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Abstract: The Wilsonian renormalization group (RG) requires Euclidean signature. The

conformal factor of the metric then has a wrong-sign kinetic term, which has a profound

effect on its RG properties. Generically for the conformal sector, complete flows exist only

in the reverse direction (i.e. from the infrared to the ultraviolet). The Gaussian fixed point

supports infinite sequences of composite eigenoperators of increasing infrared relevancy

(increasingly negative mass dimension), which are orthonormal and complete for bare in-

teractions that are square integrable under the appropriate measure. These eigenoperators

are non-perturbative in ~ and evanescent. For R4 spacetime, each renormalized physical

operator exists but only has support at vanishing field amplitude. In the generic case of

infinitely many non-vanishing couplings, if a complete RG flow exists, it is characterised

in the infrared by a scale Λp > 0, beyond which the field amplitude is exponentially sup-

pressed. On other spacetimes, of length scale L, the flow ceases to exist once a certain

universal measure of inhomogeneity exceeds O(1) + 2πL2Λ2
p. Importantly for cosmology,

the minimum size of the universe is thus tied to the degree of inhomogeneity, with space-

times of vanishing size being required to be almost homogeneous. We initiate a study of

this exotic quantum field theory at the interacting level, and discuss what the full theory

of quantum gravity should look like, one which must thus be perturbatively renormalizable

in Newton’s constant but non-perturbative in ~.
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1 Introduction

If one follows the by-now-standard procedures of perturbative quantum field theory, then

one finds that quantum gravity suffers from the problem that it is not perturbatively

renormalizable. The natural coupling constant is κ = 2/M , where M is the reduced Planck

mass. In terms of Newton’s gravitational constant G, we have κ2 = 32πG. Given that κ

has negative mass dimension, perturbative non-renormalizability is expected already from

simple power counting arguments. Kinematic accidents allow pure gravity at one loop to

be free of divergences [1] (after a reparametrisation of the metric gµν), but with generic

matter or at two loops, no such miracle occurs [1–4].

We will show however, that within quantum gravity, perturbative in κ and starting

from the (kinetic parts of the) Einstein Hilbert action,1 there exists a distinguished set of

1This is thus not related to asymptotic safety [5, 6], although we will draw on some insight from that field.

– 1 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
4

composite operators, dependent on the conformal factor of the metric and non-perturbative

in ~, that are promising for a route out of this dead end. Even at the linearised level, i.e. for

vanishingly small coupling(s), they have novel infrared properties which have the potential

to explain long-standing puzzles in cosmology, and black holes, and maybe even lead to

experimentally measurable quantum gravity effects, as discussed later in the introduction

and in sections 6.2 and 7.

To understand clearly why there is this possibility, we will need to work with the

deeper understanding of renormalization afforded by the Wilsonian RG (renormalization

group) [7, 8]. Since an essential ingredient in this framework is the quasi-local effective

action constructed from integrating out fluctuations at short distances, we will need to

work with a Euclidean signature metric.2 Then one meets the infamous problem that the

Euclidean Einstein-Hilbert action,3

SEH =

∫
d4xLEH , LEH = −2

√
gR/κ2 , (1.1)

is unbounded from below, so that the Euclidean partition function

Z =

∫
Dgµν e−SEH (1.2)

will fail to converge. Expanding the metric about flat space as

gµν = δµν + κHµν , (1.3)

we have

LEH =
1

2
(∂λHµν)2 − 2 (∂λϕ)2 − (∂µHµν)2 + 2 ∂αϕ∂βHαβ +O(H)3 , (1.4)

where contraction is with the background metric δµν , and we have defined ϕ = 1
2H

µ
µ .

Adding a Feynman-De Donder gauge fixing term

(∂αHαβ − ∂βϕ)2 (1.5)

and splitting the fluctuation field into its SO(4) irreducible parts

Hµν = hµν +
1

2
δµνϕ (1.6)

(so hµν is traceless), the problem is clearly visible in the wrong sign kinetic term for ϕ:

Lkinetic
EH =

1

2
(∂λhµν)2 − 1

2
(∂λϕ)2 . (1.7)

Since the metric is now expressed as

gµν = δµν

(
1 +

κ

2
ϕ
)

+ κhµν , (1.8)

2So that indeed for two points x and y, |x− y| → 0 =⇒ x→ y.
3Our conventions are Rµν = Rαµαν , and [∇µ,∇ν ]vλ = R λ

µν σv
σ.
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we see that ϕ is the perturbation that leads to an overall local rescaling of the metric. It is

called the conformal factor, or the dilaton (even though it is not a separate field here but

part of the metric). The authors of ref. [9] proposed to fix the problem by continuing the

conformal factor functional integral along the imaginary axis: ϕ 7→ iϕ. Instead, we will

keep this “conformal factor instability”, and find another way of coping, which moreover

has a clear physical motivation. Indeed it seems that the conformal factor instability is the

key that opens the door to formulating continuum quantum gravity.

Mathematically, the first step is to recast (1.2) into differential form by using an exact

RG equation for the corresponding effective action. Then there is no immediate difficulty in

solving for the latter [6]. Within this Wilsonian framework, the problem with perturbative

renormalizability is simply that the interactions

∼ Hn∂H∂H (n ≥ 1) (1.9)

form irrelevant operators (of dimension n + 4). This follows by näıve scaling arguments

which are nevertheless correct at the Gaussian fixed point (1.7). Such interactions cannot

therefore build a continuum field theory around the Gaussian fixed point, since a continuum

field theory requires operators corresponding to (marginally) relevant directions. Of course

this only repackages the power counting arguments, although if taken as gospel it already

implies that miraculous cancellations of divergences were never a way out.

But why rule out non-polynomial interactions? As we will review in the next section,

for theories with the right sign kinetic term, the polynomial interactions form a com-

plete orthonormal set of eigenoperators (operators with a well defined scaling dimension).

Non-polynomial perturbations with definite scaling dimension at finite field, do not scale

correctly at large field. They do not emanate from the Gaussian fixed point and after

RG evolution to the IR (infrared), they can be re-expanded in terms of the polynomial

perturbations and thus do not lead to new continuum physics [10–12].

When we change the sign of the kinetic term, this conclusion changes radically. The

same arguments that ruled out non-polynomial interactions for ordinary scalar field theory

now imply that the eigenoperator spectrum degenerates, and even includes a continuous

component [13]. Completeness and orthonormality properties are lost. Furthermore the

Wilsonian RG now naturally flows in the reverse direction, meaning that generic flows to

the infrared fail at some finite cutoff scale [13, 14].

Now we add just one, albeit crucial, observation. As part of the definition of quan-

tization, we are free to impose that bare interactions are exponentially decaying for large

ϕ (see section 3.2). Stated more precisely, we require them to be square integrable over

amplitude ϕ ∈ (−∞,∞) with weight

exp
(
ϕ2/2ΩΛ

)
, (1.10)

where ΩΛ = |〈ϕ(x)ϕ(x)〉| is the (magnitude of the) free propagator at coincident points,

regularised by a UV (ultraviolet) cutoff Λ. Then as we will see, the eigenoperator spectrum

is again discrete, complete, and orthonormal.

– 3 –
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Working within the conformal sector (i.e. retaining only ϕ), the rest of the properties

of this remarkable quantum field theory follow ineluctably. We will see that the eigenop-

erators are non-perturbative in ~, and are evanescent [15] i.e. vanish when the ultraviolet

regulator is removed. In R4, the physical (renormalized) operators become proportional

to (ϕ-derivatives of) δ(ϕ). On other spacetimes, the physical operators are instead ex-

ponentially decaying with the amplitude decay scale related to 1/L, where L is a typical

length scale in the manifold. However if the manifold is sufficiently inhomogeneous, in the

sense of inducing more than an O(1) change to a certain universal finite size effect (see

section 6), each operator individually ceases to exist because the flow to the infrared ends

prematurely.

Infinitely many of the eigenoperators are relevant. They therefore can be used to

build a non-trivial continuum limit about the Gaussian fixed point, in other words a per-

turbatively renormalizable quantum field theory. In the case that an infinite number of

these relevant couplings are non-vanishing, which is inevitable beyond first order pertur-

bations, new effects emerge. In fact even at the linearised level, when an infinite number

of these relevant couplings are non-vanishing, it typically happens that at some lower scale

Λ ∼ Λp > 0, the expansion over eigenoperators no longer converges. The result can nev-

ertheless be resummed by transforming to field conjugate momentum space. As we will

show, convergence fails either because the RG flow itself ceases to exist, or because the in-

teractions are no longer square integrable under (1.10) but instead have exponential decay

set by Λp, which we therefore recognise as an amplitude suppression scale.

Now on other manifolds the flow exists only if the inhomogeneity remains smaller than

the O(1) correction plus 2πL2Λ2
p. As already mentioned in the Abstract, this property

is clearly significant for the theory of cosmology, but also surely for black holes and more

generally (see sections 6.2 and 7). The fact that such dramatic behaviour is already evident

at the linearised level, i.e. even at vanishing overall coupling, suggests that such quantum

gravity effects could be experimentally measurable. However confirming this will require

understanding the dynamics, which in turn requires the full development of the quantum

gravity, i.e. not just the conformal sector.

Indeed a further significant step is to embed this structure into gravity, where we

need also to maintain a quantum version of diffeomorphism invariance at the renormalized

level. We discuss the issues in section 7. Although the conformal sector has an infinite

number of renormalized couplings, these get subsumed effectively into the parametrisation

of the metric. As we will see, renormalizability of the diffeomorphism invariant local

operators is controlled by one particular eigenoperator, which turns out to have just the

right dimension to rule in the Einstein-Hilbert term and rule out all the higher derivative

terms. The wrong sign kinetic term makes the scalar theory non-unitary (see section 5) but

this problem will not affect gravity when continued back to Minkowski signature, where

only the two transverse traceless modes actually propagate and the conformal mode is not

dynamical. Since the quantum field theory is built around the Gaussian fixed point, it will

be perturbatively renormalizable, in particular in κ. Although the theoretical structure

is so constraining that General Relativity is guaranteed to be the low energy effective

classical description, since the eigenoperators in the conformal sector are non-perturbative

– 4 –
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in ~, and indeed vanish in the limit that ~→ 0, in reality the theory of gravity will be non-

perturbatively quantum and have no classical limit, no matter how small κ is taken to be.4

The structure of the rest of the paper is as follows. Until the final two sections we

will be almost exclusively concerned with the conformal sector considered on its own. In

Euclidean flat space, this is just a single component scalar field theory with the wrong

sign kinetic term. The significance of this change in sign for the Wilsonian RG about

the Gaussian fixed point, can only be properly understood once the standard case with

positive kinetic term is thoroughly understood. Therefore in the next section (section 2)

we review the latter case. In section 3 we change the sign of the kinetic term and develop

the consequences for the Wilsonian RG, working in flat Euclidean R4 spacetime and with

linearised perturbations. With the example of the potential, we see in section 3.1 that

typical flows for the RG exist only in the reverse direction and that the eigenspectrum

degenerates. We show that one sequence of perturbations has however a Hilbert space

structure. In section 3.2 we define the bare interactions to lie in this space as part of

the definition of quantisation. As intimated earlier, everything else follows as a logical

consequence. In particular we develop the properties of these eigenoperators, which for the

potential are all relevant, and introduce Λp which (up to a non-universal constant) marks

the infrared scale where the expansion over eigenoperators breaks down. In section 3.3

we see that for entire flows, Λp is a physical quantity, namely the amplitude suppression

scale. In section 3.4, we illustrate with a simple representative example. In section 3.5, we

derive the form of the general eigenoperator i.e. containing also space-time derivatives. In

section 4, we start the development of the full non-linear theory. In section 5, we highlight

the physical flaws that such a scalar field theory has, if considered in its own right. As

already addressed above, these problems are not expected to be inherited by a full theory

of quantum gravity. In section 7 we consider what form this latter theory must take (and

the phenomenological consequences). However first in section 6 we examine the behaviour

of RG flows on a manifold other than R4. There we see that Λp has another dramatic rôle

to play, limiting the degree of inhomogeneity according to the size of the universe.

2 Scalar field theory with positive kinetic term

In this section we review the RG structure of scalar field theory about the Gaussian fixed

point, establishing that the eigenoperator spectrum is given by a complete set of orthonor-

mal polynomial interactions. In particular we explain why non-polynomial interactions

that satisfy the eigenoperator equation, do not behave correctly in the UV (ultraviolet)

and after RG evolution to the IR (infrared) can be re-expanded in terms of the polyno-

mial interactions. This was analysed in great detail in ref. [12], see also [10, 11], however

the focus there was different and model approximations were used (in particular the so-

called Local Potential Approximation). Here, and in the rest of this paper, we make no

approximations beyond the use of perturbation theory where it is legitimate to do so.

Not only do we need to work in Euclidean signature (as already remarked in the

Abstract and the beginning of the Introduction) but we also need to work on R4, since

4Unless κ is set to zero, in which case we are left with only free gravitons.

– 5 –
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for fixed points to exist, the space-time itself should look exactly the same at all scales.

Momentum is therefore a useful concept. These remarks may seem trivial but it is impor-

tant to underline these points for when we adapt this framework to gravitation.

After integrating out high momentum modes, we can rewrite the partition function

exactly in terms of a Wilsonian effective action [7, 16]

Stot,Λ[ϕ] = SΛ[ϕ] +
1

2
ϕ · (∆Λ)−1· ϕ , (2.1)

where

∆Λ(p) :=
CΛ(p)

p2
(2.2)

is here the massless propagator regularised by some smooth ultraviolet cutoff profile

CΛ(p) ≡ C(p2/Λ2). Later, when we change the sign of the propagator, we will still de-

fine ∆Λ to be (2.2), i.e. positive as displayed above. Qualitatively, for |p| < Λ, CΛ(p) ≈ 1

and mostly leaves the modes unaffected, while for |p| > Λ its rôle is to suppress modes.

We require that C(p2/Λ2) is a monotonically decreasing function of its argument, that

CΛ(p) → 1 for |p|/Λ → 0, and for |p|/Λ → ∞, CΛ(p) → 0 sufficiently fast to ensure that

all momentum integrals are regulated in the ultraviolet.

After discarding a field independent part, the interactions satisfy the Wilson/Polchinski

flow equation [16, 17]

∂

∂Λ
SΛ[ϕ] =

1

2

δSΛ

δϕ
· ∂∆Λ

∂Λ
· δS

Λ

δϕ
− 1

2
tr

[
∂∆Λ

∂Λ
· δ

2SΛ

δϕδϕ

]
. (2.3)

The first term on the right hand side encodes the tree level corrections, while the second

term encodes the quantum corrections. Had we carried ~, it would appear in front of this

latter term. We want the quasi-local solutions of this equation, i.e. solutions SΛ that can

be written as the space-time integral of a Lagrangian, which in turn can be written as an

(infinite) expansion in space-time derivatives of ϕ. Such solutions correspond to a local

Kadanoff blocking and exist if CΛ is smooth.

The Gaussian fixed point is the trivial solution SΛ[ϕ] = 0. To find the eigenoperators

we linearise around the fixed point:

∂

∂Λ
δSΛ[ϕ] = −1

2
tr

[
∂∆Λ

∂Λ
· δ2

δϕδϕ

]
δSΛ[ϕ] . (2.4)

Let us first consider non-derivative interactions. Thus we write:

δSΛ = ε

∫
d4xV (ϕ(x),Λ) , (2.5)

where ε is taken small enough to justify the linearised approximation. The Wilsonian RG

consists of a Kadanoff blocking followed by a rescaling back to the original size. This

second step is conveniently incorporated by using scale independent variables formed from

the dimensionless combinations using Λ:

xµ = x̃µ/Λ , ϕ = Λ ϕ̃ , V = Λ4 Ṽ , t = ln(µ/Λ) . (2.6)

– 6 –
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We have noted that at the Gaussian fixed point the scaling dimension of ϕ is its engineering

dimension. We have also defined the so-called RG time t to increase in the direction of

coarse graining, as in ref. [7], and introduced the usual arbitrary finite energy scale µ.

Eigenoperators are then operators with well defined scaling dimension 4−λ, when expressed

in these variables, which thus take the form

Ṽ (ϕ̃, t) =
(µ

Λ

)λ
Ṽ (ϕ̃) , (2.7)

the prefactor being the RG evolution of the scaled coupling g̃λ = ε eλt at linearised order,

the associated dimensionful coupling thus being

gλ = εµλ . (2.8)

Such operators are relevant if λ > 0, marginal if λ = 0, and irrelevant if λ < 0. The

continuum limit is constructed by giving non-vanishing values for the couplings associated

to relevant and marginally relevant directions since these shoot out of the fixed point as

Λ is lowered from Λ = ∞ (i.e. g̃λ → 0 as t → −∞), and also to any strictly marginal

couplings. The continuum limit is parametrised by these couplings, and characterised by

the resulting “RG trajectory” as Λ is lowered. The (marginally) irrelevant couplings do

not survive as separate parameters in the continuum limit since they lead to trajectories

that fall back into the fixed point, rather they parametrise the basin of attraction of the

fixed point [7, 8].

Although we will mostly restrict ourselves to this linear regime in the current paper, to

be precise and to set the context let us briefly sketch the complete construction. Since the

(marginally) relevant couplings increase as Λ is lowered, we need to handle the full non-

linear exact RG. Then we need to define what we still mean by such g̃λ(Λ) in the non-linear

regime, which we can do conveniently by imposing some renormalization conditions on SΛ.

(Such a renormalization condition is also needed for the kinetic term and leads to rescaling

the field, i.e. wavefunction renormalization.) The dimensionful gλ(Λ) will then run with

scale once we enter the non-linear regime. Since as described in the previous paragraph,

the asymptotic UV behaviour for these couplings provides the boundary conditions that

completely fixes the flow, solutions on the RG trajectory can be written in self-similar form

as SΛ = S(g̃λ), i.e. where Λ dependence only enters through the dimensionless (marginally)

relevant couplings. Substituting this form back into the flow equation, the corresponding

βλ functions can be read off from the renormalization conditions. Choosing finite values

for the couplings at a finite scale Λ, and integrating up these β functions, thus solves for

the full RG trajectory. To the extent that there is something to prove, it is only that

one should establish that there exist such solutions that match into the asymptotic UV

regime. Since the g̃λ(Λ), or equivalently gλ(Λ), are finite at finite scales they are de facto

renormalized couplings. Since renormalization is in this sense automatic, we will not tend

to use this terminology. On the other hand, we should distinguish these from the finitely

related physical couplings. We will define these later via the Legendre effective action.

Returning to the linear regime we will mostly treat in this paper, we note that since

each dimensionful coupling then does not run, its ‘bare’ value in the far UV and the

– 7 –
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‘renormalized’ value in the IR, both coincide with (2.8). We can and will also choose a

physical renormalization condition so that (2.8) coincides with the physical coupling.

From (2.3), the eigenoperator equation is thus

− λ Ṽ (ϕ̃)− ϕ̃ Ṽ ′ + 4 Ṽ = − Ṽ
′′

2a2
, (2.9)

where a prime is differentiation with respect to the field argument, and we have defined

the dimensionless one-loop massless tadpole integral5

1

2a2
=

1

2Λ

∂

∂Λ
ΩΛ =

∫
d4p̃

(2π)4

C(p̃2)

p̃2
, (2.10)

taking a > 0, and ΩΛ = Λ2/2a2 is the dimensionful version:

ΩΛ := |〈ϕ(x)ϕ(x)〉| =
∫

d4p

(2π)4
∆Λ(p) . (2.11)

We have defined it as the magnitude of the propagator evaluated at a point. Here the

propagator is positive anyway, but later it won’t be.

Equation (2.9) is of Sturm-Liouville type. Its quantised solutions are in fact the

Hermite polynomials

On(ϕ̃) = Hn(aϕ̃)/(2a)n = ϕ̃n − n(n− 1)ϕ̃n−2/4a2 + · · · , (2.12)

with λ = 4 − n and n a non-negative integer. The (scaling) dimension of the operator

On is thus 4 − λ = n, coinciding with the engineering dimension [ϕn]. The lower powers

in (2.12) are there to correct for operator mixing as Λ is varied and appear with increasing

powers of ~. They arise from tadpole corrections, which are the only quantum corrections

remaining at linearised order.

As is well known, for a marginal operator we need to go beyond linearised order

to decide its fate. And once we go beyond linearised order, O4 becomes (marginally)

irrelevant. For a true continuum limit, the only relevant directions (and thus renormalized

couplings) in this case are therefore the mass term O2 and the vacuum energy O0 (which

however without gravity carries no physics), so that we are left with a massive free theory,

a somewhat inconvenient conclusion for illustrating the general structure — but we trust

the latter will be sufficiently clear despite these specific facts.

From the general Sturm-Liouville theory we know that the On form an orthonormal set:∫ ∞
−∞
dϕ̃ e−a

2ϕ̃2On(ϕ̃)Om(ϕ̃) =
1

a

(
1

2a2

)n
n!
√
π δnm , (2.13)

which is complete in L+, the natural space for Wilsonian interactions around a positive ki-

netic energy term. This Hilbert space is the space of functions that are square integrable un-

der the Sturm-Liouville measure e−a
2ϕ̃2

. By all this we mean that if Ṽ (ϕ̃) ∈ L+, and we set

g̃n =
a√
π

(2a2)n

n!

∫ ∞
−∞
dϕ̃ e−a

2ϕ̃2On(ϕ̃)Ṽ (ϕ̃) , (2.14)

5Although a is a pure number, it is non-universal, clearly dependent on the cutoff profile.

– 8 –
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the norm-squared of the remainder vanishes as we extend to an infinite series, i.e.

∫ ∞
−∞
dϕ̃ e−a

2ϕ̃2

(
Ṽ (ϕ̃)−

N∑
n=0

g̃nOn(ϕ̃)

)2

→ 0 as N →∞ . (2.15)

In this sense, all perturbations in L+ are described by a countable infinity of couplings g̃n,

and their RG evolution is just given by the RG evolution of these couplings.

To form the bare action at Λ = Λ0, which we can take to be the initial condition

for the flow equation (2.3), we need to choose the bare couplings g̃
(λ)
0 ≡ g̃(λ)(Λ0). The

simplest choice is to set the bare irrelevant couplings to zero. A more general choice that

stays within the basin of attraction of the Gaussian fixed point (at least in perturbation

theory) is to set them to some finite fixed value i.e. to set g
(λ)
0 = g̃

(λ)
0 Λλ0 , where g̃

(λ)
0 is a

fixed pure number if λ < 0. In contrast the bare relevant couplings g̃
(λ)
0 need to follow

the flow and thus vanish as Λ0 → ∞. At the linearised level, g̃
(λ)
0 = g(λ)Λ−λ0 where now

g(λ) is some fixed finite dimension-λ coupling (the renormalized coupling) if λ > 0. Note

that as Λ0 →∞ in order to form the continuum limit, the linearised approximation for the

relevant couplings becomes ever more valid at scales close to the bare scale.

The effective action (2.1) can in this way provide the bare action, and studying its

evolution away from the bare action provides us with direct access to the Wilsonian RG

framework, but does not directly furnish us with physical quantities. We can access these

latter in a useful way by replacing the cutoff CΛ in (2.2) by

CΛ0
k (p) = CΛ0(p)− Ck(p) , (2.16)

thus the theory is now also infrared regulated at scale k [18]. Then writing the Legendre

effective action as

Γtot,Λ0

k [ϕ] = ΓΛ0
k [ϕ] +

1

2
ϕ ·
(

∆Λ0
k

)−1
· ϕ , (2.17)

where

∆Λ0
k = ∆Λ0 −∆k , (2.18)

we have the identity (up to discarding a field independent part on the right hand side)

ΓΛ0
Λ0

[ϕ] = SΛ0 [ϕ] , (2.19)

which provides us with the initial condition for a flow with respect to the infrared cutoff,

the latter taking the form [16, 18, 19] (see also [20, 21]):

∂

∂k
ΓΛ0
k [ϕ] = −1

2
tr

[(
1 + ∆Λ0

k ·
δ2ΓΛ0

k

δϕδϕ

)−1 1

∆Λ0
k

∂∆Λ0
k

∂k

]
. (2.20)

At the Gaussian fixed point the Legendre effective action has just the field independent

part ΓΛ0
k [ϕ] = −1

2 tr ln ∆Λ0
k . Once again looking at linearised perturbations, we have:

∂

∂k
δΓΛ0

k [ϕ] = −1

2
tr

[
∂∆k

∂k
· δ2

δϕδϕ

]
δΓΛ0

k [ϕ] , (2.21)
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where we have used (2.16) to simplify the expression. We see that δΓΛ0
k [ϕ] satisfies an

identical equation to (2.4) with k now playing the rôle of a UV cutoff. The reason for this

is as follows. Since at the linearised level the flow equation has become insensitive to the

overall UV cutoff Λ0, we can send this to infinity. Then we can note that ΓΛ := Γ∞Λ is

related to SΛ by a Legendre transform: ΓΛ carries the purely quantum, 1PI (one particle

irreducible), parts of SΛ [8, 16, 18].6 However at the linearised level there are only quantum

corrections and thus the flow equations coincide. Setting

δΓΛ0
k [ϕ] = ε

∫
d4xV (ϕ(x), k) , (2.22)

the interaction potential will therefore satisfy the same eigenoperator equation (2.9) as

that for the Wilsonian effective action, only with Λ replaced by k in (2.6) and (2.7).

Now suppose that we add gnO(n)
Λ0

(ϕ) to the bare action i.e. at k = Λ = Λ0. By this we

mean that we add in scaled units g̃nOn(ϕ̃), where g̃n = g̃n(Λ0) = gn/Λ
4−n
0 . To linearised

order, and in scaled units, this evolves in a self-similar way by construction, i.e. keeps

the same form, with the dimensionless variables formed using the appropriate scale. In

particular we recognise that the coupling becomes(
Λ0

k

)4−n
g̃n(Λ0) =

gn
k4−n = g̃n(k) . (2.23)

Therefore, using (2.6), the dimensionful (unscaled) interaction is

gnO(n)
k (ϕ) = k4 gn

k4−n On(ϕ/k) = gn

(
ϕn − n(n− 1)

k2

4a2
ϕn−2 + · · ·

)
, (2.24)

i.e.

O(n)
Λ (ϕ) = ΛnOn(ϕ/Λ) = ϕn − n(n− 1)

Λ2

4a2
ϕn−2 + · · · . (2.25)

Again we note that in the Wilsonian RG framework, the operator and associated coupling

are already the renormalized ones once the cutoff k falls to physical scales. In addition in

the limit k → 0, we find the universal physical interaction, as it appears in the Legendre

effective action. In this case we thus find O(n)(ϕ) := limk→0O
(n)
k (ϕ), where:

gnO(n)(ϕ) = gnϕ
n . (2.26)

Recalling the discussions above, we see that for relevant directions this is finite and gn
indeed corresponds to the physical coupling, while for the irrelevant directions gn is pro-

portional to an inverse power of Λ0 and thus tends to zero in the continuum limit Λ0 →∞.

Note that Wilsonian RG properties are only manifest in scaled variables. For example

the statement that relevant perturbations emanate from the Gaussian fixed point in the

ultraviolet, i.e. vanish as Λ → ∞, is only true in scaled variables. In dimensionful terms

the tadpole correction terms actually diverge in this limit, as can be seen from (2.25).

In particular for example, the negative mass term correction in the marginal operator

6See also [20, 22]. The existence of Λ → ∞ flows is a different matter, and is why in general such a

complete (renormalized) trajectory must terminate at a fixed point.
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O4 = ϕ̃4 − 3ϕ̃2/a2 + 3/4a4, which is fixed and finite in scaled variables, is there to cancel

exactly the quadratic mass term divergence (the divergence responsible for the naturalness

problem in Higgs physics), thus automatically giving the renormalized ϕ4 interaction (at

linearised level) in the continuum limit as we saw above.

The evolution (2.23) can be understood in this way more conventionally in terms of

Feynman diagrams. We will make that connection clearer later for the novel operators we

discover for scalar field theory with wrong sign kinetic term. Similarly we could continue the

development by including (spacetime) derivative interactions, and also in going beyond lin-

earised order into perturbation theory with the (marginally) relevant couplings. Of course

we are only rephrasing standard knowledge here, so instead we make these developments

directly for the novel operators in section 3.

Now we address the fate of non-polynomial solutions to (2.9), which cannot be un-

derstood purely in terms of Feynman diagrams since non-perturbative physics is required

(although of a rather trivial sort). At first sight the general solution of (2.9), which can be

written in terms of Kummer functions, allows for new eigenoperators, in particular ones

for which λ > 0 and which thus can be used to build exotic continuum limits [23]. Their

large field behaviour grows as ∼ ϕ̃λ−5 exp(a2ϕ̃2), so they lie outside L+. However it is

not true that these solutions provide new continuum limits [10–12]. The reason is that

for fixed ε, no matter how small, the linearised approximation, (2.5) or (2.22), is not valid

for large field. To find the correct evolution for such a perturbation, one needs to use the

full non-linear flow equation in the large field regime. Thus such solutions will also evolve

differently depending on whether we regard this as a perturbation that is purely quantum

or includes the classical corrections [12]. The simplest picture arises from taking it to be

purely quantum. In fact since ΓΛ diverges at large field, it follows from (2.20) that the

right hand side vanishes and thus the dimensionful (unscaled) interaction does not evolve

at all in this limit. Correspondingly in scaled units the interaction will follow “mean field

evolution”. Adding such an operator to the bare ΓΛ0 , we thus find at any other scale Λ, in

the large field regime ϕ̃� Λ0/(Λ
√

ln ε),

∼ ε ϕ̃λ−5

(
Λ

Λ0

)λ−1

exp
{
a2ϕ̃2Λ2/Λ2

0

}
. (2.27)

To be a relevant perturbation we want this scaled version to vanish as Λ → ∞ so that

we return to the Gaussian fixed point in this limit, but we see that actually the scaled

perturbation diverges in this limit. On the other hand for RG evolution into the IR, once

Λ < Λ0/
√

2, the interaction is inside L+ and thus can be expanded as a convergent series

in terms of the On.

Actually, also when we add the perturbation g̃nOn to the bare ΓΛ0 , the linearised

approximation is not valid for large field for n > 2. Mean field evolution therefore takes

over here too, and thus at scale Λ it becomes(
Λ0

Λ

)4

g̃n(Λ0)On(ϕ̃Λ/Λ0) . (2.28)

The difference is that at large field this just gives us back self-similar evolution

and (2.23) [10–12].
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At the same time these observations establish that a general (not necessarily small)

1PI perturbation ṼΛ0(ϕ̃) that starts in L+, remains in L+ under evolution to the IR,

and thus the complete evolution can be understood in terms of the corresponding g̃n(k).

However note that L+ is not defined when the cutoff reaches k = 0. In the limit k → 0,

the relevant interactions diverge, so Ṽk(ϕ̃) is itself ill defined in this limit. This can be

seen in (2.23), although of course the linearised approximation breaks down before this

happens. Nevertheless the mass and vacuum energy terms clearly will in general diverge

in scaled units using k (see also e.g. [12]). For these reasons the property Ṽk(ϕ̃) ∈ L+ can

only be defined for all Λ0 ≥ k > 0 (i.e. excluding the limit k → 0).

3 Scalar field theory with negative kinetic term

Now we change the sign of the kinetic term. At face value this makes no sense, since now

the functional integral in the partition function no longer even näıvely converges, while

the momentum cutoff profile, instead of exponentially suppressing the integrand, makes

matters worse. But gravity presents us with this problem if we are to understand it in

Wilsonian terms, since then we must consider fluctuations about Euclidean R4 (cf. begin-

ning section 2). Therefore we need to generalise what we mean by quantum field theory in

this case in order to make progress. Instead of following ref. [9] and analytically continuing

so as to remove the sign, we keep the sign and seek an appropriate generalisation of the

structure outlined in the previous section.

We begin by replacing (2.1) and (2.17) by7

Stot,Λ[ϕ] = SΛ[ϕ]− 1

2
ϕ · (∆Λ)−1· ϕ , Γtot,Λ0

k [ϕ] = ΓΛ0
k [ϕ]− 1

2
ϕ ·
(

∆Λ0
k

)−1
· ϕ . (3.1)

As a result, ∆ 7→ −∆ in the flow equations (2.3), (2.20) and (2.21):8

∂

∂Λ
SΛ[ϕ] = −1

2

δSΛ

δϕ
· ∂∆Λ

∂Λ
· δS

Λ

δϕ
+

1

2
tr

[
∂∆Λ

∂Λ
· δ

2SΛ

δϕδϕ

]
, (3.2)

∂

∂k
ΓΛ0
k [ϕ] = −1

2
tr

[(
1−∆Λ0

k ·
δ2ΓΛ0

k

δϕδϕ

)−1 1

∆Λ0
k

∂∆Λ0
k

∂k

]
, (3.3)

∂

∂k
δΓΛ0

k [ϕ] = −1

2
tr

[
∂∆Λ0

k

∂k
· δ2

δϕδϕ

]
δΓΛ0

k [ϕ] . (3.4)

This makes these equations backward-parabolic, which means in particular that the Cauchy

initial value problem for flow towards the IR is not well posed. To elucidate this and

further consequences, we will again begin by considering non-derivative interactions at the

linearised level.

3.1 Non-derivative eigenoperators

The linearised flow for the potential

∂tV (ϕ, t) = −ΩΛ V
′′(ϕ, t) , (3.5)

7Note that for convenience ∆Λ in (2.2), cf. also (2.10) and (2.11), are defined to be positive.
8In preparation for later we have reinstated ∆Λ0

k in the last equation.
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can be written:
∂

∂T
V (ϕ, T ) =

1

4a2
V ′′(ϕ, T ) , (3.6)

which is now in the form of the heat diffusion equation, with a ‘time’ T = Λ2, which runs

towards the UV. This means that for a general ‘initial’ potential V (ϕ, T0), well-defined flows

only exist towards the UV (which is thus also an issue for the full flow equations [13, 14]).

In the other direction, the bare action must be chosen carefully if the flow is to exist all the

way to k → 0. Indeed, this is already intuitively clear from the connection to heat diffusion.

Flowing in the UV direction, the potential will diffuse out, becoming ever smoother. On

the contrary, flows towards the IR will reverse the diffusion process, typically resulting in a

V (ϕ, T ) that develops singularities in ϕ at some critical ‘time’ T = Tp := a2Λ2
p, after which

the flow ceases to exist, i.e. the flow typically ends at some k = aΛp > 0.9 (We include

the factor a in the definition of Λp for convenience: as we will see in section 3.3, in other

circumstances Λp can then have a universal meaning.)

The fact that flow is more naturally in the reverse direction suggests that universality

should be found in the UV limit rather than the IR. Indeed we are about to find that the

Gaussian fixed point now supports eigenoperators of arbitrarily high relevancy (i.e. for RG

time reversed flows, playing the rôle of the usual hierarchy of irrelevant operators).

In fact without further restriction, the situation is worse than that. To realise the

Wilsonian RG, we need to use the scaled variables (2.6), giving

Λ
∂

∂Λ
ṼΛ(ϕ̃)− ϕ̃ Ṽ ′Λ(ϕ̃) + 4 ṼΛ(ϕ̃) = Ṽ ′′Λ (ϕ̃)/(2a2) . (3.7)

Then setting ṼΛ(ϕ̃) = eλt Ṽ (ϕ̃), we get the eigenoperator equation (2.9) except with a plus

sign on the right hand side:

− λ Ṽ (ϕ̃)− ϕ̃ Ṽ ′ + 4 Ṽ =
Ṽ ′′

2a2
. (3.8)

The change in relative sign between the ϕ̃Ṽ ′ and Ṽ ′′ term means that at large field one no

longer has exponentially growing solutions. Instead they behave at worst as

Ṽ ∝ ϕ̃4−λ +
(4− λ)(3− λ)

4a2
ϕ̃2−λ +O(ϕ̃−λ) , (3.9)

which is generically an asymptotic series which is also subject to exponentially decaying

corrections ∼ ϕ̃λ−5 e−a
2ϕ̃2

. For λ > 2, such solutions justify linearisation of the right hand

side of (3.3) ever more accurately as ϕ̃ → ∞ and thus are not ruled out by the large

field analysis reviewed in section 2, while for λ ≤ 2 mean field analysis still allows these

perturbations since it just gives back the correct multiplicative evolution i.e. (Λ0/k)λṼ .

Thus the large field test rules out none of the solutions [13].

These solutions divide into three sets as follows [13]. For every λ there are two linearly

independent solutions, an odd and even Kummer function, which thus form a continuous

9Although we do not address the asymptotic safety scenario in this paper, since the flow is again

backward-parabolic, it is clear that generic flows towards the IR, will end at some critical scale there

also [13, 14].
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eigenoperator spectrum. For λ not an integer, by adjustment of their ratio, one can arrange

for zero coefficient for the asymptotic series in (3.9) on one side ϕ̃→ ±∞, leaving behind the

exponentially decaying corrections, but on the other side ϕ̃→ ∓∞ it will then have (3.9) as

its asymptotic behaviour. At λ an integer, one of the two Kummer functions degenerates,

thus forming two discrete spectra: at λ = 4− n there are the polynomial solutions, which

now read On(ϕ̃) = Hn(iaϕ̃)/(2ia)n; for λ = 5+n, we have an infinite tower of exponentially

decaying ‘super-relevant’ eigen-operators:

δn(ϕ̃) :=
a√
π

∂n

∂ϕ̃n
e−a

2ϕ̃2
=

a√
π

(−a)nHn(aϕ̃) e−a
2ϕ̃2

, λ = 5 + n , (3.10)

n a non-negative integer, whose dimension is thus

[δn] = 4− λ = −1− n . (3.11)

Solutions corresponding to these latter also existed for (2.9) but were exponentially growing

and thus by the large field analysis did not evolve correctly.

The second expression in (3.10) follows from substituting Ṽ 7→ Ṽ e−a
2ϕ̃2

into (3.8)

and comparing to (2.9). The first expression can be found by substituting the Fourier

transform:

Ṽ (ϕ̃) =

∫ ∞
−∞

dπ̃

2π
Ṽ(π̃) eiπ̃ϕ̃ , (3.12)

where π̃ = πΛ is the scaled conjugate momentum, giving the general solution:

Ṽ(π̃) = (iπ̃)λ−5 exp

(
− π̃2

4a2

)
. (3.13)

This has power-law asymptotics (3.9), generated by the singularity at π̃ = 0, except that

the singularity is absent when λ = 5 + n where it gives (3.10).

Equation (3.8) is still of Sturm-Liouville type, but the Sturm-Liouville weight function

is now e+a2ϕ̃2
. Defining L− to be the space of square integrable functions under this

measure, the polynomials and the continuous spectrum of Kummer functions lie outside

this space. However the exponentially decaying solutions lie inside L− and indeed form a

complete orthonormal basis for this Hilbert space:∫ ∞
−∞
dϕ̃ ea

2ϕ̃2
δn(ϕ̃) δm(ϕ̃) =

a√
π

(
2a2
)n
n! δnm , (3.14)

(where we used the 2nd eq. in (3.10)) so that if Ṽ (ϕ̃) ∈ L− and

g̃n =

√
π

2na2n+1n!

∫ ∞
−∞
dϕ̃ ea

2ϕ̃2
δn(ϕ̃) Ṽ (ϕ̃) , (3.15)

the norm-squared of the remainder vanishes as we extend to an infinite series, i.e.∫ ∞
−∞
dϕ̃ ea

2ϕ̃2

(
Ṽ (ϕ̃)−

N∑
n=0

g̃n δn(ϕ̃)

)2

→ 0 as N →∞ . (3.16)

This structure is the generalisation we are looking for.
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3.2 Quantisation condition

Although we cannot exclude the solutions outside L− by their large field RG properties,

we can exclude them by fiat. We thus choose, as part of the definition of quantisation, to

insist that the bare interactions must lie in L−.

If we consider a finite sum of the basis operators (3.10) then this quantisation condition

is clearly respected by the RG at the linear level, since the operators evolve multiplicatively.

Indeed if at the bare scale Λ = Λ0, δn(ϕ̃) appears linearly with a sufficiently small coupling

g̃n = gn/Λ0
5+n, then at some other scale it will still take this form but with g̃n = gn/Λ

5+n

(where gn is held fixed).

If an infinite number of couplings are switched on, then by our quantisation condition

we require:

ṼΛ0(ϕ̃) =

∞∑
n=0

g̃n δn(ϕ̃) ∈ L− . (3.17)

Again, if Ṽ is small enough to trust the linear RG evolution, then at another scale ṼΛ(ϕ̃)

takes the same form with Λ0 replaced by Λ (i.e. both explicitly, and implicitly in the scaled

quantities):

ṼΛ(ϕ̃) =

∞∑
n=0

g̃n δn(ϕ̃) . (3.18)

Using (3.14), we can compute the norm-squared of the evolved potential:∫ ∞
−∞
dϕ̃ ea

2ϕ̃2
Ṽ 2

Λ (ϕ̃) =
a

Λ10
√
π

∞∑
n=0

n! g2
n

(
2a2

Λ2

)n
. (3.19)

By (3.17), the series on the right hand side converges for Λ = Λ0. We thus see that

ṼΛ(ϕ̃) ∈ L− and remains small for all Λ ≥ Λ0. This is why we interpret the quantisation

condition ṼΛ(ϕ̃) ∈ L− as operating at the bare level. Since all the couplings gn are relevant,

we set them to be finite at physical scales, whence they parametrise the most general RG

trajectory. The above properties ensure that the Wilsonian effective interaction continues

to satisfy the quantisation condition as Λ → ∞. Indeed ṼΛ(ϕ̃) → 0 in this limit, i.e. it

emanates from the Gaussian fixed point, as it should to describe the RG trajectory. Like

any continuum limit, it can be regarded conceptually as existing in its own right, without

the need to postulate a microscopic theory. However if we do entertain that possibility,

then the quantisation condition provides a hint as to the form this microscopic theory

would have to take.

On the other hand the generic case will be that the gn are such that the series (3.19) has

a finite radius of convergence 1/Λ = 1/(aΛp) where, by (3.17), aΛp ≤ Λ0. Then ṼΛ(ϕ̃) /∈ L−
for all Λ < aΛp, although also generically as Λ decreases, the linearised approximation

breaks down. In any case once ṼΛ(ϕ̃) /∈ L−, the expansion over the basis (3.10) no longer

converges. There are two possible reasons for ṼΛ(ϕ̃) exiting L−: either ṼΛ(ϕ̃) itself has

developed divergences, or it grows too fast for large ϕ̃ so that the integral in (3.19) no

longer converges for ϕ̃→ ±∞. In the former case the flow ceases to exist, as we anticipated

earlier by using the heat equation. We will see an explicit example later. In the latter case
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its evolution can still be described by the appropriate flow equation, namely (3.7), more

generally the wrong sign Wilson/Polchinski flow equation (3.2), or (3.3). Since the flow

is first order in Λ, it can be uniquely determined by supplying as boundary condition the

expansion over the basis, for any Λ > aΛp. At a formal level, we can still write ṼΛ(ϕ̃)

as an expansion over the basis, even for Λ < aΛp. Indeed at the linearised level it will

continue to be (3.18), since each term separately satisfies (3.7). However in this region we

need a prescription for resumming the series. We will see that this is provided by working

in conjugate momentum space.

The eigenoperators have novel physical properties. Analogously to (2.25), we identify

the dimensionful bare operator δ
(n)
Λ0

(ϕ) as the conjugate to the dimension 5+n unscaled

coupling gn in the bare action. Thus, either directly from its dimension (3.11) or by re-

expressing the coupling and using (2.6),

δ
(n)
Λ0

(ϕ) = δn(ϕ/Λ0)/Λ1+n
0 , (3.20)

and hence (using a = Λ0/
√

2ΩΛ0):

δ
(n)
Λ0

(ϕ) :=
∂n

∂ϕn
δ
(0)
Λ0

(ϕ) , where δ
(0)
Λ0

(ϕ) :=
1√

2πΩΛ0

exp

(
− ϕ2

2ΩΛ0

)
. (3.21)

If we restore ~, it multiplies the right hand side of (2.9), similarly (3.8) or (3.5), and

thus makes its appearance as the combination ΩΛ0 ∝ ~Λ2
0. We see that the operators are

“evanescent” [15] in the sense that for fixed field ϕ, the operators vanish as the UV cutoff

is removed (Λ0 →∞). They are also non-perturbative in ~ with a similar functional form

in this respect to instanton [24, 25] or renormalon [26] contributions.

By construction, V = δ
(n)
Λ (ϕ) is a solution of the unscaled flow equation (3.5). A general

solution of the linearised RG is the sum of these with constant coefficients gn:

V (ϕ,Λ) =

∞∑
n=0

gn δ
(n)
Λ (ϕ) . (3.22)

This is nothing but the sum (3.18) in dimensionful terms (i.e. the same except for overall

multiplication by Λ4). Since by (3.17), the sum converges for all Λ ≥ Λ0, it follows that

even for an infinite number of non-zero couplings, the potential inherits the properties

above, i.e. it is non-perturbative in ~, and V (ϕ,Λ) → 0 as Λ → ∞, i.e. the full potential

is evanescent. Note that this property is logically distinct from the ‘relevancy’ property

ṼΛ(ϕ̃)→ 0 in this limit, established below (3.19), cf. the discussion for normal field theory

below (2.26).

Despite the description so far of an essentially UV structure, there is nevertheless a

dramatic imprint on the far IR limit, that is the continuum physics. Since the scaled

eigenoperator is form invariant under the linearised RG, the corresponding dimensionful

(and automatically renormalized) operator in the IR cutoff Legendre effective action is just

δ
(n)
k (ϕ) =

∂n

∂ϕn
δ
(0)
k (ϕ) , where δ

(0)
k (ϕ) =

1√
2πΩk

exp

(
− ϕ2

2Ωk

)
. (3.23)
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Figure 1. The renormalized eigenoperator is the bare one plus its quantum corrections at linearised

level.

Removing the IR cutoff gives us the physical operators in an R4 spacetime:

lim
k→0

δ
(n)
k (ϕ) = δ

(n)
(ϕ) , (3.24)

i.e. the nth derivative of the delta-function.10 If we keep only a finite number of couplings

then since these interactions have support only on vanishing amplitude, presumably the

physics of the renormalized theory is trivial, effectively just a free theory. This is true in

a flat spacetime of infinite extent only when we remove the IR cutoff. In section 6 we

will see that on a homogeneous non-trivial spacetime (with inherent length scales), the

amplitude is only suppressed. However once the manifold is sufficiently asymmetric, the

physical operator fails to exist because the flow to the IR ends prematurely.

The same distributions (3.24) are reached by taking the ~→ 0 limit. In this sense the

dynamics is always essentially and non-perturbatively quantum: there is no classical limit.

Let us show how the passage from bare (3.21) to renormalized (3.23) can nevertheless be

understood in terms of Feynman diagrams. The solution to (3.4) can be written as:∫
x
δ
(n)
k (ϕ) = exp

(
−1

2
tr

[
∆Λ0
k ·

δ2

δϕδϕ

])∫
x
δ
(n)
Λ0

(ϕ) . (3.25)

The expansion of the exponential gives the expected 1PI Feynman diagrams, as illustrated

in figure 1, where the propagator for each tadpole, −∆Λ0
k , is defined as in (2.18), and has the

sign required from (3.1). On the other hand the bare eigenoperator (3.21) can be written

δ
(n)
Λ0

(ϕ) = exp

(
1

2
ΩΛ0

∂2

∂ϕ2

)
δ
(n)

(ϕ) , (3.26)

as can be seen from (3.12) and (3.13). Indeed, translating the Fourier transform to unscaled

variables using (3.20) gives

δ
(n)
Λ0

(ϕ) =

∫ ∞
−∞

dπ

2π
(iπ)n e−

1
2
π2ΩΛ0

+iπϕ , (3.27)

after which the result follows by pulling the ΩΛ0 piece outside the integral. Thus∫
x
δ
(n)
Λ0

(ϕ) = exp

(
1

2
tr

[
∆Λ0 · δ2

δϕδϕ

])∫
x
δ
(n)

(ϕ) . (3.28)

Combining this and (3.25), and using (2.18), we see that the renormalized operator is given

by (3.26) with Λ0 replaced by k, and thus by the expression (3.23).

10The unit normalization here explains our choice in (3.10).
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3.3 General RG flows of the potential at first order in the couplings

The situation becomes more subtle when an infinite number of couplings are switched on:

as well as solutions that fail to make it to the far IR, there is an infinite dimensional

space of solutions where the physical (i.e. k = 0) interaction has support on finite field

amplitude. However if at scale k, the (total) interaction lies inside L−, we know that,

written in dimensionful terms, it must vanish faster than exp(−a2ϕ2/2k2)/
√
ϕ for large

ϕ, which implies that large amplitudes remain significantly damped. In particular if the

interaction remains in L− for all k > 0, then the dimensionful interaction must vanish

faster than any such exponential at large ϕ. We furnish an example that resolves a puzzle

with the form of the physical operators (3.24) at the linear level. The Gaussian fixed point

is clearly invariant under the shift of the field by a space-time constant: ϕ(x) 7→ ϕ(x)+ϕ0.

At first sight this symmetry is broken by the operators (3.24), all of which constrain ϕ to

zero amplitude. Note that this is not forced by the restriction to be integrable under the

measure e+a2ϕ̃2
at the appropriate scales. In fact this breaking is illusory since in the bare

action we can add an infinite number of eigenoperators:

g̃m δm(ϕ̃+ ϕ̃0) = g̃m

∞∑
n=0

ϕ̃n0
n!
δn+m(ϕ̃) , (3.29)

where, from the first of (3.10), we have noted that

∂ϕ̃ δn(ϕ̃) = δn+1(ϕ̃) . (3.30)

We see that the corresponding series in (3.19) has an infinite radius of convergence and

thus (3.29) remains in L− for all k > 0. (As with the discussion at the end of section 2,

k = 0 is excluded.) Under RG evolution δn+m(ϕ̃) supplies (Λ0/k)5+m+n which is precisely

right to convert g̃mϕ̃
n
0 from scaled quantities at Λ0 into scaled quantities at k. Therefore

this shifted operator is respected by the RG at linearised order: (3.29) is form invariant

under change of scale. Repeating the analysis (3.20) and (3.23), we thus find that the

physical operator also exists and takes the form:

lim
k→0

δ
(n)
k (ϕ+ ϕ0) = δ

(n)
(ϕ+ ϕ0) . (3.31)

We can connect this observation to the most general form of the physical potential

Vp(ϕ) at the linearised level, when it exists. Indeed for solutions that exist for all Λ ≥ 0,

we have that

V (ϕ,Λ) =

∫ ∞
−∞
dϕ0 Vp(ϕ0) δ

(0)
Λ(ϕ− ϕ0) , (3.32)

since this clearly satisfies (3.5), whilst from (3.31) we see it satisfies the required boundary

condition V (ϕ, 0) = Vp(ϕ). We see that δ
(0)
Λ(ϕ − ϕ0) plays the rôle of a Green’s function,

but in theory space, giving the form of the potential at any cutoff scale in terms of its final

functional form. By Taylor expanding δ
(0)
Λ(ϕ−ϕ0) about ϕ, we recover the expansion (3.22),

but also find a formula for the dimensionful couplings gn in terms of the physical potential:

gn =
(−)n

n!

∫ ∞
−∞
dϕϕn Vp(ϕ) (3.33)
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(renaming ϕ0 as ϕ). Actually, substituting the second of (3.10) into (3.15) and using the

expression (2.12) for the eigenoperator in normal scalar field theory we also have that11

g̃n =
(−)n

n!

∫ ∞
−∞
dϕ̃On(ϕ̃)ṼΛ(ϕ̃) , (3.34)

which in dimensionful variables gives, using (2.25),

gn =
(−)n

n!

∫ ∞
−∞
dϕO(n)

Λ (ϕ)V (ϕ,Λ) . (3.35)

Despite appearances, this expression is independent of Λ (at the linear level at which we

are operating).

Associated to any physical potential Vp(ϕ) is the scale Λp, which we can now regard

as being a dynamical scale characteristic of this particular solution. As before it is defined

through the following property of the evolved solution (3.32):

V (ϕ,Λ) ∈ L− ∀Λ > aΛp . (3.36)

This dynamical scale is the smallest non-negative value satisfying this equation. It can

vanish for example if only finitely many gn are non-vanishing. Since we impose the quanti-

sation condition (3.17), which then holds for all Λ > Λ0, a characteristic scale Λp =∞ can

only be arranged by tuning the gn in a particular way as the overall UV cutoff is removed.

For Λ < aΛp, the sum (3.22) does not converge. However the corresponding expression

in conjugate momentum space does make sense. Either from (3.27) (with n = 0, and Λ0

replaced with Λ) and (3.32), or directly by Fourier transforming (3.5),

V (ϕ,Λ) =

∫ ∞
−∞

dπ

2π
Vp(π) e−

π2

2
ΩΛ+iπϕ , (3.37)

where Vp is the Fourier transform of Vp, as is clear by setting Λ = 0. From (3.27) and (3.22),

Vp(π) =

∞∑
n=0

gn(iπ)n . (3.38)

Since the gn yield the series (3.19), which converges for Λ > aΛp, we see that the above

series has an infinite radius of convergence. Therefore Vp is an entire function. Indeed we

see that Λp characterises the behaviour of the couplings gn at large n, which from (3.19)

roughly behave as

gn ∼
Λn+5

p√
n!

. (3.39)

The expansion (3.38) is the Fourier transform of the formal Λ → 0 limit of (3.22), viz.

“Vp(ϕ) =
∑∞

n=0 gn δ
(n)

(ϕ)”. We see that the expansion of the potential in terms of its

eigenoperators is most naturally expressed in conjugate momentum space, through (3.37)

and (3.38).

11Similarly the couplings (2.14) in normal field theory can be written as an overlap of the potential with

the δn(ϕ̃).
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By (3.36) we know that asymptotically we have the leading behaviour for large ϕ:

V (ϕ, aΛp) ∼ exp

(
− a2ϕ2

2a2Λ2
p

)
= exp

(
− ϕ2

2Λ2
p

)
, (3.40)

since by assumption the physical potential exists and thus the only allowed reason for

exiting L− is the lack of large field convergence in the integral for the norm-squared.

Taking the inverse Fourier transform and using (3.37), we thus find the π dependence of

the physical potential corresponding to this large ϕ limit:

Vp(π) ∼ e−π
2Λ2

p/4 . (3.41)

Fourier transforming this gives us the leading asymptotic dependence of the physical po-

tential itself at large ϕ:

Vp(ϕ) ∼ e−ϕ
2/Λ2

p . (3.42)

This final result can be confirmed by substituting it into (3.32), which recovers (3.40) but

in a way where we clearly rely only on the large field behaviour of Vp. We see therefore

that Λp is a physical quantity, the amplitude suppression scale that characterises the rate

of exponential fall-off in the physical potential12 at large ϕ. Our reason for including the

non-universal factor a in (3.36) (and similar earlier equations) is finally apparent: it is so

that Λp in this case is indeed universally related to a physical quantity. From here on

we take (3.42) as the primary definition Λp, whenever the physical potential exists. In

section 6 we will see another physical consequence of this scale. If we restore ~, it sits in

front of ΩaΛp = Λ2
p/2. Therefore (3.42) establishes that even outside L− the potential, and

in particular the physical potential, remains non-perturbatively quantum.

Since (3.37) is the general solution of (3.5), it gives the RG flow starting from any

bare potential V (ϕ,Λ0), except of course that Vp is no longer the Fourier transform of

the physical potential if the flow ends prematurely. Rewriting the solution in terms of the

Fourier transform of the bare potential, we have

V (ϕ,Λ) =

∫ ∞
−∞

dπ

2π
V(π,Λ0) exp

(
π2

4a2
(Λ2

0 − Λ2) + iπϕ

)
. (3.43)

From this expression we see clearly why a generic choice of bare potential leads to the flow

ending in a singularity: for sufficiently small Λ the integrand diverges at large π. If the

integral fails to converge first at Λ = aΛp, then precisely at this point the typical result

will be a distributional V (ϕ, aΛp).

3.4 Examples at first order in the couplings

The simplest example nevertheless illustrates and confirms the general behaviour derived

above. We need an entire function for Vp. We take just (3.41) with coefficient Λ5
p

√
π,

consistent with dimensions. Then

Vp(ϕ) = Λ4
p e−ϕ

2/Λ2
p , (3.44)

12At the linear level, keeping only potential interactions, the Legendre effective potential itself will be

universal. In general such a potential is not universal [27] and instead one must appeal directly to equations

of motion [28].
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aϕ̃ aϕ̃

Figure 2. Plotted in dashed red is the exact potential (3.46) normalized to V (0,Λ) = 1, and in

solid blue its finite sum up to and including g20. The left panel is the situation when Λ̃p = 0.9, i.e.

just inside L−, while the right panel is the situation having just exited, with Λ̃p = 1.1.

while from (3.38), the odd-n couplings vanish and the even-n ones are given by

g2m =

√
π

m!4m
Λ5+2m

p . (3.45)

One can confirm that these couplings are reproduced by (3.33), or (3.35) using the formula

below. Performing the integral in (3.37) gives the evolved potential:

V (ϕ,Λ) =
aΛ5

p√
Λ2 + a2Λ2

p

exp

(
− a2ϕ2

Λ2 + a2Λ2
p

)
. (3.46)

We see explicitly that V (ϕ,Λ) ∈ L− only for Λ > aΛp, exiting at aΛp through failure of

the integral to converge at large ϕ. Computing the norm-squared integral gives
√
π Λ̃10

p

a9
√

1− Λ̃4
p

, (3.47)

where Λ̃p = aΛp/Λ, which indeed can be expressed as the series in (3.19) when Λ > aΛp.

The Hilbert space property, in particular (3.16), is illustrated in figure 2, by comparing the

exact result (3.46) to the finite sum, namely (3.22) with the upper limit replaced by N = 20.

We can take the bare potential to be (3.46) for any Λ = Λ0 > aΛp. Qualitatively, the

property it has that allows it to survive all the way down to Λ = 0, is that it is at least as

spread out as the eigenoperators themselves (although if it is more spread out, then it exits

L− through failure of the integral to converge at large ϕ as we have seen). In particular

therefore for a physical potential to exist, the bare potential ṼΛ0(ϕ̃) ∈ L− must decay for

large ϕ̃ as exp(−a2
0 ϕ̃

2), where 1/2 < a2
0/a

2 ≤ 1, but also there can be no smaller-scale

features in the bare potential.

On the contrary, if we take a bare potential with finer features than the eigenoperators,

taking for example the more compact (Λ0 > aΛp):

V (ϕ,Λ0) =
aΛ5

p√
Λ2

0 − a2Λ2
p

exp

(
− a2ϕ2

Λ2
0 − a2Λ2

p

)
, (3.48)
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then the flow fails before reaching Λ = 0. By comparing to (3.46), we see that for this

example V (ϕ,Λ) is just given by the above expression with Λ0 replaced by Λ. The couplings

g2m are then those of (3.45) but with a (−)m factor on the right hand side, and the norm-

squared integral is the same as (3.47). However this time the exit from L− is due to the

fact that as Λ approaches aΛp, the width of the exponential vanishes, indeed

lim
Λ→aΛ+

p

V (ϕ,Λ) = Λ5
p

√
π δ(ϕ) . (3.49)

Attempting to flow below this point by analytic continuation gives a complex answer in

general, in this case pure imaginary:

V (ϕ,Λ) = i
aΛ5

p√
a2Λ2

p − Λ2
exp

(
a2ϕ2

a2Λ2
p − Λ2

)
, Λ < aΛp . (3.50)

For completeness, let us mention that by using (3.32) and an appropriate choice of Vp,

one can generate flows V (ϕ,Λ) that exist for all Λ ≥ 0 but which never enter L−. For

example choose

Vp(ϕ) =
1

Λ2
p + ϕ2

=⇒ Vp(π) =
π

Λp
e−Λp|π| . (3.51)

Since the latter has no Taylor expansion, the couplings do not exist, cf. (3.38). By (3.32)

or (3.37),

V (ϕ,Λ) =
a
√
π

ΛΛp
Re
{

e(Λ̃p+iaϕ̃)2
Erfc(Λ̃p + iaϕ̃)

}
, (3.52)

whose large ϕ behaviour is the same as at Λ = 0, i.e. (3.51). On the other hand, choose

Vp(π) =
1

1 + Λ2
pπ

2
=⇒ Vp(ϕ) =

π

Λp
e−|ϕ|/Λp . (3.53)

In this case, the couplings exist (gn = Λnp δn=even) but clearly from (3.19), V (ϕ,Λ) is never

in L−. Indeed from (3.32) one finds its large ϕ behaviour is again unchanged from what

it was at Λ = 0, namely (3.53). In both cases V is never in L− because its large ϕ decay

is too weak for all Λ. The difficulty is making physical sense out of these behaviours. In

the latter case, Green’s functions and S matrix elements do not exist because Vp is not

differentiable at ϕ = 0. In both cases, there is no well defined way to isolate relevant and

irrelevant parts and thus to define what one means by the continuum limit.

3.5 Derivative eigenoperators

Now we derive the form of the general eigenoperator, with spacetime derivative interactions.

It will be sufficient to consider adding kinetic term interactions to (2.5), to see the general

pattern. Thus we set:

δSΛ = −ε
∫
d4x

{
V (ϕ(x),Λ) +

1

2
(∂µϕ)2K(ϕ(x),Λ)

}
. (3.54)
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Recall that the linearised flow is the same whether we consider this to be part of the

Wilsonian or Legendre effective action. Note the overall sign. In view of the negative sign

kinetic term, this is the natural sign for the interactions, i.e. assuming K > 0. Up until now

the overall sign of the potential term in the action, has not mattered,13 however classical

stability now requires that the potential should be bounded above. Changing its sign as

in (3.54) then returns it to being bounded below.14 Working in scaled variables (2.6),

K = K̃, the eigenoperators are defined by the K component:

K̃(ϕ̃, t) =
(µ

Λ

)λ
K̃(ϕ̃) (3.55)

and V component (2.7). We thus find the simultaneous equations:

−λ K̃(ϕ̃)− ϕ̃ K̃ ′ = K̃ ′′

2a2
, (3.56)

−λ Ṽ (ϕ̃)− ϕ̃ Ṽ ′ + 4 Ṽ =
Ṽ ′′

2a2
+ 2bK̃ , (3.57)

where we have set

b =

∫
d4p̃

(2π)4
C(p̃2) . (3.58)

Of course we still have the solutions Ṽ (ϕ̃) = δn(ϕ̃), K̃(ϕ̃) = 0. We also clearly have

solutions Ṽ = bK̃/2. By comparing to (3.8), we see that these O(∂2) eigenoperators thus

take the form:

− 1

2
δn(ϕ̃)

[(
∂̃µϕ̃

)2
+ b

]
, λ = 1 + n , (3.59)

implying that these operators have dimension 3−n. Clearly the K̃ and Ṽ parts are in L−.

We can extend the definition of L− by stripping off the purely space-time derivative parts in

this way. All the other (polynomial and Kummer function) solutions to (3.56) and (3.57) lie

outside L− and thus are excluded from the bare action. Importantly note that the kinetic

term
(
∂̃µϕ̃

)2
is not itself an eigenoperator, since a constant is not integrable under e+a2ϕ̃2

.

Equivalently we can define L− to be the space of interactions that are integrable under

e+a2ϕ̃2
0 , where we shift the field by a spacetime independent constant, ϕ̃(x̃) 7→ ϕ̃(x̃)+ϕ̃0. So

far we have been assuming that the interaction is localised, i.e. all fields in the interaction

have the same spacetime argument x. This latter definition of L− allows us to extend it to

non-local interactions, although such an interactions can only then be expanded in terms

of the eigenoperators if they are quasi-local i.e. possess a space-time derivative expansion.

Like the potential operators δn, these O(∂2) operators are all relevant, and thus all

associated with renormalized couplings in the continuum limit (in this case g̃n = gn/Λ
1+n).

Since b > 0, the associated potential contribution has naturally the right sign for classical

stability. As might have been expected, given that these eigenoperators are defined at

a Gaussian fixed point, their scaling dimension equals the sum of the dimensions of the

components:

3− n = [(∂µϕ)2] + [δn] , (3.60)

13The equations in the previous subsection are blind to this sign.
14Without it, the consequent classical instability also leads to a pole in (3.3).
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where the scaling dimension of the first term is also its engineering dimension, and the

second is given by (3.11). The dimensionful operators are given by multiplying by Λ3−n

and thus take the form:

− 1

2
δ
(n)
Λ (ϕ)

[
(∂µϕ)2 + bΛ4

]
, (3.61)

and consequently, taking the IR limit Λ→ 0, the physical operators are:

− 1

2
δ
(n)

(ϕ) (∂µϕ)2 . (3.62)

It is straightforward to see how this generalises to arbitrary derivative interactions.

We add to the effective Lagrangrian a term

εL(ϕ,Λ)σp(∂, ∂ϕ) , (3.63)

where σp is some Lorentz invariant monomial with 2p space-time derivatives, of definite

engineering dimension dp, and where each instance of ϕ appears differentiated at least once.

Tadpole corrections will generate subleading terms σ0≤ p′<p of lower dimension dp′ , which

thus must also be added, together with their coefficient functions. For the eigen-functions,

the top function, L̃(ϕ̃), satisfies the same equation as (3.8) except that by scaling as in (2.6),

the dimension 4 is replaced by 4 − dp. We thus find that the interactions in L− are again

formed by setting L̃(ϕ̃) ∝ δn(ϕ̃), where they form a basis for such σp interactions. Similarly

to (3.60) their dimensions are thus dp−1−n, while the dimension of the associated coupling

is 5 + n − dp. Thus again infinitely many of this tower of higher derivative operators are

relevant. However for dp ≥ 5, the n = dp− 5 operator is marginal. And once dp ≥ 6, those

n < dp − 5 operators are irrelevant, and thus in the continuum limit have couplings that

are determined by the relevant ones. The coefficient functions for the subleading terms will

satisfy equations somewhat similar to (3.57), for which we want the special solution which

will be tied to δn(ϕ̃). Since their dimension dp′ < dp, they will appear in the dimensionful

eigenoperators with positive powers of Λ like in (3.61). Finally the physical operators will

simply be

δ
(n)

(ϕ)σp(∂, ∂ϕ) . (3.64)

We see that the novel physical properties, namely non-perturbative in ~, evanescence and

IR suppression, are also true of all the derivative interactions. Apart from the role of the

polynomial basis (2.12) now being played by δn(ϕ̃), this structure closely mimics that of

scalar field theory with positive kinetic term. Similarly therefore, we anticipate that a more

convenient basis for the Hilbert space of interactions, is to use the top term and discard

the subleading corrections:15

δ
(n)
Λ (ϕ)σp(∂, ∂ϕ) , (3.65)

and with a slight abuse of terminology, classify these as relevant, marginal, or irrelevant.

Thus for example we recognise that δ
(0)
Λ(ϕ) (�ϕ)2 is an irrelevant operator, δ

(1)
Λ(ϕ) (�ϕ)2 is

marginal, and all the δ
(n>1)
Λ (ϕ) (�ϕ)2 are relevant.

15Although we are discarding only the σp′<p terms, not the crucial tadpole corrections to δ
(n)

(ϕ). Of course

the maximal subset of σp should be chosen so that (3.65) are independent under integration by parts.
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4 Perturbation theory

We have seen that already at the linear level, the structure is non-perturbative in ~, but

nevertheless calculable. This is also true for corrections which can be developed as a

perturbation theory in the couplings gn, while staying non-perturbative in ~. That this

can be done consistently, rests upon the fact that, term by term, the corrections remain in

L−. Indeed, in these terms we will find differentials of the eigenoperators, which by (3.30)

trivially remain in L−. As we will see in section 7, when applied to quantum gravity we

can expect to obtain terms with δm(ϕ̃) times a positive integer power of ϕ̃. This is again

in L−. In fact from (3.27) it is straightforward to derive

ϕ δ
(n)
Λ (ϕ) = −n δ(n−1)

Λ (ϕ) − ΩΛ δ
(n+1)

Λ (ϕ) (4.1)

(which from (3.10) is just the Hermite polynomial recurrence relation in disguise).

Finally, we will also obtain products of the eigenoperators. Clearly such products are

again in L−, and thus, if quasi-local, we can expand them back into the eigenbasis. We are

thus faced generically with

δm(ϕ̃) δn(ϕ̃) =

∞∑
j=0

c̊jmn δj(ϕ̃) (4.2)

(where the fields are all at the same spacetime point). From (3.15) and a Hermite lin-

earization formula [29], the expansion coefficients are:

c̊jmn =
2s−ja2s−2j

2π2j!
Γ(s− j)Γ(s−m)Γ(s− n) δj+m+n= even , where 2s = j +m+ n+ 1 .

(4.3)

However, using Stirling’s formula for large j, we find

j!
(̊
cjmn

)2 ∼ a2(m+n+1)

√
2π3

jm+n− 1
2

(4a2)j
, (4.4)

therefore we see that this is a case where (3.19) has a finite radius of convergence. Assuming

for the moment that (4.2) appears in the bare action, thus with coupling g̃mn=gmn/Λ
6+m+n
0 ,

and we evolve the product itself at the linearised level (this is not exactly how it arises,

but this discussion will be useful shortly), it leaves L− for Λ ≤ aΛp where

aΛp = Λ0/
√

2 . (4.5)

To see this we note that the corresponding dimensionful coefficients are:

cjmn := c̊jmn Λj−m−n−1
0 , (4.6)

and then we use (3.19) to compute the norm-squared at scale Λ. Having defined the dimen-

sionful coefficients by (4.6), the dimensionless expansion evolves self-similarly, in particular
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c̃jmn = cjmn/kj−m−n−1, this fact being guaranteed for the couplings by dimensional analy-

sis. However the relation (4.2) is not respected by the RG already at linearised level: the

evolved expansion

[δm(ϕ̃) δn(ϕ̃)]Λ0
k :=

∞∑
j=0

c̃jmn δj(ϕ̃) , (4.7)

is only equal to δm(ϕ̃) δn(ϕ̃) at the original scale k = Λ0.

Since the c̊jmn are pure numbers, we see that the relevant couplings gmn c
j
mn are large

(for large enough j), as set by the bare cutoff scale Λ0. Since (at finite scales) the relevant

couplings must be finite in the continuum limit, we see that we would need to compensate

by adjusting the bare values of gj , in other words they would need renormalization. In

fact the single term gmnδm(ϕ̃) δn(ϕ̃) in the bare potential is anyway unacceptable at the

linearised level, because such a potential is more compact than the eigenoperators. Thus

the flow in fact ends at (4.5) with a distributional effective potential. Indeed the bare

potential can be rewritten in this case as

P (∂ϕ)
(
δ
(0)
Λ0

(ϕ)
)2

, (4.8)

where the first term is a rank m + n polynomial of ϕ derivatives. The second term is

proportional to (3.48), with aΛp again given by (4.5), and thus the whole combination

evolves to this constant of proportionality times P (∂ϕ) acting on (3.49).

Now we demonstrate how perturbation theory can be developed. Since we need results

that are non-perturbative in ~, we must in effect sum over all Feynman diagrams to infinite

order. What promises to keep this manageable is that we can nevertheless expand pertur-

batively in the couplings. To get insight we first proceed this way, working directly from

the functional integral. Then we will turn to solving the flow equations, which provides a

more elegant and more powerful approach for our purposes.

4.1 Second order in the couplings by summing Feynman diagrams

At second order in the couplings, the 1PI contribution will be computed from all such

Feynman diagrams involving two bare operators at spacetime points x1 and x2, each taking

the form of (3.65) with Λ = Λ0. If for illustrative purposes we keep all and only the non-

derivative operators, then this can be written as the ϕ dependent 1PI part of the functional

integral

1

2

∫
Dϕq e

1
2
ϕq ·

(
∆

Λ0
k

)−1
·ϕq
∫
x1

V (ϕq(x1)+ϕ(x1),Λ0)

∫
x2

V (ϕq(x2)+ϕ(x2),Λ0) . (4.9)

The exponential of the fluctuation field ϕq(x) has the wrong sign for promoting convergence.

As mentioned at the beginning of section 3, at first sight this makes no sense and, as is

clear from (2.18), the exponential divergence gets dramatically worse as k → Λ0, rather

than suppressing the integral. However this latter divergence belongs only to the field

independent part and we are not interested in that. By using (3.37) at Λ = Λ0, the

dependence on the fluctuation field from the interactions can be isolated through eiJ ·ϕq ,
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Figure 3. Feynman diagrams at second order in the coupling but all orders in ~.

where

J(z) = i
∑
j=1,2

πj δ(xj − z) , (4.10)

and πj is the corresponding conjugate momentum. Performing the now-Gaussian functional

integral gives

1

2

∫
x1,x2

∫
dπ1dπ2

(2π)2
Vp(π1,Λ0)Vp(π2,Λ0) e−

1
2
πiMijπj+iπiϕ(xi)

∣∣∣
1PI

. (4.11)

Anticipating that the dimensionful couplings gn will now run with scale, we set them to

their bare values gn(Λ0), or equivalently through (3.38), set Vp to its bare value. We have

also introduced the O(~) 2×2 matrix

M =

(
Ωk −∆Λ0

k (x1, x2)

−∆Λ0
k (x1, x2) Ωk

)
. (4.12)

The Ωk entries arise in the same way as in (3.25), and thus re-sum the tadpole graphs in

figure 1, turning the constituent bare eigenoperators into renormalized ones. Expanding

perturbatively in ∆Λ0
k (x1, x2) generates the graphs in figure 3 that connect the two renor-

malized eigenoperators. Finally, the restriction to 1PI means that one should subtract the

terms zeroth and first-order in ∆Λ0
k (x1, x2).

If individual eigenoperator contributions were representative of the whole, for example

if only a finite number of couplings were non-vanishing, we see via (3.38) that the π integral

in (4.11) would diverge as soon as M is no longer positive definite. Since ∆Λ0
k (x1, x2) is a

decreasing function of |x1 − x2|,16 this happens first at coincident points where

∆Λ0
k (x1, x1) = ΩΛ0 − Ωk =

Λ0
2 − k2

2a2
, (4.13)

meaning that k could not be lowered below Λ0/
√

2, as in (4.5). We recognise that the flow

has broken down for the reasons given in the previous subsection.

But operator mixing will switch on all couplings, which furthermore will run with scale.

Their bare values will be weighted by the appropriate power of Λ0 as set by dimensions

(but such that the couplings nevertheless behave correctly so as to access the Gaussian

continuum limit). At the bare level, for large π, we therefore expect something like

Vp(π,Λ0) ∼ e−π
2Λ2

0/4c
2
0 , (4.14)

16This is e.g. clear from the fact that ∆Λ0(r)−∆Λ0(r′) > ∆k(r)−∆k(r′) for r = |x1−x2| < r′ = |x′1−x′2|.
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for some bare coefficient c0(Λ0) > 0 (compare (3.41)). Then providing c0 < a, the same

arguments as in (4.13) show that (4.11) would be well defined for all k ≥ 0. However, as

well as resorting to guesswork, we are also ignoring the contributions from the (marginally)

relevant derivative operators (3.65), all of which will also contribute.

4.2 Second order in the couplings by solving the flow equation

This complexity is much better handled by solving the flow equations directly. The simplest

description arises from taking the 1PI part ΓΛ := Γ∞Λ of the Wilsonian effective action

SΛ [8, 16, 18] since this will give us direct access to the β functions induced by quantum

corrections, and involves only the one scale, Λ. At the same time this solves for the IR

cutoff Legendre effective action directly in the continuum limit. Writing Γ(n) to be the

part nth order in the couplings, and expanding the right hand side of (3.3) to second order

in the couplings, we have ΓΛ = Γ(1) + Γ(2), where17

Γ̇(1)[ϕ]+Γ̇(2)[ϕ] =−1

2
tr

[
∆̇Λ ·

δ2Γ(1)

δϕδϕ

]
− 1

2
tr

[
∆̇Λ ·

δ2Γ(2)

δϕδϕ

]
− 1

2
tr

[
∆̇Λ ·

δ2Γ(1)

δϕδϕ
·∆Λ ·

δ2Γ(1)

δϕδϕ

]
(4.15)

As we have already emphasised, we need to work non-perturbatively in the loop expansion.

It is therefore important to recall that the flow equations (3.2) and (3.3) are indeed non-

perturbative, in fact exact, RG equations. Written in the form (4.15) the flow equation

is now second order in the couplings, but it is still exact in ~. If we were to solve (4.15)

by iteration, we would reproduce the Feynman diagrams just considered, in particular the

last term gives those in figure 3.

Now we again concentrate on the potential. We have seen that at first order we have

the solution

ΓΛ[ϕ] = Γ(1) = −
∫
x
V (ϕ(x),Λ) , (4.16)

where V is given by (3.37), for some Λ-independent Vp, which when expanded as in (3.38)

gives thus Λ-independent gn. If the flow survives down to Λ = 0, then Vp is the Fourier

transform of the resulting physical potential Vp. When V (ϕ,Λ) ∈ L−, we can instead

expand it directly, as in (3.22). Beyond linearised order, we need to define the couplings

by an appropriate renormalization condition. Since the IR cutoff ensures that ΓΛ has a

spacetime derivative expansion, we choose to define the gn to be the Taylor expansion

coefficients of the corresponding Vp, which thus now runs:

Vp(π,Λ) =

∞∑
n=0

gn(Λ) (iπ)n . (4.17)

While V ∈ L−, this is equivalent to requiring that gn(Λ) is the coefficient of the operator

δ
(n)
Λ (ϕ).

By the renormalization conditions, Γ(2) has no interaction potential. Thus the only

piece that contributes to the running of the potential is the O(∂0) part of the final term

17And from (2.2) and (2.16), ∆Λ(p) = ∆∞Λ (p) = [1− CΛ(p)]/p2.
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which evaluates to c
∫
x

(
∂2
ϕV
)2

, where c is a universal term, the one-loop diagram:

c = −1

2

∫
d4p

(2π)4
∆Λ(p)∆̇Λ(p) = − 1

32π2

∫ ∞
0
dp

∂

∂p
C2

Λ = − 1

32π2
. (4.18)

By (3.23) and (3.22), while V ∈ L− we have

∂2
ϕV (ϕ,Λ) =

∞∑
n=0

gn δ
(n+2)
Λ (ϕ) . (4.19)

Converting to scaled operators using (3.20), using the product formula (4.2), and then

converting back we thus find

ġj =
Λj−5

32π2

∞∑
m,n=0

c̊jm+2,n+2

Λm+n
gmgn , (4.20)

or in autonomous form:

Λ
∂

∂Λ
g̃j = −(5 + j)g̃j −

1

32π2

∞∑
m,n=0

c̊jm+2,n+2g̃mg̃n . (4.21)

Relying on the existence of flows in the reverse direction, we can now solve these equations

for Λ > µ for any given choices of ‘initial’ couplings gj(µ). Indeed it is straightforward to

solve (4.20) as a perturbative series in powers of gj(µ):

gj(Λ) = gj(µ) +
1

32π2

∞∑
m,n=0

c̊jm+2,n+2

m+n+5−j
gm(µ)gn(µ)

(
Λj−m−n−5 − µj−m−n−5

)
+O

(
g3(µ)

)
.

(4.22)

Note that since g̃j(Λ) = gj(Λ)/Λj+5, order by order in the perturbation theory all these

solutions emanate from the Gaussian fixed point in the Λ →∞ limit as required.

We have only kept track of the O(∂0) parts.18 The last term in (4.15) provides a

spacetime derivative expansion to all orders. Expanding these into the basis (3.65), it will

contribute to the β functions for all the other relevant couplings. A continuum limit can

therefore be achieved only by working simultaneously with all the relevant couplings, as

expected on general grounds. Defining their renormalization conditions in a similar way,

will mean that Γ(2) contains no relevant operators. Its only purpose is to solve for the

couplings of the irrelevant operators which, in the continuum limit, are determined by the

irrelevant operator parts extracted from the last term. Of course once we recognise that

all the other relevant couplings must be switched on, the second-order β functions above

will receive contributions from them as well.

We note that the arbitrarily negative powers of Λ that appear in (4.20) prevent a

smooth Λ→ 0 limit existing, unless all the couplings gn vanish in this limit. To show this

we assume a Λ→ 0 limit does exist for which V (ϕ, 0) 6= 0 and show that ∂ΛV (ϕ,Λ) must

18We cannot therefore directly compare this to the calculation in section 4.1, where the induced higher

derivative contributions are implicitly included at scales k < Λ0, through ∆Λ0
k (x1, x2).
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Figure 4. Part of these Feynman diagrams need to resummed to all orders in the coupling.

then diverge in this limit. First note that outside L−, we would get the same formula by

using (4.17) and (3.37) and Fourier transforming the final c
∫
x

(
∂2
ϕV
)2

term. In fact having

isolated the O(∂0) part, this last term is the only term that survives the Λ → 0 limit

on the right hand side of (4.15), and is non-vanishing if the couplings are non-vanishing

in this limit. This implies that Λ∂ΛV (ϕ,Λ) has a finite limit, which in turn implies that

∂ΛV (ϕ,Λ) itself must diverge in the Λ→ 0 limit.

However, as we will address in section 4.3, these couplings generate a mass m, which

must then be handled non-perturbatively. Then it is no longer true that the evolution of

the couplings gj are tied to the scale Λ and we can expect that they generically freeze out

at values set by the scale m, as Λ→ 0. We similarly expect finite size effects (see section 6)

to provide a freeze-out scale 1/L on a sufficiently homogeneous manifold.

4.3 Higher orders and infinite order

Although we have only sketched explicitly how to compute the O(g2) contributions (which

however through the β functions (4.20) or (4.21) furnish higher order contributions and in-

deed resum these in the usual fashion), we trust the treatment of higher order contributions

along these lines is also clear.

We note that the scalar field theory will also be subject to some corrections that must

be handled non-perturbatively in the IR. In particular, classes of Feynman diagrams made

by replacing the propagators ∆Λ by the chain of corrections shown in figure 4, as well

as providing higher order ϕ interactions, induce a mass m2(Λ). From (3.37), and setting

ϕ = 0 in (4.19) and iterating (4.1):19

m2(Λ) = −
∫ ∞
−∞

dπ

2π
π2 Vp(π,Λ) e−

π2

2
ΩΛ =

a√
πΛ

∞∑
n=0

(2n+ 1)!!

(
−2a2

Λ2

)n+1

g2n(Λ) . (4.23)

The corresponding O(ϕ0) corrections in figure 4 thus appear as a power series in m2/p2. If

we try to treat these order by order perturbatively in the couplings, when inserted into loop

corrections (such as those of figures 1 or 3) we obtain diagrams of ever increasing divergence

as the IR cutoff Λ → 0. This problem is clearly related to the one we noted at the end of

the previous subsection. Instead therefore we need to replace ∆Λ(p) by CΛ(p)/(p2 +m2),

singling out m(Λ) for non-perturbative treatment in the IR. At the same time we should

use (4.23) to eliminate one degree of freedom, for example g0(Λ), in favour of m2(Λ) in

the equations.

We recognise that the −1
2 δ

(n)
Λ (ϕ) (∂µϕ)2 operators through the chain of diagrams 4

similarly induce a wavefunction renormalization. These do not result in the same way in

IR divergences. Similarly all higher derivative operators (3.65) are IR safe in this sense.

19Or consulting known formulae for Hermite polynomials.
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Note that in a correctly formed continuum limit, all contributions from all operators

are UV safe and do not need non-perturbative resummation in this regime, apart from using

the β function to resum the evolution of any marginally relevant coupling. This follows

because such a continuum limit depends only on the (marginally) relevant couplings whose

scaled versions must vanish in the limit Λ→∞ so that the flow emanates from the Gaussian

fixed point as required.

5 Unitarity and universality

We are not of course claiming that scalar field theory with wrong sign kinetic term, when

considered as a continuum quantum field theory in its own right, is free from physical

problems. In Minkowski signature, the wrong sign for the kinetic term implies either a

Hamiltonian unbounded from below, or a Fock space with negative norm states (see e.g.

section 8 of [30]). Presumably related, the dimensions [δn] < 1, cf. (3.11), all violate the

unitarity bound. The existence of higher derivative relevant eigenoperators, cf. (3.64), leads

to further concerns for unitarity. Finally the fact that it is specified by an infinite number

of relevant couplings is phenomenologically useless, and raises questions about universality

as already touched on in section 3.1. However it is natural to expect that these problems

disappear when the structure is appropriately embedded into gravity, as discussed in the

Introduction and section 7.

6 RG evolution on a manifold

As we have seen, even at the linearised level, RG evolution plays a crucial rôle. By the

quantisation condition, the eigenoperators are given at the bare level by the operators in

eq. (3.65) with Λ = Λ0, as given by the coefficient functions (3.21). At the linear level

these composite operators do not interact with each other, but they nevertheless evolve

under lowering the cutoff, by tadpole quantum corrections as in figure 1. In R4, by the

eigenoperator property, they are form invariant under this evolution, with the inherent

scale now equal to the infrared cutoff, as in eq. (3.23), becoming the distributions (3.64)

in the physical limit in which the infrared cutoff is removed, i.e. as k → 0.

On a (Euclidean) spacetime manifold M that is not R4, this is no longer the case.

We will see that the operators become smooth functions of ϕ with an amplitude decay

scale set by the typical length scale on the manifold, but if the manifold is sufficiently

inhomogeneous they cease to exist before k reaches zero. Once more a full understanding

is only gained by switching on an infinite number of couplings. Then we will see that Λp

has another rôle to play: it sets the minimum size of such inhomogeneous manifolds.

6.1 Eigenoperators on a manifold

On a (Euclidean) spacetime manifold M that is not R4, the bare operators are still the

same, because these operators are defined at Λ0, the UV scale that is eventually diverging,

corresponding to vanishing distances where the spacetime is indistinguishable from R4.

However the quantum corrections are modified at long distances by the spacetime geometry.
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To be specific it is sufficient to consider the evolution of the potential operator δ
(n)
Λ0

(ϕ), as

defined in (3.21), since a general eigenoperator is also made with this term, and the top

part, (3.65) with covariant derivatives as appropriate, evolves in the same way.

The evolution will be given by (3.25), where the propagation now takes place on the

manifold (and thus also a
√
g is included in the integral over x). Actually, until we know the

form of the full theory of quantum gravity, we do not know for sure what replaces (3.25) in

the general case.20 For the general arguments below we do not need the precise definition,

only that it reduces to the flat space version when the background metric gµν → δµν . Then

in the fully worked example we choose the metric to be δµν .

On the other hand, since the bare operator is the same, the identity (3.26) still holds

and thus the bare operator can still be expressed as (3.28), where the integration is still

over R4. Thus combining (3.26) and (3.25), the quantum corrections above k no longer

precisely cancel to give (3.26) with Λ0 replaced by k, but leave a modified version where:

δ
(n)
k,Λ0

(ϕ) = exp

(
1

2
Ωk,Λ0(x)

∂2

∂ϕ2

)
δ
(n)

(ϕ) , (6.1)

and

Ωk,Λ0(x) = |〈ϕ(x)ϕ(x)〉|R4 − |〈ϕ(x)ϕ(x)〉|M . (6.2)

Here the first term is ΩΛ0 , as defined in (2.11), while the second term is from propagation

on the manifold M and is regulated by CΛ0
k . In general the second term depends on the

position of the point x inM, and thus δ
(n)
k,Λ0

(ϕ) has x dependence through Ωk,Λ0(x) as well

as through its dependence on the field ϕ(x).

Consequentially, the operators are no longer form invariant, but pick up “finite size”

corrections, and will retain some dependence on the UV regularisation while Λ0 is fi-

nite. However we can expect that Ωk,Λ0(x) becomes independent of the latter in the limit

Λ0 → ∞, in particular the operators will again be automatically renormalized, because

the tadpole corrections will continue to wipe out all dependence on higher scales providing

k � 1/L, where L is a characteristic length scale for the manifold. This will continue

to work as k is lowered, until k is comparable to 1/L, after which the infrared properties

should primarily be set by the geometry. In particular in the limit that k → 0, we expect

that Ωk,Λ0(x) will therefore become a finite universal function of this geometry. We call

this function

Ωp(x) := lim
Λ0→∞
k→0

Ωk,Λ0(x) . (6.3)

By comparing (3.26) and (3.21), we see immediately that evaluating (6.1) gives again the

same form for eigenoperators onM as in (3.23), but with Ωk replaced by Ωk,Λ0(x). Taking

the limits (6.3) we get the physical eigenoperators δ
(n)
p (ϕ), which are thus given by

δ
(n)
p (ϕ) =

∂n

∂ϕn
δ
(0)
p (ϕ) , where δ

(0)
p (ϕ) =

1√
2πΩp

exp

(
− ϕ2

2Ωp

)
. (6.4)

20For example whether ϕ is conformally coupled to the background curvature, cf. section 7.
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Evidently, Ωp = 0 if the manifold is R4, and we return to δ
(n)
p (ϕ) = δ

(n)
(ϕ). Otherwise, by

dimensions

Ωp(x) =
S(x)

4πL2
, (6.5)

where S is a (universal) dimensionless ‘shape’ function that can thus only depend on

dimensionless characterisations of the manifold (the factor 4π is included for convenience).

Providing S(x) > 0, Ωp acts to suppress large amplitudes ϕ > 1/L. However as we will

see, it is also possible for S to be negative.

6.2 General linear RG flows on a manifold

In this latter case, the operators δ
(n)
k,Λ0

(ϕ) themselves cease to exist below some positive IR

cutoff k, being the value where, for some x, Ωk,Λ0(x) first vanishes and then turns negative.

(Here Λ0 can be finite or the continuum limit, Λ0 → ∞, could have been taken.) At this

point we get a distribution, namely δ
(n)

(ϕ), and attempting to flow below this k will result

in the operator turning imaginary, as in (3.50). Once more, a full understanding at the

linearised level is only gained by switching on infinitely many couplings. Consider again

the general solution (3.37) for the potential. This solution now takes the form

V (ϕ, k,Λ0) =

∫ ∞
−∞

dπ

2π
Vp(π) e−

π2

2
Ωk,Λ0

+iπϕ , (6.6)

where the choice of bare (relevant) couplings fixes the theory, and in particular determines

the amplitude suppression scale Λp. As before, the above expression is meaningful even

when V /∈ L−. Additionally it remains meaningful even when the eigenoperators themselves

fail to exist, since by (3.41) the integral still converges for large π providing Ωk,Λ0(x) >

−Λ2
p/2 for all x ∈M. Taking the limits Λ0 →∞ and k → 0, the physical potential is now:

Vp (ϕ(x), x) =

∫ ∞
−∞

dπ

2π
Vp(π) e−

π2

2
Ωp(x)+iπϕ(x) , (6.7)

and thus asymptotically for large field:

Vp (ϕ(x), x) ∼ exp

(
− ϕ2(x)

Λ2
p + 2Ωp(x)

)
. (6.8)

Thus Ωp(x) modifies the amplitude suppression scale, increasing or decreasing it, depending

on the sign. In particular from (6.5), the given theory only makes sense on manifolds

where21

S(x) > −2πL2Λ2
p ∀x ∈M . (6.9)

Judging from the example below, and confirmed in further examples in ref. [31], man-

ifolds where S(x) is somewhere negative, have the characteristic that they have at least

one other finite length scale which is sufficiently different, already at the O(1) level, from

21It might be possible to make sense of the limiting case where Ωp(x) = −Λ2
p/2 for some points or

subspace in M.
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some appropriately defined average length scale L. For the given theory (viz. choice of

couplings) such manifolds must thus be larger than a minimum size

L > Lmin =
1

Λp

√
−Smin

2π
, (6.10)

where Smin is the infimum value over all x ∈ M. On the other hand, the larger the

characteristic length scale L, the more inhomogeneous the manifold (the more negative S)

is allowed to be.

Indeed we can rephrase this effect in terms of inhomogeneity. Let Smax > 0 be the

maximum (strictly supremum) value for Smin over a suitable set of such manifoldsM with

the same topology. This is naturally a number of O(1), characteristic of what the theory

regards as the most symmetric manifold in the set. Then for a given manifold M, the

quantity IM = Smax−Smin > 0 is a universal measure of its inhomogeneity (in the sense of

being independent of the details of regularisation). Rephrasing (6.10), the inhomogeneity

is bounded above depending on the size of the universe:

IM < Smax + 2πL2Λ2
p . (6.11)

Evidently, such behaviour could be very attractive within a complete theory of quan-

tum gravity (cf. section 7), although a full, and dynamical, understanding, will have to wait

until the non-linear theory is developed. In particular it cries out for application to cos-

mology. It explains why the initial conditions for inflation had to be sufficiently smooth. It

possibly requires from quantum gravity alone that the early universe approximates a highly

symmetric state such as a de Sitter inflationary phase. The restriction on inhomogeneity

is maybe sufficient to forbid eternal inflation. Since (classical) fluctuations are restricted

anyway, it maybe does away with the need for inflation altogether. See e.g. refs. [32–35]

for discussions relevant to these ideas. Since it ties the minimum size of the universe to the

degree of inhomogeneity, and large amplitude inhomogeneities have appeared only recently

in the history of the universe, it could also explain the infamous “Why now?” problem,

namely that the energy density of matter (including dark matter) is now similar in magni-

tude to the apparent energy density of dark energy deduced from the current acceleration

of the universe. Finally, assuming spacetime singularities induce infinite inhomogeneity

IM, it implies “cosmic censorship” and somehow a softening of the causal structure of

black holes.

6.3 Eigenoperators on a hyper-torus

We now evaluate Ωp(x) in a simple example, verify that it is universal, and demonstrate

that requiring S > 0 restricts the amount of asymmetry in the manifold. We choose the

manifold to be a four-dimensional (untwisted) hyper-torus. Such a manifold is of course

not a very realistic representation of our universe. The same effects however also appear for

other examples [31], including cases where the time direction is non-compact. We choose

the minimum lengths of the non-contractable loops to be Lµ, and choose flat coordinates
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such that gµν = δµν . In this case

|〈ϕ(x)ϕ(x)〉|M =
1

V

∑
n 6=0

CΛ0
k (pn)

p2
n

, (6.12)

where pµn = 2πnµ/Lµ (no summation over µ), the sum is over all vectors of integers n ∈
Z4\{0}, and V = Π4

µ=1Lµ is the volume of the hyper-torus. Note that since the hypertorus

has translation invariance, in this case there is actually no x dependence. Then S can only

depend on ratios of length scales.

Also note that since this is a manifold of finite volume, the constant mode (a.k.a.

zero mode) ϕ(x) = ϕ0 is normalizable. It needs to be divided out from the functional

measure since a pure kinetic term, and thus the integrand of the partition function at the

Gaussian fixed point, does not depend on this (recall related comments at the beginning

of section 3.3). This is the reason for excluding n = 0 from the sum in (6.12), making

it manifestly IR finite. Therefore the limit k → 0 in (6.3) can be safely taken, and Ωp is

clearly independent of the choice of IR regularisation.

With the infrared cutoff k > 0 in place, the n = 0 contribution is not singular. Indeed

lim
p→0

CΛ0
k (p)

p2
= C ′(0)

(
1

Λ2
0

− 1

k2

)
, (6.13)

where we have used (2.16) and below (2.2). Using this to add back the n = 0 contribution,

we can then employ the Poisson summation formula to write (6.12) as a sum over winding

numbers:

|〈ϕ(x)ϕ(x)〉|M =

∫
d4p

(2π)4

CΛ0
k (p)

p2

∑
n

eiln·p − C ′(0)

V

(
1

Λ2
0

− 1

k2

)
, (6.14)

where lnµ = Lµnµ (not summed over µ) and n ∈ Z4 are now the winding numbers.

Using (2.16) and (2.11), we see that the zero winding number sector, i.e. n = 0, yields the

R4-quantity ΩΛ0 − Ωk, and thus from (6.2) we find that

Ωk,Λ0 = Ωk +
C ′(0)

V

(
1

Λ2
0

− 1

k2

)
−
∫

d4p

(2π)4

CΛ0
k (p)

p2

∑
n 6=0

eiln·p . (6.15)

Since the last term is a sum of propagators to separated points, we see that Ωk,Λ0 is

manifestly UV finite, as we already argued above on general grounds. We can therefore

safely take the limit Λ0 → ∞, with the result clearly independent of the method UV

regularisation (in this case the UV cutoff profile). As we have already seen that it is IR

safe, we have thus proved that Ωp is well-defined and universal, as we claimed.

We are free to choose the IR cutoff profile to facilitate the remaining calculation. We

set C(p2/k2) = e−p
2/k2

.22 Recall that by (2.16), Ck(p) = 1 − C(p2/k2). Taking limits

where it is safe to do so, we can thus write:

Ωp =
1

V k2
−
∫

d4p

(2π)4

∫ 1/k2

0
dα e−αp

2
∑
n 6=0

eiln·p , (6.16)

22For a different choice see ref. [36]; we otherwise essentially follow their derivation.
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where we have expressed the IR cutoff through a Schwinger parameter, and the k → 0

limit should hereafter be understood. Performing the momentum integral, and substituting

α = L2t/4π, where L = V 1/4 is the geometric mean of the Lµ, gives

Ωp =
1

V k2
− 1

4πL2

∫ 4π
L2k2

0

dt

t2

[
Π4
µ=1 Θ

(
L2
µ

tL2

)
− 1

]
, (6.17)

where we have introduced the third Jacobi theta function (at Jacobi ν = 0, x > 0):

Θ(x) :=
∞∑

n=−∞
e−πn

2x . (6.18)

Splitting the integral into two pieces about t = 1, the first piece is given by s(Lµ/L) where

s(`µ) :=

∫ 1

0

dt

t2

(
Π4
µ=1 Θ

(
`2µ/t

)
− 1

)
. (6.19)

In the t ≥ 1 part we substitute t 7→ 1/t and use the identity Θ(x) = (1/
√
x) Θ(1/x) (which

straightfowardly follows from a further application of Poisson resummation) to cast it in

terms of the above function plus a remainder. The latter in particular cancels the explicit

IR divergence in (6.17). Thus finally, using (6.5), we find

Ωp =
S(Lµ/L)

4π
√
V

where S(`µ) := 2− s(`µ)− s(1/`µ) . (6.20)

By dimensions, S only depends on the ratios Lµ/L. Symmetry under permutation of the

Lµ follows from the symmetries of the torus. However we note further that Ωp and S are

invariant under the simultaneous inversion of all moduli: Lµ 7→ L2/Lµ (which also preserves

the overall volume V ). It can be extended to a larger group involving the modular group and

twisted torii. This intriguing symmetry is reminiscent of T-duality in String Theory [37–39],

except that there radii are inverted using the string scale α′, whereas here the scale is set by

the manifold itself. Again a comprehensive understanding of its significance in the current

context will have to await the development of the full quantum gravity.

At the symmetric point where all Lµ = L, we find numerically that S ≡ Smax = 1.765,

in agreement with ref. [36], and confirming the general expectation that Smax is a number

of O(1). On the other hand S vanishes already if for example:

(a) L1 = 2.709L with the other three Lµ equal (thus to 0.7173L),

(b) thus also the dual version L1 = 0.3691L and the other three Lµ = 1.394L,

(c) L1 = L2 = 2.457L with the other pair L3 = L4 = 0.4069L.

(d) Lµ = 1.487Lµ+1 (µ = 1, 2, 3).

(Combined with permutation symmetry, (c) and (d) are self-dual.) With the Lµ further

apart, these configurations result in S < 0, which implies a minimum allowed size for such

a manifold, for example from (6.9) we can write this in terms of the space-time volume as:

V >
S2(Lµ/L)

4π2Λ4
p

. (6.21)
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7 Implications for quantum gravity

The discoveries we have reported in this paper point towards gravity being after all a per-

turbatively renormalizable quantum field theory, albeit of a new and dramatically different

kind. Of course physical processes are described by working with the theory in Minkowski

signature, or by using some continuation appropriately adapted to the process at hand

(see e.g. the recent discussion [40]). However before such processes can be investigated,

one must actually construct such a theory. To do this we need to formulate it in Wilso-

nian terms, which means that we need to study its fluctuations around Euclidean R4 (see

sections 1 and 2). Then, reflecting the unboundedness of the Euclidean signature action,

the conformal factor has the wrong sign kinetic term. Considered on its own, we have

shown in the previous sections how to make sense of its Wilsonian RG behaviour, uncov-

ering novel and promising properties (further explored in ref. [31]). Now we discuss what

this implies for the full theory of quantum gravity.

The key observation from the Wilsonian RG, is that the continuum theory can be con-

structed if the scaled bare action in the limit Λ0 →∞ is just the Gaussian fixed point plus a

vanishing perturbation which is the linearised interaction expanded only over (marginally)

relevant eigen-operators. This provides the boundary condition for the renormalized trajec-

tory, and renormalizability can then be expected to follow provided that all bare relevant

couplings are included that are induced by requiring finite couplings at physical scales.

More generally, if bare irrelevant couplings are needed, they must stay close enough to

the Gaussian fixed point to remain within its domain of attraction. Just as discussed in

section 2, we can then anticipate that their dimensionful values must actually vanish in

the limit as Λ0 →∞.

For the conformal factor on its own, this means in particular that the bare theory must

sit inside L−, using the relevant interactions of the form (3.65). Since these eigenoperators

are non-perturbative in ~, quantum gravity must also be non-perturbative in ~. Therefore

we cannot organise contributions by the loop expansion, however calculations can proceed

perturbatively in κ (i.e. Newton’s coupling cf. section 1). Since the traceless fluctuation

hµν has the right sign for its kinetic term, cf. (1.7), eigen-operators involving only hµν
are built in L+, i.e. are polynomials of hµν and its space-time derivatives, generalising

section 2 (see also section 3.5). In particular [hµν ] = 1 and h̃µν = hµν/Λ, as follows from

the canonically normalized kinetic term (1.7), and the Hilbert space L+ is defined through

the norm e−a
2h̃2
µν . Extending section 3.5, it is thus clear that the general eigenoperator is

built using a top term

δ
(n)
Λ (ϕ)σ(h, ∂, ∂ϕ) , (7.1)

where σ(h, ∂, ∂ϕ) is a Lorentz invariant monomial involving some or all of the components

indicated (and thus hµν can appear here differentiated or undifferentiated or not at all).

These perturbations form the Hilbert space “L” of interactions that are square integrable

under ea
2(ϕ̃2−h̃2

µν). Clearly this includes the ϕ eigen-perturbations that are purely in L−,

since these interactions are still square-integrable under the new measure. But hµν eigen-

perturbations that are purely in L+ are not allowed since they are not square integrable

under the new measure (there is nothing to mitigate the ea
2ϕ̃2

part). If we included such
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interactions we would destroy the ϕ part of the Hilbert space structure and as we will see,

also renormalizability. The scaling dimensions of the eigenoperators are the ones expected

at the Gaussian fixed point, in particular if [σ(h, ∂, ∂ϕ)] = dσ, then the scaling dimension

of the full eigenoperator is dσ + [δn] = dσ − 1− n.

It is tempting to assume that all symmetries are preserved and that we can discuss the

issue within the framework of a classical action. But neither of these assumptions is true:

the regularisation (and not only this as we will discuss) breaks or at least deforms local

symmetries, and thanks to the conformal factor, the action is never classical but always

non-perturbatively quantum. The usual arguments proceed by assuming diffeomorphism

invariance, leading at the classical level to a series of interactions (1.9) organised by powers

of κ, after which quantum corrections can be analysed. Here the interactions at each new

power of κ arise simultaneously from both directions: on the one hand from the quantum

corrections induced by interactions with a lower power of κ, and on the other hand by the

constraints of the quantum (BRST) version of diffeomorphism invariance.

Provided the latter at least incorporates the linearised diffeomorphism invariance en-

joyed by (1.4), and that the kinetic term remains second order in derivatives at the bare

level, back in Minkowski signature this is a theory of gravitons with just two transverse

polarisations. In particular this also ensures that in Minkowski signature, the conformal

mode is non-dynamical, and thus that the wrong-sign kinetic term does not lead to a

break-down of unitarity.

To the extent that the low energy effective description can be assumed to be classi-

cal, many related arguments of consistency then effectively enforce that it coincides with

General Relativity [41–51]. Given all the experimental tests, this seems surely to be re-

quired phenomenologically. As we have been emphasising however, according to the theory

we are uncovering, gravity must in reality be non-perturbatively quantum at all scales.

This aspect lies at the heart of the restrictions on inhomogeneity, which as discussed in

section 6.2, themselves look so promising phenomenologically. We can add that the ten-

dency to IR divergence at the interacting level (see the end of section 4.2) make it tempting

to speculate that gravitational dynamics will receive important corrections at large scales,

raising the prospect that these effects could be ones attributed to dark matter, and per-

haps even have a rôle in explaining conflicting experimental measurements of Newton’s

coupling [52]. Clearly there is some tension with the conclusion we reached at the begin-

ning of this paragraph. The actual extent to which General Relativity is modified will only

be revealed once the full theory is developed.

Since the BRST invariance is broken by our regularisation, bare operators correspond-

ing to its breaking, will have non-vanishing couplings, even though the corresponding phys-

ical expressions are tuned to vanish. To avoid the breaking of this quantum version of dif-

feomorphism invariance, one might hope to reformulate the arguments using dimensional

regularisation. However, since quadratic divergences of a massless field are crucial to the

definition of the ϕ eigenoperators, dimensional regularisation would appear to be inappli-

cable. In principle we could try to finesse the difficulties by basing the formulation on the

fact that Ωp in (6.3) is actually independent of regularisation and thus also the physical

operators (6.4) are independent of regularisation. But to discuss renormalizability we need
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access to the bare operator, which requires using only the first term in (6.2). This van-

ishes in dimensional regularisation, which by (3.21) implies that all the bare operators also

vanish. We could try the usual expedient of adding a mass term for ϕ by hand. However

adding a mass term breaks the realisation of diffeomorphism invariance we were trying to

preserve, meaning that we appear to be no better off than with the rigorously more secure

regularisation scheme we are currently using.

We need to avoid being forced by the parametrisation, equivalently the realisation

of diffeomorphism invariance, to include irrelevant operators with corresponding non-

vanishing couplings in the limit Λ0 → ∞ (this being the usual problem). To gain some

feeling for the parametrisation required, let us imagine for the moment that the theory

can be constructed by starting from a diffeomorphism invariant classical action. Then

since the action will be (1.1), and the kinetic terms have to appear explicitly as in (1.7),

any parametrisation can be reduced to the question of how to parametrise the metric gµν .

To linear order in the fields we know already that this takes the form (1.8), in order to

obtain (1.7) after using the Feynman-De Donder gauge (1.5). This suggests writing

gµν =
(

1 +
κ

4
ϕ
)2
ĝµν , (7.2)

so that (1.1) becomes:

LEH = −3

4

√
ĝ ĝµν∂µϕ∂νϕ−

2

κ2

√
ĝR̂
(

1 +
κ

4
ϕ
)2

. (7.3)

If ĝµν = δµν , this gives us the required kinetic term for ϕ (before getting 1
4(∂ϕ)2 from

gauge fixing) and nothing else. From (1.8) we then know that to linear order in the fields,

ĝµν = δµν + κhµν . But such an unadorned hµν will lead us straight back into the space

of non-renormalizable finite irrelevant interactions (1.9), and take us outside L. Instead

we need to protect it by using the ϕ operators (3.10). For example we could try replacing

hµν with the marginal operator δ
(0)
Λ(ϕ)hµν , or with δ

(n)
Λ (ϕ)hµν for some n > 0, which is a

relevant operator. On the other hand once we use one such a basis operator, perturbative

quantum corrections (i.e. in κ, non-perturbative in ~) will generate infinitely many others

via (4.2). Thus to renormalize the theory we expect to need to extend this to an infinite

sum over such operators, so we are led to try ĝµν = δµν + κ f1hµν , where f1(ϕ,Λ0) ∈ L−
is a general coefficient function. Thus the general structure described in section 3.3 can

be expected: the effective interaction will be in L at cutoff scales Λ higher than some Λ0,

leaving L at some aΛp; with further care, complete flows exist, leading to the inhomogeneity

effects discussed in section 6.

Substituting such an expansion into (7.3) will lead to higher order hµν interactions,

with ϕ-dependent coefficients that can be expanded over the δ
(n)
Λ (ϕ) basis using (4.2). At

this point we have to face the fact, as we saw in eq. (4.7), that the flow even at the linearised

level does not respect the product structure, and thus here does not respect the fact that

these operators came from some power of (differentials of) f1. This will be true even if

we were able to construct a diffeomorphism invariant flow equation [53]. The only way

we can match the result to ĝµν at some other scale, is to give the latter sufficiently many
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parameters to reproduce the result of this evolution. We are thus led to consider very

general expansions, schematically (derivative operators might also be needed)

ĝµν = δµν + κf1 hµν + κ2f2 h
α
µ hαν + · · · , (7.4)

each operator with their own coefficient function fi(ϕ,Λ). Substituting this expansion

into (7.3), it is clear that this can come from a bare level action where all the interactions

are of form (7.1), in particular cubic and higher hµν interactions appear together with

their ‘protection’ via ϕ interactions in L−. Indeed since R̂ vanishes for flat ĝµν , it is

reconstructed from interactions all of which contain at least one coefficient function. Then

the observations in section 4 apply. Thus ∂µfj = ∂ϕfj ∂µϕ is in L− by (3.30), products

of the fj are in L− by (4.2), and the explicit instances of ϕ in the last term in (7.3) are

absorbed into L− by (4.1). We thus see that the rôle of the infinite number of relevant

couplings in the conformal sector, cf. (3.10) and section 3.5, is to allow for such a sufficiently

general parametrisation.

So far we have only discussed what happens when we aim for the Einstein-Hilbert

action (1.1). With infinitely many relevant directions of arbitrarily high dimension, one

should worry that covariant higher derivative contributions could also be relevant. In

particular ones which have an O(h2) piece, that can for example come from gsR
2/κ2 (where

gs is its coupling) and the other squared curvatures, are dangerous since they can destroy

unitarity by introducing poles of the wrong sign into the propagator [54]. In fact the

dimensions (3.11) are just right to ensure that this does not happen! From (7.4) such

terms look like gsf
2
1h∂

mh for m ≥ 4. For the generic f1 which we are anyway forced

to have, such a term contains δ
(0)
Λ(ϕ)h∂mh which is an irrelevant operator of dimension

m + 1 ≥ 5. Thus the corresponding couplings [gs] ≤ −1, must be set to vanish in the

continuum limit. In essentially the same way, one shows that none of the covariant higher

derivative operators can be associated with their own bare couplings.

From (7.2) and (7.4) we would deduce that a cosmological constant term is not allowed,

since it leads to non-vanishing ϕ and ϕ2 terms. These operators are not in L− so do not

appear at the bare level, and cannot be generated from products of operators that start in L.

Such a conclusion would be clearly attractive, especially given that the theory already has

the potential to explain the current acceleration of the universe (cf. section 6.2). However

at this point we have to confess to a flaw in these arguments. Nevertheless they show how

these structures are important for quantum gravity, and the flaw indicates the path we

have to take.

The problem is that substituting (7.4) does not (after appropriate modification of

the Feynman-De Donder gauge fixing) give the kinetic terms (1.7) plus interactions in

L, because the hµν kinetic term also gets multiplied by f2
1 . Writing it as (1.7) plus the

interaction
1

2
(f2

1 − 1) (∂λhµν)2 , (7.5)

makes this look harmless, particularly if we can arrange for f1|ϕ=0 = 1 so that it is genuinely

only interactions. However (7.5) is not in L. Although the unprotected (∂h)2 is marginal

(thus perturbatively renormalizable), the Hilbert space structure is destroyed and with
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it the guarantee that quantum corrections are also in L (at sufficiently high scales). In-

deed (7.5) together with the other O(h2) interactions when strung together as in figure 4

and inserted into Feynman diagrams made using the other interactions, cancel the f1 ap-

pearances in internal legs. In fact all the fi cancel inside loops. Despite the novel context,

the equivalence theorem still applies [55, 56]. Reparametrising the metric does not help,

cosmological constant terms are after all generated, and gravity is still non-renormalizable

— with the same structure of divergences.

The root cause of the failure is where we flagged it be, in the paragraphs above (7.2).

We cannot start from a diffeomorphism invariant classical action. Instead we must go

directly to a quantum action subject to some quantum version of diffeomorphism invariance.

The known consistency constraints [41–51] appear at first sight to leave no room for an

alternative quantum theory. However all of these works assume one or more properties,

in particular justified by the assumed existence of a classical limit, that either now do not

apply or become significantly softened.
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