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1 Introduction

Area laws for dynamical surfaces in spacetime have, both historically and recently, been

important drivers of progress in theoretical physics. Under certain positivity conditions for

the flow of energy-momentum, general relativity constrains the dynamics of certain surfaces

such that their area only increases. The most well known example is Hawking’s area law

for black holes [1, 2], which mandates that the area of the event horizon always grows with

time. This provided the basis for the thermodynamic understanding of black holes [2–6];

in turn, black hole thermodynamics helped inspire the development of holography [7–9]. In

the context of string theory, the AdS/CFT correspondence [10–13] has provided the prime

example of a tractable holographic model that can be explored in detail. Holography thus

gives us powerful tools with which to understand quantum gravity.

The areas of extremal surfaces in asymptotically-AdS spacetimes have proved to be

of significance beyond their geometrical interpretation. They correspond to entanglement

entropies of regions in the boundary CFT, given by the Ryu-Takayanagi formula [14–16]

for static slices and more generally by the Hubeny-Rangamani-Takayanagi (HRT) prescrip-

tion [17–19]. An understanding of the dynamics of these surfaces can shed light on the
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entanglement structure of the boundary and vice versa, with the question being actively

researched from both the gravitational and field theory perspectives [20–28].

Building on earlier work [29, 30], an interesting area theorem in general relativity was

recently proved [31–33] for holographic screens, a substantive extension of apparent hori-

zons to timelike or spacelike objects whose slices are marginally-trapped or -antitrapped

surfaces [34]. Such screens can be found in many spacetimes of interest, such as expanding

universes and inside of black holes, and it was shown that these surfaces have areas that

grow in a particular direction along the screen. While geometrically interesting in their own

right, such surfaces — as their name implies — have been suggested to have a holographic

interpretation, as the surfaces on which to formulate a “boundary” theory in general space-

times beyond AdS [35–38], though at present no explicit boundary theory is known for this

more general conjectured form of holography. Moreover, an entropic interpretation of the

area of the holographic screen has been demonstrated [39]: the area of an apparent horizon

equals the area of the largest HRT surface compatible with the domain of dependence of the

spacetime outside the apparent horizon. That is, the apparent horizon area can be viewed

as an “outer entropy” of the spacetime. In contrast, despite the success of Hawking’s area

theorem in sparking black hole thermodynamics and the holographic revolution, a valid

holographic interpretation of the event horizon itself has remained elusive [40, 41].

In this paper, we will show that both the holographic screen and the event horizon are

special cases of a much more general class of surfaces, which we will call generalized holo-

graphic screens, all of which satisfy an area law. Thus, we will unify the area law discovered

in refs. [31, 32] and Hawking’s area law [1]. These generalized holographic screens extend

the concept of holographic screens to surfaces that are not marginally trapped; these new

surfaces sweep out large portions of the interior of a black hole and can also be constructed

in cosmological spacetimes. These results are proved purely in general relativity and are

independent of holography.

Furthermore, we will show, for spherically-symmetric spacetimes, that the outermost

spacelike portion of generalized holographic screens have an entropic interpretation anal-

ogous to that of apparent horizons given in ref. [39]. In particular, we will prove another

new general relativity result, giving the area of the largest HRT surface compatible with

the outer wedge of a slice of the generalized holographic screen. The area of this maxi-

mal HRT surface is given by a geometric quantity computable in terms of the area and

curvature of the generalized holographic screen. Viewed as a holographic statement, we

compute the outer entropy of a non-marginally-trapped surface inside a black hole. This

implies that we find a new entry in the holographic dictionary: the entropic interpretation

of the event horizon (in terms of its area and curvature), for spherically-symmetric space-

times. Comparing the evolution of the maximal HRT area associated with different slices,

we show that the outer entropy satisfies a second law, despite being a complicated function

of geometric quantities on the generalized holographic screen.

The remainder of this paper is organized as follows. In section 2, we define our ter-

minology and give the definition of generalized holographic screens, in particular proving

in section 2.3 that they satisfy an area law. In section 3, we review the definition of outer

entropy and show that, for the generalized holographic screen, it is upper bounded by
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the area of the screen in Planck units. In section 4 we compute the outer entropy for

spherically-symmetric spacetimes; we discuss several special cases of interest in section 4.3

and prove the second law for the outer entropy in section 4.4. We conclude and discuss

future directions in section 5.

2 Generalized holographic screens

In this section, we derive our results based on classical general relativity. First, we will

discuss some differential geometry formalism and review the notion of (marginally-trapped)

holographic screens. We will then introduce the notion of generalized holographic screens

and establish our family of area laws, illustrating how Hawking’s area theorem for event

horizons arises as a special case.

2.1 Formalism and review

Throughout the paper, we will consider a smooth spacetime (M, gab) of dimension D ≥ 3

that is globally hyperbolic (or, in the asymptotically-AdS case, with appropriate boundary

conditions [42]). We will also assume the Einstein equations and the null energy condition

(NEC), Tabk
akb ≥ 0 for energy-momentum tensor Tab and any null vector ka; equivalently,

we could assume the null curvature condition (NCC) Rabk
akb ≥ 0. We will use mostly-plus

metric signature and sign conventions Rab = Rcacb and Rabcd = ∂cΓ
a
bd − ∂dΓabc + ΓaceΓ

e
bd −

ΓadeΓ
e
bc. We follow the standard differential geometry notation, defining the chronological

future (respectively, past) of a set S as I±(S), the future (respectively, past) domains of

dependence D±(S) as the set of points p ∈ M such that every past (respectively, future)

inextendible causal curve through p in M intersects S, and the domain of dependence

D(S) as the union D+(S) ∪ D−(S). We use a dot Ṡ, circle S̊, and bar S to denote the

boundary, interior, and closure of a set S, respectively. In our conventions, S 6⊂ I±(S), but

S ⊂ D±(S).

Let us first review some results of ref. [32]. We define a future holographic screen

H to be a smooth (codimension-one) hypersurface for which one can define a foliation

(i.e., a partition of H) into marginally-trapped codimension-two compact acausal surfaces

called leaves. From a leaf σ, we will call the two future-directed orthogonal null geodesic

congruences k and l; the marginally-trapped condition stipulates that, on σ,

θk = 0 and θl < 0, (2.1)

where θk = ∇aka and θl = ∇ala are the null expansions for k and l, respectively. Defining

an area element δA, the expansions can equivalently be written as θk = ∇k log δA and

θl = ∇l log δA, where ∇k = ka∇a and ∇l = la∇a are the covariant derivatives along the

congruences. Throughout, we will extend the definition of k and l to null vector fields over

the entire spacetime M . For a given H, this choice of k and l over all of M is not unique,

but our results will hold for all such choices.

We consider the case in which each leaf σ splits some Cauchy surface Σ into two disjoint

subsets, Σ = Σ+ ∪ σ ∪ Σ−, where σ = Σ̇± and we label Σ− as the outer portion (which

we take to be in the k direction) and Σ+ as the inner portion (which we take to be in
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the l direction); we choose this notation and the ± convention for outer versus inner to

match that of ref. [32]. We note that σ divides the spacetime into four disjoint portions,

I±(σ) and D(Σ±); in particular, I±(σ) and D(Σ±) − σ together constitute a four-part

partition of M − σ, as shown in figure 2 of ref. [43]. As proved in ref. [43], the boundaries

of these regions can be characterized by the geodesic congruences k and l, truncating at

any conjugate points (i.e., caustics) or intersections of finitely-separated geodesics. This

fact will be used frequently in our arguments that follow.

One can define a real parameter τ on H such that each leaf σ is a surface of constant,

unique τ . We can also write the tangent vector field ha parallel to the leaf-orthogonal

curves within H as

ha = αla + βka (2.2)

for some real parameters α and β, normalized so that ha(dτ)a = 1.

We can then make the following definitions of null surfaces:

N+k(σ) = İ+(Σ+)− Σ+ = Ḋ+(Σ−)− I−(D+(Σ−))

N−k(σ) = İ−(Σ−)− Σ− = Ḋ−(Σ+)− I+(D−(Σ+))

N+l(σ) = İ+(Σ−)− Σ− = Ḋ+(Σ+)− I−(D+(Σ+))

N−l(σ) = İ−(Σ+)− Σ+ = Ḋ−(Σ−)− I+(D−(Σ−)).

(2.3)

The result of ref. [43] implies that the expressions on the right-hand side are independent

of the choice of Cauchy surface Σ and are indeed defined only by the leaf σ; that is, N±k
and N±l are light sheets, null surfaces defined up to caustics and nonlocal intersections of

null geodesics. We further define Nk(σ) = N+k(σ)∪N−k(σ) and Nl(σ) = N+l(σ)∪N−l(σ)

and note that σ = N+k(σ) ∩ N−k(σ) = N+l(σ) ∩ N−l(σ). Given the Cauchy-surface-

independence, we define the spacetime regions

K+(σ) = I+(Σ+) ∪D−(Σ+)−N−k(σ)

K−(σ) = I−(Σ−) ∪D+(Σ−)−N+k(σ)

L+(σ) = I+(Σ−) ∪D−(Σ−)−N−l(σ)

L−(σ) = I−(Σ+) ∪D+(Σ+)−N+l(σ),

(2.4)

so Nk(σ) = K̇+(σ) = K̇−(σ) and Nl(σ) = L̇+(σ) = L̇−(σ); see figure 1.

Finally, as in ref. [32] we will take Rabk
akb+ ς2k to be strictly positive on H, where ςk is

the shear tensor of the k congruence as defined in ref. [44]. Along with the Raychaudhuri

equation

∇kθk = − 1

D − 2
θ2k − ς2k −Rabkakb (2.5)

and the NEC, this genericity assumption implies that θk is strictly positive (negative) to

the past (respectively, future) of σ. Note that the term involving the twist tensor is absent

in eq. (2.5) because the congruence is surface-orthogonal.
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K�(�) L�(�)
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Nl(�)Nk(�)

Figure 1. Generic Penrose diagrams for spacetime regions K±(σ) and L±(σ) defined in eq. (2.4),

divided by the light sheets Nk(σ) and Nl(σ), respectively, defined in eq. (2.3).

Given these conditions and additional technical assumptions,1 ref. [32] then shows

that α < 0 everywhere on H. That is, ha points either (timelike) to the past or (spacelike)

outwards. As a result, the sets of K± are monotonic under inclusion: writing K±(τ) =

K±(σ(τ)), one obtains the inclusion relations

K
+

(τ1) ⊂ K+(τ2) (α < 0, any β)

K
−

(τ2) ⊂ K−(τ1) (α < 0, any β)
(2.6)

for τ1 < τ2. Analogously, if we can choose a region where β is constant throughout a leaf,

with the same sign at σ(τ1) and σ(τ2), the sets L±(τ) = L±(σ(τ)) are also monotonic

under inclusion:
L
+

(τ2) ⊂ L+(τ1) (α < 0, β > 0)

L
−

(τ1) ⊂ L−(τ2) (α < 0, β > 0)

L
+

(τ1) ⊂ L+(τ2) (α < 0, β < 0)

L
−

(τ2) ⊂ L−(τ1) (α < 0, β < 0).

(2.7)

Finally, ref. [32] shows that the holographic screen H satisfies an area law: A[σ(τ1)] <

A[σ(τ2)], so dA/dτ > 0.2 By reversing the time direction and swapping past for future

in all of the definitions, one can define past holographic screens, which are foliated by

marginally-antitrapped surfaces and which also satisfy an area law.

2.2 Definition of generalized holographic screens

We will show that there is a much larger family of surfaces, beyond the holographic screens

discussed in section 2.1, that also satisfy an area law. In particular, we are interested in

relaxing the requirement that the leaves be marginally trapped. Given a future holographic

1Ref. [32] also assumes that every inextendible portion of H contains either a complete leaf or is com-

pletely timelike and that the sets of points in H for which α is positive and negative share a boundary on

which α vanishes.
2Throughout, we will use round brackets for scalar arguments. For objects that take a set of points in

M as an argument, we will use round brackets if the object being defined is itself a subset of the spacetime

(e.g., D(S)), while we will use square brackets in the case of a quantity defined on the spacetime (e.g., A[S]

for the area of a surface S).
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I�
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Figure 2. Generalized (future) holographic screens inside a black hole formed from collapse. The

holographic screen H is shown in red and has both a timelike and spacelike portion. Several

examples of generalized holographic screens H ′ are illustrated by the blue curves. In this example,

they can have both timelike and spacelike portions or can be purely spacelike. The limiting case

of the event horizon (blue dashed line) also corresponds to a generalized holographic screen. A few

representative light sheets Nk(σ) are illustrated by the green lines and on these light sheets the

codimension-two leaves σ of H (on which θk = 0) and the leaves σ′ of H ′ (on which θk 6= 0) are

represented by the black dots; for each σ′ ⊂ H ′ there exists σ ⊂ H for which σ′ ⊂ Nk(σ). We will

show that all of these screens obey an area law, with increasing area toward the past and outward

directions, as illustrated by the arrows pointing in the direction of increasing τ .

screen H as described in section 2.1, we will define a generalized future holographic screen

H ′ as a surface to the past (future) of H when H is spacelike (respectively, timelike), with

H ′ being spacelike if and only if the corresponding section of H is spacelike. A few examples

of generalized future holographic screens are shown in figure 2. We will later prove that

H ′ satisfies an area law, but before that let us first specify the conditions defining H ′ more

precisely.

Formally, we define a generalized future holographic screen as a (codimension-one)

hypersurface H ′ with a foliation into codimension-two leaves σ′ and tangent vector h′a =

αla + βka (for some α and β) satisfying the following criteria:

1. For each σ′ ⊂ H ′, there exists σ ⊂ H for which σ′ ⊂ Nk(σ). For each p ∈ σ, we can

identify some p′ ∈ σ′ satisfying p′ ∈ Nk(p). If h is spacelike or null, then we require

p′ ∈ N−k(p), while if h is timelike or null, p′ ∈ N+k(p).

2. The signature and orientation of h′ at p′ ∈ σ′ matches that of h at p ∈ σ for which

p′ ∈ Nk(p).

3. θl < 0 on H ′.
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For generalized past holographic screens, N±k are simply swapped in condition 1, while

condition 3 becomes θl > 0. By eq. (2.6), Nk(σ(τ1)) ∩ Nk(σ(τ2)) = ∅ for τ1 6= τ2, so

the σ for which σ′ ⊂ Nk(σ) is unique. That is, there is a function φ : R → R for which

σ′(τ) ⊂ Nk(σ(φ(τ)). Note that φ is not necessarily injective or surjective: there may be

more than one slice σ′ ⊂ H ′ in the same Nk(σ) and there may be some σ ⊂ H for which

Nk(σ) ∩H ′ = ∅.

Note that the event horizon itself is a generalized future holographic screen, corre-

sponding to the limit in which φ(τ) maps all numbers to infinity, where the leaves of the

original holographic screen σ(τ) go to I+ as τ → ∞. While the event horizon is teleo-

logically defined (i.e., it requires knowledge of the entire future history of the spacetime),

the holographic screen is defined quasilocally, in terms of the metric and its derivatives

measurable at a point, in a particular Cauchy slicing. The generalized holographic screen

shares characteristics of both of these definitions: it is defined in terms of the holographic

screen, but using past- or future-directed light sheets. Hence, the event horizon is a gener-

alized holographic screen in the particular limit in which all σ′ are in N−k(σ) for the leaf

σ = H ∩ I+ on the boundary of the spacetime.

2.3 Area law

We now show that there is an area law on the generalized holographic screen H ′. By

condition 1 in section 2.2, for the region where H is timelike (respectively, spacelike), we

have θk < 0 (respectively, θk > 0) on H ′ by the Raychaudhuri equation (2.5) and the fact

that θk = 0 on H. By condition 2, we thus have θk ≤ 0 when H ′ is timelike (or null) and

θk ≥ 0 when H ′ is spacelike (or null).

Moreover, condition 2 implies that α < 0 on H ′, since α < 0 on H. That is, h′a is either

past- or outward-directed, so β < 0 when H ′ is timelike and β > 0 when H ′ is spacelike.

Hence, βθk ≥ 0 on H ′. By condition 3, θl < 0 on H ′, so αθl > 0. That is, we have shown

that the general covariant definition of H ′ given in conditions 1 through 3 implies

αθl + βθk > 0 (2.8)

everywhere on H ′.

We can now adapt the zigzag argument of ref. [32] to prove an area law on H ′. Let us

first consider the case in which σ′ is smooth; we will subsequently extend our result to the

more general case of non-smooth σ′. Since θl < 0 on H, by continuity there always exists

a surface near H with θl < 0 satisfying conditions 1 and 2, so choices of H ′ always exist.

Given smooth σ, there always exists a smooth surface σ′ ⊂ Nk(σ) by taking σ′ sufficiently

near σ, since by a theorem of ref. [45], geodesics cannot exit the boundary of the future or

past of σ instantaneously. From σ′(τ) ⊂ H ′, consider the light sheet N−l(σ
′(τ)) going in

the past l direction. From σ′(τ + dτ) ⊂ H ′, consider the null hypersurface Nk(σ
′(τ + dτ)),

following both the past and future k directions. Since α < 0, σ̃(τ, τ + dτ) = N−l(σ
′(τ)) ∩

Nk(σ
′(τ + dτ)) is nonempty; see figure 3. For regions of H ′ that are spacelike (β > 0),

σ̃(τ, τ + dτ) ⊂ N−k(σ
′(τ + dτ)). Conversely, for parts of H ′ that are timelike (β < 0),

σ̃(τ, τ + dτ) ⊂ N+k(σ
′(τ + dτ)).
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Figure 3. Zigzag construction proving the area law on a generalized holographic screen H ′ (blue

curve). From σ′(τ) (examples given by orange dots), we take the past l light sheet N−l(σ′(τ))

(orange lines), while from σ′(τ + dτ) (green dots), we take the k light sheet Nk(σ′(τ + dτ)) (green

lines). The intersection σ̃(τ, τ + dτ) (black dots) is always nonempty. We have A[σ̃(τ, τ + dτ)] >

A[σ′(τ)] and A[σ′(τ + dτ)] > A[σ̃(τ, τ + dτ)], so area increases along H ′.

Since σ̃(τ, τ + dτ) ⊂ N−l(σ′(τ)), we have

A[σ̃(τ, τ + dτ)]−A[σ′(τ)] = A[σ̃(τ, τ + dτ)]αθldτ (2.9)

for infinitesimal dτ , recalling the definition of θl = ∇l log δA. Similarly, the change in area

from σ̃(τ, τ + dτ) to σ′(τ + dτ) is

A[σ′(τ + dτ)]−A[σ̃(τ, τ + dτ)] = A[σ̃(τ, τ + dτ)]βθkdτ (2.10)

since θk = ∇k log δA. Hence,

A[σ′(τ + dτ)]−A[σ′(τ)] = A[σ̃(τ, τ + dτ)](αθl + βθk)dτ. (2.11)

By eq. (2.8), we therefore have

A[σ′(τ + dτ)]−A[σ′(τ)] > 0, (2.12)

leading to an area law along H ′:
dA[σ′(τ)]

dτ
> 0. (2.13)

Specifically, writing the induced metric on σ′(τ) as γ
σ′(τ)
ab , the area grows at the rate

dA[σ′(τ)]

dτ
=

∫
σ′(τ)

√
γσ′(τ)(αθl[σ

′(τ)] + βθk[σ
′(τ)]). (2.14)

We thus have a general covariant geometric formulation of a generalized holographic screen

that is not a marginally-trapped surface but that nonetheless satisfies an area law.

Let us now generalize our result by relaxing the requirement that σ′ is so close to σ as to

be smooth. In particular, σ′ can now contain portions of caustics or nonlocal intersections

in Nk(σ), where null geodesics can enter or exit the light sheet defining the past or future

of σ [43]. Even in this case, an area law can be proved. For a spacelike part of H ′,

between σ̃(τ, τ +dτ) and σ′(τ +dτ), it is possible for future-directed null geodesics to enter
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N−k(σ
′(τ + dτ)), but not to leave it (see, e.g., refs. [44, 45]). Similarly, for a timelike part

of H ′, it is possible for future-directed null geodesics to leave but not enter N+k(σ
′(τ+dτ))

between σ′(τ + dτ) and σ̃(τ, τ + dτ). Hence, in both cases A[σ′(τ + dτ)]−A[σ̃(τ, τ + dτ)]

is lower-bounded by the right-hand side of eq. (2.10) and is therefore still positive.

We next consider the other light sheets defining σ̃(τ, τ + dτ), i.e. N−l(σ
′(τ)). Future-

directed null geodesics cannot leave N−l(σ
′(τ)); however, they can enter N−l(σ

′(τ)) only

when they encounter a caustic or a nonlocal intersection with a null geodesic originating

from elsewhere on σ′ [43]. If they entered through a caustic, one would find that, moving

from past to future, their expansion θl jumps discontinuously from −∞ to +∞ at the

entry point and then decreases continuously toward σ′(τ). This implies that since θl is

by definition negative on σ′(τ), we can always choose dτ sufficiently small that a caustic

is not encountered between σ′(τ) and σ̃(τ, τ + dτ) on N−l(σ
′(τ)). It is also clear that dτ

can always be chosen small enough that the generators of N−l(σ
′(τ)) do not encounter any

nonlocal intersections between σ′(τ) and σ̃(τ, τ + dτ). Hence, eq. (2.9) still holds, and the

right-hand side of eq. (2.14) gives a lower bound on the rate of area increase. We thus find

that the area increase rate is still positive. Namely, we have an area law on the generalized

holographic screen H ′ even if σ′ is not close to σ.

The original holographic screen H is a special case of our family of generalized holo-

graphic screens H ′, taking the limit in which σ′ → σ for all τ , so that θk → 0. Hence,

the area law for H ′ reduces smoothly to the area law for the holographic screen H derived

in ref. [32].

Moreover, Hawking’s area theorem [1] is also a special case of our area law for gener-

alized holographic screens. In the case of a holographic screen H, the marginally-trapped

condition prescribes a particular foliation into leaves σ. For a region of a generalized holo-

graphic screen H ′ where the mapping between leaves σ′ ⊂ H ′ and σ ⊂ H is one-to-one

(i.e., the function φ is injective), H ′ inherits the foliation of H. However, if we choose H ′

to have a finite null region, then multiple leaves in H ′ lie within Nk(σ) for the same σ ⊂ H.

In this region, the foliation of H does not prescribe a foliation of H ′; under any foliation

of a null portion of H ′ into leaves σ′, the area law proved above still applies by virtue

of the positivity of θk. Similarly, Hawking’s area theorem is independent of the spacelike

Cauchy slicing: for any two spacelike Cauchy slices Σ1 and Σ2 where Σ2 ⊂ I+(Σ1), the

event horizon İ−(I+) grows in area, so A[İ−(I+) ∩Σ1] ≤ A[İ−(I+) ∩Σ2] [45]. Hence, for

any spacelike Cauchy slicing of the spacetime, we can define a foliation of a null portion of

H ′ simply via its intersection with the Cauchy slices. In Hawking’s area theorem, the area

law follows from proving that the expansion on the horizon is nonnegative in a spacetime

satisfying the NCC. In our present context, assuming an asymptotically-stationary space-

time, so that the horizon is asymptotically marginally trapped, implies that there exists

a holographic screen H that asymptotes to the horizon. We can thus define the horizon

itself as a generalized holographic screen H ′, on which θk is positive by the Raychaudhuri

equation (2.5).

Our family of generalized holographic screens thus unifies two previously known area

laws associated with black holes, namely, those of the holographic screen and the event

horizon. This unification is nontrivial: while it is true that a convex combination of two
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↵ > 0

� < 0

↵ < 0

� > 0

↵ < 0
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Figure 4. Illustration of the intersection construction of generalized holographic screens. Arrows

indicate the direction of increasing τ . Examples of leaves σ(τ) in the holographic screen H (red

curve) are given by the white dots and the corresponding σ(f(τ)) is given by the immediately

succeeding black dot. A leaf σ′ (blue dot) of the generalized holographic screen H ′ (blue curve)

is given by the intersection of Nl(σ(τ)) (yellow line) and Nk(σ(f(τ))) (green line) as shown in

eq. (2.15). The function f(τ) ≥ τ equals τ precisely when H has null tangent (gray dot).

monotonic functions is itself monotonic, such intuition does not readily apply to spacetime

geometries, in which the notion of taking a combination of two surfaces is not in general well

defined without specifying additional geometric information for how to determine the new

surface. Our definition in section 2.2 provides precisely the requisite specifications, guaran-

teeing, as we have shown in this section, an area law for the generalized holographic screen.

2.4 Alternate construction of screens

The definition of generalized holographic screens in section 2.2 leads to immense freedom

in choosing H ′. The only requirements are those given in conditions 1 through 3.

However, we can formulate an elegant alternative way of defining a particular subset

of generalized future holographic screens parameterized by a single real function. Let

f : R→ R be a smooth function with df/dτ > 0 and f(τ) ≥ τ , with equality if and only if

σ(τ) ⊂ H has null tangent ha. In this subsection, we will also assume for simplicity that

each leaf of H is entirely timelike, spacelike, or null. Then we can remove conditions 1

and 2 and instead simply define H ′ to be the hypersurface foliated by leaves

σ′(τ) = Nl(σ(τ)) ∩Nk(σ(f(τ))). (2.15)

We still require condition 3 that θl < 0. See figure 4 for an illustration of this construc-

tion. The analogous construction for generalized past holographic screens can be defined

similarly.

On the spacelike part of H (on which β > 0), for τ1 < τ2, eq. (2.7) implies σ′(τ2) ⊂
N−l(σ(τ2)) ⊂ L

+
(σ(τ2)) ⊂ L+(σ(τ1)), while by eq. (2.6), σ′(τ2) ⊂ N−k(σ(f(τ2))) ⊂

K
−

(σ(f(τ2))) ⊂ K−(σ(f(τ1))), since f(τ1) < f(τ2) by definition of f . Now, for any cross

section σ̂ ofNk(σ), K±(σ) = K±(σ̂), while for any cross section σ̂ ofNl(σ), L±(σ) = L±(σ̂).

Hence, K−(σ(f(τ1))) = K−(σ′(f(τ1))) and L+(σ(τ1)) = L+(σ′(τ1)). Again by eq. (2.6),
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along with the property f(τ) > τ , we have therefore shown that

σ′(τ2) ⊂ L+(σ′(τ1)) ∩K−(σ′(f(τ1))) ⊂ L+(σ′(τ1)) ∩K−(σ′(τ1)) = D̊(Σ−(σ′(τ1)), (2.16)

where Σ(σ′(τ1)) is a Cauchy surface split (into Σ±) by σ′(τ1). It will be convenient to

define the outer wedge OW (σ′) = D̊[Σ−(σ′)]. We thus find that every point in σ′(τ2) is

spacelike separated from every point in σ′(τ1). Hence, using this alternative definition of

the generalized holographic screen, we automatically have that H ′ is spacelike and directed

outward when the corresponding portion of H is spacelike.

Similarly, on the timelike part of H (on which β < 0), we have σ′(τ2) ⊂ N−l(σ(τ2)) ⊂
L
−

(σ(τ2))⊂L−(σ(τ1)) and further σ′(τ2)⊂N+k(σ(f(τ2)))⊂K−(σ(f(τ2)))⊂K−(σ(f(τ1))),

again by the condition df/dτ >0. We further have in this case K−(σ(f(τ1)))=K−(σ′(f(τ1)))

and L−(σ(τ1)) = L−(σ′(τ1)). Hence, again using eq. (2.6) and that f(τ) > τ , we have

σ′(τ2) ⊂ L−(σ′(τ1)) ∩K−(σ′(f(τ1))) ⊂ L−(σ′(τ1)) ∩K−(σ′(τ1)) = I−(σ′(τ1)), (2.17)

so every point in σ′(τ2) is in the chronological past of every point in σ′(τ1). Thus, we

automatically have that H ′ is timelike and past-directed when the corresponding portion

of H is timelike.

Therefore, with the simple requirements that df/dτ > 0 and f(τ) ≥ τ (with equality

when H is null), we have an elegant construction of a generalized holographic screen H ′,

defined by its leaves as in eq. (2.15), that automatically has the correct tangent and thus,

by the argument in section 2.3, satisfies an area law.

3 Outer entropy

Having established the general relativity results of section 2, we now would like to under-

stand their holographic interpretation. In AdS/CFT [10–12], certain geometric quantities

in the bulk have interpretations in terms of properties of the boundary CFT state. The

most celebrated example of this is the Ryu-Takayanagi relation [14, 15] and its generaliza-

tion to dynamical spacetimes by Hubeny, Rangamani, and Takayanagi [17], which relates

the area of certain extremal surfaces in the bulk to the von Neumann entropy

S[ρ] = −tr ρ log ρ (3.1)

of the reduced density matrix ρ on the homologous region on the boundary. In particular,

the HRT prescription implies that, for a boundary state ρ corresponding to some classical

bulk geometry with an extremal surface XHRT, the von Neumann entropy satisfies

S[ρ] =
A[XHRT]

4G~
. (3.2)

For a two-sided geometry in AdS/CFT described by a pure state, this entropy gives a

measure of the entanglement between the boundary regions corresponding to the two sides

of the spacetime split by the HRT surface. An extremal surface is defined to be a surface

whose area is a local extremum as a functional over all surfaces in the bulk. The HRT
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surface is chosen to be homologous to the boundary and an extremal surface of minimal

area; such a surface can be identified using the maximin prescription [18]. One can show

that the HRT surface is a surface on which θk = θl = 0 and that there exists some Cauchy

slice on which the area of the surface equals the minimal cross section of the slice. While

the HRT form of the entropy (3.2) has been extensively tested in AdS/CFT [16, 19], our

results in this section will not need all of the structure of AdS/CFT for validity. Instead,

our conclusions will carry over under the assumption that the identification (3.2) can be

made in any spacetime, that is, that there is some maximal extremal surface inside the

black hole to which one can associate a fine-grained entropy for the ensemble. This is the

same set of assumptions used in ref. [39]. Moreover, if the holographic screen does indeed

provide a boundary description of the spacetime in terms of a pure state, then this entropy

would again equal the entanglement entropy between the boundary regions corresponding

to the two sides of the spacetime split by the HRT surface.

There are compelling reasons why it is desirable to seek some entropic interpretation

of the generalized holographic screens we considered in section 2. It has been conjec-

tured that holographic screens play the role of the boundary of AdS in AdS/CFT for

non-asymptotically-AdS spacetimes, enabling a suitable generalization of holography to

arbitrary geometries [35–38], although the details of this duality, including the explicit

boundary theory, are not yet known. If this is the case, then it is well motivated to ask

whether there is a sense of renormalization in these holographic theories. In AdS/CFT,

renormalization group flow can be cast as motion in the bulk direction; formulating the

theory on a surface at finite bulk coordinate yields a coarse-grained version of the original

CFT [46–50]. Thus, it is well motivated to ask whether the generalized holographic screens

of section 2 play any similar coarse- or fine-grained role. Indeed, one can view the area law

discovered in section 2.3 as evidence for some second law interpretation.

Furthermore, the fact that the event horizon itself is encompassed in the family of gen-

eralized holographic screens makes the quest for an entropic interpretation of these surfaces

especially interesting. The laws of black hole mechanics [2–6] describing the dynamics of

the event horizon H have direct thermodynamic interpretations, including Hawking’s area

theorem corresponding to the second law of thermodynamics and the Bekenstein-Hawking

entropy,

SBH =
A[H]

4G~
. (3.3)

Black hole thermodynamics was historically one of the original motivations for holography.

Despite this connection, however, there has previously been no direct interpretation of the

event horizon itself from a holographic perspective. Indeed, there are arguments showing

that certain straightforward possibilities involving the area of the event horizon (i.e., the

causal holographic information [40]) cannot have a simple information-theoretic dual [41].

Previously, it was shown that the outermost spacelike portion of the holographic screen

H does possess a dual in terms of the von Neumann entropy [39]. Specifically, let us consider

an outermost marginally-trapped surface (i.e., an apparent horizon σ), where by outermost

we require that σ is homologous to the boundary, with a partial spacelike Cauchy surface

connecting σ with the boundary such that any surface circumscribing σ has area greater

– 12 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
3

than that of σ. Moreover, let us define the outer entropy associated with a codimension-two

surface χ,

S(outer)[χ] = max
ρ̃

(S[ρ̃] : OW (χ)), (3.4)

as the entanglement entropy of one side of the entire boundary (computed via the HRT

prescription) associated with the geometry described by the holographic state ρ̃, maximized

over all possible ρ̃ corresponding to spacetimes M̃ , satisfying the NCC, for which the outer

wedge OW (χ) is held fixed. In this sense, the outer entropy can be viewed as arising from the

coarse-graining of the degrees of freedom associated with the (fine-grained) von Neumann

entropy; equivalently, it can be viewed as the maximum holographic entanglement entropy

for one side of the boundary consistent with the outer wedge. We recall from section 2.4

that the outer wedge is defined as the set of points in M spacelike separated from χ on the

outer side, that is, OW (χ) = D̊(Σ−(χ)), where Σ(χ) is a Cauchy surface split by χ. With

these definitions, the main result of ref. [39] is that the outer entropy for the apparent

horizon (the outermost spacelike part of the holographic screen) is given by its area:

S(outer)[σ] =
A[σ]

4G~
. (3.5)

We wish to relate the geometrical properties of leaves σ′ of the outermost spacelike

or null part of the generalized holographic screen H ′ defined in section 2 to their outer

entropy. We will show that S(outer)[σ′] is bounded from above by the area of σ′. Moreover,

for the special case of spherically-symmetric spacetimes, we will provide an explicit formula

for S(outer)[σ′] in terms of the geometry of σ′ (its area, curvature, etc.).

For the remainder of this paper, we will implicitly restrict ourselves to the outermost

spacelike or null part of a generalized holographic screen H ′, which we will write simply

as H ′. That is, for any leaf σ′ ⊂ H ′ we consider in this and the following sections, we will

take σ′ to be in N−k(σ) for σ ⊂ H such that σ is an outermost marginally-trapped surface

in the sense of ref. [39]. Furthermore, in addition to the NEC, we will also impose the

cosmological-constant-subtracted dominant energy condition (ΛDEC). That is, writing the

Einstein equation as

Rab −
1

2
Rgab + Λ gab = 8πGTab, (3.6)

we allow Λ to take either sign but impose the dominant energy condition (DEC) on Tab:

−T abtb is a causal, future-directed vector for all causal, future-directed vectors ta.3 This is

essentially a causality requirement, enforcing that the positive flux of null energy not be

superluminal as seen in any inertial frame. Finally, we will assume a generic condition on

σ′, requiring that θk be strictly positive (rather than merely ≥ 0) on σ′, so σ′ 6⊂ H, thus

making the generalized holographic screen distinct from the original holographic screen.

That is, the generalized holographic screen we consider in this and the next sections is

foliated by leaves that are each normal surfaces (i.e., for which θl < 0 and θk > 0).

3Note that this is similar to, but somewhat stronger than, the null dominant energy condition (NDEC),

which requires the NEC plus the stipulation that −T a
bk

b be a causal vector for all null k. While the NDEC

allows for the cosmological constant contribution, for either sign of Λ, to be folded into Tab, it does not

bound the sign of Tkl on its own, which the ΛDEC does.
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Let us first upper bound S(outer)[σ′] for some leaf σ′ ⊂ H ′. We can choose the spacetime

in the complement of OW (σ′) to be the one that maximizes the area of the HRT surface

XHRT. By definition, θk = θl = 0 on XHRT and further there exists some Cauchy surface

Σ on which XHRT is a surface of minimal cross-sectional area. If σ′ ⊂ Σ, we have A[σ′] ≥
A[XHRT] by definition of Σ. Moreover, if σ′ ⊂ I+(Σ), then N−k(σ

′) intersects Σ on some

codimension-two surface X+, while if σ′ ⊂ I−(Σ), then N+l(σ
′) intersects Σ on some

codimension-two surface X−.4 Since XHRT is a surface of minimal cross-sectional area

on Σ, it follows that A[XHRT] ≤ A[X+] and A[XHRT] ≤ A[X−]. By the Raychaudhuri

equation (2.5) in the k direction and the fact that θk > 0 on σ′, it follows that θk > 0

on the entire segment of N−k(σ
′) between X+ and σ′, so A[X+] < A[σ′]. Similarly, the

Raychaudhuri equation in the l direction is

∇lθl = − 1

D − 2
θ2l − ς2l −Rablalb, (3.7)

where ςl is the shear of the l congruence and ∇l = la∇a. As a result, since θl < 0 on σ′,

we have θl < 0 on the entire segment of N+l(σ
′) between σ′ and X−, so A[X−] < A[σ′].

Since we have been considering the spacetime in which the area of XHRT is maximal for

fixed OW (σ′), we have S(outer)[σ′] = A[XHRT]/4G~. We thus obtain an upper bound on

the outer entropy of σ′:5

S(outer)[σ′] ≤ A[σ′]

4G~
. (3.8)

4 Holographic dual for spherically-symmetric spacetimes

Beyond the upper bound in eq. (3.8), we would like to have an explicit expression for

the outer entropy S(outer)[σ′], defined in section 3, for the generalized holographic screen

constructed in section 2. While there are subtleties for general spacetimes, we can derive

an explicit expression in the case of spherically-symmetric surfaces σ′.

Before assuming spherical symmetry, let us first establish some intermediate results.

First, we note that, for the σ ⊂ H for which σ′ ⊂ N−k(σ), there exists (since by hypothesis

σ is an outermost marginally-trapped surface) a partial Cauchy surface Σ ⊂ OW (σ) such

that for any slice ρ of Σ, which by definition subtends σ, A[ρ] > A[σ]. Such a partial

Cauchy surface also exists for σ′, since θk ≥ 0 between σ′ and σ and is positive at σ′:

simply take the union of Σ and N−k(σ) ∩ N+k(σ
′). Thus, there exists a Cauchy surface

Σ′ ⊃ σ′ for which Σ′− connects σ′ with the boundary and such that every slice ρ ⊂ Σ′−

satisfies A[ρ] > A[σ′].

We can prove that XHRT is in D(Σ′+), the closure of the domain of dependence of Σ′+,

the interior partial Cauchy surface ending on σ′. We recall that I±(σ′) and D(Σ′±) − σ′
form a partition of M − σ′. Suppose that XHRT 6⊂ D(Σ′+). Then either N−l(XHRT)

4An intersection of Nl with Σ is guaranteed by a no-go theorem for topology change in general relativity:

since M is by hypothesis globally hyperbolic, it has a Cauchy surface and M ' Σ ⊗ R [51], so any causal

hypersurface that completely divides the spacetime — such as Nl(σ
′) or N−k(σ′) ∪ N+l(σ

′) [43] — must

intersect any Cauchy surface in a codimension-two surface of finite area.
5Ref. [52] reaches a similar conclusion.
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or N+k(XHRT) intersects Σ′− on some surface ζ. We have A[ζ] > A[σ′]. Moreover, by

the Raychaudhuri equation along N−l(XHRT) and N+k(XHRT), we have A[XHRT] ≥ A[ζ].

Hence, A[XHRT] > A[σ′], in contradiction with the result established in section 3 that

A[σ′] ≥ A[XHRT]. We therefore must have XHRT ⊂ D(Σ′+).

4.1 Construction

In order to place a lower bound on S(outer)[σ′] for a spherically-symmetric σ′, it suffices

to analyze spacetimes that are also spherically symmetric in the interior of σ′; for these

geometries, we can find the maximal HRT surface and calculate its area. We will do this

presently and subsequently argue that our construction is optimal over all geometries,

producing the HRT surface of maximal area for fixed OW (σ′), so our lower bound is in fact

saturated.

To construct our spacetime outside of OW (σ′), we will use the characteristic initial

data formalism [53–59] as in ref. [39]. Given a Cauchy surface formed by light sheets,

the characteristic initial data formalism implies that a spacetime exists for self-consistent

initial data satisfying the constraint equations. For the null portion of a Cauchy surface in

the k direction, the constraint equations are [29, 30, 60–64]

∇kθk = − 1

D − 2
θ2k − ς2k −Gkk [Raychaudhuri]

Lkωi = −θkωi +
D − 3

D − 2
Diθk − (D · ςk)i +Gik [Damour-Navier-Stokes]

∇kθl = −1

2
R− θkθl + ω2 +D · ω +Gkl, [Cross-focusing]

(4.1)

while for a null portion of a Cauchy surface in the l direction, the constraint equations

become

∇lθl = − 1

D − 2
θ2l − ς2l −Gll [Raychaudhuri]

Llωi = −θlωi −
D − 3

D − 2
Diθl + (D · ςl)i −Gil [Damour-Navier-Stokes]

∇lθk = −1

2
R− θkθl + ω2 −D · ω +Gkl. [Cross-focusing]

(4.2)

Here, R is the intrinsic Ricci curvature of the codimension-two slices at constant affine

parameter and Gab is the Einstein tensor, Rab − 1
2Rgab. The twist one-form gauge field

(the Há́iček one-form) is ωi = 1
2qibLklb, where qab = gab+kalb+ lakb is the induced metric.

Lie derivatives are denoted by L, while D is the transverse covariant derivative within

the codimension-two surface. We use letters a, b for D-dimensional spacetime indices, i, j

for (D − 2)-dimensional transverse spatial indices in the codimension-two surface, and

indices k and l for a D-dimensional spacetime index contracted into null vectors ka and la,

respectively.

The junction conditions mandate continuity of θk, θl, and ωi, while ςk and ςl can change

discontinuously via an appropriate shock wave in the Weyl tensor [44] (i.e., gravitational

waves [65, 66]). We choose k and l to be affinely parameterized tangent vectors to null

– 15 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
3

geodesic congruences originating orthogonally from the codimension-two surfaces we con-

sider. We further specify the relative normalization of these vectors to be k · l = −1, so

gkl = −1. These choices eliminate other terms that could have appeared in the Damour-

Navier-Stokes equations in eqs. (4.1) and (4.2) [62]. On the k and l congruences, we can

define affine parameters ν and µ, respectively, normalized such that ∇ν = ∇k and ∇µ = ∇l.
Using the Einstein equation (3.6), we can replace Gkl by 8πGTkl − Λgkl = 8πGTkl + Λ,

Gkk by 8πGTkk, and Gll by 8πGTll. The transverse coordinates xi are chosen to always

lie within the codimension-two surface of constant affine parameter.

For now, we restrict to a spherically-symmetric spacetime in the interior of σ′, i.e., in

D(Σ′+). Requiring the energy-momentum tensor to respect the SO(D − 1) invariance of

spherical symmetry, we must have Tik = Til = 0. Similarly, the shears ςk and ςl both vanish,

as does the twist one-form ωi. Hence, for spherical spacetimes satisfying the Einstein

equation, the constraint equations (4.1) and (4.2) become

∇kθk = − 1

D − 2
θ2k − 8πGTkk [Raychaudhuri]

∇kθl = −1

2
R− θlθk + 8πGTkl + Λ [Cross-focusing]

(4.3)

and

∇lθl = − 1

D − 2
θ2l − 8πGTll [Raychaudhuri]

∇lθk = −1

2
R− θlθk + 8πGTkl + Λ. [Cross-focusing]

(4.4)

While the NEC requires that Tkk and Tll be nonnegative, the ΛDEC imposes a similar

condition on Tkl. We can rewrite the ΛDEC as the requirement that Tabt
a
1t
b
2 ≥ 0 for all

causal, future-directed vectors t1 and t2. Making the particular choice t1 = k and t2 = l,

we have Tkl ≥ 0.

For a spherically-symmetric spacetime, there is a nice relation between the intrinsic

Ricci curvature R and the null expansion. For a (D − 2)-sphere of radial coordinate r,

R =
(D − 2)(D − 3)

r2
, (4.5)

which implies∇k(logR) = −(2/r)(dr/dν). Writing A ∝ rD−2 for the area of the constant-ν

cross section of N−k(σ
′), we therefore have

θk =
∇kA
A

=
D − 2

r

dr

dν
= −D − 2

2
∇k logR. (4.6)

Given OW (σ′), let us now construct a particular spacetime and compute its HRT sur-

face. On N−k(σ
′), we will choose data with Tkk = 0. Hence, we can solve the Raychaudhuri

equation in eq. (4.3) to compute θk(ν) on N−k(σ
′):

θk(ν) =

[
1

θk[σ′]
+

ν

D − 2

]−1
, (4.7)

where we define σ′ to correspond to the ν = 0 surface. Thus, N−k(σ
′) encounters a caustic

at affine parameter

νc = −D − 2

θk[σ′]
. (4.8)

– 16 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
3

Using the relation (4.6), we have

R(ν) = R[σ′] exp

[
− 2

D − 2

∫ ν

0
θk(ν) dν

]
=

R[σ′][
1 + θk[σ′] ν

D−2

]2 =

[
θk(ν)

θk[σ′]

]2
R[σ′]. (4.9)

Note that if R(ν) and θk(ν) diverge to +∞, they do so together, as r → 0. However, there

exist spacetimes that do not have r → 0 accessible along N−k(σ
′) and hence do not possess

a caustic.

Let us define a surface X ⊂ N−k(σ
′) on which θl = 0. For X to exist, we must

choose our data on N−k(σ
′) such that the affine parameter ν0 on which θl vanishes satisfies

ν0 > νc. We choose Tkl to vanish on N−k(σ
′).6 Without loss of generality, let us write

θl(ν) on N−k(σ
′) as

θl(ν) =
θk[σ

′]θl[σ
′]q(ν)

θk(ν)
(4.10)

for some function q(ν) that satisfies q(ν = 0) = 1 and q(ν = ν0) = 0 on X, that is,

for some ν0 ∈ (νc, 0). Since we seek the first time θl vanishes when going from σ′ along

the −k congruence, without loss of generality we can take q(ν) > 0 for ν ∈ (ν0, 0]. The

cross-focusing equation in eq. (4.3), combined with eqs. (4.7) and (4.9), then becomes

(aν + b)3q′ + (aν + b)2(cq + d) = e, (4.11)

where the constants a, b, c, d, e are given by

a =
1

D − 2
, b =

1

θk[σ′]
, c =

D − 1

D − 2
,

d = − Λ

θk[σ′]θl[σ′]
, e = − R[σ′]

2(θk[σ′])3θl[σ′]
.

(4.12)

The general solution is

q(ν) =
e

(c− 2a)(aν + b)2
+m(aν + b)−

c
a − d

c
, (4.13)

where m is a constant of integration that we fix by demanding q(ν = 0) = 1. That is,

q(ν) =

[
1 +

θk[σ
′]ν

D − 2

]−(D−1)
+
D − 2

D − 1

Λ

θk[σ′]θl[σ′]

{
1−

[
1 +

θk[σ
′]ν

D − 2

]−(D−1)}

+
1

2

D − 2

D − 3

R[σ′]

θk[σ′]θl[σ′]

{[
1 +

θk[σ
′]ν

D − 2

]−(D−1)
−
[
1 +

θk[σ
′]ν

D − 2

]−2}
.

(4.14)

6We can make the choice of Tkl and Tkk vanishing on N−k(σ′) consistently with energy-momentum

conservation ∇aTab = 0, the NEC, the ΛDEC, and smoothness via a regularization procedure, in which we

consider a shell of matter occupying a thin slice of N−k(σ′) adjacent to σ′, then take the limit as the shell

thickness goes to zero.
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⇠

q(⇠)

⇠0

1

Figure 5. Example of the polynomial q(ξ) = (1−ρ−λ)ξD−1 +ρξ2 +λ. By definition, q(ξ = 1) = 1

and ρ > 0, but λ is allowed to take either sign. For D ≥ 4, there is exactly one real zero at ξ0 > 1

if and only if ρ + λ > 1. For small ξ, the polynomial behaves like ρξ2 + λ, while for large ξ, the

dominant contribution is (1 − ρ− λ)ξD−1.

Defining

ξ(ν) =
θk(ν)

θk[σ′]
,

ρ = −1

2

D − 2

D − 3

R[σ′]

θk[σ′]θl[σ′]
,

λ =
D − 2

D − 1

Λ

θk[σ′]θl[σ′]
,

(4.15)

we can rewrite q simply as

q(ν) = (1− ρ− λ)ξ(ν)D−1 + ρ ξ(ν)2 + λ. (4.16)

By definition, ρ > 0. For now, we will take D ≥ 4, postponing a discussion of the

special case of D = 3 to section 4.3.3. The polynomial in eq. (4.16) will have a single zero

at some real value of ξ = ξ0 > 1 if and only if

ρ+ λ > 1. (4.17)

See figure 5 for an illustration of q as a polynomial in ξ. This zero corresponds to the

surface X on which θl = 0, at affine parameter

ν0 =
D − 2

θk[σ′]

(
1

ξ0
− 1

)
. (4.18)

Since by assumption ξ0 ∈ (1,∞), we have ν0 ∈ (νc, 0), so X indeed exists with θk having

no caustic along N+k(X) ∩N−k(σ′) = Σ1. The area of X is

A[X] = A[σ′] exp

[∫ ν0

0
θk(ν)dν

]
=
A[σ′]

ξD−20

. (4.19)

For general ρ, λ, and D, there is no closed-form expression for the zero of eq. (4.16), even

if it exists. For the present, we will continue to write the zero as ξ0 and will later consider

the cases in which either ρ or λ is negligible, allowing the zero to be analytically expressed.
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From X, we will follow N+l(X), holding θl = 0 fixed, so that the area is stationary

along the light sheet. This requires setting Tll = 0 to satisfy the Raychaudhuri equation in

eq. (4.4). We also set Tkl = 0 and hold R fixed.

Consider the polynomial q(ξ) = (1 − ρ − λ)ξD−1 + ρξ2 + λ. From the fact that

q(ξ = 1) = 1, that ξ0 gives the unique real zero of q(ξ) for ξ0 > 1, and that q(ξ) < 0 for

sufficiently large ξ, we must have dq/dξ < 0 at ξ = ξ0. By eq. (4.16), this requirement

implies

(D − 3)ρξ20 + (D − 1)λ > 0. (4.20)

Using eq. (4.20), along with the definition of ξ in eq. (4.15) and its relation to R(ν) in

eq. (4.9), we therefore have

−1

2
R[X] + Λ = −1

2
ξ20R[σ′] + Λ =

θk[σ
′]θl[σ

′]

D − 2
[(D − 3)ρξ20 + (D − 1)λ] < 0. (4.21)

Hence, from the cross-focusing equation in eq. (4.4), we find that ∇lθk < 0 on N+l[X], so

there will be some value µ0 of the affine parameter µ for which θk vanishes. The surface

X̃ at µ = µ0 satisfies θk = θl = 0.

We can complete the entire spacetime by CPT reflection about X̃. Furthermore,

defining Σ2 = N−l(X̃) ∩ N+l(X), we observe that X̃ is a minimal cross section on the

Cauchy slice Σ̃ formed by Σ′− ∪ Σ1 ∪ Σ2 and its CPT reflection. As a result, any other

extremal surface X̂ will have greater area than X̃, following the argument in ref. [39]: by

the Raychaudhuri equation any slice of Nk(X̂) has area upper bounded by that of X̂ and

furthermore the intersection of Nk(X̂) with Σ̃ will have area lower bounded by that of X̃,

so A[X̃] ≤ A[X̂]. Hence, X̃ is an HRT surface, which we will henceforth label as XHRT.

The area of XHRT equals A[X] by construction. We have thus constructed a lower bound

for S(outer)[σ′]:

S(outer)[σ′] ≥ A[XHRT]

4G~
=
A[X]

4G~
=

A[σ′]

4G~ξD−20

. (4.22)

Our construction is summarized in figure 6.

4.2 Optimization

We now argue that our construction in section 4.1 is in fact optimal. Namely, for a

spherically-symmetric σ′ with its outer wedge fixed, the construction produces the space-

time that has the HRT surface with the largest possible area (subject to the NEC and

ΛDEC). This implies that our lower bound in eq. (4.22) is actually an equality.

We begin by considering an arbitrary spacetime satisfying our energy conditions and

with the outer wedge of σ′ fixed. Since XHRT ⊂ D(Σ′+), N−l(XHRT)∩N−k(σ′) is nonempty

and, in particular, is some codimension-two surface Y ; see figure 7. Now, A[Y ] ≤ A[σ′],

since θk > 0 along N−k(σ
′). The fact that θl = 0 on XHRT implies θl[Y ] ≥ 0, so since

θl[σ
′] < 0 by construction, Y 6= σ′ and A[Y ] < A[σ′]. By continuity, there must be some

surface Z ⊂ N+k(Y ) ∩N−k(σ′) for which θl[Z] = 0. We have A[Z] < A[σ′] and, if Z 6= Y ,

A[Z] > A[Y ].

Recalling the definition of Σ as a Cauchy surface on which XHRT has minimal cross-

sectional area, we can define the codimension-two surface W = Nl(Z) ∩ Σ, which by
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l k

�0

� H 0
H

XHRT

✓l = 0

✓k > 0

✓l = 0

✓k = 0

X

✓l < 0

✓k > 0

⌃2

⌃1

⌃0�

OW (�0)

Figure 6. Illustration of the construction of the HRT surface using the characteristic initial data

formalism. The outer wedge OW (σ′) (red shading) of σ′ (blue dot) is held fixed. We flow along

N−k(σ′) until we reach a marginally antitrapped surface X. We then flow along N+l(X) while

keeping cross sections of the light sheet stationary, until we reach a surface XHRT where θk =

θl = 0 (black dot). The spacetime is completed (gray shading) by CPT reflection across Nl(XHRT)

(orange solid and dotted lines). The partial Cauchy surface Σ′− (white dashed line) connecting

σ′ with the boundary by hypothesis satisfies A[ρ] > A[σ′] for all cross sections ρ ⊂ Σ′−. We

note that XHRT has minimal cross-sectional area on the Cauchy slice formed by the union of Σ′−,

Σ1 = N−k(σ′) ∩ N+k(X) (green solid line), and Σ2 = N+l(X) ∩ N−l(XHRT) (orange solid line),

along with their CPT reflections, so XHRT is indeed an HRT surface.

l k

OW (�0)

�0

XHRT

⌃0�
⌃0+

D(⌃0+)

Y

Z

W
⌃

Figure 7. Illustration of various definitions appearing in the procedure for maximizing the area

of the HRT surface while keeping the outer wedge OW (σ′) (red shading) of σ′ (blue dot) held

fixed. The HRT surface XHRT (black dot) must appear in the closure of the inner domain of

dependence D(Σ′+) (blue shading) of a Cauchy surface Σ′ passing through σ′ (white dashed line),

so the surface Y = N−l(XHRT) ∩N−k(σ′) exists, on which θl ≥ 0. By continuity, there must exist

a surface Z ⊂ N+k(Y ) ∩ N−k(σ′) on which θl = 0. By definition, there exists a Cauchy surface

Σ ⊃ XHRT for which XHRT has the minimal cross-sectional area. Since A[Z] ≥ A[W ], where

W = Nl(Z) ∩ Σ, it follows that A[Z] ≥ A[XHRT].
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definition satisfies A[W ] ≥ A[XHRT]. Since θl = 0 on Z, it follows from the Raychaudhuri

equation (3.7) that slices of Nl(Z) have areas upper bounded by A[Z], so A[W ] ≤ A[Z]

and hence A[Z] ≥ A[XHRT].

To compute S(outer)[σ′], we must maximize the area of the HRT surface or, equivalently,

minimize the quantity

∆A = A[σ′]−A[XHRT] (4.23)

over all spacetimes with the geometry of σ′ held fixed. Let us write ∆A as the sum of ∆A1

and ∆A2, where
∆A1 = A[σ′]−A[Z]

∆A2 = A[Z]−A[XHRT].
(4.24)

We note that ∆A1 > 0 and ∆A2 ≥ 0. A sufficient condition for minimizing ∆A is to

simultaneously minimize ∆A1 and ∆A2.

While we have taken σ′ to be spherically symmetric, the quantity S(outer)[σ′] is in gen-

eral maximized over all possible spacetimes with OW (σ′) held fixed; in particular, N−k(σ
′)

could a priori break spherical symmetry. Even if this happens, we would take the affine

parameter ν, which is now defined separately for each generator of N−k(σ
′), to respect

spherical symmetry at σ′. Specifically, we choose ν = 0 at σ′ and take the normalization

of ν such that θk is uniform over σ′.

Let us first choose the data on N−k(σ
′) ∩ N+k(Z) to minimize ∆A1. Because of the

Raychaudhuri equation (2.5) and the NEC, a given area element δA can only decrease

toward the −k direction (recalling that θk = d log δA/dν). Hence, we optimize the area of

Z by taking ςk = Tkk = 0 along each null geodesic generating N−k(σ
′). This implies that

without a priori assuming spherical symmetry, we have deduced that the area elements

at surfaces of constant ν are maximized if they are all given by a simple rescaling of the

original area element:

δA(ν) = δA[σ′] exp

[∫ ν

0
θk(ν)dν

]
= δA[σ′]

[
1 +

νθk[σ
′]

D − 2

]D−2
. (4.25)

In particular, the metric on a constant-ν surface is given simply by conformally rescaling

that on σ′, so it is spherically symmetric. Hence, our optimization of ∆A1 implies, given

a spherically-symmetric surface σ′, that N−k(σ
′) is also spherical on surfaces of constant

affine parameter.7

Since we now know that the geometry on N−k(σ
′) respects spherical symmetry, we

expect to have ωi = Tik = 0 there as well. This conclusion can also be understood as

a consequence of the ΛDEC and our choice of Tkk = 0, via the following argument. By

the ΛDEC, −T abtb is a causal vector for all causal t, so in particular va = −T ak is causal.

By choosing Tkk = 0 along N−k(σ
′), we have v · k = 0, so v ∝ k. Since the transverse

coordinates are by definition orthogonal to k, vi vanishes, so Tik = 0; see ref. [67]. By our

choice Tkk = ςk = 0, the Raychaudhuri equation implies that Diθk = 0, as seen in eq. (4.25).

Hence, the Damour-Navier-Stokes equation in eq. (4.1) becomes simply Lkωi = −θkωi,
7This conclusion is closely related to the light-cone theorem [67], which uses stronger assumptions about

the energy conditions but a more general geometric setup.
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which, given the initial condition that ωi[σ
′] = 0 (by spherical symmetry of σ′), implies

that ωi = 0 along the entirety of N−k(σ
′) as expected.

The above choice of the data, ςk = Tkk = 0, only minimizes ∇kθk. To actually minimize

∆A1, we must also make ∇kθl as large and negative as possible, in order to bring the θl = 0

surface, Z, to its minimum affine distance from σ′; see eq. (4.25). By eq. (4.3), this can

be done by taking Tkl = 0 along N−k(σ
′) ∩ N+k(Z). Strictly speaking, we have thus far

minimized ∆A1 by optimizing each free term of definite sign in the Raychaudhuri and cross-

focusing equations in eq. (4.1), which is consistent with taking Z to be a surface of constant

affine parameter. The remaining term in the cross-focusing equation, D · ω, has indefinite

sign and one could a priori imagine using this term to bring Z closer to σ′ along some

generators of N−k(σ
′). However, taking ω to be nonzero along N−k(σ

′) requires turning on

(D · ςk)i or Tik by the Damour-Navier-Stokes equation, which in turn implies positive ς2k or

Tkk, which take δA(ν) away from its optimal profile (4.25). Moreover, since D·ω integrates

to zero over any slice of N−k(σ
′), taking this term to be nonzero shifts some areas of Z

closer to σ′ and some farther away, in a manner that averages to zero for small ω. Since

δA(ν) is convex in ν, integrating δA(ν) over the angular directions for a distribution of ν

values averaging to ν̄ always gives a smaller quantity than integrating δA(ν̄) for constant

ν̄. Hence, a nonzero D · ω term only increases ∆A1, so our procedure thus far has indeed

achieved the minimum value of ∆A1 consistent with our energy conditions and spherical

symmetry of σ′.

We next consider ∆A2. The constraint equations in eq. (4.2) imply that we can achieve

the optimal configuration of ∆A2 = 0 by taking Y = Z, so that θl vanishes at Y , and setting

ςl = Tll = 0 along N+l(Y ) until we reach a surface with θk = 0. That is, we hold constant

affine parameter slices of N+l(Y ) to be stationary, so that each slice has the same area,

while keeping ωi = Tkl = 0. This part of our setup is the time-reversed and k ↔ l analogue

of the construction in ref. [39].

We have now minimized ∆A1 and ∆A2 simultaneously, producing the HRT surface of

maximal area consistent with the outer wedge for spherically-symmetric σ′. The generality

of the argument implies that this construction is indeed optimal. Since the construction is

precisely what we followed in deriving eq. (4.22) in section 4.1, the inequality there is in

fact an equality:

S(outer)[σ′] =
A[σ′]

4G~ξD−20

. (4.26)

In particular, this implies that any successful algorithm for maximizing the area of the HRT

surface, not necessarily that of section 4.1, would be guaranteed to reproduce eq. (4.26).8

We emphasize that ξ0 in eq. (4.26) can be computed entirely from geometrical data on

σ′. We therefore have a new entry in the holographic dictionary: the spherical outer en-

tropy of σ′ is a holographic quantity defined by the geometry of this leaf of the generalized

8For example, had we instead followed N+l(σ
′) to a surface X ′ on which θk = 0 and then followed

N−k(X ′) to an HRT surface, the optimal construction would have yielded a surface of the same area as

given by eqs. (4.19) and (4.26); this follows from the manifest symmetry of eqs. (4.19) and (4.26) under

swapping k ↔ l: ξ0 is a zero of the polynomial given in eq. (4.16), with coefficients given in eq. (4.15) that

are invariant under k ↔ l.
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holographic screen. The outer entropy expression in eq. (4.26) is one of the main results of

this work, giving an entropic interpretation to the generalized holographic screen. This is

especially interesting in the case in which σ′ corresponds to the event horizon: eq. (4.26)

provides the first valid interpretation of the event horizon in terms of an entropic, holo-

graphic quantity computable from the horizon geometry.

4.3 Cases of interest

Though it is not possible to obtain an analytic expression for ξ0 from eq. (4.16) in complete

generality, we can compute it in several cases of interest. The first is the case of negligible

λ, which corresponds to three possible situations: (i) an asymptotically-flat spacetime with

Λ = 0, (ii) a black hole in which R � |Λ|, i.e., a black hole much smaller than the (A)dS

scale, and (iii) folding Λ into Tab and, instead of the ΛDEC requirement, simply requiring

the DEC on this entire Tab. Another case of interest is that of negligible ρ, corresponding

to a black hole much larger than the length scale of the cosmological constant. Other

particular situations to consider are three-dimensional spacetimes and surfaces in pure

(A)dS or Minkowski space. We will compute S(outer)[σ′] for each of these cases in turn.

4.3.1 Small Λ

Let us first consider the case in which Λ is negligible in the polynomial in eq. (4.16), i.e.,

cases (i), (ii), or (iii) above. We can then drop λ, so the zero in q occurs at

ξ0 = (1− ρ−1)− 1
D−3 . (4.27)

Note that ρ→∞ corresponds to the apparent horizon, where θk[σ
′]→ 0. Since R[σ′] > 0,

θk[σ
′] > 0, and θl[σ

′] < 0, we have ρ > 0. Moreover, the condition (4.17) for the zero

requires ρ > 1 (which is automatically satisfied for a spherically-symmetric normal surface),

so ξ0 > 1. Therefore, for generalized holographic screens with a geometry on σ′ satisfying

ρ > 1, the spherical outer entropy is

S(outer)[σ′] =
A[σ′]

4G~

(
1− 1

ρ

)D−2
D−3

. (4.28)

This provides us with an explicit entropic formula for the geometry of a generalized

holographic screen, including the event horizon, for any outer wedge associated with a

spherically-symmetric normal surface on which the cosmological constant is negligible. It

is then straightforward to compute ρ for various spacetimes of interest and substitute into

eq. (4.28) to yield the outer entropy.

4.3.2 Large Λ

Let us now consider the opposite limit, in which the cosmological constant dominates over

the intrinsic curvature of the generalized holographic screen. Since our construction in

section 4.1 required ρ + λ > 1, in the limit in which Λ dominates we must consider a

negative cosmological constant Λ < 0 in order to have λ > 0 (by eq. (4.15), recalling that

θk[σ
′] > 0 and θl[σ

′] < 0), so we are in an asymptotically-AdS spacetime. We consider
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a black hole much larger than the AdS length. In this case, we can drop ρ from the

polynomial in eq. (4.16) and solve for ξ0:

ξ0 = (1− λ−1)− 1
D−1 . (4.29)

Note that λ → ∞ corresponds to the apparent horizon, θk[σ
′] → 0, for fixed Λ. The

condition (4.17) for the zero requires λ > 1, so ξ0 > 1. We thus have the outer entropy

given by the geometry on σ′ in the large black hole limit:

S(outer)[σ′] =
A[σ′]

4G~

(
1− 1

λ

)D−2
D−1

. (4.30)

This is an entropic dual of the geometry of the generalized holographic screen, including

the event horizon, for a black hole large compared to the AdS scale.

4.3.3 D = 3

If D = 3, the analysis above needs to be modified. In particular, in three spacetime

dimensions, the polynomial in eq. (4.16) becomes

q(ν) = (1− λ)ξ(ν)2 + λ, (4.31)

so the terms involving ρ cancel. Note that, despite the factor of D− 3 in the denominator

of ρ in eq. (4.15), there is also a factor of D− 3 in the numerator arising from the intrinsic

Ricci curvature given in eq. (4.5), so the cancellation of ρ is well defined. We therefore have

ξ0 =
(
1− λ−1

)− 1
2 , (4.32)

so that the solution behaves like the Λ-dominated case of section 4.3.2. This implies that

a surface with θl = 0 can only be reached in D = 3 for Λ < 0.

We can understand what is happening here from the cross-focusing equation for ∇kθl
in eq. (4.3). Even without assuming spherical symmetry, R vanishes in D = 3, since σ′ is

simply a curve, which does not have intrinsic curvature. Hence, the only term in eq. (4.3)

that can be negative — and thus allow θl to reach zero somewhere on N−k(σ
′) — is Λ.

This requirement of negative cosmological constant accords with the fact that in D = 3

there are no black holes in asymptotically-flat or asymptotically-dS spacetimes, but there

do exist BTZ black holes in asymptotically-AdS spacetimes [68].

4.3.4 Vanishing entropy for (A)dS

Suppose that σ′ is in a region of pure AdS for a black hole formed from collapse; for

example, σ′ can be in the innermost region of AdS-Vaidya spacetime. In ref. [41], this

spacetime was given as a counterexample to show that the area of the causal surface in

this region cannot have a straightforward holographic interpretation as a von Neumann

entropy. This conclusion follows from rigidity of the bulk vacuum, which implies that any

spacetime one can construct with OW (σ′) fixed would have no HRT surface for σ′ located

in a pure AdS region.
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We can see how the expression of our entropy in eq. (4.26) remains consistent in this

setup. For pure AdS spacetime,9 the metric is given by

ds2 = −
(

1 +
r2

L2

)
dt2 +

1

1 + r2

L2

dr2 + r2dΩ2
D−2, (4.33)

where

Λ = −(D − 1)(D − 2)

2L2
. (4.34)

For the radial null vectors k and l, with k · l = −1, we can choose the relative normalization

to be equal:

ka, la =
1√
2

 1√
1 + r2

L2

, ±
√

1 +
r2

L2
, ~0

 . (4.35)

With this choice, dr/dν =
√

(1 + (r2/L2))/2 and

θk = −θl =
D − 2√

2r

√
1 +

r2

L2
. (4.36)

From the definitions in eq. (4.15), along with eqs. (4.5), (4.34), and (4.36), we find that

for a spherically-symmetric leaf σ′ in a pure (A)dS region,

ρ =

(
1 +

r20
L2

)−1
λ =

r20
L2

(
1 +

r20
L2

)−1
,

(4.37)

where r0 represents the location of σ′. We thus find that for spacetimes locally AdS, dS,

or Minkowski around σ′, spherical light sheets obey eq. (4.16) with

ρ+ λ = 1. (4.38)

In these special cases, q(ν) does not have a zero for ξ(ν) > 1, since the requirement

in eq. (4.17) is violated. In particular, θl → −∞ when θk → +∞ as ν → νc, which

corresponds to the light sheets converging to a point at r = 0. This implies that there is

no HRT surface, so S(outer)[σ′] = 0. Formally, setting ρ+ λ = 1 in eq. (4.16), q(ξ) becomes

ρξ2 + 1−ρ, which has no zero in (1,∞) for positive ρ; in this case, as ξ →∞ (as θk →∞),

eq. (4.10) implies that θl → −∞. If we instead take the limit as ρ+λ→ 1, the zero satisfies

ξ0 →∞, so eq. (4.26) implies that S(outer)[σ′]→ 0. Thus, the outer entropy we derived in

eq. (4.26) does not suffer from the problem that the causal holographic information (which

was given simply by the area, i.e., eq. (4.26) without the ξD−20 factor) had encountered.

9For the straightforward extension to dS spacetime, one can simply take L2 to be negative.
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4.4 The second law

Let us now compute how S(outer)[σ′] changes as we evaluate it for different leaves σ′(τ)

along the generalized holographic screen H ′. By definition, the outer wedges for consecutive

leaves along H ′ are nested, OW (σ′(τ1)) ⊃ OW (σ′(τ2)) for τ1 < τ2. This implies that the

spacetime region held fixed when we scan possible spacetimes in finding the HRT surface of

maximal area becomes progressively smaller. Since a maximum evaluated on consecutively

larger domains can only grow, it follows that we should have ∇τS(outer)[σ′(τ)] ≥ 0. We will

now see explicitly how this comes about for the spherical outer entropy given by eq. (4.26),

which will serve as a nontrivial check on our result. Note that the area law computed for

H ′ in section 2.3 does not a priori guarantee a second law for eq. (4.26), since S(outer)[σ′(τ)]

is not simply the area of σ′; instead, we will find that the increase in the area of σ′(τ),

along with the behavior of ξ0(τ), will combine to give a second law for S(outer)[σ′(τ)].

Even though the root ξ0 of the polynomial in eq. (4.16) cannot be expressed in closed

form for general D, ρ, and λ, we can still prove the second law for S(outer)[σ′(τ)]. Recalling

that the tangent vector along H ′ is h′a = αla + βka, we have

∇τ logS(outer)[σ′(τ)] = α∇l logS(outer)[σ′] + β∇k logS(outer)[σ′]

= α[θl − (D − 2)∇l log ξ0] + β[θk − (D − 2)∇k log ξ0],
(4.39)

where for the rest of this section, we will suppress the implicit argument of σ′(τ) in variables

on the right-hand side. Let us take the ∇k derivative of

q(ν0) = (1− ρ− λ)ξD−10 + ρξ20 + λ = 0 (4.40)

to get
(1− ρ− λ)

[
(D − 3)ρξ20 + (D − 1)λ

]
∇k log ξ0

=
[
ξ20 + λ(1− ξ20)

]
∇kρ+

[
1− ρ

(
1− ξ20

)]
∇kλ,

(4.41)

where we have used the condition (4.40) again to write ξD−10 in terms of ξ20 . The analogous

equation also holds for the ∇l derivative.

From the definitions in eq. (4.15), using the constraint equations in eq. (4.3) along

with eq. (4.6), we find

∇kρ = ρ
(
R−1∇kR− θ−1k ∇kθk − θ−1l ∇kθl

)
= ρ

(
D − 3

D − 2
θk +

R
2θl
− Λ

θl
+

8πG

θk
Tkk −

8πG

θl
Tkl

)
= ρ

[
D − 3

D − 2
θk(1− ρ)− D − 1

D − 2
θkλ+ 8πG

(
Tkk
θk
− Tkl

θl

)] (4.42)

and
∇kλ = −λ

(
θ−1k ∇kθk + θ−1l ∇kθl

)
= λ

(
D − 1

D − 2
θk +

R
2θl
− Λ

θl
+

8πG

θk
Tkk −

8πG

θl
Tkl

)
= λ

[
D − 1

D − 2
θk(1− λ)− D − 3

D − 2
θkρ+ 8πG

(
Tkk
θk
− Tkl

θl

)]
.

(4.43)

– 26 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
3

Hence, from eq. (4.41) we obtain, again using the definition of the zero in eq. (4.40) and

after some rearrangement,

∇k log ξ0 =
8πG

θkθl

ξD−10

(D − 3)ρξ20 + (D − 1)λ
(Tklθk − Tkkθl) +

θk
D − 2

. (4.44)

Using this relation and the analogous one for ∇l, eq. (4.39) becomes

∇τS(outer)[σ′(τ)] = −8πG(D − 2)ξD−10 S(outer)[σ′(τ)]

θkθl[(D − 3)ρξ20 + (D − 1)λ]
[(αθl + βθk)Tkl − αTllθk − βTkkθl]

= − 2π(D − 2)ξ0A[σ′]

~θkθl[(D − 3)ρξ20 + (D − 1)λ]
[(αθl + βθk)Tkl − αTllθk − βTkkθl] .

(4.45)

Let us consider the signs of the factors appearing in eq. (4.45) in turn. The term

in brackets in the denominator, (D − 3)ρξ20 + (D − 1)λ, is guaranteed to be positive by

eq. (4.20). Moreover, by eq. (2.8), αθl+βθk > 0. In particular, we have α < 0 and θl < 0 on

σ′ from the definition of a generalized holographic screen given in section 2.2, while β > 0

and θk > 0 since we are considering the outermost spacelike portion of H ′. Together with

ξ0 > 1, we thus conclude that the entire prefactor in front of the last set of square brackets

in eq. (4.45) is positive. Now, the NEC requires that Tkk and Tll are both nonnegative,

while the ΛDEC implies that Tkl ≥ 0. Thus, all the terms in the last set of square brackets

in eq. (4.45) are nonnegative. This proves that the outer entropy given in eq. (4.26) obeys

the second law of thermodynamics,

∇τS(outer)[σ′(τ)] ≥ 0, (4.46)

along the generalized holographic screen. Interestingly, eq. (4.45) is reminiscent of a Clau-

sius relation, with dS ∝ dQ for some flow of energy-momentum.

5 Conclusions

In this work, we identified a large new class of codimension-one surfaces, the generalized

holographic screens, that extend the concept of holographic screens [31] to surfaces that

are not marginally trapped. The family of generalized holographic screens connect the

concept of holographic screens with event horizons, as both are members of this larger

class of geometric objects. We showed in section 2 that all generalized holographic screens

satisfy an area theorem (2.13), thus relating the previously known area theorems of ref. [1]

and ref. [32] (as well as the related area laws of refs. [38, 69–71]).

Further, we showed in sections 3 and 4 that generalized holographic screens have

an entropic interpretation. In eq. (4.26), we calculated the outer entropy — the largest

von Neumann entropy, computed via the HRT formula, for fixed outer wedge — for leaves of

the generalized holographic screen for spherically-symmetric spacetimes and subsequently

showed that this entropy obeys the second law of thermodynamics.
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The interpretation of the event horizon geometry through some relation to the von Neu-

mann entropy — via a well defined holographic prescription — has hitherto been unknown

in AdS/CFT. In this paper, we have found such a connection, expressing a particular geo-

metric quantity defined on the event horizon — notably, not simply the area — in terms of

the outer entropy. This outer entropy gives the maximum area of the HRT surface for the

collection of geometries with fixed causal wedge; equivalently, this expresses the maximal

entanglement entropy between the two sides of the black hole for a pure boundary state.

We note that the specific details of the construction of the generalized holographic

screen in section 2 are in fact not necessary to obtain the area law result in eq. (2.13)

or the second law result in eq. (4.46).10 Instead, it is sufficient to require that the outer

wedges of infinitesimally separated leaves σ′(τ) be nested in the outer spacelike direction

(α < 0 and β > 0) and that σ′(τ) is a normal surface (θk > 0 and θl < 0). This is possible,

e.g., even if σ′(τ) is not entirely within N−k(σ) for some single σ ⊂ H as required for a

general holographic screen in section 2. In fact, a weaker set of conditions guaranteeing

αθl + βθk > 0 is sufficient to obtain the area law of eq. (2.13), while the second law of

eq. (4.46) requires the related condition of positivity of eq. (4.45). A related example is

the monotonicity theorem for renormalized leaf areas given in ref. [38].

The generalized holographic screen H ′ and holographic screen H are related to each

other by a network of coarse- and fine-graining relationships. As illustrated in panels a)

and b) of figure 8, the second law on H associated with increase of the outer entropy can

be understood from the nesting of outer wedges of leaves σ ⊂ H, i.e., coarse-graining of the

data held fixed in the direction of increasing τ , and similarly for H ′. Meanwhile, each leaf

σ′ ⊂ H ′ is by definition in Nk(σ) for some leaf σ ⊂ H. For spacelike H ′, σ′ ⊂ N−k(σ) and

we can therefore view the process of going from H to H ′ as a fine-graining (i.e., more data

is being held fixed), since OW (σ′) ⊃ OW (σ), as shown in panel c) of figure 8, illustrating

the upper bound S(outer)[σ′] ≤ A[σ]/4G~. Finally, in the case of a spacelike generalized

holographic screen formed via the intersection construction of section 2.4, for each leaf

σ′ ⊂ H ′ there is also a leaf in H for which σ′ is on the −l light sheet and for which the

outer wedge contains OW (σ′), as illustrated in panel d) of figure 8; in this direction, going

from H to H ′ can be viewed as a coarse-graining. In this case, the area of the corresponding

leaf on H provides a lower bound on S(outer)[σ′].

This work leaves numerous avenues for future research. Investigation of the explicit

boundary formulation of the outer entropy for non-marginally-trapped surfaces, in terms

of boundary operators (cf. ref. [39]) and the boundary density matrix, could prove fruitful.

Moreover, it would be very interesting to explore the meaning and utility of the outer

entropy of generalized holographic screens in more general spacetimes as a compelling

geometric quantity in the context of classical general relativity.

10We thank Raphael Bousso for discussion on this point.
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H

l k

H

H H

H 0 H 0

H 0 H 0

a) b)

c) d)

Figure 8. Generic Penrose diagrams illustrating the relationship between the outer wedges of the

holographic screen H (red line) and generalized holographic screen H ′ (blue line), in the spacelike

case. In the direction of increasing τ (arrows), outer wedges of leaves of H are nested, as shown

in panel a). Similarly, wedges of H ′ are nested as τ increases, as shown in panel b). This nesting

mandates an increase in outer entropy on H and H ′. For spacelike screens, each leaf σ′ ⊂ H ′ is

in N−k(σ) for some leaf σ ⊂ H, leading to the nesting OW (σ′) ⊃ OW (σ) illustrated in panel c).

In the case of a generalized holographic screen constructed via intersections as in section 2.4, the

opposite nesting also occurs, as shown in panel d). Outer wedges attached to leaves on H (H ′) are

shown in translucent red (respectively, blue), with darker shades indicating increasing τ .
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