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1 Introduction

The theory of cosmic inflation is commonly considered the most successful framework

to describe the evolution of our Universe at early times. Consisting in an accelerated

expansion, a microscopic description of its origin is nevertheless still lacking so far. Few

billions years after that epoch, the Universe is now undergoing an equally mysterious phase

of acceleration, driven by what is generically known as Dark Energy (DE). A great deal

of attention has been devoted, in both cases, to the analysis of scalar theories coupled to

gravity as prototypical examples of the dynamics behind acceleration. The result is a glut

of different models, proposed over the years in the literature.

In the absence of a ‘best motivated’ proposal for the dynamics of the new degree of

freedom, however, a convenient choice to characterize the phenomenology of the different

models is to follow an Effective Field Theory (EFT) approach. Assuming that the EFT

for the scalar field φ is valid up to a UV cutoff scale Λ, one needs a hypothesis on the

typical size of the infinite tower of higher dimensional operators that appear in the EFT

Lagrangian. Such an estimate for the operators is called the ‘power counting rule’ of the

effective theory. For example, the simplest assumption is that the theory of φ, apart from

Λ, is characterized only by a coupling g. In this case the Lagrangian will be of the form:

L =
Λ4

g2
L

(
∂

Λ
,
gφ

Λ

)
, (1.1)
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where L is a function with O(1) dimensionless parameters. This power counting has been,

more or less explicitly, at the basis of most of the models of Inflation and Dark Energy

since their emergence. In this case, the effect of higher derivative (HD) operators, i.e. with

more than one derivative per field, is such that they either give subleading contributions

to physical observables or the derivative expansion breaks down and the EFT in (1.1) is

no longer a good description. In particular, this means that the scale of the ghost-like

instability usually associated with HD is at or above the cutoff and therefore the theory

is perfectly well-defined at energies below Λ. This is what happens, for example, in the

case of the QCD chiral Lagrangian, which describes the dynamics of pions below ΛQCD

and contains, as every effective field theory, infinitely many HD operators.

In search for models for the accelerated expansion of the Universe that differ qualita-

tively from the ones described by the EFT in (1.1), in the last decade there has been a

considerable interest in scenarios where the simple energy expansion in (1.1) is modified in

such a way that HD operators become at least as important as the one with less derivatives,

within the domain of validity of the low energy theory. This feature should be made robust

by the presence of some symmetry, exact or approximate, that can provide, at least in

principle, a different set of rules to power count the coefficients of the effective Lagrangian,

even in the absence of an explicit UV completion.

A necessary condition to fulfill this goal is that the HD operators providing the leading

contribution to physical observables should not introduce any instability within the regime

of validity of the EFT. The simplest example of this situation is perhaps given by the

galileon EFT [1]: the invariance under the galileon (plus shift) symmetry

φ→ φ+ c+ bµx
µ (1.2)

guarantees that the equations of motion obtained from the three leading HD operators

are of second order. This example motivated a lot of activity to find the most general

HD interactions of a scalar coupled to gravity that do not introduce any additional, and

necessarily ghost-like, degree of freedom.

On the other hand, as we previously introduced, a second necessary ingredient is a

power counting rule. It allows to estimate, also when quantum corrections are included,

if there is a finite number of operators — or a symmetry that relates their coefficients1

— that affects the observable of interest or if, instead, the result is uncalculable, because

there are infinitely many contributions of the same order. In the case of the galileon it is

precisely the symmetry (1.2) that controls the structure of the operators: the ones with

at most one derivative per field are not generated by quantum corrections and the leading

HD terms, which are finite in number (three), are also not renormalized [4].

1An example in the context of shift symmetric theories that include at the leading order only single

derivatives of the scalar field — generically known as P (X) theories, where X is defined later on in (2.5)

—is provided by the DBI action [2, 3]. Here, the explicit form of the function P (X) is dictated by a non-

linearly realized higher-dimensional spacetime symmetry, which results in very specific relations among the

coefficients of the different Lagrangian operators.
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However, invariance under galileon transformations cannot be exact in any applica-

tion to cosmology because every coupling of the field to gravity breaks it explicitly. A

more structured theory is therefore needed: following what we proposed in [5], the trans-

formations in eq. (1.2) can guide the formulation of a power counting for the scalar field

characterized by two energy scales: the cutoff, that we will denote in the paper as Λ3, and

a second scale Λ2 ≡ (MPlΛ
3
3)1/4, parametrically higher assuming Λ3 � MPl, that controls

the breaking of the galileon symmetry.2

To find all the theories that conform to this new power counting, we will search for the

most general set of interactions of the scalar to gravity that generate galileon symmetry

breaking quantum corrections suppressed by the highest possible scale. As we will see in

detail, this guarantees that: i) in the resulting theory higher derivative interactions are

at least as important as the others on interesting cosmological backgrounds and ii) the

leading operators, in principle infinite in number, receive only small quantum corrections,

suppressed by integer powers of (Λ3/Λ2)4, and therefore it is technically natural to intro-

duce only a finite number of them, in such a way that physical observables can be reliably

computed.

The condition that we impose on the interactions is powerful enough that allows us to

re-derive, though from a very different perspective, both the Horndeski [6, 7] and the so

called beyond Horndeski [8, 9] theories. Or, to be more precise, the most general subset of

the two that enjoys the properties i) and ii) defined in the previous paragraph. Our results

generalize what we obtained previously in [5] and hence we continue to refer to this more

general class as ‘theories with weakly broken galileon (WBG) invariance’.

There are several phenomenological applications that make HD EFTs particularly

interesting. We will briefly touch two of them: dark energy/modify gravity and early

Universe cosmologies alternative to inflation. In the former case, the robustness of WBG

theories is used to infer the naturalness of an exactly luminal speed of propagation for

gravitational waves around the medium that gives rise to the accelerated expansion [10–13],

while in the latter we emphasize how a particular class of HD theories can be used to

construct geodesically complete cosmologies that are stable along the whole evolutionary

trajectory [14, 15].

The paper is organized as follows. In section 2 we discuss the power counting rule

for theories where HD interactions satisfy the condition i). Then, in section 3 we find the

most general theory up to quadratic order in second derivatives enjoying WBG invariance

and thereby satisfying also condition ii). We achieve this by demanding that all possibly

dangerous quantum corrections cancel. This is the main result of our work. In section 4 we

relate the class of interactions obtained in this way to the well known Horndeski and beyond-

Horndeski theories. Afterwards, section 5 is devoted to the discussion of the applications to

the EFT of DE and to geodesically complete cosmologies. Finally, in section 6 we present

our conclusions and outlook. The appendices provide further details on the calculations.

2From now on we are assuming that couplings are O(1) and we do not write them explicitly; we also

omit factors of 4π for simplicity.
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2 The WBG power counting

The main goal of the paper is to identify a class of models where higher derivative in-

teractions play a crucial role. As we discussed in the introduction, the simplest example

of a robust theory satisfying this requirement is given by a Lagrangian that enjoys the

symmetry (1.2). In particular, we are interested in the only two operators,3 together with

the kinetic term, that are invariant up to a total derivative [1]:

(∂φ)2�φ

Λ3
3

,
(∂φ)2((�φ)2 − ∂µ∂νφ∂µ∂νφ)

Λ6
3

. (2.1)

These are the leading ones in a derivative expansion — all the others are of the form

∂m(∂2φ)n — and since their equation of motion (EOM) is second order they do not in-

troduce the instability usually associated with HD operators, the so-called Ostrogradsky

ghost. Therefore, their effect can become the dominant one, at least for some energy (or

length) scales, within the regime of validity of the EFT.

Once the scalar field φ is coupled to gravity, minimally or not, the galileon symmetry

is inevitably broken (we will instead always assume in the paper that the shift symmetry,

π → π + c, is preserved4), in particular operators of the form

(∂φ)2n

Λ4n−4
n

, (2.2)

with less derivative than the two galileon interactions, will be generated. If they were

suppressed by the same scale Λ3 as the ones in (2.1), they would give the dominant con-

tribution and the theory would simply be a generic shift invariant model. We are instead

looking for a theory where physical observables receive corrections from HD operators that

are at least O(1) compared to the standard scenario described by the power counting in

eq. (1.1). It is then natural to ask what the smallest value for Λn should be to obtain this

result. The answer in general depends on the background solution one is interested in.

Since the main application we have in mind for the HD EFT is to describe the late time

or the early Universe accelerated expansion, we will consider an FLRW-type background

metric and a time-dependent background φ0(t) for the scalar.

Let us now start with an estimate of Λn for the first interaction, i.e. n = 2, and for

simplicity we include only the contribution of the second operator in eq. (2.1): the first

Friedmann equation reads, schematically,

H2 =
ρ

3M2
Pl

∼ 1

M2
Pl

(
φ̇2

0 +
φ̇4

0

Λ4
2

+ φ̇2
0

H2φ̇2
0

Λ6
3

)
, (2.3)

where we have assumed that the background field satisfies φ̈0 � Hφ̇0, and thus �φ0 ∼ Hφ̇0,

with H the Hubble parameter.

3There is one last operator that belongs to the same class, schematically of the form (∂φ)2(∂2φ)3.

However in the paper we will never include operators that are cubic in (∂2φ). This is a consistent choice,

as we discuss later in the section.
4For the physical implications of an internal shift symmetry in the context of FLRW cosmologies we

refer to [16, 17].
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We can see that, for the second and third terms to contribute to the energy density as

much as the kinetic term, we must have both

X0 . 1, Y0 . 1, (2.4)

on the background, where we are introducing the notation

X ≡ −∇µφ∇
µφ

Λ4
2

, Y ≡ ∇µ∇
µφ

Λ3
3

. (2.5)

This implies that the two scales satisfy Λ3
3 ∼ HΛ2

2. Furthermore, solving the first Friedmann

equation under this regime gives H ∼ Λ2
2/MPl. Using both relations to eliminate H, we

conclude that the scale of the symmetry breaking operator should be

Λ2 ∼ (MPlΛ
3
3)1/4. (2.6)

We can repeat the same analysis including operators with extra powers of X and, in

general, for arbitrary functions of X in front of the (∂2φ)m factor. The conclusion is that

all the operators satisfying the power counting

(∇φ)2n

Λ
4(n−1)
2

(∇∇φ)m

Λ3m
3

, (2.7)

are equally important on the background we are considering. The next question we need to

address is whether the structure (2.7) is robust or, in other words, if the contributions that

come from quantum corrections to those operators are at most of the order of the estimates

that appear in (2.7). As we showed already in [5], the answer is in general negative. It

is easy to check, for example, that the quartic galileon in eq. (2.1), minimally coupled to

gravity, contains a vertex of the form:

(∂φ)3∂2φ∂h

MPlΛ
6
3

. (2.8)

This interaction generates corrections of the order (∇φ)6a/(M2a
Pl Λ10a−4

3 ) that are much

larger, for a > 1, than the corresponding n = 3a, m = 0 operators in eq. (2.7). This

example shows that a generic coupling to gravity completely spoils the non-renormalization

properties associated with (unbroken) galileon invariance. When the symmetry is exact,

indeed, operators with less than two derivatives per field are not generated at the quantum

level [4]. In the presence of a generic explicit breaking not only those operators are obviously

generated but (∇φ)6a turn out to be the dominant ones and the resulting theory is, up to

small corrections, just a particular case of a P (X) Lagrangian.

It is clear at this point that a robust higher derivative EFT can contain only a very

specific set of operators that scale as in eq. (2.7). If we label the elements of this group as

OI and their O(1) coefficients as cI, they are defined by the property that the contributions

generated by quantum corrections, δcI, satisfy δcI � cI.

In [5] we identified an example of such a subset of operators. We proved that they

receive quantum corrections that are always suppressed by powers of Λ3
MPl

. Focussing for
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OI (∇φ)2n

Λ
4(n−1)
2

(∇∇φ)m

Λ3m
3

δcI

cI
∼ Λ3

MPl

OII (∇φ)2n

Λ4n
2

(∇∇φ)m

Λ3m−4
3

δcII

cII
∼ O(1)

OIII ∇m(∇∇φ)n

Λ3n+m−4
3

δcIII

cIII
∼ O(1)

Table 1. The power counting of higher derivative EFTs. The most general set of operators in

group I is derived in section 3.

instance on the quantum mechanically generated operators (∇φ)2n, we have shown that at

loop level they always scale as

∼ (∇φ)2n

Mn
PlΛ

3n−4
3

. (2.9)

The same result holds also for the other operators (∇φ)2n(∇∇φ)m with m 6= 0. Thus,

inheriting a remnant of the non-renormalization properties of the galileon, in [5] we have

dubbed the theories with this property ‘WBG theories’. Their phenomenology, in the con-

text of inflation, has been studied afterwards in [18, 19]. In the next section, we generalize

the proof of [5] and find the most general class of WBG operators OI, up to quadratic

order in the second derivatives of the scalar field.5

Before getting to that, it is worth stressing that in a WBG theory, as in any genuine

EFT, all kinds of interactions allowed by the symmetries are included. In particular, it

means that there will be also operators, let us call them OII, with the same number of fields

and derivatives as OI but a different contraction of indices such that they do not enjoy any

non-renormalization property. The point is that it is consistent to assume that they are

suppressed by an additional factor Λ3
MPl

at tree level compared to the WBG ones because

this is precisely the size of the contributions they receive from quantum corrections. In

other words, they follow a different power counting that reads:

(∇φ)2n

Λ4n
2

(∇∇φ)m

Λ3m−4
3

. (2.10)

For completeness, we recall that there is a third group OIII of operators, already present

in the effective theories, that contain at least two derivatives per field and are trivially

generated at the scale Λ3 (they are precisely the operators that become trivially galileon

invariant at Lagrangian level on flat spacetimes).

In conclusion, the power counting of higher derivative EFT that are robust under the

inclusion of quantum corrections is summarized in table 1.

5One could in principle generalize our result to include in OI also operators that are cubic in the second

derivatives of the scalar field (i.e. with m = 3), but for the sake of simplicity of the presentation we decide

not to do it here. Notice that setting them ‘to zero’ in the Lagrangian does not yield fine tuning problems:

indeed, as shown later on in table 1, they are generated at a scale that is parametrically larger than the

one suppressing the quadratic operators in OI and, for this reason, they can be safely disregarded.
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3 The most general WBG theory up to quadratic order in ∇∇φ

In this section we explicitly construct the most general class of operators of type OI (see

table 1) up to quadratic order in the second derivatives of the scalar field.

Starting from the case of operators with m = 0, it is straightforward to show that the

shift symmetric Lagrangian

S2 = Λ4
2

∫
d4x
√
−g G2(X) , (3.1)

where G2 is a function of X, defined in (2.5), satisfies the scaling (2.9) at loop level and

therefore the non-renormalization properties displayed in the corresponding row in table 1.

Then, it is by default entitled to be in the WBG class.

At the next-to-leading order we include operators linear in ∇∇φ, i.e. with m = 1. The

most general Lagrangian at this order can be written as [20]

S3 = Λ4
2

∫
d4x
√
−g G3(X)

�φ

Λ3
3

. (3.2)

Indeed, notice that any other combination involving the contraction ∇µφ∇νφ∇µ∇νφ can

be easily recast in the general form (3.2) after straightforward integrations by parts. In [5] it

has been shown that loops involving vertices of type (3.2) generate interactions at quantum

level that scale as those in (2.9), corresponding again to the small corrections δcI/cI ∼
Λ3/MPl, as displayed in table 1. We refer to [5] for further comments on this point.

Moving on to the case with m = 2, the number of inequivalent contractions increases.

Now the most general shift symmetric scalar-tensor theory (that depends quadratically on

the second derivatives of the scalar field φ) reads [21]

S4 =

∫
d4x
√
−g
[

Λ8
2

Λ6
3

f(X)R+
Λ4

2

Λ6
3

Cµν,ρσ∇µ∇νφ∇ρ∇σφ
]
, (3.3)

where Cµν,ρσ is a tensor made of products of ∇µφ only. By construction, it can be always

written in such a way to have the following symmetry structure

Cµν,ρσ = Cνµ,ρσ = Cµν,σρ = Cρσ,µν . (3.4)

Then, the most general form of Cµν,ρσ is [21]

Cµν,ρσ =
α1(X)

2

(∇φ)2

Λ4
2

(gµρgνσ + gµσgνρ) + α2(X)
(∇φ)2

Λ4
2

gµνgρσ

+
α3(X)

2Λ4
2

(gρσ∇µφ∇νφ+ gµν∇ρφ∇σφ)

+
α4(X)

4Λ4
2

(gνσ∇µφ∇ρφ+ gµσ∇νφ∇ρφ+ gνρ∇µφ∇σφ+ gµρ∇νφ∇σφ)

+
α5(X)

Λ8
2

∇µφ∇νφ∇ρφ∇σφ , (3.5)

where αi are arbitrary functions of X.

– 7 –
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The scales in (3.3) have been chosen in such a way that the operators satisfy the power

counting (2.7). Whether this choice is stable under quantum corrections is the question

that we are going to address in the remainder of this section. Indeed, we shall see that

only a subset of operators, corresponding to very specific choices of the functions αi, are

of WBG type and are therefore entitled to be in the group OI. The others, corresponding

instead to different choices of αi, are required to be of type OII and to satisfy the power

counting (2.10).

For simplicity, let us focus on quantum mechanically generated interactions of type

(∇φ)2n — the result we find will be automatically true also for all the other couplings cI

in OI. In order to identify the most general WBG class, we expand the metric around a

Minkowski background, gµν = ηµν +
hµν
MPl

, and look for theories that yield loop diagrams

of type (2.9).

To start with, let us consider the leading order in the 1/MPl expansion, i.e. we focus

on loops with no internal graviton lines. The scalar self-interactions that contribute to this

kind of quantum corrections are

S4,φ =

∫
d4x

[
Λ4

2

Λ6
3

Cµν,ρσ∂µ∂νφ∂ρ∂σφ+ . . .

]
, (3.6)

where we have replaced covariant derivatives with simple ones. For a generic Cµν,ρσ, the

leading corrections to (∂φ)2n come from loops where there are only internal legs differen-

tiated twice. In other words, we shall focus on the following configuration:

S4,φ =

∫
d4x

[
Λ4

2

Λ6
3

Cµν,ρσ∂µ∂νφint∂ρ∂σφint + . . .

]
. (3.7)

Without any prescription on Cµν,ρσ, at quantum level the interactions (3.7) generates, in

principle,

∼ (∂φ)2n

Mn−2
Pl Λ3n−4

3

, (3.8)

which are parametrically larger than (2.9). On the other hand, the corrections (3.8) are

not generated if Cµν,ρσ is antisymmetric under single exchange of indices between the first

and the second pair:

Cµν,ρσ = −Cρν,µσ . (3.9)

One can easily show that this occurs in theories such that

α1 = −α2 , α3 = −α4 , α5 = 0 , for all X . (3.10)

Notice that the conditions (3.10) are not only sufficient but also necessary in order to

guarantee that the estimation (2.9) is correct at any order in the number of loops and for

an arbitrary choice of the external momenta. To clarify this point, we shall compute for

instance the amplitude associated with a 2-to-2 scattering at one loop using the interaction

vertices (3.7) where we take αi = constant for i = 1, 2, 3, 4 and α5 = 0, as shown in figure 1.

After summing over all possible permutations of the external momenta and using the

– 8 –
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Figure 1. One-loop diagram contributing to the 2-to-2 scattering amplitude with only scalar prop-

agators. The legs with more than one derivative are taken to be on the internal lines, represented

by a dashed line.

symmetry properties of the loop integral, the total amplitude takes on the following form:

A1−loop
2−2 ∝ [(k1 · k2)(k3 · k4) + (k1 · k3)(k2 · k4) + (k1 · k4)(k2 · k3)]

×
[
8(α1 + α2)2 + 4(α1 + α2)(α3 + α4) + (α3 + α4)2

] ∫ d4q

(2π)4
q4 + . . . (3.11)

where in the dots we are dropping terms that are higher order in the external momenta

and therefore do not renormalize (∂φ)4. The coefficient in the second line in (3.11) is

specific of the particular process under consideration: computing the same amplitude at

different loop order yields a different combination of the factors (α1 + α2) and (α3 + α4).

Then it is clear that in order for the amplitude to be zero at any loop order we are left

with the conditions (3.10). Notice that, with this specific example where αi = constant

for i = 1, 2, 3, 4 and α5 = 0 we have simply recovered the well-known non-renormalization

theorem [4, 22] (see also [23]) of the flat spacetime galileons [1] (we refer to appendix A

for the discussion about the flat-space limit). On the other hand, the points we want to

emphasize here are that i) the non-renormalization properties (2.9) are at play for general

non-constant αi(X) provided the conditions (3.10) are fulfilled and that ii) there exists a

subclass of theories with specific couplings to gravity such that the result (2.9) remains

true. In what follows we present some intermediate steps and the final result regarding

this last point, refering to appendix B for further details on the calculations.

Going to the next-to-leading order in the 1/MPl expansion, we now consider diagrams

that involve one graviton line. It is easy to show that quantum corrections to the operators

in (3.3) that involve external gravitons are suppressed at least by Λ3/MPl compared to the

tree level couplings, as required by the definition of the class OI (see appendix B for further

details). Therefore, we can focus on loop diagrams where the graviton line is internal.6

Expanding the action (3.3) linearly in hµν , the relevant vertex reads

S4 =

∫
d4x

[
hρσ∂

τφ

Λ3
3

Zµν,ρσ∂µ∂ν∂τφ+ . . .

]
, (3.12)

where we defined

Zµν,ρσ ≡ fX (ηµρηνσ + ηµσηνρ − 2ηµνηρσ)− Cµν,ρσ. (3.13)

6We do not discuss diagrams with more internal graviton lines since they are more severely suppressed

by additional factors of 1/MPl.
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Notice that although in some special cases the vertex (3.12) cancels exactly at tree level, i.e.

Zµν,ρσ ≡ 0, this does not occur in general for the theories admitted by (3.10). Nevertheless,

as we shall see now, it may occur at loop level: this will define the most general class of

WBG theories and extend the findings of [5].

Focussing again on the quantum mechanically generated (∇φ)2n, after the manipu-

lations detailed in appendix B, loop corrections involving one internal graviton line take

schematically the form

∼− 1

4

∫
d4q

(2π)4
∂τ1φ∂τ2φ

qτ1qτ2

q2
(4fX + 2Xα2 +Xα3)

×
[
4α3 (qµ∂µφ)2 + (12fX + 6Xα2 −Xα3) q2

]
+ . . . , (3.14)

where q is the internal momentum running over the loop and where in the dots we are

dropping terms that are higher orders in the external momenta and therefore do not renor-

malize (∇φ)2n. From this expression we can prove that, among the theories of type (3.10),

the WBG subclass OI at quadratic order in ∇∇φ is identified by the condition

4fX + 2Xα2 +Xα3 = 0 . (3.15)

In the following section we shall see how both conditions (3.10) and (3.15) lead to well

known classes of theories.

4 Relation with Horndeski and beyond Horndeski

So far we have identified the most general class of theories that are structurally robust in

a well defined sense. However, as outlined in the introduction, if HD operators provide the

leading contribution a second ingredient is required for the consistency of these theories:

the Ostrogradsky ghost-like instability should not appear. This requirement has motivated

some effort in the recent literature to identify scalar tensor theories that, in spite of having

higher order interactions, still propagate 3 degrees of freedom (one scalar and the two

graviton helicities). The most general set of operators with this feature is given by the

so-called degenerate higher-order scalar-tensor (DHOST) theories [24, 25]. Restricted up

to the quadratic order (in ∇∇φ) DHOST theories can be defined by specific choices of

the functions αi in (3.3). Notice that the conditions defining these theories are less strict

than the ones we obtained in (3.10) and (3.15). At this point, it is useful to recall that

DHOST contain as two particular examples the (shift symmetric) quartic Horndeski [6, 7]

and beyond-Horndeski [8] Lagrangians, defined respectively by

Xα1 = −Xα2 = 2fX , α3 = −α4 = 0 , (quartic Horndeski) (4.1)

and

f =
1

2
, α1 = −α2 = 2α3 = −2α4 . (quartic beyond-Horndeski) (4.2)
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In particular, a generic linear combination of these two kinds of theories, which can be

explicitly written in the form

SH+bH
4 =

Λ4
2

Λ6
3

∫
d4x
√
−g
[
Λ4

2G4(X)R+ 2G4X(X)
(
�φ2 −∇µ∇νφ∇µ∇νφ

)
− F4(X)

Λ4
2

εαµρλεβνσλ∇αφ∇βφ∇µ∇νφ∇ρ∇σφ
]
, (4.3)

where we have set f = G4 to be in line with the standard notation, satisfies the relations

Xα1 = −Xα2 = 2G4X +XF4 , α3 = −α4 = 2F4 . (4.4)

Then, it is straightforward to realize that (4.4) coincides exactly with our conditions (3.10)

and (3.15): in other words, we found that, up to quadratic order in the second derivatives

of the scalar field, the most general Lagrangian belonging to the WBG class OI has the

form (4.3).

Thus we can conclude that: i) the leading HD operators that we identified do not

propagate extra degrees of freedom, ii) our assumption about quantum stability allowed to

rediscover also theories that have higher order equations of motion, i.e. beyond Horndeski,

without the need to impose any degeneracy condition, iii) among all DHOST theories, only

the subset that we identified in (3.10) and (3.15) seems to be able to consistently provide

order-one effects at phenomenological level around the backgrounds discussed in section 2.

Therefore, within the regime of validity of the effective expansion and barring fine tuning,

DHOST theories that do not satisfy both (3.10) and (3.15), and are therefore in the subset

OII, are typically expected to provide subdominant contributions. We will discuss more

about these points in section 5.

It is worth noticing that the Horndeski type operators, defined by eq. (4.1), are such

that Zµν,ρσ ≡ 0 identically, yielding an exact cancellation at tree level of the vertex (3.12).

This was the guiding principle that we used to identify a specific subset of WBG operators

in [5]. With the analysis of section 3 we have now been able to extend the findings of [5]

including theories (with Zµν,ρσ 6= 0) such that the cancellation occurs at loop level — see

eq. (3.14).

We conclude this section recalling that, after a field redefinition of the type

gµν → g̃µν = A(X,φ)gµν +B(X,φ)
∇µφ∇νφ

Λ4
2

, (4.5)

which is a combination of a conformal and a disformal transformation [26], one can in

principle relate Horndeski and beyond-Horndeski theories to each other [9, 21, 27–29]. In

particular, a Lagrangian of the form (4.3) can be in general re-defined in a theory of the

same type with F̃4 ≡ 0. Nevertheless, whether the two theories are physically equivalent or

not depends on the specific setup under consideration. For instance, this is not the case for

theories that include specific couplings to matter or possess solutions to the background

equations of motion that make the transformation (4.5) singular in certain points and

therefore non-invertible. These are exactly the cases that we are going to present in the

next section.
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5 Phenomenology

So far we have identified the most general WBG class of operators up to quadratic order

in the second derivatives of the scalar field that, thanks to some remnant of galileon’s non-

renormalization theorem (that we proved in section 3), satisfy the power counting OI. In

particular, they are defined by the conditions (3.10) and (3.15) and can be always written

as linear combinations of the so-called Horndeski and beyond-Horndeski operators, turning

the spotlight on this particular subset of the more general class of DHOST theories [24, 25]

as the only phenomenologically relevant ones among all possible scalar-tensor theories that

propagate three degrees of freedom.

In the following we discuss two different examples that make an EFT involving opera-

tors with WBG symmetry particularly interesting form a phenomenological point of view.

5.1 Naturalness in the effective theory of Dark Energy

The recent combination of GW170817 [30] and GRB170817A [31] provides a new corner-

stone in physics. Indeed, the simultaneous observation of gravitational waves and electro-

magnetic radiation from a single astrophysical source allowed to set strong bounds to the

graviton’s speed of propagation cT, which has been measured to be compatible with the

speed of light with deviations at most of the order of 10−15 [32]. In the context of Dark

Energy models, where e.g. a scalar condensate is responsible for the current accelerated

expansion of the Universe spontaneously breaking Lorentz symmetries, this is not a con-

dition that can be given a priori. On the contrary, the observational bound on the speed

of gravitational waves is reflected into severe constraints [10–13, 33] on the couplings in

the EFT of DE [34, 35]. For instance, in the context of shift symmetric theories, the only

operators that are compatible with cT = 1 have been shown to be precisely those given in

eqs. (3.1), (3.2) and (4.3), where G4 and F4 must satisfy in addition 2G4X = XF4 [10–13].

Without any symmetry or non-renormalization property at play in general one expects

order one quantum corrections to the couplings to spoil this condition and all the oper-

ators that have formally been set to zero in the tree level Lagrangian to be generated at

loop level, inducing sizeable deviations from cT = 1. In other words, either higher deriva-

tive operators are always phenomenologically subdominant on cosmological scales or one

could not trust cT = 1 without a fine tuning assumption. In the present work, we have

actually shown that a WBG theory is able to reconcile these two aspects: not only the

operators (3.3) can be as relevant as the ones in (3.1) on the background, but also, thanks

to the properties proved in section 3, the choice cT = 1 is protected against large quantum

corrections. Therefore the relations found by [10–13] in light of the events GW170817 and

GRB170817A do not represent a fine tuning in the theory and could be a theoretically

consistent explanation to the current observations. Indeed, choosing Λ2 ∼ (MPlH0)1/2 and

Λ3 ∼ (MPlH
2
0 )1/3 to have sizeable dark energy effects, according to table 1, we can estimate

δcI

cI
∼
(
H0

MPl

)2/3

∼ 10−40 , (5.1)

which is far below the current sensitivity of the measurement of cT. Operators in the EFT

that induce deviations from cT = 1 are generated at the quantum level but suppressed by
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scales that are a few orders of magnitude larger than the ones associated with the operators

that respect cT = 1, which are therefore the only physically relevant ones.

5.2 Existence and stability of geodesically complete cosmologies

Inflation is known to be past-incomplete [36]. Roughly speaking this means that going

backward in time one has to face a singularity, i.e. a UV completion to General Relativity

is unavoidably required in order to explain the high energy regime at early times. This has

motivated the search for alternative cosmologies that, relying on a violation of the Null

Energy Condition (NEC), are geodesically complete. Whilst being possible to find solutions

to the background equations of motion that describe genesis evolutions [37] and bounces

(for a review see e.g. [38, 39]), the Lagrangian for perturbations in these models typically

display, at some moment in the cosmological history, a gradient instability and/or strong

coupling — see e.g. [40–47]. Albeit many no-go examples, a systematic study of the origin

of the instability and a comprehensive classification of the possible healthy theories were

still lacking so far. In this context, the EFT for single-field FLRW cosmologies [48, 49]

has been proven to be particularly useful [14, 15] to fill this gap. In particular, it has

been shown independently in [14, 15] that the inclusion of beyond-Horndeski operators

in the Lagrangian is sufficient to make the geodesically complete trajectory stable at the

level of perturbations. In this case, what makes the theory non-redefinable to Horndeski

through the transformation (4.5) is the fact that the solution intersects a singular point,

making (4.5) non-invertible [14]. This represents an example of physically inequivalent

theories that can not be mapped to each other by conformal/disformal transformations

(see [50, 51] for explicit covariant formulations).

In this context, the present work goes in the direction of supporting the reliability of

this kind of theories, which seem to play a crucial role in order to have stable NEC violat-

ing cosmologies. Without the non-trivial quantum properties that these theories manifest

according to our previous discussion, it would be hard to trust a solution resulting from the

tuning of the higher derivative operators in the EFT to give a geodesically complete tra-

jectory. Indeed, as we have already emphasized, in the absence of the non-renormalization

theorem, either the higher derivative operators give only subleading corrections (which can-

not be the case if the NEC-violating solution has to be stabilized) or infinitely many terms

in the derivative expansion are expected to equally contribute invalidating the calculability

of any result in the theory.

6 Conclusions and outlook

In this work we have explicitly constructed an EFT for a scalar field coupled to gravity that

contains a set of HD operators which give the dominant contribution to physical observ-

ables, at least around some nontrivial backgrounds. For this to be consistent, the theory

must exhibit some non-renormalization property that prevents large quantum corrections

to spoil the power counting of the different operators: this peculiar behavior is provided

by the presence of an approximate global symmetry, which is therefore a crucial ingredient
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for a robust HD theory. A second condition, if HD interactions can be large, is the ab-

sence of the Ostrogradsky ghost-ljke instability below the UV cutoff of the EFT. We have

derived the most general (up to quadratic order in second derivatives) interactions with

these properties, which turn out to be a particular subset of quadratic DHOST theories.

According to our analysis, this subset, which contains a linear combination of the so-called

Horndeski (H) and beyond-Horndeski (bH) Lagrangians, is the only one where HD play a

significant role when quantum corrections are included.

In the last section we have briefly discussed some implications for models of Dark En-

ergy and for the physics of the early Universe. Mostly motivated by these phenomenological

applications, in constructing the WBG class of theories we only focussed on operators that

are at most quadratic in the second derivatives of the scalar field. However, following the

logic that we have proposed, in principle one could straightforwardly extend the result up

to cubic order and identify the corresponding WBG theory. It would be interesting to

show whether also at this order the requirement of quantum stability is powerful enough to

enforce the degeneracy condition of cubic DHOST theories [52], without the need of extra

assumptions. This is not obvious a priori because it is known that when both quadratic

and cubic H + bH are present together the degeneracy is broken and therefore the ghost

propagates again [24, 29]. This analysis is left for future work.

Throughout the construction presented in the paper, we never made any specific as-

sumptions about the couplings cI. On the other hand, it is well known [53] that, if the un-

derlying UV completion is Lorentz invariant, local and causal, valuable information about

the sign of cI can be inferred from the analytic properties of the S-matrix. Moreover,

in certain cases (e.g. galileon and massive gravity) the analysis can be extended beyond

positivity constraints and employed to derive bounds on the cutoff scale or on the effective

couplings [40, 54, 55]. Since known results cannot be straightforwardly applied to the case

of scalar theories coupled to a massless graviton (see [55]), it would be interesting to look for

a generalization of these techniques and see whether in WBG theories one can infer addi-

tional constraints, for instance on the parametric separation between the scales Λ2 and Λ3.
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A Decoupling limit

The results that we have presented in the main text and derived in appendix B are general

and do not rely on the specific form of the functions αi(X) in (3.5). In particular, they

hold irrespective of the existence of any well defined decoupling limit, i.e. a regime where

the mixing with the metric can be safely neglected. Nevertheless, it may be useful to
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understand what the scalar theory looks like if there exists a limit in which gravity can be

turned off.

In this section, we will assume that the functions αi(X) are analytic around X = 0

and we will consider the limit

MPl →∞ , Λ2 →∞ , Λ3 = constant , (A.1)

in the WBG class. In particular we expect to recover the flat-space galileon Lagrangian

of [1] where the galileon symmetry φ → φ + c + bµx
µ is exactly recovered and the non-

renormalization theorem becomes an exact statement, namely quantum corrections to the

couplings of (∂φ)2n are zero identically while only the trivially galileon invariant operators

∂m(∂2φ)n get renormalized.

Let us start from the general action (3.3). In the limit (A.1) it becomes

Sdec. limit
4,φ =

∫
d4x

1

Λ6
3

[
α1(∂φ)2∂µ∂νφ∂

µ∂νφ+ α2(∂φ)2(�φ)2

+ α3∂
µφ∂νφ∂µ∂νφ�φ+ α4∂

µφ∂νφ∂µ∂ρφ∂ν∂
ρφ
]
, (A.2)

where now the functions αi are computed at X = 0. After simple integrations by parts,

Sdec. limit
4,φ =

∫
d4x

1

Λ6
3

[(
α1 −

α4

2

)
(∂φ)2∂µ∂νφ∂

µ∂νφ

+
(
α2 −

α3

2

)
(∂φ)2(�φ)2 − 1

2
(α3 + α4)(∂φ)2∂µφ∂µ�φ

]
. (A.3)

Then it is clear that the quartic galileon Lagrangian [1] is recovered if

α1(0) = −α2(0) , α3(0) = −α4(0) , (A.4)

at the leading order in the expansion around X = 0. Notice that eqs. (A.4) are a particular

case of (3.10), fixing the value of the αi’s in the single point X = 0.

We conclude stressing again that, not only the conditions (3.10) turn out to be stronger

than those in eq. (A.4), but they are also more general in the sense that they do not rely

on any assumption about the expandability around X = 0. The results of section 3 remain

true even if there is no limit in which the standard flat-space galileons are recovered.

B The non-renormalization theorem

In this appendix we derive explicitly the condition (3.15), which, together with (3.10),

defines the operators of type (3.3) that belong to the class OI. In particular we are inter-

ested in the next-to-leading order in the expansion gµν = ηµν +
hµν
MPl

, since we have already

discussed the exactly flat spacetime limit in the main text.

First, we show that, if (3.9) holds, quantum corrections to the operators in (3.3)

involving external gravitons are always suppressed by Λ3/MPl, in agreement with the cor-

responding power counting of table 1.7 To this end, it is useful to re-write the second term

7We thank P. Creminelli, M. Lewandowski, G. Tambalo and F. Vernizzi for a nice discussion related to

this point.
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in (3.3) as

Cµν,ρσ∇µ∇νφ∇ρ∇σφ = −(∇ρCµν,ρσ)∇µ∇νφ∇σφ− Cµν,ρσRλνρµ∇λφ∇σφ
= (∇[µ∇ρ]C

µν,ρσ)∇νφ∇σφ− Cµν,ρσRλνρµ∇λφ∇σφ ,
(B.1)

where we integrated the covariant derivatives by parts and used the antisymmetry condi-

tion (3.9). This makes transparent that all the operators in (3.3) satisfying (3.9) can be

recast in a form in which they are linear in the Riemann tensor. Since it contains two

derivatives acting on the graviton line, it is easy now to understand why loop corrections

are suppressed by at least Λ3/MPl.

Then, we shall focus on quantum mechanically generated loop diagrams that involve

one graviton internal line. These will provide the leading corrections to the couplings δcI:

diagrams with more internal gravitons are more severely suppressed by higher powers of

1/MPl. We start with some useful formulae: expanding up to linear order in hµν , we find

∇ρ∇σφ = − 1

2MPl
(∂ρhτσ + ∂σhτρ − ∂τhρσ) ∂τφ+ . . . (B.2)

√
−gfR =

2fX
Λ4

2

hρσ

MPl
∂τφ (∂ρ∂σ − ηρσ�) ∂τφ+ . . . (B.3)

where in the dots we are dropping total derivatives, terms with fewer factors of ∂φ and

higher orders in 1/MPl. Then,

Cµν,ρσ∇µ∇νφ∇ρ∇σφ =
1

MPl
Cµν,ρσ∂τφ (hτσ∂ρ + hτρ∂σ − hρσ∂τ ) ∂µ∂νφ+ . . . (B.4)

Using the antisymmetry conditions (3.9), eq. (B.4) simply reads

Cµν,ρσ∇µ∇νφ∇ρ∇σφ = − 1

MPl
Cµν,ρσhρσ∂

τφ∂τ∂µ∂νφ+ . . . (B.5)

Plugging into (3.3),

S4 =

∫
d4x

[
hρσ∂

τφ

Λ3
3

Zµν,ρσ∂µ∂ν∂τφ+ . . .

]
, (B.6)

where we defined

Zµν,ρσ ≡ fX (ηµρηνσ + ηµσηνρ − 2ηµνηρσ)− Cµν,ρσ. (B.7)

As mentioned in the main text, for the Horndeski class (α1 = −α2 = 2fX/X, α3 = −α4 =

0) the vertex (B.6) cancels exactly at tree level, i.e. Zµν,ρσ ≡ 0 [5]. For other theories

admitted by (3.10), including beyond-Horndeski (f = 1/2, α1 = −α2 = 2α3 = −2α4),

there may be instead a cancellation at loop level, defining the most general class of WBG

theories.

As an illustrative example, let us focus on the loop generated operators (∇φ)2n. The

leading corrections are provided by loop diagrams involving two vertices of type (3.12)8

with hρσ and ∂3φ as internal lines (see figure 2). Unless some cancellations of the types

8It is easy to show that loop diagrams involving one vertex of type (3.12) and one vertex of type (3.2)

are identically zero if (3.10) holds, leading automatically to the estimation in table 1.
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Figure 2. One-loop diagram with a single internal graviton line that potentially gives large quan-

tum corrections to the operator (∂φ)2n. Again the internal dashed line represents the scalar legs

with more than one derivative.

advocated above occur, by simple dimensional analysis, such quantum corrections are in

the form (3.8) and do not generically fit in the WBG class. However, it is possible to find

a general condition such that these unwanted corrections turn out to be identically zero,

making the estimation (2.7) the dominant contribution and defining therefore the most

general WBG theory at quadratic order in ∇∇φ. Using

Dµν,ρσ(q2) =
−i
2q2

(ηµρηνσ + ηµσηνρ − ηµνηρσ) (B.8)

for the massless graviton propagator in (3 + 1)-dimensions, the loop integral in figure 2

takes on schematically the form

∼
∫

d4q

(2π)4
∂τ1φ∂τ2φ

qα1qα2qβ1qβ2q
τ1qτ2

q4
Zα1β1,ρ1σ1Zα2β2,ρ2σ2

× (ηρ1ρ2ησ1σ2 + ηρ1σ2ησ1ρ2 − ηρ1σ1ηρ2σ2) + . . . , (B.9)

where q is the internal momentum running over ∂3φ and where in the dots we are dropping

terms that are higher orders in the external momenta and therefore do not renormalize

(∇φ)2n. Notice that depending on the number of internal legs and the loop order there

might be multiple integrals in (B.9).9 In other words, the loop correction will in general

look more complicated than the schematic expression that we have reported in (B.9).

Nevertheless, for our purposes, only the index contractions among the Z-tensors and the

graviton propagator, that we have highlighted in (B.9), turn out to be relevant. Indeed,

after straightforward algebraic simplifications, eq. (B.9) becomes

∼− 1

4

∫
d4q

(2π)4
∂τ1φ∂τ2φ

qτ1qτ2

q2
(4fX + 2Xα2 +Xα3)

×
[
4α3 (qµ∂µφ)2 + (12fX + 6Xα2 −Xα3) q2

]
+ . . . . (B.10)

Notice that the relative coefficients that enter the combination in the second line of (B.10)

will depend on the the specific loop diagram under consideration, while the term in paren-

thesis in the the first line always provides the same overall factor. Therefore, the loop (B.10)

is identically zero if and only if

4fX + 2Xα2 +Xα3 = 0 , (B.11)

which is condition (3.15).

9Additional external/internal momenta have been left unexpressed in Zαβ,ρσ(X).
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