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E-mail: mbocardo@math.cinvestav.mx, compean@fis.cinvestav.mx,

wazuniga@math.cinvestav.edu.mx

Abstract: In this article we discuss the limit p approaches to one of tree-level p-adic

open string amplitudes and its connections with the topological zeta functions. There is

empirical evidence that p-adic strings are related to the ordinary strings in the p → 1 limit.

Previously, we established that p-adic Koba-Nielsen string amplitudes are finite sums of

multivariate Igusa’s local zeta functions, consequently, they are convergent integrals that

admit meromorphic continuations as rational functions. The meromorphic continuation of

local zeta functions has been used for several authors to regularize parametric Feynman

amplitudes in field and string theories. Denef and Loeser established that the limit p → 1 of

a Igusa’s local zeta function gives rise to an object called topological zeta function. By using

Denef-Loeser’s theory of topological zeta functions, we show that limit p → 1 of tree-level

p-adic string amplitudes give rise to certain amplitudes, that we have named Denef-Loeser

string amplitudes. Gerasimov and Shatashvili showed that in limit p → 1 the well-known

non-local effective Lagrangian (reproducing the tree-level p-adic string amplitudes) gives

rise to a simple Lagrangian with a logarithmic potential. We show that the Feynman

amplitudes of this last Lagrangian are precisely the amplitudes introduced here. Finally,

the amplitudes for four and five points are computed explicitly.
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1 Introduction

The p-adic field and string theories have been studied over the time with some periodic fluc-

tuations in their interest (for some reviews, see [1–4]). Recently a considerable amount of

work has been performed on this topic in the context of the AdS/CFT correspondence [5–8].

On the other hand, Sen’s conjecture asserts that the tachyonic potential has a local

minimum which exactly cancels the total energy of a D-brane in string theory [9, 10]. This

conjecture has been proved by using bosonic and superstring field theories [11, 12]. In the

p-adic setting, Sen’s conjecture is easier to verify than the classical version, see [13].

In string theory, N -point string amplitudes are an important observable, which is

computed through integration over the moduli space of Riemann surfaces [14]. It is known

that even at the tree-level amplitudes the convergence of these integrals have not been well

understood for general N [15]. For particular values of N , for instance N = 4 or N = 5 for

open and closed strings at the tree-level there are some criteria for an appropriate choice
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of the external momenta in such a way that the corresponding integrals converge and the

corresponding amplitudes are well defined.

In [16] (see also [17]), an effective Lagrangian was proposed from which there can be

derived the Feynman rules necessary to compute the N -point p-adic string amplitudes at

tree-level. Later, some time-dependent solutions to the effective action have been found

representing a rolling tachyon for potentials for both p even and odd [18]. Moreover this

effective action has been used also with cosmological purposes, for instance inflation was

studied in [19].

The p-adic strings seem to be related in some interesting ways with ordinary strings.

For instance, connections through the adelic relations [20] and through the limit when

p → 1 [21, 22], have been discussed in the literature. In [21], the limit p → 1 of the

effective action was studied, it was showed that this limit gives rise to a boundary string

field theory (BSFT), which was previously proposed byWitten in the context of background

independent string theory [23, 24]. The limit p → 1 in the effective theory can be performed

without any problem. Though originally p was a prime number for the world-sheet theory,

in the effective theory one can consider p just as integer or real parameter and take formally

the limit p → 1. The resulting theory is related to a field theory describing an open string

tachyon [25]. In the limit p → 1 also there are exact noncommutative solitons, some of

these solutions were found in [26]. Moreover, this limit has found a very interesting physical

interpretation in [27], in terms of a lattice discretization of ordinary string worldsheet.

In the worldsheet theory we cannot forget the nature of p as a prime number, thus the

analysis of the limit is more subtle. The correct way of taking the limit p → 1 involves the

introduction of finite extensions of the p-adic field Qp. The totally ramified extensions gives

rise to a finer discretization of the worldsheet following the rules of the renormalization

group [27]. In this article we will also require the use of finite extensions of the p-adic field

at the level of the string amplitudes.

In [28], we showed that the p-adic open string N−point tree amplitudes are bonafide

integrals that admit meromorphic continuations as rational functions, by relating them with

multivariate local zeta functions (also called multivariate Igusa local zeta functions [29, 30]).

Moreover Denef and Loeser [31] established that the limit p approaches to one of a local

zeta function gives rise a new object called topological zeta function, which is associated

with a complex polynomial. By using the theory of topological zeta functions, we show

that limit p → 1 of p-adic string amplitudes gives rise to new string amplitudes, that we

called Denef-Loeser open string amplitudes which are rational functions. Taking the limit

at the level of Koba-Nielsen amplitudes involves the introduction of finite extension of the

p-adic field Qp. This task is carried out here using the results of [28].

Finally, we want to point out that the results presented in this article are essentially

independent of the results given in [28]. More precisely, in order to use Denef-Loeser’s

theory of topological zeta functions, we do not need the convergence of the p-adic Koba-

Nielsen string amplitudes which is one of the main results in [28]. Instead of this, we can

regularize ‘formally’ the p-adic Koba-Nielsen amplitudes by expressing them as a sum of

local zeta functions, without using the fact that all these functions are holomorphic in a

common domain, fact that was established in [28].
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The article is organized in the following form. In section 2, we provide a brief review

of the limit p → 1 in the effective action following the results from [21]. In particular, we

emphasize that in this limit, the theory with a logarithmic potential, given in [21], gives

rise to Feynman rules that by definition generate Feynman tree-level amplitudes of the

p-adic open string in the limit p → 1. Section 3 will be devoted to present the extension

of our results [28] to unramified finite field extensions of the p-adic field. Section 4 gives

the description of the p → 1 limit of the p-adic string amplitudes. For this we use the

formulation of topological zeta functions [31, 32]. We also present the computation of

N = 4 and N = 5 points Denef-Loeser amplitudes. In section 5, we give some final

comments. In appendices A and B at the end of the article, we review some mathematical

results employed along sections 3 and 4.

2 The limit p → 1 in the effective action

In this section we will briefly overview some of the results from [21]. As we mentioned before

in [16], it was argued than the effective action on the D-dimensional target spacetime M

and from which one can obtain the p-adic scattering amplitudes at tree-level is given by

S(φ) =
1

g2
p2

p− 1

∫
dDx

(
−

1

2
φp−

1
2
∆φ+

1

p+ 1
φp+1

)
, (2.1)

where g is the coupling constant, ∆ is the Laplacian on the underlying spacetime M and

D is the dimension of M , which is, in principle, arbitrary. The equation of motion is

p−
1
2
∆φ = φp. (2.2)

This equation has different solitonic solutions depending of the value of p [10, 18, 33].

Remember that p is a prime number, which is a parameter in the equation of mo-

tion (2.2), since this equation is formulated in the target space RD, we can extend p to be

a real parameter.

By considering formally that p is a real variable and comparing the Taylor expansion

of exp(−1
2∆ log p) and exp(p log φ) at (p − 1), we get that the equation of motion (2.2)

becomes

∆φ = −2φ log φ, (2.3)

which can be interpreted as a ‘linearization’ of (2.2) in the variable p. This is a linear

theory with potential

V (φ) = φ2 log
φ2

e
. (2.4)

Thus ‘the p → 1 limit of effective action’ yields

S(φ) =

∫
dDx

(
(∂φ)2 − V (φ)

)
, (2.5)

where (∂φ)2 = ηij∂iφ · ∂jφ and ηij is the inverse of Minkowski metric

ηij = diag(−1, 1, . . . , 1), (2.6)
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in the sense that action (2.5) leads to equations of motion (2.3). Notice that the factor
p2

g2(p−1)
in action (2.1) does not play any role in the linearization of the equation of mo-

tion (2.2) around p = 1. The computation of the correlation functions of the interacting

theory can be done leaving out the mentioned factor. At the end of the computation the

coupling constant g can be introduced again without any problem.

Then Feynman rules which can be derived from the above Lagrangian are simple to

obtain (see for instance [34]). The free theory with a source term is given by

S0(φ) =

∫
dDx

[
(∂φ)2 + φ2(x) + J(x)φ(x)

]
. (2.7)

The equation of motion is given by

(∆− 1)φ(x) =
1

2
J(x). (2.8)

We use the following notation and conventions:

φ(x) = −

∫
dDyG(x, y)

J(y)

2
, G(x, y) =

∫
dDk

(2π)D
eik·(x−y)G(k)

and

δD(x− y) =

∫
dDk

(2π)D
eik·(x−y),

where G(x, y) is the Green function of operator ∆−1 and G(k) is its Fourier transform. Af-

ter a standard analysis in quantum field theory one finds that the propagator xij , represent

the Green function G(k), and can be expressed as

xij =
1

ki · kj + 1
, (2.9)

where we are using the notation for the propagator from [16]. Here ki with i = 1, . . . , N are

the external momenta of the scattered particles. The products ki · kj for all the possible

values of pairs i, j represent the different tachyons propagating in channels s, t and u.

Moreover, the interactions are represented by vertices with four external lines attached to

each vertex.

In [21] it was argued that action (2.5) equivalently describes the tree-level of the tachyon

field (without quantum corrections) and neglecting all other fields of the BSFT action given

in [23, 24]. The relation is performed through a simple field redefinition T = − log φ2, where

T is the tachyon field.

2.1 Amplitudes from the Gerasimov-Shatashvili Lagrangian

In this section we show how to extract the four and five-point amplitudes of the Gerasimov-

Shatashvili Lagrangian (2.5) found in [21]. In order to do that, we first require to study

the interacting theory. The generating functional of the correlation function for the free

theory is given by

Z0[J ] = N [det(∆− 1)]−1/2 exp

{
−

i

4~

∫
dDx

∫
dDx′J(x)GF (x− x′)J(x′)

}
, (2.10)
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where GF (x− x′) is the Green-Feynman function of time-ordered product of two fields of

the theory, N is a normalization constant, [det(∆ − 1)]−1/2 is a suitable regularization of

the divergent determinant bosonic operator, see e.g. [34].

Action (2.5) can be conveniently rewritten as

S(φ) =

∫
dDx

[
(∂φ)2 +m2 − U(φ)

]
, (2.11)

where U(φ) = 2φ2 log φ. We expand U(φ) in Taylor series around the origin as follows:

U(φ) = Aφ2 +Bφ3 + Cφ4 +Dφ5 + · · · , (2.12)

where A,B,C and D are certain real constants.

In the standard formalism of QFT [34], the N -point correlation functions are propor-

tional to

〈T (φ̂(x1)φ̂(x2) · · · φ̂(xN ))〉 =
(−i~)N

Z[J ]

δnZ[J ]

δJ(x1)δJ(x2) · · · δJ(xN )

∣∣∣∣
J=0

, (2.13)

where the φ̂’s are N local operators (observables) in N different points x1, x2, . . . , xN of

the Minkowski spacetime, Z[J ] is the generating functional constructed using interacting

Lagrangian (2.11). The functional can be computed as

Z[J ] = exp

{
−

iB

~

∫
dDx

(
− i~

δ

δJ(x)

)3

−
iC

~

∫
dDx

(
− i~

δ

δJ(x)

)4

−
iD

~

∫
dDx

(
− i~

δ

δJ(x)

)5

+ · · ·

}
Z0[J ]. (2.14)

We assert that connected tree-level scattering amplitudes of this theory match exactly with

the corresponding amplitudes of the effective action (2.1) in the limit when p tends to one.

2.2 Four-point amplitudes

The 4-point amplitudes can be computed as follows: the 4-point vertex can be obtained

purely from the quartic interaction at the first order in perturbation theory. The generating

functional, with the vertex labeled by x and 4 external legs attached to it, is given by

Z[J ] = · · · − iC~3
∫

dDx

(
δ

δJ(x)

)4

Z0[J ] + · · · . (2.15)

The corresponding 4-point amplitude is proportional to

δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

=−4!iC~3
∫

dDx

[
−

i

2~
GF (x−x1)

][
−

i

2~
GF (x−x2)

][
−

i

2~
GF (x−x3)

][
−

i

2~
GF (x−x4)

]

=−
3iC

2~

∫
dDx GF (x−x1) GF (x−x2) GF (x−x3) GF (x−x4), (2.16)
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where GF (x− y) is the Green-Feynman propagator. In the Fourier space the above ampli-

tude corresponds to the Feynman diagram with only one vertex and four external legs. In

analogy to the notation from [16], we will represent it by the letter K4.

The interaction term Bφ3 in the Lagrangian has also a non-vanishing contribution

to the 4-points tree amplitudes at the second order in perturbation theory. They are

described by Feynman diagrams with two vertices located at points x and y connected by

a propagator GF (x − y) and with two external legs attached to each vertex. In this case

the amplitude is computed from the relevant part of the generating functional

Z[J ] = · · ·+
B2~4

2

∫
dDx

∫
dDy

(
δ

δJ(x)

)3( δ

δJ(y)

)3

Z0[J ] + · · · . (2.17)

The connected 4-point amplitudes at the second order of the cubic interaction Cφ3 yields

δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

= 18B2~4
∫

dDx

∫
dDy

[
−

i

2~
GF (x− y)

]

×

{[
−

i

2~
GF (x− x4)

][
−

i

2~
GF (x− x3)

][
−

i

2~
GF (y − x2)

][
−

i

2~
GF (y − x1)

]

+

[
−

i

2~
GF (x− x4)

][
−

i

2~
GF (y − x3)

][
−

i

2~
GF (x− x2)

][
−

i

2~
GF (y − x1)

]

+

[
−

i

2~
GF (x− x4)

][
−

i

2~
GF (y − x3)

][
−

i

2~
GF (y − x2)

][
−

i

2~
GF (x− x1)

]

+

[
−

i

2~
GF (y − x4)

][
−

i

2~
GF (y − x3)

][
−

i

2~
GF (x− x2)

][
−

i

2~
GF (x− x1)

]

+

[
−

i

2~
GF (y − x4)

][
−

i

2~
GF (x− x3)

][
−

i

2~
GF (y − x2)

][
−

i

2~
GF (x− x1)

]

+

[
−

i

2~
GF (y − x4)

][
−

i

2~
GF (x− x3)

][
−

i

2~
GF (x− x2)

][
−

i

2~
GF (y − x1)

]}
.

(2.18)

This amplitude corresponds to the scattering of particles propagating in the sum of the s,

t and u channels. They together with the 4-point vertex (2.16) constitute the tree-level

amplitudes arising in the 4-point p-adic amplitudes in the limit when p → 1. Thus in

the Fourier space the total amplitude for 4-point amplitudes consists of the sum of the

amplitude given by eq. (2.16) plus the contribution (2.18) that we schematically write (in

notation from [16]) as

A4 = K4 +
∑

i<j

xij , (2.19)

where xij is given by (2.9).

2.3 Five-point amplitudes

For the 5-point amplitudes there is a contribution coming from the quintic interaction term

Dφ5 in the Lagrangian. Thus we have at the first order in the perturbative expansion that

the relevant contribution of the generating functional is given by

Z[J ] = · · · −D~4
∫

dDx

(
δ

δJ(x)

)5

Z0[J ] + · · · . (2.20)
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The vertex function for the 5-point amplitude reads

δ5Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)δJ(x5)

∣∣∣∣
J=0

= −5!D~4
∫

dDx

[
−

i

2~
GF (x− x1)

]

×

[
−

i

2~
GF (x− x2)

][
−

i

2~
GF (x− x3)

][
−

i

2~
GF (x− x4)

][
−

i

2~
GF (x− x5)

]
.

(2.21)

Similarly to the case of 4-point amplitudes, the above amplitude is represented by a diagram

with only one vertex and five external legs and the amplitude denoted by K5 in the Fourier

space.

Now we study the possible terms to the 5-point tree-amplitude coming from the in-

teraction term Bφ3 × Cφ4. This term consist of p-adic amplitudes in the fourier space

constructed from amplitudes with 2-vertices, 5 external legs and one internal leg as de-

scribed in section 3 from [16].

The relevant part of the generating functional is given by

Z[J ] = · · · − iBC~5
∫

dDx

∫
dDy

(
δ

δJ(x)

)3( δ

δJ(y)

)4

Z0[J ] + · · · . (2.22)

The computation of a 5-point amplitude from this generating functional is given by

δ5Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)δJ(x5)

∣∣∣∣
J=0

=−iBC(12)2~5
∫

dDx

∫
dDy

[
−

i

2~
GF (x−y)

]{[
−

i

2~
GF (x−x5)

][
−

i

2~
GF (x−x4)

]

×

[
−

i

2~
GF (y−x3)

][
−

i

2~
GF (y−x2)

][
−

i

2~
GF (y−x1)

]
+· · ·

+

[
−

i

2~
GF (y−x5)

][
−

i

2~
GF (x−x4)

][
−

i

2~
GF (x−x3)

]

×

[
−

i

2~
GF (y−x2)

][
−

i

2~
GF (y−x1)

]
+· · ·

}
. (2.23)

There will be in total ten terms in equation (2.23) including the possible permutations

of labels (x1, . . . , x5) and of the two vertices at x and y.

Finally the lacking contribution to the 5-point amplitudes comes from the third order

of the cubic interaction term in the Lagrangian. We have three vertices labeled by x, y

and z. Two of these vertices are connected to two external legs and to one internal line.

The other is attached to two internal lines and one external. Thus the generating function

in this case is given by

Z[J ] = · · ·+
B3~6

3!

∫
dDx

∫
dDy

∫
dDz

(
δ

δJ(x)

)3( δ

δJ(y)

)3( δ

δJ(z)

)3

Z0[J ] + · · · .

(2.24)
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The contribution of these terms to the 5-point function results

δ5Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)δJ(x5)

∣∣∣∣
J=0

=
B3~6a

3!

∫
dDx

∫
dDy

∫
dDz

[
−

i

2~
GF (x− y)

]

×

[
−

i

2~
GF (y − z)

]{[
−

i

2~
GF (y − x5)

][
−

i

2~
GF (z − x4)

][
−

i

2~
GF (z − x3)

]

×

[
−

i

2~
GF (x− x2)

][
−

i

2~
GF (x− x1)

]
+ · · ·

}
, (2.25)

where a is a suitable constant.

Thus we summarize the contributions to the 5-point amplitudes A5 obtained from the

Gerasimov and Shatashvili Lagrangian. This is written schematically by

A5 = K5 +
∑

i<j

K4xij +
∑

i<j

∑

k<l

xij · xkl,

where the three terms in the sum correspond to the amplitudes given by eqs. (2.21), (2.23)

and (2.25) respectively, and where xij is given by (2.9).

Through out this procedure we can compute a N -point tree-level p-adic string am-

plitude in the limit p → 1 for any number of external legs N . As we have argued in

this section, this amplitude can be obtained from the Gerasimov-Shatashvili action with a

logarithmic potential (2.5).

Notice that the calculations involving the limit p → 1 in the case of effective action

are performed in RD, meanwhile the calculations involving the limit p → 1 in the case of

p-adic string amplitudes are performed in QD
p , and in the p-adic topology the limit p → 1

does not make sense. In section 4 we will give a rigorous procedure to get the limit p → 1

in the amplitudes and we will reproduce the correct Feynman rules discussed in the present

section. As a byproduct one can see that these amplitudes can be computed in a more

economic and efficient way by using this rigorous procedure.

3 Koba-Nielsen string amplitudes on finite extensions of

non-Archimedean local fields

3.1 p-adic string amplitudes

In [16] Brekke et al. discussed the amplitudes for the N -point tree-level p-adic bosonic

string amplitudes. They also computed the four and five-points amplitudes explicitly and

it was investigated how these amplitudes can be obtained from an effective Lagrangian.

The open string N−point tree amplitudes over the p-adic field Qp are defined as

A(N) (k) =

∫

QN−3
p

N−2∏

i=2

|xi|
k1·ki

p |1− xi|
kN−1·ki

p

∏

2≤i<j≤N−2

|xi − xj |
ki·kj

p

N−2∏

i=2

dxi, (3.1)

where |·|p is the p-adic norm (see appendix A),
∏N−2

i=2 dxi is the normalized Haar measure of

QN−3
p , k = (k1, . . . ,kN ) and ki = (k0,i, . . . , k25,i), i = 1, . . . , N , N ≥ 4, are the momentum

– 8 –
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components of the i-th tachyon (with Minkowski inner product ki ·kj = −k0,ik0,j+k1,ik1,j+

· · ·+ k25,ik25,j) obeying
N∑

i=1

ki = 0, ki · ki = 2, (3.2)

for i = 1, . . . , N . A central problem in string theory is to know whether integrals of

type (3.1) converge for some complex values ki · kj . Our results in [28] allow us to solve

this problem.

3.2 Non-Archimedean string zeta functions

In this subsection we extend some results of our previous work [28] from Qp to Ke, the

unique unramified extension of Qp of degree e. In this article we use most of the notation

and conventions introduced in [28].

For a discussion about non-Archimedean local fields, the reader may consult appendixA

or references [3, 40–42].

We consider K a non-Archimedean local field of characteristic zero. Denote by RK the

ring of integers of K, this ring contains a unique maximal ideal PK, which is principal. We

fix a generator π (also called a uniformizing parameter of K), so PK = πRK.

Any finite extension K of Qp is a non-Archimedean local field. Then

pRK = πmRK, m ∈ N. (3.3)

If m = 1 we say that K is a unramified extension of Qp, otherwise we say that K is a

ramified extension. It is well known that for every positive integer e there exist a unique

unramified extension Ke of Qp of degree e, which means that Ke is a Qp-vector space

of dimension e. From now on, π stands for a local uniformizing parameter of Ke, thus

pRKe
= πRKe

, RKe
/PKe

∼= Fpe and |π|Ke
= p−e. Thus π in Ke plays the role of p in Qp.

We now describe the generalization of p-adic Koba-Nielsen amplitudes. These ampli-

tudes are generalized as follows:

A(N) (k,Ke) =

∫

KN−3
e

N−2∏

i=2

|xi|
k1·ki

Ke
|1− xi|

kN−1·ki

Ke

∏

2≤i<j≤N−2

|xi − xj |
ki·kj

Ke

N−2∏

i=2

dxi (3.4)

where
∏N−2

i=2 dxi is the normalized Haar measure of KN−3
e .

Following [28], in order to study the amplitude A(N) (k;Ke), we introduce the open

string N -point zeta function, which is defined by

Z(N) (s,Ke) :=

∫

Ke
N−3rΛ

F (s,x;N,Ke)
N−2∏

i=2

dxi, (3.5)

where

F (s,x;N,Ke) =
N−2∏

i=2

|xi|
s1i
Ke

|1− xi|
s(N−1)i

Ke

∏

2≤i<j≤N−2

|xi − xj |
sij
Ke

. (3.6)
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Here we assume that s = (sij) ∈ CD, with D = (N−3)(N−4)
2 +2 (N − 3). Moreover sij = sji

for all i, j and x = (x2, . . . , xN−2) ∈ KN−3
e and Λ is defined by

Λ :=



(x2, . . . , xN−2) ∈ KN−3

e ;
N−2∏

i=2

xi (1− xi)
∏

2≤i<j≤N−2

(xi − xj) = 0



 (3.7)

and
∏N−2

i=2 dxi is the Haar measure of KN−3
e normalized so that the measure of RN−3

Ke
is 1.

The name for Z(N) (s,Ke) comes from the fact that it is a finite sum of multivariate local

zeta functions, as we explain below, see also appendix B. In the definition of eq. (3.5) we

remove the set Λ from the domain of integration in order to use the formula as = es ln a for

a > 0 and s ∈ C.

For a subset I of T = {2, . . . , N − 2}, we define the zeta function

Z(N) (s; I,Ke) =

∫

Sect(I)

F (s,x;N,Ke)
N−2∏

i=2

dxi, (3.8)

attached to the sector

Sect(I) =
{
(x2, . . . , xN−2) ∈ KN−3

e ; |xi|Ke
≤ 1 ⇔ i ∈ I

}
. (3.9)

Then Z(N) (s,Ke) is a sum over all the possible inequivalent sectors Sect(I):

Z(N) (s,Ke) =
∑

I⊆T

Z(N) (s; I,Ke) . (3.10)

As in [28], we can show that

Z(N) (s,Ke) =
∑

I⊆T

peM(s)Z(N) (s; I, 0,Ke) Z(N) (s;T r I, 1,Ke) , (3.11)

where

M(s) := |T r I|+
∑

i∈TrI

(s1i + s(N−1)i) +
∑

2≤i<j≤N−2
i∈TrI, j∈T

sij +
∑

2≤i<j≤N−2
i∈I,j∈TrI

sij . (3.12)

The functions Z(N) (s; I, 0,Ke) and Z(N) (s;T r I, 1,Ke) are given by

Z(N) (s; I, 0,Ke) =

∫

R
|I|
Ke

F0 (s,x;N,Ke)
∏

i∈I

dxi, (3.13)

where

F0 (s,x;N,Ke) :=
∏

i∈I

|xi|
s1i
Ke

|1− xi|
s(N−1)i

Ke

∏

2≤i<j≤N−2
i,j∈I

|xi − xj |
sij
Ke

(3.14)

and

Z(N) (s;T r I, 1,Ke) =

∫

R
|TrI|
Ke

F1 (s,x;N,Ke)
∏

i∈TrI

dxi, (3.15)
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where

F1 (s,x;N,Ke) :=

∏

2≤i<j≤N−2
i,j∈TrI

|xi − xj |
sij
Ke

∏

i∈TrI

|xi|
2+s1i+s(N−1)i+

∑
2≤j≤N−2,j 6=i sij

Ke

. (3.16)

By convention Z(N) (s;∅, 0,Ke) = 1, Z(N) (s;∅, 1,Ke) = 1. Regarding the notation, for

J ⊆ T , J 6= ∅, we denote by R
|J |
Ke

the set {(xi)i∈J ;xi ∈ RKe
}, if J = ∅, then R

|J |
Ke

= ∅. We

denote by T r I = {j ∈ T ; j /∈ I}.

The functions Z(N) (s; I, 0,Ke) and Z(N) (s;T r I, 1,Ke) are multivariate local zeta

functions, see Apendix B. The local zeta functions are related with deep arithmetical and

geometrical matters, and they have been studied extensively since the 50s, see [30, 44] and

references therein.

In [28] we showed that Z(N) (s,Qp) has an analytic continuation to the whole CD as

a rational function in the variables p−sij , see Propositions 1, 2 and Theorem 1 in [28].

These results are valid for finite extensions of Qp. More precisely, all the zeta functions

appearing in the right-hand side of formula (3.11) admit analytic continuations to the

whole CD as rational functions in the variables p−esij . In addition, each of these functions

is holomorphic on a certain domain in CD and the intersection of all these domains contains

an open and connected subset of CD. Therefore Z(N) (s,Ke) is a holomorphic function in a

certain domain of CD admitting a meromorphic continuation to the whole CD as a rational

function in the variables p−esij , see Theorem 1 in [28].

We use Z(N)(s,Ke) as regularizations of Koba-Nielsen amplitudes A(N) (k,Ke), more

precisely, we define

A(N) (k,Ke) = Z(N)(s,Ke) |sij=ki·kj
. (3.17)

Then A(N) (k,Ke) is a well defined rational function in the variables p−eki·kj , which agree

with the integral (3.4) when it converges.

4 The limit p → 1 in p-adic string amplitudes

In the previous sections we have seen that the p-adic string amplitudes are essentially local

zeta functions, explicitly Z(N) (s; I, 0,Ke) and Z(N) (s;T r I, 1,Ke) are both multivariate

local zeta functions of type Z (s,f ,Ke) for suitable f (for more details see appendix B).

4.1 Topological zeta functions

To make mathematical sense of the limit of Z(N) (s,Qp) as p → 1 we use the work of Denef

and Loeser, see [31] and [32]. The first step is to pass from Qp to Ke, e ∈ N, and consider

Z(N) (s,Ke) instead of Z(N) (s,Qp), and compute the limit of Z(N) (s,Ke) as e → 0 instead

of the limit of Z(N) (s,Qp) as p → 1. In order to compute the limit e → 0 is necessary to

have an explicit formula for Z(N) (s,Ke) which is equivalent to have explicit formulas for

integrals Z(N) (s; I, 0,Ke) and Z(N) (s;T r I, 1,Ke), see (3.11). These integrals are special

types of multivariate local zeta functions Z (s, f,Ke), see appendix B. Consequently, we

need an explicit formula for the multivariate Igusa’s local zeta function Z (s, f,Ke), this
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formula is a simple variation of the explicit formula established by Denef [46], which requires

Hironaka’s desingularization Theorem [45], see also appendix B.1.

Let f = (f1, . . . , fr) be a polynomial mapping, with fi(x) ∈ Z [x], x = (x1, . . . , xn),

a non-constant polynomial for i = 1, . . . , r. Let (Y, h) be an embedded resolution of

singularities for D = Spec Q [x] / (
∏r

i=1 fi(x)) over Q with {Ei} the irreducible components

of h−1(0).

For any scheme V of finite type over a field L ⊂ C, we denote by χ (V ) the Euler

characteristic of the C-analytic space associated with V . Denef and Loeser associated to∏r
i=1 fi(x) the following function (the topological zeta function):

Ztop (s) =
∑

I⊆T

χ

(
◦
EI

)∏

i∈I

1

vi +
∑r

j=1Nijsj
, (4.1)

for the notation, see appendix B.

In arbitrary dimension there is no a canonical way of picking an embedded resolution

of singularities for a divisor. Then, it is necessary to show that definition (4.1) is inde-

pendent of the resolution of singularities chosen, this fact was established by Denef and

Loeser in [31], see also [32]. By using the explicit formula (B.5)–(B.6), Denef and Loeser

showed that

Ztop (s) = lim
e→0

Z (s,f ,Ke) . (4.2)

The limit e → 0 makes sense because one can l-adically interpolateZ (s,f ,Ke) as a function

of e. This means that there exist κ ∈ Nr {0} and a meromorphic function in the variables

s and e, Z l (s,f , e, n) on Zr
l × (κZl) such that for any s ∈ Nr and e ∈ κZl verifies that

Z l (s,f , e, n) = Z (s,f ,Ke) . (4.3)

In addition, it is possible to choose κ such that Z l (s,f , e, n)
(
vi +

∑r
j=1Nijsj

)n
is a

convergent series on Zr
l × (κZl).

In particular

lim
e→0

cI(Ke) = χc

(
◦
EI ⊗ Fa

pe ,Fχtriv

)
= χ

(
◦
EI

)
, (4.4)

for almost all prime number p, where χc denotes the Euler characteristic with respect

to l-adic cohomology with compact support, and Fχtriv denotes a suitable sheaf, and Fa
pe

denotes an algebraic closure of Fpe . Furthermore, they gave a description of the poles of

the multivariate local zeta functions in terms of the poles of the topological zeta function:

if ρ is a pole of Ztop (s), then for almost all prime numbers p there exist infinitely many

unramified extensions Ke of Qp for which ρ is a pole of Z (s,f ,Ke), see [Theorem (2.2)

in [31]].

4.2 String amplitudes and topological string zeta functions

By using the fact that Z(N) (s; I, 0,Ke) and Z(N) (s;T r I, 1,Ke) are particular cases of

Z (s,f ,Ke), and by applying (4.2), we define

Z
(N)
top (s; I, 0) = lim

e→0
Z(N) (s; I, 0,Ke) (4.5)
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and

Z
(N)
top (s;T r I, 1) = lim

e→0
Z(N) (s;T r I, 1,Ke) , (4.6)

which are elements of Q (sij , i, j ∈ {1, . . . , N − 1}), the field of rational functions in the

variables sij , i, j ∈ {1, . . . , N − 1} with coefficients in Q. Then, by using (3.11) we define

the open string N-point topological zeta function as

Z
(N)
top (s) =

∑

I⊆T

Z
(N)
top (s; I, 0)Z

(N)
top (s;T r I, 1) . (4.7)

Then, we have the following result: the open string N -point topological zeta function

Z
(N)
top (s) is a rational function of Q (sij , i, j ∈ {1, . . . , N − 1}) defined as (4.7).

We define the Denef-Loeser open string N-point amplitudes at the tree level as

A
(N)
top (k) = Z

(N)
top (s) |sij=ki·kj

, (4.8)

with i ∈ {1, . . . , N − 1}, j ∈ T or i, j ∈ T , where T = {2, . . . , N − 2}. Thus the Denef-

Loeser amplitudes are rational functions of the variables ki · kj , i, j ∈ {1, . . . , N}.

4.3 Denef-Loeser open string four-point amplitudes

In this subsection we calculate the open string 4-point topological zeta function. We recall

that the open string 4-point zeta function is defined as

Z(4)(s,Ke) =

∫

Ke

|x2|
s12
Ke

|1− x2|
s32
Ke

dx2. (4.9)

From (3.11) and (3.12), we calculate the contributions of each sector attached to I⊆T ={2}:

Z(4)(s,Ke) = Z(4)(s; {2} , 0,Ke)Z
(4)(s; {∅} , 1,Ke)

+ pe(1+s12+s32)Z(4)(s; {∅} , 0,Ke)Z
(4)(s; {2} , 1,Ke), (4.10)

where we recall that Z(4)(s; {∅} , 0,Ke) = 1, Z(4)(s; {∅} , 1,Ke) = 1.

By using the results given in sections 3 and 4, we obtain

Z(4)(s,Ke) = Z(4)(s; {2} , 0,Ke) + pe(1+s12+s32)Z(4)(s; {2} , 1,Ke)

=

∫

RKe

|x2|
s12
Ke

|1− x2|
s32
Ke

dx2 + pe(1+s12+s32)

∫

RKe

|x2|
−2−s12−s32
Ke

dx2, (4.11)

where RKe
is the ring of integers of Ke and

Z(4)(s; {2} , 0,Ke) = 1− 2p−e +
(1− p−e) pe(−1−s12)

1− pe(−1−s12)
+

(1− p−e) pe(−1−s32)

1− pe(−1−s32)
(4.12)

and

Z(4)(s; {2} , 1,Ke) =
(1− p−e) pe(1+s12+s32)

1− pe(1+s12+s32)
. (4.13)

Taking the limit e approaches to zero, we obtain

Z
(4)
top(s; {2} , 0) = −1 +

1

s12 + 1
+

1

s32 + 1
(4.14)

– 13 –



J
H
E
P
0
8
(
2
0
1
8
)
0
4
3

I Ic Sect(I)

{2} {3} RKe
×Ke\RKe

{3} {2} Ke\RKe
×RKe

{2, 3} ∅ RKe
×RKe

∅ {2, 3} Ke\RKe
×Ke\RKe

Table 1. In the table we enumerate the different subsets I, their complements T r I and their

associated region Sect(I).

and

Z
(4)
top(s; {2} , 1) = −

1

s12 + s32 + 1
. (4.15)

Consequently

Z
(4)
top(s) = −1 +

1

s12 + 1
+

1

s32 + 1
−

1

s12 + s32 + 1
. (4.16)

By using the kinematic relations k1+ . . .+k4 = 0 and k2
i = 2 we get k1 ·k2+k3 ·k2+1 =

−1− k2 · k4, thus the Denef-Loeser string 4-point amplitude is given by

A
(4)
top(k) = Z

(4)
top(k) = −1 +

1

k1 · k2 + 1
+

1

k3 · k2 + 1
+

1

k2 · k4 + 1
. (4.17)

This result is precisely the one that is obtained by finding the scattering amplitudes from

the resulting theory in the limit p → 1 as we described in section 2.

4.4 Denef-Loeser open string five-point amplitudes

The open string 5 -point zeta function is given by

Z(5)(s,Ke) =

∫

K2
e

|x2|
s12
Ke

|x3|
s13
Ke

|1− x2|
s42
Ke

|1− x3|
s43
Ke

|x2 − x3|
s23
Ke

dx2dx3. (4.18)

Formulae (3.11)−(3.12) require an explicit description of the sectors attached to all the

subsets I of T = {2, 3}, i.e. for any I ∈ {{2}, {3}, {2, 3},∅}. For instance, the sector

corresponding to T = {2, 3} is Sect(T ) =
{
(x2, x3) ∈ K2

e; |x2|Ke
≤ 1 and |x3|Ke ≤ 1

}
. An

explicit description of all the sectors is given in table 1.

The open string 5-point topological zeta function is defined as

Z
(5)
top (s) =

∑

I⊆T

Z
(5)
top (s; I, 0)Z

(5)
top (s;T r I, 1) . (4.19)

Table 2 contains explicit formulae for all the integrals Z
(5)
top (s; I, 0) and Z

(5)
top (s;T r I, 1).
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I Z
(5)
top (s; I, 0) Z

(5)
top (s;T r I, 1)

{2} −1 + 1
1+s12

+ 1
1+s42

− 1
1+s13+s43+s23

{3} −1 + 1
1+s13

+ 1
1+s43

− 1
1+s12+s42+s23

{2, 3}

[
1

1+s12
+ 1

1+s13
+ 1

1+s23
− 1

]
1

2+s12+s13+s23

+ 1
1+s12

[
1

1+s43
− 1

]
+ 1

1+s13

[
1

1+s42
− 1

]
+

2− 1
1+s23

− 1
1+s42

− 1
1+s43

+

1
2+s42+s43+s23

[
1

1+s42
+ 1

1+s43
+ 1

1+s23
− 1

]

1

{∅} 1

− 1
2+s52+s53+s23

×


1
1+s12+s42+s23

+ 1
1+s13+s43+s23

+ 1
1+s23

− 1




Table 2. The topological zeta functions Z
(5)
top (s; I, 0) and Z

(5)
top (s;T r I, 1) is written for each

subset I and its complement T r I.

Thus, the Denef-Loeser open string 5-point amplitude is given by

A
(5)
top(k)=

[
1

1+k1 ·k2
+

1

1+k4 ·k2
−1

][
−

1

1+k3 ·k5

]
+
[
−

1

1+k2 ·k5

][
1

1+k1 ·k3
+

1

1+k4 ·k3
−1

]

+
[

1

1+k1 ·k2
+

1

1+k1 ·k3
+

1

1+k2 ·k3
−1

]
1

1+k4 ·k5
+

1

1+k1 ·k2

[
1

1+k4 ·k3
−1

]

+
1

1+k1 ·k3

[
1

1+k4 ·k2
−1

]
+2−

1

1+k2 ·k3
−

1

1+k4 ·k2
−

1

1+k4 ·k3

+
1

1+k1 ·k5

[
1

1+k4 ·k2
+

1

1+k4 ·k3
+

1

1+k2 ·k3
−1

]

−
1

1+k1 ·k4

[
1

1+k5 ·k2
+

1

1+k3 ·k5
+

1

1+k2 ·k3
−1

]
. (4.20)

5 Final remarks

In this article we have considered the limit p → 1 of p-adic Koba-Nielsen amplitudes.

In order to make mathematical sense of this limit, we used the theory of topological zeta

functions introduced by Denef and Loeser. This requires to extend the p-adic Koba-Nielsen

amplitudes to unramified extensions of Qp, more precisely to Ke the unique unramified

extension of degree e of Qp, and then to express these amplitudes as a finite sum of

multivariate Igusa’s zeta functions, see formulae (3.11)−(3.12). This step is carried out

using the results of [28], however, we do not need the convergence of the p-adic Koba-

Nielsen amplitudes.

In this setting, using results due to Denef and Loeser, the limit p → 1 becomes the limit

e → 0. The computation of this last limit requires explicit formulae for certain multivariate

Igusa’s zeta functions, the required formulae were obtained using results due to Denef. By

taking the limit e → 0 in the Koba-Nielsen amplitudes over Ke, we obtain the corresponding
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string amplitudes. We computed explicitly the 4 and 5-point Denef-Loeser string ampli-

tudes, see formulae (4.17) and (4.20). These amplitudes coincide exactly with the quantum

field derivation from the Gerasimov-Shatashvili Lagrangian as presented in section 2.

The topological zeta functions are particular cases of the motivic Igusa’s zeta functions

constructed by Denef and Loeser in [35] using the theory of motivic integration, see [36].

Consequently, we can assert that there exist motivic Koba-Nielsen amplitudes which spe-

cializes to the topological Denef-Loeser amplitudes introduced here and to the classical

p-adic Koba-Nielsen amplitudes, however, we do not know if these motivic amplitudes

have any physical meaning.

Such as it was mentioned in the introduction of [28], see also [37], there are deep

connections between local zeta functions with string amplitudes and quantum field theory

amplitudes that still are not fully understood.

Another relevant research direction is to explore the relation between the topologi-

cal amplitudes introduced here with the amplitudes coming from the BSFT Lagrangian

proposed by Witten in [23, 24]. We expect a relation due to the work of Gerasimov and

Shatashvili [21]. It would be also interesting to study the incorporation of a B-field to

the string amplitudes such as was worked out in [38]. In this article the amplitudes are

modified by a noncommutative parameter satisfying the Moyal bracket. Finally it would

be also interesting to study the interplay between p-adic amplitudes in field theory [39],

AdS/CFT correspondence [5] and the renormalization group in discrete world-sheet in the

limit p → 1, see [27], using the methods introduced here.
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A Non-Archimedean local fields

In these appendices, we review some basic ideas and results on non-Archimedean and

multivariate local zeta functions that we use along this article.

We recall that the field of rational numbers Q admits two types of norms: the

Archimedean norm (the usual absolute value), and the non-Archimedean norms (the p-

adic norms) which are parameterized by the prime numbers. The field of real numbers R

arises as the completion of Q with respect to the Archimedean norm. Fix a prime number

p, the p-adic norm is defined as

|x|p =





0 if x = 0

p−γ if x = pγ a
b ,

(A.1)
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where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) := ∞, is

called the p-adic order of x. The field of p-adic numbers Qp is defined as the completion

of the field of rational numbers Q with respect to the p-adic norm | · |p.

A non-Archimedean local field K is a locally compact topological field with respect to

a non-discrete topology, which comes from a norm |·|K satisfying

|x+ y|K ≤ max {|x|K , |y|K} , (A.2)

for x, y ∈ K. A such norm is called an ultranorm or non-Archimedean. Any non-

Archimedean local field K of characteristic zero is isomorphic (as a topological field) to

a finite extension of Qp, and it is called a p-adic field. The field Qp is the basic example of

non-Archimedean local field of characteristic zero. In the case of positive characteristic, K

is isomorphic to a finite extension of the field of formal Laurent series Fq ((T )) over a finite

field Fq, where q is a power of a prime number p.

In this article we work only with non-Archimedean fields K of characteristic zero. Thus

from now on K denotes one of these fields. The ring of integers of K is defined as

RK = {x ∈ K; |x|K ≤ 1} . (A.3)

Geometrically RK is the unit ball of the normed space (K, |·|K). This ring is a domain

of principal ideals having a unique maximal ideal, which is given by

PK = {x ∈ K; |x|K < 1} . (A.4)

We fix a generator π of PK i.e. PK = πRK. A such generator is also called a local uni-

formizing parameter of K, and it plays the same role as p in Qp.

The group of units of RK is defined as

R×
K = {x ∈ RK; |x|K = 1} . (A.5)

The natural map RK → RK/PK
∼= Fq is called the reduction mod PK. The quotient

RK/PK
∼= Fq, is a finite field with q = pf elements, and it is called the residue field of K.

Every non-zero element x of K can be written uniquely as x = πord(x)u, u ∈ R×
K . We set

ord(0) = ∞. The normalized valuation of K is the mapping

K → Z ∪ {∞}

x → ord(x).

Then |x|K = q−ord(x) and |π|K = q−1.

We fix S ⊂ RK a set of representatives of Fq in RK, i.e. S is a set which is mapped

bijectively onto Fq by the reduction mod PK. We assume that 0 ∈ S. Any non-zero element

x of K can be written as

x = πord(x)
∞∑

i=0

xiπ
i, (A.6)

where xi ∈ S and x0 6= 0. This series converges in the norm |·|K.
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We extend the norm |·|K to Kn by taking

||x||K := max
1≤i≤n

|xi|K, (A.7)

for x = (x1, . . . , xn) ∈ Kn.

We define ord(x) = min1≤i≤n{ord(xi)}, then ||x||K = q−ord(x). The metric space

(Kn, || · ||K) is a complete ultrametric space.

For r ∈ Z, denote by Bn
r (a) = {x ∈ Kn; ||x−a||K ≤ qr} the ball of radius qr with center

at a = (a1, . . . , an) ∈ Kn, and take Bn
r (0) := Bn

r . Note that B
n
r (a) = Br(a1)×· · ·×Br(an),

where Br(ai) := {x ∈ K; |xi − ai|K ≤ qr} is the one-dimensional ball of radius qr with

center at ai ∈ K. The ball Bn
0 equals the product of n copies of B0 = RK. In addition,

Bn
r (a) = a+ (π−rRK)

n
. We also denote by Sn

r (a) = {x ∈ Kn; ||x− a||K = qr} the sphere

of radius qr with center at a ∈ Kn, and take Sn
r (0) := Sn

r . We notice that S1
0 = R×

K (the

group of units of RK), but
(
R×

K

)n
( Sn

0 , for n ≥ 2. The balls and spheres are both open

and closed subsets in Kn. In addition, two balls in Kn are either disjoint or one is contained

in the other.

The topological space (Kn, || · ||K) is totally disconnected, i.e. the only connected sub-

sets of Kn are the empty set and the points. A subset of Kn is compact if and only if it is

closed and bounded in Kn. The balls and spheres are compact subsets. Thus (Kn, || · ||K)

is a locally compact topological space.

As we mentioned before, any finite extension K of Qp is a non-Archimedean local field.

Then

pRK = πmRK, m ∈ N. (A.8)

If m = 1 we say that K is a unramified extension of Qp. In other case, we say that K

is a ramified extension. It is well known that for every positive integer e there exists a

unique unramified extension Ke of Qp of degree e, which means that Ke is a Qp-vector

space of dimension e. From now on, π denotes a local uniformizing parameter of Ke,

thus pRKe
= πRKe

, RKe
/PKe

∼= Fpe and |π|Ke
= p−e. For an in-depth exposition of

non-Archimedean local fields, the reader may consult [40, 41], see also [3, 42].

B Multivariate Igusa zeta functions

LetK be a p-adic field as before. Let fi(x) ∈ K [x1, . . . , xn] be a non-constant polynomial for

i = 1, . . . , r, and let Φ be a Bruhat-Schwartz function, i.e. a locally constant function with

compact support. We set f = (f1, . . . , fr) and s = (s1, . . . , sr) ∈ Cr. The multivariate local

zeta function attached to (f1, . . . , fr,Φ) (also called multivariate Igusa local zeta function)

is defined as

ZΦ (s,f ,K) =

∫

Knr∪r
i=1f

−1
i (0)

Φ (x)
r∏

i=1

|fi(x)|
si
K dnx (B.1)

for Re(si) > 0, i = 1, . . . , r, here dnx denotes the normalized Haar measure of Kn.

This integral defines a holomorphic function of (s1, . . . , sr) in the half-space Re(si) > 0,

i = 1, . . . , r. In the case r = 1, the local zeta functions were introduced by Weil, for general
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f were first studied by Igusa [29]. In the multivariate case, i.e. for r ≥ 1, the local zeta

functions were studied by Loeser [43]. The Igusa local zeta functions are related with the

number of solutions of polynomial congruences mod pm and with exponential sums mod

pm. There are many intriguing conjectures relating the poles of local zeta functions with

the topology of complex singularities, see e.g. [29, 44].

If Φ is the characteristic function of Rn
K we use the simplified notation Z (s,f ,K).

B.1 Embedded resolution of singularities

In this section L is an arbitrary field of characteristic zero and fi(x)∈L [x], x=(x1, . . . , xn),

is a non-constant polynomial for i = 1, . . . , r. The main tool in the study of local zeta

functions is Hironaka’s resolution of singularities theorem [45]. Put X =Spec L [x] (the

n-dimensional affine space over L), D =Spec L [x] / (
∏r

i=1 fi(x)) (the divisor attached to

polynomials f1,. . . ,fr). An embedded resolution of singularities for D over L consists of a

pair (Y, h), where Y is a smooth algebraic variety (an integral smooth closed subscheme

of the projective space over X), h : Y → X is the natural map, which satisfies that the

restriction h : Y rh−1 (D) → XrD is an isomorphism, and the reduced scheme h−1 (D)red
associated to h−1 (D) has normal crossings, i.e. its irreducible components are smooth and

intersect transversally. Let Ei, i ∈ T , be the irreducible components of h−1 (D)red. For

each i ∈ T , let Nij be the multiplicity of Ei in the divisor fj ◦ h on Y , and vi − 1 the

multiplicity of Ei in the divisor h∗ (dx1 ∧ . . . ∧ dxn). The (Ni1, . . . , Nir, vi), i ∈ T , are

called the numerical data of the resolution (Y, h). For i ∈ T and I ⊂ T we define

◦
Ei = Ei r

⋃

j 6=i

Ej , EI =
⋂

i∈I

Ei,
◦
EI = EI r

⋃

j∈TrI

Ej . (B.2)

If I = ∅, we put E∅ = Y .

B.2 Rationality of local zeta functions

Theorem A (Loeser [43]). Let K be a p-adic field. The local zeta function ZΦ (s,f ,K)

admits a meromorphic continuation to the whole Cr as a rational function of

q−s1 , . . . , q−sr , more precisely

ZΦ (s,f ,K) =
PΦ (q−s1 , . . . , q−sr)

∏
i∈T

(
1− q−vi−

∑r
j=1 Nijsj

) , (B.3)

where PΦ is a polynomial in the variables q−s1 , . . . , q−sr . The real parts of the poles of

ZΦ (s,f ,K) belong to a union of hyperplanes of the form

vi +
r∑

j=1

Nij Re (sj) = 0, i ∈ T. (B.4)

Theorem B (Denef [46]). Let fi(x) ∈ Z [x], x = (x1, . . . , xn), be a non-constant poly-

nomial for i = 1, . . . , r. Let (Y, h) be an embedded resolution of singularities for D = Spec

Q [x] / (
∏r

i=1 fi(x)) over Q, with numerical data {(Ni1, . . . , Nir, vi) ; i ∈ T}. Then, there
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exists a finite set of primes S ⊂ Z such that for any non-Archimedean local field K ⊃ Q

with PK ∩ Z /∈ S, we have

Z (s,f ,K) = q−n
∑

I⊆T

cI (K)
∏

i∈I

(q − 1) q−vi−
∑r

j=1 Nijsj

1− q−vi−
∑r

j=1 Nijsj
, (B.5)

where q = q (K) denotes the cardinality of the residue field K and

cI(K) = Card
{
a ∈ Y

(
K
)
; a ∈ Ei

(
K
)
⇔ i ∈ I

}
, (B.6)

where the bar denotes the reduction mod PK for which we refer to [46, section 2].
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