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5 Argyres-Douglas theories 30

5.1 (A1, A2n) theories: trivial Higgs branch 31

5.2 (A1, D2n+1) theories: C
2/Z2 Higgs branches 32

5.3 (A1, A2n−1) theories: Kleinian singularities for Higgs branches 34

5.3.1 (A1, A5): Bershadsky Polyakov 36

5.3.2 (A1, A7): first generalized Bershadsky-Polyakov 38

5.3.3 (A1, A2n−1) for n > 5 40

5.4 (A1, D2n+2) theories: Slodowy slices to nilpotent orbits 41

6 Further results 43

6.1 A1 class S 43

6.2 N = 4 super Yang-Mills 46

6.2.1 su(2) gauge algebra 47

6.2.2 Comments on the general case 49

6.3 T4 theory 50

– i –



J
H
E
P
0
8
(
2
0
1
8
)
1
1
4

A Modular forms and linear modular differential operators 51

A.1 Theta functions 52

A.2 Eisenstein series 53

A.3 Twisted Eisenstein series 54

A.4 Modular differential operators 55

B Trace recursion relations 56

B.1 Vertex operator algebras and torus n-point functions 56

B.2 Square brackets 57

B.3 Recursion relations for torus one-point functions 58

B.4 Stress tensor trace formulae 59

C Characters for the Deligne-Cvitanović exceptional series 60
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1 Introduction and summary

In [1], a new algebraic invariant of four-dimensional N = 2 superconformal field theories

(SCFTs) was introduced— a vertex operator algebra (VOA) that encodes the spectrum and

OPE coefficients of Schur operators.1 The connection between four-dimensional operator

algebras and VOAs provides a powerful framework for the analysis of four-dimensional

strongly interacting SCFTs. It also leads to surprising predictions for a large new class

of VOAs. For example, the rigidity of VOAs generated by affine currents, supercurrents,

and stress tensors makes it possible to establish novel unitarity bounds for flavor central

charges and Weyl anomaly coefficients [1–5] and has provided important input into the

numerical superconformal bootstrap program in four (and six) dimensions [4, 6–9]. On

the other hand, established results concerning the duality web of N = 2 SCFTs of class

S imply the existence of a remarkable family of two-dimensional TQFTs valued in vertex

operator algebras [10].

An important class of questions regarding these VOAs pertains to whether and how

they reflect better-understood features of their parent four-dimensional theories. For ex-

ample, N = 2 SCFTs come equipped with moduli spaces of vacua — roughly speaking the

union of a Higgs branch and a Coulomb branch, though there may be nontrivial intersec-

tions between the two — and in many instances the structure of these finite-dimensional

spaces is highly accessible even when other aspects of the theory are not. Furthermore, the

low energy dynamics at smooth points in the moduli space of vacua are often tractable.

Indeed, interesting steps towards relating moduli space physics to the associated VOA have

1For succinctness we adopt the terminology “vertex operator algebra” throughout this work, though in

many instances it would be more accurate to write vertex operator superalgebra.
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been taken in [11–13], where the spectrum of BPS states on the Coulomb branch has been

related to the Schur index of the interacting SCFT.

The focus of the present paper is the relationship between the associated VOA and the

Higgs branch of vacua of an N = 2 SCFT. That some relation should exist is prima facie

plausible since it was shown in [1] that generators of the Higgs chiral ring must descend to

(strong) generators of the associated VOA. Indeed, in several of the examples presented in

that work it was found that the generators of the VOA were in one-to-one correspondence

with those of the Higgs chiral ring. However, in that same work examples were presented

wherein some VOA generators were unrelated to any familiar chiral ring operators. This

suggests that the identification of Higgs branch operators must be at least somewhat nu-

anced. It would be useful to know whether there is exists a sharp characterization of the

relationship between the Higgs branch and the VOA that can be formulated intrinsically

in terms of the VOA. Abstractly, such a relationship should amount to an operation that

takes as its argument a vertex operator algebra and returns a commutative, associative,

C-algebra. Better yet, since the Higgs branch is holomorphic symplectic, one may hope

that the operation will additionally return the holomorphic Poisson bracket.2

We propose that such an operation does indeed exist and can be formulated purely in

the language of the VOA. That there exists some operation to turn VOAs into commutative

associative algebras has been well known at least since the work of Zhu [14]. The resulting

algebra is sometimes referred to as “Zhu’s commutative algebra” or “Zhu’s C2 algebra” or,

as we shall refer to it in this paper, “the C2 algebra”. In fact, the C2 algebra automatically

comes equipped with a Poisson bracket, so this is an immediate candidate for the Higgs

chiral ring as a Poisson algebra. However, it is easy to see that this naive proposal fails. In

particular, all strong generators of a VOA necessarily descend to nontrivial generators of

the C2 algebra, but we know that in many examples only a strict subset of these operators

correspond to operators in the Higgs chiral ring.

A hint towards the correct prescription comes from the empirical fact (provable in

Lagrangian theories) that the Higgs chiral ring is not just a commutative, associative C-

algebra; it is a reduced commutative, associative C-algebra. This is to say, the Higgs branch

is an algebraic variety and the Higgs chiral ring is the coordinate ring of that variety. On

the other hand, the C2 algebra has no a priori reason to be reduced, and indeed in many

examples of interest (including any C2 co-finite vertex operator algebra, about which more

later) they are not. Our proposal is that this is the only obstruction to identifying the C2

algebra with the Higgs chiral ring, so it should simply be corrected by reducing the C2 alge-

bra.3 What we are proposing, then, is that the Higgs branch is equivalent to the associated

variety of the VOA, as introduced by Arakawa in [15].4 In fact, the reduced C2 algebra is

still Poisson, and we propose that it will match the Higgs chiral ring as a Poisson algebra.

2One could in principle hope to recover the construction of the full hyperkähler structure on the Higgs

branch. We do not discuss this possibility in the present work.
3We recall that the operation of reducing a commutative algebra is well defined. It amounts to passing

to the quotient with respect to the nilradical, which is the unique ideal comprising all nilpotent elements

of the original algebra.
4This conjecture was originally announced in [16], and has since been featured in a number of

papers [17, 18].
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A simple argument based on selection rules shows that as a vector space the Higgs chiral

ring always injects into the C2 algebra. The more nontrivial part of the conjecture is that

every complementary element of the C2 algebra must be nilpotent. In particular, any C2

algebra generator that is not related to a Higgs chiral ring generator should be nilpotent.

This nilpotency requirement is nontrivial and requires that the vacuum Verma module

built from the strong VOA generators contains certain null vectors. This is particularly

interesting because nontrivial null vectors in the vacuum Verma module of a VOA often

lead to nice simplifications at the level of observables and representation theory, and this

is the second major subject of our study.

We focus our attention on a particular type of null vector that must always be present if

our characterization of the Higgs branch is to hold. This is the null vector that is responsible

for the stress tensor being nilpotent in the C2 algebra. As we review in section 3, null

vectors of this type are known in many (possibly all) instances to give rise to linear modular

differential equations (LMDEs) that are satisfied by the (super)characters of sufficiently

nice VOA modules, the vacuum module in particular.

The existence of a finite order linear modular differential operator (LMDO) that anni-

hilates the vacuum character of a VOA has important consequences for the modular prop-

erties of the character. In the case at hand, we are discovering good modular properties for

the (unflavored) Schur limit of the superconformal index of the parent SCFT. The modular

properties of this limit of the index were previously investigated in [19], but here we will see

a more specific structure. In particular, the unflavored Schur index transforms as a vector-

valued (quasi-)modular form of weight zero under PSL(2,Z) or Γ0(2) ⊂ PSL(2,Z), depend-

ing on whether the vacuum character is an expansion in integer or half-integer powers of q.

The modular equation for the unflavored Schur index can also be upgraded to include fugac-

ities for flavor symmetries in the index [20]. It is an interesting question whether these prop-

erties of the Schur index could be proven independently of considerations of specific null vec-

tors, perhaps by a clever analysis of the S3×S1 partition function that computes the index.

The relationship between null vectors of the type we are considering and modular

equations has a somewhat complicated history [21–23]. However, recent work of Arakawa

and Kawasetsu proves that when the associated variety of a VOA is symplectic,5 then an

LMDE for the vacuum character is guaranteed [17]. Thus the existence of an LMDE for

the Schur index is a consequence of our conjecture that the Higgs branch is the associated

variety. In general it is much easier to test for the existence of an LMDE (of order less

than some chosen number) that annihilates the Schur index than it is to determine the

associated variety of the associated VOA. This then gives us a useful consistency check for

our conjecture in many examples.

Having control of the modular behavior of the index also allows for a connection with

the so-called “Cardy behavior” of the index, i.e., the scaling of the index as q → 1 [24].

A generalization of the anomaly-based arguments of [24] suggests that in this limit the

scaling of the index should be determined by the a4d and c4d Weyl anomaly coefficients of

5More precisely, the associated variety — which may not be smooth — should have finitely many

symplectic leaves.
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the SCFT [25–27] (see also [28]) according to

lim
q→1

I(q) ∼ e
8π2

β
(c4d−a4d) , (1.1)

where q ≡ exp(−β). The Weyl anomaly coefficient a4d has previously been largely absent

from discussions of the associated VOA of an N = 2 SCFT. We see here that this coefficient

makes itself known by way of the non-vacuum modules of the associated VOA whose

characters transform among themselves under modular transformations.

These ideas are investigated to varying degrees in an extensive set of examples. An

exceptionally well-behaved set of examples are the rank-one theories that are engineered

by placing a single D3 brane at an N = 2 F -theory singularity. In fact, as was observed

in [1], from the point of view of the associated VOA it is natural to extend these theories to

include two proposed new theories with g2 and f4 flavor symmetry, respectively. For these

theories, our identification of the Higgs branch with the associated variety of the associated

VOA has been proven fairly recently in the mathematics literature [29]. Furthermore, the

modular differential operator that annihilates the Schur index of these theories can be

determined and solved exactly.

We also consider four infinite families of Argyres-Douglas SCFTs. The first series,

known as the (A1, A2n) theories, all have no Higgs branch of vacua. By our identification

of the Higgs branch, the associated VOAs should be C2 co-finite. Indeed, the VOAs for

these SCFTs have previously been identified [30] as the Virasoro VOA at the values of the

central charge appropriate for the (2, 2n + 3) non-unitary minimal models. The second

series, known as the (A1, D2n+1) theories, all have Higgs branches given by the simplest

canonical singularity C2/Z2. The associated VOAs for these theories are su(2) affine current

algebras at levels −4n/(2n + 1). In particular, these are admissible levels, and a result

of [31] establishes that the associated variety for these VOAs indeed matches the Higgs

branch. We further consider the (A1, A2n−1) theories, which have as their Higgs branches

the A-series of canonical singularities, C2/Zn. We propose that the associated VOAs

for these theories are the generalized Bershadsky-Polyakov algebras of [32–35] at specific

values of the central charge. The identification of the Higgs branch with the associated

variety for these algebras follows from results in [31]. Finally, we address the (A1, D2n+2)

theories. We find a representation of the Higgs branches of these theories as quiver varieties

using three-dimensional mirror symmetry. The associated VOAs for these theories were

identified in [36] as certain sl(n + 2) quantum Drinfel’d-Sokolov reductions associated to

sub-subregular nilpotent orbits, and by appealing to a theorem of Maffei [37] we verify that

the associated varieties of these vertex algebras match the aforementioned quiver varieties.

We further investigate the existence of LMDEs for the unflavored Schur index of a large

class of additional SCFTs. These include class S theories of A1 type andN = 4 super Yang-

Mills theories with low-rank gauge groups, in addition to the rank-three trinion theory T4.

For these theories we have for the most part made no effort to explicitly compute the null

vectors that gives rise to the differential equations or to determine the associated variety.

We take the successful discovery of an LMDE as suggestive evidence for our overall picture.
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We also comment on some curious patterns in the orders of the LMDEs and the structure

of their solutions for the theories we have studied.

2 Vertex operator algebras and the Higgs branch

We start by reviewing some essential aspects of the correspondence between vertex operator

algebras and four-dimensional N = 2 superconformal field theories (see [1] and [10] for a

more complete treatment). Given an N = 2 SCFT, the associated VOA is recovered

by passing to the cohomology of a certain nilpotent fermionic generator of the N = 2

superconformal algebra su(2, 2|2), which in the conventions of [1] is given by

Q = Q1
− + S̃2−̇ . (2.1)

The nontrivial cohomology classes of local operators inserted at the origin (z = z̄ = w =

w̄ = 0) have canonical representatives which are the Schur operators [38]. These are local

operators whose quantum numbers satisfy the relations6

E − (j1 + j2)− 2R = 0 ,

r + j1 − j2 = 0 ,
(2.2)

where E is the conformal dimension and (j1, j2, R, r) are eigenvalues with respect to appro-

priate Cartan elements of su(2)1×su(2)2×su(2)R×u(1)r, respectively.
7 Schur operators are

singled out by the fact that they contribute to the Schur limit of the superconformal index.

Equivalently, they are operators that are nontrivially annihilated by Q1
− and Q̃2−̇. Schur

operators are always the highest weight states of their respective su(2)1 × su(2)2 × su(2)R
modules. The various (unitary) supermultiplets that contain Schur operators and the po-

sitioning of Schur operators within those multiplets is summarized in table 1.

Finite linear combinations of local operators inserted away from the origin cannot

define nontrivial Q-cohomology classes unless w = w̄ = 0. A canonical choice of repre-

sentatives for local operators inserted on the w = w̄ = 0 plane, C[z,z̄], is given by twisted

translated Schur operators,

O(z) ≡ ezL−1+z̄(L−1+R−)OSch(0)e
−zL−1−z̄(L−1+R−) , (2.3)

where L−1 and L̄−1 are the generators of holomorphic and antiholomorphic translations

in C[z,z̄], R
− is the lowering operator of su(2)R, and OSch(z, z̄) is a Schur operator. The

OPE of twisted-translated Schur operators, taken at the level of Q-cohomology, is sl(2)z
covariant and sl(2)z̄ invariant, with the holomorphic dimension of the twisted-translated

operator O(z) being determined in terms of the quantum numbers of the corresponding

Schur operator according to

[L0,O(z)] = hO(z) , h =
E + j1 + j2

2
= E −R . (2.4)

6The first condition in (2.2) implies the second for representations of su(2, 2|2) that can appear in

unitary superconformal theories [1].
7We are adopting conventions where the complex coordinates z and w transform with weights (j1, j2) =

(+ 1
2
,+ 1

2
) and (j1, j2) = (+ 1

2
,− 1

2
), respectively.
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Multiplet OSchur h r Lagrangian “letters”

B̂R Ψ11...1 R 0 Q, Q̃

DR(0,j2) Q̃1
+̇
Ψ11...1

+̇...+̇
R+ j2 + 1 j2 +

1
2 Q, Q̃, λ̃1

+̇

D̄R(j1,0) Q1
+Ψ

11...1
+···+ R+ j1 + 1 −j1 − 1

2 Q, Q̃, λ1
+

ĈR(j1,j2) Q1
+Q̃1

+̇
Ψ11...1

+···++̇...+̇
R+ j1 + j2 + 2 j2 − j1 Dn

++̇
Q, Dn

++̇
Q̃, Dn

++̇
λ1
+, D

n
++̇

λ̃1
+̇

Table 1. Summary of the appearance of Schur operators in short multiplets of the N = 2 supercon-

formal algebra, su(2, 2|2). The superconformal primary in a supermultiplet is denoted by Ψ. There

is a single conformal primary Schur operator OSchur in each listed superconformal multiplet. The

holomorphic dimension h and U(1)r charge r of OSchur are given in terms of the quantum numbers

(R, j1, j2) that label the shortened multiplet (left-most column). The schematic form that OSchur

can take in a Lagrangian theory is also indicated in terms of the elementary “letters” from which

the operator may be built. The complex scalar fields in a hypermultiplet are denoted by Q and Q̃,

while the left- and right-handed fermions in a vector multiplet are denoted by λI
α and λ̃I

α̇. Gauge

covariant derivatives are denoted by Dαα̇.

This holomorphic OPE endows the vector space of Schur operators with the structure of a

vertex operator algebra.

It immediately follows from (2.2) and (2.4) that the conformal grading of the VOA

is 1
2Z>0-valued and the only operator with h = 0 is the identity operator. In any N = 2

SCFT that possesses an energy-momentum tensor, the associated VOA will have its sl(2)z
symmetry further enhanced to Virasoro symmetry with central charge determined by the

Weyl anomaly coefficient c4d of the four-dimensional parent according to c2d = −12c4d.

Thus for every local N = 2 SCFT the associated VOA has a Virasoro subalgebra that

enhances sl(2)z.

The VOA operator product does not conserve su(2)R charge due to the twisted transla-

tion construction, but u(1)r charge is conserved. However, the u(1)r symmetry is a nonlocal

symmetry in the VOA, in the sense that there is no local VOA current that generates u(1)r
rotations. Finally, we point out that in general, Schur operators may be fermionic, so the

VOA may actually be a vertex operator superalgebra. Note, though, that both bosonic

and fermionic Schur operators may have conformal weights that are either integers or half

integers. In summary:

The VOA associated to an N = 2 SCFT is a 1
2Z>0 graded, conformal vertex

operator (super)algebra with a nonlocal U(1)r symmetry; its underlying vector

space is canonically isomorphic as a 1
2Z>0× 1

2Z graded vector superspace to the

space of Schur operators.

2.1 Higgs and Hall-Littlewood chiral rings

Some Schur operators also survive more restrictive and algebraically simpler reductions of

the SCFT operator algebra. A case of particular importance is that of the B̂R operators

detailed in the first row of table 1. These obey a more stringent shortening condition

E = 2R, which implies that they are non-trivially annihilated by the four supercharges Q1
α

– 6 –
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and Q̃2α̇ instead of the usual two for Schur operators. Operators obeying this shortening

condition form a commutative, associative C-algebra known as the Higgs chiral ring, which

we denote in this work as RH .8

This terminology is related to the general expectation that RH will always be the

coordinate ring of the Higgs branch of the theory, which we denote byMH .9 Recall that the

coordinate ring R of a complex affine variety M is a finitely generated, reduced C-algebra

from which the variety can be uniquely reconstructed (as a scheme) M = SpecR.10 In the

interest of keeping track of our assumptions, we will formalize this lore as the following

Conjecture 1 (Geometrization of the Higgs chiral ring) In any N = 2 SCFT, the

Higgs chiral ring RH is a finitely generated, reduced C-algebra. Furthermore, RH is the

coordinate ring of the Higgs branch MH of the moduli space of vacua, i.e.,

MH = SpecRH , RH = C[MH ] . (2.5)

Implicit in this conjecture is the expectation that the Higgs branch is always an affine

complex algebraic variety. Both of these conjectures are easily verified in theories with

Lagrangian descriptions and both are generally believed to always be true. We will take

these conjectures as assumptions without further comment.

The Higgs branch operators are prominent members of the associated VOA. Super-

conformal selection rules dictate that every generator of the Higgs chiral ring gives rise to

a strong VOA generator. The strong generators of a VOA are by definition those operators

that cannot appear as a non-singular term in any OPE, i.e., they cannot be written as the

normally-ordered product of other operators. The strong generators of a VOA and their

singular operator product coefficients completely characterize the VOA.11 Additionally, all

Higgs chiral ring operators give rise to VOA operators that are Virasoro primary operators

in the case where the four-dimensional theory is local so there is a local VOA stress tensor.

8The Higgs chiral ring can be defined by passing to the simultaneous cohomology of the four super-

charges Q1
α, Q̃2α̇. This means we consider the subset of operators that are annihilated by all four of these

supercharges, modulo those operators that are exact with respect to at least one linear combination of

the supercharges and are annihilated by all combinations. Multiplication in the chiral ring is defined by

taking the usual OPE and working at the level of this simultaneous cohomology, whereupon the insertion

point becomes irrelevant. Alternatively, it can be defined by taking the coincident limit of the OPE, which

is guaranteed to be non-singular for these operators by unitarity bounds and su(2)R conservation. This

is a consistent truncation of the usual N = 1 chiral ring, which is the simultaneous cohomology of two

supercharges of the same chirality, say Q1
α.

9In this work, what we call the Higgs branch is the subspace of the full moduli space of the theory where

the UV su(2)R symmetry is broken. This may include so-called “mixed branches”, where the low energy

effective theory includes an unbroken Abelian gauge symmetry, as well as subspaces of the moduli space

where the low energy theory is still a nontrivial interacting SCFT.
10For convenience we recall some basic terminology of commutative algebra. A C-algebra is a ring

containing the complex numbers as a subring. A ring is said to be reduced if it has no nilpotent elements.

The spectrum of a ring is the set of its prime ideals, endowed with the Zariski topology and a structure

sheaf making it into a scheme. When dealing with the coordinate ring of an affine variety, the variety can

be recovered from the scheme by restricting to closed points.
11Strictly speaking, if there are null vectors in the Verma module built from the Fourier coefficients of

the strong VOA generators, then one has a choice of whether or not to quotient by them. In the present

setting we always remove null states, passing to the unique simple quotient of the Verma module.

– 7 –
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The second and third rows of table 1 detail more general N = 1 chiral and anti-chiral

ring operators that participate in the VOA — the so-called Hall-Littlewood chiral ring

operators [38]. As was the case for Higgs branch operators, the Hall-Littlewood chiral ring

operators admit a commutative, associative multiplication that can be defined by either

taking the coincident limit of the OPE or by working in the simultaneous cohomology of

three supercharges. This commutative associative algebra is known as the Hall-Littlewood

chiral ring, and we denote it as RHL. The Hall-Littlewood chiral ring is spanned by

the Higgs chiral ring operators in addition to operators lying in D̄ type multiplets, while

the Hall-Littlewood anti-chiral ring is spanned by the Higgs chiral ring operators along

with operators lying in D type multiplets. It is believed (and demonstrable in Lagrangian

theories) that D and D̄ multiplets are only present in the spectrum of an SCFT for which

there are free Abelian gauge fields present in the low energy effective theory at generic

(smooth) points of the Higgs branch. In the case when there are no smooth points on the

Higgs branch, there is no clear expectation. As with the Higgs chiral ring, VOA operators

associated to generators of the Hall-Littlewood chiral ring are required by superconformal

selection rules to be strong VOA generators, and additionally all Hall-Littlewood VOA

operators must be Virasoro primary operators.

From table 1 it is clear that in a Lagrangian theory, the Hall-Littlewood chiral ring

operators that are not a part of the Higgs branch chiral ring are operators that include

the positive helicity components of the gauginos λ1
+ and λ̃1

+̇
. This has the interesting

consequence that in any Lagrangian theory, the additional elements of the Hall-Littlewood

chiral ring that are not Higgs branch operators will all be nilpotent as a consequence of

being constructed out of elementary fermionic fields. Indeed, in light of our conjecture

on the geometrization of the Higgs chiral ring, we expect the additional Hall-Littlewood

operators coming from D̄ multiplets to be all of the nilpotent elements of RHL, in which

case we have the relation

RH = (RHL)red. . (2.6)

Finally, we emphasize that in addition to the operators mentioned above that have

interesting lives outside of the VOA, there are many more operators that are not members

of any conventionally defined chiral ring. The fourth row of table 1 details the most

general types of Schur operators, which obey less standard shortening conditions. The

most important operator in this class is the conserved current for su(2)R, which belongs to

the stress-tensor multiplet Ĉ0(0,0) and is universally present in local N = 2 SCFTs. Notably

absent from the list of Schur operators are the half-BPS operators in the Coulomb branch

chiral ring, which obey the shortening condition ∆ = |r|.
This quick overview of Schur operators reveals that the VOA has a close connection to

the Higgs branch with little obvious connection to the Coulomb branch, but it also captures

a much larger set of operators and observables than the Higgs branch chiral ring. A natural

question that arises is whether the VOA operators descending from the Higgs branch chiral

ring are in any way special in the VOA — given the VOA V , is it possible to reconstruct the

Higgs chiral ring RH , and therefore the Higgs branch MH? The answer is not immediate.

From the two-dimensional viewpoint, there is no obvious distinction between operators
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that descend from B̂ type operators those that descend from the other kinds of protected

multiplets shown in table 1. In particular, we have seen D and D̄ operators can also give

rise to strong generators of V , and in fact (as seen in concrete examples) Ĉ operators can

give strong generators as well. So at the very least, focusing on generators does not appear

to be a sufficient strategy.

2.2 VOA embedding of the Higgs chiral ring

We wish to understand the embedding of the Higgs chiral ring into the associated VOA.

We first introduce some general VOA constructions and notation.

2.2.1 VOA generalities

Consider a general 1
2Z+-graded conformal VOA. The underlying vector space V is spanned

by an infinite set of states ai each of which defines a vertex operator via the vertex operator

map,

ai 7−→ ai(z) =
∞∑

n=−∞

ai(−hi−n)z
n , (2.7)

where the ai(n) ∈ End(V) and hi is the conformal dimension of ai. There is a unique vacuum

vector Ω of dimension zero such that a state is recovered by acting on the vacuum by the

appropriate mode in its Fourier expansion,

ai = lim
z→0

ai(z)Ω = ai(−hi)
Ω . (2.8)

In addition to the usual OPE algebra on V , one may consider the non-commutative, non-

associative algebra defined by the normally-ordered product,

NO : V × V → V ,

NO : (a, b) 7→ a−ha
b−hb

Ω .
(2.9)

It is a standard construction to further define a secondary operation denoted as a bracket,

{a, b} := a−ha+1b ≡
∮ (

dz

2πi
a(z)b(0)

)
Ω , (2.10)

where Ω is the vacuum state in the VOA. The operation {a, · } is easily shown by a contour

integration argument to be a derivation with respect to the normally-ordered product,

{a,NO(b, c)} = NO(b, {a, c}) + NO({a, b}, c) . (2.11)

2.2.2 su(2)R filtration and the associated graded

For the VOAs associated to N = 2 SCFTs, the underlying vector space V is the space

of Schur operators. In particular, this vector space has a triple grading by (h,R, r) ∈
1
2Z+ × 1

2Z+ × 1
2Z,

V =
⊕

h,R,r

Vh,R,r . (2.12)
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The normally-ordered product preserves h and r but not R, making the R grading unnat-

ural from the point of view of the VOA structure. However, the specifics of the twisted

translation construction implies that R-charge violation occurs with a definite sign,

NO(Vh1,R1,r1 ,Vh2,R2,r2) ⊆
⊕

k>0

Vh1+h2,R1+R2−k,r1+r2 . (2.13)

Consequently, there is a filtration by R that is preserved by the normally-ordered product.

That is, if we define,

Fh,R,r =
⊕

k>0

Vh,R−k,r , (2.14)

then we have the following filtered property for normally-ordered multiplication,

NO(Fh1,R1,r1 ,Fh2,R2,r2) ⊆ Fh1+h2,R1+R2,r1+r2 . (2.15)

In addition, the bracket operation obeys

{Fh,R,r,Fh′,R′,r′} ⊆ Fh+h′−1,R+R′−1,r+r′ , (2.16)

so, the bracket is filtered of tri-degree (−1,−1, 0).

Though the normally-ordered product and bracket are in general quite complicated

operations, they behave quite will with respect to this filtration. In particular, for the

normally-ordered product we have the following properties for the commutator and asso-

ciator,

[Fh1,R1,r1 ,Fh2,R2,r2 ]NO ⊆ Fh1+h2,R1+R2−1,r1+r2 ,

[Fh1,R1,r1 ,Fh2,R2,r2 ,Fh3,R3,r3 ]NO ⊆ Fh1+h2+h3,R1+R2+R3−1,r1+r2+r3 .
(2.17)

Furthermore the symmetrizer and the jacobiator of the bracket obey

{Fh,R,r,Fh′,R′,r′}+ ⊆ Fh+h′−1,R+R′−2,r+r′ ,

{Fh,R,r,Fh′,R′,r′ ,Fh′′,R′′,r′′} ⊆ Fh+h′+h′′−2,R+R′+R′′−3,r+r′+r′′ .
(2.18)

These properties become very useful upon passing to the associated graded of our filtered

VOA,

grFV =
⊕

h,R,r

Gh,R,r , Gh,R,r = Fh,R,r/Fh,R−1,r . (2.19)

On this space, which is isomorphic as a vector space to V , the normally-ordered product

induces a grade-preserving (with respect to all the gradings) commutative, associative

product, and the bracket induces an anti-symmetric bracket of tri-degree (−1,−1, 0) that

obeys the Jacobi identity. Combined with the derivation property (2.11), we have a Poisson

algebra structure on grFV .12

12In fact, there is a more elaborate structure that arises on this graded space due, for example, to the

presence of the spatial derivative ∂ = L−1, which acts on grFV as a derivation of tri-degree (1, 0, 0). This

should make grFV into a vertex Poisson algebra [39]. We leave a discussion of this structure to future work.
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In terms of this graded algebra it is easy to describe the Hall-Littlewood and Higgs

chiral rings as commutative, associative Poisson algebras.13 The Hall-Littlewood chiral

ring is the subalgebra

RHL =


⊕

R,r

GR+r,R,r , NO(·, ·) , {·, ·}


 , (2.20)

while the Higgs chiral ring is simply the r = 0 subspace of the Hall-Littlewood chiral ring,14

RH =

(
⊕

R

GR,R,0 , NO(·, ·) , {·, ·}
)

. (2.21)

It is possible to reach the Higgs chiral ring without using the intermediate associated

graded algebra of the full normally-ordered VOA. This is because the full space of operators

that are not Higgs chiral ring operators admits a simple expression in terms of the R

filtration,

V+ =
⊕

h>R

Vh,R,r =
⋃

h>R

Fh,R,r . (2.22)

There is then a canonical isomorphism between the space of Higgs chiral ring operators

and a quotient of V by this subspace,

VH
∼= V/V+ . (2.23)

One quickly verifies from their filtered behaviors that the commutator, associator, sym-

metrizer, and jacobiator all map into V+, and additionally V+ is a two-sided ideal with

respect to normally-ordered multiplication and also with respect to the secondary bracket,

so this quotient reproduces the structure of the Higgs chiral ring as a commutative, asso-

ciative Poisson algebra.

Thus the Higgs chiral ring as a Poisson algebra (along with various other nice algebraic

structures) can be recovered from the normally-ordered algebra of the VOA by simply tak-

ing appropriate vector space quotients. Unfortunately, these quotients require a knowledge

of (at least part of) the R-filtration on V , and in general that filtration has not been under-

stood from a purely VOA point of view (though see [43] for some partial progress in this

direction). We therefore turn next to an alternative quotient that produces something very

similar to, but not equivalent to, the Higgs chiral ring. This will motivate our proposal for

how to recover the Higgs chiral ring without having access to the R-filtration.

13To the best of our knowledge, it has not been previously observed that the Hall-Littlewood chiral ring

is a Poisson algebra.
14It is not immediately obvious that the Poisson bracket defined by this construction must match the natu-

ral Poisson bracket induced by the holomorphic symplectic structure on the Higgs branch. This follows from

an argument analogous to the one given in [40], generalized to the setting of the holomorphic/topological

twist of N = 2 theories [41, 42].
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2.3 The C2 algebra

An alternative operation that is intrinsic to a VOA also allows us to extract a Poisson

algebra as a quotient of the normally-ordered algebra. To do so, one defines the vector

subspace C2(V) ⊂ V as

C2(V) := Span
{
ai(−hi−1)ϕ , ai, ϕ ∈ V

}
. (2.24)

The state ai(−hi−n)Ω is associated to the vertex operator ∂nai by the state/operator map;

the vector space C2(V) is, roughly speaking, the space of those normally-ordered composite

operators that include any derivatives, though it may include operators that can be written

without derivatives if there are appropriate null relations in the VOA.

It turns out that C2(V) is a two-sided ideal with respect to both the normally-ordered

product and the secondary bracket, and what’s more the associator and commutator in V
with respect to the normally-ordered product, along with the symmetrizer and Jacobiator

with respect to the secondary bracket defined above, all map into C2(V):15

[V ,V ] ⊆ C2(V) ,
[V ,V ,V ] ⊆ C2(V) ,
{V ,V}+ ⊆ C2(V) ,
{V ,V ,V} ⊆ C2(V) .

(2.25)

Thus the normally-ordered product and secondary bracket induces a commutative, asso-

ciative Poisson algebra structure on the quotient space

RV := V/C2(V) . (2.26)

This algebra is known as the C2-algebra of V . If V is strongly finitely generated, then RV

has a simple description as the space of polynomials in the generators V , modulo the ideal

induced by null relations.16 If dimRV < ∞, then V is said to be C2-co-finite, or to obey

the C2 condition. The C2 condition is a necessary condition for rationality.

2.3.1 Example: Virasoro VOA

To make this construction tangible, let us consider a simple example. The Virasoro VOA

has a single strong generator, the stress tensor T (z). The corresponding generator of RV ,

which we can identify with the equivalence class of L−2Ω in the quotient V/C2(V). At a

generic value of the central charge, we have

RVir
∼= Span

{
(L−2)

kΩ , k = 1, 2, . . .
}
. (2.27)

If we define tk ≡ (L−2)
kΩ and denote by ∗ the multiplication on RV induced by the

normally-ordered product on V , then we have

tk1 ∗ tk2 = tk1+k2 , (2.28)

15This result actually provides a simpler demonstration that these various operations map into V+ as

defined above, since we necessarily have C2(V) ⊆ V+.
16There is presently no proof that the associated VOA for every N = 2 SCFT must be strongly finitely

generated, but there are no known counterexamples.
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so our ring structure is simply given by multiplication of polynomials in one variable. In

the generic case this identifies RVir with the freely generated ring on one variable,

RVir = C[t] (generic c) . (2.29)

Additionally, the Poisson bracket on RVir is easily seen to be trivial, regardless of the value

of c, since we have

{t, t} ⇐⇒ L−1L−2Ω = L−3Ω ∼ 0 . (2.30)

As this example illustrates, RV need not necessarily be reduced, and the Poisson bracket

need not be non-degenerate.

At special values of the central charge there can be null vectors in the Verma module

generated by the L−n, so in the simple quotient of the Verma module there are relations.

Suppose that a null vectors takes the form

N = (L−2)
mΩ+

∑

n>2

L−n(. . . )Ω , (2.31)

for some positive integer m > 2 that depends on the value of the central charge. This

relation sets (L−2)
mΩ ∼ 0 in V/C2(V), so the C2 algebra becomes

RVir = C[t]/〈tm〉 . (2.32)

Thus in such a case RVir is finite-dimensional with dimRVir = m, so the reduced algebra is

trivial. An example of this structure that will be relevant in later sections is the Virasoro

VOA at c = −22/5 (the VOA underlying the (2, 5) Virasoro minimal model, also known

as the Lee-Yang model). In this algebra there is a null vector

N(2,5) = (L−2)
2Ω− 5

3
L−4Ω , (2.33)

so m = 2 and RV is spanned by 1 and t; we have

RVir(2,5) = C[t]/〈t2〉 . (2.34)

2.4 Relating ideals and Higgs branch reconstruction

We have now introduced two quotients of the associated VOA for any N = 2 SCFT that

will give rise to two commutative, associative Poisson algebras RH and RV . We would like

to understand the relationship between these two constructions.

The first thing that we can demonstrate is that as vector spaces we have a canonical

embedding RH ⊆ RV . This follows from the fact that C2(V) ⊆ V+, which is a simple

consequence of the filtered nature of the normally-ordered product and the fact that the

derivative operator acts with tri-degree (1, 0, 0). Nevertheless, we know that in general

C2(V) 6= V+, since in any theory that is not a free theory we will have L−2Ω ∈ V+ and

L−2Ω /∈ C2(V). The question then becomes whether we can identify the subspace

I+ := V+/C2(V) ⊆ V/C2(V) . (2.35)
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This subspace is a Poisson ideal in RV , and taking the quotient will reproduce the Higgs

chiral ring, RV/I+ ∼= RH .

As we have commented earlier, the C2 algebra need not be a reduced algebra, whereas

the Higgs chiral ring must be. This means that we must at the very least have the inclusion

Nil(RV) ⊆ I+ , (2.36)

where Nil(RV) is the nilradical of RV that comprises all nilpotent elements. The most

economical guess is then that the nilradical represents the full set of states that must be

removed. Though simple to state, proving this property of the VOAs associated to SCFTs

appears quite difficult. Nevertheless, we will see that this guess passes many nontrivial

consistency checks. We therefore make the following conjecture.

Conjecture 2 (Higgs branch reconstruction) The Higgs branch chiral ring RH is

equal to the quotient of RV by its nilradical,

RH = (RV)red . (2.37)

This is equivalent to the identification of ideals,

Nil(RV) ∼= V+/C2(V) . (2.38)

For a general VOA V , Arakawa has defined the associated variety XV as

XV := Spec (RV)red . (2.39)

Thus our conjecture, combined with the geometrization of the Higgs chiral ring, is equiv-

alent to the statement that the Higgs branch of a four-dimensional N = 2 SCFT can be

identified with the associated variety of the associated VOA. In [17], strongly finitely gen-

erated VOAs whose associated varieties (thought of as Poisson varieties) have finitely many

symplectic leaves have been named quasi-lisse. The Higgs branch of an N = 2 SCFT will

always have finitely many symplectic leaves, so if our conjecture holds then the associated

VOA will be quasi-lisse as long as it is strongly finitely generated.

3 Modularity and the Schur index

The conjecture of the previous section requires that any strong generatorG of the associated

VOA that is not a Higgs chiral ring generator be nilpotent in the C2 algebra. Thus for any

such generator there must be a corresponding null vector in the vacuum Verma module V

of the chiral algebra of the form17

NG = (G−hG
)kΩ+

∑

i

ai−hi−1ϕi , ϕi ∈ V , k ∈ Z+ . (3.1)

17Here we are distinguishing between V , the vacuum Verma module, which may contain null vectors and

correspondingly may not be simple as a VOA module, and V, the vector space underlying the VOA, which

is necessarily simple as a VOA module if the VOA itself is simple.
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The existence of null vectors in V will generally depend delicately on the structure constants

of the VOA, so we expect this to be a strong constraint on the VOA associated to any

given SCFT.

This idea manifests in an especially interesting way when we turn our attention to

the Virasoro subalgebra of the associated VOA. The stress tensor of the associated VOA

arises from the Ĉ0(0,0) supermultiplet in four dimensions, so the subspace of V generated

by acting with Virasoro generators on the vacuum lies entirely within V+. However, with

the exception of free theories, states of the form Lk
−2Ω do not lie in C2(V ), where we note

that we are referring to the C2 subspace of the Verma module V , not its simple quotient.

Therefore if the reconstruction conjecture is true, then there must always exist some null

state in V of the form

NT = (L−2)
kΩ+

∑

i

ai−hi−1ϕi . (3.2)

In other words, we require that (L−2)
kΩ ∈ C2(V) for some positive integer k.

This property of a vertex operator algebra has been historically linked with the exis-

tence of LMDEs for the characters of sufficiently nice V-modules [21–23]. The literature

on this topic is somewhat complicated, though recently it has clarified significantly in the

special case of quasi-lisse VOAs [17]. We will take a moment to describe the situation as

it pertains to our investigation.

3.1 Null vectors and differential equations

Suppose that (3.2) holds in a given vertex operator algebra V . It follows that there is also

a null vector in the Verma module of the VOA of the form18

N[T ] = (L[−2])
kΩ− ϕ , ϕ ∈ C[2](V ) . (3.3)

Because this is a null state, correlation functions that include insertions ofN[T ] must vanish.

In particular, the torus one-point function of N must vanish, which implies the following

trace formula on V ,

STrV

(
o(N[T ])q

L0−
c
24

)
= STrV

(
o(Lk

[−2]Ω)q
L0−

c
24

)
− STrV

(
o(ϕ)qL0−

c
24

)
= 0 . (3.4)

The trace of o((L[−2])
kΩ) can be evaluated using the trace formulae of appendix B in terms

of LMDOs acting on the vacuum character χV(q) = STrV(q
L0−

c
24 ). On the other hand,

since ϕ is in C[2](V ), the trace of o(ϕ) can also be rewritten using the recursion relations

supplied in appendix B in terms of traces of zero modes of operators of lower conformal

dimension with coefficients given by (twisted) Eisenstein series.

In principle, for every term that appears in the trace after implementing this recursion,

one of three things will happen:

(i) The term is the zero mode of an element of C[2](V), in which case the recursion

relations can be applied again.

18See appendix B for a discussion of square-bracket modes versus ordinary modes. The difference between

square-brackets ordinary brackets will not be important for the reader who only wants to get a general sense

of the arguments presented in this section.
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(ii) The term is of the form o((Lr
[−2])Ω) with r < k, in which case the trace can be

evaluated in terms of a modular differential operator of lower order than the first

acting on the vacuum character.

(iii) The resulting zero mode is of the form o(G1
[−h1]

· · ·Gn
[−hn]

Ω) where the Gi are strong

generators and at least one Gi 6= T . In this case, without additional knowledge, we

will be unable to go further, though it may turn out that additional arguments allow

the trace of such a zero mode to be evaluated.

Because ϕ has finite conformal dimension and each step in the recursion produces traces of

zero modes of operators of strictly lower conformal dimension than the preceding one, this

recursion algorithm ultimately terminates. We note that the requirement that case (iii)

not arise while performing the algorithm is equivalent to the technical condition described

in, e.g., [22] that there be a vector of the form

(L[−2])
kΩ+

k∑

i=1

gi(q)(L[−2])
r−iΩ ∈ Oq(V) , (3.5)

where Oq(V) is the vector subspace of V ⊗C[E4(q), E6(q)] spanned by elements of the form

a[−ha−1]b+
∑

k>2

G2k(q)a[2k−ha−1]b , a, b ∈ V . (3.6)

As a standard example, let us turn again to the Virasoro algebra with central charge

c = −22/5. We now consider the null vector

N[T ] = (L[−2])
2Ω− 5

3
L[−4]Ω . (3.7)

Using the recursion relations in appendix B, we have

TrV

(
o(L[−2]L[−2]Ω)q

L0−c/24
)
=

(
D(2)

q +
c

2
E4(τ)

)(
TrV(q

L0−c/24)
)
,

TrV

(
o(L[−4]Ω)q

L0−c/24
)
= 0 ,

(3.8)

From which we deduce the modular equation

(
D(2)

q − 11

5
E4(τ)

)
χVir(2,5)(q) = 0 . (3.9)

In this case, it is impossible to encounter the obstruction of case (iii) because the only

strong generator is the stress tensor itself.

It has recently been shown by Arakawa and Kawasetsu [17] that for the special case

of a quasi-Lisse VOA, in which case a null vector of the relevant type necessarily exists,

the vacuum character is always the solution of a LMDE. This is a slightly more nuanced

statement than anything we have been describing here. In particular, it does not guarantee

that the order of the relevant LMDO is the same as the power of L[−2] appearing in the

minimal null vector of the relevant type. In principle it is possible that one will encounter
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the obstruction of possibility (iii) when applying the recursion algorithm to the case of the

minimal null vector, but the proof then implies that there will nevertheless be some other

null vector at a higher level for which the recursion will proceed cleanly. This means that

means that the veracity of our Higgs branch conjecture for the associated variety would

imply the existence of such a LMDE.

3.2 Modular equations for Schur indices and Cardy behavior

Though the proof of [17] means that our Higgs branch conjecture implies the existence of an

LMDE, we will find substantial evidence for the existence of LMDEs even in theories where

the Higgs branch conjecture is not easy to verify. Therefore we wish to make the following

a priori independent conjecture, that may be true even if the Higgs branch conjecture

eventually fails or requires modification:

Conjecture 3 (Modularity) The (appropriately normalized) Schur index of any four-

dimensional N = 2 SCFT solves a finite-order, monic, holomorphic, (twisted) modular

differential equation.

The normalization in question is the one corresponding to the standard normalization of a

torus partition function in two-dimensional conformal field theory, namely we have19

ISchur(q) := qc4d/2STrH(q
E−R) = STrV(q

L0−c2d/24) . (3.10)

The question of whether the differential operator in question will be modular or twisted

modular depends on whether there are operators with half-integer conformal weight in

the VOA. We remark, however, that even if there are operators of half-integer weight, it

may be the case that no twisted Eisenstein series appear during the implementation of the

recursion relations, so there may still be an untwisted modular differential operator. This

can be seen, for example, in the case of N = 4 supersymmetric Yang-Mills theory with

gauge algebra su(3), as discussed below in section 6.2. The precise class of twisted modular

equations in question are detailed in appendix A.

An immediate corollary of our modularity conjecture is that the vacuum character

of the associated chiral algebra of any SCFT should transform in a finite-dimensional

representation of the modular group, i.e., it should transform as a part of a vector-valued

(quasi)-modular form of weight zero. As we will see, there may be logarithms appearing in

other entries in this vector-valued form, which is the reason for the “quasi” qualification.

We can therefore understand the behavior of the Schur index as an analytic function of q

in terms of the other solutions that make up the vector-valued modular form.

3.2.1 Cardy behavior

Of particular interest is the behavior of the Schur index in the limit q → 1. A generaliza-

tion [25–27] of the arguments of [24] implies that this behavior is determined by the four-

dimensional Weyl anomalies a4d and c4d. In particular, if we write q = e2πiτ , then we have

lim
τ→0

log ISchur(q) ∼
4πi(c4d − a4d)

τ
. (3.11)

19The importance of this prefactor for good modular behavior was previously pointed out in [19].
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On the other hand, if the Schur index transforms as part of a vector valued modular form

comprising the solutions of the appropriate LMDE, when we can define the S-transformed

nome

q̃ := exp

(−2πi

τ

)
, (3.12)

and we will have

ISchur(q) =
∑

i

S0iχi(q̃) , (3.13)

where the matrix elements S0i are rational numbers and the χi(q̃) are either the solutions

of the LMDE (in the PSL(2,Z)-modular case) or solutions of the conjugate LMDE in the

Γ0(2)-modular case. These solutions will, in good cases, be defined by power series in q̃,

χi(q̃) = q̃−c2d/24+hi(1 + . . .) , (3.14)

where the . . . are subleading as q̃ → 0. More generally, there may solutions that are

logarithmic at leading order,

χi(q̃) = q̃−c2d/24+hi((log q̃)k + . . .) . (3.15)

Regardless of the situation with logarithms, in the “high temperature” limit τ → 0 the

Schur index/vacuum character will behave as

lim
τ→0

log ISchur(q) ∼
πiceff
12τ

+ . . . , (3.16)

where the effective central charge is defined by20

ceff = c2d − 24mini(hi) . (3.17)

Comparing with the predicted high temperature behavior, we have the relation

ceff = 48(c4d − a4d) , (3.18)

from which we find an expression for the Weyl anomaly a4d in terms of hmin,

a4d =
hmin

2
− 5c2d

48
. (3.19)

This relation is particularly interesting in light of the Hofman-Maldacena bound [44–46],

5

4
>

a4d
c4d

>
1

2
. (3.20)

This then implies [28] the following inequalities relating hmin and the Virasoro central

charge of the VOA associated to a unitary N = 2 SCFT,

c2d
8

6 hmin 6 0 . (3.21)

20Here we are assuming that all of the S0i in the modular transformation are generically nonzero. In

principle, there can be instances where this is not the case. We will return to this in some of the examples

below. We note that in the context of unitary two-dimensional conformal field theory, the vacuum module

itself is always the representation of lowest dimension because the hi > 0, thus hmin = 0. This is not

generally the case for non-unitarity chiral algebras of the type we are studying.
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The left inequality is saturated for the free hypermultiplet SCFT, while the right inequality

is saturated for the free vector multiplet. It is interesting to note that this is already an

effective constraint on, for example, the collection of non-unitary Virasoro minimal model

VOAs that can be related to unitary N = 2 SCFTs. The (5, 8), (7, 11), (8, 13), and (9, 14)

minimal VOAs cannot arise, just to name a few.

3.2.2 Sample analysis: second order equations

As an example of how this structure plays out, let us consider the hypothetical case where

the vacuum character satisfies of a Γ-modular equation of degree two. This is the simplest

possibility, because the unique LMDE of degree one admits only the constant solution.

The form of such a second-order equation is completely determined by a single numerical

coefficient and takes the form21

(
D(2)

q + λE4(τ)
)
χ(q) = 0 . (3.22)

The vacuum and module characters will take the form

χ0(q) = q−c2d/24(1 + a1q + a2q
2 + . . .) ,

χ1(q) = q−c2d/24+h(1 + b1q + b2q
2 + . . .) ,

(3.23)

and upon acting with the LMDE the coefficient λ gets related to the Virasoro central charge

c2d and the conformal weight of the primary state in the non-vacuum module h1 according

to

λ = −5

4

(
c22d
4

+ c2d

)
, h1 =

c2d + 2

12
, (3.24)

which means we have two cases:

hmin =

{
c2d+2
12 , c2d < −2 ,

0 , c2d > −2 .
(3.25)

The Weyl anomaly a4d is then determined by (3.19) to be

a4d =

{
1
12 − c2d

16 = 1
12 + 3c4d

4 , c2d < −2 ,

−5c2d
48 = 5c4d

4 , c2d > −2 ,
, (3.26)

for any SCFT whose Schur index satisfies a second order modular equation. In the second

case, the upper Hofman-Maldacena bound is saturated so one should actually require c2d 6

−2, with saturation occurring for free vector multiplets.

If we further assume that the theory in question has a one-dimensional Coulomb branch

with the Coulomb branch chiral ring generator having dimension (and u(1)r charge) given

by r, and also that the Shapere-Tachikawa formula holds, which in the rank-one case takes

the form [48]

2a4d − c4d =
2r − 1

4
, (3.27)

21Here, as elsewhere, we assume that our modular equation is holomorphic and monic, as it will be

if it arises from the recursion argument outlined above. Nevertheless, it can be interesting to relax this

assumption [47].
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then we deduce am expression for r in terms of the Weyl anomaly coefficient c4d,

r = c4d + 5/6 . (3.28)

3.2.3 Sample analysis: half-integer case

Now we return to the more general case when the vertex algebra is 1
2Z graded but not Z

graded. The n-dimensional space of solutions of the corresponding twisted LMDE of order

n is now spanned by solutions of the form

χi(q) ∼ q−
c
24

+hi(1 +O(q
1
2 )) . (3.29)

However, in this case this set of characters do not transform amongst themselves under

arbitrary modular transformations, but only under elements of the congruence subgroup

Γ0(2), as described in appendix A. In particular, the element S : τ 7→ −1/τ does not

belong to Γ0(2), so the small β behavior of the Schur index will not be controlled by other

solutions of the vacuum modular equation.

Nevertheless, the vacuum character will still transform in a definite way under the full

modular group Γ because the modular equation itself transforms in a definite way under

arbitrary modular transformations. The twisted LMDOs arising in the half-integer graded

case will be of the form

D(n) =


D(n)

q +
n−1∑

k=1




∑

r+s=k
r6s

cr,sΘr,s(τ)


D(n−k)

q


 , (3.30)

where the Γ0(2)-modular forms Θr,s(τ) are defined in appendix A. Now the reasoning of

the integer-weighted case goes through in the case of half-integer weights, but now the

differential operator transforms under the S-transformation into the conjugate differential

operator,

D̃(n) =


D(n)

q +
n−1∑

k=1




∑

r+s=k
r6s

cr,sΘ̃r,s(τ)


D(n−k)

q


 , (3.31)

where the Γ0(2)-modular forms Θ̃r,s(τ) are also defined in appendix A. So instead of the

characters χi(q), the effective central charge will be determined in terms of the conjugate

characters χ̃i(q) that are annihilated by this conjugate operator.

For illustrative purposes, let us consider the half-integral analogue of the calculation

above for second-order twisted LMDEs. A generic second order equation of the type

outlined above will have now have three free coefficients. Let us fix two by demanding that

we consider theories with no free fields and no flavor symmetries (which implies that the

O(q1/2) and O(q) terms in the vacuum character vanish). With these assumptions, the

most general possible second order equation is parameterized by the central charge c and

is given by

D(2) = D(2)
q +

22 + 5c

102
Θ0,1(τ)D

(1)
q − c(24 + 7c)

4896
Θ0,2(τ) +

c(45 + 11c)

4896
Θ1,1(τ) . (3.32)
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Passing to the conjugate equation and solving the corresponding indicial equation, we find

that the conformal weights of the conjugate characters are related to the Virasoro central

charge by

2h̃2 − 1

34
h̃(9c2d + 26) +

1

544
c2d(5c2d + 22) == 0 . (3.33)

It turns out that this gives values of a4d that are always compatible with the Hofman-

Maldacena bounds so long as h̃ is real. Reality of h̃ requires

c2d >
47− 17

√
17

4
. (3.34)

We know of no SCFTs that should fit into this category. Nevertheless, it is interesting

that upon searching for solutions of the LMDE given by (3.32) with moderate values

(absolute value less than 100) for the degeneracy at level 3/2, we find only two solutions

for which the coefficients are integers. One has no states at level 3/2 — in fact it has

nonzero degeneracy only at integer levels — and is the (2, 5) Virasoro vacuum character.

We will return to that example below. The other solution is genuinely half-integer graded

and we do not recognize it. The character takes the form

χ0(q) = q7/32
(
1− q3/2 + q2 − q5/2 + q3 − q7/2 + 2q4 − 2q9/2 + 2q5 − 3q11/2 + 4q6 (3.35)

− 4q13/2 + 4q7 − 6q15/2 + 7q8 − 7q17/2 + 8q9 − 10q19/2 + 12q10 + . . .
)
.

The implied values for the various interesting quantities are then

c2d = −21

4
, h1 = −1

4
, h̃1 = − 7

32
, h̃2 = − 3

32
, a4d =

53

64
. (3.36)

In fact, this central charge and character can be seen to coincide with the vacuum character

of the N = 1 super Virasoro VOA at the central charge relevant for the (1, 4) model [49, 50].

There can be no unitary four-dimensional theory associated to this VOA, because fermionic

Schur operators must come in pairs as a consequence of su(2, 2|2) representation theory and

CPT, and in this VOA there is a single fermionic generator of dimension 3/2. There could

nevertheless be a non-unitary four-dimensional theory associated to this VOA. With no

flavor symmetry and a second-order modular equation, it would be something of a minimal

theory.

3.3 Comments on additional solutions

It is natural to ask whether the other solutions of the modular differential equations can

be interpreted in terms of four-dimensional physics. The additional solutions of the LMDE

for a VOA vacuum character — or more precisely, the other entries of the vector-valued

modular form containing the vacuum character — are generally expected to be characters

of nontrivial modules over the VOA in question. In the case of rational VOAs, this is

necessarily the case. But even in the irrational case (which is the generic case for VOAs

coming from four-dimensional SCFTs) the derivation of a modular differential equation for

the vacuum character starting with a null vector of the form (3.3) goes through identically
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when the original trace is evaluated not in the vacuum representation but in a sufficiently

nice non-vacuum module.

More precisely, suppose there exists a module M over V that is a conformal highest

weight module with finite-dimensional weight spaces under a diagonalizable action of L0.

If it is true that case (iii) never occurs during the recursive derivation of the modular

equation, then the (super-)character of the module,

χM (q) = STrM

(
qL0−

c
24

)
, (3.37)

will solve the same modular differential equation as the vacuum character. In principle

one can further relax these conditions and consider the case where the action of L0 is

not diagonalizable, but acts with a nontrivial Jordan block structure on finite-dimensional

generalized eigenspaces. In this case, characters can be generalized to pseudo-traces [51],

which involve logarithms.

More generally, there may be reasonably nice modules for the VOAs that we are

studying that do not have finite-dimensional (generalized) L0 eigenspaces, but do have

finite-dimensional weight spaces upon further refining by additional flavor fugacities. This

will be the case, for example, for the Kac-Wakimoto admissible-level su(2) affine current

algebras discussed in section 5.2, as well as for certain more complicated cases such as the

so(8) current algebra at level k2d = −2. In such cases, at least two possible phenomena are

known to arise [52, 53]:

• Taking sums and differences of simple characters — treated as analytic functions

rather than formal power series — yields a quantity that is finite when flavor fugacity

is set to zero.

• The module characters as analytic functions cannot be arranged into a combination

that is finite in the limit of zero flavor fugacities, but there is nevertheless a regu-

larization of the singular behavior that yields a “fake” character that may contain

logarithms even if the original characters did not.

It turns out that both of these phenomena arise in our examples, though we leave a careful

discussion of the modular behavior of flavored characters to future work [20].

From the point of view of four-dimensional physics, there is a guaranteed source of

modules over V : N = (2, 2) superconformal surface operators. When such surface operators

are oriented so as to fill the two directions orthogonal to the VOA plane, i.e., when the

span the C[w,w̄] plane and intersect that VOA plane at the origin z = z̄ = 0. In the

presence of such a surface operator, the cohomological construction of VOA operators and

OPEs still goes through in any neighborhood away from the origin of the VOA plane. On

the other hand, one may develop a bulk-defect OPE which produces, upon passing to the

usual cohomology, a module structure for the bulk VOA. The relationship between surface

defect Schur indices and vertex algebra module characters has been explored recently in [13]

using the remarkable Coulomb branch technology for the calculation of the defect indices.

It turns out that in general, surface operators in four-dimensions can give rise to more
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elaborate things than pure VOA modules — for example, canonical surface defects in class

S theories generally give rise to rather interesting twisted modules [54].

The above discussion leaves out the other principal defect of interest in four-

dimensional theories: line operators. Line operators are initially an unattractive candi-

date to furnish VOA modules because they do not preserve the right supersymmetries for

the cohomological construction of the VOA to go through. Nevertheless, there has been

suggestive work showing that superconformal indices of four-dimensional N = 2 theories

in the presence of line defects can be rewritten in terms of characters of modules for the

associated VOA [11]. An indirect explanation for this phenomenon has been put forward

in [13], but it remains to be seen whether a more direct module structure incorporating

supersymmetric line defects is possible. In particular, it seems likely that line defects can

more naturally be thought of as modules over the vertex Poisson algebra described in

section 2.2 rather than over the full VOA [55].

4 The Deligne-Cvitanović exceptional series

Our first set of examples is a collection of nine vertex algebras that exhibit a number of

remarkable properties. They are the vertex algebras associated to the Deligne-Cvitanović

(DC) exceptional series of simple Lie algebras22

a0 ⊂ a1 ⊂ a2 ⊂ g2 ⊂ d4 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e8 , (4.1)

at the negative levels

k2d = −h∨

6
− 1 , (4.2)

where h∨ is the dual Coxeter number. The theory attached to a0 (the trivial Lie algebra)

is the Virasoro VOA with central charge c2d = −22/5, which is the value corresponding

to the Lee-Yang, or (2, 5), minimal model. Eight of these vertex algebras, namely the

cases {a0 , a1 , a2 , d4 , e6 , e7 , e8}, are known to be associated to physical four-dimensional

theories. They are the rank-one SCFTs that arise on the worldvolume of a single D3

brane at an F-theory singularity — indeed, one recognizes in this part of the list the

classification of singular fibers of an elliptic K3 surface. On the other hand, the four-

dimensional interpretation of the g2 and f4 cases remains unclear.

There are several ways to understand the significance of this list of affine current

algebras and their corresponding four-dimensional SCFTs. Perhaps the most physically

interesting is via unitarity bounds for the central charges of interacting SCFTs [1–3]. The

DC affine algebras are singled out as the only simple affine current VOAs associated to (pu-

tative) four-dimensional theories that saturate simultaneously the unitarity bounds for c4d
and k4d. From this fact one can deduce a variety of interesting properties, as we will explain.

22These Lie algebras are singled out by their peculiar representation-theoretic properties [56]. For exam-

ple, one is able to write closed-form expressions (as rational functions of h∨) for the dimensions of certain

finite-dimensional representations that appear in multiple tensor products of the adjoint representation.

See the appendix of Cvitanović’s book [57] for an account of the curious history of this list of Lie algebras.
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4.1 Exceptional series from central charge unitarity bounds

We first review the logic behind the derivation of the unitarity bounds on central charges

from the associated VOA. The starting point is the fact that the VOA for any local N = 2

SCFT with simple flavor algebra gF contains a “universal” vertex operator subalgebra

generated by a stress tensor T of central charge c2d = −12c4d and ĝF affine currents JA at

level k2d = −k4d/2. The vertex algebra correlators 〈TTTT 〉, 〈JAJBTT 〉 and 〈JAJBJCJD〉
are then meromorphic functions that are completely fixed by the choice of Lie algebra gF

and parameters c2d and k2d. These meromorphic correlators can be decomposed into sl(2)

global conformal blocks weighted by three-point couplings. The meromorphic correlators

capture the protected part of four-point functions of su(2)R currents and moment map

operators in the four-dimensional SCFT.

In general, a given sl(2) primary operator of the vertex algebra may descend from

a linear combination of various protected operators of the four-dimensional theory that

transform in different su(2, 2|2)) representations. Fortunately, for this simple set of cor-

relators one is able to completely resolve the ambiguity under the assumptions that the

theory possesses a unique stress tensor and has no conserved currents of spin greater than

two. The latter condition holds in any interacting CFT [58]. With these assumptions in

place, one uncovers a precise relationship between two-dimensional and four-dimensional

three-point couplings.

One next demands that the four-dimensional theory be unitary, in which case the

appropriately defined three-point couplings must be real, and it is this reality condition that

gives rise to several inequalities for the central charges k4d and c4d. Each such inequality is

saturated when a certain three-point coupling is zero, which means that a certain protected

four-dimensional operator that would be allowed by selection rules in the relevant OPE is

absent. In the VOA the avatar of this absence is the presence of a certain null vector. We

now review the most stringent unitarity bounds that arise upon carrying out this analysis.

(i) For fixed k4d < 2h∨, one finds an upper bound on c4d [1],

c4d 6
k4d dim gF

12(2h∨ − k4d)
, when k4d < 2h∨ . (4.3)

This bound arises from consideration of the leading non-singular term in the OPE

of two affine currents in the flavor-singlet channel. Recall that the affine currents

descend from moment map operators in four dimensions, which lie in B̂1 multiplets.

There are two multiplets that contribute as sl(2) primaries to the leading non-singular

OPE of two Js: namely the stress tensor multiplet Ĉ0(0,0) and the Higgs chiral ring

multiplet B̂2. The three-point coupling 〈B̂1B̂1Ĉ0(0,0)〉 of the stress tensor multiplet

is fixed by a conformal Ward identity in terms of the Weyl anomaly coefficient c4d.

Thus the squared OPE coefficient of the B̂2 multiplet is fixed in terms of c4d and k4d.

Imposing its positivity leads to the bound (4.3).

Saturation of this bound implies the absence of a flavor singlet B̂2 multiplet in the

B̂1 × B̂1 OPE. In the conventions relevant for the VOA, saturation of the bound
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amounts to the central charge obeying the Sugawara relation

c2d =
k2d dim gF

h∨ + k2d
, (4.4)

so the stress tensor T is identified with the Sugawara stress tensor of the affine current

algebra.23

(ii) There is additionally a lower bound for k4d, which depends only on the choice of

flavor algebra gF [1],

k4d > kmin
4d (gF ) , gF 6= a1 . (4.6)

The bound arises from consideration of the leading non-singular term in the OPE

of two affine currents in flavor non-singlet channels. By assumption, the four-

dimensional theory contains a unique Ĉ0(0,0) multiplet which is a flavor singlet, so

there are no possible contributions from Ĉ0(0,0) multiplets in the non-singlet chan-

nels. One can therefore compute the three-point coupling 〈B̂1B̂1B̂2〉 unambiguously

as a function of k4d for each choice of non-singlet flavor representation R in which the

B̂2 can transform. The allowed representationsR are the ones that appear in the sym-

metrized tensor product of two copies of the adjoint representations. Each choice ofR

gives rise to a different bound. In table 2, the most stringent bound for each simple fla-

vor algebra gF is displayed, along with the representationR responsible for the bound.

Saturation of one of these bound implies the absence of a B̂2 multiplet in the repre-

sentation R in the OPE B̂1×B̂1. In the four-dimensional theory this is a Higgs chiral

ring relation. In the vertex algebra, this translates into the statement that at the

relevant value of k2d there is a level-two null state in the representation R of the form

NR
[JJ ] = c R

AB JA
−1J

B
−1Ω , (4.7)

where the coefficients c R
AB accomplish the projection to the representation R. Note

that the case gF = a1 is exceptional: the bound given by the analysis above is

gives k4d > −2, which is automatically obeyed (and can never be saturated) in any

unitary theory.

23In this case, in the affine current subalgebra there is no null state associated to the saturation of the

unitarity bound. However, if one naively takes the appropriate vertex operator subalgebra to be generated

by the affine currents in addition to an independent stress tensor, then there is a null state enforcing the

Sugawara construction for the stress tensor,

NSug =

(
L−2 −

1

k + h∨
J
A
−1J

A
−1

)
Ω . (4.5)
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gF Bound Representation R

SU(N) N > 3 k4d > N N2 − 1sym

SO(N) N = 4, . . . , 8 k4d > 4 1
24

N(N− 1)(N− 2)(N− 3)

SO(N) N > 8 k4d > N − 4 1
2
(N+ 2)(N− 1)

USp(2N) N > 3 k4d > N + 2 1
2
(2N+ 1)(2N− 2)

G2 k4d >
10
3 27

F4 k4d > 5 324

E6 k4d > 6 650

E7 k4d > 8 1539

E8 k4d > 12 3875

Table 2. Unitarity bounds for the anomaly coefficient k4d arising from positivity of the B̂2 three-

point function in non-singlet channels [1].

(iii) Finally, there is a lower bound on c4d for fixed k4d [3],24

c4d >
11

60

(
1 +

√
1 +

180

121

k4d dimGF

3k4d − h∨

)
. (4.9)

This bound arises upon consideration of flavor-singlet sl(2) primaries of holomorphic

dimension h = 4 that appear in the OPE decomposition of the mixed correlator

system 〈TTTT 〉, 〈TTJAJB〉 and 〈JAJBJCJD〉. There are a priori two distinct

primaries that can appear. One can choose a basis such that the first primary is

defined to be the one that appears in the T × T OPE, and the second is orthogonal

to the first. In general the J × J OPE will contain a linear combination of both

primaries. From the four-dimensional viewpoint, these states correspond to two

distinct flavor-singlet Ĉ1( 1
2
, 1
2
) multiplets, appearing in the OPEs of two moment maps

and of two su(2)R currents. Imposing positivity of the squared OPE coefficients

of both multiplets leads to the bound (4.9). When the bound is saturated, the

“second” Ĉ1( 1
2
, 1
2
) multiplet is absent, i.e., precisely the same multiplet is appearing

in both the OPE of the su(2)R currents and that of the moment maps. In the vertex

algebra, saturation of this bound implies the existence of a null state of the form

N[T ] =
(
(L−2)

2 + αL−4 + βJA
−3J

A
−1 + γJA

−2J
A
−2

)
Ω , (4.10)

24We mention here that there is a generalization of the bound (4.9) to the case where the flavor algebra

is reductive, gF =
∏

i g
(i)
F ,

c4d >
11

60


1 +

√√√√1 +
180

121

∑

i

k
(i)
4d dimG

(i)
F

3k
(i)
4d − h∨(i)


 . (4.8)

This result is valid also when U(1) factors are present, with the formal assignment h∨ ≡ 0 for U(1). The

proof is analogous to the case with simple flavor algebra.
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where α, β, and γ are coefficients that can in principle be determined by direct com-

putation. In particular, we see that when the bound (4.9) is saturated, then we have

(L−2)
2Ω ∈ C2(V) . (4.11)

In general it is impossible for all three of the above bounds to be saturated for a

single VOA. The choice of a simple Lie algebra gF determines h∨ and dim gF , but to

saturate all three bounds requires that the two variables k2d and c2d satisfy three equations.

The equations are generically independent and so no solution exists. The exceptions are

precisely gF = a1 , a2 , g2 , d4 , f4 , e6 , e7 , e8. (The case gF = a1 is somewhat less special

because there is no meaningful lower bound on k4d so we are only imposing two equations).

In every case, the specified values of k4d and c4d are expressed as the same functions of h∨,

k4d =
h∨

3
+ 2 , c4d =

h∨

6
+

1

6
. (4.12)

For the trivial Lie algebra gF = a0, i.e., in the case of no continuous flavor symmetry,

bounds (i) and (ii) are of course meaningless but bound (iii) still applies [2],

c4d >
11

30
. (4.13)

The bound is saturated by the Virasoro algebra at central charge c2d = −22/5, which is

the value relevant for the (2, 5) minimal model. We will consider this vertex algebra as

belonging to the DC series, with the formal assignment h∨ = 6/5.

4.2 Properties of the Deligne-Cvitanović algebras

Saturation of bound (iii) implies the existence of a null state of the form (4.10). Following

the methods outlined in section 3, one derives a second-order LMDE for the full modular

group Γ for the vacuum character of the VOA, which necessarily takes the form given

in (3.22). (In this case, the recursion relation (B.20) truncates after a single step). In

principle, the coefficient λ in front of the Eisenstein series can be computed from the precise

form of the null state, but it is also easily fixed using (3.24) in terms of the central charge,

λ = −5

(
c22d
4

+ c2d

)
= −5(h∨ + 1)(h∨ − 1) . (4.14)

We conclude that the vacuum characters of the DC series of vertex algebras obey a

uniform set of second order modular differential equations,
(
D(2)

q − 5(h∨ + 1)(h∨ − 1)E4(q)
)
χ(q) = 0 . (4.15)

The explicit solutions of this equation have been discussed recently in [17]; we also derive

them (in a slightly different form) in appendix C. We note that by solving the indicial

equation, or by using (3.24), the values of h1 (the conformal weight of the second solution

to the indicial equation) are immediately found to take the very simple form

h1 = hmin = −h∨

6
. (4.16)
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g h∨ k2d = −h∨−6
6 c2d = −2− 2h∨ h1 = −h∨

6 a4d = 5+3h∨

24 r = h∨+6
6

a0
6
5 −6

5 −22
5 −1

5
43
120

6
5

a1 2 −4
3 −6 −1

3
11
24

4
3

a2 3 −3
2 −8 −1

2
7
12

3
2

g2 4 −5
3 −10 −2

3
17
24

5
3

⋆

d4 6 −2 −14 −1 23
24 2

f4 9 −5
2 −20 −3

2
4
3

5
2

⋆

e6 12 −3 −26 −2 13
8 3

e7 18 −4 −38 −3 59
24 4

e8 30 −6 −62 −5 95
24 6

Table 3. The Deligne-Cvitanović series of simple Lie algebras, the data of the associated vertex

algebras and the data of their (putative) parent 4d SCFTs. The a0 entry is formally a member of

the list corresponding to the trivial Lie algebra. It corresponds to the VOA of the (2, 5) Virasoro

minimal model. As the 4d interpretation of the g2 and f4 cases is still unclear, the values of a4d and r

for these entries are formal/conjectural. In particular even if these theories exist, the values of r may

be different if the various assumptions we have made about their Coulomb branches do not hold.

It is interesting to note that for g = d4, e6, e, e8, this is an integer, and the second solution

to (4.15) is logarithmic.

In table 3 we summarize this data and more for the vertex algebras associated to

the full Deligne-Cvitanović series. The values of the conformal anomaly coefficient a4d
are derived assuming that the Cardy behavior of the Schur index is controlled by (3.11).

Finally, assuming that the parent four-dimensional theory has a dimension-one Coulomb

branch and that the Shapere-Tachikawa formula holds, one derives the u(1)r charge r of the

unique Coulomb chiral ring generator, see (3.28). For the cases {a0 , a1 , a2 , d4 , e6 , e7 , e8},
the values of a4d and r calculated this way are found in agreement with the known values for

the rank-one F-theory SCFTs. For the cases of g2 and f4, the values of r are problematic,

as they do not fit the Kodaira classification of possible defect angles for a dimension-one

scale-invariant Coulomb branch geometry (see, e.g., [59–61] for a recent discussion). This

might be an indication that these vertex algebras do not descend from actual 4d SCFTs.

Alternatively, one of the assumptions in the calculation of r might be wrong, e.g., the 4d

theories might be of higher rank, violate the Tachikawa-Shapere formula, or perhaps have

a Coulomb branch of exotic type [62].25

Saturation of bounds (i)-(iii) also has immediate consequences for the associated variety

of these VOAs. For any affine current VOA Vk(g), the generators of the C2 algebra are the

25It has been argued that the hypothetical theory with f4 flavor symmetry cannot exist due to a mismatch

of global anomalies [63].
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equivalence classes of the adjoint valued currents,

JA
−1Ω ∈ V =⇒ jA ∈ RV , A = 1, . . . , dim g , (4.17)

with the Poisson bracket determined by the structure constants of g,

{jA, jB} = fAB
Cj

C . (4.18)

Thus the C2 algebra is necessarily a Poisson subalgebra of the symmetric algebra S(gC). In

the DC examples, the null state implied by the saturation of bound (ii) implies the relation

(j ⊗ j)
∣∣
R
= 0 . (4.19)

Furthermore, saturation of bounds (i) and (iii) imply the relations,

1

k2d + h∨
(j ⊗ j)

∣∣
1
= t , t2 = 0 . (4.20)

Thus, in the reduced algebra that defines the associated variety, we have that we must quo-

tient gC by the ideal generated by the singlet factor and the R-valued factor in the square

of jA. Now the list of DC simple Lie algebras can also be characterized as those simple

Lie algebras for which the symmetrized product of two adjoint representations contains at

most three representations,

Sym2(adj) = 1⊕R⊕ (2adj) for DC Lie algebras . (4.21)

Here 1 denotes the singlet, (2adj) is the representation whose Dynkin indices are twice

those of the adjoint representation, and R can be read in table 2 for all DC algebras except

a1, for which it is absent.26

Now for any simple Lie algebra, one may define the “Joseph ideal” I2 in the symmetric

algebra S(g) using the following decomposition of the symmetrized product of two adjoint

representations,

Sym2(adj) = (2adj)⊕ I2 . (4.22)

Thus we see that for the DC examples, the ideal we have shown must be removed in passing

to the associated variety is precisely the Joseph ideal. What’s more, there can be no further

quotient in the associated variety because for negative levels, states of the form (Jh.w.
−1 )nΩ

cannot appear in any null vectors, and any further quotient of the associated variety would

require such nulls.27 Consequently, we have the elegant result,

(RV)red = S(gC)/I2 ∼= Omin(gC) , (4.23)

where we have recognized that the variety defined by removing the Joseph ideal is the

minimal nilpotent orbit of gC. This result was also derived as a part of a much more

26The a1 case is special: the decomposition of the symmetrized product of two adjoint representations

contains only two terms, Sym2(3) = 1 ⊕ 5, where 5 ≡ (2adj). Recall that bound (ii) is trivial for a1.

Saturation of bound (i) is sufficient to conclude that the product of two moment maps contains only B̂2

operators in the (2adj) representation.
27Here by Jh.w. we denote the gC highest weight.
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general computation of associated varieties for affine current VOAs in [29]. For the special

a0 case (the Virasoro vertex algebra at c2d = −22/5) we have discussed the calculation of

the associated variety in 2.3.1: the stress tensor is the only generator, and its nilpotency

in C2(V) implies that the associated variety is just a point, which in a formal sense can be

taken to be the minimal nilpotent orbit of the trivial Lie algebra.

This result is in precise agreement with physical expectations. As we have already

mentioned, the four-dimensional theories associated to the DC vertex algebras of type

{a0 , a1 , a2 , d4 , e6 , e7 , e8}, are the rank-one SCFTs that arise on the worldvolume of a

single D3 brane at an F-theory singularity. The F-theory picture makes it clear that the

Higgs branch of these theories is the centered one-instanton moduli space for gC, which is

well-known to be isomorphic to the gC minimal nilpotent orbit.28 While there is no known

four-dimensional theory associated the DC vertex algebras of type g2 and f4, if such theories

exist their Higgs branch is predicted to be the minimal nilpotent orbit of the corresponding

flavor algebras. In fact, the full list of DC vertex algebras was obtained in [1] by a slightly

different route from the one we have followed here, namely by demanding that the Higgs

branch of the putative four-dimensional theory be given by the one-instanton moduli space

for gC. This restricts the list of possible flavor algebras to the DC series, as for any other

algebra there would be a forth representation appearing on the right hand side of (4.21).

The values of c2d and of k2d must then saturate the bounds (i) and (ii) in order have the

Joseph relations imposed.29

5 Argyres-Douglas theories

An interesting class of test cases for the ideas outlined in the previous sections are Argyres-

Douglas (AD) theories [64, 65]. Importantly, recent developments have rendered the Schur

indices of these theories accessible due to a relation with the wall-crossing properties of the

spectrum of BPS particles on the Coulomb branch [11]. The same indices have also been

predicted using the connection between the superconformal index of class S theories and

two-dimensional q-deformed Yang-Mills correlators [25, 66–69]. These developments have

led to a number of proposals for vertex operator algebras associated to certain Argyres-

Douglas theories [11, 18, 36].30 Here we explore the proposed Higgs branch reconstruction

and modular finiteness conditions for several infinite families of Argyres-Douglas vertex op-

erator algebras. The general framework outlined in this paper should be equally applicable

to the much larger landscape of Argyres-Douglas theories explored in the aforementioned

works.

28The a0 case is of course special; there is no moment map operator to begin with and the Higgs branch

is trivial.
29For gF = a1, saturation of the central charge bound (i) is sufficient to obtain a Higgs branch isomorphic

to the one-instanton moduli space, for any value of k4d. The value of k4d can be fixed by further imposing

bound (iii), as we have done in the discussion above. However, as we will see in section 5.2, there can

be theories with different values of k4d that still have the a1 one-instanton moduli space for their Higgs

branch/associated variety.
30See also [70–73] for other recent developments concerning Argyres-Douglas theories and their associated

VOAs, and [74–77] for an interesting new Lagrangian perspective on Argyres-Douglas theories.
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5.1 (A1, A2n) theories: trivial Higgs branch

Our first examples are the (A1, A2n) Argyres-Douglas theories (these are also referred to

as the I2,2n+1 theories in [78]). As four-dimensional theories, these have rank n (i.e.,

n-dimensional Coulomb branches) and trivial Higgs branches. Their Weyl anomaly coeffi-

cients are given by

c4d =
n(6n+ 5)

6(2n+ 3)
, a4d =

n(24n+ 19)

24(2n+ 3)
. (5.1)

The simplest case of n = 1 coincides with the a0 entry in the Deligne-Cvitanović series

discussed above.

We have proposed that VOAs associated to these Argyres-Douglas theories are the

non-unitary (2, 2n+ 3) Virasoro VOAs [30],31

χ[AD(A1,A2n)] = Vir2,2n+3 . (5.2)

For these Virasoro VOAs, the two-dimensional central charge takes the values

c2d = −2n(6n+ 5)

2n+ 3
. (5.3)

The match between (5.1) and (5.3), along with the aforementioned membership of the

n = 1 theory in the Deligne-Cvitanović series, was the original motivation for the proposed

identification. The match has been extended to the level of the Schur index/vacuum

character in [11, 25].

These examples constitute a simple example of the proposed Higgs branch/associated

variety identification. It is well known that for the (p, q) Virasoro VOA, there is a null

state at level (p− 1)(q− 1) and that the coefficient of (L−2)
1
2
(p−1)(q−1)Ω is nonzero in that

null state. Following the discussion in 2.3.1, the C2 algebras for these VOAs are therefore

given by

RVirp,q = C[t]/〈t 1
2
(p−1)(q−1)〉 . (5.4)

Every element other than the identity is nilpotent in these rings, so the reduced rings are

trivial, (
RVirp,q

)
red

∼= C , (5.5)

and the associated variety is just a point,

XVirp,q = SpecC ∼= C0 , (5.6)

which matches with the moduli space physics of these theories. The triviality of the asso-

ciated variety is equivalent to the statement that Virp,q is a C2-co-finite VOA, and indeed

the minimal-model Virasoro VOAs are the first textbook examples of C2-co-finite VOAs.

We observe that the C2-co-finite case, which for some time was the case of primary interest

in the mathematical literature, only accounts for SCFTs with trivial Higgs branches.

In terms of modular differential equations, the null state that truncates RVir2,2n+3 gives

rise to an LMDE of order n+ 1 for the vacuum character, with the n additional solutions

31See also the earlier [79] for a relationship between VOAs and Argyres-Douglas theories.
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being the characters of the non-vacuum modules φr,1 for r = 2, . . . , n + 1. Of these, the

module with the smallest conformal dimension is φn+1,1, which has dimension

hmin = hn+1,1 = − n(n+ 1)

2(2n+ 3)
, (5.7)

which, upon substituting into (3.19) along with the expression for the Virasoro central

charge (5.3), does indeed reproduce the predicted value for a4d given in (5.1).

The proposal (5.2) has been vastly generalized in [11]. The AD theories (Ak−1, AN−1)

with k and N relatively prime are identified with the (k, k + n) Wk algebra,

χ[AD(Ak−1,AN−1)] = Wk(k, k +N) , (k,N) = 1 . (5.8)

These vertex algebras are well-known to be C2-co-finite, matching again physical expecta-

tions about the parent AD theories, which have trivial Higgs branches.

5.2 (A1, D2n+1) theories: C2/Z2 Higgs branches

Our next family of examples are the Argyres-Douglas theories of type (A1, D2n+1), also

denoted (I2,2n−1, F ) in [78]. For this infinite family of SCFTs, the Higgs branch of vacua

always coincides with the (closure of the principal) nilpotent orbit of su(2), i.e., with the

orbifold C2/Z2. As a complex algebraic variety this Higgs branch is realized as

MH = C2/Z2 ≡ C[j1, j2, j3]/〈j1j1 + j2j2 + j3j3〉 . (5.9)

The jA are the moment maps for the holomorphic su(2) action on MH , and in particular

the Poisson bracket is determined by its behavior for these generators, which is determined

by the su(2) commutation relations,

{jA, jB} = iǫABCjC . (5.10)

Note that for the associated variety/Higgs branch correspondence to hold in these examples

the VOA cannot be C2-co-finite, and so in particular these cannot be rational VOAs. As

four-dimensional SCFTs, these are rank-n theories with Weyl anomaly coefficients given

by [65, 78]

c4d =
n

2
, a4d =

n(8n+ 3)

8(2n+ 1)
. (5.11)

It was proposed on the basis of matching central charges and Higgs branch genera-

tors)that the VOAs for these theories are (the simple quotients of) the su(2) affine current

VOA at certain levels [80],

χ[AD(A1,D2n+1
] = V −4n

2n+1
(su(2)) . (5.12)

Note that the first member of this family coincides with the a1 DC vertex algebra. The

superconformal indices of the (A1, D2n+1) theories have been matched with the vacuum

characters of these VOAs [11].
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The levels of these affine current algebras are all admissible in the sense of Kac and

Wakimoto [81], but not integrable.32 The admissible levels for affine current algebras are

interesting precisely because even though they do not yield rational VOAs (their repre-

sentation category are known to not be semi-simple) their vacuum characters nevertheless

transform in finite-dimensional representations of PSL(2,Z).

The associated varieties of affine current VOAs at admissible levels have been deter-

mined in [31], and for the levels in question it was found that the associated variety is given

by the closure of the principal nilpotent orbit of su(2). For illustrative purposes, let us see

how this works explicitly for the simplest cases n = 1, 2.

The VOAs are strongly generated by the currents JA(z), A = 1, 2, 3. The C2 algebra

is then necessarily a quotient by some ideal of the free commutative algebra generated by

the representatives of these currents in the quotient V/C2(V), which we shall denote by jA

as we expect these to be identified with the moment maps on the Higgs branch. In other

words, we have

RV = C[j1, j2, j3]/I . (5.13)

In addition, the structure of the affine current VOA guarantees that the secondary bracket

behaves as dictated by (5.10) for the generators of RV . Identifying the ideal I is not

entirely trivial for general the general case. However for small values of n it is not difficult

to perform the exercise by hand. In particular, one finds null states in the vacuum Verma

modules whose images in the C2 algebra are given by

NA = jA(j1j1 + j2j2 + j3j3) , n = 1 ,

NA = jA(j1j1 + j2j2 + j3j3)2 , n = 2 .
(5.14)

We note here that the relation
∑

A jAjA = 0 does not hold in RV in either case. On the

other hand, we do have the relations
(
∑

A

jAjA

)2

= 0 in RV , n = 1 ,

(
∑

A

jAjA

)3

= 0 in RV , n = 2 .

(5.15)

Thus the quadratic Casimir is in the nilradical of RV , and by passing to the associated

variety (i.e., forgetting nilpotents), we recover the correct Higgs chiral ring as a Poisson

algebra. It is natural to conjecture that in general the quadratic Casimir will be nilpotent

in RV of degree n + 1. Since the quadratic Casimir is the image of the Sugawara stress

tensor in RV , our previous considerations would therefore lead us to expect a modular

equation of order n+ 1. We will see that this is in fact the case.

In general, there are in fact 2n admissible, non-vacuum modules whose characters

appear in the modular transformations of the vacuum character for these algebras. The

primaries in these modules have su(2) spin and conformal dimensions given by [81]

jk = − k + 1

2n+ 1
, hk =

jk(jk + 1)(2n+ 1)

2
, k = 0, . . . , 2n− 1. (5.16)

32Kac-Wakimoto admissible levels for su(2) are levels of the form k = −2+ p

q
where (p, q) = 1 and p > 2.
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Of these, the modules with minimal conformal dimension are the k = n − 1 and k = n

cases, for which we have

hmin = − n(n+ 1)

2(2n+ 1)
. (5.17)

The characters for these modules are given by

χk(q, a) = TrMk

(
qL0−c/24aJ

3
0

)
=

Θ2n−2k−1,4n+2(τ, α)−Θ−2n−2k−3,4n+2(τ, α)

Θ1,2(τ, α)−Θ−1,2(τ, α)
, (5.18)

where a = exp(2πiα) and

Θn,m(τ, α) =
∑

r∈Z+(n/2m)

qmr2amr . (5.19)

These characters are meant to be thought of in terms of their series expansions in q and a−1.

These characters are not well defined in the limit a → 1 because the horizontal

su(2) representations with fixed conformal dimension within these modules are infinite-

dimensional. Nevertheless, it turns out that differences of characters, when considered as

analytic functions of the fugacities as opposed to formal power series, can have finite limits

when the flavor fugacities are set to zero. In particular, the following combinations of

characters are well-defined in the unflavored limit [52],

χ+
k (q, q) = χk(q, q)− χ2n−1−k(q, q) , k = 0, . . . , n− 1 . (5.20)

In each case, the two simple characters appearing in the linear combination have the same

conformal dimension, so the full set of conformal dimensions are realized by the characters

that make sense when a = 0. It is these combinations of characters, along with the vacuum

character, that transform into one another under modular transformations and that solve

an order n + 1 LMDE. Indeed, using the value for hmin from (5.17) in (3.19), along with

the value of the Virasoro central charge, we recover the expression for the Weyl anomaly

a4d given in (5.11).

5.3 (A1, A2n−1) theories: Kleinian singularities for Higgs branches

The (A1, A2n−1) Argyres-Douglas theories (i.e., the I2,2n theories) have rank (n − 1) and

their Higgs branches are the A-type Kleinian singularities (also called canonical singulari-

ties),

MH(A1, A2n−1) ∼= C2/Zn . (5.21)

As algebraic varieties, these singularities can all be realized as hypersurfaces in C3
[x,y,z],

C2/Zn
∼= Spec

(
C[x, y, z]/〈xy + zn〉

)
, (5.22)

with the Poisson bracket acting on the generators according to

{z, x} = x , {z, y} = −y , {x, y} = nzn−1 . (5.23)
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The Weyl anomaly coefficients are given by

a4d =
12n2 − 5n− 5

24(n+ 1)
, c4d =

3n2 − n− 1

6(n+ 1)
. (5.24)

For n = 2 this family coincides with our previous examples (indeed the (A1, A3) theory is

the same thing as the (A1, D3) theory), but for n > 3 these are distinct theories from those

considered above.

A strong hint of what VOAs should be associated to these SCFTs comes from (part

of) the Grothendieck-Brieskorn-Slodowy theorem. The relevant part of the statement of

the theorem, which we paraphrase from [82], is as follows:

Theorem 1 (Grothendieck-Brieskorn-Slodowy [83]) Let g be a simple complex Lie

algebra of type ADE and f ∈ g a point in the subregular nilpotent orbit. Denote by Sf the

Slodowy slice transverse to f . Further denote the nilpotent cone in g by N . Then the inter-

section Sf∩N is a Kleinian surface singularity associated to the same Dynkin diagram as g.

Thus the Higgs branches in question can be realized as the intersections of nilpotent cones

with subregular Slodowy slices for g = sl(n), n > 2.

The relevance of this theorem arises from the results of Arakawa on the relationship

between quantum Drinfel’d-Sokolov reduction of affine current VOAs and intersections

of nilcones with Slodowy slices. In particular, Arakawa has proven the following general

result, which we state in a more limited form relevant for our purposes:

Theorem 2 (Arakawa [31]) Let V be an affine current VOA Vk(g) of level k̃ with g a

simple Lie algebra. Let XV denote the associated variety of V. For f a nilpotent element

of g, let H
∞

2
+0

f (V) denote the VOA obtained by generalized quantum Drinfel’d-Sokolov

reduction of V associated to the sl(2) ⊂ g defined by f . Then the associated variety of the

reduced VOA is obtained from that of V by intersecting with the Slodowy slice Sf ,

X
H

∞
2 +0

f
(V)

= XV ∩ Sf . (5.25)

Consequently, for any k̃ such that XV
k̃
(g) = Ng — i.e., for which the associated variety is

the closure of the principal nilpotent orbit in g — the associated variety of the subregular

quantum Drinfel’d-Sokolov reduction for that algebra will have as its associated variety the

corresponding Kleinian singularity.

The associated varieties of affine current VOAs have been studied in detail in [31] for

the case where k is an admissible level (in the sense of Kac and Wakimoto).33 There it

was found that the associated variety of the Vk̃(sl(n)) VOA for k̃ admissible is the closure

of the principal nilpotent orbit if and only if

k̃ = −n+
p

q
, (p, q) = 1 , p, q > n . (5.26)

33For g = sl(n), a level k̃ is Kac-Wakimoto admissible if it is of the form k̃ = −n+ p

q
with (p, q) = 1 and

p > n.
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Hence for such an admissible level, subregular quantum Drinfel’d-Sokolov reduction will

yield a VOA with the Kleinian singularity as its associated variety.

This construction yields candidates for the VOAs associated to all of the (A1, A2n−1)

Argyres-Douglas fixed points. The Virasoro central charge of the VOA obtained by sub-

regular quantum Drinfel’d-Sokolov reduction is fixed in terms of n and k according to

cn,k̃ = −
(k̃(n− 1) + (n− 2)n)

(
k̃(n− 2)n+ (n− 3)n2 + 1

)

k̃ + n
. (5.27)

Equating this with the expected central charges above, we have

k̃ = − n2

n+ 1
, or k̃ = −n3 − 3n2 − 2n− 1

n2 − 2n
. (5.28)

It is easy to see that the former solution is both admissible and satisfies Arakawa’s crite-

rion (5.26). It is less immediately obvious, but nevertheless true, that the latter solution

is also admissible and satisfies (5.26). We immediately observe that for the case of n = 2,

where there is no subregular orbit, the former solution reproduces the level k̃ = −4/3 that is

appropriate for the (A1, A3) theory, whereas the second solution becomes singular. We will

see below that for other small values of n it is also the former solution that is compatible

with what is known about these theories. All in all, we conjecture the identification34

χ[AD(A1,A2n−1)] = H
∞

2
+0

fsubreg

(
V−n2

n+1

(su(n))

)
. (5.29)

The subregular Drinfel’d-Sokolov reductions at the particular levels k = −n2/(n+ 1) have

been the subject of significant investigation previously [34, 35]. Among the reasons that

they have attracted such interest is that they admit several alternative formulations aside

from their definition via hamiltonian reduction.

5.3.1 (A1, A5): Bershadsky Polyakov

The first example is the subregular Drinfel’d-Sokolov reduction of su(3). This is the famous

Bershadsky-Polyakov algebra [32, 33]. For generic k̃ this is a strongly finitely generated W
algebra with generators Z, X, Y , and T of dimensions 1, 3

2 ,
3
2 and 2, respectively. As a

34The same conjecture has been made independently in [36].
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W-algebra, this VOA is defined by the singular OPEs

T (z)T (w)∼
k(14−9k)
4(2+k)

(z−w)4
+

T (w)

(z−w)2
+
T ′(w)

z−w
,

T (z)X(w)∼
3
2X(w)

(z−w)2
+
X ′(w)

z−w
,

T (z)Y (w)∼
3
2Y (w)

(z−w)2
+
Y ′(w)

z−w
,

Z(z)Z(w)∼ k/2

(z−w)2
,

Z(z)X(w)∼ X(w)

(z−w)
,

Z(z)Y (w)∼ −Y (w)

(z−w)
, (5.30)

X(z)Y (w)∼
3
8(3k

2−2k)

(z−w)3
+

3
4(3k−2)Z(w)

(z−w)2
+
3(ZZ)(w)+ 3

8(3k−2)Z ′(w)− 3
4(k+2)T (w)

z−w
.

where the u(1) level k is related to the parent su(3) level according to

k =
2

3
(2k̃ + 3) . (5.31)

The two possible values of k̃ in (5.28) are k̃ = −9/4 and k̃ = 7/3, which translates to

u(1) levels k = −1 and k = 46/9, respectively. Thus the second solution is ruled out by

four-dimensional unitarity, so we have k = −1. At this level, there is a null state at level

three that encodes the Higgs branch relation,

NH =

(
X− 3

2
Y− 3

2
+ Z−1Z−1Z−1 −

3

2
L−2Z−1 − 3Z−2Z−1 +

3

8
L−3 +

11

8
Z−4

)
Ω . (5.32)

In the C2 algebra, this implies that we have the relation

xy + z3 =
3

2
tz . (5.33)

The secondary bracket on RV is also easily read off from the singular OPEs,

{z, x} = x , {z, y} = −y , {x, y} = 3z2 − 3

4
t , (5.34)

and t is central with respect to the bracket. Consequently we will recover the Higgs branch

relation as a Poisson variety as long as the stress tensor is nilpotent in the C2 algebra. To

observe this nilpotence, we must go to level six, where there is a null state such that

(L−2)
3Ω ∈ C2(V) =⇒ t3 = 0 . (5.35)

We have not been able to put the null state in a particularly beautiful form, so we do not

display it here.
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Curiously, this null state does not lead directly to a third-order Γ0(2)-modular differen-

tial equation — it suffers from the obstruction outlined in section 3.2. Instead, the vacuum

character is annihilated by a fourth-order Γ0(2)-modular differential operator which we

display here:

D(A1,A5) = D
(4)
q +5E2

[
−1

+1

]
(τ)D(3)

q −25E4

[
+1

+1

]
(τ)D(2)

q −

(
1550

3
E6

[
+1

+1

]
(τ)+

2675

6
E6

[
−1

+1

]
(τ)

)
D

(1)
q

−

(
10115

3
E8

[
+1

+1

]
(τ)+

21455

6
E8

[
−1

+1

]
(τ)−

455

2
E4

[
+1

+1

]
(τ)E4

[
−1

+1

]
(τ)

)
. (5.36)

The conformal weights of the additional solutions to this twisted modular equation can be

determined by solving its indicial equation, while the conformal weights relevant for the

high temperature limit are determined by solving the indicial equation for the conjugate

differential operator. The result is the following weights,

hi =

{
−1

2
,−3

8
,−1

4
, 0

}
, h̃i =

{
− 9

16
,− 5

16
,− 1

16
,
7

16

}
, (5.37)

from which we deduce

h̃min = − 9

16
, a4d =

11

12
, (5.38)

which verifies the results from [78].

An additional observation is that the vacuum character is actually annihilated by a

third-order differential operator, but it is only modular with respect to the smaller con-

jugacy subgroup Γ(2). This differential operator involves modular forms that cannot be

produced by the recursion relation described in appendix B.3, and is given by

D̂(A1,A5) = D(3)
q +

(
3

2
E2

[−1

+1

]
+3E2

[
+1

−1

])
D(2)

q

−
(
37

4
E4

[
+1

+1

]
+

21

2
E4

[−1

+1

]
−6E4

[
+1

−1

])
D(1)

q (5.39)

−
(
385

32
E6

[
+1

+1

]
+

141

4
E6

[−1

+1

]
+82E6

[
+1

−1

]
+

67

2
E2

[−1

+1

]
E4

[
+1

−1

]
+23E2

[
+1

−1

]
E4

[−1

+1

])
.

The solutions of the fourth-order Γ0(2)-modular equation (and its conjugate) that do not

solve the third-order Γ(2)-modular equation and its conjugate are those with h = −3
8 and

h̃ = 7
16 . It is interesting to observe that the conjugate solution with positive conformal

dimension, which is something we will not see in any other examples, does not survive the

more stringent test of solving the third-order equation. That said, at present we have no

specific understanding of the role played by the third-order equation.

5.3.2 (A1, A7): first generalized Bershadsky-Polyakov

For general level, the subregular Drinfel’d-Sokolov reduction of Vk̃(sl(4)) yields aW-algebra

that is strongly generated by currents {Z,X, Y, T,W} where Z is a u(1) current, X and Y

are have weight two and charge ±1 under Z, T is the stress tensor and W is an additional

generator of conformal weight three. However when k̃ = −16/5, W becomes null, so

the only generators are the stress tensor and the currents associated to Higgs chiral ring

generators. It is at this value that the subregular reduction is equivalent to the generalized

Bershadsky-Polyakov algebra described in [35].
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It is intriguing that there is actually a one-parameter family of W-algebras with this

smaller list of generators. The general form of the singular OPEs for this family of W
algebras are as follows,

T (z)T (w) ∼
− 3k2

−8k+2
2+k

(z−w)4
+

T (w)

(z−w)2
+

T ′(w)

z−w
,

T (z)X(w) ∼
2X(w)

(z−w)2
+

X ′(w)

z−w
,

T (z)Y (w) ∼
2Y (w)

(z−w)2
+

Y ′(w)

z−w
,

T (z)Z(w) ∼
Z(w)

(z−w)2
+

Z′(w)

z−w
,

Z(z)Z(w) ∼
k
2

(z−w)2
, (5.40)

Z(z)X(w) ∼
X(w)

(z−w)
,

Z(z)Y (w) ∼
−Y (w)

(z−w)
,

X(z)Y (w) ∼
3
2
k2(k−2)

(z−w)4
+

3k(k−2)Z

(z−w)3
+

−k(k+2)T (w)+4(k−1)(ZZ)(w)+ 3
2
k(k−2)Z′(w)

(z−w)2

+
4(ZZZ)(w)−2(k+2)(TZ)(w)+4(k−1)(Z′Z)(w)− k

2
(k−2)T ′(w)+ 1

2
(k2+4)Z′′(w)

z−w
.

The C2 algebra for this VOA is generated by x, y, z, and t with Poisson brackets given by

{z, x} = x , {z, y} = −y , {x, y} = 4z3 − 2(k + 2)tz , (5.41)

and as usual t Poisson commutes with everything.

For k = −1/3 and k = −4/5, there is a null state at level four that could be a shadow

of the Higgs branch relation. Because it is complicated, we only write the resulting relation

in the C2 algebra,

xy + z4 − 10

3
tz2 +

10

9
t2 = 0 , k = −1

3
,

xy + z4 − 30

11
tz2 − 3

11
t2 = 0 , k = −4

5
.

(5.42)

The relevant values of the Virasoro central charge for these solutions are given c2d = −6

for k = −1/3 and c2d = −86/5 for k = −4/5. Thus it is the latter solution that we identify

with the (A1, A7) Argyres-Douglas theory. Indeed, it is this solution which arises from the

subregular Drinfel’d-Sokolov reduction at k̃ = −16/5.

The Schur index for this theory has been given in [11]. We have found a sixth-order

LMDE that is solved by this index,

D(A1,A7) = D(6)
q − 77E4(τ)D

(4)
q − 2156E6(τ)D

(3)
q − 384461

25
E4(τ)

2D(2)
q

− 4296908

25
E4(τ)E6(τ)D

(1)
q −

(
1145859

5
E4(τ)

3 +
1970584

5
E6(τ)

2

)
.

(5.43)

This suggests that there is a relation t6 = 0 in the C2 algebra, so after passing to the

reduced algebra we should recover the Higgs branch chiral ring, as is guaranteed by the

abstract arguments above.
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The additional solutions of the indicial equation for this LMDO give module weights

hi =

{
−4

5
, −3

5
, −2

5
, −1

5
, 0,

1

5

}
, (5.44)

from which we deduce

hmin = −4

5
, a4d =

167

120
, (5.45)

which does indeed matches with the correct physical value.

5.3.3 (A1, A2n−1) for n > 5

For the (A1, A9) theory, and presumably for higher n as well, it is no longer the case that

the W-algebra generated by X, Y , Z, and T sits in a continuous family of algebras. On

the contrary, for this case the algebra with these strong generators can only be closed at

certain discrete values of c2d. Here we briefly summarize the results for the (A1, A9) case.

Here there is only one solution to theW-algebra bootstrap equations that is compatible

with four-dimensional unitarity:

T (z)T (w) ∼ −23
2

(z − w)4
+

T (w)

(z − w)2
+

T ′(w)

z − w
,

T (z)X(w) ∼
5
2X(w)

(z − w)2
+

X ′(w)

z − w
,

T (z)Y (w) ∼
5
2Y (w)

(z − w)2
+

Y ′(w)

z − w
,

T (z)Z(w) ∼ Z(w)

(z − w)2
+

Z ′(w)

z − w
,

Z(z)Z(w) ∼ −1
3

(z − w)2
,

Z(z)X(w) ∼ X(w)

(z − w)
, (5.46)

Z(z)Y (w) ∼ −Y (w)

(z − w)
,

X(z)Y (w) ∼
35
9

(z − w)5
+

−35
3 Z

(z − w)4
+

−35
27T (w) +

140
9 (ZZ)(w)− 35

6 Z
′(w)

(z − w)3

+
−35

3 (ZZZ)(w) + 35
9 (TZ)(w) + 140

9 (Z ′Z)(w)− 35
54T

′(w)− 35
9 Z

′′(w)

(z − w)2

+
5(ZZZZ)(w)− 5(TZZ)(w) + 5

18(TT )(w) +
35
18(TZ)′(w)− 35

2 (Z
′ZZ)(w)

z − w

+
85
24(Z

′Z ′)(w) + 125
12 (Z

′′Z)(w)− 5
18T

′′(w)− 35
24Z

′′′(w)

z − w
.

We see that for this solution the Virasoro central charge is given by c2d = −23, matching

four-dimensional expectations. In this case we have bootstrapped the singular OPEs and

found null states whose images in the C2 algebra are given by

ty = 0 , xy + z5 +
5

6
t2z − 10

3
tz3 = 0 . (5.47)
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The second of these obviously corresponds to the Higgs chiral ring relation for this theory,

while the first is somewhat mysterious from a four-dimensional point of view. It is the first

null that is responsible for the closure of the operator algebra.

We have also derived modular differential equations for the Schur index of this theory.

As in the (A1, A5) case, we find a lower-order modular equation for the smaller modular

group Γ(2). In particular, we find a sixth-order Γ(2)-modular differential equation. We have

also found a two-dimensional family of ninth-order Γ0(2)-modular differential equations.

The minimal solution weight for the conjugate equations is given by

h̃min = −25

24
=⇒ a4d =

15

8
. (5.48)

5.4 (A1, D2n+2) theories: Slodowy slices to nilpotent orbits

To complete our discussion of Argyres-Douglas theories, we consider the final infinite family

of type (A1,Γ), namely the theories of type (A1, D2n+2) for n > 1 (i.e., the (I2,2n, F )

theories). These are rank-n theories that are predicted to have four-dimensional central

charges given by

a4d =
12n+ 7

24
, c4d =

3n+ 1

6
. (5.49)

We are not aware of a reference where the Higgs branches of these theories are written

down explicitly, but they can be readily determined by passing to three dimensions. Three-

dimensional mirrors to the circle compactification of these theories were proposed in [65];

they are abelian quiver gauge theories associated to the following simple quivers:

n+ 2 1 1 1

(5.50)

Consequently the Higgs branches of our Argyres-Douglas theories are the Coulomb branches

of the IR fixed points of these quiver gauge theories. But these three-dimensional gauge

theories further admit three-dimensional abelian Lagrangian mirrors that are easily deter-

mined using the technology of [84].35 Thus the Higgs branches of the (A1, D2n+2) Argyres-

Douglas theories are identified with the Higgs branches of the three-dimensional U(1)n

gauge theories associated to the following quivers:

2 1 1 · · · 1 1 1

n times

(5.51)

As we will see, this description of the Argyres-Douglas Higgs branches as quiver varieties is

precisely reproduced by an investigation of the associated variety of the associated vertex

algebras.

35We are grateful to Sergio Benvenuti for pointing this out to us.

– 41 –



J
H
E
P
0
8
(
2
0
1
8
)
1
1
4

In [36] the vertex algebras associated to this family were proposed to be the to-called

Wn+1 algebras, which are the sub-subregular36 quantum Drinfeld-Sokolov reductions of

the affine current algebras Vk(su(n + 2)) with k = − (n2+2n)
n+1 . These are strongly finitely

generated vertex operator algebras that, for generic level, are generated by operators of

dimension h = 2, 3, . . . , n along with affine gl(2) currents and operators of dimension h =

(n+ 1)/2 transforming in the fundamental and anti-fundamental representations of gl(2).

The associated variety of the Wn+1 algebra can be determined using Theorem 2 and

results on intersections of Slodowy slices with nilpotent orbits from [37] as follows. The

associated variety for the affine current algebra Vk(su(n + 2)) for the relevant level is the

subregular nilpotent orbit of sl(n+2), which is specified by the partition [n+1, 1] [31]. By

the aforementioned theorem, the associated variety for the Wn+1 algebra can therefore be

described as the intersection

XWp = O[n+1,1] ∩ S[n,1,1] . (5.52)

A theorem of Maffei (proving a conjecture of Nakajima [85]) shows that this intersection

is isomorphic to a quiver variety. We state a (slightly weaker version of the) full theorem

of Maffei here for convenience (see also [86] for a useful summary):

Theorem 3 (Maffei [37]) Let v = (v1, . . . , vℓ−1) and d = (d1, . . . , dℓ−1) be two (ℓ − 1)-

tuples of non-negative integers, and further define the tuple r(d, v) = (r1, . . . , rℓ) according

to

r1 =

(
ℓ−1∑

i=1

di

)
− v1 ,

rj =




ℓ−1∑

i=j

di


− vj + vj−1 ,

rℓ = vℓ−1 .

(5.53)

so
∑ℓ

i=1 ri = N =
∑ℓ−1

i=1 i × di. To r(d, v) we assign a partition of N denoted λr as fol-

lows: let ρ1 > ρ2 > . . . > ρℓ be a permutation of r(d, v). Then λr = [1ρ1−ρ22ρ2−ρ3 . . . (ℓ −
1)ρℓ−1−ρℓ(ℓ)ρℓ ]. The framed A-type quiver variety with gauge nodes having ranks given by v

and flavor nodes having ranks given by d is isomorphic as an algebraic variety to the inter-

section of the (closure of the) minimal nilpotent orbit of sl(N) associated to the partition λr

with the Slodowy slice to a nilpotent element x specified by the partition [1d1 . . . (ℓ−1)dℓ−1 ].

Applying this to our family of intersections, we take x to be specified by [n, 1, 1] and

λr = [n + 1, 1], from which we determine r = (2, 1, . . . , 1), and d = (2, 0, . . . , 0, 1) with

ℓ = n+ 1, and finally v = (1, . . . , 1). This describes precisely the quiver variety associated

to the quiver given in (5.51) when n > 2. The special case n = 1 is degenerate, as

36The sub-subregular embedding of sl(2) →֒ sl(n) is well-defined for n > 3 and for n > 4 can be understood

as the regular embedding of sl(2) →֒ sl(n−2) →֒ sl(n), where the latter embedding is the obvious one where

the fundamental decomposes as n 7→ (n− 2)⊕C⊕C. For n = 3 the sub-subregular embedding is the trivial

embedding.
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here we are discussing the closure of the minimal nilpotent orbit of sl(3) with no Slodowy

intersection. In this case we have λr = [2, 1], r = (2, 1), d = (3), and v = (1). The quiver

is therefore the well-known quiver describing the minimal nilpotent orbit of sl(3),

3 1

(5.54)

which indeed matches the n = 1 case of the quiver in (5.51). We therefore find perfect

agreement between the Higgs branches of these Argyres-Douglas theories and the associated

varieties of the proposed associated vertex algebras.

6 Further results

In general, it is easier to test whether the Schur index of some N = 2 SCFT is the solution

to a monic modular differential equation of fixed order than it is to solve for the associated

variety of the corresponding vertex operator algebra. This has enabled us to collect a

substantial amount of data in support of the conjecture that Schur indices should generally

satisfy such differential equations. Below we summarize our results in this area. We will

see that the order of the monic differential equation behaves somewhat erratically within

several nice families of SCFTs, but there may be some order underlying the chaos.

6.1 A1 class S

The unflavored Schur indices of class S theories of type A1 admit a general, simple expres-

sion from which it is easy to generate the q-series expansion to very high order [87],

Ia1
g,s = (q; q)2g−2−2s

∞

∞∑

k=0

(
(k + 1)sq

k
2
(2g−2+s)

(1− qk+1)2g−2+s

)
. (6.1)

The a and c Weyl anomalies are given by

ag,s =
53

24
(g − 1) +

19

24
s , cg,s =

13

6
(g − 1) +

5

6
s . (6.2)

The associated VOAs for these theories admit a variety of cohomological presentations [1,

10], and there is a proposal for the list of generators in a W-algebraic presentation at genus

zero [10, 88]. Nevertheless, for all cases other than g = 0, s = 3, 4 and g = 1, s = 1, the

explicit W-algebra has yet to be constructed.

We note in advance that for 2g−2+s even, the Schur index has only integer powers of

q. It is expected (though not proven) that the vertex operator algebras for these theories

are genuinely Z-graded. Furthermore, for genus zero theories, it is expected that the vertex

operator algebra is purely bosonic.

Genus zero, three punctures. The simplest case is the three-punctured sphere, for

which the vertex operator algebra is four copies of the symplectic boson VOA,

qabc(z)qa
′b′c′(w) =

εaa
′

εbb
′

εcc
′

z − w
+O((z − w)0)) (6.3)
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This is a bosonic, 1
2Z-graded VOA. The C2 algebra and associate variety for this VOA are

simple: the C2 algebra has no nilpotent elements and is freely generated by equivalence

classes of the states qabc
− 1

2

Ω, with the Poisson bracket defined on the generators according to

{qabc, qa′b′c′} = εaa
′

εbb
′

εcc
′

. (6.4)

The associated variety is therefore just the affine space C8 with the canonical holomorphic

Poisson bracket. Thus in this instance, the identification of the Higgs branch with the

associated variety is trivial.

The stress tensor is a composite and lies in C2(V) by construction,

L−2Ω =
1

2
εaa′εbb′εcc′(q

abc)− 3
2
(qa

′b′c′)− 1
2
Ω ∈ C2(V) . (6.5)

Taking the trace of the (square-bracket) zero-modes of both sides and applying the recursion

relations given in appendix B.3, we find

TrV

(
o
(
L[−2]Ω

)
qL0−c/24

)
=

1

2
εaa′εbb′εcc′TrV

(
o
(
(qabc)[− 3

2
](q

a′b′c′)[− 1
2
]Ω
)
qL0−c/24

)
,

P2

(
TrVq

L0−c/24
)
= −1

2
εaa′εbb′εcc′ε

aa′εbb
′

εcc
′

E2

[−1

+1

]
(τ)TrV

(
qL0−c/24

)
(6.6)

which is a first-order modular differential equation for the vacuum character,

(
D(1)

q − 4E2

[−1

+1

]
(τ)

)
χa1
0,3(q) = 0 . (6.7)

The conjugate LMDO is

D̃a1
C0,3

=

(
D(1)

q − 4E2

[
+1

−1

]
(τ)

)
, (6.8)

from which we find that h̃min = −1
2 . Inserting this and the value c2d = −4 into (3.19), we

recover the expected Weyl anomaly

a4d =
1

6
. (6.9)

Genus zero, four punctures. The case of the four punctured sphere was discussed

above in section 4 — it is the affine current algebra ŝo(8)−2. The vacuum character obeys

a second order modular differential equations,

(
D(2)

q − 175E4(τ)
)
Ia1
0,4(q) = 0 . (6.10)

The non-vacuum solution of this equation gives hmin = −1, from which we rederive the

Weyl anomaly for this theory

a4d =
23

24
. (6.11)
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Cg,s ord(D) Modular Group Indicial roots hi Conjugate roots h̃i dimVD

C0,3 1 Γ0(2) 0 (− 1
2 ) 0

C0,4 2 Γ −1, 0 — 0

C0,5 4 Γ0(2) (−1)3, 0 (− 3
2 ), (− 1

2 )3 0

C0,6 6 Γ −2, (−1)4, 0 — 0

C0,7 13 Γ0(2) (−2)5, (−1)3, 0, (⋆)4 − 5
2 , (− 3

2 )5,−( 12 )3, (⋆)4 2

C0,8 16 Γ −3, (−2)6, (−1)4, 0, (⋆)4 — 0

C1,1 2 Γ0(2) − 1
2 , 0 (− 1

2 )2 0

C1,2 4 Γ (−1)2,− 1
3 , 0 — 0

C1,3 6 Γ0(2) − 3
2 , (−1)3,− 1

2 , 0 (− 3
2 )2, (− 1

2 )4 0

C1,4 9 Γ (−2)2, (−1)5, (0)2 — 0

C2,0 6 Γ (−1)4, (0)2 — 0

C2,1 11 Γ0(2) (− 3
2 )4, (−1)3, 0, (⋆)3 (− 3

2 )4, (− 1
2 )4, (⋆)3 1

Table 4. Summary of modular differential operators that annihilate the vacuum characters of class

S vertex operator algebras of type a1. Provided are the order of the minimal modular differential

operator that annihilates the vacuum character, the modular subgroup under which the correspond-

ing differential equation is invariant, the list of solutions of the indicial equation, and the dimension

of VD, the vector space of modular differential operators at the given order that mutually annihilate

the vacuum character.

Genus one, one puncture. The genus one theory with one puncture is N = 4 super

Yang-Mills theory with su(2) gauge algebra and an extra free hypermultiplet. The pure

su(2) N = 4 theory will be discussed in more detail below in section 6.2. We note here

that the unflavored Schur index of the class S theory is annihilated by the twisted LMDE

Da1
C1,1

= D(2)
q − 4E2

[−1

+1

]
(τ)D(1)

q − 11E4(τ) + 16E4

[−1

+1

]
(τ) . (6.12)

From the dual LMDO, we find hmin = −1
2 , which along with c2d = −10 gives the correct

value for the Weyl anomaly

a4d =
19

24
. (6.13)

Comments on the general case. The above results and those for the more many other

cases in which the associated VOA has not been constructed are summarized in table 4.

The explicit modular differential operators that annihilate the various indices can be found

in appendix D. The module weights reported are the hi such that −c/24 + hi is a solution

to the indicial equation for the LMDE. A couple of observations may be worth recording.

• The first is that in all cases we have studied, the additional solutions of the modular

equations are mostly logarithmic. Our expectation is that these logarithms are relics
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of regularizing ill-defined characters in the limit where flavor fugacities are set to

zero. Consequently, in light of our previous discussions, this suggests that for these

class S theories there are no superconformal surface defects with finite-dimensional

spaces of operators at fixed level in the Schur index.

• For genus zero with seven punctures and genus two with one puncture, we have

found that at the minimal order for which there exists an LMDO annihilating the

vacuum character, there is actually a continuous family of such LMDOs (we have

denoted the vector space of such LMDOs as VD in table 4). It would be of some

interest to understand whether there is a multiplicity of null vectors leading to this

positive-dimensional space of LMDOs, and if so whether there is any four-dimensional

interpretation of the phenomenon.

• Relatedly, for a number of high-rank examples (genus zero with seven and eight

punctures and genus two with one puncture), we have found complex, irrational

roots to the indicial and, when relevant, conjugate indicial equations. In the cases

mentioned in the previous bullet, these extra solutions depend on the choice of LMDO

in VD, so the actual vector-valued modular form that includes the vacuum character is

of lower dimension than the LMDE would suggest and does not include the solutions

with complex weights. For genus zero with eight punctures, we also take the complex

irrational roots as an indication that the space of solutions to the differential equations

in question are too large. In this case, algebraically independent LMDOs of higher

order that annihilate the same character could exclude the additional solutions. It

would be interesting to find these additional operators and investigate their four-

dimensional meaning.

• Taking for granted the behavior postulated in the previous bullet, we find that the

dimensions of the vector-valued modular forms for the genus zero theories with s = 3,

4, 5, 6, 7, and 8 punctures are 1, 2, 4, 6, 9, and 12. From this, we optimistically

conjecture that the dimension for a general number of punctures is given by

dim (v.v.m.f.) (s) = ⌊(s− 1)2/4⌋ . (6.14)

We have excluded the existence of an LMDE of order less than or equal to 16 for

genus zero with nine punctures, so for our conjecture to hold the phenomenon of

additional LMDOs must apply in this case.

• We finally observe that with the exception of the irrational/additional indicial roots

described in the previous two bullets, all values of hi and h̃i are negative. We suspect

this is a general phenomenon. It would be interesting to explain this phenomenon in

terms of the physics of surface operators, perhaps as a consequence of unitarity.

6.2 N = 4 super Yang-Mills

The N = 4 gauge theory with su(N) gauge group has an associated 1
2Z-graded VOA.

In all cases this VOA has the small N = 4 superconformal algebra as a subalgebra. For
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general N , a list of generators has been proposed for a W-algebraic description of this VOA

in [1], but the structure constants have not been determined. Only the su(2) case has been

constructed as a W-algebra in the literature.

6.2.1 su(2) gauge algebra

For the special case of the su(2) gauge theory, a fairly complete analysis is possible. Here the

Higgs branch is the sl(2) nilpotent orbit C2/Z2. The Higgs branch chiral ring is generated

by the su(2) moment map µA, A = 1, 2, 3, which is subject to the Joseph relation

(µ⊗ µ)
∣∣
1
= 0 (6.15)

The Hall-Littlewood chiral ring and anti-chiral ring have additional (fermionic) generators

of dimension 5/2, ωα, and ω̃α arising from the extra supercurrents, where α is an su(2)F
doublet index. There are additional chiral ring relations involving these generators,

(µ⊗ ω)
∣∣
2
= (µ⊗ ω̃)

∣∣
2
= 0 , (ω ⊗ ω) = (ω̃ ⊗ ω̃) = (ω ⊗ ω̃) = 0 . (6.16)

The associated VOA is precisely the small N = 4 algebra with c = −9, with no extra

generators [1]. This VOA is generated by su(2) affine currents JA(z) and supercurrents

Gα(z) and G̃α(z), their singular OPEs take the form

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+

T ′(w)

z − w
,

JA(z)JB(w) ∼
c
12κ

AB

(z − w)2
+

fAB
CJ

C(w)

z − w
,

JA(z)Gα(z) ∼
(σA) α

β Gβ(w)

z − w
,

JA(z)G̃α(z) ∼
(σA) α

β G̃β(w)

z − w
,

Gα(z)G̃β(w) ∼
c
3ε

αβ

(z − w)3
+

−4(σA)
αβJA(w)

(z − w)2
+

εαβT (w)− 2(σA)
αβJA(w)

z − w
.

(6.17)

For this value of the central charge, the stress tensor is not an independent strong generator.

Rather it is a composite obtained from the affine currents by the Sugawara construction,

T (z) = 2κAB(J
AJB)(z) . (6.18)

The current and supercurrent generators of the VOA correspond to Higgs branch chiral

ring and Hall-Littlewood (anti-)chiral ring generators in the four-dimensional theory. The

relation (6.18) is the VOA avatar of the Higgs branch relation (6.15). Additionally, there
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are null states at dimensions h = 5/2 and h = 3,

(NJG)
α =

(
(σA)

α
β JA

−1G
β
−3/2 −

1

2
Gα

−5/2

)
Ω .

(NJG̃)
α =

(
(σA)

α
β JA

−1G̃
β
−3/2 −

1

2
G̃α

−5/2

)
Ω .

(NGG̃)
A =

(
(σA)αβG

α
−3/2G̃

β
−3/2 + 2fA

BCJ
B
−2J

C
−1 + 2JA

−3 − 2L−2J
A
−1

)
Ω ,

NGG̃ =
(
εαβG

α
−3/2G̃

β
−3/2 + L−3

)
Ω ,

NGG = εαβ

(
Gα

−3/2G
β
−3/2

)
Ω ,

NG̃G̃ = εαβ

(
G̃α

−3/2G̃
β
−3/2

)
Ω ,

(6.19)

that are related to the additional chiral ring relations of (6.16).

The C2 algebra is generated by the equivalence classes of the strong generators,

jA ∼ JA
−1Ω , ωα ∼ Gα

−3/2Ω , ω̃α ∼ G̃α
−3/2Ω . (6.20)

The fermionic generators ω and ω̃ are automatically nilpotent, so the only issue in deter-

mining the associated variety is what happens to the moment maps. Their fate is sealed

by a null vector at level four that relates the square of the stress tensor to an element of

C2(V),

NT =

(
(L−2)

2 + εαβ

(
G̃α

−5/2G
β
−3/2 −Gα

−5/2G̃
β
−3/2

)
− κAB

(
JA
−2J

B
−2

)
− 1

2
L−4

)
Ω . (6.21)

This null vector gives rise to the relation
(
∑

A

jAjA

)2

= 0 in RV . (6.22)

Thus we see that the element of RV corresponding to the Higgs branch relation in four

dimensions is indeed nilpotent, and so vanishes in the reduced algebra.

As in the DC series discussed in section 4, there can be no further relations that would

remove the currents themselves from the reduced algebra. Such a removal would require

a relation of the form (j+)n = 0 in RV , which would require a null state in su(2) affine

current subalgebra of the form J+
−1)

nΩ = 0, and such null states cannot exist at negative

level. Thus we do recover the identification of the associated variety with the Higgs branch

in this example.

The null state (6.21) gives rise to a second-order, Γ0(2)-modular differential equation

for the vacuum character of this theory,

DN=4
su(2) = D(2)

q − 2E2

[−1

+1

]
(τ)D(1)

q − 18E4(τ) + 18E4

[−1

+1

]
(τ)) . (6.23)

This equation has a single non-vacuum solution with h = −1
2 — this is a logarithmic

solution. The conjugate differential operator is given by

D̃N=4
su(2) = D(2)

q − 2E2

[
+1

−1

]
(τ)D(1)

q − 18E4(τ) + 18E4

[
+1

−1

]
(τ)) , (6.24)
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N ord(D) Modular Group Dimensions hi Conjugate dimensions h̃i

2 2 Γ0(2) −1
2 , 0 (−3

8)2

3 4 Γ (−1)3, 0 —

4 6 Γ0(2) (−2)2, (−3
2)3, 0 (−15

8 )4, (−7
8)2

5 9 Γ (−3)5, (−2)3, 0 —

6 12 Γ0(2) (−9
2)3, (−4)5, (−5

2)3, 0 (−35
8 )6, (−27

8 )4, (−11
8 )2

7 16 Γ (−6)7, (−5)5, (−3)3, 0 —

Table 5. Summary of modular differential operators that annihilate the vacuum characters of

vertex operator algebras for N = 4 super Yang-Mills theories. Provided are the order of the minimal

modular differential operator that annihilates the vacuum character, the modular subgroup under

which the corresponding differential equation is invariant, and the lists of solutions of the indicial

equation and, when relevant, the conjugate indicial equation. The notation (hi)di
represents that

the dimension hi occurs with multiplicity di.

which has a two dimensional kernel, for which h̃min = −3
8 . Upon substitution into (3.19),

this reproduces the correct value of a4d = 3/4 for the Weyl anomaly of the four-dimensional

theory.

6.2.2 Comments on the general case

For higher rank cases, the associated VOAs have not been constructed as W-algebras in

the literature, and we have not endeavored to analyze their null states. From the known

expressions for the superconformal index, though, we have been able to find modular

differential operators that annihilate the Schur index for g = su(n) with n = 2, . . . , 7.

Relevant information about these differential operators is collected in table 5, while the

full expressions for the differential operators can be found in appendix E. Here we make

some elementary, but potentially meaningful, observations regarding these operators.

• First, we note that the values of hmin or, when relevant, h̃min in all examples correctly

reproduce the expected relation a4d = c4d when inserted into equation (3.19).

• We also note that, as in the class S case, all of the additional solutions in addition

to the vacuum character of the modular equations have hi < 0, and they are all

potentially logarithmic (we have not attempted to construct all solutions, so it may

be that in some cases there are non-logarithmic solutions despite their integer/half-

integer separation from the vacuum dimension.

• From the explicit forms of the differential operators given in appendix E, we see that

for n = 3, 5, and 7, there is no constant term in the differential operators, so a

constant function is always a solution. This is perhaps suggestive of the existence of

additional differential operators of higher degree that would eliminate the constant

solution from the modular orbit of the vacuum character.
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6.3 T4 theory

As a final example, we consider the T4 trinion theory. The Schur index for this theory is

written most simply in the TQFT form of [87, 89], but for our purposes it is best to have

an expansion to high orders in q,

IT4
(q)=1+45q+128q

3
2 +1295q2+5632q

5
2 +33117q3+148352q

7
2 +707340q4+2993664q

9
2

+12613923q5+49769216q
11
2 +191923893q6+708246016q

13
2 +2545387192q7

+8845957248q
15
2 +29966750747q8+98752864256q

17
2 +317881941694q9

+999327596160q
19
2 +3075532233083q10+9270593078784q

21
2 +27412890263961q11

+79570344948352q
23
2 +226982031641227q12+636756053977088q

25
2 +1758243618100910q13

+4781763625305472q
27
2 +12817731868201647q14+33884429064923648q

29
2

+88392539111437047q15+227657529787627648q
31
2 +579191787392656267q16

+1456250341802891776q
33
2 +3620067533783343295q17+8901049365742734336q

35
2

+21656077076478143385q18+52154251986491389568q
37
2 +124371739163793345678q19

+293775740780474832896q
39
2 +687553975761374631611q20+O(q41/2) (6.25)

A W-algebraic presentation has been proposed for the associated VOA in [88]; the proposal

is a 1
2Z−graded bosonic vertex operator algebra. We can find a sixth-order Γ-modular

differential operator that annihilates this character,

DT4 =D
(6)
q −

1

2
Θ0,1D

(5)
q −

(
631

144
Θ0,2−

721

288
Θ1,1

)
D

(4)
q −

(
77

48
Θ0,3−

29

48
Θ1,2

)
D

(3)
q

+

(
2647

20736
Θ0,4+

113507

10368
Θ1,3−

137717

13824
Θ2,2

)
D

(2)
q −

(
6599

124416
Θ0,5−

1774301

124416
Θ1,4+

1597979

124416
Θ2,3

)
D

(1)
q

+

(
39

4096
Θ0,6−

195

4096
Θ1,5+

14379

2048
Θ2,4−

54579

8192
Θ3,3

)
, (6.26)

and the conjugate modular equation is obtained by replacing Θp,q ↔ Θ̃p,q. The solutions

to the indicial and conjugate indicial equations are given by

h =

{
−4,−7

2
,−3,−3,−3, 0

}
,

h̃ = {−5,−4,−3,−2,−2,−2} ,

(6.27)

so the additional solutions will generally be logarithmic. By examining the high tempera-

ture behavior, we find

h̃min = −5 , ceff = 42 , a4d =
45

8
, (6.28)

which matches the expected value for a4d [90].
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A Modular forms and linear modular differential operators

In this appendix we collect useful facts, definitions, and conventions regarding modular

forms and modular differential operators. See any standard reference, e.g., [91], for further

details.

Let the modular parameter τ ∈ H take values in the upper half plane. The modular

group Γ ≡ PSL(2,Z) acts on H according to

τ 7→ aτ + b

cτ + d
, a, b, c, d ∈ Z , ad− bc = 1 . (A.1)

This group is generated by the elements

S : τ 7→ −1

τ
, T : τ 7→ τ + 1 , (A.2)

subject to the relations S2 = (ST )3 = 1.

We define the nome q := e2πiτ and let γ ∈ Γ act on q in the natural way,

γ ◦ q = e2πi
aτ+b
cτ+d . (A.3)

The principal congruence subgroups of Γ are defined as follows

Γ(N) :=

{(
a b

c d

)
∈ Γ , a ≡ d ≡ ±1 , b ≡ c ≡ 0 mod N

}
. (A.4)

Congruence subgroups are subgroups of Γ that themselves contain Γ(N) as a subgroup for

some N . Some standard congruence subgroups that will be useful for our purposes are

Γ1(N) :=

{(
a b

c d

)
∈ Γ , a ≡ d ≡ 1 , b ≡ 0 mod N

}
, (A.5)

Γ0(N) :=

{(
a b

c d

)
∈ Γ , b ≡ 0 mod N

}
. (A.6)

The congruence subgroups groups Γ0(N) and Γ1(N) are somewhat more conventional and

are related to the groups with upper indices by an overall conjugation by the element

S ∈ Γ. The case of relevance for this work is N = 2, and for this value these groups are

not distinct: Γ0(2) ≡ Γ1(2) .
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A modular form of weight k for Γ is a holomorphic function f : H → C that transforms

according to

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ,

(
a b

c d

)
∈ Γ , (A.7)

that is additionally finite as ℑ(τ) → +∞. There can be no non-zero modular forms for Γ

with odd degree due to the requirement that the central element of SL(2,Z) act trivially.

Any modular form has a convergent Fourier expansion in q and is finite in the limit q → 0,

i.e.,

f(τ) =
∞∑

n=0

anq
n . (A.8)

The vector space of modular forms of weight k is denoted Mk(Γ,C). A fundamental result

in the theory of modular forms is that Mk(Γ,C) is finite dimensional for any k.

Similarly, a modular form of weight k for a congruence subgroup of Γ̃ ⊂ Γ is a holo-

morphic function on the upper half plane such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ,

(
a b

c d

)
∈ Γ̃ , (A.9)

and in addition is finite as ℑ(τ) → +∞ and for τ ∈ Q. Any modular form for Γ̃ ∈
{Γ(N),Γ1(N),Γ0(N)} has a Fourier series expansion in q

1
N = e

2πiτ
N ,

f(τ) =

∞∑

n=0

anq
n/N . (A.10)

The modular forms of weight k for a subgroup Γ̃ of the modular group are denotedMk(Γ̃,C).

A.1 Theta functions

The classical Jacobi theta constants are defined as

ϑ00(τ) ≡ θ3(τ) :=
∞∑

n=−∞

q
n2

2 ,

ϑ01(τ) ≡ θ4(τ) :=
∞∑

n=−∞

(−1)nq
n2

2 ,

ϑ10(τ) ≡ θ2(τ) :=
∞∑

n=−∞

q
1
2
(n+ 1

2
)2 .

(A.11)

These satisfy the Jacobi identity,

ϑ00(τ)
4 = ϑ10(τ)

4 + ϑ01(τ)
4 , (A.12)
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and under modular transformations they behave as follows,

ϑ00

(
−1

τ

)
= e

πi
4 (−τ)

1
2ϑ00(τ) , ϑ00(τ + 1) = ϑ01(τ) ,

ϑ01

(
−1

τ

)
= e

πi
4 (−τ)

1
2ϑ10(τ) , ϑ01(τ + 1) = ϑ00(τ) ,

ϑ10

(
−1

τ

)
= e

πi
4 (−τ)

1
2ϑ01(τ) , ϑ10(τ + 1) = −e

πi
4 ϑ10(τ) .

(A.13)

Modular forms for many congruence subgroups can be constructed using these theta con-

stants.

A.2 Eisenstein series

The ordinary Eisenstein series are modular forms for the full modular group Γ of weight

2k with k > 2. There are several conventional normalizations for these series. We define

our Eisenstein series, following [92], as

E2k(τ) := − B2k

(2k)!
+

2

(2k − 1)!

∑

n>1

n2k−1qn

1− qn
, (A.14)

where B2k is the 2k’th Bernoulli number. An alternative normalization is natural when

defining the function as a Poincaré series,

G2k(τ) :=
∑

(m,n)∈Z2\(0,0)

1

(m+ nτ)2k
. (A.15)

The two choices of normalization are related according to

G2k(τ) ≡ (2πi)2kE2k(τ) . (A.16)

In addition, one often defines the normalized Eisenstein series

E2k(τ) :=
1

2ζ(2k)
G2k(τ) = 1 +

1

ζ(1− 2k)

∞∑

n=1

n2k−1qn

1− qn
. (A.17)

The case with k = 1 is special and does not furnish a modular form of weight two —

there are none. Instead, E2(τ) has an anomalous transformation under the modular group

given by

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)−

c(cτ + d)

2πi
. (A.18)

The ring of modular forms for the full modular group Γ is freely generated by E4(τ) and

E6(τ), so we have
∞⊕

k=0

Mk(Γ,C) = C[E4(τ),E6(τ)] . (A.19)
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A.3 Twisted Eisenstein series

We also make use of a class of twisted Eisenstein series that are modular forms for certain

congruence subgroups of Γ. The twisted Eisenstein series of interest are defined as follows

(again see [92] for more details),

Ek

[ϕ
ϑ

]
(τ) ≡ −Bk(λ)

k!
+

1

(k − 1)!

′∑

r>0

(r + λ)k−1ϑ−1qr+λ

1− ϑ−1qr+λ
+

(−1)k

(k − 1)!

∑

r>1

(r − λ)k−1ϑqr−λ

1− ϑqr−λ
,

(A.20)

where ϕ = e2πiλ with λ ∈ [0, 1) and now Bk(x) is the k’th Bernoulli polynomial. The prime

in the first summation indicates that the r = 0 term should be omitted when ϑ = ϕ = 1.

This class of twisted Eisenstein series transform amongst themselves under general modular

transformations,

Ek

[
ϕaϑb

ϕcϑd

](
aτ + b

cτ + d

)
= (cτ + d)kEk

[
ϕ

ϑ

]
(τ) . (A.21)

Relevant to us will be in the cases with ϑ, ϕ = ±1. For k > 4, these are modular forms

of weight k for Γ0(2), and similarly for k = 2 when ϕ 6= 1 or ϑ 6= 1. The weight-two twisted

Eisenstein series of this form have the following relations to elliptic theta constants:

E2

[−1

+1

]
=

θ2(τ)
4 + θ3(τ)

4

24
,

E2

[
+1

−1

]
=

θ2(τ)
4 − 2θ3(τ)

4

24
, (A.22)

E2

[−1

−1

]
=

−2θ2(τ)
4 + θ3(τ)

4

24
.

The spaces of modular forms for Γ(2), Γ0(2) = Γ1(2), and Γ0(w) = Γ1(2) all admit a simple

descriptions in terms of theta functions. In particular, we have

∞⊕

k=0

Mk(Γ(2),C) = C[θ2(τ)
4, θ3(τ)

4] , (A.23)

∞⊕

k=0

Mk(Γ
0(2),C) = C[θ2(τ)

4, θ3(τ)
4]S2 , (A.24)

∞⊕

k=0

Mk(Γ0(2),C) = C[θ3(τ)
4, θ4(τ)

4]S2 . (A.25)

where S2 is the symmetric group action that exchanges θ2(τ) ↔ θ3(τ) in the second line

and θ3(τ) ↔ θ4(τ) in the last line. To facilitate the description of elements of Mk(Γ
0(2))

and Mk(Γ0(2), we define

Θr,s(τ) := θ2(τ)
4rθ3(τ)

4s + θ2(τ)
4sθ3(τ)

4r , r 6 s ,

Θ̃r,s(τ) := (−1)r+s
(
θ4(τ)

4rθ3(τ)
4s + θ4(τ)

4sθ3(τ)
4r
)
, r 6 s .

(A.26)

in terms of which we have

M2k

(
Γ0(2)

)
= span {Θr,s(τ) | r + s = k} ,

M2k (Γ0(2)) = span
{
Θ̃r,s(τ) | r + s = k

}
.

(A.27)
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Furthermore, we have

Θr,s

(−1

τ

)
= τ2r+2sΘ̃r,s(τ) . (A.28)

As a consequence of this transformation rule, Γ0(2)-modular differential operators writ-

ten in terms of Θr,s(τ) are related by conjugation by S ∈ PSL(2,Z) to Γ0(2)-modular

differential operators with the same coefficients but with Θr,s ↔ Θ̃r,s.

A.4 Modular differential operators

Serre derivatives ∂(k) are improved differential operators that map modular forms of a fixed

weight to modular forms of higher weight,

∂(k) : Mk(Γ,C) → Mk+2(Γ,C) . (A.29)

They are defined using the quasi-modular second Eisenstein series,

∂(k)f(q) = (q∂q + kE2(τ)) f(q) . (A.30)

When acting on the low-weight Eisenstein series, for example, we have

∂(4)E4(τ) = 14E6(τ) ,

∂(6)E6(τ) = 20E8(τ) ,

∂(8)E8(τ) =
132

5
E10(τ) ,

∂(10)E10(τ) =
600

77
E4(τ)

3 +
210

11
E6(τ)

2 ,

∂(12)E12(τ) =
1382

35
E14(τ) .

(A.31)

Using Serre derivatives we can define k’th order modular differential operators that natu-

rally act on objects of modular weight zero,

D(k)
q f(q) := ∂(2k−2) ◦ · · · ◦ ∂(2) ◦ ∂(0)f(q) , (A.32)

where by convention we set D
(0)
q f(q) := f(q). These differential operators themselves

transform with weight 2k under the action of Γ, and so also under the action of any

congruence subgroup Γ̃, i.e.,

D
(k)
γ◦q = (cτ + d)2kD(k)

q , γ ∈ Γ̃ . (A.33)

and from them we can construct a large class of linear modular differential operators of

a fixed weight. We will be particularly interested in linear modular differential operators

that are holomorphic and monic, so have the form37

D(k)
q ≡ D(k)

q +

k∑

r=1

fr(q)D
(k−r)
q , fr(q) ∈ M2r(Γ̃,C) . (A.34)

37By a monic linear modular differential operator we mean an operator of weight 2k with unit coefficient

for D(k). Any linear modular differential operator can formally be put in this form by simply dividing

through by the coefficient of the unit, but this will generally result in an operator for which the coefficient

functions fr(q) are meromorphic, not holomorphic. Such differential operators can be relevant in the study

of characters of VOAs — see, e.g., [47] — but we leave deeper investigation of this generalization for future

work.
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For any such differential operator, if we have a function g(q) ∈ KerD(k), then performing

a modular transformation we find that

(cτ + d)2kD(k)g(γ ◦ q) = D(k)
γ◦qg(γ ◦ q) = 0 , (A.35)

so the space of solutions to modular differential equations of this type are vector valued

modular forms with respect to the appropriate congruence subgroup [93].

B Trace recursion relations

Here we review some technical results regarding the evaluation of torus one-point functions,

i.e., traces of vertex operator zero modes in the vacuum module of a VOA. For more

complete details, see [14, 22, 94] and especially [92].

B.1 Vertex operator algebras and torus n-point functions

In this paper we deal only with Z>0 and 1
2Z>0 graded vertex operator algebras. Further,

we deal exclusively with conformal vertex operator algebras, meaning they will include a

subalgebra that is isomorphic to the Virasoro vertex operator algebra. Furthermore, the

graded components of the underlying vector space V will always be finite dimensional,

V =
⊕

n∈Z>0 or 1
2
Z>0

Vn , dimVn < ∞ , (B.1)

and the L0 operator from the Virasoro subalgebra acts semi-simply as

L0a = na , a ∈ Vn . (B.2)

In the general case we will consider vertex operator superalgebras, which have even and

odd parts,

V = V0̄ ⊕ V1̄ . (B.3)

We say that the parity p(a) of a state a is one if a ∈ V1̄ and zero if a ∈ V0̄. We do not

assume any correlation between the parity of a state and it conformal dimension modulo

one. We define the supertrace of an endomorphism O : V → V by

STrVO ≡ TrV0̄
O − TrV1̄

O . (B.4)

The mode expansion for the vertex operator corresponding to a state a of integer

weight ha is given by38

a(z) ≡ Y (a, z) =
∑

n∈Z

a(−ha−n)z
n , (B.5)

38As a word of warning, when comparing to the mathematics literature, especially [14, 92, 94], the

convention for the mode numbering is different. In those works, one has

Y (a, z) =
∑

n

a(−1−n)z
n
.

Those conventions have the virtue of making sense even when there is not a good grading by conformal

dimension, but this is not relevant in the current work and not standard in the physics literature.
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where the modes act as endomorphisms that shift grading by a definite amount,

a(n) : Vk → Vk+n . (B.6)

When a has half-integer weight ha ∈ Z+ 1
2 , we define

a(z) ≡ Y (a, z) =
∑

n∈Z+ 1
2

a(−ha−n)z
n . (B.7)

In other words, we always work with the Neveu-Schwarz grading. In the case of integer

conformal weight, we further introduce the following notation for the zero mode of a,

o(a) := a0 . (B.8)

Torus n-point functions are defined as traces of over the space of states as follows,

F((a(1), z1), . . . , (a
(n), zn); τ) = zh1

1 · · · zhn
n STrV

(
Y (a(1), z1) · · ·Y (a(n), zn)q

L0−
c
24

)
. (B.9)

In the special case of the one point function, by virtue of (B.6), we then have

F((a, z), τ) =




STrV

(
o(a)qL0−

c
24

)
if ha = 0 (mod 1) and p(a) = 0,

0 if ha = 1
2 (mod 1) .

(B.10)

B.2 Square brackets

An alternative expansion for the same vertex operators is useful in formulating recursion

relations for torus n-point functions. We define

Y [a, z] = ezhaY (a, ez − 1) , (B.11)

And then introduce the “square-bracket” mode expansion

Y [a, z] =
∑

n∈Z

a[−n−ha]z
n . (B.12)

This is a reorganization of the original modes under a local change of variables. In partic-

ular, the square bracket modes can be expressed in terms of the usual modes according to

a[n] =
∑

j>n

c(j, n;ha)a(j) , (B.13)

where the coefficients are defined as the coefficients in the following Taylor series,

(1 + z)h−1 log(1 + z)n =
∑

j>n

c(j, n;h)zj . (B.14)

If a is a Virasoro primary state, then the commutation relations for the a[n] modes will be

identical to those of the a(n). The stress tensor, however, picks up an anomalous constant

since it is not a Virasoro primary. We therefore define instead

L[n] =
∑

j>n

c(j, n; 2)L(j) −
c

24
δj,−2 . (B.15)
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These square bracket Virasoro generators now have the same commutation relations as

the original modes.

From the expression for the coefficients, we see that generally we have

a[n] = a(n) + c(n+ 1, n;ha)a(n+1) + c(n+ 2, n;ha)a(n+2) + . . . , (B.16)

so the vacuum state obeys the same highest weight condition with respect to the square

bracket modes as it does with respect to the ordinary modes,

a(n)Ω = a[n]Ω = 0 , n > −ha . (B.17)

Along with the agreement of commutation relations, this implies that a null vector in the

vacuum Verma module of a VOA formulated in terms of the a(n) will still be null after

replacing the modes with square bracket modes.

B.3 Recursion relations for torus one-point functions

The virtue of the square-bracket modes is that torus one point functions (i.e., traces of

zero modes) in a VOA obey recursion relations that take an elegant form in terms of the

square brackets. The simplest version of such a recursion relation applies to the case when

V is a Z graded VO(S)A. In this case one has [94]

STrV

(
o(a[−ha]b)q

L0−
c
24

)
=STrV

(
o(a)o(b)qL0−

c
24

)
+
∑

k>1

E2k(τ)STrV

(
o(a[−ha+2k]b)q

L0−
c
24

)
,

(B.18)

where E2k(τ) is the (unnormalized) Eisenstein series defined in appendix A. Specializing

to the case where a is a conformal descendant (in which case the zero mode of a vanishes),

one finds the following recursion relation,

STrV

(
o(a[−ha−1]b)q

L0−
c
24

)
=

∑

k>1

(1− 2k)E2k(τ)STrV

(
o(a[−ha−1+2k]b)q

L0−
c
24

)
,

=
∑

k>2

(1− 2k)E2k(τ)STrV

(
o(a[−ha−1+2k]b)q

L0−
c
24

)
,

(B.19)

where the first term in the summation on the first line is zero because o(a−ha+1b) is a com-

mutator. A generalization of this relation gives a similar relation for zero modes involving

higher descendants,

STrV

(
o(a[−ha−n]b)q

L0−
c
24

)
=(−1)n

′∑

2k>n+1

(
2k−1

n

)
E2k(τ)STrV

(
o(a[−ha−n+2k]b)q

L0−
c
24

)
,

(B.20)

with the prime indicating that the n = k = 1 term is zero. Note that the summation

is over traces of zero modes of states whose left most oscillator annihilates the conformal

vacuum, so after applying the recursion relation once may further simplify the result by

commuting the annihilation operator through to the right. Importantly, the states whose

zero mode appears on the right hand sides of (B.19) and (B.20) have conformal dimension
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strictly less than those appearing on the left hand sides. This is what allows the recursion

algorithm set up using these relations to terminate.

A modified version of these recursion relations holds in the 1
2Z-graded case; in this

case it is the twisted Eisenstein series appear [92],

STrV

(
o(a[−ha−1]b)q

L0−
c
24

)
=

′∑

k>1

(1− 2k)E2k

[
e2πiha

1

]
(τ) STrV

(
o(a[−ha−1+2k]b)q

L0−
c
24

)
.

(B.21)

The prime now indicates that k = 1 term on the right hand side only appears when ha
is half-integral; only the twisted weight-two Eisenstein series appears. Again, this formula

admits a generalization for higher descendants

STrV
(
o(a[−ha−n]b)q

L0−
c
24

)
=(−1)n

′∑

2k>n+1

(
2k−1

n

)
E2k

[
e2πiha

1

]
(τ)STrV

(
o(a[−ha−n+2k]b)q

L0−
c
24

)
.

(B.22)

We note that in the case where the supertrace is replaced by an ordinary trace, similar

recursion relations hold, but now more general twisted Eisenstein series that relate to

whether the fields a(z) and b(z) are parity-even or parity-odd.

B.4 Stress tensor trace formulae

One point functions of Virasoro descendants of the vacuum can be evaluated in terms of

differential operators acting on the vacuum character. Of particular interest are one-point

functions of vertex operators corresponding to states of the form (L[−2])
kΩ for some positive

integer k. In this case one can directly apply equation (B.18) recursively to express the

trace of o((L[−2])
kΩ) in terms of traces with lower powers of k and additional insertions of

L[0]. Insertions of L[0] can be turned into derivatives with respect to q, so this ultimately

leads to pure differential operators acting on the vacuum character,

TrV

(
o((L[−2])

kΩ)qL0−
c
24

)
= Pk ◦ TrV

(
qL0−

c
24

)
. (B.23)

The first few differential operators Pk can be found in [22], and we reproduce them here

for convenience (and in our own slightly different conventions),

P2 = D(1)
q ,

P4 = D(2)
q +

c

2
E4(τ) ,

P6 = D(3)
q +

(
8 +

3c

2

)
E4(τ)D

(1)
q + 10cE6(τ) , (B.24)

P8 = D(4)
q + (32 + 3c)E4(τ)D

(2)
q + (160 + 40c)E6(τ)D

(1)
q +

(
108c+

3

4
c2
)
E4(τ)

2 .

There is no obstruction to going to higher k but it is somewhat tedious. Note also that

since only the parity-even stress tensor appears in the calculation, the same differential

operators appear in the case where we replace the trace by a supertrace,

STrV

(
o((L[−2])

kΩ)qL0−
c
24

)
= Pk ◦ STrV

(
qL0−

c
24

)
. (B.25)
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C Characters for the Deligne-Cvitanović exceptional series

The modular differential equation for the Deligne exceptional series of non-unitary vertex

operator algebras described in section 4 is given by (4.15). For convenience we reproduce

it here, (
D(2)

q − (h∨ + 1)(h∨ − 1)

144
E4(q)

)
χ(q) = 0 , (C.1)

where we switched to the normalized Eisenstein series for later convenience. Second order

monic modular equations can be solved explicitly by performing a change of variables to

put them in hypergeometric form [95]. This is accomplished by introducing the modular

j-invariant and its rescaled inverse,

j(τ) =
1728E4(q)

3

E4(q)3 − E6(q)2
, K(τ) =

1728

j(τ)
=

E4(q)
3 − E6(q)

2

E4(q)3
, (C.2)

in terms of which there is a simple relation between differential operators,

θq =

(
E6(q)

E4(q)

)
θK , (C.3)

where θq ≡ q∂q and θK ≡ K∂K . Equation (C.1) can then be rewritten as

(
θ2K −

(
1 + 2K(q)

6− 6K(q)

)
θK − (h∨ + 1)(h∨ − 1)

144(1−K(q))

)
χ(q) = 0 , (C.4)

which is a hypergeometric differential equation in K. We can immediately find the most

general solution to this differential equation. For generic values of h∨, the two linearly

independent solutions are given by

χ1(q) = K(q)
(1+h∨)

12 2F1

(
1 + h∨

12
,
5 + h∨

12
, 1 +

h∨

6
,K(q)

)
, (C.5)

χ2(q) = K(q)
(1−h∨)

12 2F1

(
1− h∨

12
,
5− h∨

12
, 1− h∨

6
,K(q)

)
. (C.6)

Upon normalizing the solution so that the leading coefficient in the q expansion is one,

χ1(q) reproduces the vacuum character for these vertex operator algebras, while χ2(q)

should be a (linear combination of) characters of admissible representations.

When h∨ is a multiple of six, the corresponding affine current algebra is not at an ad-

missible level, and also the modular differential equation becomes degenerate. The second

solution given above then becomes undefined. The new second solution is given in terms

of the Meijer G-function as follows,

χ2(q) = G 2,0
2,2

(
2
3

, 1
−h+1

12
, h+1

12

∣∣∣∣K(q)

)
. (C.7)

This is a logarithmic solution. However, we believe these logarithms to be “fake” in the

sense described briefly in section 3.3 [20]. We note here that more beautiful expressions

for the vacuum characters of these algebras have been presented in [17], using methods

described in [96, 97].
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D Differential operators for A1 class S indices

In this appendix we record the modular and twisted-modular differential operators that

annihilate the unflavored Schur indices of A1 type class S SCFTs for a variety of low values

for the genus and number of (full) punctures.

The unflavored Schur index for all of these examples admits a TQFT expansion given

in the text in (6.1), which we reproduce here for convenience,

Ia1
g,s = (q; q)2g−2−2s

∞

∞∑

k=0

(
(k + 1)sq

k
2
(2g−2+s)

(1− qk+1)2g−2+s

)
. (D.1)

When the quantity 2g+s, the expansion is in integer powers of q and we will correspondingly

find modular differential operators with respect to the full modular group, while for 2g+ s

odd we will find Γ0(2)-modular differential operators.

Genus zero.

Da1
C0,3

= D(1)
q − 1

6
Θ0,1(q) .

Genus zero, four punctures.

Da1
C0,4

= D(2)
q − 175E4(q) .

Genus zero, five punctures.

Da1
C0,5

= D(4)
q −

(
11

18
Θ0,2(q)−

11

36
Θ1,1(q)

)
D(2)

q −
(

5

108
Θ0,3(q) +

13

72
Θ1,2(q)

)
D(1)

q

+

(
1

4
Θ1,3(q)−

5

16
Θ2,2(q)

)
.

Genus zero, six punctures.

Da1
C0,6

= D(6)
q − 545E4(q)D

(4)
q − 15260E6(q)D

(3)
q − 164525E4(q)

2D(2)
q

− 2775500E4(q)E6(q)D
(1)
q − 26411000E6(q)

2 + 1483125E4(q)
3 .

Genus one, one puncture.

Da1
C1,1

= D(2)
q − 1

6
Θ0,1D

(1)
q −

(
5

144
Θ0,2 −

11

288
Θ1,1

)
.

Genus one, two punctures.

Da1
C1,2

= D(4)
q − 220E4D

(2)
q − 2380E6D

(1)
q + 6000E2

4 .

Genus one, three punctures.

Da1
C1,3

= D(6)
q −

(−61

144
Θ0,2 +

61

288
Θ1,1

)
D(4)

q +

(
13

72
Θ0,3 +

−19

48
Θ1,2

)
D(3)

q

+

(−1205

20736
Θ0,4 +

2501

10368
Θ1,3 +

−3797

13824
Θ2,2

)
D(2)

q

+

(
655

31104
Θ0,5 +

−3977

62208
Θ1,4 +

1303

31104
Θ2,3

)
D(1)

q

+

(−15

4096
Θ0,6 +

45

4096
Θ1,5 +

−25

2048
Θ2,4 +

121

8192
Θ3,3

)
.
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Genus one, four punctures.

Da1

C1,4
=D(9)

q −840E4D
(7)
q −41160E6D

(6)
q −531600E2

4D
(5)
q −12516000E4E6D

(4)
q

−
(
71912400E2

6+3664000E3
4

)
D(3)

q +2466072000E2
4E6D

(2)
q

+
(
56026208000E4E

2
6+14324640000E4

4

)
D(1)

q +
(
188260352000E3

6+381911040000E3
4E6

)
.

Genus two, zero punctures.

Da1

C2,0
=D(6)

q −305E4D
(4)
q −4060E6D

(3)
q +20275E2

4D
(2)
q +2100E4E6D

(1)
q −

(
68600E2

6−49125E3
4

)
.

E Schur indices and differential operators for N = 4 super Yang-Mills

In this appendix we collect the exact expressions for the (unflavored) Schur index of N = 4

super Yang-Mills theory with gauge algebra su(n) for 2 6 n 6 7, along with the modular

and twisted-modular differential operators that annihilate them. Various pieces of data

about these differential operators and their kernels are collected in table 5.

The unflavored Schur indices are expressed in terms of the complete elliptic integrals

K(k) :=
π

2
2F1

(
1

2
,
1

2
; 1; k2

)
, E(k) :=

π

2
2F1

(
1

2
,−1

2
; 1; k2

)
, (E.1)

where the modulus k is given by

k2 =
ϑ10(τ)

ϑ01(τ)
, (E.2)

in addition to the Dedekind eta function,

η(τ) = q
1
24

∞∏

n=1

(1− qn) . (E.3)

A general algorithm for writing the Schur index for any n was given in [98]. We include

the results of that prescription here for the reader’s convenience.

su(2) gauge algebra. The unflavored Schur index takes the very simple form:

χsu(2)(q) =
1

2π2q3/8
η(q1/2)2

η(q)4

(
K(k)2 −K(k)E(k)

)
. (E.4)

This is annihilated by a second-order modular differential operator for the modular group

Γ0(2),

DN=4
su(2) := D(2)

q − 1

12
Θ0,1(q)D

(1)
q − 3

64

(
Θ0,1(q)−Θ1,1(q)

)
. (E.5)

The conjugate differential operator whose kernel controls the high temperature behavior

of the Schur index is then given by

D̃N=4
su(2) := D(2)

q − 1

12
Θ̃0,1(q)D

(1)
q − 3

64

(
Θ̃0,1(q)− Θ̃1,1(q)

)
. (E.6)
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su(3) gauge algebra. The unflavored Schur index takes the form:

χsu(3)(q) =

√
k

24π3q

η(q1/2)2

η(q)4
K
(
4(2− k2)K2 − 12EK + π2)

)
. (E.7)

This is annihilated by a fourth-order modular differential operator for the full modular

group,

DN=4
su(3) := D(4)

q − 220E4(q)D
(2)
q + 700E6(q)D

(1)
q . (E.8)

We note that the constant function is a solution to the corresponding modular differential

equation. It would be somewhat surprising for there to be a representation of the VOSA

whose supercharacter is simply a constant. On the other hand, it seems unlikely that the

ordinary supercharacters of this VOSA would transform only amongst themselves under

the action of the full modular group, since the VOA is secretly 1
2Z−graded, so this may be

a hint that additional modular differential operators are relevant in this example.

su(4) gauge algebra. The unflavored Schur index in this case takes the form:

χsu(4)(q) =
1

24π4q15/8
η(q1/2)2

η(q)4
K
(
2k2K3 + 3K (K − E)2 + (K − E)π2

)
. (E.9)

This is annihilated by a sixth-order modular differential operator for the modular group

Γ0(2),

DN=4
su(4) = D(6)

q −
(
1

4
Θ0,1

)
D(5)

q −
(
565

576
Θ0,2 −

413

576
Θ1,1

)
D(4)

q +

(
53

1152
Θ0,3 −

23

384
Θ1,2

)
D(3)

q

−
(

6329

331776
Θ0,4 −

1261

82944
Θ1,3 −

4823

110592
Θ2,2

)
D(2)

q

−
(

5515

3981312
Θ0,5 −

84145

3981312
Θ1,4 +

42515

1990656
Θ2,3

)
D(1)

q

+

(
405

262144
Θ0,6 −

1215

131072
Θ1,5 +

6075

262144
Θ2,4 −

2025

131072
Θ3,3

)
. (E.10)

The conjugate differential operator, as usual, is given by

D̃N=4
su(4) = D(6)

q −
(
1

4
Θ̃0,1

)
D(5)

q −
(
565

576
Θ̃0,2 −

413

576
Θ̃1,1

)
D(4)

q +

(
53

1152
Θ̃0,3 −

23

384
Θ̃1,2

)
D(3)

q

−
(

6329

331776
Θ̃0,4 −

1261

82944
Θ̃1,3 −

4823

110592
Θ̃2,2

)
D(2)

q

−
(

5515

3981312
Θ̃0,5 −

84145

3981312
Θ̃1,4 +

42515

1990656
Θ̃2,3

)
D(1)

q

+

(
405

262144
Θ̃0,6 −

1215

131072
Θ̃1,5 +

6075

262144
Θ̃2,4 −

2025

131072
Θ̃3,3

)
. (E.11)

su(5) gauge algebra. The unflavored Schur index takes the form:

χsu(5)(q)=

√
k

1920π5q3
η(q1/2)2

η(q)4
K (E.12)

×
(
16K2

(
15E2+10(k2−2)EK+(k4−6k2+6)K2

)
−40K

(
3E+(k2−2)K

)
π2+9π4

)
.
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This is annihilated by a ninth-order modular differential operator for the full modular

group,

DN=4
su(4) =D(9)

q −
(
2280E4

)
D(7)

q +
(
2520E6

)
D(6)

q +
(
447600E2

4

)
D(5)

q +
(
10600800E4E6

)
D(4)

q

−
(
122245200E2

6−58544000E3
4

)
D(3)

q −
(
798504000E2

4E6

)
D(2)

q

+
(
2626400000E4E

2
6−732000000E4

4

)
D(1)

q . (E.13)

Again we see that the constant function is a solution of the corresponding differential

equation.

su(6) gauge algebra. The unflavored Schur index in this case takes the form:

χ
su(6)(q) =

1

720π6q35/8
η(q1/2)2

η(q)4
×
(
K3

((
8k4−22k2+15

)
K3+45E2K+15

(
2k2−3

)
EK2−15E3

)

+K2π2
(
15E2−30EK−5

(
2k2−3

)
K2

)
+4K(K−E)π4

)
. (E.14)

This is annihilated by a twelfth-order modular differential operator for the modular group

Γ0(2),

D
N=4
su(6) =D

(12)
q −

1

2
Θ0,1D

(11)
q −

(

2059

288
Θ0,2−

1295

288
Θ1,1

)

D
(10)
q +

(

1117

384
Θ0,3−

295

128
Θ1,2

)

D
(9)
q (E.15)

+

(

835565

110592
Θ0,4−

570589

27648
Θ1,3+

633517

36864
Θ2,2

)

D
(8)
q −

(

2334617

331776
Θ0,5−

6630635

331776
Θ1,4+

2144425

165888
Θ2,3

)

D
(7)
q

−

(

57188789

47775744
Θ0,6−

46000633

7962624
Θ1,5+

144715561

15925248
Θ2,4−

98045357

23887872
Θ3,3

)

D
(6)
q +

(

153351577

63700992
Θ0,7−

70688653

7077888
Θ1,6

+
1094336713

63700992
Θ2,5−

640158317

63700992
Θ3,4

)

D
(5)
q +

(

41311042463

110075314176
Θ0,8−

24908733703

13759414272
Θ1,7+

103788648185

27518828544
Θ2,6

−
123313632241

13759414272
Θ3,5+

707664949309

110075314176
Θ4,4

)

D
(4)
q −

(

948081389

220150628352
Θ0,9+

1275390935

73383542784
Θ1,8−

8914784053

18345885696
Θ2,7

+
23616046103

18345885696
Θ3,6−

29820494551

36691771392
Θ4,5

)

D
(3)
q −

(

5289572539

31701690482688
Θ0,10−

428584583851

15850845241344
Θ1,9+

2038969728437

10567230160896
Θ2,8

−
507660329051

1320903770112
Θ3,7+

740961138619

1761205026816
Θ4,6−

1153481373659

5283615080448
Θ5,5

)

D
(2)
q +

(

487083585625

380420285792256
Θ0,11−

7200320745625

380420285792256
Θ1,10

+
19475477545075

380420285792256
Θ2,9−

2979240028625

126806761930752
Θ3,8−

3611051862425

63403380965376
Θ4,7+

2957848559225

63403380965376
Θ5,6

)

D
(1)
q −

(

28704375

68719476736
Θ0,12

−
86113125

17179869184
Θ,111+

947244375

34359738368
Θ10,2−

1578740625

17179869184
Θ3,9+

14208665625

68719476736
Θ4,8−

2841733125

8589934592
Θ5,7+

6630710625

34359738368
Θ6,6

)

.

As usual, the conjugate differential operator is obtained by making the replacement Θ ↔ Θ̃.

su(7) gauge algebra. Finally, for this example, which is the largest rank theory we

consider, the unflavored Schur index is given by

χ
su(7)(q)=

√
k

322560π7q6
η(q1/2)2

η(q)4
K (E.16)

×
(
64K3

(
−105E3−105E2

(
k2−2

)
K−21E

(
k4−6k2+6

)
K2−

(
k2−2

)(
k4−10k2+10

)
K3

)

+560K2
(
15E2+10E

(
k2−2

)
K+

(
k4−6k2+6

)
K2

)
π2−1036K

(
3E+

(
k2−2

)
K
)
+225π6

)
.

This is annihilated by a sixteenth-order modular differential operator for the full modular

group Γ,
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DN=4
su(7) =D

(16)
q −

(
12080E4

)
D

(14)
q −

(
80080E6

)
D

(13)
q +

(
33532000E2

4

)
D

(12)
q +

(
1026379200E4E6

)
D

(11)
q

−
(
21787320800E2

6+21421600000E3
4

)
D

(10)
q −

(
1222270896000E2

4E6

)
D

(9)
q

+
(
13105627808000E4E

2
6+634654880000E4

4

)
D

(8)
q

+
(
507282434848000E3

6−171337295360000E3
4E6

)
D

(7)
q

+
(
1103642993600000E2

4E
2
6+680999091200000E5

4

)
D

(6)
q

−
(
98797003267200000E4E

3
6−75265677984000000E4

4E6

)
D

(5)
q

−
(
91303174664800000E4

6−1480729074496000000E3
4E

2
6+366906872832000000E6

4

)
D

(4)
q

−
(
17845543203936000000E2

4E
3
6−7734918175488000000E5

4E6

)
D

(3)
q (E.17)

−
(
423397795072000000E4E

4
6+57206131967040000000E4

4E
2
6−12425487482880000000E7

4

)
D

(2)
q

−
(
94521954880640000000E5

6−193140389164800000000E3
4E

3
6+58270974048000000000E6

4E6

)
D

(1)
q .

We see that once again, the constant function is a solution of the corresponding differential

equation.
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[61] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2

SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP 02 (2018) 003

[arXiv:1609.04404] [INSPIRE].
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