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1 Introduction and conclusion

Quantum field theory (QFT) has become the dominant language in theoretical physics
since the success of quantum electrodynamics. The usage of QFT is not restrict to particle
physics but ubiquitous: statistical, condensed matter system and even quantum gravity
using holography. In general, QFTs are in the form of

QFT : (a CFT with flavor symmetry G)+(deformation)+(gauging H C G).

At infrared (IR) limit, a QFT flows to another conformal field theory (CFT). So, the
general QFTs can be thought as RG flows between CFTs and thus understanding general
CF'Ts is the first step toward understanding QFTs.

“ Classify consistent CFTs and solve them ”

One rigorous way of defining a CF'T is specifying CFT data: spectrum of local operators
{Or} and their operator product expansion (OPE) coefficients {A7;x }. By solving a CFT,
we mean determining these CF'T data.

In this work, we study 3d N = 2 unitary superconformal field theories (SCFTs) with-
out any flavor symmetry and with small central charges. 3d supersymmetry has not been
observed experimentally yet. But there is a concrete proposal for condensed matter sys-
tem [1, 2] which exhibits an emergent supersymmetry and described by a 3d SCFT called
critical Wess-Zumino (¢WZ) model. The model is known to be the simplest 3d N = 2
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Figure 1. Space of closed 3-manifolds M with vol(M) < vol((5%\5%)(5 1)) ~ 2.02988. vol(M) de-
notes a topological invariant of 3-manifold M called hyperbolic volume, the volume measured in the
unique hyperbolic metric (R, = —2g,.,,). For each non-zero hyperbolic volume plotted in the graph,
there are only finitely many (mostly unique) CH3s. The spectrum is discrete and infinite and has a
(non-zero) lower bound 0.9427 which is saturated by the Weeks manifold ((S®\5%)5,—1)(5,—2)) [4].

SCFT with smallest central charge cr/ch“ = o (16 — %) ~ 0.7268 [3] where ¢}/
is the central charge for a free chiral theory. Classifying such simple unitary CFTs is an
interesting open question. In two dimensional spacetime, there is a complete classification
when ¢ < 1 called 2d minimal models. Here, we propose 3d N = 2 ‘minimal’ SCFTs
based on wrapped Mb-brane systems.

An efficient way of constructing 3d /' = 2 SCFTs is using wrapped M5-branes system

in M-theory:
11d space-time: RY2 x T*M x R?

U (1.1)

N M5-branes: R x M.

Here T*M denotes the cotangent bundle of M. The IR fixed point of the wrapped M5-
branes’ world-volume theory defines a 3d N/ = 2 SCFT. It is labelled by an orientable closed
hyperbolic 3-manifold (CH3) M and an integer N > 2. We denote the SCFT as T [M].!
The space of CH3 with small hyperbolic volume is depicted in figure 1. For nomenclature
of 3-manifolds, we use a Dehn surgery description (3.4) on S® along a White-head link in
figure 3. One natural question is

“ Solve T'[M] for closed hyperbolic 3-manifolds M ”. (1.2)

As a first step we develop a systematic algorithm for computing the central charge of
wrapped Mb5-brane CFTs. The algorithm can be summarized as:

(a surgery description (3.4) of M and an ideal triangulation (3.5)),
— (State-integral model in eq. (3.9) and (3.11)),
= (Z[T[M] on S;] using 3d/3d relation in eq. (2.8)),
== (cp(T[M]) using the relation in eq. (3.2)) .
In the procedure, we develop a state-integral for SL(2) Chern-Simons theory on closed
hyperbolic 3-manifolds. We numerically evaluate the central charge for three examples

listed in table 1. We have not done careful error analysis but the error seems to be
within 2~3 percents. From the three examples, we see that the central charge is well-

For N = 2 case, we skip the subscript “N”.



Weeks: (S*\53)(5,_1)(5,—2) | Thurston: (5°\5%) 5 _1)(1,-2) | (S*\53)(5,-1)(5,—1)
cr(T[M)) 0.92 1.01 1.28
vol(M) 0.9427 0.9814 1.2637

Table 1. Central charge of T[M] and hyperbolic volume for three CH3s.

approximated by the hyperbolic volume within a few percent error. We do not have a
quantitative understanding for the observation but their positive correlation is somewhat
expected. The larger hyperbolic volume means the more topological complexity of the
3-manifold and so the corresponding 3d SCFT is more complicated and has bigger central
charge. When the N, number of Mb-brane, is very large we can compute the central
charge exactly thanks to holography and we can confirm the linear correlation, see eq. (2.7)
and (3.2). With this observation on top of Weeks manifold having smallest non-zero
hyperbolic volume, we expect that the T[Weeks| to be the simplest non-trivial wrapped
Mb5-brane SCFT and there are infinitely many discrete SCFTs with small central charge
(< 2). Let us comment a possible caveat of the computation. One basic assumption for the
central charge computation is that there is no enhanced abelian symmetries at low energy.
If these additional enhanced symmetry appears, we need to consider the mixing between
UV U(1)g with enhanced U(1)s which gives the correct IR superconformal R-charge. The
mixing can be determined by the F-maximization principal and we need to compute the
central charge and superconformal index taking into account of the mixing.

This work put the first step toward the challenging problem (1.2) and there are several
interesting directions worth exploring. We hope to report progresses on these in near future.

e Justify the physical and technical assumption (2.18) used in the central charge com-
putation. We give some circumstantial evidences for them.

e Prove topological invariance of the state-integral model developed in section 3.1. The
state-integral model is based on a Dehn surgery representation (3.4) of a 3-manifold.
The representation is not unique and we need to show the independence on the choice.
We check it perturbatively up to two-loops for several cases.

e In the central charge computation, we assumed no emergent abelian symmetry in the
low energy limit. It would be interesting to justify or falsify the assumption.

The paper is organized as follows. In section 2, we introduce wrapped M5-brane SCFT's
and their basic properties and a basic dictionary of 3d/3d correspondence. In section 3,
a systematic algorithm for computing the central charge is given. It is based on a state-
integral for a complex CS theory developed in the section.

2  Wrapped M5-brane SCFT and 3d/3d correspondence

We introduce a 3d SCFT T'[M] labelled by a closed 3-manifold M and review basic aspects
(holography and 3d/3d correspondence) of the SCFT. For recent studies on the topic, refer
to [5-20] (see also recent review [21]).



Ty [M] Tn[M]
Global symmetry U(1l)r x U(1), U(1)iR
3d/3d correspondence | “Refined” SL(N) CS theory SL(N) CS theory
Large N gravity dual Unknown AdSy x M x S* (for CH3)

Table 2. Comparison between T [M] and Ty [M].

2.1 3d N =2 SCFT Tn[M]

A 3d SCFT Ty[M] is defined as an infrared (IR) fixed point of twisted compactification of
6d Ay_1 (2,0) theory on a closed 3-manifold M:

6d Ay_1 (2,0) theory on RY? x M with partial topological twisting along M
— R, 34 SCFT Tw[M]. (2.1)

For the partial twisting, we use the usual SO(3) subgroup of SO(5) R-symmetry of the 6d
theory. The twisting generically preserves a quarter of supercharges and the resulting 3d
theory has N/ = 2 superconformal symmetry. The metric structure on the 3-manifold is
irrelevant in the IR and the 3d SCFT depends only on the topology of the 3-manifold. From
M-theoretical perspective, these theories are realized as low-energy world-volume theory of
wrapped N Mb5-branes in (1.1). As pointed out in [16], the ‘full’ IR CFT has an additional
abelian flavor symmetry called U(1); and will be denoted as T{![M]. The theory Ty [M] of
our interest is obtained as IR fixed point of the TH[M] through a renormalization group
(RG) flow triggered by a Higgsing/deformation procedure

(TN"[M] + Higgsing/deformation) ~» Tyn[M]. (2:2)

General bottom-up algorithm of constructing theory T [M] is introduced in [5] while there
are no such a general construction of T [M]. Not all 3-manifolds M give non-trivial
interacting CFTs. Our basic assumptions are

a) For hyperbolic 3-manifold M, the IR fixed theory Tn[M] is non-trivial.

b) For non-hyperbolic 3-manifold M with SO(3) Riemmanian holonomy (for example,
M = S3), the corresponding Tiy[M] seems to be more or less trivial theories (theories

only with topological degree of freedom).?

¢) M has reduced Riemannina holonomy group (thus non-hyperbolic), i.e, M = ¥ x
S with a Riemann surface ¥. In the case, the resulting 3d SCFT has additional
structure, enhanced N/ = 4 SUSY or additional flavor symmetry.

Simple evidence for a) is

N(N? —1)
6

2The theory TH"[M] might not be topological even this case. For example, T5"[S®/Z,] is not topolog-
ical [20, 22, 23].

lim 21b? Fy(Tn[M]) = vol(M) . (2.3)




Here F; denotes the free-energy on a squashed 3-sphere S;:’ [24],

Fy(a SCFT) := (free-energy of the SCFT on S})
:= —Re(log Z[the SCFT on S}]). (2.4)

Metrically, the curved background can be realized as
S = {22+ b2 w|* =1 : (z,w) € C%}, with real b. (2.5)

The geometry has an exact symmetry exchanging b <+ b~! and so does the free-energy
Fp. The relation in eq. (2.3) can be explained using a 3d/3d relation and perturbative
expansion of SL(IV) CS theory as we will see in the next section. Since we are interested
in a non-trivial 3d A" = 2 SCFT with small central charge and no extra structures (flavor
symmetry or enhacencd SUSY), we concentrate on N = 2 and the case a).

Holographic dual. Holographic dual to the RG flow (2.1) across dimension was con-
structed in [25]

Holographic RG

( AdS7 x S* solution ) > ( Pernici-Sezgin AdS, solution in )

and M-theory on the AdS, solution is proposed as gravity dual of T [M]. The supergravity
solution is

AdSy x M x S*, (2.6)

with a warped product metric and the S* non-trivially fibred over the M factor. The
supergravity solution was found only for closed hyperbolic M. From the holographic com-
putation using supergravity approximation, it has been predicted that [18]

(b+b1)2

——vol(M). (2.7)

Jim %]—"b(TN (M) =

N—oo

2.2 3d/3d relations

3d/3d relation relates the squashed 3-sphere ptn of Tx[M] to ptn of a SL(NN) CS theory
on M.

Z[Tn[M] on S| = Z[SL(N)k,» CS theory on M]|

where k and o are two coupling constants of the complex CS theory. k € Z is a quantized
CS level and the o can be either real or purely imaginary. In the 3d/3d relation, they
are [15, 17]

1—b?

A, A denote a pair of SL(N) gauge fields on M and the CS functional is defined as
2
CS[A] ::/ Tr(A/\d.A—i— 3AAA/\A). (2.10)
M



Perturbative ptn Z}?;gert and resurgence. When b?> — 01, the Sg’—ptn has following

asymptotic expansion [7, §]

Z[Tn[M] on 7] —L2C 0 57 00 28 pen (M 1) (2.11)

Here « labels SL(N) flat connections on M and n,, are integer coefficients and Z7,; denotes

the formal perturbative expansion around the flat-connection A .
1
Z N pert (M h) 1= exp <hSS‘(M; N)+ S¢(M;N) +...+ " 1SY(M;N) +. > . (212)
Through out the paper, we define
h = 27ib? € iR, . (2.13)

S& is the n-loop SL(N) CS invariant on M. The classical part is
1
S¢ = —§CS[.A°‘] . (2.14)

For hyperbolic 3-manifolds, there are two special flat connections, A™P and .Ath, which
can be constructed using the unique (complete) hyperbolic structure on M:

A};\?’p = pn(w +ie), .A}]i?p = pn(w —ie), (2.15)

where e and w are drei-bein and spin connection for the unique hyperbolic structure re-
spectively and py is an embedding of SL(2) into SL(NV) using the N-dimensional repre-
sentation of SL(2) ~ SU(2)c. Einstein equation with negative cosmology constant become
flat connection equation through the above relation. Value of CS functional for these flat
connections are related to the hyperbolic volume of 3-manifold:

Tm (CS[AYP)) = —%N(Z\ﬂ — 1) vol(M), Im(CS[A}]{}Tp]) = %N(NZ — 1) vol(M). (2.16)

These flat connections have most exponentially growing and decaying classical part eno

when b € R:

Im(CS[AI;\?Ip]) < Im(CS[A%]) < Im(CS[A};\?p]) , for any other flat-connections A%;.
(2.17)
From the compatibility with the holographic prediction (2.7) and an argument using a
state-integral model,? it has been conjectured that [18, 26]

neg # 0 only for & = hyp. (2.18)

3The state-integral model can be interpreted as an integral from localization for a SCFT, which can be
identified as T[M] [9], if one choose a proper converging integration contour as a cycle slightly above the
real slice. For some knot complements, it is checked that the contour is homologically equivalent to the
steepest descendant contour (Lefschetz thimble) associated to the saddle point in (3.21) which corresponds
to the flat connection A™P,



It implies that the Sg’—ptn is exponentially decaying at small b which seems to be an
universal property of unitary non-topological 3d SCFTs. Actually, the choice (2.18) with
Ny = £1 maximizes the free-energy F; at small b, see eq. (2.17). We assume that this is
the correct choice for the IR SCFT appearing in the 3d/3d relation. The above conjecture
can be rephrased in the language of resurgence. For that, first reorganize the perturbative

expansion in the following ways:

1
Zhyp (M;h) = exp <

Nipert hS(};Tp(M; N) + S?%(M; N)> X <1 + Z agyip(M; N)(b2)n> ’

n=1

then the conjecture in (2.18) can be stated as:
3 L givp hyp T dce i g
Z[Tn[M] on Sp] = exp ﬁso (M;N)+ SPPP(M;N) | x {1+ i d¢e 2 BYP(C) ),

X, ahP(M; N)

hyp —
where By (¢) := 221 (1)1 ¢t (2.19)
n—
Here we assume that the series {aﬁyip o, is Borel summable which is reasonable since the

saddle point Abvp gives the smallest classical contribution and thus other saddle points can
not appear as instanton trans-series. On the other hand, it was claimed in [27] that the
Borel resummation Z]}\l,yp gives the vortex ptn (ptn on R? x, S1) instead of Sj-ptn. There
are two evidences supporting our proposal over their claim: a) At large N and the leading
order (N3) in 1/N expansion, the perturbative series {S2P(NN)} becomes a finite series ter-
minating at two-loops and the answer nicely matches with the holographic prediction (2.7)
of S3-ptn [18], b) For N = 2 and M = S3\4; (figure-eight knot complement), the Borel
resummation is performed explicitly in [27]*

ZH(53\41; h = 2mib?) |,_, ~ 0.37953, (2.20)

which is a good approximation for the correct Sp-ptn of Tn—2[S*\41] computed using a
state-integral model. The exact value at b =1 is [2§]

Z[T[S*\41] on Sp_4] = 1 <exp (WM) — exp (—VOI(S?W> ) ~ 0.379568 .

V3 27 27
(2.21)
Here the hyperbolic volume of $3\4; is
vol($3\41) = 2Im|[Liy(e"™/?)] ~ 2.02988.. (2.22)

3 Central charge of T[M]

One basic quantity characterizing a SCFT is central charge ¢ which is defined using two
point function of stress-energy tensor:

T(z)T(0) ~ % % (tensor structure) . (3.1)

4There seems to be a mistake in the sign of classical part in the eq. (6.11) in [27]. After correcting the

e vol(s3\41)
mistake, 27 (5%\dy; h = 27ib?)|, | = e 25 x (eq. (6.23) in [27]).



Figure 2. An ideal tetrahedron A, tetrahedron with truncated vertices. Hyperbolic structures
of A are parameterized by edge parameters (z := €%,z = eZ/,z” = eZ”) satisfying relations
2= lflz and z” = 1 —z~!. These parameters assigned to each pair of boundary edges, as shown in
the figure. Geometrically, the logarithm parameters (Z, Z’, Z") measure complex dihedral angles
between two faces meeting at the edges. Imaginary parts of these logarithm parameters take values

between 0 and 7.

For 3d N = 2 SCFTs, the central charge is related to the squashed 3-sphere free energy
Fp (2.4) as follows [29]:

8 0°F,
= —=— . 3.2
T 22 o bl (32)
We use following normalization
cr(a free chiral theory) = 1. (3.3)

Combining the 3d/3d correspondence (2.8) and the relation (3.2), we will compute the
central charge of T[M].

3.1 A state-integral model for SL(2)r=1 CS theory

We review and generalize a state-integral for SL(2) CS theory on hyperbolic 3-manifolds
which is believed to be a finite dimensional integral representation of the path integral in
the complex CS theory. The generalized state-integral model is applicable to any closed hy-
perbolic 3-manifolds which was not possible for state-integrals [26, 30, 31] in the literature.

Dehn surgery and ideal triangulation. We use a Dehn surgery description of 3-
manifold M:

M = (S°\K)

S
(s2\K) [J (0% s%] /o~ (3.4)

a=1

{(Par,9cx

and a sufficiently good® ideal triangulation of the link complement S\ K:

T
SHK = ( U Ai>/ ~ . (3.5)
i=1

Here K is a link on S® of |K| components. A link complement S*\K is a 3-manifold
obtained by removing the tubular neighborhood (topologically |K| copies of solid-tori) of

5We assume a positive angle structure of triangulation [17].



a link K from a 3-sphere S3. The manifold has |K| torus boundaries and 1-cycles around
the link are called ‘meridians’ and 1-cycles along the link are ‘longitudes’. The 3-manifold
M in (3.4) is obtained by gluing S solid-tori back to the link complement with following
identification:

Pa(a-th meridian) + ¢, (a-th longitude)
~ (contractable cycle in a-th solid-torus) . (3.6)

The procedure of gluing solid-torus is called (pa,gqo)-Dehn filling. (pa,qq) is a pair of
coprime numbers and the ratio p,/q, is called ‘slopes’. In short, the 3-manifold is obtained
by gluing T ideal tetrahedrons and S solid-tori:

T : f of ideal tetrahedrons, S : f of solid-tori. (3.7)

The resulting 3-manifold M has (|K|—S) torus boundaries and when S = |K]| it is a closed
3-manifold. Any closed 3-manifold M can be obtained by a Dehn surgery on S3 [32, 33].

State-integral model. State-integrals give a finite-integral representation of the CS ptn
by properly ‘quantizing’ the ideal triangulation (3.5) and the Dehn filling (3.6). There are
several state-integral models [26, 30, 34], which are believed to be equivalent, based on
an ideal triangulation of M. We use the one developed by Dimofte and incorporate Dehn
filling into the state-integral model to cover more general class of 3-manifolds such as
closed hyperbolic 3-manifolds. One systematic way of specifying the gluing rule of an ideal
triangulation is using (generalized) Neunmann-Zagier (NZ) datum (A, B,C, D; f, f",v,v,),
refer to [35] for the definition, where A, B,C, D are T' x T' matrices forming Sp(27, Q)

E ( 72)7 5 ? ( )

and (f, f”,v,vp) are vectors of length T'. From these datum, the state-integral (SI) for the
link complement is given by [35]

Zgi(S\K; X1, ..., X|k|; )

T
1 Uy(Z;)dZ; 1> .= 1 . . .
=1

+ o (im+h/2)%f - B v — Z- B~ ((im + h/2)v + 2u)>} : (3.9)

DN =

Here we define
uw=(X1,...,Xg,0,...,0). (3.10)

The quantum dilogarithm function (QDL) W, is a wave-function on each tetrahedron. See
appendix B for the definition and basic properties of the special function. Quantizing the



Dehn fillings in (3.6), we finally have
Zst(M;X1,...,. X k|—s3h)

Ap(X a+|K|— sasay(ku)anHK‘ S 1 l pO‘th-i-IK\—s 5
/H (27 qah)}/2 eXp<hZ%>ZSI(S \K;X1,..,. Xk h),

a=1

ZTFS X X* ) _ X X )
with Ap(X;s,q):=e 2 7 (B4 2)< b2q 1nh( qm8>—e b2qsinh( ZZWS>>- (3.11)

Here s, is defined to be an integer satisfying sqapo € ¢aZ — 1. See appendix C for the

derivation. The CS wave-function has following naive path-integral interpretation,

Zgi(M; X1, ..., X|g|—s; h = 2mib?)
_ / ([d“‘”X exp ( (’“; %) csiA] + Z(kg_ ")CS[A]> . where
gauge) s T (2.9)
[dA]x : Path-integral over SL(2) gauge field on M subject to

e . § A €XI 1
boundary conditions fixing Pe/7-th merdian " = . (3.12)
0 e X1
The SL(2) CS wave-function is defined up to a factor [35].
~ + 1 ﬁ + o h B,y E€EZ (3.13)
exp | oo 517 a, 8,7y . .

The factor is a purely phase factor for real b and irrelevant in free-energy JF;, computation.
In the SCFT side of 3d/3d correspondence, (some parts of) the ambiguities comes from
local counter-terms in a supergravity on the curved (S;) background [36].

3.1.1 Perturbative expansion

Using the state-integral model above, we can compute the perturbative invariants
{SIP (M)}, (2.12). The state-integral model in (3.9) and (3.11) is of the form:

ZSI(M§X17-~-7X\K|7S;FL) (314)
dX k| s41 - dX|KdZ1 ... dZp
:/ L = exp <W(Z1,...,ZT,Xl,...,X|K|;h)>.
In the limit when % — 0, using eq. (B.4)
Lo 1 Lo Lo Lo
W(Z,X;h) ~ ﬁWO(Z,X) +Wi(Z, X))+ W (Z, W) + ... . (3.15)
Saddle point equations are
A% .
° 07, =0, fori=1,...,T
= A-Z+B-Z"—inv=2u where Z!' :=log(1 — e~ %),
° ﬂ:(), fora=1,...,8
IXay|K|-s
. Xot|K|-S ‘
= PaXat|K|-5 T GaPot|k|—s = —sign| Re E— i (3.16)

~10 -



Here u is defined in (3.10) and we define

Poig|-s = (C-Z+D-Z" —imv) (3.17)

a+|K|-8 "

Interpreting the variables Z and Z” as logarithmic edge parameters of ideal tetrahedrons,
these are nothing but gluing equations for the 3-manifold studied in [37]. Solutions to the
gluing solution give SL(2) flat connections on M. Refer to [11] for explicit construction of
holonomy representation of a flat connection from a solution to the gluing equations. In the
map, the solution corresponding to the flat connection ADPYP ig characterized by following

conditions:
0<Im[Z] <, foralli=1,...,T (hyperbolic)
Xi=...=Xg-s =0 (complete) (3.18)

Under the first condition, logarithmic edge parameter Z; determines a hyperbolic structure
on A;, see figure 2. The gluing equations are conditions for the hyperbolic structures
to be glued smoothly and give a hyperbolic structure on the 3-manifold. For complete
hyperbolic structure, we additionally need the second conditions requring the meridian
holonomies in eq. (3.12) are parabolic. Near each T2?-boundary, the complete hyperbolic
metric on M are locally

1
ds® = ;(d;z? + ds3s) . (3.19)

Here z is the (inward) direction transverse to the boundary T?. Using the metric, one can
check that the flat connection AWP in (2.15) have parabolic meridian holonomies. For the
case when M is hyperbolic and we use an idea triangulation with positive angle structure,
there is an unique solution for eq. (3.16) and (3.18) modulo the Weyl-symmetries (Zz)®.

(ZQ)S : XaJr‘K‘,S — iXaJrlKFS for a = 1,..., S. (320)
The unique saddle point corresponds to the flat connection AMP and we denote

(Xilzp\f(\—s’ Z@h@) := A solution satisfying eq. (3.16) and (3.18). (3.21)

For non-hyperbolic M, there’s no saddle point satisfying these conditions. The formal per-
turbative expansion of the state-integral around the saddle point defines the perturbative
ptn Z2P (M h) (2.12):

pert
Zg(M; h) = 29 x ZE;SI(M;X' = 0; h), (3.22)

=29 x [Perturbative expansion of Zgp (M; X = 6; h) around (3.21)} .

The overall factor 2° comes from the fact that there are that many saddle points related
by Weyl-symmetries and they all give same perturbative expansion. The state-integral is
finite dimensional integration and thus the formal expansion coefficients {S,liy P(M)}oe, are
well-defined without any issue of regularization. Refer to [38] for perturbative expansion
of the state-integral model in (3.9) using Feynman diagram.
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Figure 3. White-head link (52), the 1st one among links with 2 components and 5 crossings.

Examples (S3\52)(,,). White-head link (52) is one of simplest hyperbolic link with
two components. The link complement can be decomposed into 4 ideal tetrahedrons (see
appendix A):

4
S3\52 = (U AZ)/ ~ . (3.23)
=1

Using the ideal triangulation, the corresponding state-integral is given by

4 .
1 \I/b(ZZ)dZZ 2X, (2Z1 + 2724 — h— 227‘(‘) — 27374
Zs1(S3 52;X,X;h:/ ex [
s(SMeh X, Xaih) = 75 [ 1] =750 e o
n 2X9(—2Zy — 274+ h+ 2im) + (Z1 + Zo — Z3)(Z1 + Zo — Z3 — h — 2im) (3 24)
2h T

Applying the quantum Dehn filling formula (3.11) to the above integral, we obtain the
state-integral for M = (53\5%)(1)#). For example, when (p, q) = (5,—1)

Zs1((S%\53)(5,-1); X1 h)
/ 2 sinh(X5) sinh(X5/b%)d X2 < 5X32
= p —
2mh h

)2351(53\5%; X1, X2 h). (3.25)

In the case, the resulting 3-manifold is turned out to be a 3-manifold called ‘sister of figure-
eight knot-complement’. In SnapPy’s census [39], the 3-manifold is denoted as m003 and
allows an ideal triangulation using two tetrahedrons (see appendix A):

2
m003 = (S*\5%)(5_1) = (U Ai>/ ~ . (3.26)
=1

From the ideal triangulation, we have an alternative expression for the state-integral model

2 7 )
Wy (Z;)dZ; X1(8Z1+425 —2h — 4 8 X2
Zs1(m003; X1;h) = / v(Z;) exp [ 1(82; 2 im) + 8X;

paie \V2rh 2h
27(Zy — h — 2i Zo(Zy — b — 2i 472
RIS m)+2;( 2 im) +42; (3.27)
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One can check that both expressions, eq. (3.25) and eq. (3.27), give same perturbative
invariants Sp¥P (M) modulo (3.13):

iy hyp 2 1-3
S(})lyp(m003) _ S(})Iyp((sg\5%)(5,fl)) = % + 2Ly ( 2\/>> :

S (m003) = 5777 ((5%\59) 5,-1)) = —5 log(=3 — V/3),

SEP(m003) = SBP ((S%\53)(5._1)) = = (9 + 35V/3i).

864

We did similar consistency checks for other examples, (S*\5});3_o) =
m007, (S*\53)(5,—2) = m006 and (S*\5})2,_3 = m053. The matches are delicate
and strongly suggests that the state-integral model gives at least the correct perturbative
invariants. We leave the general proof showing topological invariance of the perturbative
series as future work.

3.2 Numerical evaluation for some M = (S%\5%)(5 _1),(p,q)

Here we give concrete examples of central charge computation for closed hyperbolic 3-
manifolds M. The most technically non-trivial step is finding a converging contour of the
state-integral model.

Weeks manifold = (S3\52)(5 _1)(5,—2) = (mM003)5 _2). Weeks manifold is the
smallest volume hyperbolic 3-manifold. The state-integral is given by® (sloppy in the
overall factor of the form (3.13))

ZMP(Weeks; h = 2mib?)

_ /thp ‘%( 2 cosh (?) cosh (;i) )wb(zl)zpb(ZQ)

Weeks
X e — 5 (b+b 1) (221 + Zo+2X)— 1= (423 + Z3+4Z2 X +3X 24221 Z2+87Z1 X)
)

~ /7 - (‘Z;f)\/; <2 cosh (bf ) cosh (;;) )wb(zl)wb(w( + ;)

Weeks

X exp [— (b+b1) (2, +X) - ﬁ(4212 +3X2 + SZlX)] .

Using an identity of QDL (B.9), we first integrated out Zy along a cycle Eoxz . The
contour F ek is a bundle over a 2d cycle ’yweeks - (C%Q 7, Whose fiber is the Eox42z,:

E — T
2X+2, Weeks

! (3.28)

hyp
Y Weeks

SWe replace the integration variables (Z, X) in the state-integral model by (bZ,bX) to make the sym-
metry b <> b~! manifest in the integrand.
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One particular choice of converging contour ’yW ks I the reduced two-dimensional inte-
gration is

W%Seks ={(21,X) = (m1+iA weeks(m1,m2),m2+iBweens(m1,m2)) : (m1,mz) ER*} CC?,

where the continuous functions A yeeks(m1, m2) and Byyeeks(m1, ma) have following asymp-
totic behavior:

{wvo} ifmy>A and mp>A
27(b+b"1) 11(b+b 1y . B
{AWeekS7BWe€kS} = { b 1;2—01 ’ } ifmy = A and  my < —A 7
{( Jr8 )vmm(gmz‘p Db+ bil)} ifm; <—A and mg>A
{2(b+b_1)7_%(b+b_1)} ifmy <—A and mo < —-A

with a proper positive number A, say 5. For other asymptotic regions, the functions
(AWeeks, Bweeks) are given by a linear interpolation of the above. For example,

o (M 4+ A) Aweers(A, m2) + 27\(/\ m1) Aweeks(—A, m2),
when — A <mp <A and mg > A. (3.29)

AWeeks(mla m2)

The function can be continuously extended to the remaining finite region [—A, A]? C R?
without touching poles, see (B.8), in the integrand. Since the integrand is locally holomor-
phic, small deformations of the contour do not change the final integration. The final result
only depends on an homology class of the contour and the extension to the finite region is
unique as an element of the homology. Using the contour, we numerically compute
2 zh B — 92
er(T[Weeks]) = —%Re 0; Z:p(Weeks, h= 27?'21) ) 7
T ZhYP(Weeks; h= 2mb2) b=1

~0.93. (3.30)

Thurston manifold = (S3\5%)(5,_1),(1,—2) = (M003)1,_2). It is the second smallest
hyperbolic closed 3-manifold. After integrating Zs using the identity (B.9), the state-
integral model reduced to

Zm( Thurston; h = 27m'b2)

o s () (3) s

Thurston
X exp [ — b+ H(Z+X) - ﬁ(zxzf +7X?% + 8Z1X)] . (3.31)
The converging contour can be constructed in the same way as for M = Weeks case using
{8270 o) ifmi>A  and my>A
{(b+371), S(b—zbil)} if mp > A and mg < —A
{AThurstom BThurston} = 1 7 1 . .

{2b0+b671),=L(b+b 1)} ifmi<—-A and mg > A
{(b+b ) ,(b+b~ )} ifm <—A and mo < —A

Using the contour, we numerically obtain

ep(T[Thurston]) ~ 1.01 . (3.32)

— 14 —



(5,-1)-Dehn filling on m003, (S*\5%) _1),5,—1) = (mM003)(5 _1). The reduced
state-integral model for this case is

ZMP (m003_; h = 2mib?)

_ /hyp d(ZQSX (2sin(bX) sin(bX/2) ) vu(Z1)0n(2X + Z1)
v,

m003 _
X exp [ —(b+b Y21+ X) - 4i (427 — 2X* + 82, X)
7
For the contour, we use
ifm; > A and mg > A
{Qb—l—b b, — (b+b 1)} if mg > A and mo < —A

{(b+b )(b—i—b )} ifm <—A and ma2>A
{200+ b7, =Y ity < —A and my < —A

{Amoos_s, Bmoos_s } =

Using the contour, numerically we find
CT(T[(TI’LOO?))(&_I)]) ~ 1.28. (333)

Integral Dehn fillings on m003, (S3\52)(5 _1),p,1) = (m003)(, 1) with p > 5.
The reduced state-integral model is

ZWP (m003y; h = 2mib?)

= _ d(Z2;—C§X (2 1nh(bX) Sln(X/b))¢b(Zl)wb(2X + Zl)

TYmo003y

X exp { —(b+bdb Y21+ X) - ﬁ (427 + (8 + 2p) X* + 821)()] .

One particular choice of 7m003 (p>5)is

2(b+b"1)i

7?3(%3 {{Zl,X} {m1+(b+b_1)i,m2— - arctan(mg)} DM, Mo ER}CCQ.
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A Ideal triangulation of S3\52 and m003

Ideal triangulations of 3-manifolds with cusped boundaries are available in a computer
software SnapPy [39].

Whitehead link complement (S3\5%). The 3-manifold can be triangulated by 4 ideal
tetrahedrons (T = 4). Boundary meridian/longitude variables and indepedent internal
edges (C) are

A 32, 7, Z, zZy
2X, =—-2Z{ - ZY + Z P="-Zy+ "L _Z4_gv_gzi =2
1 1 3 T 44, 1= 3t 2 5 1 5
Zy  Zy Zy Zy Zb ZI
20Xy = 7, — Zh— Zs, PB=n-2-2+3 -2 4

2 2 2 2 2 2
Cy =221+ Z{ +275 + Z§ + Zs + Z] — 27i,
Co=2+ 73 +27Z5 + Zs+2Zy + Z} — 2mi. (A.1)
Using a linear relation
Zi+ Z+ Z =i, (A.2)

the edge parameter Z! can be eliminated. After the elimination, generalized Neumann-
Zagier datum (A, B,C, D; f, f",v,v,) are determined by

A zy 2X4 A zy P
A z! 2X Z A4 P.
A 2 +B- 2 —iny = 2 , C- ? +D- 2 — Yy = 2
Z3 Z3 1 Zs zy I
Z z 6 Z 2 L,
A f+B-f'=v, C-f+D-f"=uy,.

Here {I';}2_, are some linear combinations of Z and Z" chosen to satisfy

<g f’;) € Sp(8,Q). (A.3)

For example, we can choose
4 1 1 1
Zy Zs Zy ZY  Zy  Zy  Z

71 Zy 5Zs 327! ZV¢ 37l
Ip=21 22 298 -
2 2 8 8 '8 8

The final expression of the state-integral model is independent on the specific choice of I';
and FQ.

Sister of figure-eight knot complement = (S3\52)5 _1) = (m003). The 3-
manifold can be triangulated by 2 ideal tetrahedrons (7' = 2). After eliminating (21, Z5),

we have
2X:Zil+Zl—222—SZ§/+Z‘7T, P:—Z2—2Zé/+i7r.
C:Z{’—i—QZl—ZQ—QZé’, F:Z{,—FZI
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Generalized Neumann-Zagier datum (A, B,C, D; f, f”,v,v,) are determined by

VA zy , 2X VA zy , P
A- + B- —iny = , C- +D- — Ty =
ZZ Zé' C ZQ Zg r

A f+B-f'=v, C-f+D-f"=u,.

B Quantum dilogarithm

In this appendix we collect formulas for the noncompact quantum dilogarithm (QDL)
function [40]. The function ¥,(Z) is defined by

oo 1-q"e? _ if
— ——— ql <1
\I/b(Z) — H 1 1—g—rt+le—2 | ‘ (B.l)

_§Te— % .
172 % if g > 1

with )
q:= e27rib2 , Gi= eQm’b*Z ’ 7. ﬁZ (BQ)
Integral representation:
e t(b+b7Y) gy ,
log Uy(Z) = /]RJri0+ b (b1) siuh (b 17 4t for 0 < Im[Z] < 27(1 4 b7). (B.3)
Asymptotic expansion when h = 2mib? — 0:
5 e B hn—l
log¥y(2) 70 3 P Ly (e7?),  for0<Im[Z] <. (B4
n!
n=0

Here B, is the n-th Bernoulli number with B; = 1/2. To have b > b~! symmetry, we
define

log ¢y (z) := log ¥y (bx) . (B.5)

At b =1, the QDL simplified as

— (27 4 iz)log(1l — e *) + iLig(e™ ™)

log Yp—1(x) = o (B.6)
As |z| — oo,
log ¥ (z) ~ =% + (b4 b1 for Re[x]<0
0g () ~ T+ 5 T or Re[x]<0,
~0 for Re[x]>0. (B.7)
Poles of the ¢,(Z) are located on
Z<o(27ib) + Z<o(2mib™ ") . (B.8)
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Fourier transformation:

im(b24+3+b2)
e 12 12+2zy727riz(b+b_1)

5 dripy(x)e i =u(y)  for Im(y) >0,
T Ey

E, :={z+if(xz) : x € R} C where f is a function satisfying

-1 [ if v —
Fo { m(y) + (b+b")rm—e ifz— o0 with small €1, €5 > 0 and positive A. (B.9)

€9 ifz <A
C Quantum Dehn filling

Classical phase space P(OM) and its Lagrangian subvariety £(M) for the SL(2) CS theory
are

P(OM) = {SL(2)-flat connections on OM = (T2)|K|_S} = (P(TQ))‘KFS

with P(T2) = (C)?/Zs = {(2,p) € (€ (2,) ~ (1/, 1/p)}
L(M) = {SL(2)-flat connections on M} . (C.1)

Here z and p parametrize the SL(2) gauge holonomy around each meridian and longitude

P@fmerdianA = v 1 s Pefvlongitudc'A = p 1 . (02)
01/x 01/p

Quantizing them, we have

respectively:

P(OM) ~ H(OM) = (”H(']I‘Q))lK'_S (a Hilbert-space) ,
L(M) ~ |Z(M)) € H(OM) (a state) . (C.3)
Quantization of the phase space P(T?) with k = 1. Phase space P(T?) for SL(2)

CS theory with £k =1 and ¢ = ;%:z on R; x T? is give in (C.1) with following symplectic
form (X :=logx, P :=logp):

1 1 _ -
0= 1 _gPANIX+—_dPAdX. 4
A+ Nt At (C-4)

Quantization of the phase space give an infinite dimensional Hilbert-space H(T?) whose
position basis are

Position bais of H(T?) = {|X) : X € C, |X) ~= |- X)}. (C.5)
The quantum position/momentum operators acts on the Hilbert-space as
(X|& = (X]eX, (X|z = (XY (X[p= (X +imb?|, (X[p=(X+ix|. (C.6)

Completeness relation in H(T?) is

ﬁ dp| X )(X|=1. (C.7)
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Quantization of Dehn filling. For a 3-manifold closed M obtained by gluing two 3-
manifolds M; and My along a common T? boundary with a ¢ € SL(2,Z) twist, the SL(2)
CS ptn is given by

Zg1(M = My Uy, Ma; h) = (Z(M1)|¢|Z(My)),
|Z(M;)) € H(T?), i=1,2,
¢« H(T?) — H(T?). (C.8)

For solid-torus Dy x S', the wave-function is simply given by
(X|Z(Dy x §")) = 4sinh(X) sinh(X/b%) . (C.9)

Note that solid-torus can be thought as unknot complement on S3, D? x S1 = §3\0y,
and we use the canonical polarization where the position (momentum) is an eigenvalue
homonomy around the meridian (longitude). The wave-function satisfy a pair of difference
equations (g := e2™* g .= 2%

Ao, (2%, p,q"?)|2(D? x §1)) = Ag—o, (2%,5.¢"H)|2(D* x S")) =0,
where Ao, (22,9, ¢"?) = p* +1 — ¢/%*p — ¢ 1/p. (C.10)

Regardless of whether the gauge group is SU(2) or its complexification SL(2), the difference
operator A annihilating the knot-complement wave-function |Z(S*\K)) is the same and
called ‘quantum A-polynomial’ of knot K [41]. For a closed 3-manifold (S*\K),,/,
by performing Dehn surgery with a slope p/q on S along a knot K% the CS wave function

obtained
can be obtained as follows:

(SN\K)pyq = (D? x SHY Uy, (SH\K), P = ("‘ *> € SL(2,7),
b4q

Zs1((S*\K),q:h) = (Z2(D* x SY)

Gpal Z(SP\K)), @y H(T?) = H(T?). (C.11)

Two generators of SL(2,7Z) are

805=<O_1)7 <PT:<1O>. (C.12)
10 11

Quantization of these operators give [17]
¢s, ¢r + H(T?) — H(T?),
1 XY
=—— [ dYe =2 (Y
vy = [ave v,
(X|pr|v) = ez (X|y), for any [¢) € H(T?).  (C.13)

(X

Ps

8We call a link K with one component (|K| = 1) a ‘knot’.
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For general element ¢ = (T S) € SL(2,7),

pq
2 ry2
<X @ w> = \/; b /dYe2Zi25+7T)i(b}2/5+27r§1;25 <Y"¢>7 for S 7é 0,
ST
2
<X}¢W> 262%2*()(‘1@, for s=0. (C.14)

Inserting the completeness relation (C.7), we have

Zg1((SP\K)jq:h) =(Z(D* x S") || 2(S*\K))
41b dX(Z(D*xSH| X ) (X || Z(S°\K))
7 \F / dXdY sinh X)sinh(X/bz)eziﬁzﬁ«fbgﬁziﬁis<Y|Z(S3\K)>
Ay(Y;s,q)dY o
:/*Wexp <th2>ZSI(S3\K,Y,h). (C.15)

Here A, is defined in eq. (3.11). For given (p,q), the s is determined modulo ¢Z and the
final expression Zg1((S*\K),/,) does not depend on the choice of (r, s) modulo the intrinsic
ambiguity (3.13). This is compatible with the fact that the resulting 3-manifold does not
depends on (7, s) but only on (p, q).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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