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1 Introduction

Wilson loop operators in gauge theories are among the most important observables one
can study. They correspond to the phase factor induced from the parallel transport of a
charged probe particle around a loop. These non-local and gauge invariant observables can
be used to formulate the classical gauge theory itself, encoding some important aspects of
the strongly-coupled gauge dynamics. For example the expectation value of a Wilson loop,
which consists of a pair of semi-infinite straight lines, captures the interaction potential
between a quark and an antiquark, becoming an order parameter for quark confinement.
In a 6d superconformal field theory (SCFT) which contains the two-form potential B,
and the associated supersymmetric strings, the Wilson loop operator of gauge theories can
be generalized to the phase factor induced from moving a charged probe string along a
spacetime trajectory given by a 2d surface . This is the Wilson surface operator [1] which
we will study throughout this paper. It can formally be expressed in the following form:

Wi [5] = Trr <7Dexpi/2da’“’(BW +.--)> (1.1)

where - -- must be determined from supersymmetric completion for unbroken generators.
As we lack a formalism for 6d SCFTs with a non-Abelian self-dual tensor multiplet, the
precise meaning of ‘representation’ can only be clarified through string theory realization
of the Wilson surface defects. For example, an n-wound membrane ending on X realizes
the Wilson surface in rank-n symmetric representation, while n membranes ending on X
engineers the rank-n antisymmetric Wilson surface [2].



We will particularly focus on the 6d N = (2,0) SCFT of Ay_1-type that describes
the worldvolume dynamics of N parallel M5-branes. It contains tensionless BPS strings
that are induced from open M2-branes suspended between M5-brane pairs [3, 4]. We will
consider the tensor branch of (2,0) SCFT defined on R*xT?, i.e. the configuration in which
all Mb5-branes are separated from each other. Such a separation gives the BPS string a non-
zero tension proportional to the distance between M5-branes. Alongside these relatively
light strings, we will also introduce heavy probe strings induced from semi-infinite M2-
branes ending on Mb-branes, which engineer the Wilson surface defect. This is a %—BPS
defect preserving only 8 Poincaré supercharges.

The expectation value and operator product expansion of Wilson surface operators in
the fundamental representation was studied using holographic techniques in [5-7]. This was
generalized to the case of large-rank antisymmetric and symmetric representations in [2, 8-
10]. The field-theoretic calculations of the Wilson surface defects were made through 5d
SYM description of 6d (2,0) SCFTs on S° x St [11-13] and Q-deformed R* x T2 [14, 15].
An agreement between two computations was found in [16] for the large-rank symmetric
and antisymmetric Wilson surfaces on 72 C S® x S1.

In this paper, we extend the field-theoretic computation to the case of the Wilson
surface observables wrapping 72 inside Q-deformed R* x T? [14, 15] using two independent
approaches. One way is to compute 5d N/ = 1* instanton partition function in the presence
of Wilson loops, where the instanton corrections capture the 6d Kaluza-Klein momentum
modes. For this purpose, we consider the ADHM quantum mechanics of SYM instantons
with Wilson loops [17] and compute their Witten indices. Specifically for minuscule repre-
sentations, which were already studied in [14, 15], the ADHM indices take a simple form
so that one can easily extract the instanton corrected Wilson loop observables out of them.
We also explain the general structure of the ADHM indices and identify the Wilson loops
in various other representations beyond the minuscule ones. This 5d approach will be dis-
cussed in section 2. The other way is to consider the elliptic genera of 2d N' = (0,4) quiver
gauge theories that describe 6d BPS strings in the presence of a Wilson surface defect. We
describe these quivers in section 3, thereby generalizing [18, 19]. In section 3.3, we compare
the results from the above two independent computations and find precise agreement for
Wilson surfaces in minuscule representations; however for non-minuscule representations
there seems to be only a partial match. This is due to technical problems on which we
comment at the end of the section.

2 Line operators in 5d N = 1* gauge theory

In this section, we shall study %—BPS line defects in 5d N/ = 1* U(N) gauge theory.

The string theory realization of 5d maximal SYM is a stack of N coincident D4-branes,
which we assume to fill the 20, --- 2% directions. It preserves SO(1,4) Lorentz symmetry

5 ..., 2" directions. We consider a

and SO(5)r R-symmetry that rotates the transverse z
particular configuration where all D4-branes are separated from one another along the z”
axis. This corresponds to the Coulomb branch of 5d maximal SYM in which the vector

multiplet scalar ¢g obtains a non-zero VEV, i.e., (¢9) # 0. The VEV breaks the U(NV)



gauge symmetry into its Abelian subgroup U(1)". Also, it preserves only SO(4)s of the
SO(5)r symmetry group that we often decompose into SO(4)2 ~ SU(2)2r, x SU(2)2g.
The 5d massive particles preserve the SO(4); little group of SO(1,4), which can be
written as SO(4); ~ SU(2)1z x SU(2)1g. We denote the doublet indices of SU(2):p,
SU(2)1gr, SU(2)ar, SU(2)2r by «, &, a, A, respectively. The 16 supercharges of 5d maximal
SYM are then Q*4, Q%4, Q% Q%. There are two types of massive %—BPS particles in the
Coulomb phase: W-bosons and instantons. W-bosons are electrically charged objects under
U(1)N ¢ U(N), preserving Q%4 and Q2. Their mass is proportional to the Coulomb VEV,
i.e., M = Tr({¢g)-II), where II is the vector of charges with respect to U(1)Y c U(N). Self-
dual instantons are solitonic objects having the topological U(1) charge k = # Jra Tr(F A
F), which is a positive integer. They satisfy the self-duality condition F,, = %eabchCd on
the spatial R* and preserve Q4 and Q**. The unit instanton mass is 872/ gg with the
gauge coupling gs. More generally, W-bosons and instantons can form %-BPS bound states
that preserve Q%4, with mass
812k
M = Tr({¢pg) - II) + iz (2.1)

The line defects can be introduced by adding N’ D4’-branes which fill the 20, 2°, - - | 28
directions [17]. The open string excitations connecting D4- and D4’-branes induce heavy
fermionic probe particles in the 5d theory living on the D4 branes. This will give rise to
%—BPS line defects that will be invariant under the SUSY transformation generated by Q%4
and Q“®. They couple to the 5d gauge field /Nlu and the vector multiplet scalar ¢g through

N/
e oS 2
=1

where M; is the background gauge field for the U(1)N' ¢ U(N’) flavor symmetry that acts
on xi, -+, xn’- The mass parameter M; of the fermion y; sets the energy scale for its
excitation. In this paper we will be interested in the partition function of this 5d SYM
coupled to the 1d line defects, as introduced above. For the case of N/ = 1, this was
first studied in [14, 15]. The fugacity variable e=*¢ counts the number of y; excitations.
Taking the series expansion in e i of the 5d/1d QFT partition function, the individual
coefficients correspond to Wilson loop operators in various representations [17, 20, 21], as
will be explained in section 2.3. In other words, the line defect partition function can be
viewed as a generating function of Wilson loops.

2.1 Review of ADHM quantum mechanics

The low energy dynamics of 5d SYM instantons can be approximated by the 1d N = (0, 4)
non-linear sigma model whose target space is the instanton moduli space [22]. However,
the target space has singularities at which the instanton size shrinks to zero. Since the
small instanton configurations are beyond the legitimate regime of 5d gauge theory, the UV
completion of 5d gauge theory prescribes how to resolve the singularities. In particular, the



Figure 1. The brane configuration describing 5d instantons in the presence of a 5d Wilson line
defect. See figure 2 for the quiver diagram depicting the D0-brane gauged quantum mechanics.
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Table 1. Brane configuration for 5d /' = 1* U(N) SYM with line defects.

UV completion based on D-brane engineering of the gauge theory motivates the ADHM
construction of instantons, realizing the SYM instantons as D0O-branes [23].

The dynamics of 5d SYM instantons in the presence of %—BPS line defect was described
in [17]. The insertion of the line defect does not change the static instanton configurations,
however, it induces a Lorentz force on slowly moving instantons. The ADHM quantum
mechanics of 5d instantons in the presence of fermionic line defects is given by the world-
volume gauge theory of DO-branes probing the D4-D4’ brane configuration (see figure 1).
The spacetime dimensions occupied by this D0-D4-D4’ system are as given in table 1,
where the Taub-NUT space is introduced along the z°,--- 2% directions to realize the
mass deformation of 5d N' = 1* SYM. The UV quantum mechanics corresponding to
an instanton configuration with charge k& has a U(k) gauge symmetry. It preserves the
SU(2)11 x SU(2)1r % SU(2)2r, x SU(2)2r global symmetry, where ' = (0,4) R-symmetry
group is SU(2)1r x SU(2)2r. The U(N) and U(N’) internal symmetries of D4- and D4’-
branes also appear as the flavor symmetries of the ADHM quantum mechanics.

Various (0, 4) multiplets arise from the massless excitations of open strings, contribut-
ing to the ADHM quantum mechanics of DO-branes. The D0-DO strings alone preserve
N = (8,8) supersymmetry and give rise to an (8,8) vector multiplet. One can decom-
pose the (8, 8) vector multiplet into the following (0, 4) supermultiplets: a vector multiplet
(Ao,go,Cg‘), a twisted hypermultiplet (044, x%), a hypermultiplet (aqq,A\2), and a Fermi
multiplet (A%). All of these transform in the adjoint representation of the U(k) gauge
symmetry. The D0-D4 strings provide a (0,4) hypermultiplet (g4, %) and a Fermi mul-
tiplet (¢*), which combine into a (4,4) hypermultiplet transforming in the bifundamental
representation of U(k) x U(N). The above multiplets form the field content of the ADHM
quantum mechanics for 5d N' = 1* SYM instantons without line defects. With addition of
the line defects associated to N’ D4’-branes, the massless modes of DO-D4’ strings further



Type Fields | U(k) U(N) U Type | Fields | U(k) U(N) U(N)
vector | Ao, p, ij? adj 1 1 twisted | @4, ¥y k 1 N/
twisted | ©gqa, Xg‘ adj 1 1 Fermi v, k 1 N’
hyper | aag, A | adj 1 1 (b) From the D0-D4’ string modes.
Fermi AS adj 1 1

hyper | gq, 9 K N 1 Type | Fields | U(k) U(N) U(N)
Fermi e Kk N 1 Fermi P 1 N N’

(a) From the DO-DO0 and D0-D4 string modes. (c) From the D4-D4’ string modes.

Table 2. N' = (0,4) multiplets in the ADHM quantum mechanics.

introduce a (0,4) twisted hypermultiplet (®4, Uy ) and a Fermi multiplet (¥,), transform-
ing in the bifundamental representation of U(k) x U(N’). Finally, the D4-D4’ strings also
induce non-trivial degrees of freedom to the ADHM quantum mechanics. These correspond

N)xU(N").
Although being a singlet of the U(k) gauge symmetry, it plays a crucial role in writing the

to a Fermi multiplet (p) transforming in the bifundamental representation of U(

SUSY invariant interaction. It is the coupling of this field to the rest, that induces the
Lorentz-force on slow moving instantons. The gauged quantum mechanics resulting from
the interaction of the above multiplets is shown in table 2 and figure 2.

The Lagrangian of this SUSY quantum mechanics was explicitly constructed in [17, 24]
(0,2) superfield formalism [25].
introduce the potentials E, and J, as holomorphic functions of (0,2) chiral multiplets in a
(0,4) enhancement. We decompose the (0,4) vector and (twisted)
hypermultiplets into the (0,2) multiplets as follows:

by employing N = For each Fermi multiplet 7, they

way that ensures N' =

vector (Ag, ¢, &) — vector V (Ag,cp,Cil) @ Fermi A (C21)
hyper (@aa, \a) — chiral B (a,i,A\}) @ chiral BT (a3, A\])
hyper (qq, v ) — chiral ¢ (qi,¢}2) @ chiral ch (qé,d}l)
&)
)

twisted hyper (®4,¥s) — chiral @ (&1, ¥;) @ chiral ®f (®g, U;)

twisted hyper (pq4,£0) — chiral ¢ (p11,€7) @ chiral ¢ (10, €1) .

All (0,4) Fermi multiplets are equivalent to (0,2) Fermi multiplets. Following [24], we turn
on Jp (Ep) as the following holomorphic functions of (0,2) chiral multiplets:

To meet N = (0,2) SUSY preserving condition, >, Tr(J, - Ej) = 0, we also introduce the
holomorphic potentials for other Fermi multiplets as follows:

szzqu), Ey,=B®, Jy,=®B, FEy,=—B®, Jy,=®B
¢l, Jo=—[B.@l, E,=®q, J,=—q%.

Jyr=—qp, Ey2=¢q,
]a E)ﬁ_[

Ewl :¢Q7
E)\}:[Bv(ﬁL J)\}:[B#P
(2.5)



Figure 2. The quiver describing the ADHM quantum mechanics that captures the effect of slow
moving 5d instantons in the presence of a Wilson line defect. Here solid black lines denote a
hypermultiplet, solid blue lines denote a twisted hyper-multiplet, while the dashed lines denote a
Fermi multiplet.

Combined with the standard D-term D = gqf — 7§ + ®®T — &® + [B, BY] — [Bf, B] +
(o, '] — [, @], the bosonic potential V = Zn(\EnIQ + |Jy|?) + 2D? can be arranged into

1 . . 1 . :\2 1 1 2
V= (0 04 0™ laas, 0] )+ (0 02a01 450" s, )
Looia 2,1 92,1 2,1 2
+§!‘I’ s +§!<PaAqd\ +§!aaa¢A\ +Z‘aad§0aA_<PaAaac'x‘ , (2.6)

where m and I are triplet indices for SU(2);1z and SU(2)ag, respectively and o™, o! are

the corresponding Pauli matrices.

Let us examine the classical moduli space of the ADHM quantum mechanics. The
Higgs branch is parameterized by VEVs of the SU(2)1r doublet fields, g5 and aqq, subject
to the following ADHM constraint:

(™) sq0q" + %(am)d 5laaar @] =0, (2.7)
All ® 4 and 44 fluctuations become massive, except at small instanton singularities where
the VEV (gq4) is zero. This shows that the Higgs branch corresponds to the U(N) instanton
moduli space. Likewise, the twisted Higgs branch is spanned by VEVs of the SU(2)ar
doublet fields, ® 4 and ¢, 4, which are subject to the following constraint having the same
functional form as (2.7):

1
(cD)Ap® 40P + §(UI)AB[<PaA, ¢*P] = 0. (2.8)

Moving away from singularities ($4) = 0, the development of the g5 and aqs moduli
is also suppressed. So the twisted Higgs branch is the U(N’) instanton moduli space
with exchange of SO(4); <» SO(4)2. Finally, the mixed branch emerges when (gs) = 0
and (®4) = 0, being parameterized by aqs and pg4. This corresponds to freely moving
DO-branes, unbound to any of background D4- or D4’-branes. We remark that only the



Higgs branch is relevant from the 5d SYM perspective. Other branches emerge due to the
extra degrees of freedom introduced for the UV completion of 5d SYM instantons. Their
effects on the Witten index must be properly taken into account, to obtain the correct 5d
SYM observables via the ADHM quantum mechanics. We discuss this issue in detail in
section 2.3.

2.2 ADHM index with line operators

We consider the BPS partition function of the 5d/1d coupled system on Omega-deformed
R* x S, which is given by the following trace formula:

Zsara = Tragy, | (—1)F e PH b2 =Tmy 201,271 Hw Hxll : (2.9)

It counts the BPS states in 5d N = 1* SYM, annihilated by the supercharges QH
and Q22 satisfying H ~ {Qli,Q22}. Here, Ji, J;,Jy, Jr are the Cartan generators for
SU(2)11,SU(2)1r,SU(2)2r, SU(2)2r global symmetries respectively. G, and @; denote the
respective Cartan generators for 5d U(N) gauge and U(N’) flavor symmetry. k& is the
topological U(1) charge for 5d SYM instantons which is conjugate to the instanton fugac-
ity q = exp( 872 /g2;). For all combinations of the Cartan generators commuting with
QH and Q22 the conjugate fugacity variables are introduced as follows:

t=e u=-e -, u=em z =e M, W = € e, (2.10)

— €1te2
- 2

introduce the Omega-deformation of the spatial R* in the 5d

and e_ =

€1—€2
€4 3

gauge theory. m is the mass of the N/ = 1 adjoint hypermultiplet in the A/ = 2 vector
multiplet, realizing the mass deformation of N' = 1* SYM. «, parametrizes the VEV of
the N' = 1 vector multiplet scalar, i.e., (¢9) = diag(a1, a2, - ,an), that breaks U(N) into
U(1)N. These chemical potentials deform the 5d/1d coupled system by acting as infrared
regulators which generate a mass gap for the instanton zero modes [26, 27]. M is the mass
parameter for the 1d defect fermion, breaking the U(N') flavor symmetry into its maximal
torus.

The partition function in (2.9) represents the grand canonical ensemble of all multi-
instanton BPS states. One can write the full partition function as the sum over all instanton
sectors, multiplied by the perturbative partition function Z,e that captures the bound
states of W-bosons. It implies that we have to sum over the full tower of DO-branes, thereby
giving us

N N’
ZADHM—Z CZND with 2N =T | (<1)Fe PRIy 20 TT G TTaf |

iy
(2.11)

where the trace is taken over all the BPS states in the ADHM quantum mechanics of k

DO0-branes. The corresponding Witten index Z,E:N’N/)

of [28-30).

can be computed by using the results



Let us evaluate the gauge theory path integral in the weak coupling regime g; — 0 of
the UV quantum mechanics, reducing it down to Gaussian integrals around saddle points.
The saddle points are parameterized by the complexified holonomy ¢ = i3Ay + Sy, made
of the gauge field Ap and the scalar ¢ in the vector multiplet. We denote the eigenvalues
of ¢ by ¢1, -+, ¢, each of which takes value on a cylinder of radius % Performing the
Gaussian integrals over massive fluctuations we remain with the zero mode integration of

the resulting 1-loop determinant:

k
vy 1 do;
2y Tk j{ L]:[l 271

where (by using sh(z) = 2sinh(z/2))

Vec(d)? Q, €1 2) ]jdj (¢7 Q, 1, 61,2) H Zkl;d((ﬁ7 o, Ml7 6172)7 (212)
-

sh(2e + ¢ij) 1o 1o

C + ij

(¢, a,€1,2) sh(¢; :

g i Z}_:[ Sh<€+2|:€ +¢Z] leIlali[lSh z_aa))
4,j=1
k

- h(m + e_
229, aym,er0) = [ lmE e+ ) HHShmi  — aa)), (2.13)

1Sh( €+:l:m+¢z]

1,j= i=1a=1

k N
1d _ 11 shle— (¢ — M)
21 (¢, a, My €12) = ]_;[1 Sh(—cs £ (61— M) (I[lsh(aa —

The zero mode integration translates into a contour integral over the space of ¢ eigen-

values. The proper choice of the integral contour is done by the Jeffrey-Kirwan residue
operation [28-30]. It refers to an auxiliary k-dimensional vector 7, although the final residue
sum becomes independent of 7. We choose n = (1,--- ,1) to find an explicit expression of
the residues.

For the special case of N/ = 0, the Jeffrey-Kirwan residues are labeled by N-tuples
of Young tableaux (Y7, --,Yy) such that Zivzl |Ya| = k [26-28]. We uniquely assign the
numbers 1,2,--- | k to each of the boxes. Suppose the i’th box is at the m’th row and n’th
column of Y,. This represents the following pole location for an integral variable ¢;:

di =g — €4 —(n—1)eg — (m — 1)es. (2.14)

The sum over all the Jeffrey-Kirwan residues can be written as [31, 32]

Z(N0) _ sh(Eap(s + m — ey )sh(Eg(s) —m —ey) .15)
' = |ZY:| kall;[l g Eqp(s)) sh(Eap(s) — 2e4)

where Eg(s) = ag —ap—€1 ha(s)+e2 (vp(s)+1). vp(s) is the vertical distance from s to the
bottom of Y. he(s) denotes the horizontal distance from s to the right end of Y. (2.15)
is the k-instanton correction to the partition function of 5d N' = 1* U(N) SYM without
defects.

Similarly, for another special case of N = 0, the Jeffrey-Kirwan residues are classified by
N'-tuples of Young tableaux (Y1,---,Yns) with Zflvzll |Ya| = k [26-28]. The pole location



and residue sum are identical to (2.14) and (2.15), except for the role reversal specified by
U(N) <> U(N’) and SO(4); <> SO(4)2, i.e.,

(N, {aa},er,6—,m) < (N, {M;}, —e;,m,e_). (2.16)

At this point we also note that in the N = 0 limit, we would have expected the ADHM
quantum mechanics to become trivial, i.e. Z5q/14 = 1. However it turns out that this is
not the case for the partition function, Z/(XDJI\IH\)/I? in the current set-up. This is because
when N = 0, Zlio ) captures the bound states of k& DO-branes with the N/ D4’-branes.
In general, the multi-particle index of the ADHM quantum mechanics captures not only
the BPS states of the 5d/1d coupled system, but also the extra bound states of DO-branes
decoupled from the QFT dynamics on D4-branes. In order to identify the correct QFT
observable in section 2.3, we need to remove the extra BPS states that arise as a result of
the UV completion of the non-linear sigma model onto the instanton moduli space.

We now turn to the general case of N, N’ # 0. All the non-vanishing Jeffrey-Kirwan
residues are classified by (N + N’)-tuples of Young tableaux ¥ = (Y1, ,Yn | Vg1, -,
Ynin) satisfying ZN+N |Ya| = k. We label all the k£ boxes by the uniquely assigned
integers 1,---, k. Suppose the 7’th and j’th boxes are located at the m’th row and n’th
column of Y,<xn and Yjs n, respectively. These boxes encode the following information on
the pole locations for integral variables ¢; and ¢;:

hi = Qq — €4 — (TL — 1)61 — (m — 1)62, ¢j =M +ep — (n - 1)63 — (m — 1)64, (2.17)

with e3 = —e; +m and €4 = —e; —m. No poles can be further developed at other locations,
such as oy — €4 — (n—1)e; —(m —1)eg —ez g or Mj+e4 — (n—1)eg — (m —1)es — €12 due
to the suppressing factors

k
H Hsh (m = ( Hsh +e_ + Ml))HSh(mi€—+¢ij)
=1

i=1 \a=1

in the numerator of (2.12). The JK residue sum can be written as the following expression:

(NN sh(E, +m €1)sh(Egp(s)—m—ey) sh(+e_£(¢(s)—M,))
2 =2 HH( Eu () sh(Earls) &> Hh (6(s)—1: m)

v | ab=1seY, +)

sh(Fpq(s)+e—+eq) sh(Fpq(s)—e—+e€4) N sh(m=(p(s)—ayg)
XH 11 < ()):h(F (8)+2€4) ) HSh(E+i(¢g ")) )XHHSh aq—Mp)

p.g=1s€Y, N

A sh(E(d(s1)—d(s2))) sh(2eq£(d(51) ~d(s2))) sh(mte_E(¢(s1)—(s2)))
: HH HY sh(ete_+(6(s1)—(s2))) sh(—eq £mE(d(s1)—6(s2))) ’
$2€Yp N

(2.18)

where Fp(s) = My, — My — e3 hy(s) + €4 (vy(s) +1). ¢(s) denotes the pole location (2.17)
for the box s. We remark that the contribution from the k& = 0 sector is not 1 but rather
Hflvzl Hé\ll sh(aq — M), which captures the fermionic excitation of the D4-D4’ strings.



Before we conclude the section, let us mention that the partition function ZX]\;’I]{V& of

the DO-D4-D4’ system can also be interpreted as the N’-th qq-character DCI]{,(,N) of the
five-dimensional N' = 1* U(N) theory introduced in [14] (as already noticed in [15] for the
N’ =1 case):

Z8Gn = XN (M, M), (2.19)
where we made the dependence on the M; parameters explicit as customary when dealing
with qg-characters. Of particular importance is the N’ = 1 (aka fundamental) qq-character
DCE(N) (M), which can be used to derive Dyson-Schwinger equations for the five-dimensional
theory, while the role of N’ > 1 (aka higher) qq-characters is less understood: our analysis
in section 2.3 will hopefully clarify their meaning a little, by showing that all qq-characters
can be interpreted in terms of Wilson loops in arbitrary representations. An important
property of the qg-characters is that they can be written as rational functions of another
set of observables for the 5d N/ = 1* U(N) theory known as Y-observables: these can be
thought as the instanton-corrected vacuum expectation values of Y(M;) ~ det(eM — e?),
with ¢ being the combination of the real vector multiplet scalar and the time component
of the gauge field. From the ADHM quantum mechanics point of view, the correlator of n
such observables (or their inverse) at positions x; can be computed as [15]

n .
2oz [Z90]" 5=+ (220)
j=1

noo 1 ko des
[Ty (@)= quk;j{ [Hl Qi)i

j=1 k>0 i=

where in the integrand we have the functions defined in (2.13) (although we suppressed the
dependence on ag, €1, m for brevity). The contour integral is again evaluated by summing
over residues at those poles which are labeled by N-tuples of the Young tableaux (2.14):
this pole prescription then distinguishes the 1-point correlator Y(M;) from the fundamental
qq-character DC}J(N) (M), which is defined by the same contour integral formula but receives
contributions from a larger set of poles (2.17). In more detail, in terms of Y-observables
the fundamental qq-character reads [14]

) = Y(M) D g TT S ((m = ) (hls) +1) + (m+ e4)v(s))
A SEX

H YMy —m—er+0(s)Y(My +m —ex +0(s))
Y(My +0(s))d(M; — 2€4 4 0(s))

Y(Mr—m —e)Y(M1+m —ey) Lo
Y(My — 2¢4) o

(2.21)
SEX

= Y(M1) +qS(m —€y)

here A is a Young tableau with any number of boxes, h(s) and v(s) are the distances
from the position (i,7) of the box s € A to the right and bottom ends of the tableau A
respectively, and

(2.22)
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Higher qg-characters can be expressed as rational functions of Y-observables in a simi-
lar way:

XYM (M, ... Myr) =

Nl
N’ Y(Mp—m—ei+0(s))Y(Mp+m—es+o(s))
13 >p=1 Ap] S p p ,
H Zq plz;[l 316—)\[p pq ES];\[? g(]\41’_‘_0(5))13(2\413_264-“‘0(5))
(2.23)
with X = (A,...,An7) being an N’-tuple of Young tableaux and
Fog(s) = My — My + (m — ) (hy(s) +1) + (m + e )ug(s). (2.24)

2.3 The Wilson loop observable

Recall that the multi-particle partition function ZgD ) of DO-branes not only captures the

BPS states in the 5d/1d coupled system, but also receives extra contribution depending on
the UV completion of the QFT. Since the ADHM prescription is equivalent to the string
theory embedding of the 5d/1d QFT, i.e., the DO-D4-D4’ brane system, we expect the
extra contribution is associated to the bound states of D0O- and D4’-branes. This is obvious
for the simple case of N = 0, where we get (2.15) after (2.16). Now we consider Zapnwm
for a general case and construct the QFT observable out of it.

The multi-particle partition function Zgl\;ém starts with Hflv L /1 sh(a, — Ml) as the
¢° correction. Tmposing the SU(N) and SU(N”) traceless conditions S-N_ ay = SN M; =
0, it decomposes into the following sum over some irreducible representations (R, R’) of
SU(N) x SU(N'):

N N’

NN) HHsh Z NRR’ - XR )( )Xig( /)(Ml) (2‘25)

a=1]=1 (R,R/)

where xﬁ denotes the character of the Lie group G in the representation R. Also, nr R’
is an integer counting the degeneracy of the representations. This is also the 5d/1d QFT
partition function in (2.9) at zero instanton order, as the issue of extra bound states does
not exist. Henceforth, unless explicitly mentioned, we will always impose the SU(N) and
SU(N') traceless conditions 25:1 g = ZlNzll M; =0.

At higher ¢, we expect that, just like the right most expression in (2.25), each summand
in Zlg]]\glj{vi/} will correspond to a product of individual Wilson loops in appropriate representa-
tions of SU(N) and SU(N’). The only difference will be that the SU(N), SU(N’) characters
X%U(N) (), Xig(N/)(Ml) will now incur instanton corrections to become WU(N) W)
respectively:!

ADHM = Z NRR' N) W™, (2.26)
(R,R')

!The reason to switch from SU(N) in the superscript of X%U(N) to U(N) in the superscript of WU(N)
is because even after imposing the SU(IV) traceless condition by hand, the g corrected version of XSU(N)

contains a U(1) factor (given explicitly in (2.27)) which needs to be appropriately handled.
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We believe that WE(N) captures corrections from the D0-D4 bound states while the ¢
corrections in WU/(N/) come from the DO-D4’ bound states. This is motivated from the
moduli space analysis of section 2.1, where we show that, in the IR, the Higgs branch and
the twisted Higgs branch form individual quantum systems decoupled from each other.

The QFT observable WE(N) is the Wilson line of 5d U(N) SYM engineered from N
D4-branes, where the effect of the overall U(1) is just to include the U(1) instanton partition
function [33-35]:

tu—u+ptp) ¢

U(l) —
WoT=PE (1—tu)(1—tu"t) 1-—g¢q

(2.27)

Similarly, Wfli,(N/) can be interpreted as the Wilson line of 5d SU(N ") SYM engineered from
N’ D4'-branes, multiplied by the U(1) factor WV = WU, wuesy for the D4’-branes.

If N = N’ and R = R/, the observables Wy YY) and Wh/ V) have the same functional form
up to the fugacity exchange (2.16). Once we have decomposed Z&Dgl\/} according to (2.26),
the 5d/1d QFT partition function (2.9) can be obtained by suppressing the ¢ correction in

WPI{,(N/) as follows:

Zsa/1d = Z NRR’ WE{(N) : (Wg,
(R,R/)

) 3 nrr WY Am ™. (2.28)
q—0
(R,R')

Let us specialize to the particular case of N’ = 1 which was first studied in [15]. It
is convenient to keep the U(1) flavor fugacity alive, such that x; # 1. The multi-particle
index Z&JI\S’;I)M is the generating function of the minuscule Wilson lines with the overall
dressing factor WU je.,

N
N, —N/2 i
Z/&DE)M:(—UN% / Z(—fﬁl) W/\z( C (2.29)
i=0

where the subscript A" denotes the rank-n antisymmetric representation. We identified
all the SU(N) Wilson loops with N < 4 up to 2 instanton corrections. However, for
the sake of brevity, we will only display results up to ¢' order. Furthermore, we will
normalize the observable by the partition function of U(N) SYM which we denote by
WP (V) Al results are expressed in terms of the irreducible characters XlR, Xﬂa XR X%U(N)

of the SU(2)1z,SU(2)2,SU(2), C SU(2)1r x SU(2)2r, SU(N) symmetries.

Wy®  sue P 0dx) su@ o
. - o 2.30
wue X (1-t2wi?) o .

Wi sue 0d-xb)0d- Xz)( SU(3) SU@) . f SU@3)
—_— —0- + 2 T’+2 T*l S
W}J(B) X3 q H#](l 2, w; 1) (2—x3)x1s  —(xax2+2x3 )X

+oda gt @) +0(e?) (2:31)

2The Plethystic exponential is defined as PE[f(q,t,u,p,wq,x1)] = exp(zzo 1 f@m ,u",wZ,x?)).
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Wi s 204 —xb) (- x£)< Su()

SU(4) SU(4) _ . SU(4)
= +(2—
A | I e

X540 T(—2X5+X5T4) X360 —X5X280'

4 4 SU(4
X2X2 2X3+1)X22( )+( XzXz 3X3+X5+2)X16( )+(X2X4 2X3+2X5+3)X14(§/)

( f
SU(4 SU(4
(—XE X 2X X e XA X X5 —DXE+3XE—Xo+T)X 100+ (XX o+ X5 +2) X a5
4 SU(4
(XX X5HXE=X5+3) X g+ (= 2xE X b= X X5 —2XE X5 —5X5+HXE—2X5+5) Xag
(=

+

f / far o f

4
(XXX X XE XXX E XS —AXE T 3XE T XE+5)Xag (= 2XEXE —XE XA XEX4

SU(4
X XE 2 X6 3XE X5 —2X5+2) X0+ (XXX B XA+ 2X X5 X —2x 5+

4
FXEH6)X30 4 (—2Xh X5 X X5 XA XA —XEXE—3XEXE—XEXE—XExE—XExh—XdXio

—aG =524 —x 1+ ) +0(¢) (2.32)

12 (x4 —x5) (X3 —x3) /_suw S SU®4 . . SU®4
222 o2 (Xgetg )+(2_X3)(X63(g )+X63(§ )) (X5_3X3+4)X384§)

Xe (4)+q
—1
WE(4) Hz;ﬁ](]‘ th w_] )
. B su . SU(4) |, _SU(4 v or
FOd—BXE 2 Xa+4XE+10) 500 — (x5 +2x5—1) (Xars )+ Xame )+ (g Xa+X5+2)

SU(4 r r r r r r 4 SU((4
X (X407 X e ) = (BB X XE+HTXE—2X5 X X6 +xr—6) (X126 +Xi5e )+ (xd

(4)

+XSU(4))

— X5 x5 —BXEH2XE A+ 252X Xe—2x5+T) (70 +H(—2x5 g+ 24— xs
—12X5 4 X aHOxE g NG —3XFH2X XETXB+15)Xeg  + (XX TXEXEHE+2xENG
X5 XETAE X Xm0 (X XE X XE —XEXE X5 XD XaTBXE+ XX
+2X5 43X XE+2x5+5) (x50 P +x Gy V)~ (5X5HAEHEXG+2xh+HE (XaXEHxp+xE—1)
+2x3 (X5 +3X6+XE+X50) +X31—5)X SU(4))+(9(q2)~ (2.33)

The Wilson loops for all the other minuscule representations can be found from the above
ones, by using the rule W}\J(N) WUJ(VJY)T, (w; — w; '), i.e. by conjugating the U(1)V electric
charges. Upon suppressing the ¢ correction for the bulk factor wY) in (2.29), one can

finally obtain the 5d/1d QFT partition functions as follows.

2,1 _ U2 U2 3,1 3/2 —3/2v1,U(3) | —1/2,,U(3) 1/2,,U(3
Z5(d/1)d (21427 1)W ( )*x(l)wz( ) Z5(d/1)d = (371/ —I / )Wl( )+5E1 / Wg( )*551/ W3( )a
A G e e L e (2.34)

Multiple D4’-branes are needed for Wilson loops in more general representations. For

U@2)

example, the U(2) symmetric Wilson loop Wy appears in the case of N = N’ = 2, for

which we expect
732 = =2y @AWY L@ I LIy L oI @ LIyl (g 35)

U(2)

Substituting the previously evaluated W, and its bulk analogue, the combination
W:E (Q)Wf @) +VV;J @ W;J ) can be found. The two summands in this combination can be

~13 -



disentangled from each other by using the following observations which will also be useful
for similar issues that will arise with generic N and N’:3

e The k-instanton correction of the Wilson lines takes the form of [36-38]:

SU(N
Sy crlerzm) i (@)
Hﬁ:l sh(nep) sh(nez) - Hzrféko azp Sh(n€L +mer + ag — ap)

WRM | s = (2.36)

where r runs over all SU(V) irreducible representations that appear in R ®adj/ Nk,

The positive integer (N, k) can be determined by inspecting the k-instanton partition

function W}I ) | gk

° WE(N) and Wg,(N/) with N = N’ and R = R’ must have the same functional form

up to the fugacity exchange (2.16).

e The series expansion of the normalized Wilson line WE(N)/ WP (N)] 4+ in the SU(N)
simple roots {n; = w;/w;y1|1 < i < N — 1} starts with the ‘leading’ states having
the following form:

N-1
H néi with (l17127 e 7lel) = ()\17 >\27 o 7AN71) + (Bl?ﬂ?? Tt 7/8N71) S R
i=1
(2.37)
where (A1, Ao, -+ ,An_1) is the lowest weight of the representation R in a-basis,

(81, B2, -+, Bn—1) can be any SU(N) positive (not just simple) root. The coefficients
of these leading states carry SU(2), C SU(2)1r x SU(2)2r spin, which is bounded as
27 < k. More generally, the coefficients of the ‘subleading’ states, having the form of
Hf\; El nﬁi . nf and not overlapping with the set of ‘leading’ states (2.37), are subject
to the following SU(2), spin bound condition:

2j, < k+ (k+ 1)L. (2.38)

We utilized the above observations and computed the Wilson loop expectation value Wg @

up to 2 instanton corrections. For brevity, we explicitly show Wg @ / W}I @ only up to the

1-instanton order:

U(2)
W
3 _ XgU(Q) 1q

.tQ'(ijchz)_< SUG)(_\f i
W}J(Q)

0 s (et Xe+x5) — XExXxe — X+ Xk + X5 ) + O(d).

(2.39)

3These observations are based on the SU(2), SU(3), SU(4) minuscule Wilson loops with 2 instanton
corrections.
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The same procedure can be repeated for (N, N') = (2,3) and (N, N’) = (3,2), for which

we have
282, = WY L WU | g U0 AU Uy g UE) Ue)
+ W@ e IOy W) O W, (2.40)
ZE3 = WIS WUE) L U6 g V) ) U6 4 i) | 060y
+ Wy P oy & L Wl _wOw e, (2.41)

Similarly we found the Wilson lines WU(Q) We ue) W,( ) = (Wg (3)>*, Wg ®) up to 1

instanton order.

U(2
Wy IO (xd—xb) (in<2)(x§+x§+x£)

wy® e (1-t2wi?)

+X§U<2)(—2x2+x§xlzx£—x§x£—2x§x§+x§xé—x£+x§))+0(q2) (2.42)
wg® u(3) - (3 —x5) u(s) . SU(3)

= +q- ( + + —2 +xh+
Wi =X [T, (1w, ) (Xa X5 —x3)Xae  + (g X5 —2X5 —Xa X5 +Xa+X5—Xa)Xay

+(xz—X2xdxa— x2+><2)xﬁ/(3>+(xz><2><4 xaxdxatxdxa+t2xdxa+xdxa—5xg —2x2xs

+H3X5H2X5—3Xa)Xan (= xeXEXE XS XE XA X XaXE+H2XEXE—XExa— xS X xE+3X%

+3Xa—Xa+txe)Xe H(—XaXztxEXaXa XXX Txd Xt 2xdxaHxdxa—xExa—4xd
SU(3)

~2G X542+ 2% -2 ) +0(d) (2.43)

W@ SU@) | t°-(xt—x2)
- A8 —
wy® [T, (1—tPwiw;

2 —Txd+2xe—2xa) ey @

5 (e 06 g ™)

3 SU(3 d r r
H(AXE—XEXEXE I XE XS XE— 4 —xaXETXE) (e D +xae )+ (2xdXaxa—xa XS XE

) SU(3) l

FXEX2HEXEXE—3XEXNEFXEXE—2XEXa— 12X —2xa X5 +3X2+3X5—6Xa —Xa2X5X5

— XX X6 —XEXaXE—XE X XbHAXEXET2XE X5 +2XEXF H XA Xa XA X6 —3XE HXa X5+ XaXE+2X5
+3X5H2X5+H5X6+2x8 ) +O(7) (2.44)

These results can be combined into the line defect partition function for U(2) and U(3)
gauge theories.

Finally, the complete 5d BPS spectrum with a line defect can be obtained by multi-
plying the 5d/1d partition function of (2.28) with the perturbative W-bosons’ partition
function Zpers. This perturbative piece can be computed using the equivariant index the-
orem [39] or equivalently by counting the BPS letter operators, and is given as

h(M Te ) SU(N) + t(u + /L_l —1— t_l) SU(N) +
ZUW) _ pp |2 ) . 1) | =PE : ( 1) |.
pert sh(ey £e) (™ +1) (1= ta)(1 = tu 1) (e +1)

(2.45)

The superscript ‘+’ means those non-BPS states corresponding to non-positive roots are
all discarded.
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D4’

Figure 3. The brane configuration describing codimension-4 Wilson surfaces in 6d (2,0) theories.

01 2 3 4 5 6 7 8 9
NNS5 |e¢ © e o o o

N D4 | o o e o o
1 D6 e o o o o o .
D2 o o °

Table 3. Brane configuration for 6d N = (2,0) SCFTs with Wilson surface defects.

3 Wilson surfaces in 6d N' = (2,0) SCFTs

3.1 Gauge theories on self-dual strings

In order to engineer Wilson surfaces in 6d (2,0) theories, we start from the D0-D4-D4’
brane configuration (table 1) that engineers the 5d N' = 1* U(N) gauge theory with
the %—BPS line defects and T-dualize along the 2° direction, then take S-duality followed
by another T-duality along z°. The dual system is given by a type IIA configuration
composed of NS5-D6-D4’-D2 branes (see table 3 as well as figure 3). The brane system
preserves the SO(1,1)p1 X SO(4)2345 X SO(3)g7s symmetry. It is often convenient to write
SO(4)9345 ~ SU(2)11, x SU(2)1r and SO(3)e7s =~ SU(2)2r. We denote the doublet indices
of SU(2)1r, SU(2)1r, SU(2)2r by «, &, A, respectively. The 32 supercharges of ITA string
theory can be written as Q¥4 and Q¢4, where the first/second subscripts are eigenvalues
of T%' and I'?. The independent SUSY projectors imposed by NS5-, D6-, D2-branes are
Ot 12345 19 The presence of D4’-branes does not yield an additional SUSY projector.
The surviving supercharges are Q%4 , satisfying 2d A = (0,4) supersymmetry algebra.

The parallel stack of N NS5-branes engineers 6d A" = (2,0) SCFT of Ay_1 type. We
separate the NS5-branes from one another along the z? direction. The distances between
adjacent NSh-branes are parametrized by the VEV of the tensor multiplet scalar ®g. It
spans the tensor branch of (2,0) SCFT where the conformal symmetry is spontaneously
broken. The D6-brane in table 3 is obtained from dualizing the Taub-NUT space of table 1.
The BPS strings of 6d SCFTs are electric/magnetic sources of the tensor multiplets. They
are realized by D2-branes suspended between an adjacent pair of NS5-branes. In the tensor
branch, they acquire a non-zero tension which is proportional to the VEV (®g) # 0. The
worldvolume gauge theory of D2-branes [18, 19] turns out to be useful for studying the
protected quantities of 6d BPS strings, such as the chiral anomaly, central charge and the
elliptic genus.

The D4’-branes of table 3 are obtained from the D4’-branes of table 1. These are

2

located at the origin 2 = --- = 2° = 0 of the R? plane. The fundamental string stretched
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between the D4-D4’ system of section 2 now becomes a D2-brane stretched between the
D4’ branes and the NS5 branes. From the point of view of the world-volume theory of
NS5 branes, this corresponds to the creation of heavy probe strings whose presence leads
to the Wilson surfaces in the 6d (2,0) theory. The representation carried by these Wilson
surfaces can be understood in the following way: to begin with note that there can at most
be a single D2-brane stretched between an NS5-brane and a D4’-brane. This is because
such a D2-brane is fermionic in nature and therefore this system is governed by the S-rule
of Hanany and Witten [40]. Now, a single D2-brane ending on the stack of NS5-branes
creates a Wilson surface in the fundamental representation. When there are m D2-branes
stretched from a single D4’-brane to the stack of NS5 branes, the fermionic nature of D2-
branes implies that the Wilson surface is in the rank-m anti-symmetric representation. As
a consequence of S-rule, m is constrained to be m < N.

The above description can now be used to obtain the 2d quivers describing the effect of
Wilson-surface insertion into the elliptic genera of 6d self-dual strings. Once again, let us
begin by describing the fundamental Wilson surface. It will be convenient to label the NS5
branes from 1 to N with the order of numbering being from left to right. We then introduce
a single D4’-brane to the right of this stack and stretch a D2-brane connecting the N-th
NS5-brane and the D4’-brane. Let us also suspend k; D2-branes between i’th and (i+1)’th
NS5-branes. We show this brane configuration in figure 4a. The 2d quiver obtained from
this configuration is expected to engineer the insertion of fundamental Wilson surface into
the elliptic genera. As we will momentarily explain, this is a Hf\;_ll U(k;) quiver gauge
theory. In the absence of the D4’-brane, this quiver was first described in [18, 19]. The
extra matter introduced into the quiver as a result of including the D4’-branes can be seen
by first using Hanany-Witten transition to go to the frame where the D4’-brane lies between
the (N — 1)’th and the N’th NS5-brane (see figure 4b). The D2-brane suspended between
the D4’-brane and NS5-brane is annihilated in the process. Open strings stretched between
the D4’-brane and the stack of ky_1; D2-branes (suspended between the (N — 1)’th and
N’th NS5 branes) will now give rise to a U(ky_1)-fundamental (0,4) twisted hyper and
a U(ky_1)-fundamental Fermi multiplet transforming as a SU(2)1, doublet. Additionally,
there are gauge singlet Fermi multiplets coming from the excitations of the open string
stretched between the D4’-brane and the D6-brane. The resulting quiver is shown in
figure 4c.

Similarly, we can engineer the Wilson surface in the rank-m anti-symmetric irreducible
representation by starting with a D4’-brane lying to the right of the NS5-brane stack and
stretching m D2-branes from the D4’ to the NS5-brane stack such that the 7’th D2-brane
ends on the (N +1 —1¢)’th NS5 brane, for all 1 <14 < m. This set-up can be dualised by the
Hanany-Witten transition, to a frame where the D4’-brane lies between the (N —m)’th and
(N +1—m)’th NS5-brane with no D2-branes suspended between the D4" and NS5-branes.
Open strings stretched between the D4" and the kxy_,, D2-branes (suspended between the
(N —m)’th and (N +1 —m)’th NS5 branes) will then give rise to a U(ky_,)-fundamental
twisted hyper and a U(ky_,,)-fundamental Fermi multiplet in SU(2);; doublet. Also,
the open strings stretched between the D4’-brane and the D6-brane give rise to a Fermi
multiplet transforming as the bifundamental of U(1) y_p, x U(1), where the U(1) x_,, factor
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1 D4
.

k, D2 k, D2 k,, D2

(a) The brane configuration engineering the fundamental Wilson surface of the 6d (2,0) theory of
type Anx_1. The vertical lines in the picture denote NS5-branes.

1 D4’

k, D2 k, D2 k., D2

(b) The brane configuration obtained from application of Hanany-Witten transition to the set-up
of figure 4a. The vertical lines in the picture denote NS5-branes.

]

(c) The 2d (0,4) quiver gauge theory obtained from the brane configuration of figure 4b. Here
solid black lines denote a hypermultiplet, solid blue lines denote a twisted hyper-multiplet, while
the dashed lines denote a Fermi multiplet.

Figure 4. The brane configuration and 2d theory describing the fundamental Wilson surface defect.
Table 3 also has a D6-brane which has not been shown here.

comes from the U(1) symmetry associated to the D6 brane segment between the (N —m)’th
and the (N + 1 — m)’th NS5-brane and the other U(1) factor comes from the symmetry
associated to the D4’-brane. The inclusion of these fields in the 2d quiver will therefore
capture the effect of a rank-m antisymmetric Wilson surface. We show the relevant brane
configuration and 2d quiver for the case of a rank-2 antisymmetric Wilson surface in figure 5.

In the general case of N’ > 1, we can consider brane configurations with n; D4’-branes
between the 'th and the (i + 1)’th NS5 brane, such that S>N7'n; = N’ (see figure 6a);
from the above discussion it is clear that such configuration will correspond to inserting
a Wilson surface in the representation R = ®£\L Il (/\N_i)m. The resulting 2d quiver is
shown in figure 6b.

Let us now give a more detailed description of the 2d gauge theories obtained from
the world-volume of D2-branes suspended between NS5-branes along with the insertion
of D4’-branes. We consider a stack of k; D2-branes and n; D4’-branes, located in the z°
interval between ¢’th and (i+1)’th NS5-branes, foralli =1, --- , N—1. We draw the given
configuration in figure 6a. The chain of (ki, ke, - ,kny_1) D2-branes engineers a 2d linear
quiver theory with Hf;l U(k;) gauge symmetry. It inherits SU(2)1z x SU(2)1r X SU(2)2r
global symmetry of the brane system, where SU(2)1z x SU(2)2p is the R-symmetry of 2d
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1 D4
®

k, D2 k,, D2 k., D2

(a) The brane configuration engineering the rank-2 antisymmetric Wilson surface of the 6d (2,0)
theory of type Ay_1. The vertical lines in the picture denote NS5-branes.

%1D4’

k, D2 k,, D2 k., D2

(b) The brane configuration obtained from application of Hanany-Witten transition to the set-up
of figure 5a. The vertical lines in the picture denote NS5-branes.

(c) The 2d (0,4) quiver gauge theory obtained from the brane configuration of figure 5b. Here
solid black lines denote a hypermultiplet, solid blue lines denote a twisted hyper-multiplet, while
the dashed lines denote a Fermi multiplet.

Figure 5. The brane configuration and 2d theory describing the rank-2 antisymmetric Wilson
surface defect. Table 3 also has a D6-brane which has not been shown here.

N = (0,4) supersymmetry. At a classical level, it also captures [[;" U(n;) x H;V:o U(1);
flavor symmetry of (n1,ng, -+ ,ny_1) D4-branes and chain of (N + 1) D6-brane segments.
Massless excitations coming from open strings ending on D2-branes induce the field content
of table 4, in which the U(1); charge of an individual field is denoted by Q;. Only a subset
of global U(1)’s will be consistent at a quantum level, yielding no mixed anomaly with
gauge symmetry. If one uses T;, F;, G; to denote the Abelian generators of U(1) C U(k;),
U(n;), U(1),, respectively, then all the non-vanishing mixed anomalies between gauge and
global symmetries are

Tr(v3 T;Gi—1) = =1, Tr(ysT:Gy) =2, Tr(ysTiGiy1) = —1 forall 1<i<N-—1.
(3.1)

This implies that only two U(1)’s, out of ij:o U(1); global symmetry, will remain at a
quantum level. These two U(1)’s are the ones generated by Zj’vzo G; and Z;V:o (7 —1)G;j.
We also notice that the sum of all U(1) generators Zévzo G+ Zf\i_ll(Tz + F;) trivially acts
on the fields, therefore Ej-v:() Gj~— sz\i (T + F) effectively.

One can easily construct the Lagrangian of the quiver gauge theory. We will use the
N = (0,2) SUSY formalism [41] and write the holomorphic potentials E, and .J,, for each
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I % n, D4’ I % n, D4’ I n,., D4’

k, D2 k, D2 k., D2

N-1

N\ Mg
(a) The brane configuration for the Wilson surface in the representation R = @~ (/\N_Z) .

The vertical lines in the picture denote NS5-branes.

(b) The 2d (0,4) quiver gauge theory obtained from the brane configuration of figure 6a. Here
solid black lines denote a hypermultiplet, solid blue lines denote a twisted hyper-multiplet, while
the dashed lines denote a Fermi multiplet.

Figure 6. The brane conﬁguratlon and 2d theory describing a Wilson surface defect in the repre-
sentation R = ®Z (/\N Z) ", Table 3 also has a D6-brane which has not been shown here.

(0,2) Fermi multiplet 7, in a way which ensures the N' = (0,4) SUSY enhancement [24].
First, we decompose the (0,4) vector and (twisted) hypermultiplets into the (0,2) chiral
and Fermi multiplets as follows:

— vector VI (A L C(Z ) @ Fermi A (g‘éi)l)

)
) —> chiral B®) (a; () )\(Z) ) @ chiral BT (a%),)\gi)l)

hyper (g} ,w ’)A) — chiral ¢ ( w(l ) @ chiral V7 (g @ pO1)  (3.2)
)
)

— chiral @ (@g), gz)) @ chiral @1 (®} () (Z))
(1) ()

v,
twisted hyper (<pA ,fof) — chiral @ (p17,&7) @ chiral eW1 (<p2 , )

i
On the other hand, all (0,4) Fermi multiplets \I'() X9, x® f , p9 are also (0,2) Fermi
multiplets. Second, we introduce E/(\Z) and J/(\z) for Ferml multiplets A®) as functions of
(0,2) chiral superfields. We follow [24] which introduces the chiral multiplets from (twisted)
hypermultiplets to J/(\l) (E/(\Z)), ie

J[(f) = ¢Wg®» 4 [B®, B, E/(\i) = oW _ 1) ,0=D 4 )G (3.3)

with ©(©@ 3O (V) 3(V) understood as being null. Third, the above J/(\i) and EX) must
be accompanied by other holomorphic potentials to satisfy the (0,2) SUSY preserving
condition »_ Tr(Jy - Ey) = 0, where the sum is taken over all Fermi multiplets in the
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Type Fields | U(k;) U(ni) (Qi-1,Qi, Qit1) Type Fields | U(k;) U(kizr1)
vector | AP ¢4 ] adj 1 (0,0,0)

«

twisted tpg) 3 ﬁf 'K ki1

hyper | al), AP | adj 1 (0,0,0) Formi e . Ko
. R (07 1 1+
twisted | @, ¥ | K ; (0,0,0)
_ (b) between #’th and (i + 1)’th nodes (i <
Fermi g ki n (0,0,0) N-2).
hyper qg)7 R 1 (0,+1,0) Type | Fields | U(n;) Q;
Fermi X k; 1 (0,0,-1) Fermi | p() n; 1
Fermi x® k; 1 (+1,0,0)
(c) between i'th D6- and D4-branes (i <
(a) in the #’th gauge node (i < N —1). N —1).

Table 4. N = (0, 4) multiplets in the quiver gauge theory. ‘twisted’ means a twisted hypermultiplet.

theory. Allowed are the following potentials:

E() = gD, J() = g3, Y _ (-1 61 50 _

- _ ~(i-1) (i-1
¥ X q 12 ’ X - q( )7
\12 — g <I>(Z), Jé’i 0B () E\(IZ _ _B(l)q)(%)7 J&; — (p(l)B(Z),
Eé? — ) gD _ ) (i), Eg = B0 @ B gl — §)g0),
Jg(? = BUtD 30 _z0) B Jg) = Bt _z0) g J;()i) S_—0F 10N
(3.4)
With the following D-term potential D),
DU = ¢yt _ 50150 4 [B(l) @t ] — [B(i)T B(i)] (3.5)

+ OB _ FATHE _ Hi-Di 1) 4 5l-D 56Dt 4 50,0 _ 50f 50

the bosonic potential V' = Zn(|E?7|2 + | %) + 1 SSNIHD®)? can be arranged into

N-1 1 . N oae 1 . ) .\ 2
V=Y (4 (0™ 4%+ (™)l )

=1
1 i) (i i i i) g (0) 1B 2
+ 1 (050D — (01t IE T + (o)A pe {0 1E) (3.6)
1 L) (i+1
+5aPBDR + 21+ 510+ Sl + Se il - aaeo“r?)

Note that though we necessarily need the Fermi fields p in order to write a Lagrangian
with (0,4) SUSY, we expect that these will decouple from the interacting system in the
IR. A simple way to see this is to notice that they are gauge invariant chiral operators
and hence their IR scaling dimensions can be deduced from their charge with respect to
the R-symmetry of (0,2) subalgebra. The R-current of (0,2) subalgebra will be given by
a linear combination of the two Cartans of the SO(4) gp-symmetry acting on the UV (0,4)

- 21 —



algebra. However, p is a singlet of this SO(4)r symmetry and hence it will carry a zero

charge with respect to the (0,2) R-symmetry. Since the right moving dimension of chiral

operators is proportional to their R-charge, it implies that for p, Ly = 0. Their left moving

dimension Ly can also be fixed by using the fact that Lo — Lo = %, since the difference of

the left and right moving dimensions is given by the spin of the operators. Thus we find
1

that the fermions p must have Ly = 5 and Lo = 0. This is the unitarity bound for left

moving gauge invariant fermions to become free, much like in [42, 43].

3.2 Elliptic genera with Wilson surfaces

We consider the elliptic genera of 2d N' = (0,4) quiver gauge theories, introduced in sec-
tion 3.1. They are labeled by the ranks of the NV — 1 product gauge and flavor groups
{k‘l, /6‘2, s ,k‘N_l | niy,na,--- ,nN_l}, where {k‘l, ]{32, Ty k’N—l} and {nl,ng, s ,nN_l}
correspond to the winding numbers for different species of self-dual strings and defect
strings. One can express them in the following trace representation:

g

N-1 . )
I{{le 7 7::7\7:11}} — TTRR (_1)FqHL q—HR tQ(JT_JR)u2JlIuZ;'V=O(j71)Gj H H 6_m?)Q§Z) ‘ (37)
=1 (=1

The elliptic genus captures the BPS states annihilated by Qli and QQQ, satisfying Hp ~
{Qli, Q22}. Most of the fugacity variables and conjugate charges were introduced in sec-
tion 2.2. In addition, méi) are chemical potentials for U(n;) flavor symmetry, whose Cartan
generators are denoted as Qy). All these deformations made by chemical potentials are
crucial for regulating the infrared divergences.

Evaluation of the elliptic genus of 2d N = (0, 2) gauge theory was formulated in [44-46]
by means of supersymmetric localization. Saddle points in the path integral are charac-
terized by the gauge flat connections on T2. We denote eigenvalues of the U(k;) gauge
connection by ¢ = {(;Sgi),qbg), e ,(;Sl(fi)}, and the collection of all gauge connections by
¢ = {oW, ... o= All the Gaussian fluctuations around saddle points can be inte-
grated out, leaving us with the integration over zero modes of the 1-loop determinant:

{n1,nn_1} 1 plci d¢g) NS5 D6 T D4’ (4 () (1)
L kw1 :HN_lk'% HH i Zkl...kN,l(¢7€1,2)Zk1...kN,1(¢7ma€1,2)HHZki (9" my " €1,2),
i=1 R 21 521 i=1 =1
(3.8)
where (for 0(z) = 01(7, 5=;))
N— s N—1 k; i i i i
2N (0r612) = ]< o >k; I[ ]2 e o)
b \B@)0(e)) i L5000 — 6 + e)f(ol) — 6 + e2)
N—1 3 k1+1

06 — 60 + e o= + ¢l 4 )
i1 ot 00T =60 —e)f(—a ) 4 o) ey
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(3.9)

The next step is to integrate over all saddle points, parametrized by eigenvalues ¢ of the
Hfi _11 U(k;) gauge connection. This zero-mode integral becomes a contour integral over
the space of eigenvalues, whose integral contour is specified by the Jeffrey-Kirwan residue
operation [45, 46]. The selection of individual residue depends on an auxiliary vector 7,
while the final residue sum is independent of it.

It is known that in the special case of n; = --- = ny_1 = 0, the Jeffrey-Kirwan residues
are classified by (IV—1)-tuples of Young tableaux [47, 48] with the choice of n = (1,1,--- ,1).
Each residue corresponds to a possible configuration of the Young tableaux (Y7, -+ ,Yn_1)

with |Y;| = k;. A box s = (m, n) in the i’th Young tableau Y; represents the following pole
location for an integral variable ¢():

¢ = (i—1)m—ey — (n—1)er — (m — 1)ey. (3.10)

The classification of JK residues becomes more complicated after introducing the Hf\; IlU(ni)
flavor symmetry of D4’-branes. We must include new types of residues, being associated to the
polesat

o = €+ + mgi:)1 ‘ and PED — () = €+ (3.11)

) ..ni

in addition to the original ones (3.10). For example, with N = 2, all residues are labeled by
the Young tableau Y; and the n;-dimensional vector u such that |Y;| = k; —|u|, where each
component of the vector u must be either 0 or 1. |u| denotes the sum of all components
of the vector u. A non-zero, v’th component of u encodes an integral variable ¢(!) to take
the following value:

oM = e, +mlb. (3.12)

The associated residues are obtained by substituting these values to the integral mea-
sure (3.8). Similarly for general N, one obtains the elliptic genus Ig:ll ’IZIVV:}} of self-dual
strings by summing over all possible JK residues associated to (3.10) and (3.11).

3.3 Relation to 5d Wilson loops

As the individual elliptic genus represents the BPS states for a given configuration of self-
dual strings, the full 6d partition function must be written as their sum. We note that

for a given configuration (nq,--- ,ny_1) of D4’-branes, all the elhptlc genera with different
winding numbers share a common factor of Z]{DZI’D' il 1} = 1% (mfz) —im)/n

which is the 1-loop determinant contribution of D6-D4’ b1fundamental Ferml multiplets. As
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explained at the end of section 3.1, the D6-D4’ fermions are decoupled from the interacting
IR dynamics. Therefore, we divide the elliptic genera iy by gl nn-i}k - ppe

{klv"'kafl} D6-D4’
grand canonical partition is then given by
{n1,-mN-1} 2N k1. k kn-1 {n1,~nn_1} ;N1 nN_1}
ZGd/Zd =1 - Z n11n22 S 19 'Z{kl,'" 1) /ZDG—D4’ (3.13)

ki,...kn_120

ny,. N—1 denote the winding number fugacities for (N — 1) different types of self-dual
strings. The overall multiplicative factor Iév captures pure momentum states that are
decoupled from stringy modes at low energy. It takes the following form:

shim+e_) ¢
sh(ex £e_)1—gq

tp+p " —u—u) ¢

I—tw)(1—tu 1) 1—¢q|° (3.14)

IéV:PE[N ]:PE[N

{nlv"'vn - }
ZGd/Qd M

tion is determined by the arrangement of D4’-branes, i.e., (ny,n2,--- ,ny_1), as explained

is expected to be the Wilson surface operator in M5-branes, whose representa-

in section 3.1. We will see that this expectation becomes true for minuscule representations,
while there will be extra subtleties for non-minuscule representations.

We have two different methods of computing the Wilson surface operator in M5-branes.
Recall that 5d N’ = 1* U(N) gauge theory has the UV completion with non-perturbative
corrections, as 6d (2,0) SCFT on S! describing a stack of N parallel M5-branes [49-51].
The 5d SYM instantons are the Kaluza-Klein momentum modes along the compactified
circle. Similarly, the W-bosons in the Coulomb branch of 5d SYM are uplifted to the 6d
self-dual strings, whose tension is proportional to the distance between a pair of M5-branes.
Once we identify the instanton fugacity and Coulomb branch parameters of 5d SYM with
the 6d momentum and winding fugacities along 72,
wy w2 WN—1

, WMm=-—, Ng=—, -, NN_1=
w2 w3 WN

— 627”'7'

(With wiwg - wWN = 1),

(3.15)

q

the various Wilson lines in 5d A/ = 1* SYM, studied in section 2.3, are naturally inter-
preted as the 6d Wilson surface observable in M5-branes. More concretely, we propose the
following equalities:

Z[[)Je(r]tV) WE(N) _ <H nl)\z> . Zé;l/léd MN—1} with R = ®Z]\;711 (/\) (316)
i=1

where (A1, -+, Any—1) denotes the lowest weight of the representation R in a-basis. One

necessary condition for (3.16) to hold is that the flavor chemical potentials mg) must dis-

appear from the final expression of the 6d string elliptic genus Ié:ll IZ\I,V _11}} /Z]gréi’]s;l’,mv_l}.
N_l b b -

It turns out to be true for the cases with N’ =>"."7"n; = 1, which corresponds to the
Wilson surfaces in minuscule representations. For non-minuscule representations, i.e.
N = Zf\gl n; > 1, we will report the prescription for the flavor fugacities e™" , un-

der which (3.16) holds true in most of the winding sectors.
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Since the 5d perturbative index Zli(rjtv) and the U(1) factors Z}' are commonly shared

among the Wilson surfaces in different representations, we find it convenient to normal-
ize (3.16) by the partition function 7V -WE(N) = 700 [18]. We will test if the

pert 6d/2d
following is true:
N-1 wUm) Zég/lé'a'l' -1} N—i\ ™
Y R _ . _ o N-1
(H n; ) Boriic Rl e with R =@}, (/\) : (3.17)
i=1 1 6d/2d

Minuscule representations. When N = 2 and ny = 1, we found an agreement between
the 6d BPS partition function (3.13) and the U(2) fundamental Wilson loop Wg (2), by
taking the double series expansion in the momentum (instanton) fugacity ¢ and the winding
(W-boson) fugacity ny = w?, i.e.,

1/2 U(2 U2 1 0
nl/2wy® wl@ ZG{d}Qd/Zéd}Qd (3.18)
verified up to ¢* and n‘l1 order. For N = 3 case, the 6d observables Zé{g}lz};l and 257/02};1

must be compared with the U(3) Wilson loops in the /\l =3 and /\2 = 3 representations,
respectively. We found

al/n2/3 WU U _ g0} ) 700}

/24! “6d)2d
2/3 1/3 U3 U3 1,0 0,0

verified up to ¢* and n¥n orders. Similarly for N = 4 case, up to ¢* and nin3n2 orders, we
checked

ni/4n§/2n§/4 . Wf(4)/ WP(4) _ Z{O,OJ}/ 710,0,0}

6d/2d | “6d/2d >
3/4.1/2 1/4 ,,U(4 U4 1,0,0 0,0,0
1/2.1.1/2 1,,U(4 U4 0,1,0 0,0,0
“1/ “5”3/ 'WG( )/Wl( )= Zé{d/2d}/Zéd/2d}'

()

Non-minuscule representations. On the contrary, the flavor chemical potentials m,
do not generally disappear from the elliptic genera Ifgf”f.:"’]:z\’]\’;l}} /Zgéig;,nN “} for non-
minuscule representations, preventing (3.17) from being true. This is because the ellip-
tic genera of D2-branes receive contributions not only from the Higgs branch, in which
D2-branes realize 6d self-dual strings, but also from the twisted Higgs branch, where D2-
branes become separable on D4’-branes and move along the 2%, 27, 2% directions. Specif-
ically, as D2-branes are away from NSb-branes, the latter configuration is no longer as-
sociated to 6d (2,0) SCFTs which describe the worldvolume physics of NS5-branes. In-
stead, it corresponds to the monopole (string) bubbling sector for 5d 't Hooft surface
defects on D4'-branes wrapping R? x T2, For example, once we take the M — e, limit
which Higgses D2-D6 multiplets, or equivalently removes the D6-brane, the elliptic genera
I‘“{{le”.:'f]\’f:ll}} /Z]{)Téig;l}nN “1} reduce to the elliptic uplift of the monopole bubbling indices

in [52-54] where sh(z) is replaced with sh(x) — 6(z).
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Here we do not attempt to distinguish the Higgs branch states from the others as
in section 2.3. We instead report the following observation: for most of the winding
sectors (ki1,---,kn—_1), except those with non-trivial monopole bubbling indices in [52-54],
the relation (3.17) holds true after discarding all the BPS states that carry non-trivial
Hf\i Il U(n;) flavor charges. More precisely, we take the series expansion of the right-hand

side of (3.17) in the flavor fugacities e~ and compare its zero-th order coefficient with
the left-hand side of (3.17). We found that

n%-(Wg@)-FWE(Q))/ WP(Q) = Zéj}éd/ Zég}% ‘O-th at ¢*? and nf’zﬂ orders
n?/2~(Wf(2)+2Wg(2))/ WP(Q) = Zg;’%d/ Zég}% ‘O—th at ¢®! and n? orders
g% 00 g O = Z05 Zia |, et ot and np®n?wfnd, g orders
n411/3n§/3'(wg(3)+wg(3))/ Wf@) = Zéj}g}d/ Zég}g}d oh at ¢*! and 0> ny*? nin2 n2n2 orders
n%n;(Wg(B)—i-WP(?)))/ WP(?’) = Zé;f;;/ Zég’/%}d ot at ¢%! and n%’m, n§’2’3,n%n§,nfné,n%n§ orders.

(3.21)

For those exceptional sectors, the same truncation makes (3.17) true only at ¢" order, i.e.,

u(2 U2 u(2 2 0
nb- V5 @ WOy W@ = 20 128, | atq® andnforder  (3:22)
3/2 U2 U2 U(2 3 0 1,2
nl/ : (W4( )+ 2W2( ))/Wl( ) = Zéd}'2d/ Zéd}% o q" and n;? orders
2/3 _4/3 U3 U3 U3 0,2 0,0
nl/ n2/ : (WG( ) 4 Wg( ))/Wl( ) — Z(;,{d/;;i/ Zéd/;;l . at ¢° and n}, nind ninZ orders
4/3_2/3 U3 U3 U3 2,0 0,0
nl/ n2/ : (Wg( ) 4+ W3( ))/Wl( ) — Zéd/;;i/ Zéd/;;l . at ¢° and n},nind n¥nl orders
1.1, WU(3) WU(3) WU(3) _ Z{lal} Z{Ovo} t d nln! ord
nng - W +Wo )/ W™ = Zg 1 oa/ Zea)aa o 2t ¢ andnin order.
In spite of the extra D4’ states present in Ié;ll’.'_'.' ’,?AJIV__;}} /Zgéi’ls;l’,nN _1}, we still regard the

above results (3.18)—(3.22) as a supporting evidence for the validity of the quiver gauge
theory introduced in section 3.1. It would be desirable to come up with a way to precisely
distinguish the 6d SCFT spectrum from the rest in the elliptic genera.

3.3.1 (qgqg-characters and Y observables

As we did in section 2.2, let us conclude our discussion by adding a few remarks about the
qq-character interpretation of our elliptic genus (3.13). Without D4’ branes, the NS5-D6
systems we considered can be thought of as engineering a six-dimensional superconformal
U(1)N~! abelian Ay_i-quiver theory, i.e. a linear quiver theory with N — 1 U(1) gauge
nodes with bifundamental and /or fundamental matter. The qq-characters for such a theory,
as studied in [14, 55, 56], can be classified in terms of tensor product representations R of
the Ay_1 Lie algebra. In our language they are constructed by adding one or more D4’
branes to the NS5-D6 system, where the numbers (nq,...,ny_1) of D4’ are related to the
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N\ g
tensor product representation R = ®Z-]i _11 (/\N_’> as in (3.16). More precisely we have

TN A S T = g T = g ),
Etyeonsken 120

(3.23)
Similarly to what happens in the five-dimensional case, the qg-characters for our six-
dimensional quiver theory can be written in terms of correlators of Y;-operators, although
in our setup we have a different Y; for each abelian gauge node (i = 1,..., N —1). Any
correlator inv(olving a number [; of Y;-observables (or their inverse) depending on mass
(2

parameters xj) for each gauge node can be computed via

N-1 I; (i) - nlfl kN 1 N—1 k; N-1 I; ) (i)
i, (@ - NS5 D'
INCRERRN N )11 e 1

i=1j=1 Fyekin 120 i=1s=1 i=1 j=1
‘ (3.24)
with ng) = +1 and where the functions appearing in the integrand were introduced in (3.9).

For brevity, we suppressed their dependence on e+ and m. The integral is evaluated by sum-
ming over the residues at the poles labeled by (/N — 1)-tuples of the Young tableaux (3.10);
this pole prescription therefore differentiates correlators of Y;-operators from qg-characters,
since the latter receive contributions also from poles of the form (3.11).

To illustrate the relation between X and Y,’s, let us consider a few examples. When N =
2 the fundamental (i.e. n; = 1) qg-character, associated to the fundamental representation
2 of Ay, can be written as

0
A (D _y oy Plm) 3.25
2 (ml ) 1( ) 191(77151) i 26+) ( )

where
plo) = Hotmte)lo—mter) (3.26)

n n

The first higher qq-character (ny = 2), corresponding to the representation 2® 2 =3 @ 1
of A1, reads

x5 (m{D, miy = (3.27)

151( (1))

(1) (1) (1) (1) (1)
Yr(mi?)Y(my”) + i Pmy)S(mi — m >m

(1) 1
o PO (D — Dy 91 MT) e )y pe )
ny P(my ) S(my my )81(mgl)+26+) nyP(my ") P(my )‘3( 1)+26+)91( +2€+)
with
_0(o+e1)0(0 + €2)
500) = 9000 + 2¢1) (3.28)
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When N = 3 the fundamental (n; = 0, ng = 1) and antisymmetric (n; = 1, n2 = 0) qq-
characters, associated to the Ay representations 3 and 3 respectively, can be decomposed as

X (D) — gy ) Pyl 200 H ) P Pa(mi” )
' ! ) 1ng m
yl(ml +26+) 13 ( +36+)
Y (2)) py (1
x%AQ)(m?))292(m§2))+n2p2( QUM*’”NQPAWH )1(32)( +€4)
d2(my” + 2e4) Y1(my” + 3ey)
(3.29)
with ) 0
Bt

A\ Mg
Similar relations can be found for any N and any representation R = @ ! ( /\N_Z) [56].

4 Concluding remarks

In this paper we studied the 5d N' = 1* Wilson loops in a generic U(N) gauge representa-
tion, using the ADHM quantum mechanics of D0-D4-D4’ branes. The partition function
for the grand canonical ensemble of DO-branes is the sum over products between two dif-
ferent Wilson loops, supported on D4 and D4’-branes respectively. We illustrated how to
disentangle individual Wilson loops from the full DO-brane partition function in a num-
ber of examples. They can be interpreted as the Wilson surface observables in M5-branes,
based on the correspondence between 5d maximal U(/N) SYM and 6d (2,0) SCFT of An_1-
type. We also studied the Wilson surfaces using the 2d (0,4) quiver gauge theories, which
correspond to the UV description of self-dual strings in the presence of a Wilson surface
defect. Both computations are in agreement for the minuscule Wilson surfaces. On the
other hand, the elliptic genera for the non-minuscule representations capture extra BPS
states irrelevant from 6d (2,0) SCFT, displaying only a partial agreement between two
independent computations.

There are a number of open questions that deserve further investigation. It would be
important to understand how to distinguish a contribution from extra BPS states, captured
in the elliptic genera, supported on D4’-branes. It would also be a primary step to study the
Wilson surface observables in (1,0) SCFTs, such as E-string theory, in which an emergence
of extra states in the elliptic genera is generically observed. Finally, it may be interesting
to make a parallel study on the codimension-2 defects in M5-branes, either from 5d SYM
perspective or from 6d self-dual strings’ perspective.
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