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Abstract: Perturbative QCD corrections to hadronic τ decays and e+e− annihilation into

hadrons below charm are obtained from the Adler function, which at present is known in

the chiral limit to five-loop accuracy. Extractions of the strong coupling, αs, from these

processes suffer from an ambiguity related to the treatment of unknown higher orders in

the perturbative series. In this work, we exploit the method of Padé approximants and its

convergence theorems to extract information about higher-order corrections to the Adler

function in a systematic way. First, the method is tested in the large-β0 limit of QCD,

where the perturbative series is known to all orders. We devise strategies to accelerate the

convergence of the method employing renormalization scheme variations and the so-called

D-log Padé approximants. The success of these strategies can be understood in terms of

the analytic structure of the series in the Borel plane. We then apply the method to full

QCD and obtain reliable model-independent predictions for the higher-order coefficients of

the Adler function. For the six-, seven-, and eight-loop coefficients we find c5,1 = 277± 51,

c6,1 = 3460±690, and c7,1 = (2.02±0.72)×104, respectively, with errors to be understood as

lower and upper bounds. Our model-independent reconstruction of the perturbative QCD

corrections to the τ hadronic width strongly favours the use of fixed-order perturbation

theory (FOPT) for the renormalization-scale setting.

Keywords: NLO Computations, QCD Phenomenology

ArXiv ePrint: 1807.01567

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2018)075

mailto:boito@ifsc.usp.br
mailto:masjuan@ifae.es
mailto:fabio.oliani@usp.br
https://arxiv.org/abs/1807.01567
https://doi.org/10.1007/JHEP08(2018)075


J
H
E
P
0
8
(
2
0
1
8
)
0
7
5

Contents

1 Introduction 1

2 Perturbative QCD in hadronic τ decays 4

3 Elements of Padé theory 7
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1 Introduction

The precise determination of the strong coupling, αs, is a key ingredient for calculations

of all processes involving perturbative Quantum Chromodynamics (QCD) and represents

a fundamental test of the internal consistency of the Standard Model. The value of αs,

together with the mass of the top quark, plays, for example, a crucial role in the fate of the

Standard Model vacuum [1]. The extraction of αs from hadronic τ decays [2–5] (and also

from e+e− → (hadrons) below charm [6, 7]) is of special interest for two reasons. First,

because it is done at relatively low energies, close to the limit of validity of perturbative

QCD. Therefore, the evolution of αs from the τ mass scale to the Z mass scale represents

one of the most non-trivial tests of asymptotic freedom [8] as predicted by the QCD β-

function [9–12]. Second, this determination of αs(mZ) is competitive, since the running

reduces the size of the relative error.

However, theoretical uncertainties still affect the determination of αs from these pro-

cesses. At and around the τ mass, perturbative QCD is still valid, but non-perturbative

effects become non-negligible. These effects are smaller by a factor of about ten when

compared to the perturbative QCD contribution, but must be taken into account care-

fully [3, 13]. They are encoded in the condensates of the Operator Product Expansion
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(OPE) and the related contributions from violations of quark-hadron duality — or simply

duality violations (DVs) [14–17].

Another important source of uncertainty stems from the renormalization-scale setting

in the perturbative contribution. Theoretically, the decay τ → (hadrons) + ντ is expressed

in terms of a weighted integral of the hadronic spectral functions that runs over the hadronic

invariant mass squared from threshold up to m2
τ . Since perturbative QCD cannot be trusted

at low energies, one resorts to Finite Energy Sum Rules (FESRs) to relate this integral to an

integral along a closed contour in the complex plane with |s| = m2
τ . In this process, a proce-

dure must be adopted to set the renormalization scale. The two most commonly employed

procedures are known as Fixed Order Perturbation Theory (FOPT) [18] and Contour Im-

proved Perturbation Theory (CIPT) [19, 20] (they are discussed in more detail below).

The two represent different ways of treating the unknown higher orders in perturbation

theory, and lead to different perturbative series and, therefore, to different values of αs.

This remains true in the analogous extraction of αs from e+e− → (hadrons) below charm

although, numerically, the difference between the two procedures is smaller in that case [7].

The elimination of this ambiguity is inherently difficult because it requires knowledge

about higher orders of the perturbative expansion. At present, the perturbative QCD

expansion of the Adler function in the chiral limit is known up to α4
s thanks to the five-loop

computation of refs. [21, 22] and it is unlikely that the result at six loops will be available

anytime soon [23]. In the absence of exact calculations for the higher-order coefficients,

one must tackle this problem with methods that allow for a partial reconstruction of the

series based only on the available information.

The general structure of the perturbative series is assumed to be known. It is an

asymptotic series (therefore divergent) with coefficients that grow factorially. The divergent

behaviour of the series is governed by renormalons : singularities along the real axis of the

Borel transformed series [24]. The position of these singularities is known since they are

related to the dimension of operators that participate in the OPE of the relevant correlator.

The exponents of the singularities are related to the anomalous dimension of the same

operators and can, in principle, be calculated. On the other hand, nothing, essentially, is

known about the residues of the singularities.

This partial knowledge has been used to construct realistic representations of the full

series by approximating its Borel transform, which has an infinite tower of singularities,

by a small number of dominant ones [18, 25]. These models for the Borel transformed

series are, in some cases, a type of rational or Padé approximant.1 Motivated by this

observation, in this paper we investigate, systematically, the use of Padé theory [26–31]

to reconstruct the Adler function, which governs hadronic τ decays and the cross section

of e+e− → (hadrons). One of the main advantages of the use of rational approximants,

as compared to the so-called renormalon models of refs. [18, 25], is that they can be

made model independent. Additionally, in some well defined cases, theorems guarantee

the convergence of a sequence of approximants to the function of interest.

1To be precise, the models of refs. [18, 25] are akin to Padé-type approximants [26, 27, 29] (for a brief

overview see section 8.6 of ref. [28]).
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In the past, rational approximants have already been used in the context of τ de-

cays [32]. In particular, the observation that their convergence can be improved when one

uses the Borel transformed series, as opposed to the series in αs, was already made. (This

procedure is sometimes referred to as “Padé-Borel method” [33].) At that time, however,

the perturbative series was known to one order less, only up to α3
s. Moreover, the con-

nection with renormalons in applications to τ decays was not made explicitly.2 Here, this

connection is established and we are able to use different types of Padé approximants (such

as partial Padé approximants) thanks to the available knowledge about the renormalon

singularities.

To validate our approach, before applying Padé approximants (PAs) to full QCD, we

will work within the large-β0 limit. In this limit, one obtains all the corrections with high-

est power of Nf at every given αs order in the perturbative expansion (with Nf being the

number of light-quark flavours). The application of this procedure to τ decays generates

an asymptotic series in αs that is known to all orders, and the result for the Borel trans-

formed Adler functionn can be written in a compact form [35, 36]. This Borel transform

is a meromorphic function in the complex plane: it has a finite radius of convergence and

an infinite number of renormalon poles along the real axis, but no branch cut. Therefore,

the theory of PAs to meromorphic functions, and in particular Pommerenke’s theorem,

apply [26–28, 37]. Apart from the standard PAs, we will consider several strategies for

accelerating the convergence of the approximation. First, we will exploit the renormal-

ization scheme dependence of the perturbative series, following ref. [38], to optimize the

convergence of the Padé approximants to exactly known Adler function. Additionally, we

will consider partial Padé approximants (which exploit the available knowledge about the

renormalon singularities). We will also employ D-log Padé approximants [26–28] which can

also be very effective in approximating functions with branch cuts. Finally, we investigate

the application of the different PAs to the FOPT expansion of the QCD corrections to the τ

hadronic width. This series has a much simpler analytic structure in the Borel plane, which

leads to coefficients that follow a more regular pattern, and is more amenable to approxi-

mation by rational functions. From these approximants one can easily perform an indirect

reconstruction of the Adler function that is very reliable and requires little information.

The systematic study performed in large-β0 and the lessons we learn from this limit

are used as the basis for the QCD analysis. In the case of full QCD, the structure of

the Borel transformed Adler function is more involved, since the poles become branch

cuts [24]. From renormalization scheme variations we find indications that in QCD the

leading UV renormalon is suppressed with respect to large-β0 and, as a consequence, the

sign alternation of the series is probably postponed. We will then show that, as in large-β0,

it is advantageous to consider Padé approximants to the FOPT expansion of the corrections

to the τ hadronic width. From these approximants, we are able to obtain reliable model-

independent predictions for the higher-order coefficients of the Adler function, together

with an estimate of their uncertainty, and extract an estimate for the ressumed value of

2A discussion of renormalons and Padé approximants does appear in the context of the Bjorken sum-rule

in a related paper [34].
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the perturbative QCD corrections to hadronic τ decays. We are also in a position to discuss

the renormalization group improvement of the series and we show, from our reconstruction

of high orders, that FOPT is strongly favoured in QCD. The systematic use of PAs lead to

results that are model independent and that have significantly smaller errors than results

obtained from other methods.

Our work is organized as follows. In section 2 we describe the essentials about the

QCD description of hadronic τ decays and, in section 3, we collect the main facts about

Padé theory relevant to this work. Then, in section 4, we apply the Padé approximants

to the large-β0 limit of QCD. The results in full QCD are presented in section 5 and the

conclusions are given in section 6.

2 Perturbative QCD in hadronic τ decays

In the study of perturbative QCD corrections to hadronic τ decays and e+e− → (hadrons)

below charm the central object is the Adler function in the chiral limit (defined below).

From the knowledge of its expansion one can derive the corrections to the τ hadronic

width [18] as well as the perturbative expansion of R(s) for e+e− → (hadrons) below

charm [7]. In the spirit of being self-contained, we review here the main aspects of the

theoretical description of hadronic τ decays in QCD. (We refer to refs. [2, 18, 43] for further

details.) Although we frame our discussion in the context of τ decays the application to

e+e− → (hadrons) is straightforward and is, essentially, a matter of normalization to reflect

the fact that the current in that case is the electromagnetic one. For the details regarding

this normalization we refer to ref. [7].

The decay rate of τ → (hadrons) + ντ can be separated experimentally into three

components: a vector and an axial-vector, due to decays mediated by the light-quark ūd

current, and strange contributions, arising from the ūs current. These decay rates, nor-

malized to the width of τ → eν̄eντ , are denoted Rτ,V , Rτ,A, and Rτ,S , respectively. When

extracting αs it is convenient to work only with light quarks, because corrections propor-

tional to the mass of the quarks can then be safely neglected. Here, we restrict ourselves

to the non-strange channels, precisely for this reason. Then, the different corrections to

the partonic result can be parametrized as

Rτ,V/A =
Nc

2
SEW|Vud|2

[
1 + δ(0) + δNP + δEW

]
, (2.1)

where SEW and δEW are small electroweak corrections and Vud the CKM matrix element;

the unity, in between square brackets, is simply the partonic result. The first correction,

δ(0), is the perturbative QCD part, which is the dominant contribution (∼ 20%). Non-

perturbative contributions, encoded in δNP, are significantly smaller and contain both OPE

condensates and DVs. In this work, we focus on the perturbative QCD part, δ(0), that we

discuss in more detail below.

The relevant quantity that governs Rτ,V/A are the correlators

Πµν
V/A(p) ≡ i

∫
dx eipx 〈Ω|T{JµV/A(x)JνV/A(0)†}|Ω〉, (2.2)
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where |Ω〉 represents the physical vacuum and the currents are JµV/(A)(x) = (ūγµ(γ5)d)(x).

These correlators can be decomposed into transverse, Π
(1)
V/A(s), and longitudinal, Π

(0)
V/A(s),

parts in the usual way (with s = p2). The decay rate can be expressed in terms of integrals

over the spectral functions, 1
π ImΠJ

V/A(s), that run from s = 0 to s = m2
τ [2, 18]. These

integrals, on the theory side, are problematic because perturbative QCD is not valid at low

energies. To circumvent this problem, one resorts to a FESR that exploits the analyticity

properties of the correlators. The quantities Rτ,V/A can then be expressed as an integral in

a closed contour in the complex plane with fixed |s| = m2
τ . Explicitly, for the perturbative

contribution, one finds [18]

δ(0) =
1

2πi

∮
|x|=1

dx

x
W (x)D̂

(1+0)
pert (m2

τx), (2.3)

with x = s/m2
τ and where the weight function W (x), determined by phase space, is W (x) =

(1 − x)3(1 + x).3 In this integral, D̂
(1+0)
pert is the perturbative contribution to the reduced

Adler function defined as

1 + D̂pert(Q
2) =

12π2

Nc
D

(1+0)
pert (Q2), (2.4)

where the Adler function itself, D(1+0), is obtained as the logarithmic derivative of the

combination Π(1+0)(s) as

D(1+0)(s) = −s d
ds

[
Π(1+0)(s)

]
. (2.5)

The Adler function is a physical object in the sense that it does not contain subtraction con-

stants that depend on the renormalization conventions. This function is central to our work.

The perturbative expansion of D̂ starts at O(αs) and can be cast as

D̂pert(s) =

∞∑
n=1

anµ

n+1∑
k=1

kcn,kL
k−1, (2.6)

where L = log(−s/µ2) and aµ = αs(µ)/π. In this expansion, the only independent co-

efficients are the cn,1; the others can be obtained imposing renormalization group (RG)

invariance, and are expressed in terms of the cn,1 and β-function coefficients [18, 44]. The

logarithms can be summed with the scale choice µ2 = −s ≡ Q2 giving

D̂pert(Q
2) =

∞∑
n=1

cn,1a
n
Q ≡

∞∑
n=0

rnα
n+1
s (Q). (2.7)

where rn = cn+1,1/π
n+1. With this definition, the perturbative expansion of the reduced

Adler function with the choice µ2 = Q2 then reads (for Nf = 3, MS scheme)4

D̂(Q2) = aQ + 1.640 a2Q + 6.371 a3Q + 49.08 a4Q + · · · , (2.8)

3Perturbative corrections to the spectral function are obtained simply by using W (x) = 1 in eq. (2.3).
4We will often drop the subscript “pert” in D̂.
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from which the numerical values of the known independent coefficients cn,1 of eq. (2.7) can

be immediately read off.

The perturbative series of eq. (2.6) is divergent and one assumes that it must be an

asymptotic expansion to the true value of the function being expanded [24]. To study the

perturbative contribution to the Adler function, and in particular its renormalon content,

it is therefore convenient to work with the Borel transformed series, which can have a finite

radius of convergence, defined as

B[D̂](t) ≡
∞∑
n=0

rn
tn

n!
. (2.9)

The original expansion, in turn, can be understood as an asymptotic series to the inverse

Borel transform

D̂(α) ≡
∞∫
0

dte−t/αB[D̂](t), (2.10)

provided that the integral exists. The last equation defines the Borel sum of the asymptotic

series. The divergence of the original series, D̂, is translated into singularities in the t

variable. Two types can be distinguished: ultraviolet (UV) and infrared (IR) renormalons.

The UV renormalons lie on the negative real axis and contribute with sign alternating

coefficients. IR renormalons are singularities on the positive real axis which contribute

with fixed sign coefficients. The latter obstruct the integration in eq. (2.10) and generate

an ambiguity in the inverse Borel transform which is expected to cancel against power

corrections of the OPE. The position of the singularities in the t plane can be determined

with general renormalization group (RG) arguments. They appear at positive and negative

integer values of the variable u ≡ β1t
2π (except for u = 1), where β1 is the leading coefficient

of the QCD β-function.5 The UV renormalon at u = −1, being the closest to the origin,

dominates the large order behaviour of the series, which must, therefore, be sign alternating

at higher orders. As seen in eq. (2.8), this sign alternation is still not apparent in the first

four coefficients of the QCD expansion in the MS scheme, which are known exactly.

Finally, to obtain the perturbative corrections to Rτ,V/A one needs to perform the

integral in eq. (2.3). In the process, one needs to adopt a procedure in order to set the scale

µ, which enters, implicitly, through eq. (2.6). A running scale, µ2 = Q2, as done in eq. (2.7),

gives rise to the aforementioned Contour-Improved Perturbation Theory (CIPT), where the

running of αs along the contour is resummed to all orders. In this case, δ(0) can be written as

δ
(0)
CI =

∞∑
n=1

cn,1J
CI
n (m2

τ ), with JCI
n =

1

2πi

∮
|x|=1

dx

x
(1− x)3(1 + x)an(−m2

τx). (2.11)

5We define the QCD β-function as in ref. [18]

β(aµ) ≡ −µdaµ
dµ

= β1a
2
µ + β2a

3
µ + β3a

4
µ + β4a

5
µ + β5a

6
µ + · · ·
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Another option is to employ a fixed scale µ2 = m2
τ , which gives rise to Fixed Order

Perturbation Theory.6 Then, because αs is evaluated at a fixed scale, it can be taken outside

the contour integrals, which are performed over the logarithms that appear in eq. (2.6) as

δ
(0)
FO =

∞∑
n=1

anµ

n∑
k=1

kcn,kJ
FO
k−1, with JFO

n ≡ 1

2πi

∮
|x|=1

dx

x
(1− x)3(1 + x) lnn(−x).

(2.12)

Therefore, δ
(0)
FO can also be written as an expansion in the coupling

δ
(0)
FO =

∞∑
n=1

dna
n
Q, (2.13)

where the coefficients dn depend then on cn,1, on the β-function coefficients, and on the

integrals JFO
n . In QCD, this expansion reads, for Nf = 3 and in the MS scheme,

δ
(0)
FO = aQ + 5.202 a2Q + 26.37 a3Q + 127.1 a4Q + (307.8 + c5,1) a

5
Q + · · · (2.14)

where we give the numerical result of the known contributions to the first unknown coef-

ficient.

In τ decays, using δ
(0)
CI to extract αs(m

2
τ ) one obtains results about 5% larger than those

obtained from δ
(0)
FO [3]. (This difference is reduced to about 2% when αs(m

2
τ ) is extracted

from e+e− → (hadrons) [7].) The elimination of this ambiguity would therefore contribute

to the extraction of αs around m2
τ with smaller uncertainties.

3 Elements of Padé theory

Let us consider a function f(z) that assumes a series expansion in the complex plane around

z = 0

f(z) =
∞∑
n=0

fnz
n. (3.1)

A Padé approximant (PA) to f(z) [26–28], denoted PMN (z), is defined as the ratio of two

polynomials in the variable z of order M and N , QM (z) and RN (z), respectively, with the

definition RN (0) = 1. This approximant is said to have a “contact” of order M +N with

the expansion of the function f(z) around the origin of the complex plane: the expansion

of PMN (z) around the origin is the same as that of f(z) for the first M +N + 1 coefficients

PMN (z) =
QM (z)

RN (z)
≈ f0 + f1 z + f2 z

2 + · · ·+ fM+Nz
N+M +O

(
zM+N+1

)
. (3.2)

From the reexpansion of the approximant PMN (z) one can read off an estimate for the

coefficient fM+N+1, the first that is not used as input [30]. Estimates of this type will be

of special interest in this work.

6Here we will consider only CIPT and FOPT, but alternative schemes for setting the scale µ have been

advocated in the literature [45–50].
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The successful use of Padé approximants to obtain quantitative results about the

function f(z) requires only a qualitative knowledge about the analytic properties of the

function. The PAs can also be used to perform a reconstruction of the singularity structure

of f(z) from its Taylor expansion. Convergence theorems exist for the cases of analytic and

single-valued functions with multipoles or essential singularities [26–28]. Even for functions

that have branch points the PAs can be used, in many cases, successfully. In these cases,

for increasing order of approximation, the poles of the PAs tend to accumulate along the

branch cut, effectively mimicking the analytic structure of the function [26–28].

We will focus on sequences of Padé approximants with N = M +k, for a fixed value of

k. For k 6= 0, the PAs PMM+k define a near diagonal sequence while the case k = 0 defines the

diagonal sequence. Pommerenke’s Theorem [37] then guarantees that a sequence PMM+k to a

meromorphic function is convergent in any compact set of the complex plane, except in a set

of zero area that includes the poles of the function f(z), where even the original function is

not well defined. If there are other nuisance poles in the approximant, the theorem requires

that they move away from the region as soon as M grows, or appear in combination with

a nearby zero, which is called a defect or Froissart doublet [26–28]. In contrast, poles that

are present in f(z) tend to be relatively stable as one increases the order M .

In this paper, most of the times, the role of the function f(z) is played by the Borel

transform of the Adler function, defined in eq. (2.9). A key feature of the Borel transform,

as already discussed, is its singularities along the real axis, the renormalons. It will be

of interest to us to study how this singularity structure is mimicked by the PAs. It is

important to note that when f(z) is a general meromorphic function some of the poles

(and residues) of the approximant PMN (z) may become complex, even though the original

function has no complex poles.7 Such poles cannot be identified with any of the renormalon

singularities, but they do not prevent the use of PMN (z) to study the function away from

these poles. In fact, in the process of approximating a function with an infinite number

of poles by an approximant that contains only a handful of them, the appearance of these

extraneous poles is expected to happen [29].

In the case at hand there is some available knowledge about the singularities of the

functions being approximated, which are precisely the renormalon singularities of the Borel

transformed Adler function. It may be desirable to construct approximants that exploit

this knowledge. If a set of poles of the function are known, one can construct a so-called

partial Padé approximants (PPA) [52] defined as

PMN,K(z) =
QM (z)

RN (z)TK(z)
. (3.3)

The polynomial TK(z), of order K, is constructed such as to have K zeros at the exact

location of the first K poles of f(z). The coefficients of the polynomials are again fixed

by matching to the Taylor expansion of f(z), in the same way as for the PAs. Again, for

a general meromorphic function, complex-conjugated poles may appear in the PPAs. The

7When the meromorphic function is of the Stieltjes type the poles will always be along the real axis.

The functions we approximate in this work are not of this type. We will discuss this in more detail in the

remainder.
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extreme case N = 0 results in a Padé-type approximant, an approximant with the whole

denominator given in advanced, less expensive in terms of Taylor coefficients than a PA or

a PPA.

The approximation of functions with branch points and cuts — as is the case for

the Borel transform of the Adler function in QCD — is more subtle. In this case, a

possible strategy is the manipulation of the series to a form which is more amenable to

the approximation by Padés. Let us consider the particular case of a function f(z) =
A(z)

(µ−z)γ + B(z) with a cut from µ to ∞ with exponent γ and a reminder B(z) with little

structure (both A(z) and B(z) are to be analytic at z = µ). Following the method of Baker

called D-log Padé approximant [26–28], we can form PAs not to f(z) but to

F (z) =
d

dz
log[f(z)] ∼ γ

µ− z
(near z = µ) , (3.4)

which turns out to be a meromorfic function to which the convergence theorem applies.

The use of appropriate Padé approximants to F (z) determines in an unbiased way both

the pole position, z = µ, and the residue, −γ, which corresponds to the exponent of the cut

of f(z). No assumption about neither µ nor γ is made; they are determined directly from

the series coefficients. The approximation of F (z) by a PA yields an approximant for f(z)

that is not necessarily a rational function. To be more specific, the Dlog-PA approximant

to f(z) obtained from using PMN to approximate F (z), that we denote DlogMN (z), is

DlogMN (z) = f(0)e
∫
dz

QM (z)

RN (z) , (3.5)

where PMN (z) = QM (z)
RN (z) is the aforementioned PA to F (z). Due to the derivative in eq. (3.4),

the constant f(0) is lost and must be reintroduced in order to properly normalize the

DlogMN (z). In practice, the non-rational approximant DlogMN (z) can yield a rich analytical

structure, in particular the presence of branch cuts — not necessarily present in the function

f(z) — is to be expected.

In case the branch point would be known in advanced, one can form what we will call

partial D-log Padé approximants. They consist in forming Padé approximants to

G(z) = (µ− z)
d

dz
log[f(z)] ∼ γ, (3.6)

for an assumed value of µ, which would yield a prediction for γ by evaluation of the

approximants around z = µ. The approximant to f(z) entailed by this procedure will be

denoted DlogMN (z;µ) and is given by

DlogMN (z;µ) = f(0)e
∫
dz

QM (z)

(µ−z)RN (z) . (3.7)

One should remark that in eqs. (3.6) no assumption is made about γ. The method was

originally designed to be used in the presence of branch points, but if γ is an integer it can

also work very well, as we show in section 4.1.4.

In summary, the Padé approximants PMN (z) can be viewed as an economic and com-

pletely model-independent procedure, since all the poles are left free and no analytical

– 9 –



J
H
E
P
0
8
(
2
0
1
8
)
0
7
5

information about the singular structure of the function needs to be included. They are,

however, expensive in terms of series coefficients. In order to fasten the convergence range,

the use of PPAs PMN,K improves the results but requires knowledge about the singularities of

the function f(z). Such singularities may be determine by PAs or by external information.

D-log Padé approximants, in turn, offer the possibility to exploit the Padé theory for

functions with mutlipoles and branch cuts at the expense of losing, due to the required

derivative, the first Taylor coefficient. Finally, the partial D-log Padé approximant such as

eq. (3.7), provides further improvement but requires knowledge about the position of the

singular points. At the end of the day, for each case of interest, the PA practitioner shall

decide for the best strategy. As we will show in the next section, a sequential study using the

different aforementioned approximations is the optimal way to extract information about

unknown Taylor coefficients and about the singular structure of the objective function.

4 Padé approximants in the large-β0 limit

A good laboratory for the strategy we present here is the so called large-β0 limit of QCD.

Results in this limit are obtained by first considering a large number of fermion flavours, Nf ,

keeping αsNf ∼ 1. In this framework, the qq̄ bubble corrections to the gluon propagator

must be resummed to all orders. Using this dressed gluon propagator one can then com-

pute all the corrections with highest power of Nf at every αs order to a given QCD observ-

able [24]. The results in large-β0 are obtained by replacing the Nf dependence by the lead-

ing QCD β-function coefficient (β1 in our notation) which incorporates a set of non-abelian

gluon-loop diagrams. Accordingly, the QCD β-function is truncated at its first term.8

In this limit, the Borel transform of the reduced Adler function, defined in eq. (2.9)

can be written in a closed form as [24, 35, 36]

B[D̂](u) =
32

3π

e(C+5/3)u

(2− u)

∞∑
k=2

(−1)kk

[k2 − (1− u)2]2
, (4.1)

where the scheme parameter C measures the departure from the MS, which corresponds

to the choice C = 0.9 In the conventions of eqs. (2.7) and (2.9) we have u = β1t/(2π) with

β1 = 9
2 (for Nf = 3). The result clearly exhibits the renormalon poles, both the IR, that

lie along the positive real axis, and the UV ones, that appear on the negative real axis.

They are all double poles, with the sole exception of the leading IR pole at u = 2, related

to the gluon condensate, which is a simple one. This Borel transformed Adler function

is a meromorphic function but it is important for the subsequent discussion to note that

it is not of the Stieltjes type as can be proved by the computation of the determinantal

necessary-conditions for a function to be of Stieltjes type [26–28] — and can be easily seen

by the alternating sign of the different renormalon contributions. This already anticipates

the presence of complex-conjugated poles in our approximants.

8Strictly speaking, the large-β0 limit would be the “large-β1” limit, in our notation.
9The use of C + 5/3 to parametrize the scheme is different from the conventions of refs. [18, 24, 25] but

makes it easier to make contact with ref. [38].
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The Borel transform of the FOPT correction to the decay rate, B[δ(0)], can be obtained

inserting eq. (4.1) in the expression of eq. (2.3). The contour integral can be done using

the one-loop logarithmic running of αs to give [18]10

B[δ(0)](u) =
12

(1− u)(3− u)(4− u)

sin(πu)

πu
B[D̂](u). (4.2)

The analytic struture of this last Borel transform is much simpler than that of B[D̂](u).

Now all the UV poles are simple poles, because of the zeros of sin(πu). For the same

reason, the leading IR pole of B[D̂](u), at u = 2, which is simple in large-β0, is cancelled

in B[δ(0)](u) — a result first pointed out in refs. [40, 41] for the Borel transformed spectral

function. Our analysis with PAs benefits greatly from these cancellations since the Borel

transformed function is now much less singular.11 A simpler analytic structure can be much

more easily mimicked by the PAs. We also note that the leading UV pole has a residue

about ten times smaller than in the Adler function counterpart. This, together with an

enhancement of the residue of the double pole at u = 3, postpones the sign alternation of

the series and enlarges the range of convergence of the Taylor series. PAs constructed to

the expansion of eq. (4.2) benefit from these features of B[δ(0)](u) and lead to smaller errors

by virtue of Pommerenke’s theorem, granting better coefficient’s determination [26–28].

The coefficients cn,1 of the reduced Adler function can be reconstructed from the Borel

transform by performing the expansion around u = 0 and using eqs. (2.4) and (2.9). The

first six coefficients of the Adler function in the large-β0 limit, denoted D̂Lβ , read (Nf = 3,

MS)

D̂Lβ(aQ) = aQ + 1.556 a2Q + 15.71 a3Q + 24.83 a4Q + 787.8 a5Q − 1991 a6Q + · · · , (4.3)

to be compared with their QCD counterparts given in eq. (2.8). We observe that the sign

alternation due to leading UV renormalon sets in at the sixth order (in the MS). These

coefficients lead to the following large-β0 FOPT expansion of δ(0):

δ
(0)
FO,Lβ(aQ) = aQ + 5.119 a2Q + 28.78 a3Q + 156.7 a4Q + 900.8 a5Q + 4867 a6Q · · · , (4.4)

to be compared with eq. (2.14). Now the sign alternation of the coefficients is postponed and

sets in only at the 9th order because of the suppression of the leading UV pole in eq. (4.2).

In comparison with the results in full QCD, the large-β0 limit is a good approximation,

in the case of the Adler function, only up to α2
s. However, for δ

(0)
FO,Lβ this approximation

is still good up to the last known term, i.e. α4
s. The reason for this better agreement lies

in the fact that these coefficients depend also on the β-function coefficients — which are

largely dominated by β1 in QCD — as well as on the integrals of eq. (2.12).

An important difference between the aQ expansion of the Adler function and that of

δ(0), eqs. (4.3) and (4.4) is that, in the former, the smallest term of the sum is reached

10For details about the calculation, see also a related discussion in section IV.B of ref. [17].
11The fact that the only poles that remain double in eq. (4.2) are the ones at u = 3 and u = 4 is not a

coincidence. This reflects the fact that δ(0) is maximally sensitive to the dimension-six and dimension-eight

OPE condensates. This may have consequences for the choice of weight functions employed in αs analyses

from τ decays that will be investigated elsewhere [42].
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already at the fourth order. This makes the asymptotic nature of the series very prominent.

In FOPT, the series is much better behaved and each term is consistently smaller than the

previous up to the 9th order. The FOPT series, therefore, behaves at intermediate orders

almost as a convergent series — a fact that will be important in the remainder of the paper.

(These features can be visualized in the results represented by solid lines in figures 1

and 2.) It can be shown analytically that in the coefficients dn of eq. (2.13) there are

cancelations between the Adler function coefficients and the remainder contributions [18].

These cancellations lead to the fact that FOPT is, in large-β0, superior to CIPT (which

misses them). Aditionally, the cancellations suppress to some extent the divergent character

of the series, which is postponed with respect to the Adler function.

A special feature of the large-β0 result is the simple way in which the scheme depen-

dence appears through the factor e(C+5/3)u in eq. (4.1). It becomes clear that the residue

of the renormalon poles is scheme dependent, while their position, related to the dimension

of operators in the OPE, is not. Physical results must, of course, be scheme independent.

However, the coupling αs is itself not physical, since it depends on conventions related

to the renormalization procedure. Therefore, a perturbative expansion in αs is a scheme-

dependent approximation to an (unknown) scheme-independent physical result.

In this context, the physical result is given by the Borel integral eq. (2.10) in which

the scheme dependence of the Borel transform is cancelled by the scheme dependence of

the coupling αs, denoted by αCs , to make it explicit. Writing the Borel transform as

B[D̂](u) = eCub(u), (4.5)

the function b(u) is scheme independent and we have

D̂(α) ≡
∞∫
0

dt exp

[
−t
(

1

αCs
− β1C

2π

)]
b

(
β1t

2π

)
, (4.6)

which exposes the scheme invariant combination

1

ᾱ
=

1

αCs
− β1C

2π
. (4.7)

This result allows us to write the coupling αCs ≡ α̂ in terms of the more usual MS coupling as

1

αCs
≡ 1

α̂s
=

1

αMS
s

+
β1C

2π
. (4.8)

Redefinitions of the QCD coupling of this type have been discussed in refs. [38, 39]. The

result we employ here is a particular case of those of ref. [38], with higher order β-function

coefficients set to zero. Since the QCD β-function is dominated by β1, the qualitative

behavior of α̂s with C remains the same as in ref. [38]: grosso modo, negative values

correspond to larger α̂s whereas positive values of C are associated with smaller α̂s values.

Here, we will exploit the freedom of scheme choice in order to optimize the rational

approximation of the Borel transformed Adler function. It is particularly important to

note that the schemes with negative C values, therefore less perturbative, introduce a
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suppression of the IR pole residues. In these schemes, IR pole contributions are largely

dominated by the first few poles, much more so than in schemes with C > 0. On the

other hand, for C < 0 the UV poles are enhanced, and one expect the sign alternation

of the series to show up at very low orders. For perturbative calculations, these schemes

with larger α̂s values are essentially useless, but we will show that they are more amenable

to a rational approximation as C < 0 suppresses the influence of the exponential term in

eq. (4.1) and results in a function with more pronounced isolated poles, easier to reproduce

with a rational function than an exponential one.

4.1 Padé approximants to the Adler function

4.1.1 MS scheme

We begin by using Padé approximants to study the perturbative expansion of the Adler

function and of δ(0) in the MS scheme. Since in large-β0 we know the exact result we are

able to assess the quality of the approximation and refine the method that later we will

apply to QCD. In the remainder of this section, we devise a strategy to extract as much

information as possible about the series using rational approximants.

Let us first comment on the construction of Padé approximants directly to the series

in αs/π, given of eq. (4.3). In the case of the Adler function, the asymptotic nature of

the series is very prominent since from the 5th term on asymptoticity has already set in.

Forming Padé approximants to the Adler series in aQ requires many coefficients as input in

order to allow for an acceptable description of higher orders. The Borel transformed Adler

function, which suppresses the factorial growth of the coefficients fixes, at least partially,

this behaviour and is much more amenable to the approximation by PAs. This has been

noted already in ref. [32] and we refrain from further discussing PAs constructed for the

αs/π expansion of the Adler function. (PAs of this type will turn out to be useful, however,

in the case of δ(0), as discussed in section 4.2)

We turn now to Padé approximants formed to the Borel transformed Adler function.

The first question that arises regards what Padé sequence(s) to use. In our conventions,

the MS corresponds to C = 0, which means that the exact Borel transform diverges expo-

nentially when u→∞. Since we do not have a simple power-like behaviour for large u we

do not attempt to fix the Padé sequence using this limit. Instead, we will investigate more

than one sequence, keeping in mind that in QCD we have only the first four coefficients of

the Adler function available.

Let us begin with the sequence PN+1
N (u). Since we are interested in the prediction

of the behaviour of the series at higher orders, we start by studying the quality of the

estimate of the first coefficient not used as input. Each PN+1
N needs 2N + 2 parameters to

be constructed and we employ the first 2N + 2 coefficients of the Borel transformed Adler

function. Then the Padé is reexpanded to predict the coefficient c2N+3,1. In the first non

trivial case, that of P 2
1 (u), we need c1,1, c2,1, c3,1, and c4,1 to fix the parameters and we find

P 2
1 (u) =

1.359 + 0.6221u+ 1.889u2

4.271− u
, (4.9)
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from which we extract the value 52.33 for c5,1 to be compared with the exact value 787.8,

given in eq. (4.3) — clearly not an accurate prediction. For the FOPT series this leads

to the value 165.3 for the fifth coefficient, to be compared with 900.8 in eq. (4.4). The

approximant P 2
1 (u) displays an effective pole at 4.271, which cannot be straightforwardly

associated with any of the poles of the exact Borel transform. This is the aforementioned

feature of low-order Padé approximants: they mimic the infinite tower of poles by the

appearance of effective poles not present in the original function. In a Padé with several

poles, only the first few, closest to the origin, can be identified with the poles of the original

function and only in a hierarchical way [29].12

It is illustrative to consider the next Padé approximant in this sequence, P 3
2 (u), and

compare the results. In this case, we find

P 3
2 (u) =

0.3385 + 0.4005u+ 0.3219u2 + 0.1609u3

(0.8024 + u)(1.325− u)
. (4.10)

Now the first coefficient that can be forecast is c7,1 for which we find the value 125,745, to

be compared with the exact value 98,572.8. The 7th order coefficient of the FOPT series

is also much better forecast: 59,456.6 to be compared with the exact coefficient 32,284.3.

This approximant is able to reproduce the qualitative behaviour of the Adler function

and the FOPT series at higher orders, mainly due to the fact that it exhibits a pole at

u = −0.8024, which mimics the leading UV pole at u = −1, and a second pole mimicking

the first IR pole, but slightly below the exact value at u = 2. The UV pole is enough to

ensure the correct sign alternation in the higher order coefficients, as shown in figure 1

(throughout this paper we use αs(mτ ) = 0.3160, which corresponds to the most recent

PDG recommendation evolved to the τ mass scale [53]).

A clear feature starts to emerge already at this level. To get an appropriate approxima-

tion to the Adler function in the MS, at least two-pole approximants must be considered.

This provides the balance between UV and IR renormalon contributions. A visual account

of the quality of these approximants is given in figure 1 which displays the exact Adler func-

tion in large-β0 and the result reconstructed from P 2
1 (u) and P 3

2 (u), whereas the results

for δ(0) in FOPT and CIPT are shown in figure 2.

Using the same amount of information, we could consider the PNN+1(u) sequence with

the P 1
2 (u) and P 2

3 (u) its firsts elements. As we observed before, two-pole approximants

yields better convergence ranges (by capturing the sign-alternating feature of the Borel

series) so we should expect better c5,1 and c7,1 predictions for this sequence. We actually

find c5,1 = 1770 and c7,1 = 102, 889 respectively, a better determination than their PN+1
N (u)

counterparts.

It is thus interesting to investigate systematically the convergence of the Padé sequence

with respect to N . In order to quantify the quality of the prediction of coefficients not

12This poses a word of caution in the interpretation of results from renormalon models with a small

number of fixed poles. In these cases, the only freedom left is in the residues that must accommodate the

imperfections of the model in an effective way. Therefore, for the same reasons discussed above, residues of

poles further away from the origin may not correspond to their counterpart in the original function.
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Figure 1. Results for the perturbative expansion of the Adler function in large-β0 (solid line) and

using the P 2
1 (u) (dashed line) and P 3

2 (u) (dot dashed line). The result of the Borel sum of the series is

displayed with a band that represents its ambiguity. In all figures we use αs(m
2
τ ) = 0.316±0.010 [53].
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Figure 2. Results for δ(0) order by order in perturbation theory for large-β0 (solid line) and for

the P 2
1 (u) (dashed line) and P 3

2 (u) (dot dashed line) in FOPT (left) and CIPT (right). The Borel

sum of series with its ambiguity is shown as the horizontal band.

used as input we define the relative error as

σrel =

∣∣∣∣∣cPn,1 − cn,1cn,1

∣∣∣∣∣ , (4.11)

where cPn,1 is the coefficient extracted from the Padé approximant. If the PA sequence

converges, the parameter σrel should tend to zero as n grows.

In figure 3a we show the behavior of the relative error of the estimate of the c2N+3,1

coefficient for the sequence PN+1
N as a function of N . Being the Adler function in large-β0

a meromorphic function, the Pommerenke’s theorem ensures the convergence for a larger

set of PA sequences than the PN+1
N . To show this excellent global convergence pattern, we
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Figure 3. Results for four different Padé sequences in the MS scheme. (a) Relative error of the

first forecast coefficient of the Adler function, as defined in eq. (4.11). (b) Results for the Borel

sum, eq. (2.10). The horizontal band gives the imaginary ambiguity of the true value.

collect in figure 3a few of the closest-to-diagonal sequences, in particular the PN+1
N , PNN ,

PNN+1, and PNN+3.

The results are qualitatively similar for all sequences: in all cases the convergence to

the exact results happens fast as N grows. We observe in figure 3a that the improvement

once N is increased by one unity is often of about one order of magnitude or more (notice

the log scale of the plot). There are a few outliers where increasing N by one unity does not

represent an improvement, or even makes the relative error larger. A close scrutiny of the

particular approximants reveals why this is so. For meromorphic non-Stieltjes functions,

it is a feature of the Pommerenke’s theorem [26–29] that the convergence pattern can be

altered by the presence of defects, transients poles almost cancelled by a close-by zero as it

is clearly noticed after observing the convergence pattern of the pole positions for the PNN+1

sequence: P 1
2 (u) has poles at u = −0.56 and at u = 0.89; P 2

3 (u) at u = −0.86 together

with a couple of complex-conjugated (CC) poles at u = 1.43± 0.46i — notice the stability

of the UV pole which is driving the large-order behavior of the series (since it is always

the closest to the origin) — then, P 3
4 (u) contains poles at u = −0.85, the CC poles at

u = 1.40± 0.47i and an extraneous new pole closer to the origin at u = −0.3991. This last

one, which would eventually spoil the convergence, is a new pole and it is actually canceled

by a close-by zero at u = 0.3989 effectively reducing the order of this approximant to a

P 2
3 . A similar feature is observed for the second and fifth elements of the PNN+3 sequence.

In this last case, the cancellation among zero and pole is of the order of 10−13, i.e., the

residue of the spurious pole is O(10−13). Identifying these cancelations will be important

in the obtention of the final results of this paper.

When N = 4, in all sequences the results are better by a few orders of magnitude

compared to the first PA in each sequence. We remark that the convergence of some of

these sequences was already studied in ref. [32] and we confirm and extend their results.
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In addition, PAs can be used as a way to resum the original series. In our case, the Borel

integral can be performed with the reconstructed PAs using eq. (2.10) in order to produce

an estimate for the Borel sum of the series. The results for the Borel sum of the series also

approach the true value when the order N is increased, as can be seen in figure 3b. As

expected, the approximation becomes increasingly better, but it is also worth noting that

the error is significantly reduced only after a relatively large value of N is employed.

All in all, we arrive to the observation that PAs with larger values of N tend to

have poles that can be identified with the leading renormalons — at least for the ones

that are closer to the origin in a hierarchical way [29] — and this is enough to yield a

good approximation to the series coefficients and the Borel integral. In all cases, however,

realistic values of N (N = 1 for PN+1
N and PNN+1 and N = 0 for PNN+3) still do not provide

a good approximation, as can be seen in figures 1, 2, 3a and 3b. Since in full QCD only

the first four coefficients of the Adler function are known it would be desirable to obtain

a better approximation for these lower values of N . In the next section we discuss how

scheme variations can be used to that end.

4.1.2 Scheme variations

The exact result for the Borel transformed Adler function in large-β0, eq. (4.1), displays

explicitly an important property: the residues of the renormalon poles are scheme depen-

dent but their position is not. Here we exploit this feature in order to improve upon the

results of the previous section.

One of the difficulties in using PAs with a small number of parameters is the fact that

they must mimic an infinite tower of renormalon poles and their complicated interplay

with a set of only a few poles. In the MS, in lower orders, the first UV and IR poles give

sizeable contributions to the coefficients [18, 25]. However, using schemes with negative

values of C the Borel transform becomes much more dominated by the first UV pole, due

to the factor of e(C+5/3)u, and the sign alternation should show up at very low orders.

Because of this dominance, it becomes easier for a PA to reproduce such a series (we will

elaborate on that below). Of course, negative values of C entail larger values of α̂s [38], as

per eq. (4.8). These schemes are therefore bad for perturbative calculations but they are

very useful, for example, to obtain estimates for the Borel sum of the series, since this is a

scheme-independent result. Finally, the results for the coefficients with negative C values

can be translated to the MS using the relation between the two couplings, and we will show

that this leads to better results for the predicted higher order coefficients in MS.

For definiteness, we will work with C = −5/3 which cancels exactly the exponential

in eq. (4.1). In this scheme the central value of the coupling is α̂s(mτ ) = 0.5074. The

expansion of the Adler function in the large-β0 limit for C = −5/3 reads (Nf = 3)

D̂
(C=−5/3)
Lβ (âQ) = âQ − 2.194 â2Q + 18.10 â3Q − 139.0 â4Q + 1610 â5Q − 20, 759 â6Q + · · · (4.12)

We remark that, as expected, the sign alternation sets in much earlier, in this case it starts

from the second coefficient. The exact result for the Adler function in the large-β0 limit for

C = −5/3 can be seen in figure 4. It becomes clear that asymptoticity sets in also earlier

due to the much larger value of the expansion parameter, α̂s.
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Figure 4. Perturbative expansion of the Adler function in large-β0 in a scheme with C = −5/3

(solid line) and using the P 2
1 (u) (dashed line) and P 3

2 (u) (dot dashed line). The scheme-invariant

result for the Borel sum of the series is the same as in figure 1. The value of the strong coupling in

this scheme is α̂s(mτ ) = 0.5074 (see text).

Let us consider again the Padé P 2
1 (u), but now in the scheme C = −5/3. In this new

scheme we find

P 2
1 (u) =

0.2798 + 0.0455u+ 0.1899u2

0.8790 + u
, (C = −5/3). (4.13)

Now, for the coefficient c5,1 the result is 1423, to be compared with the exact value 1610

in eq. (4.12), a relative error of only 12% — this is an improvement of about an order of

magnitude with respect to the result in the MS. The result for c6,1, one order higher, is still

very good: −18, 212, just a 12% relative error. Also, this P 2
1 (u) already displays a pole at

−0.8790, close to the leading UV renormalon, and which reproduces the sign alternation of

the coefficients. Finally, the Borel integral gives now 0.1416, much closer to the exact value

(which is 0.1481±0.0030i, shown in figure 3b). In figure 4, we see that the agreement with

the exact Adler function is good even at higher orders. Clearly, P 2
1 (u) in this scheme pro-

vides a much more accurate prediction of the true function than its counterpart in the MS.

The underlying reason is simple: without the exponential term, the position of the most

prominent renormalon pole, the first UV, is much better determined in full agreement with

the Pommerenke’s theorem [26–29]. Furthermore, the suppression of the IR-pole residues

simplify the interplay of the poles. Enlarging the sequence will only improve on the results.

Actually, for C = −5/3, the improvement for the P 3
2 (u) is only modest. We find

P 3
2 (u) =

0.2299− 0.2080u+ 0.0769u2 − 0.1283u3

(0.8757− u)(0.8248 + u)
, (C = −5/3) , (4.14)

whit a prediction of the 7th coefficient has now a relative error of 10% and pretty stable

position of the pole closest to the origin: −0.8248. The Borel integral is again well predicted:

0.1394 + 0.0048i.
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Figure 5. Results for different Padé sequences in a scheme with C = −5/3. The scales are the

same as in figure 3 to facilitate the comparison. (a) Relative error of the first forecast coefficient of

the Adler function. (b) Results for the Borel sum, eq. (2.10).

For the next element in the sequence, P 4
3 (u), the prediction of the 9th coefficient has an

error of mere 0.19%, about two orders of magnitude better than in the MS. Interestingly,

for the first time, this PA has two poles close to u = −1, one at −1.1312 and a second at

−0.9385 which mimics the fact that the leading UV pole is, actually, a double pole. It also

has a pole at 1.788, rather close to the location of the first IR pole, which lies at u = 2.

Finally, its Borel integral is also almost on top of the true one: 0.1476± 0.0084 i, the real

part is off by only 0.3%.

Again, this excellent convergence pattern is not particular for this sequence. In fig-

ure 5a we show the relative error of the first predicted coefficient using the same four

sequences of figure 3a. The comparison with the results in the MS clearly shows the ad-

vantage of using less perturbative schemes. For instance, the results for PN+1
N for N = 1

are as good as those of the MS with N = 3, but require four parameters less. The results

for the scheme-independent Borel sum predicted by these Padé sequences follow suit and

are also significantly better than in the MS, as figure 5b shows. We should remark that for

most of the Padés the results are even better if C is lowered below −5/3.13 This means

that the improvement in the results should not be directly attributed to the cancellation

of the exponential term but rather to the value of the argument of that exponential. It

is well-known [26–28] that the pole positions of diagonal and near-diagonal PA to an ex-

ponential function share three characteristics: the location corresponds with the sign of

the exponential argument (positive argument, positive location in the complex plane with

positive real part, and vice-versa), as soon as the PA order increases, the poles move further

away from the origin, and finally for a given PA, the position of its poles is located within

an area defined by its “order star” (cf. refs. [26–28] for further definitions). These implies

13For P 2
1 , e.g., C = −2 provides an excellent description of the Adler function up to order 9 with only 4

parameters. However, other negative values of C are somewhat arbitrary and the results must be checked

for stability.
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c5,1 c6,1 c7,1 c8,1 c9,1

large-β0 exact 787.8 −1991 9.857× 104 −1.078× 106 2.775× 107

P 2
1 (MS) 52.33 137.9 4.358× 102 1.605× 103 2.186× 104

P 2
1 (C = −5/3) 600.5 −2958.0 7.022× 104 −1.134× 106 2.382× 107

P 1
2 (MS) 1770.1 −8123.9 61.277× 104 −9.857× 106 4.665× 108

P 1
2 (C = −5/3) 1205.3 −1722.4 26.980× 104 −2.024× 106 1.234× 108

P 3
2 (MS) input input 1.257× 105 −1.372× 106 4.566× 107

P 3
2 (C = −5/3) input input 1.311× 105 −9.721× 105 5.123× 107

Table 1. Coefficients of the Adler function in the large-β0 approximation in the MS scheme. The

first row gives the exact values. Darker rows show the results obtained from P 2
1 (u), P 1

2 (u) and P 3
2 (u)

constructed in a scheme with C = −5/3 and later evolved to MS using eq. (4.15). For comparison,

we also display the results obtained through the use of these PAs constructed directly in the MS

(second, fourth and sixth rows).

that as soon as the scheme is less perturbative, the PA poles responsible for the exponential

term accumulate in the UV region further away as the PA order increases, isolating the

rest of the poles coming from the non-exponential term, in particular the dominant UV

double pole. On the contrary, for more perturbative schemes, PA poles will accumulate in

the IR region and shadow the UV pole. From this perspective it is then natural to expect

better convergence with respect to series coefficients and the Borel integral for the less

perturbative schemes. It is apparent as well that the C-scheme analysis sheds light on the

analytical structure of the Adler function in a clear way.

Let us now translate the results obtained in the scheme with C = −5/3 to the MS. The

expansion of eq. (4.8) gives the following perturbative relation between the different schemes

âQ = aQ +
Cβ1

2
a2Q +

(
Cβ1

2

)2

a3Q +

(
Cβ1

2

)3

a4Q + · · · , (4.15)

where on the r.h.s. we have aQ in the MS and on the l.h.s. âQ ≡ aCQ. Applying this per-

turbative relation to an expansion such as eq. (4.12) one is able to reconstruct the MS

result from its counterpart in a scheme with a different C value. Performing this procedure

for the results of P 2
1 (u), P 1

2 (u) and P 3
2 (u) constructed at C = −5/3 leads to much better

predictions of the higher order coefficients, as table 1 confirms. The predictions are far

superior to those obtained when the PA is constructed directly in the MS.

4.1.3 Partial Padé approximants

We have seen that Padé sequences appear to converge rather fast to the Borel transform of

the Adler function, as expected following Pommerenke’s convergence theorem. In realistic

applications, however, where one has only the first four coefficients of the series it may be

necessary to employ a method to accelerate the convergence such as the scheme variation

we discussed previously. In this section we will show that using knowledge about the
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position of the renormalon singularities significantly accelerates the convergence and yields

excellent results even for the lowest approximants. We then consider now partial Padé

approximants (PPAs) as defined in eq. (3.3).

Most of the effort done by the PAs in the previous sections was to locate the double pole

at u = −1, and this had a cost of two series coefficients. It is then to expect that including

the double pole in advanced should allow the approximants to unfold the subdominant

renormalon poles. For the MS scheme, a P2
1,2(u) (imposing the double pole at u = −1),

leads to a prediction of c5,1 which is 60% off, while c5,1 from P1
2,2(u) is 55% off. This

represents a significant improvement with respect to the PAs. Results are much better

for C = −5/3 where the predictions reach precision better than 3% for both. In both

schemes, pole predictions suggest the subdominant renormalons to be located in the IR

region. Using more series coefficients one identifies the u = 2 as the first IR renormalon.

As we have seen, the Borel transform of the Adler function has indeed an IR single pole

at u = 2 and the next step towards improving precision would be to consider a PMN,3(u)

including such pole. In this case, and for the MS scheme, results improve since with a

P2
1,3(u) one gets 30% of relative error on the c5,1 determination, whereas 20% is reached with

the P1
2,3(u). For the C = −5/3 scheme, the result is greatly improved since relative errors

reach up to 1% and 5% respectively. In this scheme, even a Padé-type approximant with a

fixed denominator at (u+1)2(u−2), a PM0,3(u), yields good results. In this sort of sequence,

one can even study the convergence by looking systematically at the c5,1 prediction for

growing M . We find 35%, 7%, and 4% relative error for M = 1, 2, 3 respectively.

Unraveling the sub-subdominant renormalons is now more an art than a science since it

is difficult to decide whether the second UV or the second IR should be considered. The de-

cision comes from exploring systematically the residue of the predicted poles from previous

approximants. We observe that they predict an IR (double) pole at around u = 3 with large

residue. As such, it contributes largely to the series coefficients. The next step will be then

to consider PMN,5(u) including this double pole where the polynomial T5(u) of eq. (3.3) is

constructed such as to reproduce the first five poles of the Borel transformed Adler function

T5(u) = (u+ 1)2(u− 2)(u− 3)2. (4.16)

We can then study near diagonal sequences akin to the ones we discussed in the previous

section, e.g., PN+1
N,5 (u), PNN+1,5(u), or PNN,5(u). It is expected that these sequences should

yield much better results since the perturbative series is dominated at intermediate and

large orders by the poles closest to the origin.

We start with results for the sequence PN+1
N,5 (u) constructing the PPAs in the MS

scheme. The relative error of the coefficient c5,1 obtained from P2
1,5(u) is 12 times smaller

than the one from P 2
1 (u). The four coefficients used to fix the parameters of P2

1,5(u) provide

enough information to obtain a good approximation even after asymptoticity has set in —

the 10th coefficient is predicted with a relative error of only 20%. This reproduction of

the series is achieved by generating a pole at 1.750. Results from P3
2,5(u) are so similar to

the original function that they cannot be distinguished by eye. The approximant P3
2,5 has

a pair of complex poles at 2.854 ± 0.992 i which, again, appear due to the fact that the

meromorphic function being approximated is not of the Stieltjes type.
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The use of the scheme with C = −5/3 accelerates the convergence and now the results

from P2
1,5(u) cannot be visually distinguished from the exact ones (we therefore refrain

from showing them explicitly). Relative errors for the c5,1 are of the order of 0.7% while

for the tenth coefficient it is only about 2%. This excellent convergence is not unique

for the PN+1
N,5 (u) sequence since for the subdiagonal one, PNN+1,5(u), results are basically

indistinguishable. This is so that even a Padé-type sequence PN0,5(u) converges nicely and

the systematic prediction of the series coefficients with increasing power N yields a way to

ascribe a theoretical or systematical error. PN0,5(u) with N = 2, 3 predict 797.8 and 792.3

respectively. Taking the difference among them as a way to estimate the error results into

a prediction 792.3 ± 5.5 which nicely agrees with the true coefficient 787.8. Other results

obtained from these approximants for FOPT and CIPT, as well as the Borel sum are as

impressive as those for the Adler function and we refrain from quoting them explicitly.

At this point, two comments are in order. If, instead of considering double poles for

the second IR pole and the leading UV pole in eq. (4.16), we use simple poles the results

are worsened. The coefficient c5,1 obtained from P2
1,3(u) using T3(u) = (u+1)(u−2)(u−3),

changes from 847.9 to 594.1, to be compared with the exact value 787.8. The reason for this

worsening is simple: fixed poles with wrong exponent forces the approximant to spend series

coefficients to determine the correct exponents, with an associated loss of prediction power.

This fact is nicely illustrated by P2
1,3(u) in the MS, which has (u+1)(u−2)(u−3)(u−3.06)

as denominator, showing clearly that the Padé must reproduce the double-pole nature of

the second IR renormalon. A scheme variation helps again in this issue since P2
1,3(u) for

C = −5/3 has as a denominator (u+ 1.04)(u+ 1)(u− 2)(u− 3), with the extra pole very

close to the first (and dominant) UV pole, emulating its double pole nature.

This shows that simply fixing poles at the correct location but with the wrong multi-

plicity does not represent necessarily an improvement over the situation where the poles

are left free. An intermediate case where only the pole at u = 3 has an incorrect expo-

nent does yield improved results compared to the ordinary Padé approximants. This is

in agreement with the findings of ref. [25] where it was shown that imposing the correct

structure of the first two leading poles is sufficient to achieve a good description of the

large-β0 Adler function. Actually, in the language of Padé approximants employed here,

both the “reference model” and the “alternative model” of ref. [25] can be thought of as a

P6
0,5(u), i.e., with full denominator fixed in advanced.

The main observation that can be drawn here is that having information about the first

two or three renormalon poles is largely sufficient to achieve an excellent reconstruction

of the series even with only four coefficients available (this conclusion is in agreement

with ref. [25]). Notice that even though we use large denominators, we still allow the

approximants to have free poles. This helps them to improve on the convergence as free

poles accommodate in an effective way the rest of the renormalon contributions.

4.1.4 D-log Padé approximants

While information on pole positions yields a clear improvement in the acceleration of

convergence, the precise knowledge on pole positions can be, in realistic situations, scarce.

Moreover, knowing the multiplicity of poles is also important. Additionally, some functions
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present branch point singularities, which may render their approximation by Padés less

effective. As discussed in the Introduction, in such situations, other strategies may be

pursuit. In particular, the D-log Padé approximants of eqs. (3.4) and (3.5) and their

extension in eqs. (3.6) and (3.7) can result optimal.

The original philosophy of the simplest D-log Padé approximant is to perform a PA

not to f(z) but to F (z) = d
dz log[f(z)]. Assuming the original function has a singularity at

z = µ (a pole or a branch cut) the evaluation of the outcome at z = µ provides a way to

extract, from the series coefficients, the multiplicity γ of the singularity at µ. Here, if γ is

an integer or not becomes irrelevant which makes the D-log Padés particularly interesting

to approximate functions with branch cuts. Of course, by unfolding the procedure one

obtains the non-rational approximant DlogMN (z) of eq. (3.5) to the function f(z) which,

after reexpansion, returns the series coefficients.

The simplest D-log approximant for the Borel transform of the Adler function,

Dlog10(u), requires c2,1 and c3,1 and reads:

Dlog10(u) = f(0)e0.69u+1.31u2 . (4.17)

After reexpanding, Dlog10(u) predicts both c4,1 and higher coefficients and it does it

rather accurately, taking into account the little information that was used. Still, no sign-

alternation is observed. Going up to Dlog2
0(u), the prediction improves a lot and not only

the sign-alternation is now reproduced, but also the relative error for the c5,1 is around

40% (better for the next c6,1 which is just 10% off). At the same order, a Dlog1
1(u) yields

even better results, being only 16% off for c5,1, with the correct sign-alternation and a good

prediction for c6,1 as well, as can be seen in figure 6. Using this simplest scenario, with

minimum information, the Dlog1
1(u) is the approximant that better predicts c5,1 among the

approximants presented in this work so far.

Information on known singularities can be straightforwardly used with the partial D-log

Padés, DlogMN (z;µ), of eq. (3.6). The singularity closest to the origin in the Borel transform

Adler function is the UV pole at u = −1. We then consider a PA to (1 + u) d
du log[f(u)]

instead, and construct the respective Dlog approximant to f(u). Even with the simplest

Dlog10(u;−1) the sign-alternation of the series coefficient is recovered, a clear indication of

an improvement on the series’ reconstruction. The unfolded approximant reads

Dlog10(u;−1) = f(0)
e3.32u

(1 + u)2.6
(4.18)

which has a branch point at u = −1 but with a good prediction on the actual multiplicity

of the first UV renormalon (which is a double pole in large-β0).

For the next order, two choices can be considered, the diagonal Dlog11(u;−1) and the

Dlog20(u;−1). As it is clear from the definition in eq. (3.6), F (z) is to a good approximation,

a rational function. Then, the diagonal Dlog11(u;−1) is the optimal choice, specially if one

is heading towards determining the multiplicity γ. In this case, the unfolded approximant

reads

Dlog11(u;−1) =
881379.40

(4.02− u)10.67(1 + u)1.96
, (4.19)
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Figure 6. Results from the use of the approximants Dlog1
1(u) and Dlog1

1(u;−1) in large-β0. (a)

Perturbative expansion of the Adler function. (b) δ(0) in FOPT, and (c) δ(0) in CIPT.

and, upon expansion, predicts the series coefficients for the Borel transform with un-

precedented precision for coefficients up to c10,1, with relative errors amounting to mere

0.8%, 6%, 2%, 3%, 2%, 1%, 1% for the coefficients c4,1 to c10,1 in that order. The excellent

results for this approximant can also be seen in figure 6. A key point in this extraordinary

success is the excellent reproduction with very little information of the multiplicity of the

first UV pole, as can be seen by the fact that γ = 1.96 for the µ = −1 in eq. (4.19), while

the other branch cut effectively emulates the tower of IR poles in the Borel transform. The

result is so good that including c4,1 to construct the Dlog12(u;−1) yields only a marginal

improvement (predicting c5,1 with a 5% of relative error, for example).

It is then clear the D-log Padés are able to go much beyond ordinary PAs in reproducing

the main analytical features of the Borel transformed Adler function in large-β0. The

success of this approximants can be understood by examining the function d
dz log[f(z)].

Let us write the explicit result for the first leading poles, obtained from considering only

the first term in the sum of eq. (22),

F (u) =
d

du
log
(
B[D̂](u)

)
= C +

5

3
− 2

1 + u
+

2

2− u
+

2

3− u
+ · · · (4.20)
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This shows that in the D-log Padés the function being approximated is strictly a rational

function, with simple poles. The exponential function present in the Borel transform

disappears and the approximants do not have to reproduce it. In a sense, the D-logs

strategy realizes a situation similar to that of a scheme with C = −5/3 which cancels the

exponential of the Borel transform but with the additional benefit that F (z) has only simple

poles. Their success is, therefore, not so surprising. We can also expect that sequences of

PAs that depart significantly from the diagonal will have a slower convergence to F (u) and

will, accordingly, lead to a worse approximation of B[D̂](u).

Finally, the inclusion of information about the position of more than one pole can be

done in the context of D-log Padés by using a partial Padé approximant to F (z), with

as many poles fixed as one desires. Using in the denominator of such a PPA T7(u) =

(2−u)(3−u)2(1 +u)2(3 +u)2, and with c2,1, c3,1 and c4,1 as input one predicts the series’s

coefficients with precision better than 0.1%.

In conclusion, the D-log Padés are shown to be an effective way to improve the conver-

gence of the approximation and gain information about higher orders. In some sense, they

are better than the scheme transformations since they do not rely on a specific value of C.

We turn now to the use of the techniques described here for the function δ
(0)
FO in large-β0,

before applying them to full QCD.

4.2 Padé approximants to δ(0)

We learn from the application of Padé approximants to the Borel transform of the Adler

function that one of the difficulties is the disentanglement of the leading renormalons. The

success of the use of scheme variations lies partially in this fact, since the method allows for

an enhancement of the leading UV pole with respect to the leading IR pole at u = 2. The

Borel transform of δ(0), eq. (4.2), on the other hand, does not have the pole at u = 2. The

leading UV renormalon is therefore more isolated from the IR ones. It can be expected that

the use of Padé approximants directly to this Borel transform should yield better and more

stable results than in the case of the Adler function. In this section we exploit this route.

Since general properties of the Padé approximants were discussed in the previous section,

we will focus here on the practical problem of forecasting the unknown coefficients given

that only the first four are known exactly — in order to simulate the case of real QCD.

Let us note that a rational approximant to δ(0) contains enough information to allow

for a full reconstruction of the Adler function. The coefficients cn,1 can easily be read off

from the FOPT expansion of δ(0) as

δ
(0)
FO,Lβ(aQ) = c1,1 aQ + (3.563 c1,1 + c2,1) a

2
Q + (1.978 c1,1 + 7.125 c2,1 + c3,1) a

3
Q

+ (−45.31 c1,1 + 5.934 c2,1 + 10.69 c3,1 + c4,1) a
4
Q + · · · (4.21)

Additionally, in large-β0, eq. (4.2) can be used to extract the Borel transformed Adler

function from that of δ(0).

We start here by applying Padé approximants directly to the series in αs/π, given by

eq. (4.4). As we have observed, the FOPT series in large-β0 is rather well behaved and, at

intermediate orders, its asymptotic nature is not visible yet. This is mapped into a simpler

– 25 –



J
H
E
P
0
8
(
2
0
1
8
)
0
7
5

c4,1 c5,1 c6,1 c7,1 c8,1 c9,1

Large-β0 (exact) 24.83 787.8 −1991 9.857× 104 −1.078× 106 2.775× 107

P 2
1 (aQ) 29.95 723.7 −703.4 7.405× 104 −5.871× 105 1.649× 107

P 1
2 (aQ) 28.66 728.2 −874.3 7.554× 104 −6.224× 105 1.703× 107

P 3
1 (aQ) input 740.0 −1363 7.956× 104 −7.211× 105 1.851× 107

P 2
2 (aQ) input 749.3 −1444 8.169× 104 −7.514× 105 1.917× 107

P 1
3 (aQ) input 743.6 −1393 8.035× 104 −7.321× 105 1.875× 107

Table 2. Adler function coefficients extracted from PAs PNM (aQ) to the FOPT αs/π expansion of

δ(0) in the large-β0 limit.

analytic structure in the Borel plane. It is therefore likely that in this case the approxima-

tion of the series by Padé approximants in aQ will lead to a better description than in the

case of the Adler function. In table 2, we display the Adler function coefficients that are ob-

tained from the application of Padé approximants directly to the FOPT expansion of δ(0).

To simulate the situation of real QCD, in the first two rows, we attempt to forecast c4,1,

while in the last three we use c4,1 as input. The main observation is that the results for the

coefficients that are not used as input are quite good and stable. The sign alternation of the

series is correctly predicted by all the Padés and good consistency between the results using

three and four coefficients as input is achieved. The results are therefore quite remarkable.

Let us examine one of the PAs in more detail. For P 2
1 , which uses only the first three

coefficients as input, we find

P 2
1 (aQ) =

0.1779 aQ − 0.0895 a2Q
0.1779− aQ

. (4.22)

First, we see that the series obtained from such a Padé is convergent (since aτ ≈ 0.1) and

does not reproduce the factorial growth of the coefficients. The pole that appears around

aQ ≈ 0.18 is, however, rather stable — it does not seem to be transient in nature and is

present in all the approximants to δ
(0)
FO,Lβ . It may be worth noting that the pole is in the

IR and corresponds to a scale of ∼ 650 MeV. It may, therefore, be related to IR physics

but we refrain from further speculation regarding the nature of this pole. An estimate

for the sum of the series can be obtained simply using aτ = 0.316/π in eq. (4.22) to give

P 2
1 (aτ ) = 0.2198. This result is also in very good agreement with the value obtained from

the Borel integral of the exact large-β0 result, which gives 0.2208 ± 0.0039. Even better

results can be obtained from the PAs that use four coefficients as input, as shown in the

last three rows of table 2.

We now turn to PAs to the Borel transformed δ(0). The results are improved when

compared with PA to B[D̂], although the improvement is far from spectacular. For c5,1 we

find the values 263.9, 603.6, and 1024 from P 1
2 , P 0

3 , and P 2
1 respectively, to be compared

with 52.33, 560.9, and 1770.1 from the same PAs to B[D̂]. Clearly, one must resort to

the other methods discussed in the previous section in order to accelerate the convergence.
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Again, D-Log Padés turn out to be the optimal way to improve the convergence while

remaining completely model independent. Their success can be understood from the a

study of the function F (u) = d
du log

(
B[δ(0)](u)

)
, as is in the case of the Adler function.

Here we find, retaining only the first term in the sum of eq. (4.1),

F (u) =
d

du
log
(
B[δ(0)](u)

)
= C +

5

3
+ π cot(πu)− 2

1 + u
+

3

3− u
+

1

4− u
+

1

1− u
+

1

2− u
− 1

u
+ · · · (4.23)

The leading analytic structure of F (u) is now even simpler than for the Adler function. The

poles at u = 0, u = 1, and u = 2 are exactly cancelled by the presence of π cot(πu) leaving

only a leading UV pole at u = −1, an IR pole at u = 3 and a subleading IR pole at u = 4.14

It is therefore expected that the D-log Padés should perform even better in the present case.

We present results for the D-Log Padés applied to B[δ(0)] in table 3. These results also

represent an improvement when compared to those of section 4.1.4. The predictions for c5,1
have a much smaller relative error, a factor of 2 to 5 times smaller than those obtained from

the PAs to the Borel transformed Adler function. The sign alternation is well reproduced

by the Padés with four coefficients used as input and their Borel integral provide excellent

estimates for the true value of the series (we find, e.g., 0.2199 from DLog1
1(u)). However,

one must note that the results from the D-Log Padés applied to B[δ(0)] are less good than

those of table 2. For example, the coefficient c4,1 is wrong by a factor of about two while in

table 2 it is only a few percent off. Nevertheless, the description of the Borel transformed

δ(0) by D-Log Padés has the advantage that the factorial growth of the coefficients is

reproduced and an asymptotic series is obtained, in line with the exact result.

We have checked that the results discussed in this section can be further improved

by using information about the renormalons. For example, imposing the existence of the

leading UV pole at u = −1 through the use of Dlog11(u;−1) leads to an almost exact

reproduction of the series. We prefer, however, to remain as model independent as possible

and we chose to focus here on the results obtained from the most model independent

methods (PAs and D-log Padés). By using δ(0) and its Borel transformed, these model-

independent methods lead to results as good as those obtained from the Adler function

imposing information on the renormalons.

We close this section with a visual account of the results discussed here. In figure 7a,

we display the δ(0) FOPT and CIPT expansions obtained from the approximant P 2
2 (aQ),

for which we show the coefficients up to c9,1 in the 5th row of table 2. The main observation

is that, up to the 9th order, the result is strikingly similar to the exact ones (see, e.g., the

black lines in figures 6b and 6c). However, the FOPT series thus obtained is convergent,

and after the 8th order its result stabilizes around the sum of the series, which cannot

happen in the exact results. This does not prevent the description from being excellent

at intermediate orders, since the true value of the convergent series is very similar to the

central value of the Borel integral of the exact results. For CIPT, similar observations

14To get a non-vanishing residue for the pole at u = 4 one must add the second term in the sum of

eq. (4.1).
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c4,1 c5,1 c6,1 c7,1 c8,1 c9,1

Large-β0 (exact) 24.83 787.8 −1991 9.857× 104 −1.078× 106 2.775× 107

Dlog10(u) 41.84 756.1 848.6 7.453× 104 −3.284× 105 1.498× 107

Dlog01(u) 44.43 776.1 1294 7.778× 104 −2.502× 105 1.538× 107

Dlog20(u) input 650.2 −1824 6.319× 104 −7.470× 105 1.545× 107

Dlog11(u) input 818.7 −2738 1.189× 105 −1.663× 106 4.495× 107

Dlog02(u) input 594.9 −1974 5.560× 104 −6.796× 105 1.432× 107

Table 3. Adler function coefficients extracted from D-Log Padé approximants, DlogNM (u), con-

structed to B[δ(0)](u) in the large-β0 limit.
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(a) δ(0) from P 2
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Figure 7. Perturbative expansion of δ(0) in FOPT and CIPT obtained from (a) P 2
2 (aQ) (5th row

of table 2) and (b) Dlog1
1(u) (5th row of table 3).

hold and up the 9th order the result is almost indistinguishable from the exact ones. In

particular, the fact that FOPT is the best approximation in large-β0 is well reproduced. In

figure 7b, we display results for Dlog1
1(u), for which the coefficients are given in the 5th row

of table 3. Again, visually, the results are almost identical to the exact ones. Now, both

series are divergent, as is the case in the exact results, and this feature shows up after the

9th order, although the divergence, here, is more pronounced than in the exact large-β0
case. In both cases, however, the approximants provide a good estimate for the first few

unknown coefficients and give an excellent account of the series even though no information

about the renormalons was used, in contrast with some of the results of figure 6b and 6c).

4.3 Summary and discussion

Here we summarize the main conclusions that can be drawn from the application of Padé

theory to the results in the large-β0 limit of QCD.

The application of the Padé approximants to the MS Borel transformed Adler function

in the large-β0 limit displays convergence. With six or seven coefficients one is able to re-

produce very well all the essential aspects of the original series: its higher order coefficients,
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its Borel sum, and even the position of the dominant renormalon poles. There are, however,

outliers and it can happen that the next Padé in a given sequence does not make the results

better. The existence of these outliers is well understood in the theory of Padés and we have

been able to show for specific examples why this happens. All in all, convergence is always

observed once an even larger number of parameters is added. Results using only four coef-

ficients of the series to construct the Padés — which corresponds to the number of available

coefficients in QCD — are, however, far from spectacular. In the absence of more coeffi-

cients, one must exploit strategies to improve the approximation of the original function.

In the case of the large-β0, we have shown that using less perturbative schemes, which

with our conventions corresponds to C < 0, one is able to construct better approximants

with the same number of parameters. This improvement is due to the fact that the Borel

transform in these schemes becomes largely dominated by the leading UV pole: one ob-

serves the sign alternation earlier and the Padés can easily reproduce the main features

of the analytical structure of the series. The specific choice C = −5/3 has the additional

advantage of removing the term eC+5/3 from the Borel transform, which makes it a strict

rational function. As a by-product, we are able to devise a strategy to reveal the effects

of the dominant UV pole. Constructing the series for C < 0 the sign-alternation of the

coefficients sets in much earlier, already from the second coefficient.

Next, we have seen that the use of partial Padé approximants, where the available

information about the renormalon poles can be exploited, leads to significant improvements.

However, it is important to use this information with care, since imposing the existence

of a pole but with wrong multiplicity forces the Padé to “spend” series coefficients fixing

the analytic structure of the given pole. If the information of the leading UV pole is used

correctly, this leads to a significant improvement on the results. Finally, we find that

imposing the structure of the first two leading renormalons leads to an almost perfect

reproduction of the Adler function. This is in line with the renormalon models of ref. [25].

We then investigated the use of D-log Padés. These are an interesting alternative

having in mind applications to QCD, since they do not require that the function be mero-

morphic. Their application in large-β0 was very successful and we can safely conclude that,

given the limited information available, they are the best way to accelerate convergence

of the procedure. We highlight the use of partial D-log Padés where only the existence

of first UV pole is used as input. The results of such partial D-logs are truly impressive

and lead to an almost exact reproduction of the Adler function in large-β0 with an almost

model-independent method. We were able to explain their success in terms of the analytic

structure of the Borel transformed Adler function.

We then turned to approximants constructed to δ(0). First, we have shown that PAs

to the FOPT series in αs/π, contrary to the case of the Adler function, do lead to a very

good reconstruction of the series at intermediate orders. In the case of δ(0), since the FOPT

series is rather well behaved and regular up to the 10th order (with terms that are consis-

tently smaller than their predecessor) the approximation obtained from these Padés is very

reasonable. We have then shown that good results can also be obtained from D-log Padé

approximants constructed to B[δ(0)]. They are completely model independent and have

the advantage that the factorial growth of the coefficients is automatically implemented.
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Both methods lead to good predictions for the true value of the series and are sufficient to

conclude that FOPT is the best prescription in large-β0. Again, the success of the method

can be explained by the simpler analytic structure of the Borel transformed δ(0) since it

does not have the pole at u = 2 and all other poles become simple (with the exception of

the ones at u = 3 and u = 4).

The systematic study performed in the large-β0 limit leads to strategies for impressive

determinations of the higher order coefficients and the Borel sum of the Adler function and

δ(0) series. We were able to find methods to unravel dominant and subdominant poles, as

well as to reorganize the available information in order to optimize the approximation by

PAs and its variants. With these strategies at hand we can now perform a similar analysis

in full QCD and present our final results.

5 The QCD case

In this section we will apply the techniques developed and tested in large-β0 to the real

case of QCD. Let us first remind what is known in this case. In perturbation theory, the

Adler function expansion is known to five loops, hence to order α4
s [21]. We would like to

obtain predictions for the coefficients c5,1 and higher. The first four coefficients of the Adler

function in QCD, displayed in eq. (2.8), already show a significant deviation from the large-

β0 results, although the coefficients of the δ(0) FOPT expansion, eq. (2.14), are closer to the

their large-β0 counterparts. The differences between full QCD and the large-β0 limit also

show up in the Borel transform. In QCD, we know that the Borel transform is no longer a

meromorfic function. Although the renormalon singularities remain at the same position,

anomalous dimensions of the operators and higher-order β-function coefficients now change

their nature from poles to branch points. What is more, at every branch point there are

confluent singularities [18, 24]. Experience shows that Padé approximants can be safely

employed to approximate functions with branch cuts, but we no longer have convergence

theorems to exploit, without further knowledge on the properties of these branch cuts.

Let us start with the simplest approximants: PAs constructed directly to the αs/π

expansion of the Adler function. We have discussed that in large-β0 this was not the optimal

strategy. Given that we have now only the first four coefficients, we start by building the

PAs that would “postdict” the last known term of the series, c4,1. From the approximants

P 2
1 (aQ) and P 1

2 (aQ) we obtain the five-loop coefficients with 51% and 67% relative error,

respectively. The coefficient c5,1 is predicted to have quite low values 96.2 and 50.5. Our

experience from large-β0 already signals that this strategy is not optimal. If we construct

approximants that now use c4,1 as input we extract c5,1 coefficients that can differ from

the previously obtained by a factor of 9, indicating that the procedure is very unstable.

We then turn to the approximation of the Borel transformed Adler function, which

proved to be more stable in large-β0. Again, we first try to obtain a “postdiction” of c4,1,

using P 1
1 (u) and P 0

2 (u). The value of c4,1 thus obtained has a relative error of about 26%,

which is an improvement with respect to the previous method, and leads to predictions of

c5,1 ∼ 280. However, when we construct approximants that include the true value of c4,1
as input, P 2

1 , P 1
2 , P 0

3 , there is no sign of stability. The predictions for c5,1 and higher order
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coefficients change substantially which, from our experience in large-β0, signals that the

approximants are not optimal. That only four coefficients is not enough for the usual Padé

approximants to perform a stable prediction of the higher orders comes as no surprise,

since this is what happens in large-β0 even though the analytical structure of the Borel

transform is simpler there. We must again resort to methods for the acceleration of the

convergence of the procedure.

We start by investigating other renormalization schemes. Scheme variations in full

QCD can also be performed using a single parameter C, through the generalization of

ref. [38] (to which we refer for further details). Based on the lessons from large-β0 we

rewrite the Adler function series in schemes with negative C, hence with larger values

of the coupling. As an example, let us take again the value C = −5/3. The first four

coefficients of the Adler function are now

D̂(C=−5/3)(âQ) = âQ − 2.110 â2Q + 2.779 â3Q + 19.87 â4Q + · · · (5.1)

There are marked differences in the coefficients when compared with eq. (4.12). In con-

trast to the large-β0 case, the series in QCD with negative C = −5/3 does not display a

systematic sign alternation. It seems, therefore, that the UV singularity is less dominant

than in large-β0 and the pattern of signs indicate a more complicated interplay between

the poles. Possibly, the IR poles give a larger contribution to the QCD series relatively to

the large-β0 case. This is in line with the results of the models of refs. [18, 25]. In these

models, the IR poles give larger contributions at intermediate orders and the systematic

sign alternation sets in only at the 11th order. Since we are not able to unequivocally sup-

press the contribution of the IR poles, the strategy of using scheme variations to optimize

the use of Padé approximants does not turn out optimal in QCD (although it corroborates,

in part, the results of refs. [18, 25]).

We resort then to the use of D-log Padés to obtain approximants to B[D̂](u). Their use

in full QCD is also well motivated, since they are designed for functions that have branch

cuts. The use of D-log Padés to postdict c4,1 leads to values with relative error of 54%

[Dlog10(u)] and 21% [Dlog01(u)] which again signals that the procedure is not optimal. The

use of an additional coefficient as input does not change this picture significantly, since it

leads to unstable results for higher-order coefficients, which is understandable again due to

the presence of confluent singularities.

Based on our experience from the large-β0 limit, one is the led to conclude that model-

independent approximants constructed to the Borel transformed Adler function are not

robust enough in QCD with only the first four coefficients available. In large-β0 the knowl-

edge about renormalon singularities could be used to optimize the predictions. Here, how-

ever, we face additional difficulties. First, the available knowledge is more scarce. Only the

first few renormalons (the leading UV, and the two leading IR) have had their branch cut

structure investigated in detail [18, 59]. Second, the fact that now the renormalons become

confluent singularities renders much more difficult the use of the available knowledge to

devise optimized approximants. And, finally, it would be desirable to remain as model inde-

pendent as possible. We therefore turn directly to the most successful model-independent

strategy devised in large-β0: the use of the FOPT series for δ(0).
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c4,1 c5,1 c6,1 c7,1 c8,1 c9,1 Padé sum

P 2
1 55.62 276.2 3865 1.952× 104 4.288× 105 1.289× 106 0.2080

P 1
2 55.53 276.5 3855 1.959× 104 4.272× 105 1.307× 106 0.2079

P 3
1 input 304.7 3171 2.442× 104 3.149× 105 2.633× 106 0.2053

P 1
3 input 301.3 3189 2.391× 104 3.193× 105 2.521× 106 0.2051

Table 4. QCD Adler function coefficients from PAs constructed to the αs expansion of δ
(0)
FO.

In large-β0 approximants constructed to δ
(0)
FO and B[δ(0)] resulted optimal. The pertur-

bative series for δ
(0)
FO in large-β0 and in QCD have rather similar coefficients. This means

that the regularity of the series is preserved in QCD, which suggests that it can be well

approximated by Padé approximants constructed directly to the series in αs/π. Further-

more, although eq. (4.2) is strictly valid only in large-β0, because it relies on the one-loop

running of the coupling, modifications to this result would be solely due to higher-orders in

the αs evolution. We can therefore expect that a suppression of the leading IR singularity

at u = 2, as well as a suppression of all the other renormalons except for the ones at u = 3

and u = 4, would survive in full QCD and render this Borel transform more amenable to

approximation by rational functions.

We start with Padé approximants applied to the αs/π expansion of δ
(0)
FO. As before, we

begin with a post-diction of c4,1 using P 1
2 (aQ) and P 2

1 (aQ). The results for six higher-order

coefficients obtained from these approximants are shown in table 4. The relative error from

the central values of c4,1 is now ∼ 13%. This is quite remarkable when put into perspective

since before the true value of c4,1 was computed, a forecast of this coefficient using other

methods and including additional information (taking into account known terms of order

α4
sN

3
f and α4

sN
2
f ) yielded c4,1 = 27 ± 16 [56–58], a central value which was 45% off. This

gives an idea of how powerful optimal PAs can be.

Inspecting the Padé approximants of the first two rows of table 4 they reveal a pole

around aQ = 0.1973, of similar nature to the one found in large-β0. Additionally, P 1
2

has a pole far from the origin at aQ = 7.25. This makes their expansion around aQ = 0

similar and their predictions turn out to be almost degenerate. Therefore, a stronger test for

stability comes with the use of c4,1 as input, to obtain c5,1 and higher. One could construct,

for example, the approximant P 2
2 . However, this approximant has a defect, in the sense

discussed in section 4.1.1, a pole and a zero that cancel almost exactly, effectively reducing

the order of the approximant. Although its results are not completely inconsistent (e.g.,

c5,1 turns out to be 242) we have shown that it is wise to avoid approximants of this type

and we will discard P 2
2 . We turn then to the results obtained for P 3

1 and P 1
3 which are also

shown in table 4. Now, the forecasts of c5,1 are 304.7 and 301.3 respectively. We can note a

striking stability of the results for c5,1 and c6,1; even c7,1 and c8,1 are remarkably similar in

all of the four approximants considered. The use of the PAs to sum the asymptotic series

also leads to consistent result in all cases, as can be seen in the last column of table 4.

Our experience from large-β0 indicates that this stability and the good prediction of c4,1
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c4,1 c5,1 c6,1 c7,1 c8,1 c9,1 Borel sum

DLog10 51.90 272.6 3530 1.939× 104 3.816× 105 1.439× 106 0.2050

DLog01 52.08 273.7 3548 1.953× 104 3.840× 105 1.456× 106 0.2052

DLog20 input 254.1 3243 1.725× 104 3.447× 105 1.187× 106 0.2012

DLog02 input 256.4 3271 1.769× 104 3.493× 105 1.258× 106 0.2019

Table 5. QCD Adler function coefficients from D-Log Padé approximants formed to B[δ(0)](u).

strongly corroborate the robustness of the results. We have checked that the use of D-log

Padé approximants is also very successful. We are, therefore, in a position to conclude that

using PAs to δ
(0)
FO in QCD is at least as stable as in large-β0. We should then investigate

the approximants constructed to its Borel transformed.

As in the previous section, the quality of the forecast of c4,1 as well as stability argu-

ments lead us to conclude that the D-log Padés are the optimal approximants to B[δ(0)](u).

Higher-order coefficients obtained from D-log Padés constructed to B[δ(0)](u) in QCD are

shown in table 5. Now, the postdiction of the last known coefficient, c4,1, has a relative

error of only about ∼ 6%, about half of what was obtained with Padés to the series in

αs. Also, the stability of the results when using the exact value of c4,1 as input is quite

remarkable. The results for c5,1 and c6,1 are rather stable not only among the D-log Padés

of table 5 but also when compared with the results of table 4. The approximant, Dlog11,

not shown in table 5, leads to slightly lower values for the coefficients (e.g., c5,1 = 237),

but even these apparent instability can again be understood in terms of a partial cancela-

tion between a pole and a zero present in the P 1
1 used for its construction. We, therefore,

consistently discard this approximant. It is also interesting to observe that all the D-log

Padés of table 5 predict that the sign alternation of the series starts at order 11. This is

in agreement with the speculation we advanced, based on scheme variations, that the UV

singularity in QCD is less prominent which should postpone the sign alternation with re-

spect to large-β0 where it sets in from c6,1 on. Finally, the Borel sum of the series obtained

from these D-log Padés is also very consistent (last column of table 5).

The picture that emerges from the results of this section is that the use of δ
(0)
FO and

its Borel transform lead to the best model-independent approximants in QCD — as is the

case in large-β0. The quality of the predictions of c4,1 as well as the stability of the results

among different approximants signal that we have managed to obtain a robust description

of δ(0) and of the Adler function at higher orders. In the next section, we extract our final

results and perform error estimates.

5.1 Final results and error estimates

In producing our final results, we will try to remain as conservative as possible. We extract

our final estimates for the higher-order coefficients from the eight approximants of tables 4

and 5 including, thus, those that have only three coefficients as input parameters. By doing

so, we take advantage of Padés that belong to different sequences and can obtain a more
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c5,1 c6,1 c7,1 c8,1

277± 51 3460± 690 (2.02± 0.72)× 104 (3.7± 1.1)× 105

c9,1 c10,1 c11,1 c12,1

(1.6± 1.4)× 106 (6.6± 3.2)× 107 (−5± 57)× 107 (2.1± 1.5)× 1010

Table 6. Final values for the QCD Adler function coefficients obtained from PAs to δ
(0)
FO.

reliable error estimate for our final coefficients. Since one of the most striking features of

these results is their stability, we will not try to favour one approximant over another, even

though one could try to inspect their analytic structure in detail with this goal in mind.

Our final estimate of the coefficients and of the true value of δ(0) is obtained as the average

of the eight results of tables 4 and 5. To these averages we add an error equal to the

maximum spread found between the coefficients obtained from two different approximants.

This error should certainly not be interpreted in a statistical sense; it gives an interval

where the value of the coefficient is expected to lie.

This procedure applied to the six-loop coefficient, c5,1, leads to

c5,1 = 277± 51, (5.2)

which largely covers all the results obtained from our optimal approximants. Therefore,

in a sense, our error estimate could even be considered as too conservative — even if

much smaller than other estimates in the literature. For example, in ref. [18] the estimate

c5,1 = 283 ± 142 is used, while in ref. [56] one finds c5,1 = 145 ± 100 (using only partial

information about the five-loop coefficient). The value obtained from the principle of

Fastest Apparent Convergence (FAC) in ref. [21] is c5,1 = 275, remarkably close to our

final central value, given in eq. (5.2).

On the basis of what we know about the series coefficients, it seems extremely unlikely

that the six-loop coefficient would not be within these bounds.

Results for coefficients c6,1 and higher are given in table 6. The final values for the

Adler function coefficients are extracted with reasonable errors up to c10,1. One should

remark that due to the αs suppression at these higher orders, an error that seems large in

the coefficient does not translate into a very large uncertainty in the sum of the series. The

situation changes only for c11,1. For this coefficient, six of the PAs of tables 4 and 5 predict

that the sign alternation sets in. However, two of the approximants do not, which leads to

the huge error. Therefore, we find some indication that the sign alternation of the Adler

function coefficients sets in at the eleventh order (in agreement with [18]). This agrees with

our expectation that the UV singularity in QCD should be less dominant than in large-β0.

This instability signals that our results cease to be fully reliable at the 11th order.

We apply the same procedure described above to obtain an estimate for the true

value of the δ(0) using the results in the last columns of tables 4 and 5. Using αs(m
2
τ ) =

0.316± 0.010 [53], this leads to

δ(0) = 0.2050± 0.0067± 0.0130, (5.3)

– 34 –



J
H
E
P
0
8
(
2
0
1
8
)
0
7
5

where the first error is the estimate from the spread of the PAs and the second error is due

to the uncertainty in αs.

This result can be compared with the Borel model of ref. [18] which gives (with

αs(m
2
τ ) = 0.316± 0.010)

δ
(0)
BM = 0.2047± 0.0029± 0.0130 (from ref. [18]), (5.4)

and with the estimate based on the optimal C-scheme

δ
(0)
C = 0.2047± 0.0034± 0.0133 (from ref. [38]). (5.5)

In eq. (5.5) the first uncertainty is due to the truncation of the asymptotic series, while

in eq. (5.4) it arises from variations of the input value of the coefficient c5,1 within their

assumptions. In all cases the second uncertainty stems from αs. The striking similarity of

these three results is very remarkable, since they are obtained from independent methods.

In our case, the known series coefficients are the only input used to construct PAs and

predict the behaviour of the series at higher orders. In the case of ref. [18], the Adler func-

tion is modelled using the available knowledge about the leading renormalon singularities,

while the result from the C-scheme is based on a renormalization scheme choice which uses

optimally the available information in the spirit of an asymptotic series. The latter can

also be considered as model independent since no assumption about higher orders or the

renormalon structure of the Adler function is made. More recently, two other analyses ap-

peared in which the value of δ(0) is obtained. In ref. [60], using the Principle of Maximum

Conformality (PMC) the result

δ
(0)
PMC = 0.2035± 0.0030± 0.0123 (from ref. [60]) (5.6)

is obtained, where the first error is again from higher orders and the second from αs. This

result is also in very good agreement with ours. In ref. [61], through the use C-scheme

variations together with an optimal conformal mapping (CM) that relies on the location

of the leading renormalons the value

δ
(0)
CM = 0.2018± 0.0211± 0.0123 (from ref. [61]) (5.7)

is found, in which the first uncertainty is from the truncation of the asymptotic series and

the second from the strong coupling. This result is also nicely compatible with the others

quoted in this section.

With the coefficients of table 6 we are finally in a position to plot, in figure 8, the per-

turbative expansions of δ(0) and compare them with the true value of the series obtained

from eq. (5.3). The bands in the perturbative expansions of figure 8 represent the uncer-

tainty from the series coefficients, given in table 6, while the band in the Borel sum of the

series is the first error eq. (5.3). The uncertainties we are able to obtain from the optimal

Padé approximants allow us to conclude that FOPT is the favored renormalization-scale

setting procedure in the case of full QCD. The CIPT series, even though it looks more stable

around the fourth order, does not approach well the central value of the sum of the series.

The recommendation that FOPT is the best procedure in QCD was advocated in ref. [18]

in the renormalon-model context. Here it is reobtained in a model-independent way.
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Figure 8. Final results for δ(0) in QCD using the coefficients of table 6 and the result of eq. (5.3).

The bands in the perturbative expansions reflect the uncertainty in the coefficients while the band

in the sum of the series is obtained from the spread of the values from individual PAs (last columns

of tables 4 and 5). We use αs(m
2
τ ) = 0.316.

6 Conclusions

In this work we have performed a systematic study of the Adler function and of the per-

turbative QCD correction to the hadronic τ decay width, δ(0), using Padé approximants

and its variants. We have used the large-β0 limit of QCD, where the series are known

to all orders in αs, as a laboratory to test our strategy. We were able to show that the

method always works provided a large enough number of coefficients is known. Since in

QCD only the first four have been calculated exactly, we have devised strategies with the

aim of accelerating the convergence of the approximants. The success of these strategies

can be understood in terms of the analytic structure of the Borel transformed series. The

model independent acceleration methods simplify this structure either by suppressing the

residue of some poles or by reducing their multiplicity.

A similar suppression of the poles is also found in the Borel transform of δ(0) which au-

tomatically leads to a more regular series that is more amenable to approximation by PAs.

We have exploited this fact to show that, in large-β0, the PAs formed to the αs expansion

of δ(0) and the D-log PAs constructed to its Borel transform B[δ(0)] are the optimal

model-independent way of extracting the higher-order coefficients of the Adler function.

We have then applied the same procedure to full QCD. The excellent “postdiction”

of the coefficient c4,1, which is known since 2008 [21], as well as the striking stability of

the results gives us confidence that the method also works in QCD. From PAs to the
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fixed-order expansion of δ(0) and D-log PAs to B[δ(0)] we extract the final results of this

paper, given in table 6 and eq. (5.3). These results allow us to reconstruct very reliably the

perturbative expansions of δ(0) up to at least the tenth order. Finally, figure 8 shows that

our model-independent reconstruction of the higher-order series coefficients favours FOPT

as the best procedure to set the renormalization scale at and around the τ mass.

We should remark that our final results are similar to the model-dependent reconstruc-

tion of the series put forward in ref. [18] and further discussed in ref. [25]. This lends support

to renormalon model used in these works, even though the use of PAs show that one should

be careful when interpreting the parameters of such models. In the case of the renormalon

models, the analytic structure is completely fixed, the only freedom is left to the residues.

Therefore, we should expect that these are “effective residues”, in the spirit of Padé-type

approximants, and can only be compared with the true residues in a hierarchical way, since

they must account for the infinite tower of poles that must be mimicked by the model.

Apart from providing reliable estimates for the higher-orders coefficients and indicating

that FOPT is preferred, our results could be the basis for an αs extraction based on the

Borel sum of δ(0). The fact that the results of eqs. (5.3)–(5.7) are so close suggest that it

may be realistic to do so. We also intend to investigate further the analytic structure of

B[δ(0)] in QCD, since the non-trivial result of eq. (4.2) plays a central role in our analysis.

The simplicity and flexibility of the method here developed suggests it could also be used

to further explore non-perturbative contributions in the context of αs determinations.
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[15] O. Catà, M. Golterman and S. Peris, Duality violations and spectral sum rules, JHEP 08

(2005) 076 [hep-ph/0506004] [INSPIRE].

[16] S. Peris, D. Boito, M. Golterman and K. Maltman, The case for duality violations in the

analysis of hadronic τ decays, Mod. Phys. Lett. A 31 (2016) 1630031 [arXiv:1606.08898]

[INSPIRE].

[17] D. Boito, I. Caprini, M. Golterman, K. Maltman and S. Peris, Hyperasymptotics and

quark-hadron duality violations in QCD, Phys. Rev. D 97 (2018) 054007

[arXiv:1711.10316] [INSPIRE].

[18] M. Beneke and M. Jamin, αs and the tau hadronic width: fixed-order, contour-improved and

higher-order perturbation theory, JHEP 09 (2008) 044 [arXiv:0806.3156] [INSPIRE].

[19] F. Le Diberder and A. Pich, Testing QCD with τ decays, Phys. Lett. B 289 (1992) 165

[INSPIRE].

[20] A.A. Pivovarov, Renormalization group analysis of the tau lepton decay within QCD, Z.

Phys. C 53 (1992) 461 [Sov. J. Nucl. Phys. 54 (1991) 676] [Yad. Fiz. 54 (1991) 1114]

[hep-ph/0302003] [INSPIRE].

[21] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Order α4
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Padé approximants for meromorphic functions of Stieltjes type, Appl. Num. Math. 53 (2005)

39.

[53] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin.

Phys. C 40 (2016) 100001 [INSPIRE].

[54] D. Boito, M. Jamin and R. Miravitllas, Scheme variations of the QCD coupling, EPJ Web

Conf. 137 (2017) 05007 [arXiv:1612.01792] [INSPIRE].

[55] W. Celmaster and R.J. Gonsalves, The renormalization prescription dependence of the QCD

coupling constant, Phys. Rev. D 20 (1979) 1420 [INSPIRE].

[56] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Towards order α4
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