Since the spaces P p,q form a direct product

decomposition of the charge space, having a BPS state with this non-trivial restriction is

implied by a requirement that the BPS states in M should form charge vectors that are a

non-degenerate basis on M. The condition of having a state (not necessarily BPS) for a

charge vector of each space P p,q reminds to the Completeness Conjecture. The additional

requirement that the state in Re
(
N2P 3,3

)
is indeed BPS can be guaranteed if the state sat-

isfies the Weak Gravity bound, which for supersymmetric theories corresponds to the BPS

condition M = |Z|. Since the presence of this single state implies the presence of all states

in its monodromy orbit, the WGC is satisfied for a whole tower of particles. This is similar

in spirit that the Lattice Weak Gravity Conjecture [42–44], but our tower of states satis-

fying the WGC does not form a lattice. Similar ideas about a Tower WGC have recently

appeared in [45]. Further motivation for the existence of the infinite quotient monodromy

orbit of BPS states will be given in sections 5 and 6 from integrating out these states and

recovering the behaviour of the proper field distance and the gauge kinetic function.

4.4 Monodromy intersection loci

In the previous sections we saw that loci with d < 3, but where d 6= 0, are at infinite distance

but do not have an associated quotient infinite monodromy orbit through massless BPS

states. This is not a contradiction with the proposal that such loci support an infinite

number of massless BPS states, just that it is not possible to identify these through the

monodromy around the infinite distance locus. In this section we will argue that even in

such cases it may be possible to identify an infinite monodromy orbit through BPS states.

The idea is to establish an infinite monodromy orbit through massless states by using

a different monodromy to the one around the infinite distance locus. So, for example,

one considers the intersection locus of an n = d = 1 locus, which we label as C2, with

a different monodromy locus with n = d = 3 which we label C1. Let us denote the sets

of charges which lead to a vanishing BPS mass on Ci as Mi, Mi
I and Mi

II with i = 1, 2.

At this intersection point there are two monodromies acting T1 and T2, with the indices

labelling their respective loci. We have shown that T2 does not generate an infinite quotient

monodromy orbit through massless BPS states on C2.20 However, T1 can generate such an

orbit, which we denote Q∞T1,q
⊂ M2

M2
II

, in the patch around the intersection C1 ∩ C2. If that

is the case, then locally near the intersection point we have determined an infinite number

of massless BPS states. We also expect that these states remain BPS as we move away

from the intersection point along the locus C2. The reason is that, by definition, the BPS

mass of these states stays vanishing anywhere along this locus and so the states should not

decay. However, there could be some subtleties if boson-fermion pairs of BPS states could

19Note that we require this BPS state for a given value of the ζM as in (2.10).
20Because n = 1 it actually does not generate an infinite monodromy orbit at all inside M2.
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be lifted (see e.g. [35]), so we cannot be completely sure that there will be an infinite orbit

of BPS states far away from the intersection point.

There are two problems with arguing for infinite massless states using this method.

The first is that it relies on the intersection structure of infinite distance loci which is

global data of the moduli space. This means that we will not be able to show any results in

generality. Instead, we can only give examples to motivate such a possibility. The second

problem is that there are known isolated n = d = 1 loci. Since these do not intersect

any other monodromy locus such a construction can not be carried straightforwardly to

them. We will discuss these example cases and show that they do share some interesting

similarities with the cases where the n = d = 1 is not isolated, which leaves a possibility

that they could be eventually understood in a similar way.

Let us first give an example of such a construction. We consider the manifold P(1,1,2,2,2)

studied in detail in [46]. The moduli space is two (complex) dimensional and contains a

curve with n = d = 1 which we denote as C2, and is denoted C∞ and D(1,0) in [46]. There

is another curve which is maximally unipotent with n = d = 3 which we denote C1 and is

denoted D(0,−1) in [46]. The two curves intersect at a point in the moduli space and this

is the single Large Complex-Structure point. The associated monodromies are T1 and T2

with logarithms N1 and N2. In order to establish an infinite quotient monodromy orbit

we need to show that such an orbit is generated by T1 near the intersection point. The

monodromy matrices are

N1 =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

−2 −4 0 0 0 0

0 −8 −4 0 0 0

−22
3 0 −2 0 −1 0


, N2 =



0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

−2 −4 0 0 0 0

−2 −2 0 −1 0 0


. (4.69)

We denote a0 as the appropriate one for the one-parameter nilpotent orbit associated to

N2. So such that the general formulae for the one-parameter case, such as (3.7), hold in

this case. It takes the form

a0 =



1

t1

0

−1− 2t1 − 2t21

−11
3 − 4t21

1
3

(
−11t1 + 4t31 + 6ξ

)


. (4.70)

Here t1 and ξ are complex parameters which have specific geometric meanings in [46], but

which are not important for our discussion. The chosen basis is such that η takes the six-

dimensional form of (B.4). Then charges q which are in M2
I have to satisfy S1 (q,a0) = 0
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and S0 (q,a0) 6= 0, while the charges inM2
II have S1 (q,a0) = S (q,a0) = 0 . Explicitly we

see that such massless charges take the form

M2
I '



0

0

q2

0

q4

q5


, M2

II ' ∅ . (4.71)

It is now manifest that N1 acts non-trivially on states in M2
I and that S1 (N1q,a0) = 0.

Therefore, the maximally unipotent monodromy T1 generates an infinite orbit O∞T1,q
. Since

M2
II is empty this maps directly to an infinite quotient monodromy orbit Q∞T1,q

.

As we mentioned there are examples where the locus with n = d = 1 is isolated. In

particular the one-modulus cases given in (B.18) all have n = d = 1 loci which must be

isolated since they are points. However, there is a sense in which they are quite similar to

the n = d = 1 locus in the two-parameter P(1,1,2,2,2) model. This is most directly seen by

considering the mirror manifolds. In the mirror type IIA setting the appropriate branes

are given by coherent sheaves in the derived category. The large complex structure point

where the two curves C1 and C2 intersect is mirror to the large volume point. The geometry

of the mirror is a K3 fibration over a P1 base (see for example [32]). The generic point on

the n = d = 1 locus C2 is mirror to the limit where the volume of the P1 goes to infinity

while the volume of the K3 stays finite. In this limit any D2 brane wrapping a holomorphic

curve in the K3 becomes physically massless, which directly identifies an infinite number of

massless states. In terms of our monodromy orbits, the large complex-structure point where

C2 and C1 intersect is mirror to the large volume limit where both the P1 and K3 develop

infinite volumes. The T1 monodromy which generates the infinite orbit near the large

complex-structure point is therefore naturally associated to this K3 fibration structure.

Let us return to the one-parameter models with the isolated n = d = 1 point. We

consider explicitly the P5 [3, 3] case following the analysis in [47]. This corresponds to the

complete intersection Calabi-Yau (see, for example, [48] for a discussion)

x3
1

3
+
x3

2

3
+
x3

3

3
− 1

z
1
6

x4x5x6 = 0 ,

x3
4

3
+
x3

5

3
+
x3

6

3
− 1

z
1
6

x1x2x3 = 0 , (4.72)

where the xi are coordinates on P5 and z is the complex-structure modulus so that the

monodromy point with n = d = 1 is at z = ∞. This type of degeneration is called a

Tyurin degeneration [49]. At this point we see that the fibre splits into a union of two Fano

three-folds and these actually intersect over a K3. We therefore see a K3 emerge, however,

the mirror manifold cannot have a K3 fibration. It was nonetheless shown in [47] that

if we replace the mirror Calabi-Yau by its bounded derived category of coherent sheaves,
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which is the relevant object for the D-brane states, then one recovers what is called a

non-commutative K3 surface in [50]. The similarity of the K3 structures between the one-

parameter and two-parameter examples hints that perhaps even the isolated n = d = 1

loci may have some similar structure to that found at the intersection locus between the C1

and C2 curves where the T1 monodromy played a role. However, we leave a more detailed

investigation along this direction for future work.

5 Infinite distances from integrating out states

The work so far has focused on evidence for a relation between infinite distances in field

space and towers of states which become exponentially light. However, an underlying

microscopic fundamental physics explanation for this correlation is so far missing. In this

section we propose such an explanation. We propose that the correlation exists because

infinite distances in field space are a consequence of the infinite tower of states. Specifically,

integrating out the infinite tower of states induces an infinite distance in the low-energy

effective field theory.21 We will present highly non-trivial evidence for this proposal in the

context of the Calabi-Yau compactifications studied in this work by matching the results

of integrating out the BPS states with the behaviour of the moduli space.

A well-known and fascinating phenomenon is the ability of string theory to automat-

ically include quantum effects in the low energy description of certain string compactifi-

cations. Therefore, moduli spaces in string theory are quantum in nature. In particular,

singularities in the moduli space of string vacua can be explained by the existence of phys-

ical states which become massless at the singularity. The breakdown of the low energy

effective theory arises from integrating out ‘wrongly’ these states, and the divergence of

some physical quantities near the singularity can be re-derived by computing the effect of

the one-loop quantum corrections in a Wilsonian effective field theory approach.

The typical example is the conifold singularity of the moduli space of Calabi-Yau com-

pactifications of Type II string theories [51, 52]. The logarithmic divergence of the metric

at the conifold singularity can be obtained at one loop by integrating out a single charged

hypermultiplet corresponding to a BPS state which becomes massless at the conifold point.

Other examples are singularities in N = 2 Yang-Mills theory which are resolved by the

inclusion of massless BPS magnetic monopoles [53], or orbifold singularities in K3 com-

pactifications of Type II theory, where the massless states correspond to RR solitons of

spin one [54].

This means that the infinite tower of BPS states that we have explicitly identified at

infinite distances in moduli space is already integrated out into the structure of the moduli

space. Our proposition is therefore to identify the divergence in the field distance with the

effect on the moduli space of this integrating out. As we will explain later, the one-loop

contribution to the field distance of integrating out a single state is always finite, so a

divergence can only appear if the number of states becoming massless at the singularity

is indeed infinite [3]. This explains why the conifold point, with only one state becoming

massless, is still at finite distance in the moduli space. In this section, we show how the

21In [15] a similar proposal was reached independently.
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quantum corrections to the field metric coming from integrating out the infinite monodromy

orbit of massless BPS states at one-loop yield indeed a logarithmic divergence in the field

distance of a trajectory approaching the singularity. This supports the identification of the

massless monodromy orbit of infinite order found in the previous section as the origin of

infinite distance points in the moduli space of N = 2 Calabi-Yau compactifications.

The integrating out procedure can only be performed within the realm of an effective

quantum field theory. We therefore can only integrate out the BPS states starting from

some UV scale. We show that the natural UV scale is the so-called species scale (see for

example [55–59])

ΛSpecies =
Mp√
S
, (5.1)

where S is the number of particles below the species scale. Actually, we will also match

this scale onto the stability of the tower of BPS states. Integrating out the states from this

scale precisely reproduces the logarithmic behaviour in moduli space. This nicely matches

onto the ideas of emergence from that scale for the Weak Gravity Conjecture, as will be

studied in section 6, and as also proposed in [16, 60].

5.1 Field space corrections from integrating out states

Let us consider a four-dimensional effective theory with two scalar particles h and φ. We

take φ to be massless and h to have a mass m which depends on φ. The Lagrangian is

L =
1

2
(∂h)2 +

1

2
(∂φ)2 +

1

2
m (φ)2 h2 . (5.2)

We would like to work with an effective field theory with a cut-off below m where the heavy

scalar h has been integrated out. In this effective theory the scalar propagator for φ will

receive a one-loop correction from integrating out h due to the cubic interaction originating

from the mass term. Specifically, if we write φ = 〈φ〉+ δφ then the interaction term is

m(φ)2h2 ⊃ 2 [m (∂φm)]〈φ〉 δφ h
2 . (5.3)

By computing this one-loop diagram, we obtain that the field space metric at the low

energy effective theory involving only φ is given by

gφφ =
1

2
+

(∂φm)2

8π2

(
2π

3
√

3
− 1

)
. (5.4)

Here, field space metric is such that the low-energy effective theory is

L = gφφ (∂φ)2 . (5.5)

The second term in the field space metric (5.4) is a one-loop quantum correction. In

general, the metric will also receive higher order corrections. Further, even at 1-loop there

are other corrections but they appear at higher powers of the coupling ∂φm so they are

subleading and we will not consider them for simplicity here. The proper field distance

between two points as measured by the quantum corrected field space metric is given by

d(φ1, φ2) ' C
∫ φ2

φ1

(∂φm) dφ = C(m(φ2)−m(φ1)) , (5.6)
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where C is the constant factor in (5.4). If we approach a point at which m(φ1) = 0, the

low energy effective theory involving only φ breaks down, but the proper field distance

to this point is always finite due to the finiteness of m(φ2). Note that the goal here is

to show that the quantum correction of integrating out a single scalar particle can never

generate a divergence on the field distance, so we have omitted the classical contribution

for simplicity, although this one is not necessarily subleading.

Let us repeat the procedure this time with a heavy Fermion ψ. We consider the theory

L = ψ̄∂µγ
µψ +

1

2
(∂φ)2 −m (φ) ψ̄ψ . (5.7)

We can then integrate out ψ to obtain again the low energy effective theory only in terms

of φ. The field space metric at low energies is given by

gφφ = gUV
φφ +

(∂φm)2

8π2

(
log

Λ2
UV

m2

)
. (5.8)

Here we have matched at the scale m the correction to the scalar propagator in the full

theory with the field space metric in the low energy effective field theory. The logarithmic

term comes from the fact that the one-loop fermionic contribution, unlike the scalar one,22

yields a logarithmic running of the field space metric. The scale ΛUV is the cut-off scale of

the original theory with ψ as in (5.7). The value of the field space metric at the UV scale

is gUV
φφ . For studying the case of a single particle being integrated out, we can take this to

be of order one.

The regime of interest for us is one where the quantum part of the field space met-

ric dominates over the classical value. Keeping within a perturbative regime we require

(∂φm) � 1 and so the scalar correction (5.4) does not naturally allow for such a setting.

However, in the fermionic case (5.8) we see that as ΛUV
m → ∞ we recover such a limit. In

fact, this divergence is a singular locus in φ moduli space at m (φ) = 0, which in string

theory is precisely the conifold locus. But it is important to remark that, even if the field

metric diverges, such a divergence still leads to a finite proper distance up to the singular

point. This can be computed analogously to (5.6), obtaining a finite result for the proper

field distance. Therefore, to find a quantum effect leading to infinite proper distance we

need to consider a different regime where the quantum part dominates which is when there

are many particles being integrated out.

Suppose then the four-dimensional low energy effective theory of a single scalar field

φ arising from integrating out, not only one, but S heavy scalar fields hi whose masses are

parametrised by φ, so

L = gUV
φφ (∂φ)2 +

S∑
i=0

[
1

2
(∂hi)

2 +
1

2
mi (φ)2 h2

i

]
. (5.9)

Here we have specified the theory at a UV scale where the tower of heavy scalars is in the ef-

fective theory. As discussed below, we expect that this scale will involve quite exotic physics

22Integrating out a scalar field can also give rise to a logarithmic running of the field space metric but

only at order (∂φm)4 and higher.
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Figure 3. Effective theory of one light scalar field φ and S heavy ones hi up to ΛUV.

and so we keep the kinetic term for φ as unspecified at this point. We now integrate out at

one loop the heavy scalars. If
∑S

i=0(∂φmi)
2 � gUV

φφ then the quantum part dominates the ef-

fective field space metric. In the following we will operate under the assumption that indeed

gUV
φφ is always sub-dominant to the quantum corrections. We will return to this point in the

next section. In this regime the proper distance between two points φ1 and φ2 is given by

d(φ1, φ2) ' C
∫ φ2

φ1

√√√√ S∑
i=0

(∂φmi)2 dφ . (5.10)

Here C is some constant pre-factor which will not play an important role in our discussion.

This setup has two effective theory cut-off scales. The first, ΛUV is the cut-off scale of

the theory (5.9). It determines how many states can be present in the theory and so fixes

S. In particular there is an upper bound due to gravity for this cut-off which is the species

scale (5.1), above which gravity becomes strongly coupled and the effective theory entirely

breaks down. We will take indeed this as the cut-off scale for (5.9) so ΛUV ∼ ΛSpecies.

The second cut-off scale is for the low-energy effective theory where the massive states are

integrated out (5.5). We denote this Λ0. It is set by the mass of the lightest massive state

Λ0 ∼ m0. The scales are shown in figure 3.

Next we would like to rewrite ΛUV for the case where the massive states are such that

they form a tower of states with increasing mass. So we consider the case where

mk (φ) = m0 (φ) + k∆m (φ) . (5.11)

Here m0 is the mass of the lightest state and ∆m is the separation scale in the tower

between states, which can depend on φ. It is also shown in figure 3. Assuming that

S∆m & m0, which will hold in our cases of interest, we can relate the UV cut-off scale and

the number of states to the mass separation in the tower as

ΛUV '
(
M2
p∆m

) 1
3 , S '

(
Mp

∆m

) 2
3

. (5.12)

With this result we see that the full structure of the integrating out procedure is deter-

mined by the properties of the spectrum of massive states. This is precisely what we have
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determined in this paper for a subset of the spectrum of BPS states. We therefore can

calculate the effect of this spectrum, and this is done in the next section.

Before moving to this let us remark about the similar analysis for the fermionic case.

In the case of N fermions we have that the relevant expression is

gφφ = gUV
φφ +

S∑
i

(∂φmi)
2

8π2

(
log

Λ2
UV

m2
i

)
. (5.13)

There are then two potentially large contributions, one from the number of particles S

and one from the logarithmic part. In the conifold like case where, S = 1 and ΛUV
m → ∞

the logarithm was the important piece. However, now we will focus on the contribution

from S. In fact we will see that as we approach infinite distance S will diverge while the

logarithm will flow to a constant.

5.2 Application to the monodromy loci

In the previous section we studied in a toy model how the properties of a tower of massive

states affects the proper field distance in an effective theory where the states are integrated

out. In this section we would like to apply these ideas to the actual string theory setting

of type IIB on Calabi-Yau threefolds with the D3-brane BPS states playing the role of the

tower of states to be integrated out. There are a number of differences between this full

model and the toy model of the previous section. A very useful difference is that due to

N = 2 supersymmetry the correction from integrating out the states is one-loop exact in

perturbation theory. This is crucial in order to trust a regime where the one-loop correction

may dominate the classical one. The limit approaching a conifold singularity is an example

of such a setting where the metric is dominated by the one-loop term. By contrast, a

difference which makes the analysis much more involved is that we do not really have a UV

theory to start from. In particular, we only have information on the massive BPS states

from the effective IR theory.

In this work we only perform an initial analysis of the integrating out procedure and so

will adopt a simplified approach. We will not attempt to construct the UV theory and inte-

grate out the states scale-by-scale. Instead we will apply the analysis of the toy model of sec-

tion 5.1 directly to the masses of the BPS states as given by the IR theory. We believe that

this captures the key physics in the following sense. The string theory setting implies that in

the IR theory all the UV physics has been already integrated out. This manifests in the field

space metric but also in the IR expression for the mass of the BPS states.23 Therefore, in

utilising the IR expressions for the masses of the massive BPS states we are already account-

ing for the corrections to the masses from integrating out the BPS states. We therefore ex-

pect that applying the toy model analysis of section 5.1, utilising these corrected IR mass ex-

pressions, captures the corrections from integrating out the states to the field space metric.

23Unlike the case of the conifold, where the IR expression for the mass of the state only receives a sub-

leading correction from integrating out the BPS state itself, approaching infinite distance the IR expression

can be dominated by the corrections from integrating out the states.
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This will be our working assumption, though we are aware that a full analysis of the inte-

grating out procedure would start from a UV theory and integrate out the tower of states ac-

counting for the corrections to the field space metric and the mass of the states on the same

footing at each scale. We note, however, that should the UV theory be such that the one-

loop corrections are not dominant over the classical expression then the analysis performed

in this section becomes much more explicit. Since in such a case the IR expressions for the

mass of the BPS states can be matched onto the expressions for their mass in the UV theory.

Finally, a more trivial difference between the toy model and N = 2 analysis is that

the BPS states are hypermultiplets which means they contribute as four real scalars and

two fermions in the loop diagram. This essentially modifies the constant C in the final

result (3.25), and so we will not account for this difference in detail.

In the field space we have a one-parameter approach to infinite distance loci determined

as Im t → ∞. To match the previous discussion let us relabel φ = Im t. Recall that any

infinite distance locus can be classified by an integer d, defined in (2.35), which ranges

between one and three. The tower of states we will consider are the BPS states identified

in the infinite quotient monodromy orbit in section 4.24 Each state is specified by its charge

q. They have a mass given to leading order by (3.8)

Mq '
∑

j
1
j!φ

jSj (q,a0)

(2d/d!)1/2 φ
d
2

with Sj (q,a0) = 0 , for all j ≥ d

2
. (5.14)

Denoting the φ-independent coefficients as cj ≡
√

d!
2d

1
j!Sj (q,a0), the mass formula reads

Mq '
1

φd/2
(c0 + c1φ+ . . . crφ

r) with r < d/2 . (5.15)

The quotient monodromy orbit consists of states with charges q which transforms under

the monodromy transformation T as MTq 'Mq + c/φd/2 in accordance with (3.14), where

c is a constant which depends on the specific properties of each example.25 Connecting

with the notation of subsection 5.1 we thus identify mi = MT iqs
, for some charge qs seeding

the orbit. Hence, we conclude that for the considered tower of BPS states one has

Λ0 = m0 '
φ−

1
2

φ−
d
2

}
d = 3

d < 3
, ∆m ' φ−d/2 . (5.16)

Here we set Mp = 1 and suppressed constant coefficients, which will not play a role in

our discussion, for simplicity. Furthermore, let us stress that in order to obtain (5.16)

we use that we quotiented by type II states, since otherwise the density of states can be

exponentially high ∆m ∼ e−φ.

24For d < 3 we will consider massless BPS states which are not generated by the local monodromy, since

as shown in section 4, the local monodromy does not generate such a tower. The possible relation to a

monodromy action would be through global aspects as discussed in section 4.4.
25For instance, c = c1 =

√
3/4S1 (q,a0) for the n = d = 3 case. For d < 3 we argued that in terms of

a monodromy transformation we must utilise a different monodromy to the one about the infinite distance

locus, say T2. In that case we have c =
√
d!/2d(S0 (T2q,a0(ζ))− S0 (q,a0(ζ))).
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The result (5.16) can now be used in the general analysis of subsection 5.1. We obtain

from (5.12) that

S ' φ
d
3 , ΛUV ' φ−

d
6 . (5.17)

This assumes that the tower of states consists of stable BPS states up to the Sth element.

In section 3.2 we determined that the BPS states in the tower go up to element of order

φ. We see that this beautifully matches the maximum growth of S in (5.17). Finally, we

can now insert the results (5.16) and (5.17) into the general formula for the proper field

distance (5.10), using (5.11), obtaining

d (φ1, φ2) ' C
∫ φ2

φ1

d√
12c

1

φ
dφ = C

d√
12c

log

(
φ2

φ1

)
. (5.18)

This precisely reproduces the logarithmic behaviour seen in the proper distance in field

space when approaching infinite distance (3.25). Equivalently, it implies the exponential

behaviour of the mass of the states in the proper distance. The result therefore forms non-

trivial evidence for our proposition for the tower of states as the origin of infinite distance.

In the case when the tower of states which we integrate out are fermions we need to con-

sider the expression (5.13). The analysis proceeds in the same way with the only difference

being the additional logarithmic factor. While for the finite distance case the logarithmic

factor was divergent, in the infinite distance case it behaves as a constant in the following

sense. The primary contributions to the quantum corrected metric in the expression for the

proper distance (5.18) come from heavy modes in the tower. Their mass behaves as S∆m ∼
φ−

d
6 ∼ ΛUV. Therefore, we see that the logarithm behaves as a constant to leading order

in the expression for the metric and we recover the same parametric behaviour as in (5.18).

The Calabi-Yau setting also has the subtlety that there may be other BPS states be-

coming massless at infinite distance than those identified through the monodromy orbit. In

particular, for d = 3 there may be an infinite tower of states with ∆m ∼ φ−
1
2 . These would

lead to sub-leading corrections upon integrating out. Let us comment that taking ΛUV as

the species scale was a natural choice, but the logarithmic behaviour can be recovered from

integrating out states from other (field dependent) cut-offs,26 as long as they feature the

same field dependence as in (5.17). This highlights the fact that, even if an infinite tower

of states is necessary to generate an infinite proper field distance, not every infinite tower

will yield such a result as the structure of the tower matters in a crucial way. In particular,

it is essential to have an increasing number of states (or equivalently a decreasing ΛUV) as

we approach the singular point. This is bears some similarity to the mathematical results

in section 2 for which a monodromy matrix of infinite order is a necessary but not sufficient

condition to get infinite distance.

At this point we must return to the assumption of this analysis that the quantum

corrections dominate over the ‘classical’ value of the field space metric at ΛUV. This was

26Indeed, for d = 3 we find that taking the UV scale as Λ0 also reproduces the result. Specifically, we

consider Λ0 at a certain point in field space, then move a little in field space and some states become light,

we integrate them out and repeat again. This iterative process reproduces the logarithmic behaviour, but

only for d = 3.
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the assumption utilised in order to work with the expression (5.10). First we note that

the classical behaviour may also have an underlying logarithmic divergence in the distance.

Our calculation is not precise enough to match the coefficient in front of the logarithm

between the geometry and the integrating out. This in an important caveat to stress with

regards to interpreting the logarithmic behaviour as due to the tower of states. Assuming

that the geometry result is coming purely from the quantum part amounts to the statement

that gUV
φφ falls off faster than φ−2 as φ→∞. In particular, this would mean that the proper

distance as measured with such a classical metric would be finite and so the field space is

compact at ΛUV. While this possibility would amount to a truly emergent infinite distance,

we should keep in mind that a less spectacular, but in some sense more robust, observation

is that we could deduce that gUV
φφ should behave like φ−2 if it should match the one-loop

correction. Such a match between the UV and one-loop parts would match the ideas of

strong coupling unification of [16].

5.3 Relation to the Scalar WGC and to global symmetries

The Swampland Distance Conjecture studied in this paper has an interesting relation to

a Scalar Weak Gravity Conjecture formulated and explored in [5]. The conjecture states

that for each scalar field φi there is a state with mass m satisfying27

gij (∂im) (∂jm)M2
p > m2 , (5.19)

where gij is the metric on the scalar field space. In fact, in N = 2 it was proven that this

is true for all but one combination of charged BPS states and follows from the positivity of

the scalar fields kinetic terms.28 Using our results, it can be checked that (5.19) is always

satisfied for any charges in the monodromy orbit of states becoming massless at the mon-

odromy locus. The relation to the Swampland Distance Conjecture is that if we consider

a canonically normalised field gij = δij then, assuming the same state satisfies (5.19) as φ

varies over arbitrarily long distance, its mass must be exponential in φ.

The formulation (5.19) is a direct analogue to the electric WGC statement g2q2M2
p ≥

m2, where g is the gauge coupling of the gauge field and q is the charge of the particle.

Similarly, it is a statement about the mass of a single particle. The magnetic WGC makes

a statement about the cut-off of the effective field theory Λ ∼ gMp, where g is the gauge

coupling. The Swampland Distance Conjecture is also a statement about the cut-off of the

effective theory which is at the mass scale of the tower of states. In this sense, it is most

naturally interpreted as a Magnetic Scalar WGC.

The magnetic WGC is related to the appearance of a global symmetry [2]. This is be-

cause as g → 0 the gauge symmetry behaves as a global symmetry. This limit should, there-

fore, be blocked by quantum gravity, which is guaranteed if the WGC holds because then the

cut-off of the effective theory also goes to zero as g → 0. The formalism introduced in this

paper allows us to show that there is a similar interpretation for the Swampland Distance

27It is most sharply stated for massless scalar fields. The generalisation to massive scalars is less clear

and will receive corrections. See [61] for some work on estimating such corrections.
28The combination of charged states which violate it is associated to the graviphoton which has no scalar

partner [5].
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Conjecture in our context. From the asymptotic expressions for the Kähler potential (2.25)

we see that the field Re t develops a perfect shift symmetry at any infinite distance locus.29

This is a global continuous symmetry. A more precise analogue to the WGC is reached if

we dualise the axion Re t to a 2-form field B2, the kinetic term then takes the form

L ⊃ 1

f2
|dB2|2 . (5.20)

Here f is the axionic decay constant obtained from the axion field metric f2 = gtt̄. At the in-

finite distance points, the metric vanishes so f → 0 and the propagator of B2 vanishes due to

the infinite kinetic term. Therefore, the dynamics of the B2 field decouples and we recover a

global 2-form continuous symmetry. Similarly to the WGC, the Swampland Distance Con-

jecture ensures that the UV cut-off of the effective theory decreases as we approach the

infinite distance locus, so that infinite distances cannot be described within a quantum field

theory with a finite cut-off. Therefore, the appearance of the infinite tower of massless states

at infinite distance can be understood as a quantum gravity obstruction to a global symme-

try. However, we have also given another interpretation for the relation between the tower

and the infinite distance which is that the infinite distance is itself emergent from integrating

out the tower of states. In this sense we can also think of the global symmetry as emergent

upon integrating out the tower of states, with a perfect global symmetry corresponding to

the tower being infinite. In the next section, and as also proposed in [16], we will see that

the magnetic WGC can also be understood in terms of integrating out the BPS states.

Then again, we can think of the global symmetry at g → 0 as being emergent in this sense.

It is therefore natural to expect that a general statement is that the limit towards any

global symmetry must be emergent, in the sense of integrating out states as studied here.

In some sense this is expected since it is believed that there are no fundamental global

symmetries in quantum gravity. However, the way that a global symmetry can emerge is

made quite precise through the integrating out a tower of states procedure. And while the

global symmetry limit is, of course, very exotic and can not be described with a quantum

field theory, the important point is that the emergence is continuous upon approaching the

limit. So it is a statement not just about the limit but about the approach to it. In this

sense, for the field distance case it is a statement about the emergent nature of field space

itself. For the gauge coupling it is a statement about the emergent nature of gauge fields.

Let us emphasise though that, while the results of this work present some evidence

towards such a picture, there remains much work to establish its validity more generally

and firmly.

29The Nilpotent Orbit Theorem [14] states that the subleading contributions to the periods are expo-

nentially suppressed with respect to the leading one. This implies that the axion, identified with Re t,

does not appear to leading order in the Kähler potential, meaning that it enjoys an continuous global shift

symmetry which is only broken by exponentially suppressed terms, as explained in section 2. Notice that

such a continuous global symmetry is not present at finite distance singularities, like the conifold.
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6 The gauge kinetic function and the Weak Gravity Conjecture

Our focus so far has been primarily on the Swampland Distance Conjecture and distances

in field space. In this section we extract the implications of our results for the Weak Gravity

Conjecture [2] and the gauge kinetic function. The key point is that the BPS states which

have formed the focus of our work are charged under U(1) gauge symmetries. Therefore,

they not only affect the moduli field space metric but also the gauge kinetic function. Our

analysis will build on the results of section 4.2.5 where we utilised the Nilpotent Orbit and

Sl2-Orbit theorems to determine the growth of the Hodge norm upon approaching infinite

distance. Using this we will determine the asymptotic form of the gauge kinetic function

upon approaching infinite distance. We will relate this behaviour to the BPS spectrum

and will discuss how it emerges from integrating out the charged BPS states. Finally, we

will relate it to the Weak Gravity Conjecture.

6.1 Behaviour of the gauge kinetic function

The BPS states which are of interest to us are charged under U(1) gauge symmetries.

Microscopically, in Type IIB string theory, the BPS states are D3-branes wrapping special

Lagrangian cycles, the gauge fields arise from the closed-string RR field C4 and the gauge

kinetic function depends on the complex structure moduli of the Calabi-Yau threefold. The

low energy N = 2 effective action takes the form

L =
R

2
− gij∂µti∂µt̄j + Im NIJF IµνF J,µν + Re NIJF Iµν (?F )J,µν , (6.1)

where F Iµν with I = 0, . . . , h2,1(Y ) are the field strengths of the electric U(1) gauge fields

which together with the complex structure moduli ti complete N = 2 vector multiplets.

The magnetic field strengths are defined as

GI = − δL
δF I

= Re NIJF J − Im NIJ ? F J . (6.2)

In the string theory setting at hand F I and GI arise in the expansion of F5 = dC4 into the

symplectic basis (αK , β
L) introduced in (2.5) as

F5 = F I ∧ αI − GI ∧ βI . (6.3)

This implies that the distinction of electric and magnetic fields depends on the choice of

(αK , β
K) at the considered point in moduli space. We will later use the basis adapted to

the type of singular locus that we approach.

Let us next analyse the behaviour of the gauge kinetic matrix NKL in (6.1) near the

singular points in moduli space. In order to do that we recall from [62] that NKL is related

to the Hodge-norm of the basis (αK , β
L) as( ∫

αI ∧ ∗αJ
∫
αI ∧ ∗βL∫

βK ∧ ∗αJ
∫
βK ∧ ∗βL

)
= −

(
ImN + ReN (ImN )−1ReN ReN (ImN )−1

(ImN )−1ReN (ImN )−1

)
.

(6.4)
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d (ImN )AA (φ) (ImN )00 (φ) (ImN )AA (m0) (ImN )00 (m0)

0 φ - logm0 -

1 φ φ m−2
0 m−2

0

2 φ φ2 m−1
0 m−2

0

3 φ φ3 m−2
0 m−6

0

Table 3. Table showing the leading behaviour of two key components of the gauge kinetic function.

This is shown as a function of the one-parameter approach to the monodormy locus φ→∞, and as

a function of the mass of the BPS states which become massless on the monodromy locus. Infinite

distance loci are classified by d > 0, while finite distance loci have d = 0. The subscript in (ImN )AA
runs over A = {1, α} for d = 3 but only over A = {α} for d = 0, 1, 2.

Using this identity it is easy to evaluate the growth of NKL using the results of subsec-

tion 4.3. Hence, we now use the basis (αK , β
L) introduced for the respective singularities

in (4.54), (4.59), and (4.64). At leading order in φ = Im t we can neglect the terms arising

from Re NIJ , so we will set Re NIJ = 0 in the following. The matrix (6.4) then decomposes

into two components given in terms of ImNIJ and its inverse. In the adapted basis we can

write the leading behaviour as

||α0||2 ∼ ImN00 , ||αA||2 ∼ ImNAA , (6.5)

where A = {1, α}. In turn, the behaviour of ImN00 and ImNAA as a function of φ for the

different cases are given in table 2. Therefore, we can deduce the leading order behaviour

of the gauge kinetic function. This is shown in table 3. We note that the growth of

(ImN )aa cannot be determined from this analysis without more information about the

subleading terms in (4.44), so we will omit this component of the gauge kinetic function

from our analysis from now on. Notice also that the component (ImN )11 only makes sense

for d = 3, while otherwise A = {α}. We can also give the behaviour in terms of the BPS

mass of the states which become massless at the singularity locus, by using (5.17). Here

m0 refers to the lightest field in the tower, so m0 ≡ Λ0 in figure 3.

From table 3 we can see that, while the gauge coupling always goes to zero on an infinite

monodromy locus, it does so as power law or logarithmically in the mass of the light states

depending on whether we approach a point at infinite or finite distance respectively. In the

next section we will give a physical interpretation of this behaviour in terms of integrating

out an infinite or finite number of charged fields.

6.2 Gauge kinetic function from integrating out states

In section 6.1 we showed that the gauge kinetic function exhibits a logarithmic or power-law

divergence, in the mass of the states which become massless, near singular points of the

moduli space depending on whether the point is at finite or infinite distance. We propose

that the origin of this difference in the asymptotic behaviour of the gauge coupling can
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be understood in terms of the properties of the charged fields becoming massless at the

singularity. Specifically, we will analyse the quantum one-loop corrections to the gauge

kinetic function coming from integrating out the charged fields, in a similar way that we

did for the field space metric in section 5. We will find that the behaviour in table 3 can

be reproduced precisely through this.

The logarithmic divergence of the gauge kinetic function, the finite distance d = 0 case

in table 3, can be understood in terms of a single charged particle becoming massless at the

singular point. This is well known for the conifold point [51, 52]. We consider, for simplicity,

a single U(1) gauge field with gauge coupling g. Quantum one-loop corrections to the gauge

coupling from integrating out a single charged fermion of charge q and mass m give

1

g2
IR

=
1

g2(µ = m)
=

1

g2
UV

− q2

12π2
log

Λ2
UV

m2
. (6.6)

Here the infra-red value of the gauge coupling gIR, which depends on the energy scale at

which it is evaluated µ, is taken at the scale of the integrated out particle m. Below this

scale, the effective theory only involves the U(1) gauge field and the running stops. The

ultraviolet value of the gauge coupling gUV is given at a cut-off scale ΛUV. As we move in

the moduli space the mass of the state goes to zero m → 0. However, we have seen that

the relevant UV scale ΛUV for our considerations in section 5 was the species scale (5.1).

Since there is only one state in the theory S = 1, this is given by the Planck mass Mp,

which we set to unity in table 3. More generally, we note that the Kähler potential stays

finite at finite distance, which implies a finite UV scale. We therefore see that the inverse

gauge coupling squared diverges logarithmically in the mass of the state which is becomes

massless, reproducing the behaviour of the d = 0 case in table 3.

When approaching an infinite distance singularity, two things change. First, we have to

sum the contribution from all light particles running in the loop. As explained in section 5,

the number of stable particles S, below the scale at which gravity becomes strongly coupled,

depends on the point in moduli space. Secondly, the UV cut-off also depends on the point

in moduli space, so that it goes to zero at the singular locus. As in section 5, we will this

UV cut-off to be the species bound. The field dependence of both of these is given in (5.17).

The relevant one-loop quantum correction to the gauge kinetic function is given by

Im N IR
IJ ' Im NUV

IJ −
S∑
k

(
8 qk,Iqk,J

3π2
log

ΛUV

mk

)
, (6.7)

where qi,I is the charge of the k-th particle with mass mk under the gauge field F Iµν .

We would now like to see if (6.7) can reproduce table 3. Let us summarise the relevant

results of section 4. For d = 3, the charge of the kth state in the BPS tower can be written as

qk ≡ q1β
1 + (q0 + k q1)β0 + qαβ

α + qaβ
a with q1 6= 0 . (6.8)

This tower of states corresponds to the infinite quotient monodromy orbit found in (4.53).

For d < 3 such an infinite quotient monodromy orbit does not exist, but we can still have

a tower of states generated by a monodromy transformation different from the one about
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a generic point on the infinite distance locus, see section 4.4. The charge of the kth state

in the monodromy orbit can be parametrised as

qk ≡ (q0 + k0)β0 + (qα + kα)βα + qaβ
a , (6.9)

where qa = 0 for the case d = 2. The remaining properties of the tower regarding their

mass behaviour are given in (5.17).

We can distinguish two cases when computing the one-loop corrections to the gauge

kinetic function, whether the tower has the same charge or an increasing charge with respect

to the gauge field. This implies two types of sums in (6.7) yielding

S∑
k

(q0 + kq1)2 log
ΛUV

mk
∼ φd , (6.10)

S∑
k

q2
1 log

ΛUV

mk
∼ φd/3 , (6.11)

where we have used (5.17) for the UV cut-off scale and the number of particles S. Note

that the above sums are dominated by the states with high charges which, at infinite

distance, always satisfy ΛUV/mk → 1 since mk ∼ S∆m ∼ ΛUV. Therefore, the logarithm

asymptotes to a constant leading to a final power law result.30 We can then read off the

behaviour of the elements of the gauge kinetic matrix relevant for table 3. These read

Im N00 ∼ φd , Im NAA ∼ φd/3 for d = 3 , (6.13)

Im N00 ∼ Im NAA ∼ φd for d < 3 , (6.14)

where A = {1, α}. We therefore have reproduced the table 3. In terms of the BPS mass of

the states becoming massless, the gauge coupling goes to zero as a power law of the mass of

the light states of the tower, precisely in the way obtained in the previous section. This per-

fect matching for each component of the gauge kinetic function supports the identification

of the monodromy orbit of BPS states as the infinite tower of states becoming massless at

the infinite distance singularities. Notice that the only mismatch is in Im NAA for the case

d = 2. However, the charge space spanned by βα could very well be empty, so there is not

an associated gauge field FAµν . This is indeed the case for the locus n = d = 1 in P(1,1,2,2,2)

detailed in section 4.4. We leave a detailed investigation of this case for future work.

For completeness, let us comment on the contribution to the gauge coupling coming

from integrating out a scalar field. The one-loop correction is simply given by

1

g2
IR

=
1

g2
UV

− q2

48π2
log

Λ2
UV

m2
(6.15)

30We encounter sums of the kind

S∑
k

log
S

k
∼ S + . . . ,

S∑
k

k2 log
S

k
∼ 1

9
S3 + . . . (6.12)

which give the same parametric result regardless the presence of the logarithm in the sum.
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and the computation proceeds analogously to the fermionic case. The contribution to the

gauge kinetic function will, therefore, have the same parametric dependence in terms of

the mass of the particle up to possible numerical factors.

Let us finally comment on the relation of our results to the Weak Gravity Conjecture

(WGC) [2]. At singular loci in moduli space, we find that the gauge coupling vanishes

polynomially (logarithmically) fast in the mass of an infinite (finite) number of BPS states

becoming massless.31 The presence of the light states can be understood in the context

of the electric WGC. More concretely, the BPS states becoming massless are the states

satisfying the WGC but, in our case, they do not form a lattice, as in other generalizations

of the WGC to multiple U(1) gauge fields [42, 44]. This is consistent with the fact that

in supersymmetric settings the WGC is satisfied by BPS states which, therefore, saturate

the WG bound [2, 64]. As explain in [5, 61], in N = 2 it is then essential to consider the

contribution from scalar fields to the WGC bound as they contribute to the BPS bound.

The magnetic WGC states that the cut-off scale of the theory can be no higher than

gMp. At finite distances in moduli space we find a finite number of light states and that

the gauge coupling goes to zero on the monodormy locus logarithmically fast in the mass

of the states. Therefore, the cut-off scale must also vanish logarithmically fast to satisfy

the WGC. However, there is a much lower cut-off scale set by the mass scale of the states

becoming light. The magnetic WGC does not imply that the scale of quantum gravity

related physics is at gMp within an effective theory with a cut-off scale which is below

gMp. Only if one considers an effective theory with a cut-off scale above gMp does one

reach an inconsistency. In this case, since the gauge coupling behaves logarithmically in the

mass of the state, we see that we reach new physics exponentially fast before reaching the

scale gMp. Therefore, there is no sense in which quantum gravity related physics, such as

an infinite number of states, must become light at finite distance. This is all consistent with

the discussion in [61] and in [16]. Note that also, g → 0 logarithmically fast, so in the case

of finite number of light states, is still consistent with an emergent nature for that limit.

At infinite distance we showed that a tower of states starting at Λ0 reproduces the

correct behaviour of the gauge couplings. The scale Λ0 coincides with the gauge coupling

related to ImN00 for d < 3, and for d = 3 for the gauge coupling associated to ImN11,

as can be seen from the last column of table 3. For these cases we therefore observe that

the magnetic WGC is implied by the idea that the gauge coupling behaviour emerges from

integrating out the tower of charged BPS states. This matches the proposal in [16].

In the case d = 3 we find a mismatch between Λ0 and the gauge coupling associated

to ImN00. This is interesting in the sense that it shows how the emergence of weak gauge

coupling from a tower of states need not imply the magnetic WGC. However, it is not a

counter-example to the magnetic WGC because the monodromy orbit of BPS states is only

a sub-set of the possible BPS states. In particular, one could have a tower of BPS states

all with S1(qk,a0) = 0 which would start at a mass scale φ−
3
2 and so match onto the gauge

coupling. Such a tower would also lead to the same behaviour for the gauge coupling upon

31Our results for the rate at which the gauge coupling vanishes when approaching the singularities are

also consistent with the bounds obtained in [63] in the context of AdS/CFT.
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integrating out, but is not related to the monodromy orbit. It may be possible to relate it

to a different monodromy orbit, as in section 4.4, or more generally motivate it since it is a

sub-space of the quotient space (3.15). It is interesting to note that, by contrast, if instead

we considered a tower of states with increasing charges under the gauge field associated to

ImN11, so with S1(qk,a0) ∼ k, then integrating out such a tower would not match onto

the behaviour of the gauge coupling.

7 Summary

In this paper we studied infinite distance loci in the complex-structure moduli space of

Calabi-Yau manifolds. The study was performed in the context of the Swampland Distance

Conjecture which states that upon approaching infinite distance loci in moduli space there

should exist an infinite tower of states whose mass decreases exponentially fast in the

proper distance [3]. Our proposal is to identify these as charged BPS states, which for

the complex-structure moduli space in compactifications of type IIB string theory are D3-

branes wrapping special Lagrangian three-cycles. They are charged under the closed-string

Ramond-Ramond U(1) gauge symmetries.

We first introduced some existing mathematical results on infinite distance loci which

allowed us to classify them algebraically. In general, a point in the moduli space was

classified by the monodromy that the period vector undergoes when circling the point. A

point at infinite distance, which means it is infinite distance along any path from some

other point in the moduli space, has an infinite order monodromy around it. Further, it is

classified by two integers, n and d, which respectively determine the highest non-vanishing

power of the logarithm of the monodromy matrix and the highest power which does not

annihilate the period vector on the monodromy locus.

The first key tool utilised is the Nilpotent Orbit Theorem of Schmid [14]. This essen-

tially determines the local form of the moduli space around any point, but is most powerful

around loci of infinite monodromy. We applied it to extract the local form of the field space

metric and the mass of BPS states. This led directly to the result

• Approaching any locus of infinite distance, any BPS states which become massless

on the locus become light at least exponentially fast in the proper distance.

This matches onto the Swampland Distance Conjecture proposal.

It is a crucial point that an infinite tower of states should become massless at infinite

distance. As we will see below this tower is central to much of the physics. We therefore

determined the properties of this tower in as much detail as possible. The central difficulty

is that the spectrum of BPS states in the theory is difficult to determine. Particularly so

because it varies upon variations in complex-structure moduli space. In terms of the physics

of the tower of states, this amounts to identifying the stable states in the tower. So while

we know the mass of any would-be BPS state of a given charge we do not know if there is a

BPS state of that charge in the spectrum. Our proposal is to use the monodromy about the

infinite distance point to identify a specific set of candidates for BPS states. Specifically,

– 58 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

the monodromy action on the period vector has a natural action of the charges of would-

be BPS states in the theory. Starting from a given charge, the monodromy action will

transform it and acting repeatedly with the monodromy determines a monodromy orbit

through the possible charges. At infinite distance the monodromy is of infinite order and

so the monodromy orbit contains either one element, if the monodromy acts trivially on a

charge, or an infinite number of charges. We then propose the following:

• Proposal: a candidate for an infinite tower of states which becomes massless at infinite

distance is generated by an infinite monodromy orbit starting from a single BPS state.

More precisely, only a sub-set of the infinite monodromy orbit will be stable BPS states,

and the number in this subset grows exponentially fast in the proper distance. We believe

that this is a general phenomenon: the number of stable states in the tower increases

exponentially fast as we approach the infinite distance locus. Note also that there could be

other towers of particles becoming light and satisfying the Swampland Distance Conjecture.

We then identified the monodromy orbit and the set of stable BPS states more precisely.

First, we decomposed any would-be BPS states which become massless on the monodromy

locus into type I and type II states. Type I states become light exponentially fast in the

proper distance while type II states becomes light as the exponential of an exponential in

the proper distance. We then defined the quotient set of all massless would-be BPS states

by type II states. The quotient means that we identify two states if their charge differs by

a type II charge. We argue that this quotient is a good candidate for a subset of stable

states at the singularity. The monodromy orbit generating BPS states is the embedding of

the orbit into this quotient space, which we denote the quotient monodromy orbit. We then

went on to study when this quotient monodromy orbit is infinite. This required introducing

substantial mathematical technology based on Mixed Hodge Structures. Specifically, we

utilised the Sl2-Orbit theorem of Schmid [14] and Deligne splittings of vector space of

charges to show that

• Infinite distance loci with d = 3 always support an infinite quotient monodromy orbit

induced by the monodromy about the infinite distance locus.

• Infinite distance loci with d < 3 do not support an infinite quotient monodromy orbit

induced by the monodromy about the infinite distance locus.

The first result is very encouraging and provides a specific identification of the tower of

states for such loci. The second result is more puzzling since such loci are infinite distance

but our proposed sub-set of BPS states are more difficult to identify. There are two

important points to note about this. First, since we propose that the monodromy orbit

identifies a sub-set of the BPS states it is only a sufficient, but not necessary, condition

for having an infinite number of massless BPS states. The second point is that we show

that there can still be an infinite quotient monodromy orbit but which is generated by a

monodromy transformation about a different infinite distance locus in the moduli space

which intersects the specific infinite distance locus. In this work we did not introduce the

mathematical machinery to show that this happens generally, but do show it for interesting
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examples. There are, however, specific counter-examples to this proposal where infinite

distance d < 3 loci exist which do not intersect any other monodromy loci. Specifically,

in examples where the complex-structure moduli space is one (complex) dimensional. We

suggest possible ways to understand such points in the context of our proposal, but leave

a better understanding of them for future work.

At this point we make a distinction within our results. On the one hand, in our N = 2

setting, we believe that the results so far have introduced a new perspective and several

powerful techniques to perform a general analysis of infinite field distances and the exis-

tence of infinite BPS states in complex structure moduli space. We expect that, also in the

discussed generality, our claims will survive further scrutiny only yielding further refine-

ments. On the other hand, the fact that we find patterns within this general framework

naturally leads to more speculative and general proposals which we outline below. One

of the reasons why the results are less established is that they require us to perform per-

turbative computations in a theory with particle-number dependent cutoff to capture the

impact of infinitely many modes potentially relevant in the loop. Another reason is that

our analysis of the integrating out procedure is only a toy model since we utilise the IR

expressions for the masses of the states rather than the UV form. It is therefore important

to gather more evidence for these ideas.

With this caution in mind, having identified significant details regarding a tower of

BPS states which become exponentially light at infinite distance, we proposed an underlying

microscopic physics explanation for why such a tower exists:

• Proposal: infinite distances in moduli space arise from integrating out an infinite

tower of states.

It is well known that Calabi-Yau moduli spaces are quantum in the sense that they already

have integrated out wrapped D3-brane states. The most famous example being the conifold

singularity as associated to one of the wrapped D3-branes becoming massless. Our proposal

is that the infinite distance loci, which are also singular, are the same in nature. So they

can be thought of as arising from integrating out states, but this time an infinite number

of them. Infinite distances are thereby seen as emergent. This idea was first tentatively

proposed as a possibility in [3]. We show that explicitly integrating out such a tower

of states leads to a correction to the field space metric which precisely reproduces the

logarithmic divergence of the proper field distance. This divergence implies in turn the

exponential decrease in the mass of the states in the proper distance.32 Further, the

number of states required to be integrated out matches the growth in the number of stable

states in the tower upon approaching infinite distance. While this is good evidence for this

connection, it is important to note that this quantum induced infinite distance could be

on top of a ‘classical’ infinite distance already present.

We also apply the techniques used to study the moduli space metric to the gauge kinetic

function. We show that upon approaching an infinite distance locus the gauge kinetic

function diverges exponentially fast in the proper distance, since it diverges as power law

32While writing this paper we were informed that in [15] a similar conclusion was reached independently.
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in the mass of the BPS states becoming light. This matches the behaviour proposed in [4].33

We showed that this can be understood again from integrating out the BPS states which

become light and are electrically charged under the gauge fields. Motivated by this match

we therefore propose that a vanishing gauge coupling is also emergent in the same way:

• Proposal: any vanishing gauge coupling limit g → 0 arises from integrating out

charged states starting from some ultraviolet scale, below Mp, where g is finite.

Note that this matches the fact that the region in moduli space where the gauge coupling

vanishes, that is at infinite distance, is also argued to be emergent at the quantum level. It

also matches the ideas proposed in [16, 60] where the small gauge coupling is emergent upon

integrating out states. We also presented evidence that the appropriate ultraviolet scale is

actually the species scale. Note that g → 0 either logarithmically, if a finite number of states

are integrated out, or as a power law, if an infinite number of states are integrated out.

The relation between infinite distances in moduli space and vanishing gauge couplings

also has a natural interpretation in terms of global symmetries. We showed that at any

infinite distance locus there is a global symmetry in the form of a continuous shift symmetry

for an axion field. Similarly, it is known that at vanishing gauge coupling the gauge U(1)

symmetry turns into a global U(1) symmetry. Therefore, we expect that in a quantum

gravity setting any limit which approaches a global symmetry should be emergent from

integrating out a tower of states. Of course, the effective field theory entirely breaks down

at the infinite distance locus, since the cut-off of quantum gravity goes to zero when we

recover infinitely many massless states. But the important point is about the way we

approach the limit so that the emergence of the global symmetry is continuous.

This relation between the cut-off of the effective theory, the field distance and the small-

ness of the gauge coupling can have interesting phenomenological implications. If we want

to engineer an effective field theory valid up to a certain finite cut-off scale, these ideas imply

a limit on how small gauge couplings and how large scalar field variations can be accom-

modated within the same effective theory in order to be consistent with quantum gravity.

Our analysis is performed in a very general way, it applies to any generic infinite dis-

tance locus in any Calabi-Yau moduli space. However, there are many ways to extend it.

First, still within the setting of the N = 2 complex-structure Calabi-Yau moduli space

there are certain non-generic loci which are at the intersection of multiple infinite distance

divisors. In such cases there are multiple local co-ordinates which diverge as opposed to the

one parameter approach to the loci we studied. The mathematical technology for study-

ing these is already available, since both the theorems of Schmid have a multi-parameter

generalisation. It would therefore be interesting to study such loci in a similar way to

the work in this paper. Similarly, while we have focused on the complex-structure moduli

space of Calabi-Yau threefolds, much of the analysis can be generalised straightforwardly to

Calabi-Yau fourfolds and implemented in the context of F-theory. The primary challenge

in such a setting is the reduced supersymmetry which means it is more difficult to control

the mass of the states without the BPS structure.
33Note the difference with respect to finite distance singularities, where there is only a finite number of par-

ticles becoming massless and the gauge kinetic function diverges logarithmically in the mass of the particles.
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Generalising further, it would be interesting to test the behaviour we found in other

scalar field spaces in string theory. In particular in the Kähler moduli space of type IIB

string theory and the mirror complex-structure moduli space in type IIA string theory.

There, BPS states from wrapped branes are not particle-like in four dimensions but are

extended objects. This suggests a generalisation of the Swampland Distance Conjecture

where the infinite tower of states are not particles. There is also the open-string moduli

space of D-branes in string theory which can be studied in a similar way. Indeed, recent

results have showen how the open-string sector can be implemented in a structure which

bears some similarities to our closed-string studies [65].

The N = 2 string theory moduli spaces we have studied are natural testing grounds

for quantum gravity field spaces. Many of the results we found can be understood more

generally away from an explicit string theory setting. Indeed, we formulated the proposals

in such a general way. This suggests that it may be possible to find more evidence for the

generality of these results by considering general quantum gravity physics, such as black

hole physics. Indeed, some of the structure we obtained can be understood as in [4] from

black holes with scalar hair. It would be very interesting to develop such an approach and

thereby build evidence for the generality of the physics.
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Kerr, Dieter Lüst, Fernando Marchesano and Miguel Montero for very helpful discussions

and correspondence.

A Non-mutually stable BPS states

In section 3.2 we argued that states of type I related by a monodromy transformation which

differ by the charge of a massless state of type II are not mutually stable. A motivation for

the microscopic physics comes from the distinguished triangles defined in (3.35). In this

picture, states qB and TqB will be mutually unstable if S(qA,qB) 6= 0. Here we will prove

that S(qA,qB) = 0 if both states qA and qB are of type I. This motivates that the quotient

monodromy orbit obtained upon modding out by type II states is a good candidate for

a set of stable states becoming massless at the singularity. To show this, we will use the

mixed Hodge structures introduced in section 4.

For convenience, let us recall (3.35) here,

δqB = TqB − qB = S0 (qA,qB) qA . (A.1)

This implies that the states qB and TqB differ by a charge δqB proportional to qA.

Assuming qB ∈ MI , we are interested in finding out for what states qA we can have

S0 (qA,qB) 6= 0, i.e. S0 (δqB,qB) 6= 0. Recall that δq = Nq + 1
2N

2q + 1
6N

3q where

q ∈ H3(Y3, Z).

– 62 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

Let us consider for simplicity δq = Nq. The argument can be repeated for the terms

N2q and N3q obtaining the same result. If qB ∈ Re(P p,q) ⊂MI we have

S0 (NqB,qB) 6= 0 ⇒ p+ q = 4 (A.2)

where we have used the orthogonality relations (4.33) and (4.35) . Since qA is massless

at the singularity, δq ∈ M which means Sj (NqB,a0) = 0 for j ≥ d/2. However, if we

want qA to be a type I state we also need Si (NqB,a0) 6= 0 for some i < d/2. Recalling

that qB ∈ MI is also massless at the singularity and Si (NqB,a0) = −Si+1 (qB,a0), the

condition for having qA ∈MI is modified to

Si (NqB,a0) 6= 0 for some i < d/2− 1 (A.3)

Using the orthogonality relations and the fact that a0 ∈ P 3,d, this is satisfied for

Si

(
NP p,q, P 3,d

)
6= 0 ⇒ p+ q − 2i+ d = 5 (A.4)

But it is easy to check that the conditions (A.2), (A.3) and (A.4) can never be satisfied

simultaneously. Therefore, a non-vanishing product S(qA,qB) 6= 0 with qB ∈ MI implies

that Si (qA,a0) = 0 for all i ≤ d, which means that qA can only be a type II state.

B Some simple examples and classification results

In order to illustrate the general concepts introduced in sections 2 and 4, in this appendix

we provide some simple examples and review a classification of possible cases for the one-

modulus case.

Our examples will deal with three types of cases, denoted by I, II1 and II2, where the

nilpotency indices of N introduced in (2.16) and (2.35) are

I : n = d = 3 , II1 : n = 1 , d = 0 , II2 : n = d = 1 . (B.1)

Since we are dealing with one-modulus cases, one can use (2.39) to conclude that the two

cases I, II2 are examples of monodromies around points at infinite distance, while the case

II1 corresponds to a monodromy around a finite distance point. One can show, as we recall

below, that in case II1 the matrix N has rank 1, while in case II2 it has rank 2. The

cases I and II1 are not hard to realize geometrically. Evidently, case I corresponds to a

maximally unipotent monodromy and hence arises at the large complex-structure point of

Calabi-Yau threefolds. The case II1 arises at the conifold point. Finally, the case II2 is the

most unfamiliar one and we discuss it in more detail in section 4. It arises at a so-called

Tyurin degeneration [49].

The examples also serve to illustrate a particular method for constructing the Wi. The

starting point is the nilpotent matrix N which satisfies Nn+1 = 0. Because it is nilpotent

it can be completed into an Sl2 triplet {Z,X+, X−} where it plays the role of the lowering

operator N = X−. The generators satisfy the algebra

[Z,X+] = 2X+ , [Z,X−] = −2X− , [X+, X−] = Z . (B.2)
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Through this embedding into Sl2 the spaces Wi are defined as the eigenspaces generated

by eigenvectors of Z with eigenvalues less than or equal to i−D. In this example section

we will consider matrix representations of the Sl2 algebra. In general, the dimension of the

matrices in the representation should be at least (n+ 1) × (n+ 1), but the full structure

emerges in the cases when they are larger than this. It is known that the structure of

the Wi filtration is independent of the particular representation chosen for Sl2. We will

consider 4× 4 representations as illustrative examples.

The 4 × 4 representations are relevant for CY threefolds with exactly one complex

structure modulus, i.e. h2,1 = 1. The real basis of three-forms introduced in (2.5) then

only consists of four elements (α0, α1, β
0, β1). We will write all results in matrix form and

introduce the standard unit vectors e1 = (1, 0, 0, 0)T , e2 = (0, 1, 0, 0)T , e3 = (0, 0, 1, 0)T ,

and e4 = (0, 0, 0, 1)T . The ei are identified with the forms (α0, α1, β
0, β1). It is convenient

to chose a different identification for the three cases (B.1) and we will give the corresponding

η for each case.

An example filtration for case I. We consider first the case where n = 3. In this case

it is convenient to identify

e1
∼= α0 , e2

∼= α1 , e3
∼= β1 , e4

∼= β0 , (B.3)

such that the intersection matrix η takes the form

η =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 . (B.4)

An example monodromy matrix which leads to this case is the one associated to the large

complex structure limit34

T =


1 0 0 0

1 1 0 0

−1
2 −1 1 0

1
6

1
2 −1 1

 , N =


0 0 0 0

1 0 0 0

0 −1 0 0

0 0 −1 0

 . (B.5)

where N is constructed through N = log T . Note that N i+1 is of rank 3 − i. We now

construct the Sl2 representation. We have for the generators

Z =


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 , X+ =


0 3 0 0

0 0 −4 0

0 0 0 −3

0 0 0 0

 , X− =


0 0 0 0

1 0 0 0

0 −1 0 0

0 0 −1 0

 . (B.6)

34Note that one can chose a basis such that T is an integral matrix. Our choice is adapted to the integral

basis chosen for the three-cycles.

– 64 –



J
H
E
P
0
8
(
2
0
1
8
)
1
4
3

The Wj can then be constructed as the appropriate eigenvector subspaces. We summa-

rize in the following by which of the basis vectors ei theWj are spanned. By definition (4.16)

W6 is the full vector space and hence spanned by (e1, e2, e3, e4). The non-trivial part of

the filtration reads

W5 = W4 = span(e2, e3, e4) , W3 = W2 = span(e3, e4) , W1 = W0 = span(e4) . (B.7)

We can now also construct the Grj ≡ Wj/Wj−1. Clearly, one has dimGr6 = dimGr4 =

dimGr2 = dimGr0 = 1, while all other Gr5, Gr3, Gr1 are trivial. An equivalence class

in Gr6 can be represented by a vector aiei, with a1 6= 0. The coefficients a2, a3, a4 are

not further restricted since these directions are identified with the trivial element in Gr6.

Furthermore, the P3+i are defined at the end of section 4.2.2 as the kernels of N i+1 acting on

Gr3+i. One easily checks that the only non-trivial P3+i is P6, which is the one-dimensional

quotient Gr6 itself. Considering the case d = 3 we thus conclude that a0 is vector with a

non-vanishing first entry. Further constraints arise from the fact that a0 is part of the F i∞
filtration. We will give the allowed forms of a0 below.

An example filtration for case II1. The second example filtration that we consider

also uses identification (B.11) and η of the form (B.4). The considered from of the mon-

odromy matrix T and associated N are

T =


1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

 , N =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 . (B.8)

Hence, N is of rank 1 and obeys N2 = 0 such that n = 1. This N can be embedded in Sl2 as

Z =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 , X+ =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , X− =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 . (B.9)

The Wj are readily constructed. Since n < 3 the filtration contains trivial parts, as

discussed in (4.21). More precisely, one has W6 = W5 = W4 is the total space spanned by

all ei, while W1 = W0 = W−1 are trivial. The non-trivial part of the filtration is

W3 = span(e2, e3, e4) , W2 = span(e4) . (B.10)

The Grj are easily derived from these Wj . Gr4 and Gr2 are one-dimensional with non-

trivial component along e4 and e1, respectively. Gr3 is two-dimensional with non-trivial

e2, e3-components, and all other Gri are trivial. We can also construct the P3+i as the

kernels of N i+1 acting on Gr3+i. We find that P4 is one-dimensional, while P3 is two-

dimensional, with all other Pi being trivial. For d = 0 we conclude that a0 has non-trivial

entries along e2 and e3. Again one can further constrain the allowed a0 as we discuss below.
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An example filtration for case II2. In this case it is convenient to identify

e1
∼= α0 , e2

∼= α1 , e3
∼= β0 , e4

∼= β1 , (B.11)

such that the intersection matrix η takes the form

η =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (B.12)

In this example we consider the monodromy T and resulting matrix N of the form

T =


1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1

 , N =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 . (B.13)

Hence, N is of rank 1 and obeys N2 = 0 such that n = 1. This N can be embedded in Sl2 as

Z =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 , X+ =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , X− =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 . (B.14)

Again we easily construct the Wj , by first noting that n < 3 such that filtration

contains trivial parts (4.21). One has W6 = W5 = W4 is the total space spanned by all ei,

while W1 = W0 = W−1 are trivial. The non-trivial part of the filtration is

W3 = W2 = span(e3, e4) . (B.15)

The Grj are easily derived from these Wj . Gr4 and Gr2 are two-dimensional with non-

trivial component along e1, e2 and e3, e4, respectively. All other Gri are trivial. We can

also construct the P3+i as the kernels of N i+1 acting on Gr3+i. We find that P4 is one-

dimensional, while P3 is two-dimensional, with all other Pi being trivial. For d = 0 we

conclude that a0 has non-trivial entries along e2 and e3. Again one can further constrain

the allowed a0 as we discuss below.

Local classifications in the one-modulus case. While the presented examples seem

only to represent specific choices of monodromy matrices, they actually provide the key

examples appearing in a classifications of allowed filtrations and vectors a0. Considering

4 × 4 representations it is possible to get quite far without assuming a particular form

for T but only using general constraints. In particular, since the Sl2 algebra is invariant

under unitary transformations one can use this freedom to eliminate components in the
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case prop. N form of η form or N form of a0 constants

I
N4 = 0,

N3 6= 0


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0




0 0 0 0

a 0 0 0

e b 0 0

f e −a 0




1

0
f
2a

π


a, b, f ∈ Z,

a 6= 0, b > 0 ,

e ∈ Z[1
2 ],

π ∈ C

II1

N2 = 0,

rk(N) = 1


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0




0 0 0 0

0 0 0 0

0 0 0 0

a 0 0 0




0

1

τ

δ − τγ


a ∈ Z, a 6= 0,

τ ∈ C,

Imτ 6= 0,

γ, δ ∈ R

II2

N2 = 0,

rk(N) = 2


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




0 0 0 0

0 0 0 0

a 0 0 0

0 c 0 0




1

i
√

a
c

0

γ


a ≥ c > 0,

γ ∈ C

Table 4. Classification of occurring infinite order monodromies and vectors a0 for the one-modulus

case [66].

most general matrices. Using this, and other constraints, an analysis of the one-modulus

case was performed in full generality in [66].

It was found that there are precisely three classes of N for one modulus, of

which (B.5), (B.8) and (B.13) are special examples. These are summarised in table 4,

where the first column gives η and hence allows the match with the basis (αK , β
K) define

in (2.5).

Global classifications in the one-modulus case. Having summarised the classifica-

tion of monodromy about a local point in the one-parameter moduli space in table 4, we

now discuss some global aspects. In fact, it is possible to classify also the global struc-

ture of the moduli space for such one-parameter Calabi-Yau threefolds that have a moduli

space P1/ {0, 1,∞}. This was performed in [67] and here we summarize their results. The

moduli space P1/ {0, 1,∞} is parameterised by z and has three monodromy points. The

monodromy about z = 0 is maximally unipotent, so n = 3, and is therefore a large-complex

structure limit. The monodromy about z = 1 is of rank 1 and is the conifold locus.

The monodromy matrices about these loci satisfy the relation T0T1T∞ = 1. They can

therefore be specified by any two elements, which take the form

T0 =


1 0 0 0

1 1 0 0

0 m 1 0

0 0 1 1

 , T1 =


1 −a −1 −1

0 1 0 0

0 0 1 0

0 0 0 1

 . (B.16)
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The symplectic form for contractions in the basis where the monodromy matrices takes not

the above form (B.4) or (B.12). Rather, by an appropriate choice of basis, it is given by

η =


0 −a −1 −1

a 0 1 0

1 −1 0 0

1 0 0 0

 . (B.17)

There are 14 possible cases which are labelled by the integer choices for a and m and

are given in [67], table 1. Of these, there are 3 special cases where the monodromy about

z =∞ is such that N∞ is of rank 2 and so n = d = 1. These are given by35

{m, a} = {4, 4} , {1, 2} , {9, 6} . (B.18)

The Calabi-Yau realisations of these monodromy loci are, for example, the mirrors of

P5
1,1,1,1,2,2 [4, 4], P5

1,1,2,2,3,3 [6, 6], P5 [3, 3] respectively. These geometries have been analysed

in various works, see e.g. [48]. All the cases in (B.18) are known as Tyurin degenerations.

Such degenerations were studied in [47].

We conclude this section by stressing that indeed all cases I, II1 and II2 are realised

geometrically. Hence, in order to analyse the conjecture about infinite distance and the

existence of light states we have to investigate the two infinite distance cases I, II2. This

is the task of section 4.
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