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1 Introduction and conclusion

Quantum field theory (QFT) has become the dominant language in theoretical physics

since the success of quantum electrodynamics. The usage of QFT is not restrict to particle

physics but ubiquitous: statistical, condensed matter system and even quantum gravity

using holography. In general, QFTs are in the form of

QFT : (a CFT with flavor symmetry G)+(deformation)+(gauging H ⊂ G) .

At infrared (IR) limit, a QFT flows to another conformal field theory (CFT). So, the

general QFTs can be thought as RG flows between CFTs and thus understanding general

CFTs is the first step toward understanding QFTs.

“ Classify consistent CFTs and solve them ”

One rigorous way of defining a CFT is specifying CFT data: spectrum of local operators

{OI} and their operator product expansion (OPE) coefficients {λIJK}. By solving a CFT,

we mean determining these CFT data.

In this work, we study 3d N = 2 unitary superconformal field theories (SCFTs) with-

out any flavor symmetry and with small central charges. 3d supersymmetry has not been

observed experimentally yet. But there is a concrete proposal for condensed matter sys-

tem [1, 2] which exhibits an emergent supersymmetry and described by a 3d SCFT called

critical Wess-Zumino (cWZ) model. The model is known to be the simplest 3d N = 2
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Figure 1. Space of closed 3-manifolds M with vol(M) < vol
(
(S3\52

1)(5,−1)
)
' 2.02988. vol(M) de-

notes a topological invariant of 3-manifold M called hyperbolic volume, the volume measured in the

unique hyperbolic metric (Rµν = −2gµν). For each non-zero hyperbolic volume plotted in the graph,

there are only finitely many (mostly unique) CH3s. The spectrum is discrete and infinite and has a

(non-zero) lower bound 0.9427 which is saturated by the Weeks manifold
(
(S3\52

1)(5,−1)(5,−2)
)

[4].

SCFT with smallest central charge cT /c
free
T = 16

243

(
16− 9

√
3

π

)
' 0.7268 [3] where cfreeT

is the central charge for a free chiral theory. Classifying such simple unitary CFTs is an

interesting open question. In two dimensional spacetime, there is a complete classification

when cT < 1 called 2d minimal models. Here, we propose 3d N = 2 ‘minimal’ SCFTs

based on wrapped M5-brane systems.

An efficient way of constructing 3d N = 2 SCFTs is using wrapped M5-branes system

in M-theory:

11d space-time: R1,2 × T ∗M × R2⋃
(1.1)

N M5-branes: R1,2 ×M .

Here T ∗M denotes the cotangent bundle of M . The IR fixed point of the wrapped M5-

branes’ world-volume theory defines a 3d N = 2 SCFT. It is labelled by an orientable closed

hyperbolic 3-manifold (CH3) M and an integer N ≥ 2. We denote the SCFT as TN [M ].1

The space of CH3 with small hyperbolic volume is depicted in figure 1. For nomenclature

of 3-manifolds, we use a Dehn surgery description (3.4) on S3 along a White-head link in

figure 3. One natural question is

“ Solve T [M ] for closed hyperbolic 3-manifolds M ”. (1.2)

As a first step we develop a systematic algorithm for computing the central charge of

wrapped M5-brane CFTs. The algorithm can be summarized as:(
a surgery description (3.4) of M and an ideal triangulation (3.5)

)
,

==⇒
(
State-integral model in eq. (3.9) and (3.11)

)
,

==⇒
(
Z
[
T [M ] on S3

b

]
using 3d/3d relation in eq. (2.8)

)
,

==⇒
(
cT
(
T [M ]

)
using the relation in eq. (3.2)

)
.

In the procedure, we develop a state-integral for SL(2) Chern-Simons theory on closed

hyperbolic 3-manifolds. We numerically evaluate the central charge for three examples

listed in table 1. We have not done careful error analysis but the error seems to be

within 2∼3 percents. From the three examples, we see that the central charge is well-

1For N = 2 case, we skip the subscript “N”.
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Weeks : (S3\52
1)(5,−1)(5,−2) Thurston: (S3\52

1)(5,−1)(1,−2) (S3\52
1)(5,−1)(5,−1)

cT (T [M ]) 0.92 1.01 1.28

vol(M) 0.9427 0.9814 1.2637

Table 1. Central charge of T [M ] and hyperbolic volume for three CH3s.

approximated by the hyperbolic volume within a few percent error. We do not have a

quantitative understanding for the observation but their positive correlation is somewhat

expected. The larger hyperbolic volume means the more topological complexity of the

3-manifold and so the corresponding 3d SCFT is more complicated and has bigger central

charge. When the N , number of M5-brane, is very large we can compute the central

charge exactly thanks to holography and we can confirm the linear correlation, see eq. (2.7)

and (3.2). With this observation on top of Weeks manifold having smallest non-zero

hyperbolic volume, we expect that the T [Weeks] to be the simplest non-trivial wrapped

M5-brane SCFT and there are infinitely many discrete SCFTs with small central charge

(. 2). Let us comment a possible caveat of the computation. One basic assumption for the

central charge computation is that there is no enhanced abelian symmetries at low energy.

If these additional enhanced symmetry appears, we need to consider the mixing between

UV U(1)R with enhanced U(1)s which gives the correct IR superconformal R-charge. The

mixing can be determined by the F-maximization principal and we need to compute the

central charge and superconformal index taking into account of the mixing.

This work put the first step toward the challenging problem (1.2) and there are several

interesting directions worth exploring. We hope to report progresses on these in near future.

• Justify the physical and technical assumption (2.18) used in the central charge com-

putation. We give some circumstantial evidences for them.

• Prove topological invariance of the state-integral model developed in section 3.1. The

state-integral model is based on a Dehn surgery representation (3.4) of a 3-manifold.

The representation is not unique and we need to show the independence on the choice.

We check it perturbatively up to two-loops for several cases.

• In the central charge computation, we assumed no emergent abelian symmetry in the

low energy limit. It would be interesting to justify or falsify the assumption.

The paper is organized as follows. In section 2, we introduce wrapped M5-brane SCFTs

and their basic properties and a basic dictionary of 3d/3d correspondence. In section 3,

a systematic algorithm for computing the central charge is given. It is based on a state-

integral for a complex CS theory developed in the section.

2 Wrapped M5-brane SCFT and 3d/3d correspondence

We introduce a 3d SCFT T [M ] labelled by a closed 3-manifold M and review basic aspects

(holography and 3d/3d correspondence) of the SCFT. For recent studies on the topic, refer

to [5–20] (see also recent review [21]).

– 3 –
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T full
N [M ] TN [M ]

Global symmetry U(1)R ×U(1)t U(1)IR
R

3d/3d correspondence “Refined” SL(N) CS theory SL(N) CS theory

Large N gravity dual Unknown AdS4 ×M × S4 (for CH3)

Table 2. Comparison between T full
N [M ] and TN [M ].

2.1 3d N = 2 SCFT TN [M ]

A 3d SCFT TN [M ] is defined as an infrared (IR) fixed point of twisted compactification of

6d AN−1 (2, 0) theory on a closed 3-manifold M :

6d AN−1 (2,0) theory on R1,2 ×M with partial topological twisting along M

IR−−−−→ 3d SCFT TN [M ] . (2.1)

For the partial twisting, we use the usual SO(3) subgroup of SO(5) R-symmetry of the 6d

theory. The twisting generically preserves a quarter of supercharges and the resulting 3d

theory has N = 2 superconformal symmetry. The metric structure on the 3-manifold is

irrelevant in the IR and the 3d SCFT depends only on the topology of the 3-manifold. From

M-theoretical perspective, these theories are realized as low-energy world-volume theory of

wrapped N M5-branes in (1.1). As pointed out in [16], the ‘full’ IR CFT has an additional

abelian flavor symmetry called U(1)t and will be denoted as T full
N [M ]. The theory TN [M ] of

our interest is obtained as IR fixed point of the T full
N [M ] through a renormalization group

(RG) flow triggered by a Higgsing/deformation procedure(
T full
N [M ] + Higgsing/deformation

)
 TN [M ] . (2.2)

General bottom-up algorithm of constructing theory TN [M ] is introduced in [5] while there

are no such a general construction of T full[M ]. Not all 3-manifolds M give non-trivial

interacting CFTs. Our basic assumptions are

a) For hyperbolic 3-manifold M , the IR fixed theory TN [M ] is non-trivial.

b) For non-hyperbolic 3-manifold M with SO(3) Riemmanian holonomy (for example,

M = S3), the corresponding TN [M ] seems to be more or less trivial theories (theories

only with topological degree of freedom).2

c) M has reduced Riemannina holonomy group (thus non-hyperbolic), i.e, M = Σ ×
S1 with a Riemann surface Σ. In the case, the resulting 3d SCFT has additional

structure, enhanced N = 4 SUSY or additional flavor symmetry.

Simple evidence for a) is

lim
b→0

2πb2Fb(TN [M ]) =
N(N2 − 1)

6
vol(M) . (2.3)

2The theory T full
N [M ] might not be topological even this case. For example, T full

N [S3/Zp] is not topolog-

ical [20, 22, 23].
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Here Fb denotes the free-energy on a squashed 3-sphere S3
b [24],

Fb(a SCFT) := (free-energy of the SCFT on S3
b )

:= −Re
(

logZ[the SCFT on S3
b ]
)
. (2.4)

Metrically, the curved background can be realized as

S3
b = {b2|z|2 + b−2|w|2 = 1 : (z, w) ∈ C2} , with real b. (2.5)

The geometry has an exact symmetry exchanging b ↔ b−1 and so does the free-energy

Fb. The relation in eq. (2.3) can be explained using a 3d/3d relation and perturbative

expansion of SL(N) CS theory as we will see in the next section. Since we are interested

in a non-trivial 3d N = 2 SCFT with small central charge and no extra structures (flavor

symmetry or enhacencd SUSY), we concentrate on N = 2 and the case a).

Holographic dual. Holographic dual to the RG flow (2.1) across dimension was con-

structed in [25]

( AdS7 × S4 solution )
Holographic RG−−−−−−−−−−−−→ ( Pernici-Sezgin AdS4 solution in )

and M-theory on the AdS4 solution is proposed as gravity dual of TN [M ]. The supergravity

solution is

AdS4 ×M × S4 , (2.6)

with a warped product metric and the S4 non-trivially fibred over the M factor. The

supergravity solution was found only for closed hyperbolic M . From the holographic com-

putation using supergravity approximation, it has been predicted that [18]

lim
N→∞

1

N3
Fb(TN [M ]) =

(b+ b−1)2

12π
vol(M) . (2.7)

2.2 3d/3d relations

3d/3d relation relates the squashed 3-sphere ptn of TN [M ] to ptn of a SL(N) CS theory

on M .

Z[TN [M ] on S3
b ] = Z

[
SL(N)k,σ CS theory on M

]
:=

∫
[DA]

(gauge)
exp

(
i(k + σ)

8π
CS[A] +

i(k − σ)

8π
CS[Ā]

)
, (2.8)

where k and σ are two coupling constants of the complex CS theory. k ∈ Z is a quantized

CS level and the σ can be either real or purely imaginary. In the 3d/3d relation, they

are [15, 17]

k = 1 and σ =
1− b2

1 + b2
. (2.9)

A, Ā denote a pair of SL(N) gauge fields on M and the CS functional is defined as

CS[A] :=

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.10)
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Perturbative ptn Zhyp
N ;pert and resurgence. When b2 → 0+, the S3

b -ptn has following

asymptotic expansion [7, 8]

Z
[
TN [M ] on S3

b

] b2 → 0+−−−−−−−−→
∑
α

nαZαN ;pert

(
M ; ~

)
. (2.11)

Here α labels SL(N) flat connections on M and nα are integer coefficients and Zαpert denotes

the formal perturbative expansion around the flat-connection Aα .

ZαN ;pert(M ; ~) := exp

(
1

~
Sα0 (M ;N) + Sα1 (M ;N) + . . .+ ~n−1Sαn (M ;N) + . . .

)
. (2.12)

Through out the paper, we define

~ := 2πib2 ∈ iR+ . (2.13)

Sαn is the n-loop SL(N) CS invariant on M . The classical part is

Sα0 = −1

2
CS[Aα] . (2.14)

For hyperbolic 3-manifolds, there are two special flat connections, Ahyp and Ahyp, which

can be constructed using the unique (complete) hyperbolic structure on M :

Ahyp
N := ρN (ω + ie) , Ahyp

N := ρN (ω − ie) , (2.15)

where e and ω are drei-bein and spin connection for the unique hyperbolic structure re-

spectively and ρN is an embedding of SL(2) into SL(N) using the N -dimensional repre-

sentation of SL(2) ' SU(2)C. Einstein equation with negative cosmology constant become

flat connection equation through the above relation. Value of CS functional for these flat

connections are related to the hyperbolic volume of 3-manifold:

Im
(
CS[Ahyp

N ]
)

= −1

3
N(N2 − 1) vol(M) , Im

(
CS[Ahyp

N ]
)

=
1

3
N(N2 − 1) vol(M) . (2.16)

These flat connections have most exponentially growing and decaying classical part e
1
~S0

when b ∈ R:

Im
(
CS[Ahyp

N ]
)
< Im

(
CS[AαN ]

)
< Im

(
CS[Ahyp

N ]
)
, for any other flat-connections AαN .

(2.17)

From the compatibility with the holographic prediction (2.7) and an argument using a

state-integral model,3 it has been conjectured that [18, 26]

nα 6= 0 only for α = hyp . (2.18)

3The state-integral model can be interpreted as an integral from localization for a SCFT, which can be

identified as T [M ] [9], if one choose a proper converging integration contour as a cycle slightly above the

real slice. For some knot complements, it is checked that the contour is homologically equivalent to the

steepest descendant contour (Lefschetz thimble) associated to the saddle point in (3.21) which corresponds

to the flat connection Ahyp.

– 6 –
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It implies that the S3
b -ptn is exponentially decaying at small b which seems to be an

universal property of unitary non-topological 3d SCFTs. Actually, the choice (2.18) with

nhyp = ±1 maximizes the free-energy Fb at small b, see eq. (2.17). We assume that this is

the correct choice for the IR SCFT appearing in the 3d/3d relation. The above conjecture

can be rephrased in the language of resurgence. For that, first reorganize the perturbative

expansion in the following ways:

Zhyp
N ;pert(M ; ~) = exp

(
1

~
Shyp

0 (M ;N) + Shyp
1 (M ;N)

)
×
(

1 +
∞∑
n=1

ahyp
n (M ;N)(b2)n

)
,

then the conjecture in (2.18) can be stated as:

Z
[
TN [M ] on S3

b

]
= exp

(
1

~
Shyp

0 (M ;N) + Shyp
1 (M ;N)

)
×
(

1 +

∫ ∞
0

dζe−
ζ

b2Bhyp
N (ζ)

)
,

where Bhyp
N (ζ) :=

∞∑
n=1

ahyp
n (M ;N)

(n− 1)!
ζn−1 . (2.19)

Here we assume that the series {ahyp
n }∞n=1 is Borel summable which is reasonable since the

saddle point Ahyp gives the smallest classical contribution and thus other saddle points can

not appear as instanton trans-series. On the other hand, it was claimed in [27] that the

Borel resummation Zhyp
N gives the vortex ptn (ptn on R2 ×q S1) instead of S3

b -ptn. There

are two evidences supporting our proposal over their claim: a) At large N and the leading

order (N3) in 1/N expansion, the perturbative series {Shyp
n (N)} becomes a finite series ter-

minating at two-loops and the answer nicely matches with the holographic prediction (2.7)

of S3
b -ptn [18], b) For N = 2 and M = S3\41 (figure-eight knot complement), the Borel

resummation is performed explicitly in [27]4

Zhyp
(
S3\41; ~ = 2πib2

)∣∣
b=1
' 0.37953 , (2.20)

which is a good approximation for the correct S3
b -ptn of TN=2[S3\41] computed using a

state-integral model. The exact value at b = 1 is [28]

Z
[
T[S3\41] on S3

b=1

]
=

1√
3

(
exp

(
vol(S3\41)

2π

)
− exp

(
−vol(S3\41)

2π

))
' 0.379568 .

(2.21)

Here the hyperbolic volume of S3\41 is

vol(S3\41) = 2Im[Li2(eiπ/3)] ' 2.02988 . (2.22)

3 Central charge of T [M ]

One basic quantity characterizing a SCFT is central charge cT which is defined using two

point function of stress-energy tensor:

T (x)T (0) ∼ cT
|x|2d

× (tensor structure) . (3.1)

4There seems to be a mistake in the sign of classical part in the eq. (6.11) in [27]. After correcting the

mistake, Zhyp
(
S3\41; ~ = 2πib2

)∣∣
b=1

= e−2× vol(S3\41)
2π ×

(
eq. (6.23) in [27]

)
.

– 7 –
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z
z 'z ''

z
z ' z ''

Figure 2. An ideal tetrahedron ∆, tetrahedron with truncated vertices. Hyperbolic structures

of ∆ are parameterized by edge parameters (z := eZ , z′ := eZ
′
, z′′ = eZ

′′
) satisfying relations

z′ = 1
1−z and z′′ = 1− z−1. These parameters assigned to each pair of boundary edges, as shown in

the figure. Geometrically, the logarithm parameters (Z,Z ′, Z ′′) measure complex dihedral angles

between two faces meeting at the edges. Imaginary parts of these logarithm parameters take values

between 0 and π.

For 3d N = 2 SCFTs, the central charge is related to the squashed 3-sphere free energy

Fb (2.4) as follows [29]:

cT =
8

π2

∂2Fb
∂b2

∣∣∣∣
b=1

. (3.2)

We use following normalization

cT (a free chiral theory) = 1 . (3.3)

Combining the 3d/3d correspondence (2.8) and the relation (3.2), we will compute the

central charge of T [M ].

3.1 A state-integral model for SL(2)k=1 CS theory

We review and generalize a state-integral for SL(2) CS theory on hyperbolic 3-manifolds

which is believed to be a finite dimensional integral representation of the path integral in

the complex CS theory. The generalized state-integral model is applicable to any closed hy-

perbolic 3-manifolds which was not possible for state-integrals [26, 30, 31] in the literature.

Dehn surgery and ideal triangulation. We use a Dehn surgery description of 3-

manifold M :

M =
(
S3\K

)
{(pα,qα)}S≤|K|α=1

:=

[(
S3\K

) S⋃
α=1

(D2 × S1)α

]
/ ∼ , (3.4)

and a sufficiently good5 ideal triangulation of the link complement S3\K:

S3\K =

(
T⋃
i=1

∆i

)
/ ∼ . (3.5)

Here K is a link on S3 of |K| components. A link complement S3\K is a 3-manifold

obtained by removing the tubular neighborhood (topologically |K| copies of solid-tori) of

5We assume a positive angle structure of triangulation [17].

– 8 –
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a link K from a 3-sphere S3. The manifold has |K| torus boundaries and 1-cycles around

the link are called ‘meridians’ and 1-cycles along the link are ‘longitudes’. The 3-manifold

M in (3.4) is obtained by gluing S solid-tori back to the link complement with following

identification:

pα(α-th meridian) + qα(α-th longitude)

∼ (contractable cycle in α-th solid-torus) . (3.6)

The procedure of gluing solid-torus is called (pα, qα)-Dehn filling. (pα, qα) is a pair of

coprime numbers and the ratio pα/qα is called ‘slopes’. In short, the 3-manifold is obtained

by gluing T ideal tetrahedrons and S solid-tori:

T : ] of ideal tetrahedrons , S : ] of solid-tori . (3.7)

The resulting 3-manifold M has (|K|−S) torus boundaries and when S = |K| it is a closed

3-manifold. Any closed 3-manifold M can be obtained by a Dehn surgery on S3 [32, 33].

State-integral model. State-integrals give a finite-integral representation of the CS ptn

by properly ‘quantizing’ the ideal triangulation (3.5) and the Dehn filling (3.6). There are

several state-integral models [26, 30, 34], which are believed to be equivalent, based on

an ideal triangulation of M . We use the one developed by Dimofte and incorporate Dehn

filling into the state-integral model to cover more general class of 3-manifolds such as

closed hyperbolic 3-manifolds. One systematic way of specifying the gluing rule of an ideal

triangulation is using (generalized) Neunmann-Zagier (NZ) datum (A,B,C,D; f, f ′′, ν, νp),

refer to [35] for the definition, where A,B,C,D are T × T matrices forming Sp(2T,Q)(
A B

C D

)
∈ Sp(2T,Q) , with detB 6= 0 , (3.8)

and (f, f ′′, ν, νp) are vectors of length T . From these datum, the state-integral (SI) for the

link complement is given by [35]

ZSI(S
3\K;X1, . . . , X|K|; ~)

=
1√

detB

∫ T∏
i=1

Ψb(Zi)dZi√
2π~

exp

[
1

2~
~Z ·B−1A~Z +

1

~

(
2u ·DB−1u+ (2πi+ ~)f ·B−1u

+
1

2
(iπ + ~/2)2f ·B−1ν − ~Z ·B−1

(
(iπ + ~/2)ν + 2u

))]
. (3.9)

Here we define

u =
(
X1, . . . , X|K|, 0, . . . , 0

)
. (3.10)

The quantum dilogarithm function (QDL) Ψb is a wave-function on each tetrahedron. See

appendix B for the definition and basic properties of the special function. Quantizing the
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Dehn fillings in (3.6), we finally have

ZSI

(
M ;X1,...,X|K|−S ;~

)
=

∫ S∏
α=1

∆b(Xα+|K|−s;sα,qα)dXα+|K|−S

(2πqα~)1/2
exp

(
1

~

S∑
α=1

pαX
2
α+|K|−s

qα

)
ZSI

(
S3\K;X1,...,X|K|;~

)
,

with ∆b(X;s,q) :=e
− iπs

2q
(b2+b−2)

(
e
X
b2q sinh

(
X−iπs

q

)
−e−

X
b2q sinh

(
X+iπs

q

))
. (3.11)

Here sα is defined to be an integer satisfying sαpα ∈ qαZ − 1. See appendix C for the

derivation. The CS wave-function has following naive path-integral interpretation,

ZSI

(
M ;X1, . . . , X|K|−S ; ~ = 2πib2

)
=

∫
[dA]X

(gauge)
exp

(
i(k + σ)

8π
CS[A] +

i(k − σ)

8π
CS[Ā]

)∣∣∣∣
(2.9)

, where

[dA]X : Path-integral over SL(2) gauge field on M subject to

boundary conditions fixing Pe
∮
I−th merdianA =

(
eXI 1

0 e−XI

)
. (3.12)

The SL(2) CS wave-function is defined up to a factor [35].

exp

(
π2

6~
α+

iπ

4
β +

~
24
γ

)
, α, β, γ ∈ Z . (3.13)

The factor is a purely phase factor for real b and irrelevant in free-energy Fb computation.

In the SCFT side of 3d/3d correspondence, (some parts of) the ambiguities comes from

local counter-terms in a supergravity on the curved (S3
b ) background [36].

3.1.1 Perturbative expansion

Using the state-integral model above, we can compute the perturbative invariants

{Shyp
n (M)}∞n=0 (2.12). The state-integral model in (3.9) and (3.11) is of the form:

ZSI

(
M ;X1, . . . , X|K|−S ; ~

)
(3.14)

=

∫
dX|K|−S+1 . . . dX|K|dZ1 . . . dZT

(2π~)(T+S)/2
exp

(
W
(
Z1, . . . , ZT , X1, . . . , X|K|; ~

))
.

In the limit when ~→ 0, using eq. (B.4)

W(~Z, ~X; ~) ∼ 1

~
W0(~Z, ~X) +W1(~Z, ~X) + ~W2(~Z, ~W ) + . . . . (3.15)

Saddle point equations are

• ∂W0

∂Zi
= 0 , for i = 1, . . . , T

⇒ A · ~Z +B · ~Z ′′ − iπν = 2u where Z ′′i := log(1− e−Zi) ,

• ∂W0

∂Xα+|K|−S
= 0 , for α = 1, . . . , S

⇒ pαXα+|K|−S + qαPα+|K|−S = −sign

(
Re

[
Xα+|K|−S

qα

])
πi . (3.16)
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Here u is defined in (3.10) and we define

Pα+|K|−S :=
(
C · ~Z +D · ~Z ′′ − iπνp

)
α+|K|−S . (3.17)

Interpreting the variables Z and Z ′′ as logarithmic edge parameters of ideal tetrahedrons,

these are nothing but gluing equations for the 3-manifold studied in [37]. Solutions to the

gluing solution give SL(2) flat connections on M . Refer to [11] for explicit construction of

holonomy representation of a flat connection from a solution to the gluing equations. In the

map, the solution corresponding to the flat connection Ahyp is characterized by following

conditions:

0 < Im[Zi] < π , for all i = 1, . . . , T (hyperbolic)

X1 = . . . = X|K|−S = 0 (complete) (3.18)

Under the first condition, logarithmic edge parameter Zi determines a hyperbolic structure

on ∆i, see figure 2. The gluing equations are conditions for the hyperbolic structures

to be glued smoothly and give a hyperbolic structure on the 3-manifold. For complete

hyperbolic structure, we additionally need the second conditions requring the meridian

holonomies in eq. (3.12) are parabolic. Near each T2-boundary, the complete hyperbolic

metric on M are locally

ds2 =
1

z2

(
dz2 + ds2

T2

)
. (3.19)

Here z is the (inward) direction transverse to the boundary T2. Using the metric, one can

check that the flat connection Ahyp in (2.15) have parabolic meridian holonomies. For the

case when M is hyperbolic and we use an idea triangulation with positive angle structure,

there is an unique solution for eq. (3.16) and (3.18) modulo the Weyl-symmetries (Z2)S .

(Z2)S : Xα+|K|−S → ±Xα+|K|−S for α = 1, . . . , S . (3.20)

The unique saddle point corresponds to the flat connection Ahyp and we denote(
Xhyp
α+|K|−S , Z

hyp
i

)
:= A solution satisfying eq. (3.16) and (3.18) . (3.21)

For non-hyperbolic M , there’s no saddle point satisfying these conditions. The formal per-

turbative expansion of the state-integral around the saddle point defines the perturbative

ptn Zhyp
pert(M ; ~) (2.12):

Zhyp
pert

(
M ; ~

)
:= 2S ×Zhyp

pert;SI

(
M ; ~X = ~0; ~

)
, (3.22)

:= 2S ×
[
Perturbative expansion of ZSI

(
M ; ~X = ~0; ~

)
around (3.21)

]
.

The overall factor 2S comes from the fact that there are that many saddle points related

by Weyl-symmetries and they all give same perturbative expansion. The state-integral is

finite dimensional integration and thus the formal expansion coefficients {Shyp
n (M)}∞n=0 are

well-defined without any issue of regularization. Refer to [38] for perturbative expansion

of the state-integral model in (3.9) using Feynman diagram.
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Figure 3. White-head link (52
1), the 1st one among links with 2 components and 5 crossings.

Examples (S3\52
1)(p,q). White-head link (52

1) is one of simplest hyperbolic link with

two components. The link complement can be decomposed into 4 ideal tetrahedrons (see

appendix A):

S3\52
1 =

(
4⋃
i=1

∆i

)
/ ∼ . (3.23)

Using the ideal triangulation, the corresponding state-integral is given by

ZSI

(
S3\52

1;X1, X2; ~
)

=
1√
2

∫ 4∏
i=1

Ψb(Zi)dZi√
2π~

exp

[
2X1(2Z1 + 2Z4 − ~− 2iπ)− 2Z3Z4

2~

+
2X2(−2Z2 − 2Z4 + ~ + 2iπ) + (Z1 + Z2 − Z3)(Z1 + Z2 − Z3 − ~− 2iπ)

2~

]
. (3.24)

Applying the quantum Dehn filling formula (3.11) to the above integral, we obtain the

state-integral for M = (S3\52
1)(p,q). For example, when (p, q) = (5,−1)

ZSI

(
(S3\52

1)(5,−1);X1; ~
)

=

∫
2 sinh(X2) sinh(X2/b

2)dX2√
2π~

exp

(
− 5X2

2

~

)
ZSI(S

3\52
1;X1, X2; ~) . (3.25)

In the case, the resulting 3-manifold is turned out to be a 3-manifold called ‘sister of figure-

eight knot-complement’. In SnapPy’s census [39], the 3-manifold is denoted as m003 and

allows an ideal triangulation using two tetrahedrons (see appendix A):

m003 = (S3\52
1)(5,−1) =

(
2⋃
i=1

∆i

)
/ ∼ . (3.26)

From the ideal triangulation, we have an alternative expression for the state-integral model

ZSI(m003;X1; ~) =

∫ 2∏
i=1

Ψb(Zi)dZi√
2π~

exp

[
X1(8Z1 + 4Z2 − 2~− 4iπ) + 8X2

1

2~

+
2Z1(Z2 − ~− 2iπ) + Z2(Z2 − ~− 2iπ) + 4Z2

1

2~

]
. (3.27)
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One can check that both expressions, eq. (3.25) and eq. (3.27), give same perturbative

invariants Shyp
n (M) modulo (3.13):

Shyp
0 (m003) = Shyp

0

(
(S3\52

1)(5,−1)

)
=
π2

9
+ 2Li2

(
1−
√

3

2

)
,

Shyp
1 (m003) = Shyp

1

(
(S3\52

1)(5,−1)

)
= −1

2
log(−3−

√
3i) ,

Shyp
2 (m003) = Shyp

2

(
(S3\52

1)(5,−1)

)
=

1

864
(9 + 35

√
3i) .

We did similar consistency checks for other examples, (S3\52
1)(3,−2) =

m007, (S3\52
1)(5,−2) = m006 and (S3\52

1)(2,−3) = m053. The matches are delicate

and strongly suggests that the state-integral model gives at least the correct perturbative

invariants. We leave the general proof showing topological invariance of the perturbative

series as future work.

3.2 Numerical evaluation for some M = (S3\52
1)(5,−1),(p,q)

Here we give concrete examples of central charge computation for closed hyperbolic 3-

manifolds M . The most technically non-trivial step is finding a converging contour of the

state-integral model.

Weeks manifold = (S3\52
1)(5,−1)(5,−2) = (m003)(5,−2). Weeks manifold is the

smallest volume hyperbolic 3-manifold. The state-integral is given by6 (sloppy in the

overall factor of the form (3.13))

Zhyp
(
Weeks; ~ = 2πib2

)
=

∫
Γhyp
Weeks

dZ1dZ2dX

(2π)3
√

2

(
2 cosh

(
bX

2

)
cosh

(
X

2b

))
ψb(Z1)ψb(Z2)

× e−
1
2

(b+b−1)(2Z1+Z2+2X)− i
4π

(4Z2
1+Z2

2+4Z2X+3X2+2Z1Z2+8Z1X) ,

'
∫
γhypWeeks

dZ1dX

(2π)2
√

2

(
2 cosh

(
bX

2

)
cosh

(
X

2b

))
ψb(Z1)ψb(2X + Z1)

× exp

[
− (b+ b−1)(Z1 +X)− i

4π
(4Z2

1 + 3X2 + 8Z1X)

]
.

Using an identity of QDL (B.9), we first integrated out Z2 along a cycle E2X+Z1 . The

contour Γhyp
Weeks is a bundle over a 2d cycle γhyp

Weeks ⊂ C2
X,Z1

whose fiber is the E2X+Z1 :

E2X+Z1 −→ Γhyp
Weeks

↓ (3.28)

γhyp
Weeks

6We replace the integration variables (Z,X) in the state-integral model by (bZ, bX) to make the sym-

metry b↔ b−1 manifest in the integrand.
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One particular choice of converging contour γhyp
Weeks in the reduced two-dimensional inte-

gration is

γhyp
Weeks :=

{(
Z1,X

)
=
(
m1+iAWeeks(m1,m2),m2+iBWeeks(m1,m2)

)
: (m1,m2)∈R2

}
⊂C2 ,

where the continuous functions AWeeks(m1,m2) and BWeeks(m1,m2) have following asymp-

totic behavior:

{
AWeeks, BWeeks

}
=



{ (b+b−1)
8 , 0

}
if m1 ≥ Λ and m2 ≥ Λ{27(b+b−1)

20 ,−11(b+b−1)
20

}
if m1 ≥ Λ and m2 < −Λ{ (b+b−1)

8 ,min( |m1|
2|m2| , 1)(b+ b−1)

}
if m1 ≤ −Λ and m2 ≥ Λ{

2(b+ b−1),−1
2(b+ b−1)

}
if m1 ≤ −Λ and m2 ≤ −Λ

,

with a proper positive number Λ, say 5. For other asymptotic regions, the functions

(AWeeks, BWeeks) are given by a linear interpolation of the above. For example,

AWeeks(m1,m2) =
1

2Λ
(m1 + Λ)AWeeks(Λ,m2) +

1

2Λ
(Λ−m1)AWeeks(−Λ,m2) ,

when − Λ ≤ m1 ≤ Λ and m2 ≥ Λ . (3.29)

The function can be continuously extended to the remaining finite region [−Λ,Λ]2 ⊂ R2

without touching poles, see (B.8), in the integrand. Since the integrand is locally holomor-

phic, small deformations of the contour do not change the final integration. The final result

only depends on an homology class of the contour and the extension to the finite region is

unique as an element of the homology. Using the contour, we numerically compute

cT (T [Weeks]) = − 8

π2
Re

[
∂2
bZhyp

(
Weeks; ~ = 2πib2

)
Zhyp

(
Weeks; ~ = 2πib2

) ]
b=1

,

' 0.93 . (3.30)

Thurston manifold = (S3\52
1)(5,−1),(1,−2) = (m003)(1,−2). It is the second smallest

hyperbolic closed 3-manifold. After integrating Z2 using the identity (B.9), the state-

integral model reduced to

Zhyp
(
Thurston; ~ = 2πib2

)
=

∫
γhypThurston

dZ1dX

(2π)2
√

2

(
2 cosh

(
bX

2

)
cosh

(
X

2b

))
ψb(Z1)ψb(2X + Z1)

× exp

[
− (b+ b−1)(Z1 +X)− i

4π
(4Z2

1 + 7X2 + 8Z1X)

]
. (3.31)

The converging contour can be constructed in the same way as for M = Weeks case using

{
AThurston, BThurston

}
=



{ (b+b−1)
8 , 0

}
if m1 > Λ and m2 > Λ{ (b+b−1)

2 , 3(b+b−1)
4

}
if m1 > Λ and m2 < −Λ{

2(b+ b−1),−7
8(b+ b−1)

}
if m1 < −Λ and m2 > Λ{ (b+b−1)

4 , (b+ b−1)
}

if m1 < −Λ and m2 < −Λ

.

Using the contour, we numerically obtain

cT (T [Thurston]) ' 1.01 . (3.32)
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(5,-1)-Dehn filling on m003, (S3\52
1)(5,−1),(5,−1) = (m003)(5,−1). The reduced

state-integral model for this case is

Zhyp
(
m003−5; ~ = 2πib2

)
=

∫
γhypm003−5

dZ1dX

(2π)2

(
2 sin(bX) sin(bX/2)

)
ψb(Z1)ψb(2X + Z1)

× exp

[
− (b+ b−1)(Z1 +X)− i

4π

(
4Z2

1 − 2X2 + 8Z1X
)]
.

For the contour, we use

{
Am003−5 , Bm003−5

}
=



{ (b+b−1)
8 , 0

}
if m1 > Λ and m2 > Λ{

2(b+ b−1),−9(b+b−1)
10

}
if m1 > Λ and m2 < −Λ{ (b+b−1)

8 , (b+ b−1)
}

if m1 < −Λ and m2 > Λ{
2(b+ b−1),− (b+b−1)

2

}
if m1 < −Λ and m2 < −Λ

.

Using the contour, numerically we find

cT (T [(m003)(5,−1)]) ' 1.28 . (3.33)

Integral Dehn fillings on m003, (S3\52
1)(5,−1),(p,1) = (m003)(p,1) with p ≥ 5.

The reduced state-integral model is

Zhyp
(
m003p; ~ = 2πib2

)
=

∫
γhypm003p

dZ1dX

(2π)2

(
2 sinh(bX) sin(X/b)

)
ψb(Z1)ψb(2X + Z1)

× exp

[
− (b+ b−1)(Z1 +X)− i

4π

(
4Z2

1 + (8 + 2p)X2 + 8Z1X
)]
.

One particular choice of γhyp
m003p

(p ≥ 5) is

γhyp
m003p

:=

{{
Z1,X

}
=

{
m1+(b+b−1)i,m2−

2(b+b−1)i

3π
arctan(m2)

}
:m1,m2∈R

}
⊂C2 .
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A Ideal triangulation of S3\52
1 and m003

Ideal triangulations of 3-manifolds with cusped boundaries are available in a computer

software SnapPy [39].

Whitehead link complement (S3\52
1). The 3-manifold can be triangulated by 4 ideal

tetrahedrons (T = 4). Boundary meridian/longitude variables and indepedent internal

edges (C) are

2X1 = −Z ′′1 − Z ′′3 + Z4 , P1 =
Z1

2
− Z3 +

3Z4

2
− Z ′1

2
− Z ′4

2
− Z ′′1 − Z ′′3 −

Z ′′2
2
,

2X2 = Z1 − Z ′2 − Z3 , P2 = Z1 −
Z3

2
− Z4

2
+
Z ′3
2
− Z ′1

2
− Z ′2

2
− Z ′′4

2
,

C1 = 2Z ′1 + Z ′′1 + 2Z ′2 + Z ′′2 + Z3 + Z ′′4 − 2πi ,

C2 = Z ′′1 + Z ′′2 + 2Z ′′3 + Z3 + 2Z ′4 + Z ′′4 − 2πi . (A.1)

Using a linear relation

Zi + Z ′i + Z ′′i = iπ , (A.2)

the edge parameter Z ′i can be eliminated. After the elimination, generalized Neumann-

Zagier datum (A,B,C,D; f, f ′′, ν, νp) are determined by

A ·


Z1

Z2

Z3

Z4

+B ·


Z ′′1

Z ′′2

Z ′′3

Z ′′4

− iπν =


2X1

2X2

C1

C2

 , C ·


Z1

Z2

Z3

Z4

+D ·


Z ′′1

Z ′′2

Z ′′3

Z ′′4

− iπνp =


P1

P2

Γ1

Γ2


A · f +B · f ′′ = ν , C · f +D · f ′′ = νp .

Here {Γi}2i=1 are some linear combinations of ~Z and ~Z ′′ chosen to satisfy(
A B

C D

)
∈ Sp(8,Q) . (A.3)

For example, we can choose

Γ1 =
Z1

2
− Z3

4
− Z4

4
+
Z ′′1
4
− Z ′′2

2
− Z ′′3

4
− Z ′′4

4
,

Γ2 =
Z1

2
+
Z4

2
− 5Z3

8
+

3Z ′′1
8

+
Z ′′4
8
− 3Z ′′2

8
.

The final expression of the state-integral model is independent on the specific choice of Γ1

and Γ2.

Sister of figure-eight knot complement = (S3\52
1)(5,−1) = (m003). The 3-

manifold can be triangulated by 2 ideal tetrahedrons (T = 2). After eliminating (Z ′1, Z
′
2),

we have

2X = Z ′′1 + Z1 − 2Z2 − 3Z ′′2 + iπ , P = −Z2 − 2Z ′′2 + iπ .

C = Z ′′1 + 2Z1 − Z2 − 2Z ′′2 , Γ = Z ′′1 + Z1
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Generalized Neumann-Zagier datum (A,B,C,D; f, f ′′, ν, νp) are determined by

A ·

(
Z1

Z2

)
+B ·

(
Z ′′1

Z ′′2

)
− iπν =

(
2X

C

)
, C ·

(
Z1

Z2

)
+D ·

(
Z ′′1

Z ′′2

)
− iπνp =

(
P

Γ

)
A · f +B · f ′′ = ν , C · f +D · f ′′ = νp .

B Quantum dilogarithm

In this appendix we collect formulas for the noncompact quantum dilogarithm (QDL)

function [40]. The function Ψb(Z) is defined by

Ψb(Z) :=


∏∞
r=1

1−qre−Z
1−q̃−r+1e−Z̃

if |q| < 1∏∞
r=1

1−q̃re−Z̃
1−q−r+1e−Z

if |q| > 1
(B.1)

with

q := e2πib2 , q̃ := e2πib−2
, Z̃ :=

1

b2
Z . (B.2)

Integral representation:

log Ψb(Z) =

∫
R+i0+

e
itZ
πb

+t(b+b−1)

sinh(bt) sinh(b−1t)

dt

4t
, for 0 < Im[Z] < 2π(1 + b2) . (B.3)

Asymptotic expansion when ~ = 2πib2 → 0:

log Ψb(Z)
b2→0+−−−−−−→

∞∑
n=0

Bn~n−1

n!
Li2−n(e−Z) , for 0 < Im[Z] < π . (B.4)

Here Bn is the n-th Bernoulli number with B1 = 1/2. To have b ↔ b−1 symmetry, we

define

logψb(x) := log Ψb(bx) . (B.5)

At b = 1, the QDL simplified as

logψb=1(x) =
−(2π + ix) log(1− e−x) + iLi2(e−x)

2π
. (B.6)

As |x| → ∞,

logψb(x) ∼ −x
2

4πi
+

1

2
(b+ b−1)x for Re[x]<0 ,

∼ 0 for Re[x]>0 . (B.7)

Poles of the ψb(Z) are located on

Z≤0(2πib) + Z≤0(2πib−1) . (B.8)
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Fourier transformation:

e
iπ(b2+3+b−2)

12

2π

∫
Ey
dxψb(x)e

x2+2xy−2πix(b+b−1)
4πi = ψb(y) for Im(y) > 0 ,

Ey := {x+ if(x) : x ∈ R} ⊂ where f is a function satisfying

f →

{
−Im(y) + (b+ b−1)π − ε1 if x→∞
ε2 if x < Λ

with small ε1, ε2 > 0 and positive Λ. (B.9)

C Quantum Dehn filling

Classical phase space P (∂M) and its Lagrangian subvariety L(M) for the SL(2) CS theory

are

P (∂M) = {SL(2)-flat connections on ∂M = (T2)|K|−S} =
(
P (T2)

)|K|−S
with P (T2) = (C∗)2/Z2 = {(x, p) ∈ (C∗)2 : (x, p) ∼ (1/x, 1/p)} ,

L(M) = {SL(2)-flat connections on M} . (C.1)

Here x and p parametrize the SL(2) gauge holonomy around each meridian and longitude

respectively:

Pe
∮
merdianA =

(
x 1

0 1/x

)
, Pe

∮
longitudeA =

(
p 1

0 1/p

)
. (C.2)

Quantizing them, we have

P (∂M)  H(∂M) =
(
H(T2)

)|K|−S
(a Hilbert-space) ,

L(M)  
∣∣Z(M)

〉
∈ H(∂M) (a state) . (C.3)

Quantization of the phase space P (T2) with k = 1. Phase space P(T2) for SL(2)k,σ
CS theory with k = 1 and σ = 1−b2

1+b2
on Rt × T2 is give in (C.1) with following symplectic

form (X := log x, P := log p):

Ω =
1

π(1 + b2)
dP ∧ dX +

1

π(1 + b−2)
dP ∧ dX . (C.4)

Quantization of the phase space give an infinite dimensional Hilbert-space H(T2) whose

position basis are

Position bais of H(T2) =
{
|X〉 : X ∈ C , |X〉 ∼= | −X〉

}
. (C.5)

The quantum position/momentum operators acts on the Hilbert-space as

〈X|x̂ = 〈X|eX , 〈X|ˆ̄x = 〈X|eX/b2 , 〈X|p̂ = 〈X + iπb2| , 〈X| ˆ̄p = 〈X + iπ| . (C.6)

Completeness relation in H(T2) is

1

4πb

∫
dµ
∣∣X〉〈X∣∣ = I . (C.7)
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Quantization of Dehn filling. For a 3-manifold closed M obtained by gluing two 3-

manifolds M1 and M2 along a common T2 boundary with a ϕ ∈ SL(2,Z) twist, the SL(2)

CS ptn is given by

ZSI(M = M1 ∪ϕM2; ~) =
〈
Z(M1)

∣∣ϕ̂∣∣Z(M2)
〉
,∣∣Z(Mi)

〉
∈ H(T2) , i = 1, 2 ,

ϕ̂ : H(T2)→ H(T2) . (C.8)

For solid-torus D2 × S1, the wave-function is simply given by〈
X
∣∣Z(D2 × S1)

〉
= 4 sinh(X) sinh(X/b2) . (C.9)

Note that solid-torus can be thought as unknot complement on S3, D2 × S1 = S3\01,

and we use the canonical polarization where the position (momentum) is an eigenvalue

homonomy around the meridian (longitude). The wave-function satisfy a pair of difference

equations (q := e2πib2 , q̄ := e2πib−2
):

ÂK=01(x̂2, p̂, q1/2)
∣∣Z(D2 × S1)

〉
= ÂK=01(ˆ̄x2, ˆ̄p, q̄1/2)

∣∣Z(D2 × S1)
〉

= 0 ,

where Â01(x̂2, p̂, q1/2) = p̂2 + 1− q1/2p̂− q−1/2p̂ . (C.10)

Regardless of whether the gauge group is SU(2) or its complexification SL(2), the difference

operator ÂK annihilating the knot-complement wave-function |Z(S3\K)〉 is the same and

called ‘quantum A-polynomial’ of knot K [41]. For a closed 3-manifold (S3\K)p/q obtained

by performing Dehn surgery with a slope p/q on S3 along a knot K,8 the CS wave function

can be obtained as follows:

(S3\K)p/q = (D2 × S1) ∪ϕp/q (S3\K) , ϕp/q :=

(
∗ ∗
p q

)
∈ SL(2,Z) ,

ZSI

(
(S3\K)p/q; ~

)
=
〈
Z(D2 × S1)

∣∣ϕ̂p/q∣∣Z(S3\K)
〉
, ϕ̂p/q : H(T2)→ H(T2) . (C.11)

Two generators of SL(2,Z) are

ϕS =

(
0 −1

1 0

)
, ϕT =

(
1 0

1 1

)
. (C.12)

Quantization of these operators give [17]

ϕ̂S , ϕ̂T : H(T2)→ H(T2) ,〈
X
∣∣ϕ̂S∣∣ψ〉 =

1√
2πb

∫
dY e−

XY
πib2
〈
Y
∣∣ψ〉 ,〈

X
∣∣ϕ̂T ∣∣ψ〉 = e

1
2πib2

X2〈
X
∣∣ψ〉 , for any

∣∣ψ〉 ∈ H(T2) . (C.13)

8We call a link K with one component (|K| = 1) a ‘knot’.
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For general element ϕ =

(
r s

p q

)
∈ SL(2,Z),

〈
X
∣∣ϕ̂∣∣ψ〉 =

1√
2sπb

∫
dY e

qX2

2πib2s
+ XY
πib2s

+ rY 2

2πib2s

〈
Y
∣∣ψ〉 , for s 6= 0 ,

〈
X
∣∣ϕ̂∣∣ψ〉 = e

pX2

2πib2r

〈
X
∣∣ψ〉 , for s = 0 . (C.14)

Inserting the completeness relation (C.7), we have

ZSI

(
(S3\K)p/q;~

)
=
〈
Z(D2×S1)

∣∣ϕ̂∣∣Z(S3\K)
〉

=
1

4πb

∫
dX
〈
Z(D2×S1)

∣∣X〉〈X∣∣ϕ̂∣∣Z(S3\K)
〉

=
1

π2b2
√

2s

∫
dXdY sinh(X)sinh(X/b2)e

qX2

2πib2s
+ XY
πib2s

+ rY 2

2πib2s

〈
Y
∣∣Z(S3\K)

〉
=

∫
∆b(Y ;s,q)dY

(2πq~)1/2
exp

(
p

~q
Y 2

)
ZSI(S

3\K;Y ;~). (C.15)

Here ∆b is defined in eq. (3.11). For given (p, q), the s is determined modulo qZ and the

final expression ZSI

(
(S3\K)p/q

)
does not depend on the choice of (r, s) modulo the intrinsic

ambiguity (3.13). This is compatible with the fact that the resulting 3-manifold does not

depends on (r, s) but only on (p, q).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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