
J
H
E
P
0
8
(
2
0
1
7
)
1
4
7

Published for SISSA by Springer

Received: July 6, 2017

Accepted: August 25, 2017

Published: August 31, 2017

Holographic reconstruction of AdS exchanges from

crossing symmetry

Luis F. Alday,a Agnese Bissib and Eric Perlmutterc

aMathematical Institute, University of Oxford,

Andrew Wiles Building, Radcliffe Observatory Quarter,

Woodstock Road, Oxford, OX2 6GG, U.K.
bCenter for the Fundamental Laws of Nature, Harvard University,

17 Oxford Street, Cambridge, MA 02138, U.S.A.
cDepartment of Physics, Princeton University,

Jadwin Hall, Princeton, NJ 08544, U.S.A.

E-mail: luis.alday@maths.ox.ac.uk, agnese@physics.harvard.edu,

perl@princeton.edu

Abstract: Motivated by AdS/CFT, we address the following outstanding question in

large N conformal field theory: given the appearance of a single-trace operator in the

O × O OPE of a scalar primary O, what is its total contribution to the vacuum four-

point function 〈OOOO〉 as dictated by crossing symmetry? We solve this problem in 4d

conformal field theories at leading order in 1/N . Viewed holographically, this provides a

field theory reconstruction of crossing-symmetric, four-point exchange amplitudes in AdS5.

Our solution takes the form of a resummation of the large spin solution to the crossing

equations, supplemented by corrections at finite spin, required by crossing. The method

can be applied to the exchange of operators of arbitrary twist τ and spin s, although it

vastly simplifies for even-integer twist, where we give explicit results. The output is the

set of OPE data for the exchange of all double-trace operators [OO]n,`. We find that the

double-trace anomalous dimensions γn,` are negative, monotonic and convex functions of

`, for all n and all ` > s. This constitutes a holographic signature of bulk causality and

classical dynamics of even-spin fields. We also find that the “derivative relation” between

double-trace anomalous dimensions and OPE coefficients does not hold in general, and

derive the explicit form of the deviation in several cases. Finally, we study large n limits

of γn,`, relevant for the Regge and bulk-point regimes.
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1 Introduction

The last several years have witnessed an evolution of AdS/CFT research toward the on-

tological. We have long known the correspondence is true; the question is what, precisely,

this means. The exploration of holographic theory space has, following the seminal work

of [1], largely focused on the question, “Which families of large N conformal field theories

have weakly coupled, local gravity duals?” The conjecture of [1], which has withstood the

test of time, is elegant in its minimalism: a large N CFT with a gap to single-trace higher

spin operators has a local gravity dual. There are many fascinating known CFT signatures

of this gap. We are beginning to understand exactly how CFT observables — for instance,

the low-spin operator dimensions and OPE coefficients — depend on ∆gap, most notably

via the CEMZ bound
∣∣a−c
c

∣∣ . ∆−2
gap in 4d CFTs [2, 3], and what underlying structures

govern the organization of the CFT data as a whole.
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Still, we are far from a full definition of “holographic-ness” from the CFT side, both

in the 1/N and 1/∆gap expansion. This is true on a basic level. For illustration, consider

the sparsest possible holographic CFTd: the theory of the stress tensor, Tµν , dual to pure

Einstein gravity in AdSd+1. This is, at the least, a consistent subsector of a full-fledged

holographic CFT with parametrically large ∆gap at leading non-trivial order in 1/N . The

only light operators are Tµν and its multi-trace composites. What is the low-lying spectrum

of this theory? For d > 2, the answer is not known, even at leading non-trivial order in 1/N .

The same is true for generalized free scalar fields in holographic CFTs, dual to pertur-

bative scalar fields in AdS, which is the case of interest in this work. Even in the minimal

setting in which O couples only to the stress tensor, we do not know the leading order

OPE data of the double-trace operators [OO]n,` for general n, ` and ∆O — in particular,

the anomalous dimensions, γn,`, and the leading 1/N correction to the squared OPE co-

efficients, an,` ≡ C2
OO[OO]n,`

. Both γn,` and an,` are rich quantities that contain essential

information about the emergence of the holographic dimension. In the CFT, existence of

Lorentzian bulk-point singularities [1, 4, 5] and Regge scaling of correlators can be read off

from γn,` at large n; in the bulk, γn,` is interpreted as a binding energy of a two-particle

state, and is intimately related to causality (as we discuss more below). One goal of this

paper is to obtain more complete information about γn,` and an,`.

A related angle on our work comes from developments in the Lorentzian conformal

bootstrap. In any CFT, crossing symmetry of 〈OOOO〉 in the lightcone limit demands the

existence of large spin “double-twist” primary operators [OO]n,`, with small anomalous

dimensions γn,` in the regime ` � n [6, 7], see also [8]. In this regime, γn,` is a negative,

monotonic, convex function of `. For n = 0, convexity follows from Nachtmann’s theo-

rem [9] and the asymptotic decay γ0,` ∼ −`−τ∗ , where τ∗ is the lowest non-zero twist in

the O × O OPE. On the other hand, in a CFT with a 1/N expansion, the double-twist

operators exist for all `, with γn,` suppressed by powers of 1/N instead of 1/`. A natural

question is to understand the behavior of γn,` in large N CFT as a function of n and `:

in particular, we would like to understand whether negativity, monotonicity and convexity

persist down to finite `. The few known results for γn,` from top-down computations in

supergravity suggest that this may be the case for all n [10–16]. Moreover, bulk causality

constraints on scattering through shock waves implies that γn,` < 0 in the high-energy,

large-spin regime n, ` � 1 [2, 17, 18]. And so we ask: in what kinds of large N CFTs do

negativity, monotonicity and convexity of γn,` hold for finite n and `?

It may seem surprising that we lack a complete picture of holographic CFT OPE

data at leading order in 1/N , since the AdS amplitudes are largely known. For tree-level

scattering of external scalars in AdS, there are known expressions for arbitrary four-point

contact and exchange amplitudes, in both position space (e.g. [10, 19–22]) and Mellin space

(e.g. [21, 23–28]). While all OPE data is, in principle, contained in these known amplitudes,

there is no known systematic way1 to extract it for arbitrary quantum numbers of the fields

1For OPE data at n = 0, there is a formula in Mellin space [21], and evaluating it analytically for generic

∆ requires techniques recently developed in [29]. For n > 0 there is no Mellin formula. In position space,

one can apply brute force methods to exchange amplitudes. But as in Mellin space, techniques do not exist

for generic ∆, where the simplest known form of the amplitude involves an infinite sum of D-functions or

a contour integral with infinitely many poles. For ∆ ∈ Z, however, one can find results in position space,

for all n, as we will do in appendix D.
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Figure 1. The form of the CFT conformal block decomposition of the complete crossing-symmetric

AdS amplitude due to ϕτ,s exchange. O is the boundary operator on the external legs, and Oτ,s
is the operator dual to ϕτ,s. In this paper, we solve for the right-hand side of this equation using

CFT crossing symmetry at large N .

involved: while the decomposition of individual exchange diagrams into CFT conformal

blocks of the same channel is understood [30], it is not understood for crossed-channel

blocks. Alternatively, we do not know the crossing kernel for conformal blocks in arbitrary

spacetime dimension (but for recent progress, see [31–34]).

In light of this, the bootstrap approach to elucidating holography is especially powerful,

and begs the inverse question, posed in [1] but left unsolved: given some spectrum of single-

trace operators in a large N CFT, can we derive the double-trace OPE data purely from

the CFT side, thus reconstructing the bulk amplitudes without using gravity? In this

paper, we provide an affirmative answer to this question for 4d CFTs. By solving crossing

symmetry for 〈OOOO〉 at leading order in 1/N in the presence of a single-trace exchange,

we fully reconstruct the dual crossing-symmetric AdS exchange amplitude. Our results

apply to single-trace operator exchanges in any large N CFT, not only those with local

bulk duals, though they have interesting consequences for the latter.

1.1 Summary of results

We consider the following CFT problem, at leading non-trivial order in 1/N . (See figure 1.)

Consider two single-trace operators: a scalar primary O, of dimension ∆, and a spin-s

primary Oτ,s, of twist τ . Suppose that 〈OOOτ,s〉 6= 0. What is the contribution of Oτ,s to

γn,` and an,` for the double-trace operators [OO]n,`? In what follows we will often use the

– 3 –
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notation2

γn,`
∣∣
(τ,s)

= the contribution to γn,` due to Oτ,s exchange at order 1/N2

a
(1)
n,`

∣∣
(τ,s)

= the contribution to an,` due to Oτ,s exchange at order 1/N2
(1.1)

This maps to the following AdS dual problem. Suppose there exists a bulk vertex of the

form φφϕτ,s, where φ and ϕτ,s are dual to O and Oτ,s, respectively. At tree-level in AdS,

this contributes a sum of three exchange diagrams, one from each channel, to the four-point

amplitude that computes 〈OOOO〉. What is the total contribution of these diagrams to

γn,`
∣∣
(τ,s)

and a
(1)
n,`

∣∣
(τ,s)

?

Our method here is to solve crossing symmetry at leading order in 1/N , starting from

the large spin perturbation theory recently introduced in [35, 36].3 By utilizing “twist

conformal blocks,” which sum up infinite towers of conformal blocks of identical twist, one

can efficiently solve the crossing equations. Working exclusively in 4d CFT, we provide

and demonstrate an algorithm for the complete solution of γn,`
∣∣
(τ,s)

and a
(1)
n,`

∣∣
(τ,s)

, for ar-

bitrary ∆, τ and s. The use of twist conformal blocks allows us to both improve upon

the techniques of [38], and to extend to n > 0. For the present paper we focus mainly on

even-integer twist τ , working out several examples explicitly, with extra simplifications at

τ = 2. (See section 2.3.)

The anomalous dimensions organize themselves into a sum of two pieces:

γn,` = γas
n,` + γfin

n,` . (1.2)

The first piece, γas
n,`, is the “asymptotic” piece coming from resummation of large spin

perturbation theory; this is an analytic function of `. The second piece, γfin
n,`, is the “finite”

piece required to furnish a full solution to crossing, which has support only for ` ≤ s. The

OPE coefficients, a
(1)
n,`, also can be written as a sum of two pieces:

a
(1)
n,` =

1

2
∂n

(
a

(0)
n,`γn,`

)
+ a

(0)
n,`â

(1)
n,` . (1.3)

Readers may recognize the first term as encoding the “derivative relation” between an,`
and γn,` [1]. For truncated solutions to crossing corresponding to AdS contact interactions,

â
(1)
n,` = 0, as found experimentally in [1] and proven in [40]. Having derived the finite n

data, we are now able to answer the question — negatively — of whether this relation

holds in the presence single-trace exchanges. In particular, we find that â
(1)
n,`

∣∣
(τ,s)

= 0 only

for ∆ = 2, 3, . . . , τ/2 + 1 + s. That it holds at all for these values of ∆, all the way down

to ` = 0, is fairly remarkable in light of the finite pieces in eq. (1.2). At n� 1, deviations

from the derivative relation appear to be suppressed as â
(1)
n�1,`

∣∣
(τ,s)
∼ n−2τ . This is a new

prediction, that is consistent with bounds from eikonal gravity calculations [17, 18].

With our solutions in hand, we may now extract their physical consequences for holo-

graphic CFTs and AdS physics. We focus here on two aspects:

2We use a
(0)
n,` to denote the mean field theory squared OPE coefficients, hence the superscript on an,`.

We sometimes drop the
∣∣
(τ,s)

suffix to reduce clutter, if the risk of confusion is low.
3This is built on the algebraic approach developed in [37, 38]. See [39] for a related approach.
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a) High-energy limits: at n � 1, we are probing high energies in the bulk. It is a

matter of series expansion to study our solutions at large n. We content ourselves with

an expansion to first subleading order in 1/n. For n/` fixed, this is the Regge regime; for

` fixed, this is the bulk-point regime. In each case, this yields the first CFT derivation

of both the leading and subleading asymptotics. In the Regge limit, our leading order

result matches the bulk computation of γn,` as an eikonal scattering phase in [17, 18],

and reproduces the full structure of the AdS bulk-to-bulk propagator found there; the

subleading term is a new prediction.4 (See eq. (3.11).) In the bulk-point regime, our leading

order result is the first derivation of any kind that applies for finite `; the dependence on `

is extremely simple, γn�1,`

∣∣
(τ,s)
∼ (`+ 1)−1. (See eq. (3.24).) The subleading term is also

new; upon insertion into the conformal block decomposition of the full correlator 〈OOOO〉,
it gives a prediction for the subleading correction to the bulk-point singularity, and can be

thought of as encoding the leading “finite size” correction to the flat space S-matrix due

to the nonzero AdS curvature.

b) Negativity, convexity and causality in AdS: by studying our even-twist solutions,

we amass strong evidence that the contribution of Oτ,s to the leading large N anomalous

dimension obeys the following properties:

Negativity : γn,`>s
∣∣
(τ,s)

< 0

Monotonicity :
∂

∂`

(
γn,`>s

∣∣
(τ,s)

)
> 0

Convexity :
∂2

∂`2
(
γn,`>s

∣∣
(τ,s)

)
< 0

(1.4)

We are viewing γn,`>s
∣∣
(τ,s)

as an analytic function of `, even though ` is integral. Some

representative plots can be found in figures 3 and 4. We emphasize that these results hold

for finite `, and for all n, going well beyond the purview of the original, leading-order

lightcone bootstrap. This may be thought of as a “large N Nachtmann’s theorem” —

that is, an extension to arbitrary n and ` of the conclusions of the lightcone bootstrap,

made possible by the presence of the small parameter 1/N . For ` ≤ s, various behaviors

are possible based on the sensitivity of γfin
n,` to s and to the value of ∆. Preliminary

investigations indicate that the stronger negativity property γn,` 6=s
∣∣
(τ,s)

< 0 may be true,

but we postpone a fuller investigation of these sporadic phenomena to future work.

Of special interest is the universal contribution due to the stress tensor, which com-

putes the gravitational contribution to binding energies in AdS [6, 7, 42, 43]. The explicit

solutions for γn,`
∣∣
T

and an,`
∣∣
T

can be found in eqs. (2.49)–(2.51) and eq. (2.60), respectively.

A holographic CFT with ∆gap → ∞ has a sparse single-trace spectrum of bounded

spin s ≤ 2. The total γ
(1)
n,` at leading order in 1/N is thus a finite sum of contributions

from s ≤ 2 operators. There may also be a finite set of terms contributing only to ` ≤ 2

— dual to contact interactions in AdS — where this upper bound is the condition that the

chaos bound be obeyed without spoiling bulk locality [44]. Therefore, we have shown that

4The leading order result can also be derived by solving the crossing equations directly in the Regge

regime [41]. We thank those authors for discussions.

– 5 –
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Figure 2. The schematic form of γn,` in a large N CFT with a weakly coupled, local gravity dual,

valid for all n. The contribution to γn,` from individual single-trace operators Oτ,s is a negative,

monotonic, convex function of ` for ` > s. In holographic CFTs with ∆gap → ∞, there is a finite

number of such contributions, all with spin s ≤ 2, thus yielding the above behavior. For ` = 0, 2,

various behaviors are possible, due to non-analytic contributions.

the total anomalous dimensions γn,`>2 are negative, monotonic and convex in holographic

CFTs with weakly coupled, local gravity duals. This is depicted in figure 2.

A corollary to this is that, still assuming unitarity, γn,`>2 > 0 is only possible in a theory

containing higher spin single-trace operators. We also know that such theories must have

infinite towers of higher spin operators, organized into Regge-like trajectories [2, 34, 44–47].

Therefore, the only way γn,`>2 > 0 is possible is if a suitably regularized resummation of

an infinite set of negative contributions yields a non-negative result.5 Said another way, if

γn,`>2 > 0 for at least one pair (n, `) in a given large N CFT, its bulk dual is non-local.

The connection between negativity and convexity of γn,`, and causality properties of

AdS gravity, was made in [2, 6, 7, 17, 18, 46, 49–52] in the context of gravity coupled to

massive particles. For n� 1 and `� 1, the two-particle state in the bulk is approximated

by a pair of particles following null geodesics coming in from infinity. The impact parameter

b in this scattering process is, in AdS units,

eb ≈ 1 +
`

∆ + n
(1.5)

In the large spin regime `� n, the particle separation becomes much greater than the AdS

scale. In the Regge regime, eb ≈ 1 + `/n, which corresponds to high-energy, fixed impact

parameter scattering. In both cases, −γn,` is proportional to the scattering phase, which is

constrained to be positive by causality [2, 17, 18]. As n and ` decrease to finite values, the

overlap between the individual particle wave functions becomes significant [42], and we can

5This has recently been shown to happen for n = 0 in the 3d O(N) vector model and its Chern-Simons-

matter cousins [48].
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no longer approximate their trajectories by geodesics. Nevertheless, our results show that

the above picture of gravitational interactions continues to hold in this regime, thanks to

large N : unitarity and crossing symmetry imply that the exchange of ϕτ,s gives an order

GN contribution to the binding energy that is a negative, monotonic and convex function

of `, all the way down to small spins and low center-of-mass energies. These features of

γn,` thus give a satisfying holographic demonstration that classical bulk forces mediated

by even-spin fields, such as the graviton, are attractive down to the AdS length scale and

fall off monotonically with distance.

The rest of this paper is organized as follows. In section 2 we set up and solve the

crossing problem. We give various explicit examples along the way, including results for

stress tensor exchange. In section 3, we analyze the results and discuss holographic appli-

cations. We conclude with a discussion of future problems in section 4. Appendices A–C

contain technical material needed for section 2, as well as a handful of explicit formulas for

fixed twists. Appendix D makes contact with previous literature on AdS amplitudes for

exchanges, by extracting γn,` and a
(1)
n,` from position-space amplitudes for various ∆ ∈ Z,

and comparing (successfully) to our results.

2 Single-trace exchange in holographic CFTs

2.1 General idea

Consider a generic CFT in four dimensions with a large N expansion. Assume the spectrum

contains a single-trace scalar operator O of dimension ∆. The four-point function of

identical operators O takes the form

〈O(x1)O(x2)O(x3)O(x4)〉 =
G(z, z̄)

x2∆
12 x

2∆
34

(2.1)

where xij = xi − xj and we have introduced the conformal cross-ratios zz̄ =
x2

12x
2
34

x2
13x

2
24

and

(1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

. The correlator admits a decomposition in conformal blocks

G(z, z̄) =
∑
Oi

ai(zz̄)τi/2gτi,`i(z, z̄) (2.2)

where the sum runs over primary operators present in the OPE O×O. Each primary, which

we denote Oi, is labelled by its twist τi = ∆i−`i and its Lorentz spin `i. Each contribution

is weighted by the square of the OPE coefficient, ai ≡ C2
OOOi , and the conformal blocks

have been written so as to make their small z, z̄ behaviour explicit. In four dimensions,

gτ,`(z, z̄) =
z`+1Fτ/2+`(z)F τ−2

2
(z̄)− z̄`+1Fτ/2+`(z̄)F τ−2

2
(z)

z − z̄
(2.3)

where

Fβ(z) ≡ 2F1(β, β, 2β; z) (2.4)

– 7 –
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is the standard hypergeometric function. We take crossing symmetry to act as z ↔ 1− z̄
in the cross-ratios. For the four-point correlator it implies(

1− z
z

)∆

G(z, z̄) =

(
z̄

1− z̄

)∆

G(1− z̄, 1− z) . (2.5)

In this paper we will assume for simplicity that ∆ does not depend on N . At infinite N ,

the correlator is that of mean field theory, i.e. generalised free fields (GFF): one has a sum

of three disconnected contributions,

G(0)(z, z̄) = 1 +

(
zz̄

(1− z)(1− z̄)

)∆

+ (zz̄)∆ . (2.6)

Expanding in conformal blocks, the set of intermediate operators is comprised of the iden-

tity and the double-trace operators [OO]n,` of dimension ∆n,` = 2∆ + 2n + `, where

n = 0, 1, 2, . . . and ` = 0, 2, 4, . . ., with corresponding squared OPE coefficients a
(0)
n,`. The

explicit form of these OPE coefficients can be found in eq. (D.3). Next, let us consider

1/N2 corrections to the GFF result,

G(z, z̄) = G(0)(z, z̄) +
1

N2
G(1)(z, z̄) + · · · (2.7)

consistent with crossing symmetry. These corrections arise from two sources. First, the

CFT data corresponding to double-trace operators gets corrected,

τn,` = 2∆ + 2n+
1

N2
γn,` + · · · (2.8)

an,` = a
(0)
n,` +

1

N2
a

(1)
n,` + · · · (2.9)

where a
(0)
n,` is given in eq. (D.3). In addition, new “single-trace” operators may arise in the

OPE O ×O.

As argued in [1], if no new operators are exchanged at order 1/N2, then all solutions to

crossing have finite support in the spin. These truncated solutions have been constructed

in [1] and we will denote their contribution to γn,` as γtr
n,`. In the present paper we will

consider the presence of a new exchanged operator, of twist τ and spin s. Schematically,6

O ×O ∼ 1 +
∑
n,`

[OO]n,` +
1

N
Oτ,s + · · · (2.10)

Our goal is to solve crossing symmetry, given the presence of Oτ,s in this OPE. In this case

the situation is quite different. The correlator now contains the following term

G(1)(z, z̄) ⊃ aτ,s(zz̄)τ/2gτ,s(z, z̄) (2.11)

where aτ,s is the leading contribution to the squared OPE coefficient with which the single-

trace operator is exchanged,

C2
OOOτ,s =

1

N2
aτ,s + · · · (2.12)

6Henceforth we leave implicit the bounds on sums over n and `, with non-negative integer n and `/2.

– 8 –
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Then crossing symmetry implies

G(1)(z, z̄) ⊃ (zz̄)∆

((1− z)(1− z̄))∆−τ/2aτ,s gτ,s(1− z̄, 1− z) . (2.13)

For non-integer τ
2 −∆ this term can only be obtained from an infinite sum of terms on the

l.h.s.,7 so that crossing symmetry implies solutions with infinite support in the spin [6, 7].

We will use the method developed in [35, 36] to compute the CFT data, and in particular

the anomalous dimensions, to all orders in inverse powers of the spin. This series resums

into an analytic asymptotic answer which we denote γas
n,`. In order to obtain an exact

solution to crossing, generically we will need to supplement this asymptotic expression by

a piece with finite support in the spin, denoted by γfin
n,`. The final answer takes the form

γn,` = γas
n,` + γfin

n,` . (2.14)

We will find that γfin
n,` is different from zero only for ` ≤ s.8 Similar considerations apply

to the OPE coefficients a
(1)
n,`. In addition, there always exists the freedom to add a homo-

geneous solution to crossing, which contributes a truncated piece γtr
n,`, as explained above.

2.1.1 A Mellin perspective

The Mellin representation of AdS amplitudes [23, 26, 53] provides a fruitful perspective on

why γn,` takes the form eq. (2.14). The Mellin amplitude M(s, t) may be defined by the

double integral transform

G(z, z̄) =
1

(4πi)2

∫ i∞

−i∞
ds dtM(s, t)(zz̄)

t
2
(
(1− z)(1− z̄)

)u−2∆
2 ρ(s, t, u) (2.15)

with measure

ρ(s, t, u) ≡ Γ2

(
2∆− s

2

)
Γ2

(
2∆− t

2

)
Γ2

(
2∆− u

2

)
, (2.16)

and u ≡ 4∆ − s − t. (We hope there is no confusion between the spin and the Mellin

variable s.) In this convention, crossing means M(s, t) = M(s, u) = M(t, s). The exchange

of a bulk field ϕτ,s, dual to Oτ,s, contributes to M(s, t) as

Mτ,s(s, t) ≡ aτ,s

[ ∞∑
n=0

(
Qs,n(t, u)

s− τ − 2n
+
Qs,n(s, u)

t− τ − 2n
+
Qs,n(t, s)

u− τ − 2n

)
+Rs−1(s, t, u)

]
(2.17)

Subscripts refer to the spin s, not the Mellin variable: the numerators are Mack polynomials

of degree s, and Rs−1(s, t, u) is a totally-symmetric degree-(s−1) polynomial. All channels

are summed over explicitly. To compute γn,` we develop the conformal block decomposition

7For instance, a divergent term can be generated by acting with the Casimir operator on (1 − z̄)α,

provided α is non-integer.
8In the language of [35, 36], these two contributions will produce enhanced and non-enhanced terms,

with respect to a single conformal block. In the language of [39], they come from the “Casimir-singular”

and “Casimir-regular” terms, respectively.
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in a given channel — say, the s-channel for concreteness — and evaluate on the poles at

s = 2∆ + 2n.9 There are three kinds of contributions:

1) Crossed channel poles (t- and u-channel) contribute to all `. In our calculation of

γn,`, these are the pieces we compute by resumming the large spin expansion, γas
n,`.

It is clear here that they are not crossing symmetric.

2) Direct channel (s-channel) poles, evaluated on s = 2∆ + 2n, become degree-s poly-

nomials, contributing only to ` ≤ s. In our calculation of γn,`, these are the finite

pieces, γfin
n,`. They are also not crossing symmetric.

3) Rs−1(s, t, u) contributes only to ` ≤ s − 1, and is crossing-symmetric. In our calcu-

lation of γn,`, these are the truncated pieces, γtr
n,`, that may be present for ` ≤ s− 1.

From the AdS perspective, their presence signals contact terms in the spin-s bulk-to-

bulk propagator [21].

In the following we will work out γas
n,` and γfin

n,` for several examples. This includes, in

particular, the exchange of the stress tensor.

2.2 Asymptotic anomalous dimensions

The analyticity properties of the sum (2.2) around z = 0 imply that the piece proportional

to log z arises solely from the anomalous dimension γn,`. More precisely,

G(1)(z, z̄) =
∑
n,`

a
(0)
n,`

γn,`
2
uτn/2gτn,`(z, z̄) log z + (analytic at z = 0) (2.18)

where

τn ≡ 2∆ + 2n . (2.19)

As explained above, in the case of the exchange of a single-trace operator, this sum should

reproduce certain divergences: specifically, eq. (2.13) implies that

∑
τn,`

a
(0)
n,`

γn,`
2

(zz̄)τn/2gτn,`(z, z̄)

∣∣∣∣∣
div

=
(zz̄)∆

((1− z)(1− z̄))∆−τ/2aτ,s gτ,s(1− z̄, 1− z)

∣∣∣∣
log z

(2.20)

where on the left we keep only the “divergent” part as z̄ → 1, i.e. the contribution that

cannot be obtained by a finite number of conformal blocks. This includes all non-integer

powers of (1− z̄). Equation (2.20) is our crossing equation for γn,`.

Following [35, 36], we can efficiently compute γn,` to all orders in 1/` using eq. (2.20).10

First we introduce the following family of functions which we denote twist conformal blocks,

H(m)
n (z, z̄) =

∑
`

a
(0)
n,`

(zz̄)τn/2

J2m
gτ,`(z, z̄), (2.21)

9For n = 0 one can use the explicit integral transform of [21] to derive γ0,`. For higher n, there is no known

explicit analog of this formula (which was one motivation for this work), but our discussion still applies.
10Notice that in principle, solutions to the crossing equations whose anomalous dimensions decay faster

than any power of `, for instance e−k`, can be added to γn,`. We are not considering this situation in our

paper.
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where J2 = (`+ n+ ∆)(`+ n+ ∆− 1) is the corresponding conformal spin. Note that it

depends on ` and n, but we are suppressing this dependence in our notation. Assuming

γn,` admits the following expansion

γn,` = 2
∑
m

Bm,n
J2m

, (2.22)

equation (2.20) turns into

∑
m

∑
n

Bm,nH
(m)
n (z, z̄)

∣∣∣∣∣
div

=
(zz̄)∆

((1− z)(1− z̄))∆−τ/2aτ,sgτ,s(1− z̄, 1− z)

∣∣∣∣
log z

(2.23)

Note that we are not free to determine the support of m: crossing symmetry will dictate

this support for us. The explicit expression for the conformal blocks in eq. (2.3) implies

the following factorization property for the divergent part of twist conformal blocks:

H(m)
n (z, z̄)

∣∣∣
div

=
z∆+n

z̄ − z
F∆+n−1(z)H̄(m)

n (z̄) (2.24)

Plugging eq. (2.24) into eq. (2.23) and matching powers of z and 1 − z̄, we obtain a nice

structure: the factorization properties of the conformal block on the r.h.s. of (2.23) allows

us to write the anomalous dimension as

γn,` = κτ−2(n)fτ+2s(n, J)− κτ+2s(n)fτ−2(n, J) (2.25)

In other words, Bm,n obeys the factorization property

Bm,n = κτ−2(n)b(τ+2s)
m (n)− κτ+2s(n)b(τ−2)

m (n) (2.26)

To see this more clearly, let us focus on the first term contributing to the four-dimensional

conformal blocks (2.3). Then (2.23), together with the factorised form (2.24), leads to the

equation

∑
m,n

Bm,n
z∆+n

z̄−z
F∆+n−1(z)H̄(m)

n (z̄)=
aτ,s (zz̄)∆

((1−z)(1−z̄))∆−τ/2

(1−z̄)s+1Fτ/2+s(1−z̄)F τ−2
2

(1−z)

z̄−z

∣∣∣∣∣
logz

(2.27)

We see that the dependence on z and z̄ factorises on both sides of the equation. By writing

Bm,n = κτ−2(n)b
(τ+2s)
m (n) we obtain two independent equations for κτ−2(n) and b

(τ+2s)
m (n).

First, by looking at the z̄−dependence and for each fixed n, we obtain

∑
m

b(τ+2s)
m (n)H̄(m)

n (z̄) = αn

(
z̄

1− z̄

)∆

(1− z̄)τ/2+s+1Fτ/2+s(1− z̄)aτ,s (2.28)

where the factor αn, given in eq. (A.8), has been included for later convenience. By

matching the powers of 1− z̄ using the explicit form eq. (A.12) of H̄
(m)
n (z̄), we see that

m =
τ

2
+ s+ 1,

τ

2
+ s+ 2, · · · . (2.29)
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By using the explicit form of the functions H̄
(m)
n (z̄) and expanding in powers of 1 − z̄ we

can compute arbitrarily many b
(τ+2s)
m (n). Having done this, the z−dependence of (2.27)

leads to an equation for κτ−2(n). Using

Fβ(1− z)
∣∣
z�1
≈ −Γ(2β)

Γ2(β)
2F1(β, β, 1; z) log z + (regular at z = 0) (2.30)

we arrive at

∞∑
n=0

κτ−2(n)zn+∆F∆+n−1(z) =
1

αn

Γ (τ − 2)

Γ2
(
τ−2

2

) ( z

1− z

)∆

(1− z)τ/2 2F1

(
τ − 2

2
,
τ − 2

2
, 1; z

)
(2.31)

By expanding both sides in powers of z, we can find the coefficients κτ−2(n). In appendix B,

we derive a contour integral representation of κτ−2(n) valid for all τ , given in eq. (B.3).

Finally, including also the second term in the conformal blocks (2.3) will lead to the re-

sult (2.26). This in turn will lead to (2.25) where the functions fτ−2(n, J) are defined

as

fτ−2(n, J) = 2
∑
m

b
(τ−2)
m (n)

J2m ,
(2.32)

These are all of the ingredients needed to solve the problem for general τ .

The resulting expressions simplify when τ is an even integer. First, with our choice

of normalisation, κτ−2(n) is a polynomial of degree τ − 4 for even τ . Note that κ0 = 0.

This leads to a cleaner factorisation for γn,` for the case of the exchange of an operator of

twist two. Second, one is able to find fτ−2(n, J) in a closed form. The explicit results for

several even values of τ , and generic values of ∆ are given in appendix B. In all cases the

dependence in n and J further factorises to yield11

fτ−2(n, J) =
hτ−2(J)

(∆− 1)2βn + (∆− 1) + J2
(2.33)

where

βn ≡ −
n2 + (2∆− 3)n

(∆− 1)2
− 1 . (2.34)

Any full fledged CFT contains the stress tensor. Furthermore, by conformal Ward

identities it follows that the stress tensor couples to two identical scalar operators with

squared OPE coefficient

aT =
4

9

∆2

cT
(2.35)

where cT ∝ N2 is the central charge appearing in the stress tensor two-point function.

Hence, any complete treatment of a large N CFT at order 1/N2 must include the stress

tensor. This is the motivation to focus on the case of twist-two exchange in what follows.

11In the expressions above the dependence on ∆ is kept implicit. See appendix B for the details.
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2.3 Full solution for twist-two exchange

We now focus on finding the full solution to crossing symmetry — that is, both the asymp-

totic and finite parts of eq. (2.14) — for the exchange of operators with τ = 2 and low

values of the spin, with special focus on the stress tensor at s = 2.

The asymptotic part of the anomalous dimension can be computed as described above.

Using the explicit results given in appendix B one arrives at the following expression

γas
n,` = − 2κ2+2s(n)(∆− 1)2

(`+ 1)(`+ 2∆ + 2n− 2)
a2,s (2.36)

where κ2+2s(n) is a polynomial of degree 2s. We would like to complete the above asymp-

totic solution to an exact solution of crossing symmetry. We will assume the solution has

the following form

γn,` = γas
n,` + γfin

n,` (2.37)

where γfin
n,` has finite support in the spin. In order to find γfin

n,` we employ the following

strategy. The structure of the conformal partial wave expansion, together with crossing

symmetry, imply the following analytic structure for the four-point correlator around z = 0

and z̄ = 1:

G(1)(z, z̄) = η0(z, z̄) log z log(1− z̄) + η1(z, z̄) log z + η2(z, z̄) log(1− z̄) + η3(z, z̄) (2.38)

where the functions ηi(z, z̄) do not contain logs in a small z, 1 − z̄ expansion. η0(z, z̄)

receives only contributions from the anomalous dimensions. More precisely,

η0(z, z̄) =

1

2

∑
n,`

a
(0)
n,`γ

as
n,`(zz̄)τn/2gτn,`(z, z̄) +

1

2

∑
n,`

a
(0)
n,`γ

fin
n,`(zz̄)τn/2gτn,`(z, z̄)

∣∣∣∣∣∣
log(1−z̄)

(2.39)

On the other hand, crossing symmetry implies

(1− z̄)∆

z̄∆
η0(z, z̄) =

z∆

(1− z)∆
η0(1− z̄, 1− z) (2.40)

We now set out to solve this equation for γfin
n,`. Plugging in the conformal blocks in eq. (2.3),

we can easily determine the piece proportional to log(1 − z̄) of all sums contributing to

η0(z, z̄) except for the contribution

Sn(z̄) =
∑
`

a
(0)
n,`γ

as
n,`z̄

τn/2+`+1Fτn/2+`(z̄) (2.41)

The reason is that in order to extract the behaviour at z̄ = 1, we first need to perform the

infinite spin sum, and then expand. This sum is explicitly computed in appendix C. In

order to simplify what follows let us introduce the notation

kβ(z) ≡ zβ2F1(β, β, 2β; z), k̃β(z) ≡ −Γ(2β)

Γ2(β)
zβ2F1(β, β, 1, 1− z) (2.42)
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In terms of these one finds the expression

η0(z, z̄) =
∑
n,`

a
(0)
n,`γ

fin
n,`zz̄

(
kτn/2+`(z)k̃τn/2−1(z̄)− kτn/2−1(z)k̃τn/2+`(z̄)

)
+
∑
n,`

a
(0)
n,`γ

as
n,`zz̄kτn/2+`(z)k̃τn/2−1(z̄)−

∞∑
m=0

2κ2+2s(m)zk∆+m−1(z)S̃m(z̄)

(2.43)

where S̃n(z̄) is the piece proportional to log(1− z̄) in the sum Sn(z̄) near z̄ = 1. As shown

in appendix C this is given by

S̃m(z̄) =
∑
n,`

δn+`,m−1

λm,n
a

(0)
n,`z̄k̃∆+n−1(z̄) (2.44)

where λm,n = (n −m)(2∆ + m + n − 3). Note that for fixed m, only a finite number of

terms contributes to S̃m(z̄), due to the Kronecker delta and the non-negativity of n and `.

We would like to convert (2.40) into a matrix equation. In order to do this we follow [1]

and introduce the projectors∮
z=0

dz

2πi

1

z2
kτm/2(z)k1−τ ′m/2(z) = δm,m′ , (2.45)

together with the integral

I
(∆)
m,m′ ≡

∮
z=0

dz

2πi

z∆−3

(1− z)∆−1
k̃τm/2(1− z)k1−τ ′m/2(z) (2.46)

Both contours are taken to run counterclockwise. Plugging (2.43) into the crossing equa-

tion (2.40) and integrating both sides against z−3k1−τp/2(z) around z = 0 and (1 −
z̄)−3k1−τq/2(1− z̄) around z̄ = 1, we obtain∑

n,`

a
(0)
n,`γ

fin
n,`

(
δn+`,pI

(∆)
n−1,q − δn−1,pI

(∆)
n+`,q

)
+
∑
n,`

a
(0)
n,`

(
γas
n,` −

2κ2+2s(p+ 1)

λp+1,n

)
δn+`,pI

(∆)
n−1,q = (p↔ q)

(2.47)

This must hold for all non-negative integer (p, q). This should be viewed as an equation

for γfin
n,`. The second line arises from γas

n,` and acts as a source term for the equation, which

would otherwise be homogeneous in γfin
n,`. For a given (p, q) each sum reduces to a finite

number of terms, due to the Kronecker delta functions. We have solved this equation for

several values of s. In all cases, γfin
n,` is nonzero only for ` = 0, 1, · · · , s.

Let us give the explicit results for two examples:

Exchange of scalar operator of dimension two. The asymptotic part of the solution

takes the form (2.36) with κ2(n) = 1. The total solution is of the form eq. (2.37), with

γfin
n,` = − (∆− 1)2(n+ 1)(2∆ + n− 3)

(∆ + n− 1)(2∆ + 2n− 3)(2∆ + 2n− 1)
a2,0 for ` = 0 (2.48)

and zero for ` > 0. One can explicitly see that both terms contributing to γn,0 scale as

γn,` ∼ 1/n for large n. Requiring this behaviour for large n prohibits the addition of a

truncated solution to crossing γtr
n,`, but in principle, crossing allows for this ambiguity.
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Exchange of stress tensor. In this case the asymptotic part of the solution takes the

form (2.36) with

κ6(n) = 30

(
1 +

6n(2∆ + n− 3)
(
∆2 − 2∆ + n2 + 2∆n− 3n+ 2

)
(∆− 1)2∆2

)
(2.49)

Now crossing symmetry requires the addition of a finite solution with support for ` = 0, 2.

We find the following for ` = 2,12

γfin
n,2 = 60aT

(n+ 1)(n+ 2)(n+ 3)(∆ + n)(2∆ + n− 3)(2∆ + n− 2)(2∆ + n− 1)

8∆2(2∆ + 2n− 3)(2∆ + 2n− 1)(2∆ + 2n+ 1)(2∆ + 2n+ 3)
(2.50)

while for ` = 0 we find

γfin
n,0 = 60aT

n(n+1)(∆+n−1)(2∆+n−3)(2∆+n−2)

8∆2(2∆+1)(2∆+2n−5)(2∆+2n−3)(2∆+2n−1)(2∆+2n+1)

×
(
4
(
44∆3−68∆2−93∆−30

)
+87(2∆+1)n2+174

(
2∆2−∆−1

)
n
)

(2.51)

Together with eq. (2.36), these make up the total contribution to γn,` from stress tensor

exchange. Holographically, this computes the contribution to two-particle binding energies

from their gravitational interactions.

As always, we are free to add truncated solutions to crossing. Note that in this case,

even assuming a specific large n behaviour, there exists the freedom to add the truncated

solution to crossing with support only for spin zero [1],

γtr
n,0 =

(n+ 1)(∆ + n− 1)(2∆ + n− 3)

(2∆ + 2n− 3)(2∆ + 2n− 1)
(2.52)

with any overall coefficient.

2.4 OPE coefficients

We now turn our attention to the computation of order 1/N2 corrections to the OPE

coefficients, a
(1)
n,`. Together with the anomalous dimensions, these comprise the full solution

for the correlator at this order.

When no single-trace operators are exchanged, the only solutions to crossing are the

truncated solutions γtr
n,` with finite support in the spin, and the corrections a

(1)
n,` are given

in terms of the anomalous dimension by a remarkable formula

a
(1)
n,` =

1

2
∂n

(
a

(0)
n,`γ

tr
n,`

)
. (2.53)

This is known as the “derivative relation.” This relation was found in [1] and proven in [40]

for the case of truncated solutions. Our aim is to understand whether such a relation still

holds for the exchange of single-trace operators, and if it doesn’t, what is the correct

expression for a
(1)
n,`. We find it convenient to split a

(1)
n,` as follows

a
(1)
n,` =

1

2
∂n

(
a

(0)
n,`γn,`

)
+ a

(0)
n,`â

(1)
n,` . (2.54)

12Here and throughout, we use the more physical notation aT ≡ a2,2 in the case of the stress tensor, and

likewise for other quantities with a 2,2 subscript.
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As we will see, the technology introduced above will allow us to compute â
(1)
n,` to all orders

in 1/`.

To set up the problem, recall that expanding the conformal partial wave decomposition

for G(z, z̄) at order 1/N2 gives

G(1)(z, z̄) =
∑
n,`

(zz̄)τn/2
(
a

(1)
n,` +

1

2
a

(0)
n,`γn,`

(
log zz̄ +

∂

∂n

))
g2∆+2n,`(z, z̄) . (2.55)

Plugging (2.54) into this expression and assuming that â
(1)
n,` admits the following expansion

â
(1)
n,` =

∞∑
m= τ

2

dm,n
J2m

(2.56)

we can write G(1)(z, z̄) in terms of twist conformal blocks and their derivatives as

G(1)(z, z̄) =
∑
m,n

(
∂

∂n

(
Bm,nH

(m)
n (z, z̄)

)
+ dm,nH

(m)
n (z, z̄)

)
. (2.57)

The crossing equation in the presence of an exchanged operator then implies

∑
m,n

(
∂

∂n

(
Bm,nH

(m)
n (z, z̄)

)
+ dm,nH

(m)
n (z, z̄)

)∣∣∣∣∣
div

=
aτ,s(zz̄)∆

((1− z)(1− z̄))∆−τ/2 gτ,s(1−z̄, 1−z)

(2.58)

To derive Bm,n, we focused on the term proportional to log z;13 now we focus on the piece

without a log z, which will lead to an equation for dm,n. As before, having computed the

twist conformal blocks for all n the above equation can be solved by expanding both sides

in powers of z and (1 − z̄). The computation is tedious but straightforward. We have

carried out this procedure for the exchange of operators of τ = 2 and s = 0, 2, for generic

external ∆. For integer ∆ the results can be written as follows

â
(1)
n,`

∣∣
(2,0)

=

∆−3∑
k=0

a2,0(2k + 1)(∆− 1)2

(J2 − k(k + 1))(n+ ∆ + k − 1)(n+ ∆− k − 2)
(2.59)

â
(1)
n,`

∣∣
T

=

∆−3∑
k=0

aT (2k + 1)(∆− 1)2P4(k,∆)

(J2 − k(k + 1))(n+ ∆ + k − 1)(n+ ∆− k − 2)
(2.60)

where P4(k,∆) is a fourth order polynomial in k given by

P4(k,∆)=
30
(
∆4−8∆3+∆2(19−6k(k+1))+12∆(2k(k+1)−1)+6k(k2−1)(k+2)

)
(∆−1)2∆2

(2.61)

For an exchanged operator of τ = 2 but generic spin s, the results are of the same form but

with P4(k,∆) → P2s(k,∆). We have written the answers in terms of the conformal spin

J2 = (`+ n+ ∆)(`+ n+ ∆− 1). Although this is the answer for integer ∆, the sums can

13The l.h.s. produces a log z when the derivative hits the factor z∆+n in H
(m)
n (z, z̄).
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be performed exactly, and the full answer, for arbitrary ∆, can be expressed in terms of

digamma functions. The resulting expressions, however, are too cumbersome to be shown

here.

These results exhibit some interesting features which we now discuss. For the general

case of exchange of an operator of even twist τ , we have checked that

â
(1)
n,` = 0 for ∆ = 2, 3, . . . , τ/2 + 1 + s . (2.62)

This is evident in equations (2.59)–(2.61), upon noting that P4(0,∆) = 0 for ∆ = 3, 4,

and P4(1, 4) = 0.14 Furthermore, note that for the exchange of an operator of τ = 2 and

arbitrary s, the falloff with large n goes like n−4. For generic twist we expect

â
(1)
n�1,` ∼ n

−2τ (2.63)

This agrees with all the cases we have explicitly checked. For instance, the case τ = 4, s = 0

with ∆ = 4 may be found in equation (D.8). We have checked several other cases with

higher twist and spin.

We end this section by making the following important remark. We have found the

expression for â
(1)
n,` to all orders in 1/`. The final expression for the correction to the OPE

coefficient takes the form

a
(1)
n,` =

1

2
∂n

(
a

(0)
n,`γn,`

)
+ a

(0)
n,`â

(1)
n,` (2.64)

where â
(1)
n,` is an analytic function of the spin. In principle crossing could demand the addi-

tion of extra terms with finite support in the spin. However, in all the cases we have checked

this is not the case. In particular, this expression, with â
(1)
n,` given above, is valid for all

values of the spin, provided the full anomalous dimension γn,` is used inside the derivative.

3 Applications to AdS physics

As explained in the introduction, the results of the preceding section provide a complete

CFT reconstruction of the full crossing-symmetric exchange amplitudes in AdS. Our results

are thus guaranteed to reproduce all features of these amplitudes. We now use them to

clarify and derive some new properties of tree-level AdS physics: namely, the leading and

subleading behavior of anomalous dimensions γn,` in the Regge and bulk-point regimes, and

the behavior of γn,` for finite n and `. The former are intimately related to the emergence

of bulk locality; the latter, to bulk causality.

Before proceeding, we note that while the method of this work applies to any twist,

we have focused on finding explicit results for τ ∈ 2Z+. While the formulas of this section,

namely the leading and subleading behavior of γn,` in the Regge and bulk-point limits, are

14In the case of N = 4 super-Yang-Mills, the supergravity contribution to a
(1)
n,`, where O is the ∆ = 2, 1

2
-

BPS operator in the 20′ of SU(4)R, satisfies the derivative relation, as observed in [16, 27]. Even if it seemed

accidental, we now see why this happens: at large ’t Hooft coupling, every operator in the O20′ × O20′

OPE has even twist.
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derived with help from the even twist results, they appear to hold for generic τ . It would

be satisfying to check this directly at generic τ .

For convenience, we recall our notations for the various parameters on which γn,`
depends:

∆ : conformal dimension of the external scalar O
(n, `) : quantum numbers of [OO]n,`

(τ, s) : twist and spin of the exchanged operators Oτ,s

(3.1)

and

γn,`
∣∣
(τ,s)

= the contribution to γn,` due to Oτ,s exchange (3.2)

3.1 Large spin limit

To warmup, we consider the large spin limit, relevant for lightcone physics:

`� 1 , n fixed (3.3)

The function f , defined in eq. (2.32), has the following large-spin asymptotics:

f2X(n, J � 1) ≈ 1

J2(X+1)

Γ2(∆)

Γ2(∆− 1−X)
+O(J−2(X+2)) (3.4)

The second term of eq. (2.25) dominates, and we recover the results of the lightcone boot-

strap for arbitrary n [6, 7, 54–56],

γn,`�1

∣∣
(τ,s)
∼ − 1

`τ
κτ+2s(n)Γ2(∆)

Γ2(∆− τ
2 )

(3.5)

where κ was defined in eq. (B.3). Note that eq. (B.3) gives an alternative, more compact,

expression than the sums in [54].

3.2 High energy limits

We now consider the behavior of γn,` for n→∞. This regime probes highly energetic two-

particle states in the bulk. We compute in turn for `/n fixed and for ` fixed; these probe

the Regge and bulk-point regimes, respectively. We will explicitly compute the leading and

subleading terms of γn,`, leaving higher orders as an exercise.

Let us first briefly comment on the OPE coefficients. In eq. (2.63), we proposed that for

twist-τ exchange, deviations from the derivative relation (2.53) scale as â
(1)
n�1,`

∣∣
(τ,s)
∼ n−2τ .

This is a new prediction that should hold independent of the scaling of `. One check is that

it is consistent with previous computations in the Regge limit, which bounded the falloff

to be faster than n−(d−2) (cf. footnote 6 of [18]). It also appears possible to understand

this using crossing symmetry directly in the Regge limit [41]. It would be interesting to

prove (2.63) directly, if true. Note that for heavy single-trace operators with τ ∼ ∆gap,

this falloff is highly suppressed.

The following calculations rely on the large n asymptotics of κ and f . κ only depends

on n, and behaves as

κ2X(n� 1) ≈ n2X−2

(∆− 1)2
X−1

42X−1(X − 1
2)

π(X − 1
2)2

1
2

(
1 +

(2∆− 3)(X − 1)

n
+O(n−2)

)
(3.6)
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3.2.1 Regge limit

We consider

n, `→∞ , α ≡ `

n
fixed (3.7)

In this regime, we find that

f2X(n,J)
∣∣∣n,`→∞
α fixed

≈ 1

n2X+2α(α+2)(α+1)2X

Γ2(∆)

Γ2(∆−1−X)

×
(

1+
α(α−2∆(α+(α+2)X+1)+αX+2X−1)−2

nα(1+α)(2+α)
+O(n−2)

) (3.8)

by looking at the lowest several values of X ∈ N. Together with eq. (3.6), this implies that

the second term in eq. (2.25) dominates at large n, through the first several subleading

orders, for any (τ, s): in the limit (3.7),

κτ−2(n)fτ+2s(n, J) ∼ n−2s−6

κτ+2s(n)fτ−2(n, J) ∼ n2s−2
(3.9)

Then through first subleading order, and omitting the (τ, s) subscript for visual clarity,

γn,`

∣∣∣
Regge

= −κτ+2s(n)fτ−2(n, J)
∣∣∣n, `→∞
α fixed

(3.10)

Putting things together, one finds

γn,`

∣∣∣
Regge

≈ −µ2
τ,s

22s−4n2s−2

π2α(α+ 2)(α+ 1)τ−2

[
1 +

1

nα(α+ 1)(α+ 2)

×

(
α3

2
(2∆− 3) (2s+ τ − 2) + α2

(
2∆(τ − 3) + 3s(2∆− 3)− 4τ + 9

)
+ α

(
2s(2∆− 3)− 2∆− 2τ + 3

)
− 2

)
+O(n−2)

] (3.11)

where we’ve defined

µτ,s ≡ COOOτ,s

√
C2

∆,0Cτ+s,s

bτ,s(∆)
(3.12)

with

CX,Y =
X + Y − 1

2π2

bτ,s(∆) = C2
∆,0Cτ+s,s

π2Γ(∆− 2 + τ
2 + s)Γ(∆− τ

2 )Γ2( τ2 + s)

21−sΓ2(∆)Γ(τ + 2s)

(3.13)

and COOOτ,s is the OPE coefficient.

We have written the result this way to facilitate comparison with the leading order

result of [18], as computed using eikonal techniques in gravity. We find perfect agreement.

If φ and ϕτ,s are dual to O and Oτ,s, respectively, then

LAdS ⊃ µτ,sϕτ,sφ2 , (3.14)
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with the holographic relation between the cubic coupling µτ,s and the OPE coefficients

COOOτ,s given above (as derived in [21]). The CX,Y coefficients set the normalization of

the boundary two-point function of a dimension-X, spin-Y operator, as computed from

extrapolation of the bulk-to-bulk propagators. Following [18], define the left- and right-

moving “dimensions”

h = ∆ + n+ `+
γn,`
2

, h = ∆ + n+
γn,`
2

(3.15)

The Regge limit is

h, h→∞ ,
h− h
h
≈ `

n
= α fixed (3.16)

In this limit, the result of [18] in d = 4 is

γn,`

∣∣∣
Regge

≈ −
µ2
τ,s

2π
(4hh)s−1Π⊥(h/h) (3.17)

where

Π⊥(h/h) =
1

2π

h2

h2 − h2

(
h

h

)1−∆

(3.18)

This can be seen to match the leading order term of eq. (3.11). In the above expression,

Π⊥(h/h) is the bulk-to-bulk propagator on H3 for a field of dual conformal dimension ∆−1

propagating a geodesic distance log(h/h), which emerges naturally in the eikonal scattering

calculation. Thus, our result (3.11) reproduces the AdS bulk-to-bulk propagator.

The subleading piece of eq. (3.11) is new, and makes a prediction for a bulk calculation.

It is worth explicitly writing the subleading correction due to graviton, i.e. stress tensor,

exchange:

γn,`

∣∣∣
Regge

≈ −g2
T

n2

π2α(α+ 2)

(
1 +

2α2(2∆− 3) + α(6∆− 11)− 2

nα(α+ 2)
+O(n−2)

)
(3.19)

Note that the sign of the subleading term can be either positive or negative in a unitary

theory.

3.2.2 Bulk point limit

We consider

n→∞ , ` fixed (3.20)

In this regime, we find that

f2X(n, J)
∣∣∣
n→∞

≈ 1

2n2X+1(`+ 1)

Γ2(∆)

Γ2 (∆− 1−X)

×
(

1− (4X + 2)∆ + (4X + 1)`− 2(X + 1)

2n
+O(n−2)

) (3.21)

Together with eq. (3.6), this implies that the second term in eq. (2.25) dominates at large

n, through the first several subleading orders, for any (τ, s): in the limit eq. (3.20),

κτ−2(n)fτ+2s(n, J) ∼ n−2s−5

κτ+2s(n)fτ−2(n, J) ∼ n2s−1
(3.22)
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Then through first subleading order,

γn,`

∣∣∣
b.p.

= −κτ+2s(n)fτ−2(n, J)
∣∣∣
n→∞

(3.23)

Putting things together, one finds

γn,`>s

∣∣∣
b.p.
∼ −µ2

τ,s

22s−5n2s−1

π2(`+ 1)

(
1− 2∆ + `(2τ − 3)− 2s(2∆− 3) + 2(τ − 3)

2n
+O(n−2)

)
(3.24)

This holds for arbitrary ` > s. For ` ≤ s, we need to incorporate the finite pieces of the

full solution to crossing, γfin
n,`, which can modify this result. Equivalently, eq. (3.24) holds

exactly for the “asymptotic” part, γas
n,`.

While the leading order n-scaling was known for general (τ, s), its full `-dependence for

arbitrary (τ, s) had never been computed, either from AdS or CFT. We see that it takes a

very simple form. Indeed, if we take the α� 1 limit of the Regge result eq. (3.11), we find

γn,`

∣∣∣Regge,
α�1

≈ −µ2
τ,s

22s−5n2s−1

π2`
+ . . . (3.25)

The finite ` correction to this, which gives the bulk-point result eq. (3.24), is just `→ `+1.

Except for the twist-dependence of µτ,s, the leading order result is independent of the

twist. In a holographic CFT with ∆gap →∞, the total leading-order bulk-point singularity

is determined by the sum of contributions from all s = 2 exchanges:

γn,`>2

∣∣∣
b.p.
≈ − n3

2π2(`+ 1)

∑
Oτ,2

µ2
τ,2 +O(n2) , ∆gap →∞ (3.26)

The subleading term of eq. (3.24) is new. It may be thought of as capturing the

leading correction to the bulk-point singularity of a holographic CFT four-point function.

This may be computed explicitly using the techniques of [1, 4, 5]. Alternatively, because

the flat space S-matrix may be obtained from the sum over double-trace exchanges in the

large n regime [42], the insertion of the subleading correction into the conformal block

captures the leading “finite size” correction due to the curvature of AdS. Note that its sign

can be either positive or negative in a unitary theory.15

3.3 Negativity, convexity and causality

To demonstrate the negativity, monotonicity and convexity properties in eq. (1.4), we take

an experimental approach by taking various slices through the (∆, n, `, τ, s) parameter

space. The cases shown here, as well as many other similar checks and plots, provide

convincing evidence that in general, the anomalous dimensions are negative, monotonic

and convex functions of `, for all n and ` > s. The overall picture for holographic CFTs is

given in figure 2. For ` ≤ s, the non-analytic γfin
n,` contributions to γn,` can potentially spoil

these properties.16 We table these for now but return to them shortly. We also take as

15For s > 0 exchange where τ ≥ 2 by unitarity, the sign is positive for sufficiently large `. On the other

hand, for s = 0 exchange with τ < 3/2, the sign remains negative for sufficiently large `.
16These non-analyticities are related to the limits of applicability of the OPE inversion formula in [34].
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ℓ

-25

-20

-15

-10

-5

γ1,ℓ
as

(a)

ℓ

-8

-6

-4

-2

γ
n,ℓ
as

(b)

Figure 3. The asymptotic contribution due to massless scalar exchange, γas
n,`

∣∣
(4,0)

, at various values

of n and ∆. In both plots, ∆ = 4 + 2m for 0 ≤ m ≤ 10; the red line is ∆ = 4, with increasing ∆

as we move downwards through the rainbow. The left plot is at n = 1. The right plot is at integer

100 ≤ n ≤ 104, where each thick line is comprised of five individual lines. In all cases, the result is

negative, monotonic and convex.

implied the freedom to add the homogeneous solutions to crossing; in a holographic CFT

that obeys the chaos bound and has a higher spin gap, these can only contribute to γn,`≤2.

For τ = 2 exchange, we can easily prove this. Recall that in this case,

γn,`>s
∣∣
(2,s)

= − 2κ2+2s(n)(∆− 1)2

(`+ 1)(2∆ + 2n+ `− 2)
a2,s (3.27)

This is manifestly negative, monotonic and convex for all n, assuming unitarity.

For τ > 2, both terms in eq. (2.25) contribute, and negativity, monotonicity and

convexity are not obvious. Nevertheless, these properties still hold. For example, for

massless scalar exchange between ∆ = 3 scalars, one finds

γn,`>0

∣∣
(4,0)

= − 24(n+ 1)(n+ 2)

(`+ 1)(`+ n+ 2)(`+ n+ 3)(`+ 2n+ 4)
a4,0 (3.28)

which is manifestly negative, monotonic and convex. Likewise at ∆ = 4,

γn,`>0

∣∣
(4,0)

=24

(
1

`+n+2
+

1

`+n+3
− 1

`+n+4
− 1

`+n+5
− 4

(`+1)(`+2n+6)

)
a4,0 (3.29)

Similar expressions are easily obtained for other ∆ ∈ Z using the results of appendix B,

which are valid for arbitrary ∆. In figures 3 and 4, we plot results for τ = 4 exchanges as a

function of ` for fixed values of n and ∆. All results are negative, monotonic and convex.

To study the complete solution to crossing, we must include the finite non-analytic

contributions, γfin
n,`. For concreteness, we focus on stress tensor exchange. From the results

eq. (2.36) and eqs. (2.49)–(2.51) for generic ∆, one can check that they are indeed manifestly

negative even for ` = 0, 2, and it is a matter of algebra to check that for all n, γn,` increase

monotonically as a function of `, starting from ` = 0. (The reader may find it useful to
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ℓ

-1200

-1000

-800

-600

-400

-200

γ1,ℓ
as

(a)

ℓ

-6× 106

-4× 106

-2× 106

γ
n,ℓ
as

(b)

Figure 4. The same setup as in figure 3, but now for τ = 4, s = 2 exchange, γas
n,`

∣∣
(4,2)

. In both

cases, the result is negative and convex as a function of `. Notice that in this case, γn,`
∣∣
(4,2)

increases

as a function of ∆ in the right plot.

see the full result specialized to ∆ = 4, 5, given in eq. (D.12) and eq. (D.16).) Thus, we

conclude that for generic ∆, negativity, monotonicity and convexity hold all the way down

to ` = 0, for all n:

Tµν exchange, generic ∆ : γn,`
∣∣
T
< 0 ,

∂

∂`

(
γn,`
∣∣
T

)
> 0 ,

∂2

∂`2
(
γn,`
∣∣
T

)
< 0 , ∀ n, `

(3.30)

In a moment we will discuss an exception at n = 0 and small ∆.

The implications of these results for AdS physics, and their relation to bulk causality,

were discussed in the Introduction. Note that even for higher spin exchanges, s > 2, the

causality violation of [2] is not manifest as a “wrong sign” of the anomalous dimension

— indeed, γas
n,`

∣∣
(τ,s)
≤ 0 — but rather in its behavior at large n, `, as in eq. (3.11). This

reflects the two-pronged nature of causality: signals must propagate forward in time, and

inside the lightcone. If either property is not obeyed, a theory is not causal.

3.3.1 Holographic causality for low spins

For general exchanges, what happens to negativity and convexity upon reinstating γfin
n,`?

This only affects γn,`≤s, the opposite regime of the lightcone bootstrap. We now show that

γn,`≤s > 0 is possible.

To demonstrate, we can determine the range of ∆ for which the stress tensor contri-

bution becomes positive: γn,`
∣∣
T
> 0. To make the point as clear as possible, take n = 0.

Then from eq. (2.36) and eqs. (2.49)–(2.50),

γ0,2

∣∣
T

= 10aT
∆(−4∆3 + 9∆ + 7)− 12

∆(4∆(∆ + 2) + 3)
(3.31)

Here we see an odd fact:

γ0,2

∣∣
T
≥ 0 for 1 ≤ ∆ ≤ ∆∗ (3.32)
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where the only real solution is

∆∗ ≡
1

12

(
2

3

√
271 + 9

√
822 +

3

√
2168− 72

√
822− 4

)
≈ 1.41 (3.33)

Perhaps surprisingly, the stress tensor contribution is positive for sufficiently small, but still

unitary, ∆. In an AdS compactification that contains a free scalar coupled to gravity —

and perhaps a φ4 potential, but no other cubic couplings — this is the only contribution

to γ0,2, which is positive despite being due to gravity alone. This shows how one must

be careful in applying arguments relating the sign of γn,` to the sign of the gravitational

force at very small n, `. It also gives new credence to the perspective, explored in [43],

that even in a sensible-looking theory of weakly coupled gravity, anomalous dimensions

can be positive for ` = 0, 2. It remains an open question whether further UV consistency

constraints forbid this.

However, there are fewer possible positive contributions to γn,` than first meet the eye.

In [57] it was argued that for ∆ = 2, the following three properties hold:

γ0,`

∣∣
(4,s)

= 0 (3.34a)

γ0,` 6=s
∣∣
(τ,s)
≤ 0 (3.34b)

γ0,s

∣∣
(τ,s)

> 0 possible only for τ < 4 (3.34c)

With the results herein, we can address whether these extend to arbitrary n and ∆, where

4 → 2∆. Here we make only preliminary remarks, deferring an in-depth investigation to

the future. First, the generalization of eq. (3.34a) can be checked using our formulas for

f , which indeed has double zeroes

f2X(n, J) ≈ F
(m)
2X (n, J)(∆−m)2 +O(∆−m)3 for‘ m = 1, 2, . . . , X + 1 (3.35)

for some functions F
(m)
2X (n, J) that are independent of ∆. These zeroes are visible in the

large n limits of eq. (3.8) and eq. (3.21). This implies γas
n,`

∣∣
(2∆,s)

= 0. For several cases, we

have also checked that the same holds for γfin
n,`

∣∣
(2∆,s)

. On this basis, we conclude that, at

least for τ ∈ 2Z+,

γn,`
∣∣
(2∆,s)

= 0 (3.36)

Next, we test the generalizations of eqs. (3.34b), (3.34c) for stress tensor exchange.

Eq. (3.34b) indeed holds, as shown in figure 5. As for eq. (3.34c), it does appear to

extend to arbitrary ∆, but still requires n = 0. For instance, stress tensor exchange con-

tributes negatively for n > 0 for all unitary ∆, in particular, including the range eq. (3.32),

see eqs. (2.49)–(2.50). Extending this analysis to other cases, in order to formulate the

strongest possible statement of negativity of anomalous dimensions that is consistent with

all known data, is an intriguing question for future work.

We close with a comment on our result eq. (3.32). In [49], the bound γ0,2 < 0 was

proven using CFT causality at leading order in 1/N , but only in the absence of exchange

of the stress tensor or other operators of twist τ ≤ 2∆.17 (See [51] for a related proof.) It is

17We thank Tom Hartman for clarification.
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Figure 5. The complete contributions to ` = 0 anomalous dimensions due to stress tensor exchange,

γn,0
∣∣
T

, for 1 ≤ n ≤ 10, plotted as a function of ∆ ≥ 1. The red line is n = 1, with increasing n as

we move through the rainbow. All results are negative. In the right plot, we show only 1 ≤ n ≤ 5

to make clear that these lines sit below the x-axis.

plausible that, for as-yet-unknown reasons, γ0,2 < 0 must in fact hold in general holographic

CFTs with ∆gap →∞. Then eq. (3.32) would imply a no-go theorem for effective actions

in AdS5: a theory of the form

LAdS = R+ 2Λ− 1

2
(∂φ)2 +

1

2
m2φ2 + λφ4 , (3.37)

would be inconsistent with alternate quantization of the scalar φ if

∆∗(∆∗ − 4) ≈ −3.64 ≤ (mLAdS)2 < −3 , (3.38)

We are not aware of any top-down compactifications containing a scalar sector of the form

eq. (3.37) with mass in the range eq. (3.38). Such a no-go result is only speculation, but it

would be interesting to understand whether γ0,2 > 0 is truly possible in a consistent large

N CFT.

4 Outlook

The main technical result of this work is the construction of full solutions to four-point

crossing symmetry in the presence of single-trace operator exchanges, at leading order in

1/N . Together with the work of [1], this completes the program of computing the building

blocks of planar correlators in large N CFTs using crossing symmetry, thus reconstructing

arbitrary tree-level four-point AdS amplitudes. It is remarkable how much crossing sym-

metry knows about operator products in holographic CFTs and their gravitational images

in AdS.

It would be worthwhile to further explore some of the conclusions in this paper, to check

them more thoroughly for arbitrary internal twist, and to find direct proofs. Extension to

other spacetime dimensions is clearly possible using the same technology, particularly in
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two dimensions, where the result will take a form essentially identical to one of the terms

in eq. (2.25).

Having now understood tree-level exchange in AdS using crossing symmetry in CFT, we

can consider holographically computing one-loop AdS amplitudes using crossing symmetry

at order 1/N4, using the method of [29]. That work did not include the effects of single-

trace exchange, precisely because knowing the data derived in this paper is a prerequisite to

such a calculation: the OPE data at order 1/N2 acts as a source in the crossing equations

at order 1/N4. In particular, we can now consider the computation of four-point, one-loop

bulk amplitudes involving virtual gravitons, or the scalar box diagram.

It would also be interesting to formulate a precise connection between possible con-

straints on the double-trace data and Regge-ization of the single-trace spectrum. Perhaps

this could lead to a sharper, sufficient set of criteria for a holographic CFT to have a local

bulk dual. Similarly, we would like to understand the dependence on ∆gap of the negativity,

monotonicity and convexity properties of γn,`. When is γn,` > 0 possible, as a function of

∆gap? At large n and `, there is a causality constraint from classical gravity on the sign of

γn,`; is there a generalization of this constraint in classical higher spin theories? One can

formulate this question in AdS as a scattering experiment in a “higher spin shock wave”

background, where the metric and all higher spin gauge fields are activated and couple to

an incoming particle.

In this paper we have considered the exchange of a finite number of single-trace op-

erators. There are situations, for instance supergravity, in which there are infinite towers

of single-trace operators exchange, but the final answer has a surprisingly simple form. It

would be interesting to understand these cases.
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A Twist conformal blocks

In this appendix we construct the twist conformal blocks H
(0)
τ (z, z̄) together with the

sequence of functions H
(m)
τ (z, z̄) in four dimensions and for the specific case of deformations

of generalised free fields. In four dimensions the conformal blocks are given by

gτ,s(z, z̄) =
zs+1Fτ/2+s(z)F τ−2

2
(z̄)− z̄s+1Fτ/2+s(z̄)F τ−2

2
(z)

z − z̄
(A.1)
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For us it will be important that they are eigenfunctions of a quadratic Casimir operator18

C
(
zτ/2z̄τ/2gτ,s(z, z̄)

)
= J2

(
zτ/2z̄τ/2gτ,s(z, z̄)

)
(A.2)

where J2 = (s+ τ/2)(s+ τ/2− 1) and, in four dimensions,

C = D + D̄ +
2zz̄

z − z̄
(
(1− z)∂ − (1− z̄)∂̄

)
+

1

4
τ(6− τ) (A.3)

with D = (1− z)z2∂2 − z2∂. The sequence of functions H
(m)
n (z, z̄) is defined by

H(m)
n (z, z̄) =

∑
`

a
(0)
n,`

zτn/2z̄τn/2

J2m
gτn,`(z, z̄) (A.4)

where recall τn = 2∆ + 2n and J is the corresponding conformal spin J2 = (`+n+ ∆)(`+

n+ ∆− 1). Here ∆ is the dimension of the external operator. We will be concerned with

the singular contribution as z̄ → 1. From the explicit expression for the conformal blocks,

it follows that the factorised form

H(0)
n (z, z̄) =

1

z̄ − z
zτn/2F τn−2

2
(z)H̄(0)

n (z̄) (A.5)

captures all power law divergent terms — only the sum over spins can generate a power

law singularity at z̄ = 1, so the first term in eq. (A.1) does not participate. The functions

H̄
(0)
n (z̄) can be found by decomposing the divergent part of the four-point function,(

zz̄

(1− z)(1− z̄)

)∆

=
∑
n

H(0)
n (z, z̄) (A.6)

Expanding both sides in powers of z we can find H̄
(0)
n (z̄) case-by-case. They take the final

form

H̄(0)
n (z̄) =

(
z̄

1− z̄

)∆

αn (1 + βn(1− z̄)) (A.7)

with

αn =

√
π24−τnΓ

(
τn
2 − 1

)
Γ
(
∆ + τn

2 − 3
)

Γ(∆− 1)2Γ
(
τn−3

2

)
Γ
(
−∆ + τn

2 + 1
) , βn = −(4∆ + (τn − 6)τn + 4)

4(∆− 1)2
(A.8)

Let us now turn our attention to the divergent piece of the sequence of functions H
(m)
τ (z, z̄)

for m > 0. They are defined by the following recurrence relation

CH(m+1)
τ (z, z̄) = H(m)

τ (z, z̄) (A.9)

For the same reasons above, the sequence of functions has the same factorisation properties

H(m)
n (z, z̄) =

1

z̄ − z
zτn/2F τn−2

2
(z)H̄(m)

n (z̄) (A.10)

18This operator is the usual quadratic Casimir shifted by a constant.
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The recurrence relation then leads to

D̄4dH̄
(m+1)
n (z̄) = H̄(m)

n (z̄), D̄4d = z̄D̄z̄−1 (A.11)

In this paper we will consider the case in which ∆ is generic and m is an integer. For each

n the solution has the following structure

H̄(m)
n (z̄) =

(
z̄

1− z̄

)∆−m
h

(m)
0

(
1 + h

(m)
1 (1− z̄) + h

(m)
2 (1− z̄)2 + · · ·

)
(A.12)

The relation (A.11) then leads to recursion relations for the functions h
(m)
k , which can

be solved iteratively. The dependence on the twist, or n, enters through the boundary

conditions

h
(0)
0 = αn, h

(0)
1 = βn, h

(0)
k = 0, for k > 1 (A.13)

With enough patience and/or computers, the functions H̄
(m)
n (z̄) can be constructed to any

desired order.

B Explicit results

Having constructed the sequence of functions H
(m)
n (z, z̄) in the previous appendix, we can

expand both sides of (2.23) in powers of (1 − z̄) and z and solve for the coefficients Bm,n.

As explained in the text, the dependence on (1 − z̄) and z factorises and the final answer

for γn,` takes the form eq. (2.25), which we reproduce here:

γn,` = κτ−2(n)fτ+2s(n, J)− κτ+2s(n)fτ−2(n, J) (B.1)

The functions κτ−2(n) and fτ−2(n, J) arise from two decomposition problems, one in the

variable z and the other in the variable 1 − z̄. The coefficients κτ−2(n) satisfy

∞∑
n=0

κτ−2(n)zk∆+n−1(z) = − 1

αn

z∆

(1− z)∆−1
k̃ τ−2

2
(1− z) (B.2)

where k∆+n−1(z) and k̃ τ−2
2

(1 − z) were defined in eq. (2.42). Using the projector (2.45)

and the integral (2.46), we can write down the following closed expression for κτ−2(n) as

a contour integral:

κτ−2(n) = − 1

αn
I

(∆)
τ
2
−1−∆,n−1 (B.3)

For even τ it turns out κτ−2(n) is a polynomial of degree τ − 4. For the first few examples

we obtain κ0(n) = 0, and

κ2(n)=1,

κ4(n)=
6
(
(∆−1)2+2n2+(4∆−6)n

)
(∆−1)2

,

κ6(n)=30

(
6n4+12(2∆−3)n3+6

(
5∆2−14∆+11

)
n2+6

(
2∆3−7∆2+10∆−6

)
n

(∆−1)2∆2
+1

)
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and so on. The functions fτ−2(n, J) admit the following decomposition

fτ−2(n, J) = 2

∞∑
m=1

bτ−2
m (n)

J2m
(B.4)

where
∞∑
m=1

b(τ−2)
m (n)H̄(m)

n (z̄) = αn

(
z̄

1− z̄

)∆

(1− z̄)τ/2Fτ/2−1(1− z̄) (B.5)

This can be solved to arbitrarily high order. We have solved this equation for several cases.

The simplest solution corresponds to τ = 2. In this case

f0(n, J) =
2(∆− 1)2

J2 + (∆− 1) + (∆− 1)2βn
(B.6)

The expressions for fτ−2(n, J) for τ = 4, 6, · · · are more complicated but can be found in

a closed form. They all have the structure

fτ−2(n, J) =
Rτ−2(

√
1 + 4J2) + Pτ/2−2(J2)Υ(`)

J2 + (∆− 1) + (∆− 1)2βn
(B.7)

where RY (x) is a rational function whose numerator is a degree-Y polynomial in x, PY (J2)

is a degree-Y polynomial in J2, and we have introduced

Υ(`) ≡ ψ(n+ `+ 1)− ψ(n+ `+ ∆− 2)− ψ(n+ `+ ∆ + 1) + ψ(n+ `+ 2∆− 2) (B.8)

where ψ(x) = d
dx log Γ(x) is the digamma function. For the first cases τ = 4, 6 we obtain

P0(J2) = −
2
(
∆2 − 3∆ + 2

)2
(∆− 2)2

P1(J2) =
12
(
∆2 − 3∆ + 2

)2 (
∆2 − 4∆− 2J2 + 3

)
(∆− 2)2(∆− 1)2

(B.9)

while

R2(x) = −8(∆− 1)2(−7∆ + 4x(∆ + (∆− 4)x) + 12)

(2x− 3) (4x2 − 1) (−2∆ + 2x+ 3)

R4(x) =
24(3−∆)(∆(8∆ + 4x(−∆ + 2x(2∆ + 2x(−∆ + x+ 1)− 3) + 1)− 23) + 16)

(2x− 3) (4x2 − 1) (−2∆ + 2x+ 3)

With enough patience one can find fτ−2(n, J) for arbitrarily high even τ .

C Resumming the asymptotic contribution

In the body of the paper we have encountered the following sum

Sn(z̄) =
∑
`

a
(0)
n,`γ

as
n,`z̄kτ/2+`(z̄) (C.1)
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where γas
n,` is the asymptotic solution corresponding to the exchange of a τ = 2 operator of

spin s,

γas
n,` = −κn

2(∆− 1)2

(`+ 1)(`+ 2∆ + 2n− 2)
(C.2)

where in this appendix we take κn ≡ κ2+2s(n). Due to the precise form of γas
n,` we have

(D̄4d − (∆ + n− 1)(∆ + n− 2))Sn(z̄) = −2κnRn(z̄) (C.3)

where Rn(z̄) is a simpler sum

Rn(z̄) =
∑
`

a
(0)
n,`z̄kτ/2+`(z̄) (C.4)

There is an elegant way to compute Rn(z̄). First, we note that it also arises in the conformal

block decomposition of the tree-level result. More presicely∑
n,`

a
(0)
n,`zz̄kτn/2+`(z)k τ−2

2
(z̄)−

∑
n

zk τn
2
−1(z)Rn(z̄) = (z − z̄)

(
G(0)(z, z̄)− 1

)
(C.5)

Using the projectors (2.45) we can obtain a closed form expression for Rn(z̄)

Rm(z̄) =
∑
n,`=0

δn+`,m−1a
(0)
n,`z̄k τn2 −1(z̄) +

z̄∆(c1
m + c2

mz̄)

(1− z̄)∆
+ (c3

m + c4
mz̄)z̄∆ (C.6)

where the coefficients cim are given by∮
dz

2πi

1

z3
k−τm/2+2(z)(z − z̄)

(
G(0)(z, z̄)− 1

)
= − z̄

∆(c1
m + c2

mz̄)

(1− z̄)∆
− (c3

m + c4
mz̄)z̄∆ (C.7)

Due to the Kronecker delta function in eq. (C.6) and the fact that n ≥ 0 and ` ≥ 0, only a

finite number of terms contributes to Rm(z̄) for a given m; this is completely unobvious in

the form eq. (C.4). Moreover, the integral eq. (C.7) is very easy to evaluate for any value

of m. In order to obtain the sum Sn(z̄) we started with we note

D̄4dz̄kβ(z̄) = β(β − 1)z̄kβ(z̄) (C.8)

so that in the basis of functions z̄kβ(z̄) the operator D̄4d acts diagonally. Hence, from

eq. (C.3) and eq. (C.6), this implies that the solution we are looking for contains the piece

Sm(z̄) = −2κm
∑
n,`=0

δn+`,m−1

λm,n
a

(0)
n,`z̄k τn2 −1(z̄) + · · · (C.9)

where

λm,n = (∆+n−1)(∆+n−2)−(∆+m−1)(∆+m−2) = (n−m)(2∆+m+n−3) (C.10)

Inverting the extra terms in (C.6) we obtain the final result

Sm(z̄) = −2κm

∑
n,`=0

δn+`,m−1

λm,n
a

(0)
n,`z̄k τn2 −1(z̄) + cm

z̄∆

(1− z̄)∆−1
+ dmz̄

∆

 (C.11)
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where we have introduced

cm =

√
π2−2∆−2m+5Γ(m+ ∆− 1)Γ(m+ 2∆− 3)

Γ(∆)2Γ(m+ 1)Γ
(
m+ ∆− 3

2

)
dm =

√
π(−1)m+12−2∆−2m+5Γ(m+ ∆− 1)Γ(m+ 2∆− 3)

Γ(∆)2Γ(m+ 1)Γ
(
m+ ∆− 3

2

) (C.12)

For any m this can be expanded around z̄ = 1. The piece proportional to log(1− z̄) exactly

agrees with the one quoted in the body of the paper.

D Comparison with literature

In this appendix we perform the conformal partial wave decomposition of explicitly known

examples of crossing-symmetric four-point function contributions from scalar and spin-

two exchange. In particular, we decompose the AdS amplitudes for scalar and graviton

exchange, respectively. These amplitudes have been computed using explicit position space

Witten diagram computations, and using Mellin space, but had not been decomposed. All

of the OPE data arising from these conformal partial wave decompositions are consistent

with our calculations of section 2.

The four-point function up to order 1/N2 is

G(z, z̄) = G(0)(z, z̄) +
1

N2
G(1)(z, z̄) + . . . (D.1)

and admits the following conformal partial wave decomposition

G(z, z̄) =
∑
n,`

a
(0)
n,`(zz̄)∆+ng2∆+2n,`(z, z̄) (D.2)

+
1

N2

∑
n,`

(zz̄)∆+n

(
a

(1)
n,` +

1

2
a

(0)
n,`γn,`

(
log(zz̄) +

∂

∂n

))
g2∆+2n,`(z, z̄)

+
1

N2
(zz̄)

τ
2 aτ,sgτ,s(z, z̄) + . . .

where the last line represents the contribution of the exchanged operator of twist τ and

spin s. At leading order in N , the OPE coefficients are

a
(0)
n,` =

2(`+ 1)(`+ 2(∆ + n− 1))

(∆− 1)2
Cn,∆−1C`+n+1,∆−1 (D.3)

with

Cn,∆ =
Γ2(n+ ∆)Γ(n+ 2∆− 1)

n!Γ2(∆)Γ(2n+ 2∆− 1)
(D.4)

For the scalar exchange, the four-point function can be written in terms of D̄-functions

(see e.g. appendix D of [14] for their definition) as

T (z, z̄) =
(zz̄)∆ (∆− 1)4 g2

c

16π8

∆−τ/2∑
p=1

r(p)D̄∆−p,∆,∆−p,∆(z, z̄) (D.5)
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where ∆− τ/2 is an integer and

r(p) =
Γ
(
∆− τ

2

)
Γ
(
τ
2 + ∆− 2

)
Γ(−p+ 2∆− 2)

8Γ(∆)4Γ
(
−p− τ

2 + ∆ + 1
)

Γ
(
−p+ τ

2 + ∆− 1
) (D.6)

and we define gc = gN , with g being the bulk cubic coupling.

We would like to consider the fully symmetrized amplitude which is given by

G(1)(z, z̄) = T (z, z̄) + T

(
z

z − 1
,

z̄

z̄ − 1

)
+ (zz̄)∆T

(
1

z
,

1

z̄

)
(D.7)

We performed the conformal partial wave decomposition eq. (D.2) for several combinations

of ∆ and τ , and find agreement with the predictions of section 2: namely, we obtain that the

anomalous dimensions and the OPE coefficients are of the form eq. (2.37) and eq. (2.54),

respectively, with the correct functions.

First we compute for various scalar exchanges, s = 0. For τ = 2 and ∆ = 2, 4, 5, 6,

the γn,` and a
(1)
n,` agree with equations (2.48), (2.54) and (2.59), provided that a2,0 = g2

c
128π8 .

For τ = 4 and ∆ = 4, we find that

a
(1)
n,`=

1

2

∂(a
(0)
n,`γn,`)

∂n
−

27g2
ca

(0)
n,`

128π8(n+1)(n+2)(n+3)(n+4)(`+n+2)(`+n+3)(`+n+4)(`+n+5)
(D.8)

where, consistently with eqs. (2.36) and (2.48), the anomalous dimensions are

γn,0 =−9g2
c

7n5+103n4+584n3+1584n2+2031n+965

256π8(n+2)(n+3)(n+4)(n+5)(2n+5)(2n+7)
(D.9)

γn,`>0 =−g2
c

9`2
(
2n2+10n+9

)
+9`

(
4n3+34n2+88n+63

)
+18

(
n4+12n3+51n2+89n+51

)
128π8(`+1)(`+n+2)(`+n+3)(`+n+4)(`+n+5)(`+2n+6)

(D.10)

Using the data in appendices A–C, one can derive the full solution to crossing, which agrees

with the above data provided that a4,0 = 3g2
c

2048π8 . Note that this is consistent with the large

n falloff (2.63).

Turning now to the exchange of τ = 2, s = 2 operators, corresponding to AdS graviton

exchange, this amplitude has been computed for generic ∆ using position space Witten

diagrams in [20], and in Mellin space in [21, 23]. We explicitly perform the conformal

partial wave decomposition for ∆ = 4, 5, and in both cases the results are consistent

with our solution of crossing. We will find it more practical to deal with its space time

counterpart in computing OPE data.

For ∆ = 4, the amplitude is given by eq. (D.7) with

T (z,z̄)=
1

3
(zz̄)4

(
−4D̄1414(z,z̄)−20D̄2424(z,z̄)

+12(zz̄+(1−z)(1−z̄))D̄2525(z,z̄)+23D̄3434(z,z̄)+9D̄4444(z,z̄)

+5(4(zz̄+(1−z)(1−z̄))D̄3535(z,z̄)+3(−z̄+z(−1+2z̄))D̄4545(z,z̄)
) (D.11)
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where we have used the fact that the Newton constant GN = π
2N2 . We obtain the anomalous

dimensions

γn,0 =−1(n+1)(n+2)2(n+4)(n(n(99n+932)+2709)+2340)

2(2n+3)(2n+5)(2n+7)(2n+9)
(D.12)

γn,2 =−(n+1)(n+2)(n+3)(n(n(n(127n+2026)+11789)+29570)+26880)

6(2n+5)(2n+7)(2n+9)(2n+11)
(D.13)

γn,`>2 =−8(n+1)(n+2)(n+3)(n+4)

(`+1)(`+2n+6)
(D.14)

which are equivalent to eqs. (2.49)–(2.51) provided that aT = 16
90 , which is in agreement

with the Ward identities (2.35) with cT = 40N2. While it is not obvious, one can check

using eq. (2.51) that γn,0 contains a contribution from the truncated solution (2.52) with

coefficient 256
9 . The OPE coefficients in this cases are given by a

(1)
n,` = 1

2∂n(a
(0)
n,`γn,`), this is

consistent with our findings in the body of the paper.

For ∆ = 5, the amplitude is given by eq. (D.7) with

T (z,z̄)=
5

432
(zz̄)5

(
−60D̄1515(z,z̄)−420D̄2525(z,z̄)−615D̄3535(z,z̄)

−443D̄4545(z,z̄)+672D̄5555(z,z̄)+3(zz̄+(1−z)(1−z̄))
(
15(4D̄2626(z,z̄)

+8D̄3636(z,z̄)+7D̄4646(z,z̄)+56D̄5656(z,z̄))
)
−168D̄5656(z,z̄)

) (D.15)

The anomalous dimensions are

γn,0 =−297n8+8736n7+109635n6+765000n5+3236708n4+8469584n3+13308320n2

12(n+4)(2n+5)(2n+7)(2n+9)(2n+11)

+
11372520n+3976000

12(n+4)(2n+5)(2n+7)(2n+9)(2n+11)
(D.16)

γn,2 =−381n8+12936n7+187491n6+1509546n5+7348219n4+21995444n3+39146909n2

36(n+5)(2n+7)(2n+9)(2n+11)(2n+13)

+
37297234n+14187600

36(n+5)(2n+7)(2n+9)(2n+11)(2n+13)
(D.17)

γn,`>2 =−
4
(
3n4+42n3+198n2+357n+200

)
3(`+1)(`+2n+8)

(D.18)

The OPE coefficients can also be computed and read

a
(1)
n,` =

1

2

∂(a
(0)
n,`γn,`)

∂n
−

20a
(0)
n,`

3

(
3

(n+ 2)(n+ 5)(`+ n+ 3)(`+ n+ 6)

− 1

(n+ 1)(n+ 6)(`+ n+ 2)(`+ n+ 7)
− 2

(n+ 3)(n+ 4)(`+ n+ 4)(`+ n+ 5)

)
These results agree with the expression eq. (2.60), with aT = 5

18 , in agreement with

eq. (2.35). Again, γn,0 contains a contribution from the truncated solution (2.52) with co-

efficient 700
33 . That â

(1)
n,` 6= 0 for this case is consistent with the observed behavior eq. (2.62).
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