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1 Introduction

Tight constraints from the LHC and from direct and indirect detection experiments have

put many simple dark matter models under tension in recent years. This calls for new ideas

in model building, but perhaps also for new precision in the computations on which a given

dark matter scenario is based. Indeed, as the LHC pushes up the dark matter mass scale,

it also increases the temperature at which dark matter density was fixed. Then, however,

Standard Model weak interactions, which play a role in most dark matter computations,

can be modified by thermal effects. If the freeze-out temperature is T >∼ 160 GeV, the Higgs

mechanism “melts away” [1], whereby weak interactions display phenomena normally only

associated with strong interactions.

The purpose of this paper is to present a step-by-step implementation of a formalism

which can account for relevant thermal effects [2],1 and whose principal applicability has

been tested against non-perturbative lattice simulations by using the annihilation of heavy

quarks in QCD as an analogue for dark matter annihilation [9]. Among our goals are to

check whether thermal modifications affect the well-known Sommerfeld enhancement (cf.

e.g. refs. [10–13]), and how to include the classic Salpeter correction (cf. e.g. ref. [14]).

The premise of the framework is to make use of a heavy-mass or “non-relativistic”

expansion for the dark matter particles. Given that in the classic WIMP paradigm dark

1Other discussions of thermal effects relevant for heavy particles can be found e.g. in refs. [3–8].
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matter gradually freezes out at a temperature T ∼ M/20 . . .M/104, where M is the dark

matter mass scale, there should be no doubt about the validity of this approximation.

Within the non-relativistic regime, the framework accounts for a number of thermal

effects, such as that the vacuum masses of W±, Z0 are replaced by thermal Debye masses

as the temperature increases; that the weak mixing angle evolves with the temperature;

that weak interactions mediate fast scatterings of the dark matter particles, transforming

them into each other and thereby affecting the nature of their annihilation process; that

similar interactions also change the effective mass of the dark matter particles through the

Salpeter correction; and that in some cases dark matter particles can form bound states.

As far as the co-annihilation of non-degenerate dark matter particles goes, the formalism

can also be nicely contrasted with the classic Boltzmann equation approach of ref. [15].

To put the study in context, we remark that there has been recent interest in including

next-to-leading order (NLO) corrections into dark matter computations. Here we are more

concerned with the fact that most computations are formally incomplete even at leading

order (LO), as far as near-threshold thermal effects go [2]. In principle, the inclusion of

NLO corrections is also possible within the same formalism, notably by adding operators

suppressed by ∼ ∇2/M2 to eq. (2.3) and NLO corrections to the coefficients given in

eqs. (2.4)–(2.6), however this is not pursued here.

The model with which we choose to illustrate the formalism is a simple extension

of the Standard Model through an additional “inert” Higgs doublet [16–18]. Many dark

matter computations have been carried out for various parameter corners of this model (cf.

e.g. refs. [19–41] and references therein; we particularly recommend ref. [25] for a general

overview), and our conclusions do not differ qualitatively from these, even though visible

effects from hitherto unconsidered processes can be observed.

The plan of this paper is the following. After introducing the 4-particle operators

that mediate dark matter decays in the heavy-mass limit (section 2), we recall how they

determine the thermal dark matter annihilation rate (section 3). Subsequently the key

tools of the formalism, namely time-dependent medium-modified Schrödinger equations

governing the “slow” dynamics within the dark sector, are elaborated upon (section 4).

After presenting numerical solutions and the overclosure bound (section 5), we turn to

conclusions and an outlook (section 6).

2 4-particle operators

In the inert doublet model (IDM), the Standard Model is supplemented by an additional

Higgs doublet, χ, which does not couple to fermions because of an unbroken discrete Z(2)

symmetry. Denoting by φ the Standard Model Higgs doublet and by Dµ the corresponding

covariant derivative, the Standard Model Lagrangian is modified by the additional terms

Lχ = (Dµχ)†(Dµχ)−M2χ†χ

−
{
λ2 (χ†χ)2 + λ3 φ

†φ χ†χ + λ4 φ
†χ χ†φ +

[
λ5

2
(φ†χ)2 + H.c.

]}
. (2.1)

The notation λ1 is reserved for the Standard Model Higgs self-coupling, δLSM = −λ1(φ†φ)2.

– 2 –
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If the mass scale M is much larger than the electroweak scale, M � mW , the χ

particles annihilate efficiently into the Standard Model ones. The annihilations that we are

interested in happen in the temperature range T ∼M/20 . . .M/104, in which the average

velocity is v ∼
√
T/M � 1. Therefore the annihilating particles are non-relativistic. Non-

relativistic annihilations can be described by 4-particle operators, arranged as an expansion

in 1/M2 [42]. If we write non-relativistic on-shell fields in terms of annihilation and creation

operators as

χ =
1√
2M

(
Ce−iMt +D†eiMt

)
, χ† =

1√
2M

(
De−iMt + C†eiMt

)
, (2.2)

then at leading order in 1/M2 there are four “absorptive” operators that play a role:2

δLabs = i
(
c1 C

†
pD
†
pDqCq︸ ︷︷ ︸
≡ O1

+ c2 C
†
pT

a
pqD

†
qDrT

a
rsCs︸ ︷︷ ︸

≡ O2

+ c3 D
†
pD
†
qDpDq︸ ︷︷ ︸
≡ O3

+ c4 C
†
pC
†
qCpCq︸ ︷︷ ︸
≡ O4

)
.

(2.3)

Here sums over the isospin components p, q, r, s ∈ {1, 2} are implied, and T a ≡ σa/2, where

σa are the Pauli matrices.

We have computed the coefficients c1, . . . , c4 in eq. (2.3) in general Rξ gauges at leading

non-trivial order, verifying their gauge independence for ξ < M2/m2
Z :3

c1 =
g4

1 + 3g4
2 + 8λ2

3 + 8λ3λ4 + 2λ2
4

256πM2
, (2.4)

c2 =
g2

1g
2
2 + λ2

4

32πM2
, (2.5)

c3 = c4 =
λ2

5

128πM2
. (2.6)

Here g1 and g2 are the UY(1) and SUL(2) gauge couplings, respectively. The couplings

should be evaluated at a renormalization scale ∼ 2M . The same values of the coefficients

can be extracted from ref. [25].

If λ4 6= 0 or λ5 6= 0, or if Standard Model radiative corrections are considered, different

components of χ are non-degenerate in mass. In this case the doublets C and D can be

2As is characteristic of an effective theory approach, there are in principle infinitely many higher-

dimensional operators, suppressed by increasing powers of 1/M2. The four operators here are the only

ones at order 1/M2. The coefficients of these operators contain both a real part and an imaginary (i.e.

absorptive) part [42]. Only the imaginary parts are relevant for us [2]: in accordance with the optical

theorem, they represent matrix elements squared of real processes in which the heavy particles annihilate

into Standard Model ones. The annihilations are two-particle annihilations; therefore the matrix elements

squared contain four field operators, two annihilation operators for a process, and two creation operators for

its conjugate. In eqs. (2.4)–(2.6) the coefficients of these operators are given at leading order, corresponding

to a tree-level annihilation cross section. One strength of the effective theory approach is that if needed,

it would be fairly straightforward to compute NLO corrections to the coefficients. Even more importantly,

soft thermal corrections to the annihilation processes (cf. figure 1 for an illustration) can be included beyond

a quasi-particle approximation, and up to the non-perturbative level in the case of strong interactions [9].
3For ξ �M2/m2

Z � 1 the results change qualitatively and therefore unitary gauge is not viable.
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written as

C =

 H+

H0 − iH0̄√
2

 , D =

 H−

H0 + iH
0̄√

2

 . (2.7)

The operators in eq. (2.3) split into a 10 × 10 matrix in the field space of eq. (2.7), which

is given (with a slightly different notation) in eqs. (4.25)–(4.28) below.

3 Rate equations and effective cross sections

As discussed in ref. [15], the only physically reasonable “slow variable” of the problem

at hand is the total number density of dark matter particles, n ≡
∑

i=±,0,0̄ ni. Within a

Boltzmann approach, ref. [15] established that n evolves according to the Lee-Weinberg

equation [43, 44],

ṅ = −〈σeff v〉
(
n2 − n2

eq

)
, (3.1)

where ṅ is the covariant time derivative in an expanding background, and

〈σeff v〉 =
∑
i,j

〈σijvij〉n
eq
i n

eq
j

n2
eq

(3.2)

is an effective cross section for 2 → 2 annihilations from the dark sector. In our case the

total equilibrium number density reads, at tree-level,

neq ≈
∫
k

(
e−E+/T + e−E−/T + e−E0/T + e−E0̄

/T
)

=
∑

i=±,0,0̄

TM2
Hi

2π2
K2

(
MHi

T

)
, (3.3)

where
∫
k ≡

∫
d3k

(2π)3 , Ei ≡
√
k2 +M2

Hi
with k ≡ |k|, and K2 is a modified Bessel function.

We note in passing that radiative corrections to eq. (3.3) can be determined as ex-

plained in ref. [2]. The most important is the so-called Salpeter correction, which modifies

the rest mass of a non-relativistic particle by an amount ∆MT ∼ −α3/2T < 0, where α is

a weak fine-structure constant (cf. e.g. ref. [5]). This is specified in more detail in section 5

(cf. eq. (5.6)).

In contrast to eq. (3.1), the formalism of ref. [2] takes as a starting point an equation

based on general linear response theory, having thus the form [45]

ṅ = −Γchem

(
n− neq

)
+O

(
n− neq

)2
, (3.4)

where Γchem can be called the chemical equilibration rate. In the remainder of this paper,

we wish to make close contact with standard literature, and therefore prefer to use the

form of eq. (3.1). Linearizing eq. (3.1) in deviations from equilibrium leads us to identify

〈σeff v〉 ≡
Γchem

2neq

. (3.5)

In the absence of a first-principles argument beyond the linear response level, we rely on

the form of eq. (3.1) on how first and higher order deviations are related to each other.
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The strength of the linear response approach is that it permits to relate the equilibra-

tion rate Γchem to a correlator evaluated in equilibrium, without assuming weak interactions

or the validity of a quasi-particle description necessary for a Boltzmann treatment [45].

Specifically, when the reactions responsible for equilibration are described by operators of

the type in eq. (2.3), Γchem is to first order proportional to the thermal expectation value

of δLabs [9]. Inserting the proportionality coefficient and expressing the result through

eq. (3.5), we obtain

〈σeff v〉 =
4

n2
eq

4∑
i=1

ciγi , γi ≡
〈
Oi
〉
. (3.6)

Because the annihilation operators are positioned to the right in eq. (2.3), the vacuum state

does not contribute to the expectation value in eq. (3.6). Therefore γi is exponentially

suppressed by ∼ e−2M/T , with the Boltzmann factor cancelling against that from n2
eq.

Eq. (3.6) represents a generalization of eq. (3.2). The matrix structure of σij corre-

sponds to matrix-like Schrödinger equations satisfied by the wave functions of the annihi-

lating pair (cf. table 1), and the weights neq
i in eq. (3.2) correspond to threshold locations

in the Laplace transform in eq. (4.39). At the same time eq. (3.6) goes beyond eq. (3.2)

in several respects, for instance by permitting for a systematic inclusion of virtual thermal

effects in the computation of individual cross sections, and also of real thermal scatterings

of the dark matter particles off Standard Model particles, as discussed in more detail in

sections 4.1 and 4.2.

4 Schrödinger description

4.1 General goal and physical interpretation

In the notation of ref. [15], the cross sections in eq. (3.2) describe the processes

χiχj ↔ XX ′ , (4.1)

where X,X ′ are Standard Model particles. These are “slow” processes: the likelihood

that a dark matter particle finds a partner with which to annihilate is suppressed by a

Boltzmann factor, so that the rate is Γ ∼ α2

M2

∫
k e
−E/T . However, the χi-particles also

experience “fast” reactions which have no Boltzmann suppression associated with them.

These are of the type given in eqs. (6b) and (6c) of ref. [15]:

χiX ↔ χjX
′ , χi ↔ χjXX

′ . (4.2)

These reactions keep the dark matter particles in kinetic equilibrium, and also change

them into each other, guaranteeing chemical equilibrium within the dark sector, with each

species contributing with its proper number density nieq into eq. (3.2). If there are bound

states in the dark sector, further “fast” processes can be added, notably

(χiχk)openX ↔ (χjχl)boundX
′ , (χiχk)open ↔ (χjχl)boundXX

′ , (4.3)

– 5 –
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where we assume that the binding energy is small, ∆E ∼ α2M <∼πT . Of course the same

reactions are also present without bound states,

(χiχk)openX ↔ (χjχl)openX
′ , (χiχk)open ↔ (χjχl)openXX

′ , (4.4)

and can change the annihilating pair into a different gauge or spin state. In addition,

processes with virtual X exchange are important,

χiχj (virtual X)↔ X ′X ′′ , (4.5)

leading e.g. to the Sommerfeld effect.

The description based on eq. (3.6) goes beyond eq. (3.2) in that the indirect effect of

the reactions in eqs. (4.2)–(4.5) can be included in a more “differential” form. Specifically,

the fast reactions in eq. (4.2) give thermal masses to the dark matter particles, which

change the kinematics of the reactions in eq. (4.1), leading e.g. to the Salpeter correction

whereby the location of the 2-particle threshold gets modified. The fast reactions also

induce thermal interaction rates, which decohere quantum-mechanical phases and thereby

affect cross sections. Likewise the Sommerfeld effect and the possible emergence of bound

states are included, through the solution of dynamical (time-dependent) Schrödinger equa-

tions. Thereby there is no need to assume the validity of a quasi-particle picture in the

dark sector.

4.2 On the applicability of the Schrödinger description

Despite its strengths, an effective Schrödinger description as outlined in section 4.1 is only

valid in a certain parametric regime. Indeed its justification requires an analysis of the

different energy and momentum scales contributing to the problem. For near-threshold

problems at finite temperature, several different scales play a role. A thermally modified

Schrödinger approach in the form implemented below can be used for addressing energy

scales ∆E ∼ α2M provided that (cf. e.g. refs. [46–49])

α2M � gT , αM , πT � M , (4.6)

where α ∼ g2/(4π). In this situation the scale gT , which is the Debye scale representing

typical energies/momenta of soft Standard Model excitations, can be integrated out, so

that no Standard Model fields appear in the description of the “slow” dynamics.

An example of an excitation associated with the scale gT is an electric dipole ∼ r · gE.

As discussed in ref. [48], such dipoles cause transitions between pairs in different gauge

representations, as appear in the operators of eq. (2.3). Specifically, integrating out the E

fields and the pairs in repulsive channels generates a thermal interaction rate affecting the

dynamics of the pair in an attractive channel [48].

Now, the interaction rate in the attractive channel is a slow rate: the annihilating

pair is in a gauge-singlet state and only a dipole contribution is left over, Γ ∼ α2T 3r2.

Therefore, Γ can be part of an effective slow quantum-mechanical description.

In contrast, the generic interaction rates in the Standard Model, and in particular

the interaction rates of the heavy χ pairs in gauge non-singlet channels, are of order αT .

– 6 –
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. . .

soft hard

Figure 1. An illustration of the repeated interactions of the dark matter particles with plasma

constituents and each other, before the annihilation into Standard Model particles takes place.

Thick lines stand for dark matter particles, thin lines for Standard Model particles, and wiggly

lines for gauge bosons. The blobs indicate that because of infrared sensitivity Hard Thermal Loop

resummed propagators need to be used for gauge bosons. The red (blue) dashed box encompasses

the soft (hard) interactions. The soft interactions comprise both virtual and real corrections, and

the dots stand for iterations resummed through the Schrödinger description. The hard process,

with a large energy release of order M , converts dark matter particles into Standard Model ones.

This is a fast rate, rapidly decohering the phase of the wave function and justifying a

classical Boltzmann description. At the same time, it is not clear whether such a rate

can be consistently included in a Schrödinger equation: if T >∼αM , Γ ∼ αT modifies the

spectral function in the energy range ∆E ∼ α2M by an effect of O(1), yielding a substantial

below-threshold tail akin to that appearing below the top-antitop threshold in vacuum [50].

We have adopted a procedure here in which the contributions of the repulsive chan-

nels are estimated in two ways: either including the below-threshold tail, or omitting it.

The difference of the results is used for estimating the theoretical uncertainties of our

computation from thermal effects which are formally of NLO magnitude.

Having introduced the four-particle operators (cf. eq. (2.3)) and the Schrödinger ap-

proach, we can briefly comment on the different stages of the annihilation process. Ac-

cording to the scale hierarchy in eq. (4.6), there are two well-separated classes of processes:

those occurring at the hard scale, M , and those typical of the soft scales, either thermal

or non-relativistic (cf. figure 1). The latter account for several interactions with particles

from the heat bath which are resummed by a thermally modified Schrödinger equation. In

the end the dark matter particles annihilate into Standard Model ones. This happens at

a typical distance scale of order 1/M which is not resolved by the larger medium length

scales. Hence an effective point-like interaction is responsible for the hard process. Such a

factorization manifests itself in the effective cross section, eq. (5.3) below, where the hard

coefficients from eqs. (2.4)–(2.6) multiply thermal expectation values capturing the soft

physics.

4.3 Degenerate limit

We start by considering the degenerate limit, i.e. M ≡ M0 = M
0̄

= M±. Each of the ex-

pectation values in eq. (3.6) can be expressed as a Laplace transform of a spectral function,

denoted by ρi (cf. eqs. (4.21)–(4.24) below). Under the assumptions discussed in section 4.2

and going over to non-relativistic center-of-mass coordinates, the spectral function is in turn

– 7 –
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an imaginary part of a Coulomb Green’s function [2]:[
−∇

2
r

M
+ Vi(r)− E′

]
Gi(E

′; r, r′) = Ni δ
(3)(r− r′) (no sum over i) , (4.7)

lim
r,r′→0

ImGi(E
′; r, r′) = ρi(E

′) , (4.8)

where Ni is a normalization factor giving the number of contractions related to Oi:

N1 = 2 , N2 =
3

2
, N3 = N4 = 6 . (4.9)

In center-of-mass coordinates the Laplace transform reads

γi ≈
∫
k
e−

2M
T
− k2

4MT

∫ ∞
−Λ

dE′

π
e−E

′/T ρi(E
′)

=

(
MT

π

)3/2

e−2M/T

∫ ∞
−Λ

dE′

π
e−E

′/T ρi(E
′) , (4.10)

where M � Λ � α2M is a cutoff restricting the average to the non-relativistic regime.

According to eq. (3.6), the physical result is
∑4

i=1 ciγi, with ci given in eqs. (2.4)–(2.6).

In the free limit, Vi → 0, the spectral function from eqs. (4.7) and (4.8) reads ρ
(0)
i (E′) =

NiM
3
2 θ(E′)

√
E′/(4π). Carrying out the Laplace transform in eq. (4.10), inserting n

(0)
eq =

4
(
MT
2π

) 3
2 e−M/T from eq. (3.3), and plugging into eq. (3.6), we obtain the value of 〈σeff v〉

for a degenerate system and to leading order in 1/M2 and α:

〈σeff v〉(0) =
c1

2
+

3c2

8
+

3(c3 + c4)

2
. (4.11)

In order to go beyond eq. (4.11), we include the potentials Vi for the various channels

in eq. (4.7). It is helpful to introduce the notation

VWW (r) ≡ g2
2

4

∫
k
eik·r i〈W+

0 W
−
0 〉T(0, k) , (4.12)

VAA(r) ≡ g2
2

4

∫
k
eik·r i〈A3

0A
3
0〉T(0, k) , (4.13)

VBB(r) ≡ g2
1

4

∫
k
eik·r i〈B0B0〉T(0, k) , (4.14)

where 〈. . .〉T denotes a time-ordered propagator and the gauge potentials have been ex-

pressed with the sign conventions of the imaginary-time formalism. For instance (cf. ap-

pendix A of ref. [2] for a derivation),4

i
〈
W+

0 W
−
0

〉
T
(0, k) =

1

k2 +m2
W̃

− iπT

k

m2
E2

(k2 +m2
W̃

)2
, (4.15)

4For hard momenta k � m
W̃

only the massless part 1/k2 is important. The full form is needed for

correctly estimating the contribution of soft near-threshold momenta to the annihilation cross section. The

soft momenta become increasingly important as the temperature decreases.

– 8 –
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where mW = g2v/2 is the W± mass, v is the temperature-dependent Higgs expectation

value,5 and m2
W̃
≡ m2

W +m2
E2, where m2

E2 is a Debye mass [51] (for future reference we also

define m2
E1 here):

m2
E1 ≡

(
nS

6
+

5nG

9

)
g2

1T
2 , m2

E2 ≡
(

2

3
+
nS

6
+
nG

3

)
g2

2T
2 , nS ≡ 1 , nG ≡ 3 . (4.16)

For the neutral gauge field components (B0, A
3
0) the propagator is a matrix, whose form

can be found in eqs. (A.22) and (A.23) of ref. [2].

With the notation introduced, the potentials appearing in eq. (4.7) read

V1(r) = 2VWW (0) + VAA(0) + VBB(0)− 2VWW (r)− VAA(r)− VBB(r) , (4.17)

V2(r) = 2VWW (0) + VAA(0) + VBB(0) +
2VWW (r) + VAA(r)

3
− VBB(r) , (4.18)

V3,4(r) = 2VWW (0) + VAA(0) + VBB(0) +
2VWW (r) + VAA(r)

3
+ VBB(r) . (4.19)

The r-independent parts, denoted somewhat formally with the argument r = 0, correspond

to self-energy contributions; the r-dependent parts to exchange contributions.6 The r-

independent parts are linearly divergent, and the corresponding vacuum counterterms are

defined such that limr→∞ Vi(r) = 0 at T = 0. Explicit expressions are given in appendix A.

At T > 0, limr→∞Re[Vi(r)] 6= 0 amounts to the Salpeter correction. As elaborated upon

in section 4.2 and as can be deduced from eq. (4.17), in V1 the thermal widths cancel to

leading order in r ∼ 1/(Mv), whereas in V2,3,4 they represent fast reaction rates ∼ αT .

4.4 Non-degenerate situation

If λ4 6= 0 or λ5 6= 0 and v > 0, eq. (2.1) implies that different components of the inert

doublet χ have different masses. A mass splitting is also induced by Standard Model

radiative corrections [19]. In this situation the potentials of eqs. (4.17)–(4.19) get replaced

by matrix potentials which act in the space of the field components H±, H0, H
0̄

defined

in eq. (2.7). Modifying the notation slightly from eq. (2.3), we denote the mass of the

neutral component H0 by M , and the additional rest mass of the pair HiHj by ∆Mij . The

kinetic masses appearing in the Schrödinger equations also depend on the pair in question,

however for small but non-zero ∆Mij
>∼α

2M this can be considered to be a higher-order

effect, and will be omitted in the following (its inclusion is trivial, by replacing the kinetic

term in eq. (4.37) by a diagonal matrix containing the reduced masses).

Even though eq. (3.6) contains expectation values of the type

γi =

∫ ∞
−∞

dω

2π

∫
k

Π<
i (ω,k) , (4.20)

Π<
1 (ω,k) ≡

∫ ∞
−∞

dt eiωt
∫
r
e−ik·r

〈
(C†pD

†
p)(0,0) (DqCq)(t, r)

〉
, (4.21)

5Even though carrying the same symbol, v should not be confused with the non-relativistic velocity

appearing e.g. in eq. (3.1).
6The r-dependent parts vanish at r →∞, so that limr→∞ Vi(r) = 2VWW (0) + VAA(0) + VBB(0).
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for the Schrödinger equation it is convenient to consider the opposite time ordering [46],

Π>
1 (ω,k) ≡

∫ ∞
−∞

dt eiωt
∫
r
e−ik·r

〈
(DqCq)(t, r) (C†pD

†
p)(0,0)

〉
, (4.22)

and similarly for 1→ 2, 3, 4. The two Wightman functions are related by

Π<
i (ω,k) = e−ω/T Π>

i (ω,k) , (4.23)

which is one way to see the origin of the Laplace transform in eq. (4.10). The function

Π>
i (ω,k) in turn agrees with the spectral function up to a trivial factor and exponentially

small corrections,

Π>
i (ω,k) = 2

[
1 + nB(ω)

]
ρi(ω,k) , (4.24)

where nB is the Bose distribution.

When the Wightman functions Π>
i corresponding to the operators in eq. (2.3) are

written in the basis of eq. (2.7), they have an overlap with many different “elementary”

Wightman functions. The overlaps form a block-diagonal form, and can be expressed

through four different “weight matrices”, denoted by Wi:

W1 ≡

〈H+H− 〈H0H0 〈H
0̄
H

0̄
〈iH0H0̄

4c1+c2
4

4c1−c2
8

4c1−c2
8 0 H†+H

†
−〉

4c1−c2
8

c2+4(c1+c3+c4)
16

c2+4(c1−c3−c4)
16

c3−c4
2 H†0H

†
0〉

4c1−c2
8

c2+4(c1−c3−c4)
16

c2+4(c1+c3+c4)
16

c4−c3
2 H†

0̄
H†

0̄
〉

0
c3−c4

2
c4−c3

2 c3 + c4 −iH
†
0H
†
0̄
〉

, (4.25)

W2 ≡

〈H+H0 〈iH+H0̄

c2+4c4
4

c2−4c4
4 H†+H

†
0〉

c2−4c4
4

c2+4c4
4 −iH†+H

†
0̄
〉

, (4.26)

W3 ≡

〈H−H0 〈−iH−H0̄

c2+4c3
4

c2−4c3
4 H†−H

†
0〉

c2−4c3
4

c2+4c3
4 iH†−H

†
0̄
〉

, (4.27)

W4 ≡

〈H+H+ 〈H−H−

c4 0 H†+H
†
+〉

0 c3 H†−H
†
−〉

. (4.28)

Given that c3 = c4 (cf. eq. (2.6)), eq. (4.25) has itself a block-diagonal form.
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The right-hand sides of eq. (4.7), which may be called the source terms, also turn into

matrices in the basis of eq. (2.7). These matrices are diagonal, but have in some cases

non-trivial coefficients, corresponding to the multiplicities of contractions:

S1(r, r′) ≡

〈H+H− 〈H0H0 〈H
0̄
H

0̄
〈iH0H0̄

δ(3)(r− r′) 0 0 0 H†+H
†
−〉

0 2 δ(3)(r− r′) 0 0 H†0H
†
0〉

0 0 2 δ(3)(r− r′) 0 H†
0̄
H†

0̄
〉

0 0 0 δ(3)(r− r′) −iH†0H
†
0̄
〉

, (4.29)

S2(r, r′) ≡

〈H+H0 〈iH+H0̄

δ(3)(r− r′) 0 H†+H
†
0〉

0 δ(3)(r− r′) −iH†+H
†
0̄
〉

, (4.30)

S3(r, r′) ≡

〈H−H0 〈−iH−H0̄

δ(3)(r− r′) 0 H†−H
†
0〉

0 δ(3)(r− r′) iH†−H
†
0̄
〉

, (4.31)

S4(r, r′) ≡

〈H+H+ 〈H−H−
2 δ(3)(r− r′) 0 H†+H

†
+〉

0 2 δ(3)(r− r′) H†−H
†
−〉

. (4.32)

As a crosscheck, it may be noted that projecting the sources from eqs. (4.29)–(4.32) with

the weights from eqs. (4.25)–(4.28) yields

4∑
i=1

Tr
[
Wi Si

]
=
[
2c1 +

3c2

2
+ 6(c3 + c4)

]
δ(3)(r− r′) , (4.33)

which indeed agrees with weighted sum over the source terms of eq. (4.7) with the normal-

ization factors from eq. (4.9).

The potentials can be derived as explained in ref. [2], from the thermal expectation

value of the time-evolution operator bracketed between states like in eqs. (4.25)–(4.28). At

this point the sources are momentarily separated from each other; it is advantageous to

symmetrize the state generated in this point-splitting, e.g.

H†+H
†
− → H†{+(r)H†−}(0) ≡ 1

2

[
H†+(r)H†−(0) +H†−(r)H†+(0)

]
. (4.34)

Then a straightforward computation produces matrix potentials, listed in table 1.

Apart from eq. (4.12), the potentials in table 1 contain the object

VZZ̄(r) ≡ g̃2

4

∫
k
eik·r i〈Z0Z̄0〉T(0,k) , (4.35)
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U1(r)

〈H+H− 〈H0H0 〈H
0̄
H

0̄
〈iH0H0̄

V
Z̄Z̄

(0) + 2V
WW

(0)− V
Z̄Z̄

(r) −V
WW

(r) −V
WW

(r) 0 H†+H
†
−〉

−2V
WW

(r) V
ZZ

(0) + 2V
WW

(0) −V
ZZ

(r) 0 H†0H
†
0〉

−2V
WW

(r) −V
ZZ

(r) V
ZZ

(0) + 2V
WW

(0) 0 H†
0̄
H†

0̄
〉

0 0 0 V
ZZ

(0) + 2V
WW

(0) + V
ZZ

(r) −iH†0H
†
0̄
〉

U2(r)

〈H+H0 〈iH+H0̄

1
2

[
V

ZZ
(0) + V

Z̄Z̄
(0)
]

+ 2V
WW

(0) + V
WW

(r) −V
WW

(r)− V
ZZ̄

(r) H†+H
†
0〉

−V
WW

(r)− V
ZZ̄

(r) 1
2

[
V

ZZ
(0) + V

Z̄Z̄
(0)
]

+ 2V
WW

(0) + V
WW

(r) −iH†+H
†
0̄
〉

U3(r)

〈H−H0 〈−iH−H0̄

1
2

[
V

ZZ
(0) + V

Z̄Z̄
(0)
]

+ 2V
WW

(0) + V
WW

(r) −V
WW

(r)− V
ZZ̄

(r) H†−H
†
0〉

−V
WW

(r)− V
ZZ̄

(r) 1
2

[
V

ZZ
(0) + V

Z̄Z̄
(0)
]

+ 2V
WW

(0) + V
WW

(r) iH†−H
†
0̄
〉

U4(r)

〈H+H+ 〈H−H−
V

Z̄Z̄
(0) + 2V

WW
(0) + V

Z̄Z̄
(r) 0 H†+H

†
+〉

0 V
Z̄Z̄

(0) + 2V
WW

(0) + V
Z̄Z̄

(r) H†−H
†
−〉

Table 1. The “potentials” Ui appearing in eq. (4.37). In general the potentials contain both a real

part, as well as an imaginary part representing thermal scatterings (cf. eq. (4.15) and section 4.2).

and similarly for VZZ and VZ̄Z̄ , where we have defined

g̃Z0 ≡ g1B0 + g2A
3
0 , g̃Z̄0 ≡ g1B0 − g2A

3
0 , g̃ ≡

√
g2

1 + g2
2 . (4.36)

We stress that at finite temperature Z0 does not represent a propagating mode, and Z̄0 does

not represent one even at zero temperature. The fields Z0 and Z̄0 simply stand for specific

linear combinations originating from vertices; the diagonal modes are obtained from B0

and A3
0 through an orthogonal transformation parametrized by a temperature-dependent

mixing angle θ̃, given in eq. (A.5).

The potentials of table 1 contain a real part, including the diagonal r-independent

Salpeter correction, as well as an imaginary part, representing scatterings and decays of the

type described by eq. (4.2). As mentioned in section 4.2, the inclusion of the scatterings

has been demonstrated to be theoretically consistent in the case of the most attractive

channel, in which case the scattering rate is a slow one. This slow rate appears in the
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upper diagonal block of the potential U1 in table 1. Its role is to damp (or “decohere”)

oscillations between the three states appearing in this block. In the other channels, the

widths represent a part of NLO corrections.

With these ingredients at hand, the thermally averaged scattering rates are obtained

from matrix Schrödinger equations of the form[
−∇

2
r

M
+ diag(∆M) + Ui(r)− E′

]
Fi(E

′; r, r′) = Si(r, r
′) (no sum over i) , (4.37)

lim
r,r′→0

ImFi(E
′; r, r′) = %i(E

′) , (4.38)

where the matrix Fi has the same dimension as the source Si. The combination needed for

eq. (3.6) becomes, in analogy with eq. (4.10),

4∑
i=1

ciγi ≈
(
MT

π

)3/2

e−2M/T

∫ ∞
−Λ

dE′

π
e−E

′/T
4∑
i=1

Tr
[
Wi %i(E

′)
]
. (4.39)

It is interesting to ask how the degenerate limit of section 4.3 is recovered from the

equations of the current section. A simple way to do this is to recall that if a Green’s

function is expressed as a function of time t rather than energy E′, then the source terms

in eqs. (4.29)–(4.32) represent initial conditions at time t = 0 [46]. To first order in

interactions, we can simply act on the initial conditions with the potentials of table 1,

and subsequently project the results with the weights from eqs. (4.25)–(4.28), i.e. com-

pute
∑4

i=1 Tr
[
Wi UiSi

]
. It can be verified that the terms proportional to 2c1 δ

(3)(r− r′),
3c2
2 δ(3)(r− r′), and 6 (c3 + c4) δ(3)(r− r′) reproduce the potentials from eqs. (4.17), (4.18)

and (4.19), respectively.

4.5 Limit of low temperatures

The scale hierarchy shown in eq. (4.6) breaks down as the temperature decreases: first

the Debye scale gT becomes smaller than the energy scale α2M at which the Schrödinger

description applies, and soon afterwards πT also becomes smaller than α2M . Moreover,

assuming that mass splittings in the dark sector are ∆Mij
>∼α

2M , πT also becomes smaller

than ∆Mij . These crossings have an important impact on the determination of
∑

i ciγi
and 〈σeff v〉 at low temperatures, particularly as far as the below-threshold part (E′ < 0)

is concerned, given that the Laplace transforms in eqs. (4.10) and (4.39) exponentially

enhance the contributions from the smallest energies.

It may be noted, first of all, that once the Debye scale drops below α2M , the dominant

process responsible for the thermal interaction rate is the absorption of a thermal gauge

boson (cf. figure 2(left)) rather than scattering off Standard Model particles as is the case

at higher temperatures (cf. figure 2(right)) (cf. ref. [53] and references therein). However,

this does not change the magnitude of the thermal interaction rate qualitatively. Given

that the numerical effect from the low-temperature regime is modest, we have not worked

out these effects quantitatively; this would pose an interesting topic for future research.

More importantly, the spectral function changes dramatically once πT <∼ |E
′| ∼ α2M .

In vacuum, the spectral function vanishes for E′ < 0 in repulsive channels, and for E′

– 13 –
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Figure 2. Left: absorption or emission of an on-shell gauge boson by an annihilating dark matter

particle. Right: t-channel scattering of a dark matter particle off thermal Standard Model particles,

denoted by thin lines. The filled blob indicates that, due to infrared sensitivity, the soft gauge

boson has to dressed by thermal corrections such as Debye screening. The process on the right

dominates in the range of eq. (4.6), whereas the process on the left dominates at low temperatures

(cf. section 4.5).

below the ground state energy in attractive channels. At T > 0, this is no longer the case:

any “measurement” can detect non-vanishing below-threshold spectral weight, with the

energy difference to the vacuum threshold supplied by a thermal fluctuation suppressed by

a Boltzmann factor. This has been shown explicitly in a QCD context, both by considering

the dissociation rate of bound states with pNRQCD (cf. eq. (89) of ref. [48]), and through a

strict NLO computation of the process in figure 2(left) together with the associated virtual

corrections (cf. eq. (4.7) of ref. [54] after setting ω → 2M + ∆E′). We have not carried

out a quantitative analysis of these effects for the present system, which would again pose

an interesting topic for future research, however we multiply thermal interaction rates by

the Boltzmann factor θ(−E′)e−|E′|/T in order to account for the exponential suppression

below threshold. This is a higher-order effect in the domain of our main interest, eq. (4.6),

but imposes the correct overall magnitude to the below-threshold spectral function when

πT <∼α
2M .

The third effect concerns mass splittings, which are always present at least at the level

∆Mij ∼ 10−3M [19]. To account for them properly requires the numerical solution of the

matrix equations derived in section 4.4. However, on the qualitative level we can profit from

a corresponding solution that was worked out in section 7 of ref. [2]. The main finding was

that as long as ∆Mij ∼ α2M , the shape of the spectral function does not depend noticeably

on ∆Mij , however the spectral function splits into several parts, separated by the mass

shifts.7 We can work out these shifts by solving eqs. (4.37) and (4.38) at tree level but with

∆Mij 6= 0.8 Denoting byρ(0) ≡M
3
2 θ(E′)

√
E′/(4π) the tree-level spectral function obtained

with ∆Mij = 0, and using ∆M+ = ∆M− (here ∆Mi1...in
≡Mi1

+ . . .+Min
−nM), we find

4∑
i=1

Tr
[
Wi %

(0)
i (E′)

]
= 2c1

[
ρ(0)(E′)

4
+
ρ(0)(E′ −∆M

0̄0̄
) + 2ρ(0)(E′ −∆M+−)

4

]

+
3c2

2

[
ρ(0)(E′)

12
+
ρ(0)(E′ −∆M+)

3

7The shape stays intact because the heavier particles still contribute as virtual states and thereby

generate an interaction between the lightest ones.
8Thermal mass corrections can be omitted in this regime, given that |∆MT | ∼ α3/2T <∼α

7/2M � α2M .
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+
ρ(0)(E′ −∆M

0̄0̄
) + 4ρ(0)(E′ −∆M

0̄+
) + 2ρ(0)(E′ −∆M+−)

12

]
+6(c3 + c4)

[
ρ(0)(E′)

12
+
ρ(0)(E′ −∆M

0̄
) + ρ(0)(E′ −∆M+)

6

+
ρ(0)(E′ −∆M

0̄0̄
) + 2ρ(0)(E′ −∆M

0̄+
) + 4ρ(0)(E′ −∆M+−)

12

]
.

(4.40)

Inserting this into eq. (4.39), the contributions of the shifted thresholds get suppressed by

e−∆Mij/T just like in eq. (3.2); a practical implementation is shown in eqs. (5.7) and (5.8).

5 Numerical solution and overclosure bound

Once the combination
∑

i ciγi has been computed as a function of the temperature, either

from eq. (4.10) or from eq. (4.39), the effective cross section 〈σeffv〉 is obtained from eq. (3.6).

Writing out the time derivative in eq. (3.1), the evolution equation reads

(∂t + 3H)n = −〈σeffv〉 (n2 − n2
eq) , (5.1)

where H is the Hubble rate. Combining this with the entropy conservation law (∂t+3H)s =

0 as well as with the relation of time and temperature, Ṫ = −3Hs/c, where c is the heat

capacity; defining a “yield parameter” through Y ≡ n/s; and denoting z ≡M/T , we get

Y ′(z) = −〈σeff v〉MmPl ×
c(T )√

24πe(T )
×
Y 2(z)− Y 2

eq(z)

z2

∣∣∣∣∣
T=M/z

. (5.2)

Here mPl is the Planck mass and e is the energy density. We insert e, c, and s from ref. [55].

Our goal is to determine a conservative overclosure bound for M . Thus, for a given

M , we need a lower bound for Y . A lower bound for Y requires an upper bound for

〈σeff v〉, so that annihilations take place with maximal efficiency. As discussed in sec-

tion 4.5, if ∆Mij ∼ α2M ∼ 10−3M , then in the non-degenerate situation the solution of

the Schrödinger equation does not differ qualitatively from the degenerate limit. In fact

〈σeff v〉 decreases with ∆Mij , because of the Boltzmann suppression factors ∼ e−∆Mij/T

induced by the movement of the heavier particle thresholds to higher energies. Therefore,

the degenerate limit sets an upper bound for 〈σeff v〉. We only depart from this approxi-

mation at very low temperatures πT <∼α
2M where effects from ∆Mij start to be of order

unity (cf. eqs. (5.7) and (5.8)).

For numerical evaluations, the gauge couplings g2
1 and g2

2, the top Yukawa coupling h2
t ,

and the scalar couplings appearing in eq. (2.1) are needed. The gauge couplings affecting

the “soft” thermal physics of the static potential are evaluated at a scale µ̄ ' πT . In

contrast the couplings in eqs. (2.4)–(2.6) are needed at a scale µ̄ ' 2M . We fix g2
1(mZ) =

0.128, g2
2(mZ) = 0.425, h2

t (mZ) = 0.967, λ1(mZ) = 0.145, and for µ̄ < mZ keep these

unchanged. For mZ < µ̄ < M , the couplings are evolved like in the Standard Model, e.g.
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Figure 3. The free (dotted lines; shifted by the Salpeter correction) and resummed (coloured lines;

cf. eq. (4.8)) spectral functions for M = 4 TeV, T = M/20, compared with results predicted by the

massless Sommerfeld factors (solid lines; cf. eq. (A.16)). The potentials are from eqs. (4.17)–(4.19);

V1 is attractive and V2,3 are repulsive at short distances (V2 is attractive at large distances). The

spectral function ρ1 obtains a more dramatic shape at low temperatures, cf. figure 6(left).

g2
1(µ̄) ≈ 48π2/[41 ln(Λ1/µ̄)] and g2

2(µ̄) ≈ 48π2/[19 ln(µ̄/Λ2)]. For µ̄ > M we switch to the

IDM evolution [56], g2
1(µ̄) ≈ 48π2/[42 ln(Λ′1/µ̄)] and g2

2(µ̄) ≈ 48π2/[18 ln(µ̄/Λ′2)].

Examples of spectral functions from eq. (4.8), for the three potentials from eqs. (4.17)–

(4.19), are shown in figure 3 for M = 4 TeV, T = M/20.9 The results are compared with

massless Sommerfeld factors from eq. (A.16), shifted by the Salpeter correction in eq. (5.5).

Reasonable agreement is found, in spite of the presence of Debye screening and complicated

mixing patterns that appear in the thermal potentials.

Consider now 〈σeff v〉 from eq. (3.6). It is convenient to express the result in a form

similar to eq. (4.11),

〈σeff v〉 =
c1S̄1

2
+

3c2S̄2

8
+

3(c3 + c4)S̄3

2
, (5.3)

where “average Sommerfeld factors” have been defined as

S̄i ≡
e2∆MT /T

Ni

(
4π

MT

) 3
2
∫ ∞
−Λ

dE′

π
e−E

′/Tρi(E
′) . (5.4)

The Salpeter correction is given by eqs. (4.17)–(4.19), (A.9), (A.11), and (A.13),

2∆MT ≡ Re
[

2VWW (0) + VAA(0) + VBB(0)
]
. (5.5)

Its appearance in eq. (5.4) originates from the fact that 1/n2
eq in eq. (3.6) gets changed,

neq ≈ 4

(
MT

2π

) 3
2

e−(M+∆MT )/T . (5.6)

If the change of the threshold location were the only modification of the spectral function

ρi, 2∆MT would exactly cancel out in eq. (5.4).

9For the numerical solution we employ the same method as in ref. [2], originally introduced in ref. [57].
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Figure 4. Thin lines show the average Sommerfeld factors from eq. (5.4), as a function of z ≡
M/T , for ∆M = 0; thick lines include the modifications according to eqs. (5.7) and (5.8), with

∆M ≡ 10−3M . For S̄2,3 the error band indicates the uncertainty as discussed around the end of

section 4.2. For large z, S̄1 increases because of the emergence of bound-state like structures just

below threshold (cf. figure 6(left)).

As discussed in section 4.5, the vacuum mass differences ∆Mij become important at

very low temperatures (in contrast ∆MT loses its significance there). Inserting eq. (4.40)

into eq. (4.39), comparing with eq. (5.3), and setting for simplicity ∆M+ = ∆M
0̄
≡ ∆M ,

the effects from ∆M can phenomenologically be included through the substitutions

S̄1 → S̄1,eff ≡ S̄1

[
1

4
+

3e−2∆M/T

4

]
, (5.7)

S̄2,3,4 → S̄2,3,4,eff ≡ S̄2,3,4

[
1

12
+
e−∆M/T

3
+

7e−2∆M/T

12

]
. (5.8)

We adopt this recipe in the following, setting for illustration ∆M = 10−3M , which is para-

metrically in the correct range ∼ α2M and numerically in fair accordance with ref. [19] at

λi = 0, and also reflects the gradual increase of ∆M ' λ4,5v
2/M with scalar self-couplings.

The case ∆M = 0 is considered as an upper bound on the average Sommerfeld factors.

The average Sommerfeld factors have been plotted in figure 4. For the numerical evalu-

ation of eq. (5.4), we have restricted the Laplace transform to the range E′ ∈ (E′min, E
′
max),

where E′min ≡ 2∆MT − 15α2M and E′max ≡ 15T , where α ≡ (g2
1 + 3g2

2)/(16π).

Given the average Sommerfeld factors, we can insert eq. (5.3) into eq. (5.2) and inte-

grate the latter equation for Y (z). Examples of solutions are shown in figure 5. We have

compared with the linearized version of this equation (cf. eq. (3.4)), obtained by setting

Y 2−Y 2
eq → 2Yeq(Y −Yeq). It is observed how the initial departure from equilibrium is well

described by both forms, however afterwards the Lee-Weinberg from of eq. (5.2) leads to a

substantial depletion of the dark matter abundance.

As can be deduced from figure 5, Yeq has become exponentially small by the time that

z ∼ 40. In the absence of Yeq, eq. (5.2) can be integrated into

1

Y (zfinal)
− 1

Y (z = 40)
=

∫ z
final

40

dz

z2

〈σeff v〉MmPl c(T )√
24πe(T )

∣∣∣∣∣
T=M/z

. (5.9)
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Figure 5. The evolution of the yield parameter for various masses and scalar couplings, as a

function of z ≡ M/T . The scalar couplings are evaluated at the scale µ̄ = 2M , we have set

λ3(2M) = λ4(2M) = λ5(2M), and ∆M = 10−3M . Thick lines correspond to the Lee-Weinberg

equation in eq. (3.1), and thin lines to the linearization in eq. (3.4), which is a good approximation

for the initial decoupling.

The regime z >∼ 40 can easily reduce the dark matter abundance by a factor 2 . . . 3. We

choose zfinal = 104 so that the contribution from late times is typically at the percent level.

Note that weak interactions are faster than the Hubble rate down to T ' 10 MeV, so we

may assume the dark matter particles to be kinetically equilibrated in the whole z range.

It should however be noted that, taken literally, the growing Sommerfeld factor S̄1,eff

in figure 4 compromises the convergence of eq. (5.9) at large z. At the same time, at low

temperatures kinetic and chemical equilibrium is gradually lost in the dark sector, and the

bound-state thermal abundance is presumably no longer available as an efficient annihi-

lation channel once πT � α2M . The value zfinal = 104 represents a phenomenological

compromise where the numerical effect from large z is small, yet the physics assumptions

that went into the thermal analysis should still be intact. It would be interesting to un-

derstand the physics of this regime more precisely (cf. also the comments in sections 4.5

and 6).

Eventually the heavier dark matter particles decay into the lightest one, so that the

final yield is Yphys = Y (zfinal). The energy density carried by the lightest ones today is

ρdm(T0) = MYphyss(T0), and the energy fraction is Ωdm(T0) = MYphyss(T0)/ρcr(T0), where

ρcr is the current critical energy density. Inserting from ref. [58] s(T0) = 2 891/cm3 and

ρcr(T0) = 1.0537× 10−5h2 GeV/cm3 yields

Ωdmh
2 =

M

GeV

Yphys

3.645× 10−9
, (5.10)

which can be compared with the observed value Ωdmh
2
∣∣
obs

= 0.1186(20) [59]. Results are

plotted in figure 6; a discussion is deferred to the first paragraph of section 6.

6 Conclusions and outlook

The purpose of this paper has been to illustrate and refine the general formalism of ref. [2],

by applying it to a simple yet phenomenologically viable dark matter computation. After
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Figure 6. Left: the spectral function ρ1 for M = 12 TeV very close to threshold. A rapid

broadening and merging of bound states can be observed as the temperature increases (the right-

most peak is itself resolved into several peaks at lower temperatures). Right: the dark matter

relic density, as a function of M/TeV, for various quartic couplings. Thin lines indicate the tree-

level result; thick lines the full result including thermal Sommerfeld and Salpeter corrections and

interaction rates. The error estimates of figure 4 lead to modifications of the order of the thick

line width, whereas the large uncertainties shown originate from varying the mass splitting in

the range ∆M = (0 . . . 10−3)M . The horizontal line represents the observed value Ωdmh
2
∣∣
obs

=

0.1186(20) [59].

the inclusion of thermal effects, such as the Salpeter correction to dark matter masses, the

modification of the Sommerfeld effect through Debye screening, and thermal interaction

rates, we find a conservative upper bound for the mass of the lightest dark matter particle

within the inert doublet model (IDM), as a function of quartic scalar couplings. As a

reference, we note that for vanishing quartic couplings values M <∼ 535±9 GeV can typically

be found in literature (cf. e.g. refs. [25, 36]), and that for this case we get M <∼ 519 ±
4 GeV by using free spectral functions (cf. figure 6(right)). Switching on the thermally

modified Sommerfeld factors, Salpeter corrections, and thermal interaction rates, the bound

increases to M <∼ 523± 5 GeV for ∆M = 10−3M , and to M <∼ 562± 5 GeV for the extreme

case ∆M/M → 0. For the maximal quartic couplings considered, λ3(2M) = λ4(2M) =

λ5(2M) = π, we obtain M <∼ 10.6±0.1 TeV with free spectral functions; M <∼ 11.1±0.1 TeV

for ∆M = 10−3M ; and M <∼ 12.5± 0.1 TeV for ∆M/M → 0. The uncertainties cited here

originate from the observed value of the dark matter relic density [59].

In the high-mass regime the system displays a non-trivial bound-state spectrum at

low temperatures (cf. figure 6(left)), which leads to large Sommerfeld factors at large z

(cf. figure 4). This results in efficient annihilation, and helps to push up the upper bound

for M . We stress that the bound-state spectrum is easily addressed within our formalism,

since the known Hard Thermal Loop resummed thermal interaction rate (reflecting the

processes in figure 2(right)) eliminates the need for complicated bound-state production and

dissociation rate computations. At very low temperatures, T � α3/2M , other processes
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contribute as well (cf. figure 2(left)), however these have also been studied in the QCD

context (cf. refs. [53, 54] and references therein), and the same techniques could conceivably

be generalized to cosmology. Once πT � α2M , there is gradual departure from kinetic

and chemical equilibrium in the dark sector, whose study represents a complicated but

interesting open problem.10

Once the collider lower bound exceeds the cosmological upper bound of figure 6(right),

IDM is firmly excluded as a model, independently of astrophysical uncertainties related to

the local dark matter distribution. In practice, accepting modest astrophysical assump-

tions, direct and indirect non-detection constraints permit to set more stringent bounds

than the overclosure one (cf. e.g. refs. [35, 36] and references therein).

One weakness of the IDM is that the quartic scalar couplings can be varied in a broad

range, which has a significant effect on the overclosure bound (cf. figure 6(right)). The

quartic couplings also influence mass splittings, resulting in a non-trivial multidimensional

parameter dependence. If the couplings are large, their effects should be resummed. For

instance the scalar couplings affect the thermal corrections to dark matter masses; in

contrast to the Salpeter correction in eq. (5.5), these effects are power-suppressed, ∆MT '
(2λ3 + λ4)T 2/(24M). In addition, at T <∼ 160 GeV, the Higgs mechanism generates cubic

scalar couplings which lead to additional terms in the static potentials (cf. e.g. ref. [36]).

In the present investigation we resummed only effects from gauge couplings, which are not

suppressed by T/M or v/M and are therefore expected to generically give the dominant

contributions.

Beyond the IDM, our interest lies in models including strongly interacting particles,

which have attracted much recent interest in view of the substantial role that bound states

could play (cf. e.g. refs. [2, 9, 61–78]). Having now “calibrated” the formalism of ref. [2]

through a much-studied test case, we hope to address such models in the near future.
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A Explicit expressions for static potentials

We present here the explicit expressions for the potentials appearing in eqs. (4.17)–(4.19).

The potentials contain the Debye mass parameters defined in eq. (4.16), and the charged

and neutral gauge mass parameters [52]

m2
W̃
≡ m2

W +m2
E2 , (A.1)

m2
Z̃
≡ m2

+ , m2
Q̃
≡ m2

− , (A.2)

m2
± ≡

1

2

{
m2

Z +m2
E1 +m2

E2 ±
√

sin2(2θ)m4
Z + [cos(2θ)m2

Z +m2
E2 −m2

E1]
2
}
. (A.3)

10A nice recent investigation of non-equilibrium effects in another context can be found in ref. [60].
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The mixing angles are defined by

sin(2θ) ≡ 2g1g2

g2
1 + g2

2

, (A.4)

sin(2θ̃) ≡ sin(2θ)m2
Z√

sin2(2θ)m4
Z + [cos(2θ)m2

Z +m2
E2 −m2

E1]
2
. (A.5)

The neutral gauge field components are diagonalized as in eqs. (A.21)–(A.23) of ref. [2].

We define the functions

φr(m) ≡ 2

∫ ∞
0

dx

(x2 + 1)2

sin(xrm)

rm
, (A.6)

θr(m1,m2) ≡ 2

∫ ∞
0

dx

x2 + 1

[
sin(xrm1)

rm1

− sin(xrm2)

rm2

]
. (A.7)

Denoting furthermore c̃ ≡ cos θ̃, s̃ ≡ sin θ̃, c ≡ cos θ, and s ≡ sin θ, and renormalizing

r-independent linear divergences of the potentials as mentioned below eq. (4.19), we get

VWW (r) =
g2

2

16π

[
exp(−m

W̃
r)

r
−
iTm2

E2φr(mW̃
)

m2
W̃

]
, (A.8)

VWW (0) = − g2
2

16π

(
m

W̃
+
iTm2

E2

m2
W̃

)
+
g2

2mW

16π

∣∣∣∣
T=0

, (A.9)

VAA(r) =
g2

2

16π

{
s̃2 exp(−m

Q̃
r)

r
+
c̃2 exp(−m

Z̃
r)

r
− iT

[
s̃2(c̃2m2

E1 + s̃2m2
E2)φr(mQ̃

)

m2
Q̃

+
c̃2(s̃2m2

E1 + c̃2m2
E2)φr(mZ̃

)

m2
Z̃

+
2c̃2s̃2(m2

E2 −m2
E1) θr(mQ̃

,m
Z̃
)

m2
Z̃
−m2

Q̃

]}
, (A.10)

VAA(0) = − g2
2

16π

{
s̃2m

Q̃
+ c̃2m

Z̃
+ iT

[
s̃2(c̃2m2

E1 + s̃2m2
E2)

m2
Q̃

+
c̃2(s̃2m2

E1 + c̃2m2
E2)

m2
Z̃

+
2c̃2s̃2(m2

E2 −m2
E1)

m2
Z̃
−m2

Q̃

ln

(
m2

Z̃

m2
Q̃

)]}
+
g2

2c
2mZ

16π

∣∣∣∣
T=0

, (A.11)

VBB(r) =
g2

1

16π

{
c̃2 exp(−m

Q̃
r)

r
+
s̃2 exp(−m

Z̃
r)

r
− iT

[
c̃2(c̃2m2

E1 + s̃2m2
E2)φr(mQ̃

)

m2
Q̃

+
s̃2(s̃2m2

E1 + c̃2m2
E2)φr(mZ̃

)

m2
Z̃

+
2c̃2s̃2(m2

E1 −m2
E2) θr(mQ̃

,m
Z̃
)

m2
Z̃
−m2

Q̃

]}
, (A.12)

VBB(0) = − g2
1

16π

{
c̃2m

Q̃
+ s̃2m

Z̃
+ iT

[
c̃2(c̃2m2

E1 + s̃2m2
E2)

m2
Q̃

+
s̃2(s̃2m2

E1 + c̃2m2
E2)

m2
Z̃

+
2c̃2s̃2(m2

E1 −m2
E2)

m2
Z̃
−m2

Q̃

ln

(
m2

Z̃

m2
Q̃

)]}
+
g2

1s
2mZ

16π

∣∣∣∣
T=0

. (A.13)

The potentials get considerably simplified in the short-distance limit r � 1/m
Z̃
. Then

their divergent r-dependent parts read

VWW (r) ' g2
2

16πr
, VAA(r) ' g2

2

16πr
, VBB(r) ' g2

1

16πr
, (A.14)
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and eqs. (4.17)–(4.19) become

V1(r) ' −3g2
2 + g2

1

16πr
, V2(r) ' g2

2 − g2
1

16πr
, V3,4(r) ' g2

2 + g2
1

16πr
. (A.15)

Defining α1 ≡ (3g2
2 + g2

1)/(16π), α2 ≡ (g2
2 − g2

1)/(16π) and α3,4 ≡ (g2
2 + g2

1)/(16π), the

corresponding Sommerfeld factors read [10]

S1 =
X1

1− e−X1
, S2,3,4 =

X2,3,4

eX2,3,4 − 1
, (A.16)

where Xi ≡ παi/v and v parametrizes E′ from eq. (4.10) as E′ = 2∆MT +Mv2.

We note that eqs. (A.8)–(A.13) are based on evaluating gauge field self-energies in

the Hard Thermal Loop approximation. This is justified as long as the particles with

which gauge fields interact are ultrarelativistic, i.e. with masses m � πT . If m>∼πT , the

self-energies take a more complicated form (cf. appendix A of ref. [2] for the full 1-loop

self-energy matrix of the neutral components A3
0, B0), and thermal modifications cannot

be captured by the two Debye mass parameters m2
E1 and m2

E2. Nevertheless, it is possible

to identify the light-fermion contribution to the Debye masses. If we consider vanishing

spatial momentum; model top and bottom quarks by a common “fermionic” mass mf ; and

model W±, Z0 and Higgs bosons by a common “gauge” mass mg; then eq. (A.6) of ref. [52]

shows that terms mixing A3
0 and B0 drop out, and we may replace eq. (4.16) with

m2
E1 '

g2
1

2

[
49T 2

18
+

11χF(mf )

3
+ χB(mg)

]
, m2

E2 '
g2

2

2

[
3T 2

2
+ 3χF(mf ) + 5χB(mg)

]
.

(A.17)

Here the fermionic and bosonic susceptibilities read

χF(mf ) ≡
∫
p

[
−2n′F(Ef )

] m
f
→0
→ T 2

6
, χB(mg) ≡

∫
p

[
−2n′B(Eg)

] mg→0
→ T 2

3
,

(A.18)

where nF and nB are the Fermi and Bose distributions, respectively. We have adopted

eq. (A.17) for modelling the low-temperature regime, inserting mf ' (mtmb)
1/2 and mg '

(mZm
2
Wmφ)1/4, but stress that this represents a purely phenomenological recipe within the

complicated temperature interval mb
<∼πT <∼mt.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D

93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].

[2] S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01

(2017) 013 [arXiv:1609.00474] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.93.025003
https://doi.org/10.1103/PhysRevD.93.025003
https://arxiv.org/abs/1508.07161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.07161
https://doi.org/10.1088/1475-7516/2017/01/013
https://doi.org/10.1088/1475-7516/2017/01/013
https://arxiv.org/abs/1609.00474
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00474


J
H
E
P
0
8
(
2
0
1
7
)
0
4
7

[3] J.F. Donoghue, B.R. Holstein and R.W. Robinett, Quantum Electrodynamics at finite

temperature, Annals Phys. 164 (1985) 233 [Erratum ibid. 172 (1986) 483] [INSPIRE].

[4] T. Wizansky, Finite temperature corrections to relic density calculations, Phys. Rev. D 74

(2006) 065007 [hep-ph/0605179] [INSPIRE].

[5] P.M. Chesler, A. Gynther and A. Vuorinen, On the dispersion of fundamental particles in

QCD and N = 4 super Yang-Mills theory, JHEP 09 (2009) 003 [arXiv:0906.3052]

[INSPIRE].

[6] A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the

LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].

[7] M. Beneke, F. Dighera and A. Hryczuk, Relic density computations at NLO: infrared

finiteness and thermal correction, JHEP 10 (2014) 045 [Erratum ibid. 07 (2016) 106]

[arXiv:1409.3049] [INSPIRE].

[8] M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119

[arXiv:1601.04718] [INSPIRE].

[9] S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07

(2016) 143 [arXiv:1602.08105] [INSPIRE].
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