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bCenter for Cosmology and Particle Physics, New York University,

726 Broadway, 10003 New York City, U.S.A.
cInstituto de F́ısica de La Plata — CONICET & Departamento de F́ısica — UNLP,

C.C. 67, 1900 La Plata, Argentina
dDepartamento de F́ısica, Universidad de Concepción,

Casilla 160-C, Concepción, Chile

E-mail: mchernicoff@ciencias.unam.mx, gg1043@nyu.edu,

grandi@fisica.unlp.edu.ar, juoliva@udec.cl
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tries obeying either the standard Brown-Henneaux boundary conditions or the weakened

asymptotic behavior of the so-called Log-gravity. Both sectors contain non-Einstein spaces

with SO(2)× R isometry group, showing that the Birkhoff theorem does not hold all over

the parameter space, even if strong AdS boundary conditions are imposed. Some of these

geometries correspond to 3D black holes dressed with a Log-gravity graviton. We conjec-

ture that such geometries appear in a curve of the parameter space where the exotic 3D

massive gravity on AdS3 is dual to a chiral conformal field theory. The theory also contains

other interesting vacua, including different families of non-AdS black holes.
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1 Introduction

Three-dimensional (3D) gravity shares with its four-dimensional analog many interesting

qualitative features; the most salient one being the existence of black holes [1]. At the

same time, it turns out to be much more accessible, what makes it a perfect toy model to

explore theoretical aspects of gravity to which, otherwise, we would not have access. For

example, it permits to give a microscopic description of non-supersymmetric black holes

entropy [2], to sum over geometries and discuss the saddle points content of the quantum

gravity partition function [3], or even to investigate the consistency of a holographic dual

for a pure gravity theory [4].

One of the simplifications that Einstein theory in 3D presents with respect to 4D is the

absence of local degrees of freedom, what reduces the content of the theory to defects [5, 6],

black holes [1, 7], and boundary gravitons [8], but with no presence of propagating modes.

The theory, however, does acquire propagating modes when one deforms it by adding mass

to the graviton. Indeed, in 3D there exist consistent ways of giving mass to the graviton.

One such massive deformation is the well-known topologically massive gravity (TMG) [9],

which is defined by augmenting the Einstein-Hilbert action with a Chern-Simons term for

the affine connection. The interest of such model has been revived some years ago within

the context of the AdS/CFT correspondence, specially in relation to the so-called chiral

gravity [10]; see also [11–15].

Another consistent way of giving mass to the graviton in 3D is the so-called new massive

gravity (NMG), which is defined by adding to the action a particular combination of higher-

curvature terms that suffices to decouple the ghostly scalar mode [16]. Both TMG and
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NMG, however, present a consistency problem when discussed in the context of AdS/CFT.

This problem is known as the bulk-boundary clash, and basically means that there is no

way of achieving a unitary theory in bulk and in the boundary simultaneously. Among

the attempts to solve this problem, a new and arguably simpler massive deformation of 3D

Einstein gravity, known as minimal massive gravity (MMG), was proposed [17]. This theory

is defined by supplementing TMG equations of motion with a second-order rank-2 tensor. In

3D dimensions, this implies that such a tensor, being of second order in the metric, cannot

follow from a variational principle in the metric formalism, what is typically problematic

for the Bianchi identities. However, MMG manages to circumvent this obstruction in a

very interesting way, that is, even though the Bianchi identities are not identically satisfied

by the tensors involved in the equations of motion, they do hold on-shell. This way of

solving the consistency conditions is usually referred to as the third way phenomenon [18].

More recently, a fourth-order massive deformation of 3D gravity exhibiting the same

kind of third way phenomenon has been proposed [19]. This has been dubbed exotic

massive 3D gravity (EMG). It is defined by the following equations of motion

Rµν −
1

2
Rgµν + Λgµν +

1

µ
Cµν −

1

m2
Hµν +

1

m4
Lµν = 0 (1.1)

where

Cµν =
1

2
ǫ αβ
µ ∇αRβν+

1

2
ǫ αβ
ν ∇αRβµ , Hµν = ǫ αβ

µ ∇αCνβ , Lµν =
1

2
ǫ αβ
µ ǫ γσ

ν CαγCβσ. (1.2)

Cµν is the Cotton tensor, which also appears in TMG. In fact, TMG corresponds to the

limit m → ∞ of the theory above. The Exotic Massive Gravity (EMG) theory corresponds

to µ = ∞ in (1.2), while the theory defined for arbitrary µ is called Exotic General Massive

Gravity (EGMG).

The covariant divergence of the tensors Hµν and Lµν does not vanish identically, but

the following identities hold

ǫ αβ
µ Cσ

α

(

Rβσ − 1

2
Rgβσ − 1

m2
Hβσ

)

= ǫ αβ
µ

(

−ΛCσ
αgβσ − 1

m4
Cσ
αLβσ

)

= 0 (1.3)

and, in virtue of (1.3), one finds that the Bianchi identities can be satisfied on-shell without

imposing incompatible constraints.

Both tensors Hµν and Lµν are defined in terms of the Cotton tensor, and so they

vanish for conformally flat metrics. In 3D, all Einstein manifolds are locally equivalent

to maximally symmetric spaces, and hence conformally flat. Therefore, general relativity

(GR) appears as a subsector of the space of solutions of (1.1)–(1.2). Here, we will be

concerned with solutions to these equations that are not Einstein spaces. This will en-

able us to investigate different aspects of the theory, such as the mass of the excitations

around maximally symmetric spaces like AdS, the black holes content of the theory and

their (non-)uniqueness, and the existence of other backgrounds and asymptotic conditions

that might be of interest for physics applications.

In section 2, we will consider the non-linear regime of the theory. We will study

gravitational wave solutions in AdS space and the effective mass of such solutions, which is
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found to agree with the analysis of linearized modes found in [19]. In section 3, we focus on

asymptotically AdS non-Einstein spaces that are solutions of the theory at a special point

of the parameter space that can be thought of as the analog of the chiral point of TMG.

We discuss solutions with both strong and weak falling-off behavior in AdS. In section 4,

we discuss other vacua of the theory, including Warped AdS black holes, Lifshitz black

holes, among others.

2 The non-linear theory

In this section and the next one we will mainly focus on solutions to (1.1)–(1.2) when the

following relation among the parameters is satisfied

µ =
m2ℓ

1−m2ℓ2
, (2.1)

where ℓ2 = −1/Λ (hereafter we will consider ℓ = 1). We will refer to (2.1) as the critical

point (or, more precisely, the chiral curve). When this relation is obeyed, the theory

exhibits quite special features: the linear excitations around AdS3 become massless [19]

and low-decaying logarithmic modes appear. This can also be observed at non-linear level

by studying gravitational wave solutions on AdS3 of the type analyzed in [20–22]. For

generic µ and m, one considers the ansatz

ds2 = −r2Nw(u, r)du
2 − 2r2dudv +

dr2

r2
, (2.2)

and take v ∈ R, u ∈ R, r ∈ R≥0. This ansatz represents a gravitational wave in AdS3, where

v and u are two null directions, analogously to a pp-wave. Function Nw(u, r) describes the

profile of the wave. In the case Nw = const the solution is locally equivalent to AdS3.

Ansatz (2.2) solves the equations of motion (1.1)–(1.2) for

Nw(u, r) = c0(u) + c2(u)r
−2 + c+(u)r

α+ + c−(u)r
α− , (2.3)

with

α± =
m2 + 2µ±

√

m4 + 4m2µ2

2µ
(2.4)

provided µ 6= (m2ℓ)/(1−m2ℓ2). Here, ci(u) (i = 0, 2,±) are functions of the null coordi-

nate u. When c+ = c− = 0 one obtains the GR solutions, while the modes with Yukawa

decaying, c± 6= 0, represent the massive gravitons of the theory. If one considers the par-

ticular solution N±
w = c±(u)r

α± , i.e. setting c0 = c2 = c∓ = 0 in (2.3), then such solution

satisfies the wave equation

(

�+M2
± + Λ

)

N±
w (u, r) = 0, (2.5)

with

M± =
m

2µ

(

√

m2 + 4µ2 ±m
)

, (2.6)
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where � is the D’Alambertian operator associated to the metric (2.2). This value of M±

exactly agrees with the mass of the modes obtained by the linearized analysis of [19]. Here,

we have obtained the same result but from the non-linear analysis.

In contrast, at the critical point µ = (m2ℓ)/(1−m2ℓ2) the solution for Nw takes a

different form; namely

H(u, r) = c0(u) + c2(u)r
−2 + c+(u) log(r) + c−(u)r

−1−m2

(2.7)

where we explicitly see the presence of the low-decaying modes. In the next section we will

discuss these logarithmically decaying solutions in more detail.

3 Non-Einstein geometries in AdS3

3.1 Strong boundary conditions

We expect the theory on the critical curve (2.1) to be dual to a chiral CFT2 with central

charges cL = 0, cR = 3/|Gµ|. However, this value for cR, i.e. twice that of conformal gravity,

assumes that the action of EGMG do not contribute to the diffeomorphism anomaly. For

µ = ∞ the equations of motion (1.1)–(1.2) are parity-even, but the Chern-Simons type

action of the theory does violate parity; see [19] for details.

Equations (1.1)–(1.2) admits, of course, locally AdS3 geometries as solutions, and in

particular those that are asymptotically AdS3 in the Brown-Henneaux sense [8]. These are

solutions that in a given system of coordinates behave like

gtt ≃ r2 +O(1) , gtφ ≃ O(1) , gφφ ≃ r2 +O(1) , (3.1)

grr ≃ r−2 +O(r−4) , gtr ≃ O(r−4) , grφ ≃ O(r−4) , (3.2)

where O(rn) stand for terms of order rn or subleading. We take t ∈ R, r ∈ R≥0, φ ∈ [0, 2π].

Solutions (2.2), for example, obey these conditions provided α± ≤ 0.

The point we want to make first is that Einstein spaces are not the only ones that

obey the above boundary conditions. There exist, in addition, non-Einstein solutions that

also asymptote to AdS3 in the Brown-Henneaux sense (3.1)–(3.2). One such geometry is

given by

ds2 = −r2dt2 +
dr2

r2
+ r2dφ2 +Nγ(t, r)(dt+ dφ)2 (3.3)

with

Nγ(t, r) =
(

β(t− t0) +
γ

r4

)

. (3.4)

It can be verified that this ansatz solves the field equations if

β2(m4 + 5m2 − 2) + 96γ(m4 + 5m2) = 0, (3.5)

with t0 arbitrary. Notice that the solution exhibits time translation symmetry even

though (3.4) explicitly depends on t. Despite being non-Einstein spaces, solutions (3.3)–

(3.4) do obey the Brown-Henneaux asymptotic conditions (3.1)–(3.2). In the limit m → ∞,

one obtains µ = −1 and β2 = −96γ, which is the result for TMG [23]. Metric (3.3)–(3.4)
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exhibits closed timelike curves due to the fact that function Nγ(t, r) is unbounded. This,

however, does not affect the signature of the metric. In the case β = 0, where Nγ = 0, the

metric reduces to that of the massless BTZ. For β 6= 0, the metric is not conformally flat.

This type of solution is important for several reasons. In particular, it manifestly shows

that Birkhoff theorem does not hold in Exotic Massive Gravity, at least at the critical

point (2.1). And this is the case even if the strong boundary conditions are considered.

This is relevant for the discussion of the bestiary of geometries that contribute to the

partition function of the quantum theory, cf. [15].

3.2 Weak boundary conditions

The theory also admits solutions that, while not obeying the Brown-Henneaux boundary

conditions, do respect the weakened AdS3 asymptotic behavior proposed in [11], which

leads to the definition of the so-called Log-gravity [15]; namely

gtt ≃ r2 +O(log r) , gtφ ≃ O(log r) , gφφ ≃ r2 +O(log r) , (3.6)

grr ≃ r−2 +O(r−4) , gtr ≃ O(1) , grφ ≃ O(1) , (3.7)

cf. (3.1)–(3.2). An example of such a solution is given by considering the extremal Bañados-

Teitelboim-Zanelli black hole [1]

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(Nφ(r)dt+ dφ)2 (3.8)

with

N2(r) =
(r2 − r2H)2

r2
, Nφ(r) =

r2H
r2

, (3.9)

at the critical point (2.1), and perturbing it by adding to the metric a term [24]

M log(r2 − r2H) (dt+ dφ)2 , (3.10)

where M and rH are arbitrary real constants. This solution is also solution in the limit

m → ∞ [24, 25]. In that case, the mass has been shown to be proportional to M , which is

not the mass of the BTZ to which the solution reduces in the limit M → 0. The extremal

black hole M = 0 has the event horizon at r = rH . There, the logarithm in (3.10) for the

solution with M 6= 0 diverges. Nevertheless, the curvature scalars of the metric remain

finite all over the space. The metric can be continued to the region r < rH by changing

the sign in the argument of the logarithm in (3.10).

In brief, metric (3.8)–(3.10) represents a black hole dressed with a Log-gravity graviton

and realizes the boundary conditions (3.6)–(3.7) at the non-linear level.

4 Other vacua

4.1 Warped black holes

Besides those of GR and the ones discussed above, theory (1.1)–(1.2) admits other inter-

esting type of solutions, which appear on other curves of the parameter space (µ,m). In
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particular, it admits Warped Anti-de Sitter (WAdS) spaces

ds2 =
ℓ2

ν2 + 3

(

− cosh2 r dt2 + dr2 +
4ν2

ν2 + 3
(dφ+ sinh r dt)2

)

(4.1)

with the parameters ν and ℓ2 being given in terms of the couplings m, µ, Λ as follows

µ =
ℓ3νm4

3(ν4 − ν2(1 + ℓ2m2) + ℓ4m4/9)
, ν6 − 2ν4 + ν2 +m4ℓ4(1 + Λℓ2)/9 = 0. (4.2)

These metrics represent squashed (ν < 1) or stretched (ν > 1) deformations of AdS3
space. The dimensionless parameter ν controls the squashing effect (the shape), while the

dimensionful parameter ℓ2 gives the curvature radius (the size). This metric can be thought

of as a double Wick rotation of a 3D section of Gödel solution of 4D cosmological Einstein

equations. The value ν = 1 in (4.1) corresponds to undeformed AdS3 space written as a

Hopf fibration of AdS2. There is also a limit in which metric (4.1) describes a AdS2 × S1

space, but since both Hµν and Lµν are transparent to conformally flat solutions, these

AdS2 vacua only appear in the conformal limit µ → 0.

There exist black holes that asymptote to WAdS3 space (4.1) at large distance [26].

Their 2-parameters metric, in a convenient system of coordinates, can be found in [27]. It

turns out that these black holes are, in addition, locally equivalent to WAdS3 [27], and

therefore are also solutions of the EGMG theory when the relation (4.2) is satisfied.

4.2 Lifshitz black holes

Besides AdS black hole and WAdS black holes, equations of motion (1.1)–(1.2) in the

limit µ → ∞ admit as solutions black hole geometries that asymptote to spaces with

an anisotropic scale invariance. These are the so-called Lifshitz black holes; see [28] and

references therein and thereof. The metric of these black holes have the form

ds2 = −r2z

ℓ2z

(

1− r2H
r2

)

dt2 +
ℓ2

r2

(

1− r2H
r2

)−1

dr2 + r2dϕ2 (4.3)

with r2H being an arbitrary integration constant that gives the radial position of the horizon.

We take t ∈ R, r ∈ R≥0, ϕ ∈ R. Metric (4.3) solves the equations of motion of EGMG

provided that the dynamical exponent and the curvature radius satisfy the relations

z = m2ℓ2 , Λ = −m2. (4.4)

Metrics (4.3), when rH 6= 0 have non-constant curvature scalars, unlike the geometries

studied above.

This gives a whole family of asymptotically Lifshitz black holes with arbitrary value of

the dynamical exponent z, which is set by the mass coupling m. At the chiral point (2.1),

since µ = ∞ and m2ℓ2 = 1, one finds that the solution (4.3) coincides with the BTZ

black hole, z = 1 with Λ = −1/ℓ2. The solution with z = 3 is also present in the case of

NMG. The case z = 2 is particularly interesting in the holographic description of condensed

matter systems as it describes finite-temperature Lifshitz fixed points in 1+1 dimensions.
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4.3 Euclidean vacua

The theory also contains other solutions at different points of the parameter space. Let

us show another two examples, which correspond to particular cases of Thurston geome-

tries [29]. The latter are relevant in the study of the 3D uniformization problem. One such

geometry is given by the Sol (for solvable) metric

ds2 = dr2 + e2rdx2 + e−2rdy2 (4.5)

which is an Euclidean metric that solves the equations (1.1)–(1.2) for µ = ∞ if either the

condition m2 + 1 = 1− Λ = 0 or the condition m2 + 2 = Λ = 0 holds. A related example

is given by the Nil (for nilpotent) metric

ds2 = dx2 + dy2 + (dr − xdy)2 (4.6)

which also solves (1.1)–(1.2) for µ = ∞ if 8m2 = −9 ±
√
33 and 8Λ = 17/3 ±

√
33 hold.

This illustrates the variety of geometries that EGMG contains in its space of solutions.

5 Final remarks

We have shown that the exotic theory of massive 3D gravity proposed in [19] has a

rich space of vacua. We have provided several examples of such geometries, including

gravitational waves, asymptotically AdS3 non-Einstein spaces obeying either strict or

relaxed boundary conditions, Lifshitz black holes with arbitrary value of dynamical

exponent, Warped-AdS3 spaces including Warped-AdS3 black holes and their locally

equivalent Gödel type solutions, among others. Some of these solutions, like the 1 6= z 6= 3

Lifshitz black holes, do not exist neither in TMG nor NMG. In particular, we have

shown that non-Einstein spaces with SO(2) × R isometry group exist at the critical

point (2.1). This implies that the Birkhoff theorem does not hold in EGMG, even when

the Brown-Henneaux boundary conditions are imposed.
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