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techniques exist for doing so up to one-loop level [18-29].2 In practice, functional methods
have typically been overlooked in favour of the more traditional Feynman diagram ap-
proach, where many tools have been developed to ease otherwise complicated calculations.
Nevertheless, Feynman diagram matching remains cumbersome for systematic derivations
of a full set of Wilson coefficients, while recent developments in functional methods, which
we summarise below, have led to a more straightforward way of dealing with the one-loop
path integral. Moreover, the result of evaluating this path integral has a universal form
that is independent of the method used to obtain it, suggesting a redundancy in histor-
ically repeating this evaluation with various different functional techniques. The logical
step is then to eliminate such unnecessary calculations by doing them once-and-for-all.
The expression obtained in this way is the so-called Universal One-Loop Effective Action
(UOLEA) [23, 24]. It allows one to bypass the need for either Feynman diagram or func-
tional methods entirely when deriving Wilson coefficients for operators up to dimension six.

These developments began with a review of Gaillard [18] and Cheyette’s [19] func-
tional Covariant Derivative Expansion (CDE) method by Henning, Lu and Murayama
(HLM) [23]. In particular, they noticed that for a simplified case where the multiplet
of heavy fields are assumed degenerate, the resulting one-loop effective action could be
evaluated with loop integrals factored out independently of the UV-specific parts. The
expressions for the various combinations of the loop integrals could then be pre-evaluated
and encapsulated into “universal” coeflicients associated to terms involving the trace of
matrices of light fields and commutators of covariant derivatives. Unfortunately, these re-
sults only applied to the special case of degenerate multiplet masses, meaning that for more
general UV models one would have had to return to evaluating the path integral, or use
Feynman diagrams, to obtain the one-loop effective action. However, in ref. [24] some of us
(JQ and TY, together with Drozd and J. Ellis) showed that the universality of the matrix
terms and their associated coefficients also holds in the non-degenerate case, and derived
the general UOLEA relevant for all operator structures up to dimension six, without any
assumptions on the mass spectrum.

Another potential limitation was pointed out by ref. [39], following arguments from
ref. [40], that functional methods did not appear to account for one-loop matching involving
both heavy and light particles in the loop. This was addressed by us [27] and others [25,
26, 28], each demonstrating different procedures for treating mixed heavy-light matching
in the path integral approach.?> We emphasised in particular that our method also allowed
for the computation of universal terms [27], that could in principle be added to the original
UOLEA.

In this paper, we explicitly include a complete set of such universal heavy-light terms
which retain the same structure as the previously-derived heavy-only terms. The results
presented here serve as a systematic extension of the heavy-only UOLEA of ref. [24], thus
settling definitively the question of whether the applicability of functional methods and

their simplification due to universality could be extended to the heavy-light case.



Explicitly achieving such an extension requires computing a large number of terms in
a CDE of the path integral, which would have been impractical (if not impossible) within
previously proposed frameworks. However, a diagrammatic reformulation of functional
matching recently developed by one of us (ZZ) [29] greatly simplifies the task. It is now
feasible to systematically extend the UOLEA and derive all of its associated universal
coefficients, even by hand. In short, the idea of [29] is to represent the CDE series as
a sum of “covariant diagrams” which help organise the expansion in a systematic way.
The spirit is similar to using traditional Feynman diagrams to keep track of expansions of
correlation functions, but the key difference is that covariant diagrams evaluate directly
to gauge-invariant operators in the EFT (as opposed to correlation functions). Moreover,
the same universal structure of the UOLEA for both heavy-only and heavy-light terms is
now put on firmer theoretical ground. In fact, the key step of expansion by regions (as
introduced by [28]) in the derivation of covariant diagrams makes it clear that heavy-light
terms follow from heavy-only terms with simple substitutions, which we will show.

The paper is organised as follows. Section 2 summarises for convenience both the
previous heavy-only UOLEA and its current extension in order to clarify the relation of
this extension to our previous (and future) work. Section 3 lists the universal coefficients
and describes the derivation and cross-checks we have made in their calculation. Section 4
gives an application to integrating out a real scalar singlet with the heavy-light one-loop
contributions computed here for the first time. Finally, we conclude with our perspective
and outlook in section 5. The master integrals involved in the universal coefficients are dis-
cussed in more detail in appendix A. Explicit expressions of the universal coefficients in the
special case of degenerate heavy particles are collected in appendix B, while complete non-
degenerate expressions can be found in a Mathematica notebook in the arXiv submission.

2 The Universal One-Loop Effective Action

2.1 Heavy-only UOLEA

Consider a UV Lagrangian involving a multiplet of heavy fields ® coupled to light fields ¢,
which for bosons may be arranged into the form

Lov|p, ®] = L][@] + (PTF[¢] + h.c.) + ®T (P2 — M? — Uy [¢])® + O(P?), (2.1)

where P, =D, and M is the (diagonalised) mass matrix for the multiplet ®. The linear
coupling to light fields is parametrised by F[¢]|. It gives tree-level contributions to the
Wilson coefficients of the effective action when substituting the equations of motion. The
quadratic coupling to light fields is specified by the matrix Ug[¢], and we assume for now no
additional dependence in this matrix on P, or gamma matrices. While the UV Lagrangian
for fermionic fields is of a different form to eq. (2.1), this general strategy of functional
matching applies equally to fermions since the UV dependence is encapsulated in the same
form as the bosonic case at the level of the logarithm expression (2.2), derived below.*



In the functional method for integrating out heavy fields, keeping only the light fields
in an effective action, one evaluates the path integral for the quadratic part of the action
in ® expanded around its minimum (or background field value),?
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The universal coefficients fy contain combinations of master integrals, which are defined
and discussed in more detail in appendix A, and are listed in tables 1, 2, 3, 4, 5. Higher-
order terms in the expansion may be computed but this expression is sufficient for all
operators up to dimension 6. To obtain the Wilson coefficients of operators in a specific
EFT, one then substitutes in to eq. (2.3) the particular Uy matrix of light fields, covariant
derivatives P, and mass matrix M for a particular UV model. The result can then be
brought into a non-redundant EFT basis if desired.

2.2 Heavy-light UOLEA

To perform one-loop matching including cases where both heavy and light fields enter in the
loop, we also expand the quantum fluctuations of the light fields around their background.
The covariant derivative P, mass matrix M, and quadratic field matrix U are extended ac-
cordingly. Through appropriate functional manipulations, detailed for example in ref. [29],
the general form of the Lagrangian can then be most conveniently written in the form

-loo . d?
£]1£]]£’Tp[¢] = ch/ 1



JHEPO08 (2017) 054



JHEPO08 (2017) 054



JHEPO08 (2017) 054



7SO0 (LTOC) 80dHHL



As an example to illustrate this, we now calculate — first without covariant diagrams
— the heavy-only universal coefficients associated to the expansion at order n = 4,

1-1 1
Lgpr (4] Tl



Figure 1. Covariant diagrams for the covariant derivative expansion at order n = 4.
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interrelated structure was to be expected, but has previously been obscured by the oblique-
ness of past methods for treating heavy-light matching. Here we see this appear explicitly
from our computation.

For example, starting from
f2tr ([P*, Unij) [Py, Unt i) = Z[¢*)3F tr ([P*, Unij] [Py, Un i) (3.11)
we can substitute either i or j by a light field 7 to arrive at
Frate (P*, Un )Py Urnl) = 2Z(6%) tr ((P*, Unriar)[Pu, Unsn]) (3.12)

with Z[g?)2? defined by

/"



Since no Zs symmetry is assumed, ¢ can couple linearly to the Higgs and so can give rise to
tree-level contributions to matching. This is obtained for example in ref. [23], where they
also give the heavy-only one-loop matching in a choice of UV parameter renormalisation
such that the scheme-dependent finite terms are set to zero.'? Here we perform the one-

loop matching in the



However we expect to get a vanishing coefficient for Or as ¢ is a singlet with zero hyper-
charge and so cannot break custodial symmetry.

Considering the smallest operator dimensions in the heavy, light, and heavy-light en-
tries of the U matrix in eq. (4.4), we may isolate the following coefficients to compute for Og:

f2, fa, faa, fs, fza, fsBs fi0a, fioB, fiocs fiops fisc, fiee, fiom - (4.7)

Taking the trace of the corresponding universal operator structures given in table 5 with
the U matrix of eq. (4.4) we get the following Wilson coefficient of Og expressed in terms
of the rescaled universal coefficients fy = fn/ °



~ 4%
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can be found in a Mathematica notebook in the arXiv submission, whose degenerate limits
are collected in appendix B. We have demonstrated how to use these universal results
to efficiently compute EFT operator coefficients with a singlet scalar model example. In
future work [41] we plan to complete the UOLEA by including all possible structures one
may encounter in evaluating the covariant derivative expansion, to provide a standard set
of results that can serve as a reference for one-loop matching.
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A Master integrals

The universal coefficients fy presented in this paper are written in terms of master integrals

Z, defined by

/"



B Explicit expressions for universal coefficients with degenerate heavy
fields

In the specific case where only one heavy field is being integrated out, such as in the
example above with a real singlet scalar, or when all the heavy fields are degenerate, the
universal coefficients listed in tables 1, 2, 3, 4, 5 take a simple form. We list below each
of the coefficients with the master integrals written out explicitly for degenerate heavy
fields.!! The notation employed is the following:

fv=—il6r? fy,  Zlg*)y™ = —il6n? I[g* ],

and the coefficients are:

. M?
fo=1{ =M} (Hog '
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