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1 Introduction

A major part of particle physics research is focused on searching for physics beyond the

standard model (SM). In the flavor sector a key property of the SM gauge interactions is

that they are lepton flavor universal. Evidence for violation of this property would be a

clear sign of new physics (NP) beyond the SM. In the search for NP, the second and third

generation quarks and leptons are quite special because they are comparatively heavier and

are expected to be relatively more sensitive to NP. As an example, in certain versions of the

two Higgs doublet models (2HDM) the couplings of the new Higgs bosons are proportional

to the masses and so NP effects are more pronounced for the heavier generations. Moreover,

the constraints on new physics, especially involving the third generation leptons and quarks,

are somewhat weaker allowing for larger new physics effects.

The charged-current decays B̄ → D(∗)ℓ−ν̄ℓ have been measured by the BaBar [1],

Belle [2, 3] and LHCb [4] Collaborations. It is found that the values of the ratios R(D(∗)) ≡
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B(B̄ → D(∗)τ−ν̄τ )/B(B̄ → D(∗)ℓ−ν̄ℓ), where ℓ = e, µ, considerably exceed their SM pre-

dictions.

This ratio of branching fractions has certain advantages over the absolute branching

fraction measurement of B → D(∗)τντ decays, as this is relatively less sensitive to form

factor variations and several systematic uncertainties, such as those on the experimental

efficiency, as well as the dependence on the value of |Vcb|, cancel in the ratio.

There are lattice QCD predictions for the ratio R(D)SM in the Standard Model [5–7]

that are in good agreement with one another,

R(D)SM = 0.299± 0.011 [FNAL/MILC], (1.1)

R(D)SM = 0.300± 0.008 [HPQCD]. (1.2)

These values are also in good agreement with the phenomenological prediction [8]

R(D)SM = 0.305± 0.012, (1.3)

which is based on form factors extracted from experimental data for the B → Dℓν̄ differ-

ential decay rates using heavy-quark effective theory. See also ref. [9] for a recent analysis

of B → D form factors using light-cone sum rules.

A calculation of R(D∗)SM is not yet available from lattice QCD. The phenomenological

prediction using form factors extracted from B → D∗ℓν̄ experimental data is [10]

R(D∗)SM = 0.252± 0.003. (1.4)

The averages of R(D) and R(D∗) measurements, evaluated by the Heavy-Flavor Av-

eraging Group, are [11]

R(D)exp = 0.397± 0.040± 0.028, (1.5)

R(D∗)exp = 0.316± 0.016± 0.010, (1.6)

where the first uncertainty is statistical and the second is systematic. R(D∗) and R(D)

exceed the SM predictions by 3.3σ and 1.9σ, respectively. The combined analysis of R(D∗)

and R(D), taking into account measurement correlations, finds that the deviation is 4σ

from the SM prediction [11, 12].

Since lattice QCD results are not yet available for the B → D∗ form factors at nonzero

recoil and for the B → D tensor form factor, we use the phenomenological form factors

from ref. [8] for both channels in our analysis. For B → D, we have compared the phe-

nomenological results for f0 and f+ to the results obtained from a joint BGL z-expansion

fit [13] to the FNAL/MILC lattice QCD results [6] and Babar [14] and Belle experimental

data [15], and we found that the differences between both sets of form factors are below 5%

across the entire kinematic range. The constraints on the new-physics couplings from the

experimental measurement of R(D) obtained with both sets of form factors are practically

identical.
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We also construct the ratios of the experimental results (1.5) and (1.6) to the phe-

nomenological SM predictions (1.3) and (1.4):

RRatio
D =

R(D)exp
R(D)SM

= 1.30± 0.17, (1.7)

RRatio
D∗ =

R(D∗)exp
R(D∗)SM

= 1.25± 0.08. (1.8)

There have been numerous analyses examining NP explanations of the R(D(∗)) mea-

surements [8, 16–31]. The new physics involves new charged-current interactions. In

the neutral-current sector, data from b → sℓ+ℓ− decays also hint at lepton flavor non-

universality — the so called RK puzzle: the LHCb Collaboration has found a 2.6σ devia-

tion from the SM prediction for the ratio RK ≡ B(B+ → K+µ+µ−)/B(B+ → K+e+e−)

in the dilepton invariant mass-squared range 1GeV2 ≤ q2 ≤ 6GeV2 [32]. There are also

other, not necessarily lepton-flavor non-universal anomalies in b → sℓ+ℓ− decays, most

significantly in the B0 → K∗0µ+µ− angular observable P ′
5 [33, 34]. Global fits of the ex-

perimental data prefer a negative shift in one of the b → sµ+µ− Wilson coefficients, C9 [35].

Common explanations of the b → cτ−ν̄τ and b → sµ+µ− anomalies have been proposed in

refs. [31, 36–40].

The underlying quark level transition b → cτ−ν̄τ in the R(D(∗)) puzzle can be probed

in both B and Λb decays. Recently, the decay Λb → Λcτ ν̄τ was discussed in the standard

model and with new physics in refs. [41–47]. Λb → Λcτ ν̄τ decays could be useful to confirm

possible new physics in the R(D(∗)) puzzle and to point to the correct model of new physics.

In ref. [43] the following quantities were calculated within the SM and with various

new physics operators:

R(Λc) =
B[Λb → Λcτ ν̄τ ]

B[Λb → Λcℓν̄ℓ]
(1.9)

and

BΛc(q
2) =

dΓ[Λb→Λcτ ν̄τ ]
dq2

dΓ[Λb→Λcℓν̄ℓ]
dq2

, (1.10)

where ℓ represents µ or e. In this paper we work with the ratio RRatio
Λc

, defined as

RRatio
Λc

=
R(Λc)

SM+NP

R(Λc)SM
. (1.11)

We also consider the forward-backward asymmetry

AFB(q
2) =

∫ 1
0 (d

2Γ/dq2d cos θτ ) d cos θτ −
∫ 0
−1(d

2Γ/dq2d cos θτ ) d cos θτ

dΓ/dq2
, (1.12)

where θτ is the angle between the momenta of the τ lepton and Λc baryon in the dilepton

rest frame.
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This paper improves upon the earlier work [43] in several ways:

• We add tensor interactions in the effective Lagrangian.

• Instead of a quark model, we use form factors from lattice QCD to calculate all

Λb → Λcτ ν̄τ observable. The vector and axial vector form factors are taken from

ref. [48], and we extend the analysis of ref. [48] to obtain lattice QCD results for the

tensor form factors as well.

• In addition to R(Λc) and BΛc(q
2), we also calculate the forward-backward asymme-

try (1.12) in the SM and with new physics.

• We include new constraints from the Bc lifetime [47, 49, 50] in our analysis.

• In addition to analyzing the effects of individual new physics-couplings, we study

specific models that introduce multiple new-physics couplings simultaneously. We

consider a 2-Higgs doublet model, models with new vector bosons, and several lepto-

quark models.

The paper is organized in the following manner: in section 2 we introduce the effective

Lagrangian to parametrize the NP operators and give the expressions for the decay distri-

bution in terms of helicity amplitudes. In section 3, we present the new lattice QCD results

for the tensor form factors. The model-independent phenomenological analysis of individ-

ual new-physics couplings is discussed in section 4, while explicit models are considered in

section 5. We conclude in section 6.

2 Formalism

2.1 Effective Hamiltonian

In the presence of NP, the effective Hamiltonian for the quark-level transition b → cτ−ν̄τ
can be written in the form [51, 52]

Heff =
GFVcb√

2

{[
c̄γµ(1− γ5)b+ gLc̄γµ(1− γ5)b+ gRc̄γµ(1 + γ5)b

]
τ̄ γµ(1− γ5)ντ

+
[
gS c̄b+ gP c̄γ5b

]
τ̄(1− γ5)ντ +

[
gT c̄σ

µν(1− γ5)b
]
τ̄σµν(1− γ5)ντ + h.c

}
, (2.1)

where GF is the Fermi constant, Vcb is the Cabibbo-Kobayashi-Maskawa (CKM) matrix

element, and we use σµν = i[γµ, γν ]/2. We consider that the above Hamiltonian is written

at the mb energy scale.

If the effective interaction is written at the cut-ff scale Λ then running down to the

mb scale will generate new operators and new contributions, which have been discussed in

refs. [53, 54]. These new contributions can strongly constrain models but to really calculate

their true impacts we have to consider specific models where there might be cancellations

between various terms.

The SM effective Hamiltonian corresponds to gL = gR = gS = gP = gT = 0. In

eq. (2.1), we have assumed the neutrinos to be always left chiral. In general, with NP
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the neutrino associated with the τ lepton does not have to carry the same flavor. In the

model-independent analysis of individual couplings (section 4) we will not consider this

possibility. Specific models will be discussed in section 5.

2.2 Decay process

The process under consideration is

Λb(pΛb
) → τ−(pτ ) + ν̄τ (pν̄τ ) + Λc(pΛc).

The differential decay rate for this process can be represented as [23]

dΓ

dq2d cos θτ
=

G2
F |Vcb|2
2048π3

(
1− m2

τ

q2

) √
Q+Q−

m3
Λb

∑

λΛc

∑

λτ

|Mλτ
λΛc

|2, (2.2)

where

q = pΛb
− pΛc , (2.3)

Q± = (mΛb
±mΛc)

2 − q2 , (2.4)

and the helicity amplitude Mλτ
λΛc

is written as

Mλτ
λΛc

= HSP
λΛc ,λτ=0 +

∑

λ

ηλH
V A
λΛc ,λ

Lλτ
λ +

∑

λ,λ′

ηληλ′H
(T )λΛb
λΛc ,λ,λ

′L
λτ
λ,λ′ . (2.5)

Here, (λ, λ′) indicate the helicity of the virtual vector boson (see appendix A), λΛc and

λτ are the helicities of the Λc baryon and τ lepton, respectively, and ηλ = 1 for λ = t and

ηλ = −1 for λ = 0,±1.

The scalar-type, vector/axial-vector-type, and tensor-type hadronic helicity amplitudes

are defined as

HSP
λΛc ,λ=0 = HS

λΛc ,λ=0 +HP
λΛc ,λ=0,

HS
λΛc ,λ=0 = gS 〈Λc| c̄b |Λb〉 ,

HP
λΛc ,λ=0 = gP 〈Λc| c̄γ5b |Λb〉 , (2.6)

HV A
λΛc ,λ

= HV
λΛc ,λ

−HA
λΛc ,λ

,

HV
λΛc ,λ

= (1 + gL + gR) ǫ
∗µ(λ) 〈Λc| c̄γµb |Λb〉 ,

HA
λΛc ,λ

= (1 + gL − gR) ǫ
∗µ(λ) 〈Λc| c̄γµγ5b |Λb〉 , (2.7)

and

H
(T )λΛb
λΛc ,λ,λ

′ = H
(T1)λΛb
λΛc ,λ,λ

′ −H
(T2)λΛb
λΛc ,λ,λ

′ ,

H
(T1)λΛb
λΛc ,λ,λ

′ = gT ǫ∗µ(λ)ǫ∗ν(λ′) 〈Λc| c̄iσµνb |Λb〉 ,

H
(T2)λΛb
λΛc ,λ,λ

′ = gT ǫ∗µ(λ)ǫ∗ν(λ′) 〈Λc| c̄iσµνγ5b |Λb〉 . (2.8)
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The leptonic amplitudes are defined as

Lλτ = 〈τ ν̄τ | τ̄(1− γ5)ντ |0〉 ,

Lλτ
λ = ǫµ(λ) 〈τ ν̄τ | τ̄ γµ(1− γ5)ντ |0〉 ,

Lλτ
λ,λ′ = −iǫµ(λ)ǫν(λ′) 〈τ ν̄τ | τ̄σµν(1− γ5)ντ |0〉 . (2.9)

Above, ǫµ are the polarization vectors of the virtual vector boson (see appendix A). The

explicit expressions for the hadronic and leptonic helicity amplitudes are presented in the

following.

2.2.1 Hadronic helicity amplitudes

In this paper, we use the helicity-based definition of the Λb → Λc form factors, which was

introduced in [55]. The matrix elements of the vector and axial vector currents can be

written in terms of six helicity form factors F+, F⊥, F0, G+, G⊥, and G0 as follows:

〈Λc| c̄γµb |Λb〉 = ūΛc

[
F0(q

2)(mΛb
−mΛc)

qµ

q2

+F+(q
2)
mΛb

+mΛc

Q+

(
pµΛb

+ pµΛc
− (m2

Λb
−m2

Λc
)
qµ

q2

)

+F⊥(q
2)

(
γµ − 2mΛc

Q+
pµΛb

− 2mΛb

Q+
pµΛc

)]
uΛb

, (2.10)

〈Λc| c̄γµγ5b |Λb〉 = −ūΛcγ5

[
G0(q

2)(mΛb
+mΛc)

qµ

q2

+G+(q
2)
mΛb

−mΛc

Q−

(
pµΛb

+ pµΛc
− (m2

Λb
−m2

Λc
)
qµ

q2

)

+G⊥(q
2)

(
γµ +

2mΛc

Q−
pµΛb

− 2mΛb

Q−
pµΛc

)]
uΛb

. (2.11)

The matrix elements of the scalar and pseudoscalar currents can be obtained from the

vector and axial vector matrix elements using the equations of motion:

〈Λc| c̄b |Λb〉 =
qµ

mb −mc
〈Λc| c̄γµb |Λb〉

= F0(q
2)
mΛb

−mΛc

mb −mc
ūΛcuΛb

, (2.12)

〈Λc| c̄γ5b |Λb〉 =
qµ

mb +mc
〈Λc| c̄γµγ5b |Λb〉

= G0(q
2)
mΛb

+mΛc

mb +mc
ūΛcγ5uΛb

. (2.13)
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In our numerical analysis, we use mb = 4.18(4)GeV, mc = 1.27(3)GeV [56]. The matrix

elements of the tensor currents can be written in terms of four form factors h+, h⊥, h̃+, h̃⊥,

〈Λc| c̄iσµνb |Λb〉 = ūΛc

[
2h+(q

2)
pµΛb

pνΛc
− pνΛb

pµΛc

Q+

+h⊥(q
2)

(
mΛb

+mΛc

q2
(qµγν − qνγµ)− 2

(
1

q2
+

1

Q+

)
(pµΛb

pνΛc
− pνΛb

pµΛc
)

)

+h̃+(q
2)

(
iσµν − 2

Q−
(mΛb

(pµΛc
γν − pνΛc

γµ)

−mΛc(p
µ
Λb
γν − pνΛb

γµ) + pµΛb
pνΛc

− pνΛb
pµΛc

)

)

+h̃⊥(q
2)
mΛb

−mΛc

q2Q−

(
(m2

Λb
−m2

Λc
− q2)(γµpνΛb

− γνpµΛb
)

−(m2
Λb

−m2
Λc

+ q2)(γµpνΛc
− γνpµΛc

) + 2(mΛb
−mΛc)(p

µ
Λb
pνΛc

− pνΛb
pµΛc

)
)]

uΛb
. (2.14)

The matrix elements of the current c̄iσµνγ5b can be obtained from the above equation by

using the identity

σµνγ5 = − i

2
ǫµναβσαβ. (2.15)

In the following, only the non-vanishing helicity amplitudes are given. The scalar and

pseudo-scalar helicity amplitudes associated with the new physics scalar and pseudo-scalar

interactions are

HSP
1/2,0 = F0gS

√
Q+

mb −mc
(mΛb

−mΛc)−G0gP

√
Q−

mb +mc
(mΛb

+mΛc), (2.16)

HSP
−1/2,0 = F0gS

√
Q+

mb −mc
(mΛb

−mΛc) +G0gP

√
Q−

mb +mc
(mΛb

+mΛc). (2.17)

The parity-related amplitudes are

HS
λΛc ,λNP

= HS
−λΛc ,−λNP

,

HP
λΛc ,λNP

= −HP
−λΛc ,−λNP

. (2.18)

For the vector and axial-vector helicity amplitudes, we find

HV A
1/2,0 = F+(1 + gL + gR)

√
Q−√
q2

(mΛb
+mΛc)

−G+(1 + gL − gR)

√
Q+√
q2

(mΛb
−mΛc), (2.19)

HV A
1/2,+1 = −F⊥(1 + gL + gR)

√
2Q− +G⊥(1 + gL − gR)

√
2Q+, (2.20)

HV A
1/2,t = F0(1 + gL + gR)

√
Q+√
q2

(mΛb
−mΛc)

−G0(1 + gL − gR)

√
Q−√
q2

(mΛb
+mΛc), (2.21)
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HV A
−1/2,0 = F+(1 + gL + gR)

√
Q−√
q2

(mΛb
+mΛc)

+G+(1 + gL − gR)

√
Q+√
q2

(mΛb
−mΛc), (2.22)

HV A
−1/2,−1 = −F⊥(1 + gL + gR)

√
2Q− −G⊥(1 + gL − gR)

√
2Q+, (2.23)

HV A
−1/2,t = F0(1 + gL + gR)

√
Q+√
q2

(mΛb
−mΛc)

+G0(1 + gL − gR)

√
Q−√
q2

(mΛb
+mΛc). (2.24)

We also have the relations

HV
λΛc ,λw

= HV
−λΛc ,−λw

,

HA
λΛc ,λw

= −HA
−λΛc ,−λw

. (2.25)

The tensor helicity amplitudes are

H
(T )−1/2
−1/2,t,0 = −gT

[
− h+

√
Q− + h̃+

√
Q+

]
, (2.26)

H
(T )+1/2
+1/2,t,0 = gT

[
h+

√
Q− + h̃+

√
Q+

]
, (2.27)

H
(T )−1/2
+1/2,t,+1 = −gT

√
2√
q2

[
h⊥(mΛb

+mΛc)
√

Q− + h̃⊥(mΛb
−mΛc)

√
Q+

]
, (2.28)

H
(T )+1/2
−1/2,t,−1 = −gT

√
2√
q2

[
h⊥(mΛb

+mΛc)
√

Q− − h̃⊥(mΛb
−mΛc)

√
Q+

]
, (2.29)

H
(T )−1/2
+1/2,0,+1 = −gT

√
2√
q2

[
h⊥(mΛb

+mΛc)
√

Q− + h̃⊥(mΛb
−mΛc)

√
Q+

]
, (2.30)

H
(T )+1/2
−1/2,0,−1 = gT

√
2√
q2

[
h⊥(mΛb

+mΛc)
√

Q− − h̃⊥(mΛb
−mΛc)

√
Q+

]
, (2.31)

H
(T )+1/2
+1/2,+1,−1 = −gT

[
h+

√
Q− + h̃+

√
Q+

]
, (2.32)

H
(T )−1/2
−1/2,+1,−1 = −gT

[
h+

√
Q− − h̃+

√
Q+

]
. (2.33)

The other non-vanishing helicity amplitudes of tensor type are related to the above by

H
(T )λΛb
λΛc ,λ,λ

′ = −H
(T )λΛb
λΛc ,λ

′,λ. (2.34)
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2.2.2 Leptonic helicity amplitudes

In the following, we define

v =

√

1− m2
τ

q2
. (2.35)

The scalar and pseudoscalar leptonic helicity amplitudes are

L+1/2 = 2
√
q2v, (2.36)

L−1/2 = 0, (2.37)

the vector and axial-vector amplitudes are

L
+1/2
±1 = ±

√
2mτv sin(θτ ), (2.38)

L
+1/2
0 = −2mτv cos (θτ ), (2.39)

L
+1/2
t = 2mτv, (2.40)

L
−1/2
±1 =

√
2q2v (1± cos(θτ )), (2.41)

L
−1/2
0 = 2

√
q2v sin (θτ ), (2.42)

L
−1/2
t = 0, (2.43)

and the tensor amplitudes are

L
+1/2
0,±1 = −

√
2q2v sin(θτ ), (2.44)

L
+1/2
±1,t = ∓

√
2q2v sin(θτ ), (2.45)

L
+1/2
t,0 = L

+1/2
+1,−1 = −2

√
q2v cos(θτ ), (2.46)

L
−1/2
0,±1 = ∓

√
2mτv (1± cos(θτ )), (2.47)

L
−1/2
±1,t = −

√
2mτv (1± cos(θτ )), (2.48)

L
−1/2
t,0 = L

−1/2
+1,−1 = 2mτv sin(θτ ). (2.49)

Here we have the relation

Lλτ
λ,λ′ = −Lλτ

λ′,λ. (2.50)

The angle θτ is defined as the angle between the momenta of the τ lepton and Λc baryon

in the dilepton rest frame.

2.3 Differential decay rate and forward-backward asymmetry

From the twofold decay distribution (2.2), we obtain the following expression for the dif-

ferential decay rate by integrating over cos θτ :

dΓ(Λb → Λcτ ν̄τ )

dq2
=

G2
F |Vcb|2
384π3

q2
√
Q+Q−

m3
Λb

(
1− m2

τ

q2

)2
[
AV A

1 +
m2

τ

2q2
AV A

2 +
3

2
ASP

3

+2

(
1 +

2m2
τ

q2

)
AT

4 +
3mτ√
q2

AV A−SP
5 +

6mτ√
q2

AV A−T
6

]
, (2.51)
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where

AV A
1 = |HV A

1/2,1|2 + |HV A
1/2,0|2 + |HV A

−1/2,0|2 + |HV A
−1/2,−1|2,

AV A
2 = |HV A

1/2,1|2 + |HV A
1/2,0|2 + |HV A

−1/2,0|2 + |HV A
−1/2,−1|2 + 3|HV A

1/2,t|2 + 3|HV A
−1/2,t|2,

ASP
3 = |HSP

1/2,0|2 + |HSP
−1/2,0|2,

AT
4 = |H(T )1/2

1/2,t,0 +H
(T )1/2
1/2,−1,1|

2 + |H(T )1/2
−1/2,t,−1 +H

(T )1/2
−1/2,−1,0|

2 + |H(T )−1/2
1/2,0,1 +H

(T )−1/2
1/2,t,1 |2

+ |H(T )−1/2
−1/2,−1,1 +H

(T )−1/2
−1/2,t,0 |

2,

AV A−SP
5 = Re(HSP∗

1/2,0 HV A
1/2,t +HSP∗

−1/2,0 HV A
−1/2,t),

AV A−T
6 = Re[HV A∗

1/2,0(H
(T )1/2
1/2,−1,1 +H

(T )1/2
1/2,t,0 )] + Re[HV A∗

1/2,1(H
(T )−1/2
1/2,0,1 +H

(T )−1/2
1/2,t,1 )]+

Re[HV A∗
−1/2,0(H

(T )−1/2
−1/2,−1,1 +H

(T )−1/2
−1/2,t,0 )] + Re[HV A∗

−1/2,−1(H
(T )1/2
−1/2,−1,0 +H

(T )1/2
−1/2,t,−1)].

(2.52)

Here, AV A
1 and AV A

2 are the (axial-)vector non-spin-flip and spin-flip terms respectively,

ASP
3 and AT

4 are the pure (pseudo-)scalar and tensor terms respectively; and AV A−SP
5 and

AV A−T
6 are interference terms. The scalar-tensor interference term is proportional to cos θτ

and vanishes after integration over cos θτ .

For the forward-backward asymmetry (1.12) we have

AFB(q
2) =

(
dΓ

dq2

)−1 G2
FV

2
cb

512π3

q2
√
Q+Q−

m3
Λb

(
1− m2

τ

q2

)2[
BV A

1 +
2m2

τ

q2
BV A

2 +
4m2

τ

q2
BT

3 +

2mτ√
q2

BV A−SP
4 +

4mτ√
q2

BV A−T
5 + 4BSP−T

6

]
, (2.53)

where

BV A
1 = |HV A

1/2,1|2 − |HV A
−1/2,−1|2,

BV A
2 = Re[HV A∗

1/2,tH
V A
1/2,0 +HV A∗

−1/2,tH
V A
−1/2,0],

BT
3 = |H(T )−1/2

1/2,0,1 +H
(T )−1/2
1/2,t,1 |2 − |H(T )1/2

−1/2,−1,0 +H
(T )1/2
−1/2,t,−1|

2,

BV A−SP
4 = Re[HSP∗

1/2,0H
V A
1/2,0 +HSP∗

−1/2,0H
V A
−1/2,0],

BV A−T
5 = Re[HV A∗

1/2,t(H
(T )1/2
1/2,−1,1 +H

(T )1/2
1/2,t,0 )] + Re[HV A∗

1/2,1(H
(T )−1/2
1/2,0,1 +H

(T )−1/2
1/2,t,1 )]

+ Re[HV A∗
−1/2,t(H

(T )−1/2
−1/2,−1,1 +H

(T )−1/2
−1/2,t,0 )]− Re[HV A∗

−1/2,−1(H
(T )1/2
−1/2,−1,0 +H

(T )1/2
−1/2,t,−1)],

BSP−T
6 = Re[HSP∗

1/2,0(H
(T )1/2
1/2,−1,1 +H

(T )1/2
1/2,t,0 )] + Re[HSP∗

−1/2,0(H
(T )−1/2
−1/2,−1,1 +H

(T )−1/2
−1/2,t,0 )]. (2.54)

There is no contribution from pure (pseudo-)scalar operators to the forward-backward

asymmetry, but all possible interference terms are present.
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3 Λb → Λc tensor form factors from lattice QCD

This work uses Λb → Λc form factors computed in lattice QCD. The vector and axial vector

form factors defined in eqs. (2.10) and (2.11) are taken from ref. [48]. For the purposes of

the present work, one of us (SM) extended the analysis of ref. [48] to include the tensor

form factors defined in eq. (2.14). The tensor form factors were extracted from the lattice

QCD correlation functions using ratios defined as in ref. [57]. The lattice parameters are

identical to those in ref. [48], except that for the tensor form factors the “residual matching

factors” ρTµν and the O(a)-improvement coefficients were set to their tree-level values, with

appropriately increased estimates for the resulting systematic uncertainties as detailed fur-

ther below. Following ref. [48], two separate fits were performed to the lattice QCD data

using BCL z-expansions [58] augmented with additional terms to describe the dependence

on the lattice spacing and quark masses. The “nominal fit” is used to evaluate the central

values and statistical uncertainties of the form factors (and of any observables depending

on the form factors), while the “higher-order fit” is used in conjunction with the nominal fit

to evaluate the combined systematic uncertainty associated with the continuum extrapo-

lation, chiral extrapolation, z expansion, renormalization, scale setting, b-quark parameter

tuning, finite volume, and missing isospin symmetry breaking/QED. The procedure for

evaluating the systematic uncertainties is given in eqs. (82)-(84) of ref. [48]. The renor-

malization uncertainty in the tensor form factors is dominated by the use of the tree-level

values, ρTµν = 1, for the residual matching factors in the mostly nonperturbative renor-

malization procedure. We estimate the systematic uncertainty in ρTµν to be 2 times the

maximum value of |ρV µ − 1|, |ρAµ − 1|, which is equal to 0.0404 [48]. Note that the tensor

form factors are scale-dependent, and our results and estimates of systematic uncertain-

ties should be interpreted as corresponding to µ = mb in the MS scheme. To account for

the renormalization uncertainty in the higher-order fit, we introduced nuisance parameters

multiplying the form factors, with Gaussian priors equal to 1± 0.0404.

In the physical limit (zero lattice spacing and physical quark masses), the nominal fit

function for a form factor f reduces to the form

f(q2) =
1

1− q2/(mf
pole)

2

[
af0 + af1 zf (q2)

]
, (3.1)

while the higher-order fit function is given by

fHO(q
2) =

1

1− q2/(mf
pole)

2

[
af0,HO + af1,HO zf (q2) + af2,HO [zf (q2)]2

]
. (3.2)

The values of the pole masses are given in table 1, and the kinematic variables zf are

defined as

zf (q2) =

√
tf+ − q2 −

√
tf+ − t0

√
tf+ − q2 +

√
tf+ − t0

, (3.3)

t0 = (mΛb
−mΛc)

2, (3.4)

tf+ = (mf
pole)

2. (3.5)
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f JP mf
pole (GeV)

h+, h⊥ 1− 6.332

h̃+, h̃⊥ 1+ 6.768

Table 1. Values of the pole masses for the tensor form factors.

Nominal fit Higher-order fit

a
h+

0 0.9752± 0.0303 0.9668± 0.0567

a
h+

1 −5.5000± 1.2361 −4.5258± 1.7538

a
h+

2 2.2006± 10.724

ah⊥

0 0.7054± 0.0137 0.7052± 0.0362

ah⊥

1 −4.3578± 0.5114 −4.1050± 0.8391

ah⊥

2 3.0100± 7.8351

a
h̃⊥,h̃+

0 0.6728± 0.0088 0.6763± 0.0328

a
h̃+

1 −4.4322± 0.3882 −4.3634± 0.7509

a
h̃+

2 2.2739± 8.0769

ah̃⊥

1 −4.4928± 0.3584 −4.5543± 0.7370

ah̃⊥

2 3.0851± 7.9037

Table 2. Results for the z-expansion parameters describing the Λb → Λc tensor form factors in the

physical limit (in the MS scheme at the renormalization scale µ = mb). Files containing the values

and covariances of the parameters of all ten Λb → Λc form factors are provided as supplemental

material.

As in ref. [48], in the fits to the lattice data we evaluated the pole masses as amf
pole =

am
(lat)
Bc

+ a∆f , where am
(lat)
Bc

are the lattice QCD results for the pseudoscalar Bc mass on

each individual data set, and the splittings ∆f are fixed to their physical values ∆h+,h⊥ =

56MeV and ∆h̃+,h̃⊥ = 492MeV. The form factor results are very insensitive to the choices

of ∆f (as expected for poles far above q2max). When varying ∆f by ±10%, the z-expansion

parameters returned from the fit are found to change in such a way that the changes in

the form factors themselves are below 0.2% in the entire semileptonic region.

Plots of the lattice QCD data for the tensor form factors, along with the nominal fit

functions in the physical limit, are shown in figure 1. The same fit functions are plotted

in the entire kinematic range in figure 2, where also the total (statistical plus system-

atic) uncertainties are shown. The form factor h+ has larger uncertainties than the other

form factors because of larger excited-state contributions in the lattice QCD correlation

functions.

The values of the nominal and higher-order fit parameters for the tensor form factors

are given in table 2. Because of the kinematic constraint

h̃⊥(q
2
max) = h̃+(q

2
max), (3.6)
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Figure 3. Constraints on the individual new-physics couplings from the measurements of RRatio
D ,

RRatio
D∗ , and τBc

. We require that the couplings reproduce the measurements of RRatio
D and RRatio

D∗

in eqs. (1.7) and (1.8) within 3σ, and satisfy B(Bc → τ−ν̄τ ) ≤ 30%.

which is consistent with the present measurements (1.7) and (1.8). Note that in the gL-only

scenario the forward-backward asymmetry (1.12) is unmodified, AFB = ASM
FB .

There is also a measurement of the τ polarization by Belle [59] with the result Pτ =

−0.44±0.47+0.20
−0.17. The uncertainties of this measurement are presently too large to provide

a significant additional constraint and we therefore do not include Pτ in our analysis.

It was recently pointed out [47, 49, 50] that the measured lifetime of the Bc meson,

τBc = 0.507(9) ps [56], provides an upper bound on the Bc → τ−ν̄τ decay rate, which yields

a strong constraint on the gP coupling. According to SM calculations using an operator

product expansion [60], only about 5% (for the central value) of the total width of the Bc,

ΓBc = 1/τBc , can be attributed to purely tauonic and semi-tauonic modes. This can be

relaxed as the parameters in the calculations are varied. In our analysis, we use an upper

limit of B(Bc → τ−ν̄τ ) ≤ 30% to put constraints on the new-physics couplings. We use

fBc = 0.434(15) GeV from lattice QCD [61].

In figure 3, we present the constraints on the new-physics couplings coming from the

measurements of RRatio
D , RRatio

D∗ , and τBc . We see that τBc puts a strong constraint on gP ,

and weak constraints on gL and gR. The tensor coupling gT is strongly constrained by

RRatio
D∗ , and only weakly constrained by RRatio

D .
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gS only gP only gL only gR only gT only

−0.4 0.3 −2.2 −0.044 0.4

R(Λc) 0.290± 0.009 0.342± 0.010 0.479± 0.014 0.344± 0.011 0.475± 0.037

RRatio
Λc

0.872± 0.007 1.026± 0.001 1.44 1.033± 0.003 1.426± 0.100

−1.5− 0.3i 0.4− 0.4i 0.15− 0.3i 0.08− 0.67i 0.2− 0.2i

R(Λc) 0.384± 0.013 0.346± 0.011 0.470± 0.014 0.465± 0.014 0.404± 0.021

RRatio
Λc

1.154± 0.008 1.040± 0.002 1.412 1.397± 0.005 1.213± 0.050

Table 3. The values of R(Λc) and RRatio
Λc

for two example choices (real-valued and complex-

valued) of the new-physics couplings. The standard-model value of R(Λc) is 0.333±0.010 [48]. The

uncertainties given are due to the form factor uncertainties.

Coupling R(Λc)max RRatio
Λc,max coupling value R(Λc)min RRatio

Λc,min coupling value

gS only 0.405 1.217 0.363 0.314 0.942 −1.14

gP only 0.354 1.062 0.658 0.337 1.014 0.168

gL only 0.495 1.486 0.094 + 0.538i 0.340 1.022 −0.070 + 0.395i

gR only 0.525 1.576 0.085 + 0.793i 0.336 1.009 −0.012

gT only 0.526 1.581 0.428 0.338 1.015 −0.005

Table 4. The maximum and minimum values of R(Λc) and RRatio
Λc

allowed by the mesonic con-

straints for each new-physics coupling, and the coupling values at which these extrema are reached.

Example values of the ratios R(Λc) and RRatio
Λc

= R(Λc)/R(Λc)
SM for representative

allowed values of the NP couplings are given in table 3. The standard-model prediction

for R(Λc) is 0.333 ± 0.010 [48]. We find that large deviations from this value are possible

with the present mesonic constraints. In table 4, we present the maximum and minimum

allowed values of RRatio
Λc

= R(Λc)/R(Λc)
SM in the presence of each individual new-physics

coupling, and the corresponding values of the coupling at which these occur.

Figure 4 shows the effect of representative values of the individual NP couplings on the

Λb → Λcτ ν̄τ differential decay rate (evaluated assuming |Vcb| = 0.041) as well as BΛc(q
2)

[defined in eq. (1.10)] and AFB(q
2). In all cases, except for the strongly constrained pure gP

coupling, substantial deviations from the SM predictions are allowed. We notice that AFB

is typically above the SM prediction in the presence of gR or gT , while it is typically below

the SM prediction in the presence of gS . Hence, it is possible to use AFB to distinguish

between the different couplings.

4.2 Impact of a future R(Λc) measurement

In this subsection we present the effect of possible future measurements of R(Λc) on the

NP couplings constraints. We consider two cases, one in which the measured value is near

the SM prediction and one with measured value far from SM. For the first case we take
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Figure 4. The effect of individual new-physics couplings on the Λb → Λcτ ν̄τ differential decay

rate (left), the ratio of the Λb → Λcτ ν̄τ and Λb → Λcℓν̄ℓ differential decay rates (middle), and the

Λb → Λcτ ν̄τ forward-backward asymmetry (right). Each plot shows the observable in the Standard

Model and for two representative values of the new-physics coupling (one real-valued choice and

one complex-valued choice). The bands indicate the 1σ uncertainties originating from the Λb → Λc

form factors.
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Figure 5. Constraints on individual new-physics couplings from a possible R(Λc) measurement

(shown in blue), assuming that RRatio
Λc

= 1± 3× 0.05 where the 1σ uncertainty is 0.05. Also shown

are the mesonic constraints as in figure 3.

RRatio
Λc

= 1 ± 3 × 0.05, and for the second case RRatio
Λc

= 1.3 ± 3 × 0.05 (the same central

values as RRatio
D ). Note that we take the 1σ uncertainty as 0.05. Figures 5 and 6 show

the allowed regions of the parameter space for the first and second case, respectively. We

observe the following when adding the RRatio
Λc

constraints to the mesonic constraints:

• For R(Λc) near the SM (figure 5), the allowed regions for (gL, gR, gT ) are reduced

significantly, the allowed region for gS shrinks only slightly, and the allowed region

for gP remains the same (as it is dominantly constrained by τBc).

• For R(Λc) far from the SM (figure 6), most of the previously allowed region for gS
becomes excluded by R(Λc). Even more importantly, the gP -only scenario becomes

ruled out. In this case, R(Λc) also provides strong constraints on (gL, gR, gT ), but

these constraints still overlap with the mesonic constraints.
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Figure 6. Constraints on individual new-physics couplings from a possible R(Λc) measurement

(shown in blue), assuming that RRatio
Λc

= 1.3±3×0.05 where the 1σ uncertainty is 0.05. Also shown

are the mesonic constraints as in figure 3.

5 Explicit models

In this section we will discuss explicit models that can generate the couplings in the effective

Hamiltonian (2.1). We will consider three categories: two-Higgs-doublet models which

generate (gS , gP ), SU(2) models which generate gL, and leptoquark models which generate

(gS , gP , gL, gT ). We do not consider models that generate gR, as in the standard-model-

effective-theory picture it is difficult to have a gR coupling that leads to lepton universality

violation effects [62].

5.1 Two-Higgs-doublet models

The simplest scalar extensions of the SM are the two-Higgs-doublet models (2HDM). The

2HDM of type II is disfavored by experiment [1]. We will consider the Aligned Two-Higgs-

Doublet Model (A2HDM) from ref. [21]. The Lagrangian of the model is

LH±

Y = −
√
2

v
H+ {ū [ξd VMdPR − ξuMuV PL] d + ξl ν̄MlPRl} + h.c., (5.1)
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where u, d, and l denote all three generations of up-type quarks, down-type quarks, and

charged leptons, Mu and Md are the quark mass matrices, and V is the CKM matrix.

Above, ξf (f = u, d, l) are the proportionality parameters in the so-called “Higgs basis”,

in which only one scalar doublet acquires a nonzero vacuum expectation value. The cases

ξd = ξl = −1/ξu = − tanβ and ξu = ξd = ξl = cotβ correspond to the Type-II and Type-I

models, respectively. The general effective couplings in eq. (2.1) read

gquqdlS = gquqdlR + gquqdlL ,

gquqdlP = gquqdlR − gquqdlL , (5.2)

where

gquqdlL = ξuξ
∗
l

mquml

M2
H±

, gquqdlR = −ξdξ
∗
l

mqdml

M2
H±

. (5.3)

The scenario in which the ξu,d,l parameters are universal for all three generations is ruled

out [21]. We therefore assume that eq. (5.3) only gives the couplings for processes involving

the b quark, while the couplings for the first two generations are considered independently.

In this model we find significant deviation from the standard model contribution to the

decay Λb → Λcτ ν̄τ , but for a more complete analysis RGE evolution should be considered.

The RGE evolution of the couplings of the A2HDM has been discussed in ref. [63]. The

alignment condition, which guarantees the absence of tree-level FCNC processes, is pre-

served by the RGE only in the case of the standard type-I, II, X, and Y models which are

discussed in [64]. However, our framework requires non-universal flavor dependent cou-

plings and the RGE evolution has not been worked out and is not included in the analysis.

Keeping in mind that RGE effects could change the phenomenology of the model, the

discussion of the full numerical analysis of the model is not included in this work.

5.2 SU(2) and Leptoquark models

The analysis of the R(D(∗)) and RK anomalies could favor the left-handed operator gL. In

ref. [31], it was pointed out that, assuming that the scale of NP is much higher than the

weak scale, the gL operator should be invariant under the full SU(3)C × SU(2)L × U(1)Y
gauge group. There are two possibilities:

ONP
1 =

G1

Λ2
NP

(Q̄′
LγµQ

′
L)(L̄

′
Lγ

µL′
L) ,

ONP
2 =

G2

Λ2
NP

(Q̄′
Lγµσ

IQ′
L)(L̄

′
Lγ

µσIL′
L)

=
G2

Λ2
NP

[
2(Q̄′i

LγµQ
′j
L)(L̄

′j
Lγ

µL′i
L)− (Q̄′

LγµQ
′
L)(L̄

′
Lγ

µL′
L)
]
, (5.4)

where G1 and G2 are both O(1), and the σI are the Pauli matrices. Here Q′ ≡ (t′, b′)T

and L′ ≡ (ν ′τ , τ
′)T . The key point is that ONP

2 contains both neutral-current (NC) and

charged-current (CC) interactions. The NC and CC pieces can be used to respectively

explain the RK and R(D(∗)) puzzles. In the following, we briefly review the literature on

models of this type.
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spin SU(3)c SU(2)L U(1)Y=Q−T3

S1 0 3∗ 1 1/3

S3 0 3∗ 3 1/3

R2 0 3 2 7/6

V2 1 3∗ 2 5/6

U1 1 3 1 2/3

U3 1 3 3 2/3

Table 5. Quantum numbers of scalar and vector leptoquarks.

In ref. [36], UV completions that can give rise to ONP
1,2 [eq. (5.4)], were discussed. One

among the four possibilities for the underlying NP model is a vector boson (VB) that

transforms as (1,3, 0) under SU(3)C × SU(2)L ×U(1)Y , as in the SM.

Concrete VB models were discussed in refs. [37, 38] and the simplest VB model was

considered in ref. [39]. We refer to the VBs as V = W ′, Z ′. In the gauge basis, the

Lagrangian describing the couplings of the VBs to left-handed third-generation fermions is

∆LV = g33qV

(
Q

′
L3 γµσI Q′

L3

)
V I
µ + g33ℓV

(
L
′
L3 γµσI L′

L3

)
V I
µ , (5.5)

where σI (I = 1, 2, 3) are the Pauli matrices. Once the heavy VB is integrated out, one

obtains the following effective Lagrangian, relevant for b → sℓ+ℓ−, b → cτ−ν̄ and b → sνν̄

decays:

Leff
V = −

g33qV g
33
ℓV

m2
V

(
Q

′
L3γ

µσI Q′
L3

)(
L
′
L3γµσ

IL′
L3

)
. (5.6)

One can study the phenomenology of the model with an ansatz for the mixing matrices.

The assumption of refs. [36, 39] is that the transformations D and L involve only the

second and third generations. The key observation in ref. [39] is the Z ′ interaction also

contributes to Bs mixing and the model becomes highly constrained. If fact only a few

percent deviation from the SM is allowed in the R(D(∗)) observables. For this reason, we

do not present a detailed numerical analysis of the SU(2) models for the Λb → Λcτ ν̄τ decay.

We next move to leptoquark models. In ref. [65], several leptoquark models are consid-

ered that generate scalar, vector, and tensor operators. The SU(3)×SU(2)×U(1) quantum

numbers of these models are summarized in table 5. We can group the leptoquarks as vec-

tor or scalar leptoquarks. These leptoquarks can in turn be SU(2) singlets, doublets, or

triplets.

The Lagrangians for the various leptoquarks are

LLQ = LLQ
V + LLQ

S , (5.7)

LLQ
V =

(
hij1L Q̄i

LγµL
j
L + hij1R d̄iRγµℓ

j
R

)
Uµ
1 + hij3L Q̄i

LσγµL
j
LU

µ
3

+
(
gij2L d̄c,iR γµL

j
L + gij2R Q̄c,i

L γµℓ
j
R

)
V µ
2 + h.c. (5.8)

LLQ
S =

(
gij1L Q̄c,j

L iσ2L
j
L + gij1R ūc,iR ℓjR

)
S1 + gij3L Q̄c,i

L iσ2σL
j
LS3

+
(
hij2L ūiRL

j
L + hij2R Q̄i

Liσ2ℓ
j
R

)
R2 + h.c., (5.9)
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where hij and gij are dimensionless couplings, S1, S3, and R2 are the scalar leptoquark

bosons, Uµ
1 , U

µ
3 , and V µ

2 are the vector leptoquark bosons, and the index i (j) indicates

the generation of quarks (leptons).

The leptoquark Lagrangian generates the following couplings in eq. (2.1):

gS(µb) =

√
2

4GFVcb
(CS1

(µb) + CS2
(µb)) , (5.10)

gP (µb) =

√
2

4GFVcb
(CS1

(µb)− CS2
(µb)) , (5.11)

gL =

√
2

4GFVcb
C l
V1
, (5.12)

gR =

√
2

4GFVcb
C l
V2
, (5.13)

gT (µb) =

√
2

4GFVcb
CT (µb), (5.14)

where the Wilson coefficients in the leptoquark models are given by

CSM = 2
√
2GFVcb , (5.15)

C l
V1

=
3∑

k=1

Vk3

[
gkl1Lg

23∗
1L

2M2
S1

− gkl3Lg
23∗
3L

2M2
S3

+
h2l1Lh

k3∗
1L

M2
U1

− h2l3Lh
k3∗
3L

M2
U3

]
, (5.16)

C l
V2

= 0 , (5.17)

C l
S1

=
3∑

k=1

Vk3

[
−2gkl2Lg

23∗
2R

M2
V2

− 2h2l1Lh
k3∗
1R

M2
U1

]
, (5.18)

C l
S2

=

3∑

k=1

Vk3

[
−gkl1Lg

23∗
1R

2M2
S1

− h2l2Lh
k3∗
2R

2M2
R2

]
, (5.19)

C l
T =

3∑

k=1

Vk3

[
gkl1Lg

23∗
1R

8M2
S1

− h2l2Lh
k3∗
2R

8M2
R2

]
. (5.20)

These Wilson coefficients are defined at the energy scale µ = MX , where X represents a

leptoquark. Above, Vk3 denotes the relevant CKM matrix element, where the 3 corresponds

to the bottom quark. In the following, we neglect the CKM-suppressed contributions from

k = 1 and k = 2 in the sums. Because the neutrino is not observed, we have l = 1, 2, 3.

Note that there is a Standard-Model contribution for l = 3 but not for l = 1, 2; hence, the

constraints for different l will be different.

The renormalization-group running of the scalar and tensor Wilson coefficients from

µ = MX to µ = µb, where µb is the mass scale of the bottom quark, is given by

CS1,2(µb) =

[
αs(mt)

αs(µb)

]− 12

23
[
αs(mLQ)

αs(mt)

]− 4

7

CS1,2(mLQ) , (5.21)

CT (µb) =

[
αs(mt)

αs(µb)

] 4

23
[
αs(mLQ)

αs(mt)

] 4

21

CT (mLQ) , (5.22)
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where αs(µ) is the QCD coupling at scale µ. Because the anomalous dimensions of the vec-

tor and axial-vector currents are zero, the Wilson coefficients for V1,2 are scale-independent.

The different leptoquarks produce different effective operators as summarized below:

• The S1 leptoquark with nonzero (g1L, g
∗
1R) generates C l

V1
, C l

S2
, and C l

T , with the

relation C l
S2

= −4C l
T .

• The R2 leptoquark with (h2L, h
∗
2R) generates C

l
S2

and C l
T with the relation C l

S2
=4C l

T .

• The V2 leptoquark generates C l
S1

and is tightly constrained, so we do not consider

this model.

• The U1 leptoquark with nonzero (g2L, g
∗
2R) generates C

l
S1

and C l
V1
.

• The S3 and U3 leptoquarks with nonzero values of (g3L, g
∗
3L) and (h3L, h

∗
3L) gener-

ate C l
V1
.

The leptoquark couplings can also be constrained using b → sνν̄ decays. As pointed out

in ref. [39], the exclusive decays B̄ → Kνν̄ and B̄ → K∗νν̄ provide more stringent bounds

than the inclusive mode B → Xsνν̄. The U1 and R2 leptoquarks do not contribute to

b → sνν̄, while the left-handed couplings of S1, S3, and U3 do. (The V2 leptoquark

also contributes to b → sνν̄, but we do not consider this model.) The BaBar and Belle

Collaborations give the following 90% C.L. upper limits [66, 67]:

B(B+ → K+νν̄) ≤ 1.7× 10−5 ,

B(B+ → K∗+νν̄) ≤ 4.0× 10−5 ,

B(B0 → K∗0νν̄) ≤ 5.5× 10−5 . (5.23)

In ref. [68], these are compared with the SM predictions

BSM
K ≡ B(B → Kνν̄)SM = (3.98± 0.43± 0.19)× 10−6 ,

BSM
K∗ ≡ B(B → K∗νν̄)SM = (9.19± 0.86± 0.50)× 10−6 . (5.24)

Taking into account the theoretical uncertainties [68], the 90% C.L. upper bounds on

the NP contributions are

BSM+NP
K

BSM
K

≤ 4.8 ,
BSM+NP
K∗

BSM
K∗

≤ 4.9 . (5.25)

Following ref. [8], the b → sνj ν̄i process can be described by the effective Hamiltonian

Heff =
4GF√

2
VtbV

∗
ts

[(
δijC

(SM)
L + Cij

L

)
Oij

L + Cij
ROij

R

]
, (5.26)

where the left-handed and right-handed operators are defined as

Oij
L =(s̄Lγ

µbL)(ν̄jLγµνiL) ,

Oij
R =(s̄Rγ

µbR)(ν̄jLγµνiL) .
(5.27)
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The SM Wilson coefficient C
(SM)
L receives contributions from box and Z-penguin diagrams,

which yield

C
(SM)
L =

α

2π sin2 θW
X(m2

t /M
2
W ) , (5.28)

where the loop function X(xt) can be found e.g. in ref. [69]. The leptoquarks that we

consider produce contributions to Cij
L which, to leading order, are equal to [8]

Cij
L =− 1

2
√
2GFVtbV

∗
ts


g3i1Lg

2j∗
1L

2M2

S
1/3
1

+
g3i3Lg

2j∗
3L

2M2

S
1/3
3

− 2h2i3Lh
3j∗
3L

M2

U
−1/3
3


 . (5.29a)

We obtain common coefficients for b → cτ ν̄l and b → sντ ν̄l processes,

C l3
L =− 1

2
√
2GFVtbV

∗
ts


g3l1Lg

23∗
1L

2M2

S
1/3
1

+
g3l3Lg

23∗
3L

2M2

S
1/3
3

− 2h2l3Lh
33∗
3L

M2

U
−1/3
3


 . (5.30a)

Hence, for l = 3 we obtain

BSM+NP
K

BSM
K

=
BSM+NP
K∗

BSM
K∗

=

∣∣∣∣∣
3C

(SM)
L + C33

L

3C
(SM)
L

∣∣∣∣∣

2

, (5.31)

while for l = 1, 2 we have

BSM+NP
K

BSM
K

=
BSM+NP
K∗

BSM
K∗

=

∣∣∣∣∣
C l3
L

3C
(SM)
L

∣∣∣∣∣

2

. (5.32)

When considering nonzero values only for one coupling at a time (l = 1, 2, 3), the

experimental measurements ofRRatio
D , RRatio

D∗ , τBc , and B(B → K(∗)νν̄) yield the constraints

shown in figures 7, 8, and 9. The cases with g3i3Lg
23∗
3L in the S3 model, g3i1Lg

23∗
1L in the S1

model, and h2i3Lh
23∗
3L in the U3 model are ruled out for i = 1, 2.

Allowing all relevant couplings in each model to be nonzero simultaneously, we obtain

the coupling regions sampled by the random points in figures 10 and 11. The corresponding

allowed regions in the RRatio
Λc

− RRatio
D and RRatio

Λc
− RRatio

D∗ planes are shown in figure 12.

Since the S3 and U3 leptoquarks produce only the vector coupling gL, all ratios get rescaled

by the common factor of |1+ gL|2. The S3 and U3 models are tighly constrained and only

small effects are allowed. The other leptoquark models can produce substantial effects in

RRatio
Λc

, with varying degrees of correlation between the mesonic and baryonic observables.

The values of R(Λc) and RRatio
Λc

for two typical allowed combinations of the couplings

in each model are given in table 6. In figure 13, we present plots of the observables

(dΓ/dq2, BΛc , AFB) for the same values of the couplings.

6 Conclusions

The baryonic decay Λb → Λcτ ν̄τ has the potential to shed new light on the R(D(∗))

puzzle. Here, we studied the phenomenology of Λb → Λcτ ν̄τ in the presence of new-

physics couplings with all relevant Dirac structures. In contrast to the mesonic decays,
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Figure 7. Constraints on the S1 and R2 leptoquark models when considering one coupling at a time.

Here, i = 1, 2 denotes the electron and muon neutrinos. We require that the couplings reproduce the

measurements of RRatio
D and RRatio

D∗ in eqs. (1.7) and (1.8) within 3σ, satisfy B(Bc → τ−ν̄τ ) ≤ 30%,

and are consistent with the upper bounds on B(B → K(∗)νν̄) at 90% C.L. The allowed regions of

the parameter space when combining all constraints are highlighted with a black mesh.
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Figure 8. Constraints on the U1 leptoquark model when considering one coupling at a time. Here,

i = 1, 2 denotes the electron and muon neutrinos. We require that the couplings reproduce the

measurements of RRatio
D and RRatio

D∗ in eqs. (1.7) and (1.8) within 3σ and satisfy B(Bc → τ−ν̄τ ) ≤
30%. The allowed regions of the parameter space when combining all constraints are highlighted

with a black mesh.

the Λb → Λc form factors have not yet been determined from experimental data, and it

is even more important to use form factors from lattice QCD. Here, we presented new

lattice QCD results for the Λb → Λc tensor form factors, extending the analysis of ref. [48].

The parameters and covariance matrices of the complete set of Λb → Λc form factors are

provided as supplemental material.
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Figure 9. Constraints on the S3 and U3 leptoquark models when considering one coupling at

a time. Here, i = 1, 2 denotes the electron and muon neutrinos. We require that the couplings

reproduce the measurements of RRatio
D and RRatio

D∗ in eqs. (1.7) and (1.8) within 3σ, satisfy B(Bc →
τ−ν̄τ ) ≤ 30%, and are consistent with the upper bounds on B(B → K(∗)νν̄) at 90% C.L. The

allowed regions of the parameter space when combining all constraints are highlighted with a black

mesh.

In the first part of our phenomenological analysis, we considered individual new-physics

couplings in the effective Hamiltonian in a model-independent way. After constraining these

couplings using the R(D(∗)) measurements and the Bc lifetime, we calculated the effects

of the NP couplings in Λb → Λcτ ν̄τ decays, focusing on the observables R(Λc), BΛc(q
2),

and AFB(q
2). Measurements of these observables can help in distinguishing among the
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Figure 10. Allowed regions for the couplings of the R2, S3, and U3 leptoquark models in the

case that all relevant couplings in each model are included simultaneously. We require that the

couplings reproduce the measurements of RRatio
D and RRatio

D∗ in eqs. (1.7) and (1.8) within 3σ,

satisfy B(Bc → τ−ν̄τ ) ≤ 30%, and are consistent with the upper bounds on B(B → K(∗)νν̄) at

90% C.L (the latter is only relevant for the left-handed couplings in the S3 and U3 models).

different NP operators. For instance, the forward-backward asymmetry AFB(q
2) tends to

be mostly above the SM value in the presence of right-handed (gR) or tensor (gT ) couplings,

but is lower than the SM value for most allowed values of the scalar (gS) coupling. To

illustrate the impact of a future R(Λc) measurement, we presented the constraints on all

couplings resulting from two possible ranges of R(Λc). The baryonic decay can tightly

constrain all of the couplings gL, gR, gS , gP , and gT . For example, we have shown that if

RRatio
Λc

= R(Λc)/R(Λc)
SM is observed to have a value around 1.3, the scenario with only gP

becomes ruled out by the combined constraints from R(Λc) and τBc .

In the second part of our phenomenological analysis, we considered explicit models in

which multiple NP operators are present. For the two-Higgs-doublet model we found sig-

nificant contribution to Λb → Λcτ ν̄τ . However, the full numerical analysis was not included

in this work as we did not consider RGE evolution which could impact the phenomenology

of the model. Models with SU(2) gauge symmetry generally cannot produce large effects

in b → cτ ν̄τ transitions without violating bounds from other observables such as Bs mix-
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Figure 11. Allowed regions for the couplings of the S1 and U1 leptoquark models in the case that

all relevant couplings in each model are included simultaneously. We require that the couplings

reproduce the measurements of RRatio
D and RRatio

D∗ in eqs. (1.7) and (1.8) within 3σ, satisfy B(Bc →
τ−ν̄τ ) ≤ 30%, and are consistent with the upper bounds on B(B → K(∗)νν̄) at 90% C.L (the latter

is only relevant for the left-handed couplings in the S1 model).

ing, and we therefore did not present their effects on Λb → Λcτ ν̄τ . On the other hand,

we have demonstrated that some of the leptoquark models can produce large effects in

the Λb → Λcτ ν̄τ observables, in particular through scalar and tensor couplings. We have

presented correlation plots of RRatio
D and RRatio

D∗ versus RRatio
Λc

, which may be helpful in

discriminating among the various models.
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Figure 12. The allowed regions in the RRatio
Λc

−RRatio
D and RRatio

Λc

−RRatio
D∗ planes for each leptoquark

model, given the allowed regions for the couplings from figures 10 and 11.

– 30 –



J
H
E
P
0
8
(
2
0
1
7
)
1
3
1

Model Case Couplings R(Λc) RRatio
Λc

S1 1

g331Lg
23∗
1R = 0.332 + 0.403i,

g3i1Lg
23∗
1R = 0.417 − 0.311i,

g331Lg
23∗
1L = 0.015 − 0.037i,

g3i1Lg
23∗
1L = −0.079− 0.002i

0.343± 0.011 1.032± 0.004

S1 2

g331Lg
23∗
1R = 0.064 − 0.142i,

g3i1Lg
23∗
1R = −1.05 + 0.638i,

g331Lg
23∗
1L = 0.116 − 0.043i,

g3i1Lg
23∗
1L = 0.018 + 0.104i

0.549± 0.020 1.648± 0.025

R2 1
h232Lh

33∗
2R = 0.373 − 0.118i,

h2i2Lh
33∗
2R = −0.846− 0.191i

0.445± 0.016 1.337± 0.016

R2 2
h232Lh

33∗
2R = 0.753 − 0.199i,

h2i2Lh
33∗
2R = 0.897− 0.031i

0.485± 0.018 1.455± 0.025

U1 1

h231Lh
33∗
1R = −0.115− 0.021i,

h2i1Lh
33∗
1R = 0.049 + 0.159i,

h231Lh
33∗
1L = −1.468 + 0.271i,

h2i1Lh
33∗
1L = 1.116 + 0.744i

0.605± 0.019 1.818± 0.008

U1 2

h231Lh
33∗
1R = −0.059 + 0.236i,

h2i1Lh
33∗
1R = 0.234 + 0.105i,

h231Lh
33∗
1L = −2.002 + 0.854i,

h2i1Lh
33∗
1L = −0.135 + 0.940i

0.553± 0.018 1.663± 0.005

S3 1
g333Lg

23∗
3L = −0.035 + 0.032i,

g3i3Lg
23∗
3L = 0.061 + 0.041i

0.342± 0.010 1.027

S3 2
g333Lg

23∗
3L = −0.049 − 0.038i,

g3i3Lg
23∗
3L = −0.01− 0.019i

0.345± 0.011 1.037

U3 1
h233Lh

33∗
3L = −0.032− 0.014i,

h2i3Lh
33∗
3L = 0.003 + 0.002i

0.349± 0.011 1.047

U3 2
h233Lh

33∗
3L = −0.014− 0.006i,

h2i3Lh
33∗
3L = 0.017− 0.007i

0.340± 0.010 1.022

Table 6. The values of the R(Λc) and RRatio
Λc

ratios for two representative cases of the couplings of

the different leptoquark models. Above, the index i = 1, 2 denotes the electron and muon neutrinos.

The Standard-model value of the ratio is R(Λc) = 0.333 ± 0.010 [48]. The uncertainties given are

due to the Λb → Λc form factor uncertainties.
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Figure 13. The effects of the different leptoquark models on the Λb → Λcτ ν̄τ differential decay

rate (left), the ratio of the Λb → Λcτ ν̄τ and Λb → Λcℓν̄ℓ differential decay rates (middle), and the

Λb → Λcτ ν̄τ forward-backward asymmetry (right), for two representative choices of the couplings.

The red and blue curves correspond to the couplings from Cases 1 and 2 in table 6, respectively, while

the green curves correspond to the Standard Model. Because the S3 and U3 leptoquarks produce

only the vector coupling gL, the forward-backward asymmetry remains equal to the Standard Model

in those cases. The bands indicate the 1σ uncertainties originating from the Λb → Λc form factors.
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A Helicity spinors and polarization vectors

In this appendix, we give explicit expressions for the spinors and polarization vectors used

to calculate the helicity amplitudes for the decay Λb → Λcτ ν̄τ .

A.1 Λb rest frame

To calculate the hadronic helicity amplitudes, we work in the Λb rest frame and take the

three-momentum of the Λc along the +z direction and the three-momentum of the virtual

vector boson along the −z direction. The baryon spinors are then given by [70]

ū2(±1
2 , pΛc) =

√
EΛc +mΛc

(
χ†
±,

∓|pΛc |
EΛc +mΛc

χ†
±

)
,

u1(±1
2 , pΛb

) =
√
2mΛb

(
χ±

0

)
, (A.1)

where χ+ =

(
1

0

)
and χ− =

(
0

1

)
are the usual Pauli two-spinors. The polarization

vectors of the virtual vector boson are [70]

ǫµ∗(t) =
1√
q2

(q0; 0, 0,−|q|) ,

ǫµ∗(±1) =
1√
2
(0;±1,−i, 0) ,

ǫµ∗(0) =
1√
q2

(|q|; 0, 0,−q0) , (A.2)

where qµ = (q0; 0, 0,−|q|) is the four-momentum of the virtual vector boson in the Λb rest

frame. We have

q0 =
1

2mΛb

(m2
Λb

−m2
Λc

+ q2) , (A.3)

|q| = |pΛc | =
1

2mΛb

√
Q+Q− , (A.4)

where

Q± = (mΛb
±mΛc)

2 − q2. (A.5)
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A.2 Dilepton rest frame

In the calculation of the lepton helicity amplitudes, we work in the rest frame of the virtual

vector boson boson, which is equal to the rest frame of the τ ν̄τ dilepton system. We define

the angle θτ as the angle between the three-momenta of the τ and the Λc in this frame.

The lepton spinors for pτ pointing in the +z direction and pν̄τ pointing in the −z

direction are

ūτ (±1
2 , pτ ) =

√
Eτ +mτ

(
χ†
±,

∓|pτ |
Eτ +mτ

χ†
±

)
,

vν̄τ (
1
2 , pν̄τ ) =

√
Eν

(
χ+

−χ+

)
. (A.6)

We then rotate about the y axis by the angle θτ so that after the rotation, the three-

momentum of the Λc points in the +z direction. The two-spinors transform as

χ′
± = e−iθτσ2/2χ±

=

(
cos(θτ/2) − sin(θτ/2)

sin(θτ/2) cos(θτ/2)

)
χ±, (A.7)

and

χ′†
± = χ†

±

(
cos(θτ/2) sin(θτ/2)

− sin(θτ/2) cos(θτ/2)

)
, (A.8)

and the full lepton spinors after the rotation are

ūτ
(
+1

2 , pτ
)
=
√
Eτ+mτ

(
cos(θτ/2), sin(θτ/2),

−|pτ |
Eτ +mτ

cos(θτ/2),
−|pτ |

Eτ +mτ
sin(θτ/2)

)
,

ūτ
(
−1

2 , pτ
)
=
√
Eτ+mτ

(
− sin(θτ/2), cos(θτ/2),

−|pτ |
Eτ +mτ

sin(θτ/2),
|pτ |

Eτ +mτ
cos(θτ/2)

)
,

vν̄τ
(
1
2 , pν̄τ

)
=
√
Eν




cos(θτ/2)

sin(θτ/2)

− cos(θτ/2)

− sin(θτ/2)


 . (A.9)

The polarization vectors of the virtual vector boson in this frame are

ǫµ∗(t) = (1; 0, 0, 0) ,

ǫµ∗(±1) =
1√
2
(0;±1,−i, 0) ,

ǫµ∗(0) = (0; 0, 0,−1) . (A.10)

The three-momentum and energy of the τ lepton in this frame can be written as

|pτ | =
√
q2 v2/2,

Eτ = |pτ |+m2
τ/
√
q2, (A.11)

where

v =

√

1− m2
τ

q2
. (A.12)
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factors in QCD, JHEP 06 (2017) 062 [arXiv:1701.06810] [INSPIRE].

[10] S. Fajfer, J.F. Kamenik and I. Nisandzic, On the B → D∗τ ν̄τ Sensitivity to New Physics,

Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].

[11] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as of winter 2016,

http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16 dtaunu.html (2016).

[12] G. Ricciardi, Semileptonic and leptonic B decays, circa 2016,

Mod. Phys. Lett. A 32 (2017) 1730005 [arXiv:1610.04387] [INSPIRE].

[13] C. DeTar, private communication (2016).

[14] BaBar collaboration, B. Aubert et al., Measurement of |Vcb| and the Form-Factor Slope in

B̄ → D(∗)τ ν̄ Decays in Events Tagged by a Fully Reconstructed B Meson,

Phys. Rev. Lett. 104 (2010) 011802 [arXiv:0904.4063] [INSPIRE].

[15] Belle collaboration, R. Glattauer et al., Measurement of the decay B → Dℓνℓ in fully

reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element

|Vcb|, Phys. Rev. D 93 (2016) 032006 [arXiv:1510.03657] [INSPIRE].

– 35 –

https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.88.072012
https://arxiv.org/abs/1303.0571
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0571
http://dx.doi.org/10.1103/PhysRevD.92.072014
https://arxiv.org/abs/1507.03233
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.03233
https://arxiv.org/abs/1603.06711
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.06711
http://dx.doi.org/10.1103/PhysRevLett.115.159901
https://arxiv.org/abs/1506.08614
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08614
http://dx.doi.org/10.1103/PhysRevLett.109.071802
https://arxiv.org/abs/1206.4992
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4992
http://dx.doi.org/10.1103/PhysRevD.92.034506
https://arxiv.org/abs/1503.07237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07237
http://dx.doi.org/10.1103/PhysRevD.93.119906
https://arxiv.org/abs/1505.03925
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03925
http://dx.doi.org/10.1103/PhysRevD.88.094012
https://arxiv.org/abs/1309.0301
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0301
https://doi.org/10.1007/JHEP06(2017)062
https://arxiv.org/abs/1701.06810
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.06810
http://dx.doi.org/10.1103/PhysRevD.85.094025
https://arxiv.org/abs/1203.2654
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2654
http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16_dtaunu.html
http://dx.doi.org/10.1142/S0217732317300051
https://arxiv.org/abs/1610.04387
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.04387
http://dx.doi.org/10.1103/PhysRevLett.104.011802
https://arxiv.org/abs/0904.4063
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4063
http://dx.doi.org/10.1103/PhysRevD.93.032006
https://arxiv.org/abs/1510.03657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03657


J
H
E
P
0
8
(
2
0
1
7
)
1
3
1

[16] S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of Lepton Flavor

Universality Violations in B Decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872]

[INSPIRE].

[17] A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτν, B → D∗τν and B → τν in a

2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

[18] A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b → c τ ντ decays in the

light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760]

[INSPIRE].
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