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1 Introduction

Quantum entanglement is a fascinating property of quantum theories. The concept of

entanglement entropy associated with a sub-region of space in quantum field theory is

directly related to an observer who can only access the information of the sub-region.

Tracing over the degrees of freedom outside the sub-region introduces a reduced density

matrix, which can be used to compute the entanglement entropy. Exact computations of

the entanglement entropy in quantum field theories are known to be difficult, even in the

free field theories. Nevertheless there have been progresses in 1+1 dimensions [1–4]. See

also [5]. Sometimes, it is easier to compute the Rényi entropy [6–8], that is also physically

relevant. While the holographic approaches for computing the entropies [9–14] provide

valuable results, they are limited to the strongly coupled regime of the field theories.
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Thus exact and analytic results of the entanglement entropy and the Rényi entropy in the

realistic field theory systems are valuable resources for gaining insights on the nature of

quantum entanglement.

Background gauge fields are often useful to manipulate quantum fields and to find

more information about the physical systems that we are interested in. The time and

space components of the 1+1 dimensional gauge potential are called chemical potential and

current, respectively. The entropies of the quantum systems with finite chemical potential

at zero temperature has been studied previously. The results indicate that the entropies

do not depend on the chemical potential for free fermions at zero temperature [15, 16] and

for infinite field theory systems with a single interval [17]. The entanglement entropy with

a current was also considered in a rather different context [18]. These results are certainly

interesting and deserve deeper understanding!

In a recent paper [19], we have provided the general formulas for the entanglement

and Rényi entropies and the mutual information of 2 dimensional Dirac fermions in the

presence of background gauge fields, current and chemical potential. Direct and analytic

computations of them uncovered novel and interesting results in the low temperature and

large radius limits. We summarize the salient results here.

• First, we have shown that the entropies do depend on the chemical potential at zero

temperature. This happens when the chemical potential coincides with one of the

energy levels of the quantum system we consider. This is a non-trivial generaliza-

tion of earlier results [15, 16]. This show that the entropies are useful for probing

the energy spectra at zero temperature. The same properties are true for the mu-

tual information.

• Second, we have shown that the entropies and the mutual (Rényi) information are

the periodic function of the current J in the low temperature limit. When we dial

the modulus parameter α = 2πτ1, the current J also plays the role of a ‘beat fre-

quency’. We further have shown that the entropies for the periodic fermion on the

spatial circle vanish at zero temperature, while those of the anti-periodic fermion

have non-zero contributions.

• Third, in the large radius limit, the dependences of the entropies and the mutual

information on the chemical potential and current vanish at least as fast as O (`t/L)2,

where `t is the size of the sub-systems that we measure the entropies inside the total

system with a size 2πL. This supports a recent claim that the entanglement entropy

in an infinite system is independent of chemical potential µ [17]. We have generalized

this claim for the mutual information, for the case with the multiple intervals, and

for the systems with the current J as well as the chemical potential µ.

• Finally, the total mutual (Rényi) information in general depends on the sizes of the

sub-systems and their separations. Surprisingly, the current and chemical potential

dependent parts of the mutual (Rényi) information only depend on the sub-systems

sizes and are independent of the separation between the disjoint sub-systems.
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All these interesting properties are expected to present in general quantum systems

and to have distinctive experimental signatures, which can be easily verifiable. Mutual

(Rényi) information is finite and thus especially relevant for this purpose.

The aim of this paper is to provide the details of the computations in the various limits

explicitly. Here we also perform the computations in a high temperature limit, that has

two non-trivial limits depending on a modulus parameter τ1 in τ = τ1 + iτ2. Unlike the low

temperature limit, the high temperature limit is largely determined by the combinations

of parameters that are proportional to 1/τ . Thus in the high temperature limit, β → 0,

we have two non-trivial limits depending on τ1.

1

τ
=

1

τ1 + iτ2
→

{
− i
τ2
, τ1 = 0 ,

1
τ1
, τ1 6= 0 .

(1.1)

While the entanglement entropy for τ1 = 0 is usually connected to the thermal entropy,

the other case can be interesting as well. Thus we compute both the cases in the high

temperature limit. We also list the entropies and mutual information as functions of the

modulus parameters without the chemical potential and current.

The rest of the paper is organized as follows. In section 2, we consider the Dirac

fermion in a 2 dimensional torus and present the derivation of the partition function in

the presence of constant gauge fields. We did so by exploiting the equivalence between the

twisted boundary conditions and the background gauge fields. Then we review a useful

way to compute the entanglement entropy in section 3.1, followed by the generalization of

the entanglement entropy in the presence of chemical potential and current in section 3.2.

Computations for the various limits, the low temperature limit, the large radius limit,

and the high temperature limit, of the entropies with chemical potential, current, both,

and with only modulus parameters are presented in section 3.3, section 3.4, section 3.5,

and section 3.6, respectively. We also compute the mutual information for those limits in

section 4. We conclude by mentioning future directions in section 5.

2 Partition function in the presence of background gauge fields

We review the construction of the partition function of 1+1 dimensional Dirac fermion

in the presence of the constant background gauge fields, chemical potential µ and current

J . The basic properties can be found in [20, 21]. In particular we use the equivalence

between the twisted boundary conditions and the background gauge fields to build up the

partition function for the 2-dimensional Dirac fermion in the presence of the background

gauge fields.

Consider the action with the Dirac fermion ψ

S =
1

2π

∫
d2x iψ̄γµ (∂µ + iAµ)ψ , (2.1)

where µ = 0, 1 are the time and space coordinates with γ0 = σ1, γ
1 = −iσ2 in terms of

Pauli matrices and in the matrix form

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 −1

1 0

)
,
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ψ̄ = ψ†γ0, and constant background gauge fields A0 = µ, A1 = J that are identified as

chemical potential and current.

To compute the partition function, we consider a torus with the modular parameter

τ = τ1 + iτ2. Thus the space of coordinate ζ = 1
2π (s+ it) is identified as ζ ≡ ζ + 1 ≡ ζ + τ .

The spatial coordinate s = x1 is compactified with the circumference 2πL (with L = 1

in this subsection), while t is the Euclidean time with periodicity 2πτ2 = β = 1/T . We

decompose the Dirac field

ψ =

(
ψ−
ψ+

)
,

and consider twisted boundary conditions

ψ−(t, s) = e−2πiaψ−(t, s+ 2π) = e−2πibψ−(t+ 2πτ2, s+ 2πτ1) , (2.2)

ψ+(t, s) = e2πiãψ+(t, s+ 2π) = e2πib̃ψ+(t+ 2πτ2, s+ 2πτ1) . (2.3)

It is useful to consider an equivalent description that has the periodic Dirac fermion with

the following flat gauge connection Ãµ (different name because we also have the background

gauge fields) on the torus

Ã = Ãµdx
µ =

πi

τ2
[(b− τa)dζ̄ − (b̃− τ̄ ã)dζ] → ads+

b− aτ1

τ2
dt , (2.4)

where the arrow means to take a special case, ã = a and b̃ = b. Thus in this equivalent

description, one can identify the relation between the background gauge fields and the twist

parameters a and b.

a = J̃ , b = τ1J̃ + iτ2µ̃ . (2.5)

These equivalences indicate that one can treat the twisted boundary condition and the

constant background gauge fields on an equal footing. Once the partition function with

the twisted parameters are constructed, one can readily generalize that in the presence of

the constant background gauge fields.

The partition function is a trace of the states of the Hilbert space that are constructed

using the twisted boundary condition on s ∼ s+2π along with the Euclidean time evolution

t → t + 2πτ2 represented by the operator e−2πτ2H , where H is Hamiltonian. The latter

also induces the space translation s → s − 2πτ1 represented by the operator e−2πiτ1P

(with momentum operator P ) together with phase rotation due to the presence of fermion

e−2πi(b−1/2)FA , where FA = 1
2π

∫
ds(ψ†+ψ+ − ψ†−ψ−) is the fermion number. Thus

Z[a,b] = Tr
(
e−2πi(b−1/2)FAe−2πiτ1P e−2πτ2H

)
. (2.6)

The last two factors can be rewritten into a useful form e−2πiτ1P e−2πτ2H =q(H−P )/2q̄(H+P )/2

with q = e2πiτ . The partition function can be written

Z[a,b] = |η(τ)|−2
∣∣∣ϑ [−a+1/2

b−1/2

]
(0|τ)

∣∣∣2 , (2.7)
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in terms of the Jacobi theta functions ϑ [αβ] and the Dedekind η(τ) function

ϑ [αβ] (z|τ) =
∑
n∈Z

q(n+α)2/2e2πi(z+β)(n+α) , η(τ) = q1/24
∞∏
n=1

(1− qn) . (2.8)

Focusing on the NS-NS sector, a = 1/2, b = 1/2, with the anti-periodic boundary conditions

of spatial and time circles, the partition function has the form

Z[1/2,1/2] = |η(τ)|−2
∣∣∣∑
n∈Z

qn
2/2
∣∣∣2 . (2.9)

In the literature, the following notations are also used ϑ3(z|τ) = ϑ [00] (z|τ), ϑ2(z|τ) =

ϑ
[
1/2
0

]
(z|τ), ϑ4(z|τ) = ϑ

[
0

1/2

]
(z|τ), ϑ1(z|τ) = ϑ

[
1/2
1/2

]
(z|τ). ϑ2(z|τ) is related to the peri-

odic spatial circle and anti-periodic time circle. Thus we focus on ϑ3 and ϑ2.

In the presence of the chemical potential µ and the current J , the partition function

has the general form

Z[a,b](µ, J) = Tr
(
e2πi(τ1J+iτ2µ+b−1/2)FAe−2πiτ1P e−2πτ2H

)
. (2.10)

This can be understood by examining the Dirac action in the presence of the background

gauge fields as well as the effective flat gauge connection Ã given in (2.4).

S̃ =
1

2π

∫
d2x iψ̄γµ

(
∂µ + iAµ + iÃµ

)
ψ , (2.11)

where the Dirac field has the periodic boundary condition. In particular, the mode ex-

pansion of the fermion field depends not only on the twisted boundary condition, but also

on the presence of the current J . For example, the fields obeying the twisted boundary

condition (2.2) is further modified in the presence of the current J :

ψ− =
∑
r∈Z+a

ψr(t)e
irs →

∑
r̃∈Z+a+J

ψr(t)e
ir̃s . (2.12)

Thus the presence of current changes the periodicity of the compact fermions, and thus

periodic fermion is no longer periodic in the presence of current. In terms of the Jacobi

theta functions,

Z[a,b](µ, J) = |η(τ)|−2
∣∣∣ϑ [−aJ+1/2

bµ,J−1/2

]
(0|τ)

∣∣∣2 = |η(τ)|−2
∣∣∣ϑ [−aJ+1/2

bJ−1/2

]
(iτ2µ|τ)

∣∣∣2
= |η(τ)|−2

∣∣∣ϑ [−aJ+1/2
b−1/2

]
(τ1J + iτ2µ|τ)

∣∣∣2 , (2.13)

where

aJ = a+ J , bµ,J = bJ + iτ2µ = b+ τ1J + iτ2µ . (2.14)

The periodicity of temporal direction is not modified. This is consistent with imposing the

anti-periodic boundary condition on the temporal direction.
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3 Entropies in the presence of background gauge fields

In this section, we first review the construction of the entanglement and Rényi entropies

using the Replica trick [2–4], followed by their generalization in the presence of the twisted

boundary conditions and also background gauge fields. We then perform detailed compu-

tations of the entropies in the various limits.

3.1 Basics

Let us consider a reduced density matrix for a free Dirac fermion ψ on an Euclidean

plane by tracing its vacuum state over the degrees of freedom lying outside a given set of

disjoint intervals (uã, vã), ã = 1, . . . , p. The density matrix ρ(ψin, ψout) can be written as a

functional integral on an Euclidean plane with appropriate boundary conditions ψ = ψin,

and ψ = ψout along each side of the cuts (uã, vã)

ρ(ψin, ψout) =
1

Z[1]

∫
Dψe−S[ψ] , (3.1)

where Z[1] is a normalization factor and gives the density matrix Tr(ρ) = 1. To evaluate

the Rényi entropy, we consider Tr(ρn) with n copies of the cut plane by sewing together a

cut (uã, vã)
k
o with the next cut (uã, vã)

k+1
i , for all cuts ã = 1, . . . , p, and the replica copies

k = 1, . . . , n. The copy n + 1 coincides with the first one. The trace of ρn is Z[n] for the

fields, and thus

Tr(ρn) = Z[n]/Z[1]n . (3.2)

Following [22], we consider n-copies of fermions on a single Riemann surface instead

of a fermion on n-copies of Riemann surfaces.

ψ =

 ψ1(x)
...

ψn(x)

 , (3.3)

where ψk(x) represents the field on the k-th copy. For a fermion, we need to introduce a −
sign for a trace, which is required when we connect the last copy to the first one. Further-

more, each fermion copy requires another − sign due to a 2π rotation before connecting

to the next copy [23]. Putting them together for a single cut (uã, vã) with the n-replica

copies, from the first copy (uã, vã)
1
in to the last one (uã, vã)

n+1
out , requires (−1)n+1 factor. In

this way, performing the trace for each cut can be described by multiplying the matrix

T =


0 1

0 1

. .

0 1

(−1)(n+1) 0


for uã located on one end of a cut and T−1 for vã located on the other end of the cut.

By changing a basis by a unitary transformation in the replica space, one can diagonalize

– 6 –
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T . The corresponding eigenvalues of the T are ei
k
n

2π, where k = − (n−1)
2 , − (n−1)

2 + 1,

. . . , (n−1)
2 . This reveals that the space is simply connected but the field ψ is not singled

valued. By diagonalizing the T matrix, the problem is reduced to n decoupled fields ψk

living on a single plane. These fields are multivalued, since when encircling uã or vã they

are multiplied by ei
k
n

2π or e−i
k
n

2π, respectively.

The multivaluedness can be removed by introducing an external constant gauge

field coupled with the fields ψk, which is single-valued. This can be described by the

Lagrangian density

Lk = iψ̄kγµ
(
∂µ + iÃkµ

)
ψk . (3.4)

The singular gauge transformation, ψk(x)→ exp
(
−i
∫ x
x0
dx
′µÃkµ(x

′
)
)
ψk (x), would get rid

of the gauge field Ãkµ, leaving the fields to be multivalued. Thus the proper boundary

conditions for the ã-th cut on the fields ψk are∮
Cuã

dxµÃkµ(x) = −2πk

n
,

∮
Cvã

dxµÃkµ(x) =
2πk

n
. (3.5)

This holds for any two circles going around uã and vã. Putting together, we get

εµν∂νÃ
k
µ(x) = 2π

k

n

p∑
ã=1

[δ(x− uã)− δ(x− vã)] . (3.6)

The Rényi entropy can be evaluated with Z[n] =
∏n−1

2

k=− (n−1)
2

Zk, where Zk can be

obtained by the vacuum expectation value in the free Dirac theory

Zk = 〈ei
∫
ÃkµJ

µ
k d

2x〉 , (3.7)

where Jµk and Ãkµ are is the Dirac current and background gauge field. Zk can be evaluated

using the bosonization technique. Then the current is

Jµk →
1

2π
εµν∂νφ , (3.8)

where φ is a real scalar field. For a free massless Dirac field, Lφ = 1
2∂µφ∂

µφ. Thus

Zk = 〈ei
∫
Ãkµ

1
2π
εµν∂νφd2x〉 =

〈
e−i

k
n

∑p
ã=1(φ(uã)−φ(vã))

〉
=

p∏
ã=1

〈σk(uã)σ−k(vã)〉 , (3.9)

where the vacuum expectation values correspond to those of the massless Dirac theory,

and σk(uã) and σ−k(vã) are the twist operators with conformal dimension k2

2n2 in the Zn
orbifold theory for free Dirac fermion [24].

Since Lφ is quadratic in φ, one can perform the path integral for the field φ.

〈e−i
∫
f(x)φ(x)d2x〉 = e−

1
2

∫
f(x)G(x−y)f(y)d2xd2y , (3.10)

– 7 –
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with the correlator G(x− y) = − 1
2π log |x− y|. Thus

logZk =
2k2

n2
log

∣∣∣∣∣
∏
ã<b̃(uã − ub̃)(vã − vb̃)∏

ã,b̃(uã − vb̃)
εp

∣∣∣∣∣ , (3.11)

where ε is a cutoff introduced to split the coincidence points, |uã − uã|, |vã − vã| → ε. Thus

the resulting entropies diverge as ε→ 0. Summing over k, we obtain

Sn =
1

1− n
log(Tr(ρn)) =

1

1− n

n−1
2∑

k=−n−1
2

log

(
Zk
Z1

)
, (3.12)

S = −1

3
log

∣∣∣∣∣
∏
ã<b̃(uã − ub̃)(vã − vb̃)∏

ã,b̃(uã − vb̃)
εp

∣∣∣∣∣ . (3.13)

This agrees exactly with the general formula for the entanglement entropy for conformal

theories obtained in [2].

This basic review teaches us to consider the Zn orbifold theory for the free Dirac

fermion and the correlation functions of the corresponding twist operators [24] to compute

the entropies. We are going to generalize this result to the case with the background gauge

fields on the 2 dimensional torus. For the rest of the paper, we focus on a single interval.

The generalization for the multiple intervals is straightforward [16].

3.2 Generalizations with background gauge fields

We consider two point functions of the k−th twist operators σk(u) and σ−k(v) with confor-

mal dimension k2

2n2 in the Zn orbifold theory for free Dirac fermion on 2-dimensional torus

with twisted boundary conditions parametrized by a and b introduced in (2.2) [16, 20, 24].

〈σk(u)σ−k(v)〉a,b =
∣∣∣ 2πη(τ)3

ϑ[1/21/2](
u−v
2πL |τ)

∣∣∣2 k2n2 ∣∣∣ϑ[1/2−ab−1/2]( kn
u−v
2πL |τ)

ϑ[1/2−ab−1/2](0|τ)

∣∣∣2 , (3.14)

where the first term is the generalization of the results in the previous section, while the

second one comes into play because of the torus and the corresponding spin structures.

Following section 2, we generalize the two point functions of the twist operators in the

presence of the current J and the chemical potential µ.

〈σk(u)σ−k(v)〉a,b,J,µ =
∣∣∣ 2πη(τ)3

ϑ[1/21/2](
u−v
2πL |τ)

∣∣∣2 k2n2 ∣∣∣ϑ[1/2−a−Jb−1/2 ]( kn
u−v
2πL + τ1J + iτ2µ|τ)

ϑ[1/2−a−Jb−1/2 ](τ1J + iτ2µ|τ)

∣∣∣2 . (3.15)

The first factor is independent of the twisted boundary conditions and the background

gauge fields.

Let us consider a subsystem A, whose size is given by (u− v)/2πL. Using the replica

trick, we get the expression for the Rényi entropy

Sn =
1

1− n
[log Tr(ρA)n] =

1

1− n

log

n−1
2∏

k=−n−1
2

〈σk(u)σ−k(v)〉a,b,J,µ

 = S0
n + Sµ,Jn . (3.16)

– 8 –



J
H
E
P
0
8
(
2
0
1
7
)
0
4
1

The entropies factorizes into two parts, S0
n and Sµ,Jn . S0

n is independent of the spin struc-

tures or background gauge fields.

S0
n =

1

1− n

 n−1
2∑

k=−n−1
2

k2

n2
log
∣∣∣ 2πη(τ)3

ϑ[1/21/2](
u−v
2πL |τ)

∣∣∣2
 = −n+ 1

12n
log

∣∣∣∣ 2πη(τ)3

ϑ[1/21/2](
u−v
2πL |τ)

∣∣∣∣2 . (3.17)

We use the sum
∑n−1

2

k=−n−1
2

k2

n2 = n2−1
12n that can be done straightforwardly. This contribution

S0
n has been analyzed before.

Below we focus on Sµ,Jn that depends on the chemical potential and current

Sµ,Jn =
1

1− n

 n−1
2∑

k=−n−1
2

log
∣∣∣ϑ[1/2−a−Jb−1/2 ]( kn

u−v
2πL + τ1J + iτ2µ|τ)

ϑ[1/2−a−Jb−1/2 ](τ1J + iτ2µ|τ)

∣∣∣2
 . (3.18)

We note that the Jacobi theta function has k dependence in the argument, and thus

summing over k and taking n → 1 limit to get the entanglement entropy are non-trivial.

We perform explicit computations in various limits, such as the zero temperature limit and

the large radius limit, to show novel and interesting results.

For the high temperature limit, one needs a different form that can be obtained using

a modular transform. One can show the following identity using the Poisson resummation

ϑ [αβ] (z/τ | − 1/τ) = (−iτ)1/2eπiz
2/τ+2πiαβϑ

[
β
−α
]

(z|τ) . (3.19)

Using this one can recast the entropy formula (3.18) as

S̃µ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−iπτ ( k

n
u−v
2πL

+τ1J+iτ2µ)2

e−i
π
τ

(τ1J+iτ2µ)2

ϑ[ 1/2−b
1/2−a−J]( kn

u−v
2πL

1
τ + τ1J+iτ2µ

τ | − 1
τ )

ϑ[ 1/2−b
1/2−a−J]( τ1J+iτ2µ

τ | − 1
τ )

∣∣∣2 .
(3.20)

Note that 1/τ is everywhere that plays crucial role in the high temperature limit. In

particular, there are two non-trivial limits depending on the presence of τ1. The details

can be found below.

Now we have developed the general formula for the Entanglement and Rényi entropies.

We are going to perform the computations in the presence of chemical potential in sec-

tion 3.3 and provide the salient features in that limit. Then we focus on the role of the

current J for the entropies in section 3.4, followed by the discussion with both µ and J in

section 3.5. To be complete, we also provide the results for µ = J = 0 in section 3.6. The

computations in section 3.3 are thorough, while those in the other sections are in general

brief or omitted because they are similar.

Before moving on, let us clarify some of the notations. There are two different period-

icity for both the spatial and temporal directions. We call the NS sector for the fermion

with the anti-periodic boundary condition and the R sector for the case with the periodic

boundary condition. In this paper we only consider the anti-periodic boundary condition

for the temporal direction, NS sector, that is to assign b = 1/2. The NSNS sector means

to have the anti-periodicity for both directions, while the RNS sector to be periodic for the

spatial direction and anti-periodic for the temporal direction.
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3.3 Chemical potential

In this section, we consider a more familiar case with the chemical potential µ by setting

J = 0 and one of the modulus parameter α = 2πτ1 = 0. We present the details in the low

temperature limit, the large radius limit, and the high temperature limit in turn. We only

consider the anti-periodic condition of the Dirac fermion for the temporal circle.

3.3.1 Low temperature limit

It has been shown that entropies at zero temperature are independent of a finite chemical

potential [15, 16]. It turns out that there are more on the story. Here we show that

there are more interesting and refined zero temperature limits, β →∞, µ→ N/2 keeping

β(µ−N/2)→ const. Then the entropies actually depend on the chemical potential µ at zero

temperature. We identify N/2 as the energy levels of the Dirac fermion on a circle. Thus,

when the chemical potential hits the energy eigenvalues of a theory at zero temperature,

the entropies depending on the chemical potential do not vanish. This section contains

the details.

The Rényi entropy Sµn , (3.18), reduces to the known form for the anti-periodic boundary

condition for a spatial circle, NS-sector, with a = 1/2 [15, 16].

Sµn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ3( kn

`t
2πL + iβµ

2π |iβ)

ϑ3( iβµ2π |iβ)

∣∣∣2 , (3.21)

where we use the notation β = 2πτ2 and `t = u − v. The case with multiple intervals

is straightforward to generalize by replacing the sub-system sizes as `t =
∑p

a=1(ua − va).
(See e.g. [16]).

Using the product representation

ϑ3(z|τ) =

∞∏
m=1

(1−qm)(1+yqm−1/2)(1+y−1qm−1/2) , q= e2πiτ & y= e2πiz , (3.22)

along with y1 = e−βµ+2πi k
n

`t
2πL , y2 = e−βµ, q = e−β , we compute the Rényi entropy in the

low temperature limit, β →∞,

Sµn =
1

1−n

n−1
2∑

k=−n−1
2

log
∣∣∣ ∞∏
m=1

(1−qm)(1+y1q
m−1/2)(1+y−11 qm−1/2)

(1−qm)(1+y2qm−1/2)(1+y−12 qm−1/2)

∣∣∣2

=
1

1−n

n−1
2∑

k=−n−1
2

∞∑
m,l=1

(−1)l−1

l

[
[yl1+yl∗1 −yl2−yl∗2 ]ql(m−

1
2 )+[y−l1 +y−l∗1 −y−l2 −y

−l∗
2 ]ql(m−

1
2 )
]

=
2

1−n

n−1
2∑

k=−n−1
2

∞∑
l,m=1

(−1)l−1

l

(
e−lβµ+elβµ

)
e−lβ(m−1/2)

[
cos

(
k

n

`t
L
l

)
−1

]

= 2
∞∑
l=1

(−1)l−1

l

cosh(lβµ)

sinh(lβ/2)

1

1−n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
−n
]
. (3.23)

In the second line, we use the Taylor expansion for the log function using the conditions

y1,2q
m−1/2 < 1 and y−1

1,2q
m−1/2 < 1. This is an exact result, while it is an infinite sum.
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One can obtain the entanglement entropy by taking the limit n→ 1.

Sµ = 2
∞∑
l=1

(−1)l−1

l

cosh(lβµ)

sinh(lβ/2)

[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.24)

Note that we expand the log terms with the (strongest) conditions |y1,2q
1/2| < 1 and

|y−1
1,2q

1/2| < 1 to get the result. They translate into

e−βµ−β/2 < 1 & eβµ−β/2 < 1 (3.25)

and are satisfied for −1/2 < µ < 1/2. Thus we see that both the entropies, the entan-

glement entropy and the Rényi entropy, vanish at the zero temperature limit. Thus, the

entropies seem to be the same as those without the chemical potential. Nevertheless, this

conclusion is not valid for µ = ±1/2. We carefully look into the special values.

For this purpose, we consider β(µ − 1/2) = M = const. in the limit β → ∞ and

µ→ 1/2. The product representation for ϑ3 can have a modified expansion

ϑ3(z|τ) = (1 + y−1q1/2)

∞∏
m=1

(1− qm)(1 + yqm−1/2)(1 + y−1qm+1/2) . (3.26)

The front factor is finite. Thus the Rényi entropy is modified to

Sµn =
1

1−n

n−1
2∑

k=−n−1
2

log
∣∣∣(1+y−1

1 q1/2)

(1+y−1
2 q1/2)

∞∏
m=1

(1−qm)(1+y1q
m−1/2)(1+y−1

1 qm+1/2)

(1−qm)(1+y2qm−1/2)(1+y−1
2 qm+1/2)

∣∣∣2 . (3.27)

The first part inside the log can be evaluated without assumptions in terms of Pochhammer

symbols, that is written in the appendix section A. For simplicity, we assume that eM < 1

to evaluate the finite part with y−1
2 q1/2 = eβ(µ−1/2) = eM in the Taylor series. If one wants

to consider the other case, eM > 1, that can be done similarly. The second part in the log

can be evaluated in a straightforward manner. To do so, note that the following condition

e−βµ−β/2 < 1 and eβµ−3β/2 < 1 can be used to have an expansion at the zero temperature

limit. Those conditions are satisfied for

−1/2 < µ < 3/2 .

Thus one can set µ → 1/2 in the entropy formula, and that is more appropriate. Thus

we get

Sµn = 2

∞∑
l=1

(−1)l−1

l

[
elM +

e−lβ/2

sinh(lβ/2)

]
1

1− n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
− n

]
. (3.28)

The corresponding entanglement entropy is

Sµ = 2

∞∑
l=1

(−1)l−1

l

[
elM +

e−lβ/2

sinh(lβ/2)

] [
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.29)

This is very interesting! The results of the entanglement entropy (3.28) and Rényi

entropy (3.29) reveal that there is a finite contribution for β(µ − 1/2) = M = const. as

β →∞ and µ→ 1/2.

Sµfinite = 2
∞∑
l=1

(−1)l−1

l
elM

[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.30)
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We identify the chemical potential µ(= 1/2) as one of the energy levels of the Dirac fermion

on a circle. We repeat the computations to see the similar results for other values of the

chemical potential that coincide with the energy levels of the Dirac fermion as

β

(
µ− 2N + 1

2

)
= const. , β →∞ & µ→ 2N + 1

2
. (3.31)

Let us turn our attention to consider the periodic boundary condition on the spatial

circle, R-sector, with a = 0. The Rényi entropy has the form

Sµn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ2( kn

`t
2πL + iβµ

2π |iβ)

ϑ2( iβµ2π |iβ)

∣∣∣2 (3.32)

with the theta function representation

ϑ2(z|τ) = 2eπiτ/4 cos(πz)
∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm) . (3.33)

Similar computations show for the entanglement entropy

Sµ =
1

1− n

[ n−1
2∑

k=−n−1
2

log
∣∣∣e−βπ/4(y

1/2
1 + y

−1/2
1 )

e−βπ/4(y
1/2
2 + y

−1/2
2 )

∞∏
m=1

(1− qm)(1 + y1q
m)(1 + y−1

1 qm)

(1− qm)(1 + y2qm)(1 + y−1
2 qm)

∣∣∣2]∣∣∣∣
n=1

= 2
∞∑
l=1

(−1)l−1

l

(
cosh (lβµ)

sinh (lβ/2)
e−lβ/2 + e−lβµ

)[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.34)

The computation is valid for 0 ≤ µ < 1. We check that the second contribution in the

round bracket is non-zero for βµ = const. in the limit β → ∞ and µ → 0. In fact there

are non-zero contributions in the entanglement entropy when

β(µ−N) = const. , β →∞ & µ→ N . (3.35)

The integer N is identified as one of the energy levels of the Dirac fermion of a compact

circle with the periodic boundary condition.

Combining the NS and R sectors together, we find the entropies acquire non-zero

contribution when

β

(
µ− N

2

)
= const. , β →∞ & µ→ N

2
, (3.36)

for an integer N . Thus we show that the entanglement entropy at the zero temperature

limit has the ability to detect the energy levels of the underlying theory. We expect this

would happen generically, providing a useful way to probe the energy levels with a varying

chemical potential. For example, consider the anti-periodic fermion in the R-sector at zero

temperature. As one increases the chemical potential, the entanglement entropy picks up

a non-zero value each time the chemical potential passes through the energy level of the

system. It will be interesting to verify these features experimentally.
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3.3.2 Large radius limit

It has been argued that the entanglement entropy is independent of chemical potential for

the infinitely long space [17] based on symmetry argument in 2 dimensional field theory. In

this section we support and generalize the claim by evaluating the entanglement entropy

by taking the limit `t
L → 0, which can be considered as either an infinite space limit or a

limit of small systems size.

We first consider the fermion in the R-sector with a periodic boundary condition. The

entropy formula (3.18) reduces to (3.32)

Sµn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ2( kn

`t
2πL + iβµ

2π |i
β
2π )

ϑ2( iβµ2π |i
β
2π )

∣∣∣2 . (3.37)

A slightly modified representation for the theta function (3.33)

ϑ2(z|τ) = 2eπiτ/4 cos(πz)

∞∏
m=1

(1− qm)(1 + q2m + 2 cos(2πz)qm) (3.38)

is useful along with the identifications z1 = iβµ2π + k
n

`t
2πL , z2 = iβµ2π , q = e−β . One can have

the following expansion for `t
L � 1

1 + q2m + 2 cos(2πz1)qm

= 1 + q2m + 2 cos(2πz2)qm − 2qm
(
i
k

n

`t
L

sinh(βµ) +
1

2
(
k

n

`t
L

)2 cosh(βµ)

)
+ · · · , (3.39)

where we use cos(iβµ+ k
n
`t
L ) = cosh(βµ)− i kn

`t
L sinh(βµ)− 1

2( kn
`t
L )2 cosh(βµ) + · · · . Then

Sµn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣cos(πz1)

cos(πz2)

∏∞
m=1(1 + q2m + 2 cos(2πz1)qm)∏∞
m=1(1 + q2m + 2 cos(2πz2)qm)

∣∣∣2

=
1

1− n

n−1
2∑

k=−n−1
2

{
log
∣∣∣1− i k

n

`t
2L

tanh

(
βµ

2

)
− 1

8

(
k

n

`t
L

)2

+ · · ·
∣∣∣2

+
∞∑
m=1

log
∣∣∣1− i kn

`t
L sinh(βµ) + 1

2( kn
`t
L )2 cosh(βµ)

cosh(βm) + cosh(βµ)
+ · · ·

∣∣∣2}

=
−1

1− n

n−1
2∑

k=−n−1
2

(
k

n

`t
2L

)2
[

1 + tanh2

(
βµ

2

)
+

∞∑
m=1

4 + 4 cosh (βµ) cosh(βm)

(cosh(βm) + cosh(βµ))2

]
+ · · ·

=
n+ 1

12n

`2t
4L2

[
1 + tanh2

(
βµ

2

)
+
∞∑
m=1

4 + 4 cosh(βµ) cosh(βm)

(cosh(βm) + cosh(βµ))2

]
+O

(
`t
L

)4

. (3.40)

This result is valid for `t
L � 1. By taking n→ 1, we get

Sµ =
1

6

`2t
4L2

[
1 + tanh2

(
βµ

2

)
+

∞∑
m=1

4 + 4 cosh(βµ) cosh(βm)

(cosh(βm) + cosh(βµ))2

]
+O

(
`t
L

)4

. (3.41)

– 13 –



J
H
E
P
0
8
(
2
0
1
7
)
0
4
1

Thus we have demonstrated that the entanglement and Rényi entropies vanish as fast as(
`t
L

)2
for the large radius limit, `t

L � 1.

We also demonstrate this for the Dirac fermion in the NS-sector with an anti-periodic

boundary condition. The entanglement entropy is given by (3.21)

Sµ =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ3( kn

`t
2πL + iβµ

2π |iβ)

ϑ3( iβµ2π |iβ)

∣∣∣2∣∣∣∣
n=1

. (3.42)

A slightly modified representation for (3.22) is useful as ϑ3(z|τ) =
∏∞
m=1(1 − qm)(1 +

q2m−1 + 2 cos(2πz)qm−1/2) along with the notations y1 = e−βµ+i k
n
`t
L , y2 = e−βµ, q = e−β .

Thus

Sµ =
2

3

`2t
4L2

∞∑
m=1

1 + cosh(βµ) cosh((m− 1/2)β)

(cosh((m− 1/2)β) + cosh(βµ))2
+O

(
`t
L

)4

, (3.43)

where we again use a series expansion for `t
L � 1. Thus the entanglement entropy vanishes

at least as `2t /L
2 as the size approaches infinite space limit. These results confirm the earlier

claim [17] and extend the results for the multi-interval case in a straightforward manner.

3.3.3 High temperature limit

The high temperature limit of the entropies shows quite different behavior compared to

that of low temperature. It turns out that the limit is sensitive to the value of α due to

various arguments proportional to 1
τ in the ϑ functions. In the high temperature limit

β → 0, we get

1

τ
=

1

τ1 + iτ2
=

2π

α+ iβ
→

{
−i2π

β , α = 0 ,
2π
α , α 6= 0 .

(3.44)

Thus we explorer these two different cases separately in general. Due to the reason we

focus on J = α = 0 in this section. We consider this case first and comment about the

other later.

α = 0 case. Using (3.20) and focusing on the case α = 2πτ1 = J = 0, one can see that

the entropies in the NSNS sector, with anti-periodic conditions both on the spatial and

temporal circles, reduces to the formula

S̃µn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 2π2

β
(
k`t
n2πL

+iβµ
2π

)2

e
βµ2

2

ϑ3(µ− i
β
k
n
`t
L |

2πi
β )

ϑ3(µ|2πiβ )

∣∣∣2 . (3.45)

Here we note that the high temperature limit for the NSNS sector has the same as ϑ3 that

is used in the low temperature limit.
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Using the product representation in (3.22), we get the Rényi entropy as

S̃µn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 2π2

β
(
k`t
n2πL

+iβµ
2π

)2

e
βµ2

2

×
∞∏
m=1

(1− qm)(1 + y1q
m−1/2)(1 + y−1

1 qm−1/2)

(1− qm)(1 + y2qm−1/2)(1 + y−1
2 qm−1/2)

∣∣∣2

=
n+ 1

3n

1

β

`2t
4L2

+ 2
∞∑
l=1

(−1)l−1

l

cos(2πlµ)

sinh(πl/β)

1

1− n

[
sinh(π`tβL l)

sinh(2π2`t
nβL l)

− n

]
, (3.46)

where we use the following identifications y1 = e
2πiµ+ 2π

β
k
n
`t
L , y2 = e2πiµ, and q = e

− 4π2

β .

Here we use the high temperature expansion, β → 0. The computation is similar to that

in the low temperature limit.

By taking n→ 1 limit, we get the entanglement entropy in the high temperature limit,

S̃µ =
2

3β

`2t
4L2

+ 2
∞∑
l=1

(−1)l−1

l

cos(2πlµ)

sinh(2π2l/β)

[
1− πl

β

`t
L

cot

(
πl

β

`t
L

)]
. (3.47)

Here we comment on the results (3.46) and (3.47). We focus on the chemical potential

dependent part of the Rényi and entanglement entropies, and these results are explicitly

evaluated in [15, 16]. If we set µ → 0, the result reduces to that given in [24], which

also points out that the total entanglement entropy (including the chemical potential in-

dependent part) is the same as the thermal entropy. Note that the properties in the high

temperature limit is quite different because there is no non-trivial limit that facilitates the

interplay between the chemical potential and the energy levels of the Dirac fermion on

a circle.

We also consider the high temperature limit of the R-sector. The general formula (3.20)

in the RNS sector, with a periodic boundary condition on the spatial circle, reduces to

S̃µn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 2π2

β
(
k`t
n2πL

+iβµ
2π

)2

e
βµ2

2

ϑ4(µ− i
β
k
n
`t
L |

2πi
β )

ϑ4(µ|2πiβ )

∣∣∣2 . (3.48)

We note that the differences between ϑ3 given in (3.22) and ϑ4 are a couple of signs.

ϑ4(z|τ) =
∞∏
m=1

(1− qm)(1− yqm−1/2)(1− y−1qm−1/2) . (3.49)

The entropies are similar to those of the NSNS sector. For example, the entanglement

entropy is

S̃µ =
2

3β

`2t
4L2
− 2

∞∑
l=1

1

l

cos(2πlµ)

sinh(2π2l/β)

[
1− πl

β

`t
L

cot

(
πl

β

`t
L

)]
. (3.50)

There is a relative sign between the two terms that comes from the sign of ϑ4. Thermal

entropy is also sensitive to the sign as mentioned in [24].
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α 6= 0 case. Before moving on, we would like to mention that (3.47) and (3.50) are not

the only possible behaviors of the entropies in the high temperature limit, while they are

directly related to the known thermal entropies. Recall the two limits given in (3.44). We

compute the entropies for α 6= 0 case in the high temperature limit, β → 0.

Consider (3.20) and J = 0. Now in the presence of non-zero α = 2πτ1, we can set

β → 0 to compute the dominant contribution. The NSNS and RNS sectors are similar for

the high temperature limit, we consider them together.

S̃µn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−i 1

2α
(
k`t
nL

)2 ϑ3,4( kn
`t
L

1
α | −

2π
α )

ϑ3,4(0| − 2π
α )

∣∣∣2

=
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log

[
1± cos(2π

α [m− 1
2 ]− 1

α
k
n
`t
L )

1± cos(2π
α [m− 1

2 ])

]
. (3.51)

Where the indices 3,+ and 4,− indicate NSNS and RNS sectors, respectively. Even though

we are not able to sum over the index k explicitly, it is clear to see that the Rényi entropy

is oscillating function of α and the sub-system size `t.

3.4 Current

To appreciate the qualitative effects of the current J , it is useful to consider the twisted

boundary condition (2.2) as well. The mode expansion of the Dirac fermion has the form

ψ− =
∑

r̃∈Z+a+J

ψr(t)e
ir̃s . (3.52)

It is clear that the presence of current changes the periodicity of the compact fermion.

Note that one can change the periodic fermion into the anti-periodic fermion by changing

the strength of the current J . For a = 0, the fermion is periodic with J = 0, while it is

anti-periodic with J = 1/2. One can expect that this would produce physical effects on

the entropies.

Even before performing any more computations with current, we can appreciate the

physical effects of the current based on the computations done already in the previous

sections. Consider one of the simplest cases for α = 2πτ1 = 0 and µ = 0 at the zero

temperature limit T → 0. Let us choose a = 0 and increase the current from J = 0 to

J = 1/2 for the fixed anti-periodic boundary condition for the temporal circle. This changes

the boundary condition in the spatial circle from the periodic one to the anti-periodic

one. The corresponding entanglement entropies have been already computed in (3.24)

and (3.34). By setting µ = 0, we get

S =

 2
∑∞

l=1
(−1)l−1

l
1

sinh(lβ/2)

[
1− l `t2L cot

(
l `t2L

)]
, J = 0 ,

2
∑∞

l=1
(−1)l−1

l
cosh(lβ/2)
sinh(lβ/2)

[
1− l `t2L cot

(
l `t2L

)]
, J = 1/2 .

(3.53)

At zero temperature, the entanglement entropy vanishes for J = 0, while it has a non-zero

contribution for J = 1/2. Thus dialing current brings visible effects in the entanglement

entropy. It will be interesting to consider some experimental realizations of these effects.
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One can consider more general boundary conditions by including both a and J . We

are going to study a + J = 0 and a + J = 1/2 separately below. We postpone the study

for the more general boundary conditions for 0 < a+ J < 1/2.

3.4.1 Anti-periodic fermion

Let us consider first the anti-periodic fermion, that satisfies a+ J = 1/2. From (3.18), one

can get the Rényi entropy formula with the current dependence

SJn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ3( kn

`t
2πL + τ1J |τ)

ϑ3(τ1J |τ)

∣∣∣2 , (3.54)

where we set µ = 0 for simplicity. We study the entropies as a function of the current J

for fixed a + J = 1/2 in the low temperature limit, in the large radius limit, and in the

high temperature limit in turn. The computations are brief because they are similar to the

previous sections.

Low temperature limit. We compute the entropies (3.54), in the low temperature

limit β →∞, by using the product representation (3.22). The details are similar to those

in (3.23) by using the notations y1 = eiαJ+i k
n
`t
L , y2 = eiαJ , q = e2πiτ = eiα−β . The Rényi

entropy reads

SJn = 4

∞∑
l,m=1

(−1)l−1

l

cos([m− 1/2]αl) cos(αJl)

e(m−1/2)βl

1

1− n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
− n

]
.

(3.55)

The corresponding entanglement entropy is

SJ = 4
∞∑

l,m=1

(−1)l−1

l

cos([m− 1/2]αl) cos(αJl)

e(m−1/2)βl

[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.56)

The entropies depend on the current J non-trivially. That is markedly different from the

dependence of the entropies of the chemical potential µ. Furthermore it is more interesting

to note that the entropies depend on the parameter α = 2πτ1 in two different ways with

two cosine functions.

To see the effects of J and α more clearly, we consider the case l = m = 1 which

provides the dominant contribution to the entropies in the low temperature limit.

4e−
β
2 cos(α/2) cos(αJ)

[
1− `t

2L
cot

(
`t
2L

)]
. (3.57)

For a fixed α = 2πτ1, the change of current produces an oscillating behavior of the entropies

by the cosine function. When we dial the parameter α for a fixed J , the product of two

cosine functions produce an ‘interference pattern.’ The interference pattern would produce

the following beat frequency fb depending on the strength of the current as

cos(α/2) cos(αJ) −→

 fb = J/π , J < 1/2 ,

fb = 1/2π , J > 1/2 .
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The beat frequency is easy to measure! In this way one can identify the current J and the

dependence of J in the entropies.

Large Radius limit. In turn, we compute the entropies (3.54) in the large radius limit,

`t/L → 0. We use the modified product representation (3.22) that is written around the

equation (3.43) along with the notation y1 = eiαJ+i k
n
`t
L , y2 = eiαJ , q = e2πiτ ≡ eiα−β .

SJn =
(n+1)

3n

`2t
4L2

∞∑
m=1

[
[cosh([m− 1

2 ]β)cos([m− 1
2 ]α)+1]cos(αJ)

[cosh([m− 1
2 ]β)cos([m− 1

2 ]α)+cos(αJ)]2+sinh2([m− 1
2 ]β)sin2([m− 1

2 ]α)

+
([cosh([m− 1

2 ]β)cos([m− 1
2 ]α)+cos(αJ)]2−sinh2([m− 1

2 ]β)sin2([m− 1
2 ]α))sin2(αJ)

([cosh([m− 1
2 ]β)cos([m− 1

2 ]α)+cos(αJ)]2+sinh2([m− 1
2 ]β)sin2([m− 1

2 ]α))2

]

+O
(
`2t
L2

)4

. (3.58)

Taking n → 1 limit is straightforward. While the result is a little bit messy, it is clear to

check that the entropies vanish at least O(
`2t
L2 )2 as we take the large radius limit `t/L→ 0.

The result extends the earlier claim [17] in the presence of current. It is straightforward to

generalize the result for the multi-interval case.

High temperature limit. We compute the entropies (3.20) that is valid for the high

temperature limit β → 0. We set a+ J = 1/2 and µ = 0 for simplicity. Then we get

S̃Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−iπτ (

k`t
n2πL

+τ1J)2

e−i
π
τ

(τ1J)2

ϑ3( kn
`t

2πL
1
τ + τ1J

τ | −
1
τ )

ϑ3( τ1Jτ | −
1
τ )

∣∣∣2 . (3.59)

The limit is sensitive to the presence of α. Thus we study two cases α = 0 and α 6= 0

in turn.

For α = 2πτ1 = 0, we set τ = iβ/2π. Thus

S̃Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 1

2β
(
k`t
nL

)2
ϑ3(−i kn

`t
L

1
β |i

2π
β )

ϑ3(0|i2π
β )

∣∣∣2 (3.60)

=
(n+ 1)

3nβ

`2t
4L2

+

∞∑
l=1

(−1)l−1

l

2

sinh(πβ l)

1

1− n

[
sinh

(
π

β

`t
L
l

)
csch

(
2π2

βn

`t
L
l

)
− n

]
.

It is straightforward to get the corresponding entanglement entropy by taking n→ 1 limit.

The first term needs to be included to S̃0 to see the full entropies. The second term depends

on J through the boundary condition a+ J = 1/2 and thus the Hilbert space.

Now we turn to α 6= 0 case. Due to the presence of α, one can take the zero temperature

limit in a straightforward manner as 1
τ = 2π

α+iβ = 2π(α−iβ)
α2+β2 → 2π

α . Thus

S̃Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−i 2π2α (

k`t
n2πL

+ α
2π
J)2

e−i
2π2

α
( α
2π
J)2

ϑ3( kn
`t
L

1
α + J | − 2π

α )

ϑ3(J | − 2π
α )

∣∣∣2 . (3.61)
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The first factor inside the log is pure imaginary and would not contribute. The Rényi

entropy reads

S̃Jn =
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log

[
cos(2πJ) + cos(2π

α [m− 1
2 ]− 2π

α
k
n
`t
L )

cos(2πJ) + cos( 1
α [m− 1

2 ])

]
. (3.62)

Unfortunately, the sum over k is not easy to evaluate. There are further sub-leading

contributions as β → 0. It will be interesting to perform a numerical study for this limit.

3.4.2 Periodic fermion

Let us consider the periodic fermion that satisfies the condition a + J = 0. From (3.18),

one can get the Rényi entropy with the current dependence

SJn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ2( kn

`t
2πL + τ1J |τ)

ϑ2(τ1J |τ)

∣∣∣2 , (3.63)

where we set µ = 0. We study the entropies as a function of the current J in the low

temperature limit, the large radius limit, and the high temperature limit in turn for a+J =

0. There are interesting physical differences between the periodic and anti-periodic fermions

that come along from the difference between ϑ2 and ϑ3. ϑ2 (3.33) has a front factor in

addition to the infinite product.

Low temperature limit. The computation for the entanglement entropy (3.63) for

β → ∞ is similar to that of the anti-periodic fermion done in (3.55). The difference is to

use the ϑ2 given in (3.33) instead of ϑ3. Thus

SJn = 2

∞∑
l=1

(−1)l−1

l
cos(αJl)

(
1 +

∞∑
m=1

2
cos(mαl)

emβl

)
1

1− n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
− n

]
.

(3.64)

The entanglement entropy has the form.

SJ = 2
∞∑
l=1

(−1)l−1

l
cos(αJl)

(
1 +

∞∑
m=1

2
cos(mαl)

emβl

)[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.65)

The entropies have a non-trivial dependence on current J , only on the combination of αJ ,

in the zero temperature limit. The contributions with the sum over m have the similar

properties such as beat frequency compared to those of the anti-periodic fermion mentioned

in the previous section.

The first term in the round brackets in (3.64) and (3.65), coming from the front fac-

tor of the ϑ2, gives a distinct physical significance. It is actually non-vanishing at zero

temperature as we discuss already for the second case in (3.53).

SJ(T = 0) = 2
∞∑
l=1

(−1)l−1

l
cos(αJl)

[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.66)
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We note that the entropies oscillate as we change αJ . Thus they can become negative.

Of course, we need to include the entropy S0 that is independent of chemical potential

and current.

Large radius limit. In the large radius limit, `t/L → 0, the entropies (3.63) can be

evaluated similar to the previous case with the anti-periodic fermion (3.58) to give

SJA =
2

3

`2t
4L2

(
cos−2

[
αJ
2

]
4

+
∞∑
m=1

[
[cosh(mβ) cos(mα) + 1] cos(αJ)

[cosh(mβ) cos(mα) + cos(αJ)]2 + [sinh(mβ) sin(mα)]2

+
([cosh(mβ) cos(mα) + cos(αJ)]2 − sinh2(mβ) sin2(mα)) sin2(αJ)

([cosh(mβ) cos(mα) + cos(αJ)]2 + [sinh(mβ) sin(mα)]2)2

])

+O
(
`2t
L2

)4

. (3.67)

Once again, the first term is an additional contribution compared to the anti-periodic

fermion given in (3.58). That comes from the cosine factor in the ϑ2. Nevertheless, all the

contributions vanish as fast as O(
`2t
L2 )2.

High temperature limit. We compute the entropies (3.20) that is valid for the high

temperature limit β → 0. We set a + J = 0 and µ = 0 for simplicity. The Rńyi entropy

can be computes as

S̃Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−iπτ (

k`t
n2πL

+τ1J)2

e−i
π
τ

(τ1J)2

ϑ4( kn
`t

2πL
1
τ + τ1J

τ | −
1
τ )

ϑ4( τ1Jτ | −
1
τ )

∣∣∣2 . (3.68)

Similar to the anti-periodic case, there are two different non-trivial limits depending on α.

For α = 2πτ1 = 0, we set τ = iβ/2π. Thus

S̃Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 1

2β
(
k`t
nL

)2
ϑ4(−i kn

`t
L

1
β |i

2π
β )

ϑ4(0|i2π
β )

∣∣∣2
=
n+ 1

3nβ

`2t
4L2
−
∞∑
l=1

1

l

2

sinh(2π2

β l)

1

1− n

[
sinh

(
2π2

β

`t
L
l

)
csch

(
2π2

βn

`t
L
l

)
− n

]
. (3.69)

This is similar to that of the NSNS sector. It is straightforward to get the corresponding

entanglement entropy by taking n→ 1 limit.

Now we turn to α 6= 0 case. The Rńyi entropy has the form

S̃Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−i 2π2α (

k`t
n2πL

+ α
2π
J)2

e−i
2π2

α
( α
2π
J)2

ϑ4( kn
`t
L

1
α + J | − 2π

α )

ϑ4(J | − 2π
α )

∣∣∣2 . (3.70)

Similar to the NSNS sector, the first factor inside the log is pure imaginary and would

not contribute. Due to the presence of α, one can take the zero temperature limit in a
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straightforward manner as 1
τ →

2π
α similar to the previous case. The Rényi entropy reads

S̃Jn =
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log

[
cos(2πJ)− cos(2π

α [m− 1
2 ]− 1

α
k
n
`t
L )

cos(2πJ)− cos(2π
α [m− 1

2 ])

]
. (3.71)

The result is similar to that of the anti-periodic fermion given in (3.62). Only difference

is the relative sign between two cosine terms in the log. While the sum over k is not easy

to evaluate, it is clear that the individual term contributes with the periodic behavior.

There are further sub-leading contributions as β → 0. It will be interesting to perform a

numerical study for this.

3.5 Chemical potential and current

In this section we consider both the current and chemical potential to compute the entropies

for the anti-periodic and periodic fermions. We are going to check that the results reduce

to the previous ones in the appropriate limits.

3.5.1 Anti-periodic fermion

Let us consider the anti-periodic fermion first, that has the condition a + J = 1/2.

From (3.18), one can get the entropies with the current and chemical potential depen-

dences

Sµ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ3( kn

`t
2πL + τ1J + iτ2µ|τ)

ϑ3(τ1J + iτ2µ|τ)

∣∣∣2 . (3.72)

The computations are straightforward and we quote the results for the appropriate limits.

Low temperature limit. For the low temperature limit, β →∞, the Rényi entropy is

SµJn = 2
∞∑

l,m=1

(−1)l−1

l e(m−1/2)βl

[
elβµ cos(αl(J −m+ 1/2)) + e−lβµ cos(αl(J +m− 1/2))

]
× 1

1− n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
− n

]
, (3.73)

where we use the product representation (3.22) along with the notation y1 =

e−βµ+iαJ+i k
n
`t
L , y2 = e−βµ+iαJ , q = e2πiτ ≡ eiα−β to follow the previous computations.

The entanglement entropy is give by taking n→ 1 limit

SµJ = 2
∞∑

l,m=1

(−1)l−1

l

cos(αl[J−m+ 1
2 ])

e(m− 1
2
−µ)βl

[
1+e−2lβµ cos(αl[J+m− 1

2 ])

cos(αl[J−m+ 1
2 ])

][
1−l `t

2L
cot

(
l
`t
2L

)]
.

(3.74)

For J = 0 and α = 0, the result reduces to (3.24). For µ = 0, it is also consistent with (3.56)

after a small algebra. The result is valid for −1/2 < µ < 1/2. For other values of µ, one

can recompute the entropies similar to that of (3.28). This confirms that the entropies at

zero temperature has a non-trivial chemical potential dependence when it coincides with

one of the energy levels of the theory.
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Large radius limit. In the large radius limit `t/L � 1, the computation is rather

involved, and thus we provide more details here. We use the product representation (3.22)

with y1 = e−βµ+iαJ+i k
n
`t
L , y2 = e−βµ+iαJ , q = eiα−β . The key element comes from the

following observation

(1+y1q
m−1/2)(1+y−1

1 qm−1/2)

(1+y2qm−1/2)(1+y−1
2 qm−1/2)

=
cos([m−1/2][α+iβ])+cos(αJ+iβµ+ k

n
`t
L )

cos([m−1/2][α+iβ])+cos(αJ+iβµ)
(3.75)

= 1−
k
n
`t
L sin(αJ+iβµ)+ 1

2
k2

n2
`2t
L2 cos(αJ+iβµ)

cos([m−1/2][α+iβ])+cos(αJ+iβµ)
+O

(
`t
L

)3

.

This is an argument of log and has the following expansion log(1 + x) =
∑∞

l=1
(−1)l−1

l xl.

The linear term proportional to `t/L vanishes with the sum over k, and thus the first

non-trivial order starts with (`t/L)2. After adding the complex conjugate part and using
1

1−n [
∑n−1

2

k=−n−1
2

k2

n2 ] = −(n+ 1)/(12n), we have

SJn =
(n+ 1)

12n

`2t
L2

∞∑
m=1

[
D1 × cosh(βµ) cos(αJ) +D2 × sinh(βµ) sin(αJ)

D2
1 +D2

2

+
N1 × (D2

1 −D2
2)−N2 ×D1 ×D2

(D2
1 +D2

2)2

]
+O

(
`2t
L2

)4

, (3.76)

where

D1 = cosh([m− 1/2]β) cos([m− 1/2]α) + cosh(βµ) cos(αJ) ,

D2 = sinh([m− 1/2]β) sin([m− 1/2]α) + sinh(βµ) sin(αJ) ,

N1 = cosh2(βµ) sin2(αJ)− sinh2(βµ) cos2(αJ) = [1− cosh(2βµ) cos(2αJ)]/2 ,

N2 = 4 sinh(βµ) cosh(βµ) sin(αJ) cos(αJ) = sinh(2βµ) sin(2αJ) . (3.77)

The entanglement entropy can be obtained by n→ 1. Now one can check that this reduces

to the case with current (µ = 0) evaluated in (3.58), not to mention to the case with only

chemical potential (α = J = 0) evaluated in (3.43).

Thus the entropies vanish at least as `2t /L
2 as the size approaches the infinite space

limit. These results confirm the earlier claim for a single interval in the case of the entan-

glement entropy [17] and extend to the case with both the chemical potential and current

and for the multi-interval case. As we see below, the same is true for the periodic fermion

as well.

High temperature limit. We compute the entropies (3.20) for the anti-periodic bound-

ary condition a + J = 1/2 in the high temperature limit β → 0. We consider the high

temperature case with more general setting. As we briefly mention before, the high tem-

perature limit is sensitive to the parameter α. For the limit β → 0, we get

1

τ
=

1

τ1 + iτ2
=

2π

α+ iβ
→

{
−i2π

β , α = 0 ,
2π
α , α 6= 0 .

(3.78)
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We first consider α = 2πτ1 = 0 limit. Then

S̃µ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 2π2

β
(
k`t
n2πL

+iβµ
2π

)2

e
− 2π2

β
(iβµ

2π
)2

ϑ3(−i kn
`t
L

1
β + µ|i2π

β )

ϑ3(µ|i2π
β )

∣∣∣2 . (3.79)

It looks like that the dependence of J disappears as we set α = 0. The current dependence

is still there with the condition a+ J = 1/2. The Rényi entropy has the following form.

S̃µ,Jn =
(n+ 1)

3n

1

β

`2t
4L2

+
∞∑

m,l=1

(−1)l−1 cos[2πlµ]

le
4π2

β
(m− 1

2
)l

4

1− n

[
sinh

(
πl

β

`t
L

)
csch

(
πl

β

`t
nL

)
− n

]
.

(3.80)

This result is consistent, after summing over the index m, with (3.46) and (3.60) with µ = 0.

We turn to α 6= 0 case. We can get the dominant contribution by taking β → 0. Thus

S̃µ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−i πα (

k`t
n2πL

+ α
2π
J)2

e−i
π
α

( α
2π
J)2

ϑ3( kn
`t
L

1
α + J | − 2π

α )

ϑ3(J | − 2π
α )

∣∣∣2 . (3.81)

This dominant contribution turns out to be the same as the case with current because the

chemical potential dependence disappears with β → 0. Thus the Rényi entropy reads

S̃Jn =
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log
[cos(2πJ) + cos(2π

α [m− 1
2 ]− 1

α
k
n
`t
L )

cos(2πJ) + cos(2π
α [m− 1

2 ])

]
. (3.82)

This result is consistent with (3.51) with J = 0 and (3.62).

3.5.2 Periodic fermion

Let us consider the periodic fermion, a + J = 0. From (3.18), one can get the general

formula for the Rényi entropy with the chemical potential and current dependence

Sµ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ2( kn

`t
2πL + τ1J + iτ2µ|τ)

ϑ2(τ1J + iτ2µ|τ)

∣∣∣2 . (3.83)

Here we also note the ϑ2 (3.33), compared to ϑ3, has extra cosine factor that contributes

to the entropies.

Low temperature limit. For the low temperature limit, β →∞, the Rényi entropy is

SµJn = 2

∞∑
l=1

(−1)l−1

l
e−µβl cos(αJl)

1

1−n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
−n
]

(3.84)

+2

∞∑
l,m=1

(−1)l−1

l

cos(αl[J−m])

e(m−µ)βl

[
1+e−2lβµ cos(αl[J+m])

cos(αl[J−m])

]

× 1

1−n

[
sin

(
`t
2L
l

)
csc

(
1

n

`t
2L
l

)
−n
]
.
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The result is valid for 0 ≤ µ < 1. We note that the first line gives a non-vanishing

contribution for µβ = const. for µ → 0 and β → ∞. One can repeat the computation

for 0 < µ < 2 with a slightly modified theta function as above. And the entanglement

entropy is

SµJ = 2
∞∑
l=1

(−1)l−1

l
e−µβl cos(αJl)

[
1− l `t

2L
cot

(
l
`t
2L

)]
(3.85)

+ 2

∞∑
l,m=1

(−1)l−1

l

cos(αl[J −m])

e(m−µ)βl

[
1 + e−2lβµ cos(αl[J +m])

cos(αl[J −m])

] [
1− l `t

2L
cot

(
l
`t
2L

)]
.

Extending the computations to the other values is straightforward and reveals a new result

as discussed in the previous sections. For J = 0 and α = 0, the result reduces to (3.34).

For µ = 0, it is also consistent with (3.65).

Large radius limit. For the large radius limit `t/L � 1, the computation is similar to

that of the previous section. Thus

SJn =
n+ 1

12n

`2t
L2

(
1

4
+

1− 1/2(cosh(2βµ) + cos(2αJ))

4(cosh(βµ) + cos(αJ))2

+

∞∑
m=1

[
D̃1 × cosh(βµ) cos(αJ) + D̃2 × sinh(βµ) sin(αJ)

D̃2
1 + D̃2

2

+
Ñ1 × (D̃2

1 − D̃2
2)− Ñ2 × D̃1 × D̃2

(D̃2
1 + D̃2

2)2

])
+O

(
`2t
L2

)4

, (3.86)

where

D̃1 = cosh(mβ) cos(mα) + cosh(βµ) cos(αJ) ,

D̃2 = sinh(mβ) sin(mα) + sinh(βµ) sin(αJ) ,

Ñ1 = cosh2(βµ) sin2(αJ)− sinh2(βµ) cos2(αJ) = [1− cosh(2βµ) cos(2αJ)]/2 ,

Ñ2 = 4 sinh(βµ) cosh(βµ) sin(αJ) cos(αJ) = sinh(2βµ) sin(2αJ) . (3.87)

One can notice the first line that is different from the result (3.76). This is due to the

cosine factor in front of the theta function (3.33). Now one can check that this reduces to

the case with current (µ = 0) evaluated in (3.40), not to mention to the case with only

chemical potential (α = J = 0) evaluated in (3.67).

High temperature limit. We compute the entropies (3.20) that is valid for the high

temperature limit β → 0. We set a+ J = 0 for the periodic boundary condition. Then

S̃µ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−iπτ (

k`t
n2πL

+τ1J+iτ2µ)2

e−i
π
τ

(τ1J+iτ2µ)2

ϑ4( kn
`t

2πL
1
τ + τ1J+iτ2µ

τ | − 1
τ )

ϑ4( τ1J+iτ2µ
τ | − 1

τ )

∣∣∣2 . (3.88)

Due to the presence of α, one can take two different high temperature limits.
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For α = 0, we have the Rényi entropy with the similar computations done is the

NSNS case.

S̃µ,Jn =
n+ 1

3nβ

`2t
4L2
− 4

1− n

∞∑
m,l=1

1

l

cos[2πlµ]

e
4π2l
β

(m− 1
2

)

[
sinh

(
πl

β

`t
L

)
csch

(
πl

β

`t
Ln

)
− n

]
. (3.89)

This reduces to (3.50) for n→ 1 limit and (3.69) for µ→ 0, and serves as consistency checks.

For α 6= 0 case. We take β = 0 to get the dominant contribution. The Rńyi entropy

has the form

S̃µ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−i 2π2α (

k`t
n2πL

+ α
2π
J)2

e−i
2π2

α
( α
2π
J)2

ϑ4( kn
`t
L

1
α + J | − 2π

α )

ϑ4(J | − 2π
α )

∣∣∣2 . (3.90)

Similar to the NSNS sector, the first factor inside the log is pure imaginary and would

not contribute. Due to the presence of α, one can take the zero temperature limit in a

straightforward manner as 1
τ →

2π
α . The Rényi entropy reads

S̃µ,Jn =
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log

[
cos(2πJ)− cos(2π

α [m− 1
2 ]− 1

α
k
n
`t
L )

cos(2πJ)− cos(2π
α [m− 1

2 ])

]
. (3.91)

The result reduces to (3.51) and (3.71), and is similar to that of the anti-periodic fermion.

Only difference is the relative sign between two cosine terms in the log. While the sum over

k is not easy to evaluate, it is clear that the individual term contributes with the periodic

behavior. There are further sub-leading contributions as β → 0. It will be interesting to

perform a numerical study for this limit.

3.6 With only modulus parameters

For completeness, we present the results without the chemical potential and current µ =

J = 0, yet keeping the modulus parameters τ = τ1 + iτ2 = 1
2π (α + iβ) 6= 0. Here we

only consider the entanglement entropy, while it is straightforward to generalize to the

Rényi entropy.

3.6.1 Anti-periodic fermion

Let us consider the anti-periodic fermion first, a = 1/2. From (3.18), one can get the

entanglement entropy with current dependence

S =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ3( kn

`t
2πL |τ)

ϑ3(0|τ)

∣∣∣2]
n=1

. (3.92)

For the low temperature limit, β →∞, the entanglement entropy reads

SA = 4

∞∑
l,m=1

(−1)l−1

l

cos(αl[m− 1/2])

e(m−1/2)βl

[
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.93)
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We note that the entanglement entropy has separate contributions from both the modulus

parameters α and β.

For the large radius limit `t/L� 1, we also compute the entanglement entropy as

S =
2

3

`2t
4L2

∞∑
m=1

cosh([m− 1
2 ]β) cos([m− 1

2 ]α) + 1

[cosh([m− 1
2 ]β) cos([m− 1

2 ]α) + 1]2 + [sinh([m− 1
2 ]β) sin([m− 1

2 ]α)]2

+O
(
`2t
L2

)4

. (3.94)

Thus it still vanishes as O
(
`2t
L2

)
in the large radius limit. This tells that the entanglement

entropy is actually independent of the spin structures or twisted boundary conditions at

infinite space limit. This is also true for the periodic boundary condition. It will be

interesting to explorer this for more general twisted boundary condition when 0 < a < 1/2.

For the high temperature limit, the Rényi entropy for α = 0 is given by

S̃n =
(n+ 1)

3n

1

β

`2t
4L2

+
∞∑
l=1

(−1)l−1

l sinh
(

4π2

β l
) 2

1− n

[
sinh

(
πl

β

`t
L

)
csch

(
πl

β

`t
nL

)
− n

]
. (3.95)

This result is consistent with (3.80). Entanglement entropy is straightforward to evaluate.

For α 6= 0, we can get the dominant contribution by taking β → 0. Thus the Rényi

entropy reads

S̃Jn =
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log

[
cos(2πJ) + cos(2π

α [m− 1
2 ]− 1

α
k
n
`t
L )

cos(2πJ) + cos(2π
α [m− 1

2 ])

]
. (3.96)

This result is consistent with (3.82).

3.6.2 Periodic fermion

Let us consider the periodic fermion, a = 0. From (3.18), one can get the entanglement

entropy with the chemical potential and current dependence

S =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ2( kn

`t
2πL |τ)

ϑ2(0|τ)

∣∣∣2]
n=1

. (3.97)

For the low temperature limit, β →∞, the entanglement entropy is given by

S = 2

∞∑
l=1

(−1)l−1

l

[
1 + 2

∞∑
m=1

cos(αlm)

emβl

] [
1− l `t

2L
cot

(
l
`t
2L

)]
. (3.98)

Thus it has non-vanishing contribution at zero temperature.

For the large radius limit `t/L� 1, the entanglement entropy is

S =
2

3

`2t
4L2

(
1

4
+

∞∑
m=1

[
cosh(mβ) cos(mα) + 1

[cosh(mβ) cos(mα) + 1]2 + [sinh(mβ) sin(mα)]2

])
+O

(
`2t
L2

)4

.

(3.99)

Thus it still vanishes as
`2t
L2 in the large radius limit.
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We compute the entropies (3.20) that is valid for the high temperature limit β → 0.

We set a = J = µ = 0 for the periodic boundary condition without background fields.

Then

S̃n =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e−iπτ (

k`t
n2πL

)2 ϑ4( kn
`t

2πL
1
τ | −

1
τ )

ϑ4(0| − 1
τ )

∣∣∣2 . (3.100)

Due to the presence of α, one can take two different high temperature limits. For α = 0,

we have the Rényi entropy with the similar computations done is the NSNS case.

S̃n =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− 2π2

β
(
k`t
n2πL

)2
ϑ4(−i kn

`t
L

1
β |i

2π
β )

ϑ4(0|i2π
β )

∣∣∣2
=
n+ 1

3nβ

`2t
4L2
− 2

1− n

∞∑
l=1

1

l

1

sinh
(

2π2l
β

) [sinh

(
πl

β

`t
L

)
csch

(
πl

β

`t
Ln

)
− n

]
. (3.101)

This is consistent with (3.89).

Now we turn to α 6= 0 case. To get the dominant contribution, we take β = 0. The

Rńyi entropy (3.100) has the form

S̃n =
2

1− n

∞∑
m=1

n−1
2∑

k=−n−1
2

log

[
1− cos(2π

α [m− 1
2 ]− 1

α
k
n
`t
L )

1− cos(2π
α [m− 1

2 ])

]
. (3.102)

The result is consistent with (3.91) by setting the background fields to vanish µ = J = 0.

While the sum over k is not easy to evaluate, it is clear that the individual term contributes

with the periodic behavior. There are further sub-leading contributions as β → 0. It will

be interesting to perform a numerical study for this limit.

4 Mutual information

Mutual (Rényi) information measures the entanglement between two intervals, A and B,

of length `A and `B separated by `C . It is given by

In(A,B) = Sn(A) + Sn(B)− Sn(A ∪B) . (4.1)

This is a finite quantity, free of UV divergences. Mutual (Rényi) information turns out to

share the same functional dependences on the current J and the chemical potential µ as

those of the Rényi and the entanglement entropies.

Using (4.1) and the results given in section 3.2, we can obtain the general formula

for the mutual Rényi information in the presence of the background fields. Similar to the

entropies, the mutual information factories into two different contributions.

In(A,B) = I0
n(A,B) + Iµ,Jn (A,B) . (4.2)
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The first contribution is independent of the background fields [16].

I0
n(A,B) =

1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ[1/21/2](

`A+`B+`C
2πL |τ) ϑ[1/21/2](

`C
2πL |τ)

ϑ[1/21/2](
`A+`C

2πL |τ) ϑ[1/21/2](
`B+`C

2πL |τ)

∣∣∣2 k2n2

= −n+ 1

6n
log
∣∣∣ϑ[1/21/2](

`A+`B+`C
2πL |τ) ϑ[1/21/2](

`C
2πL |τ)

ϑ[1/21/2](
`A+`C

2πL |τ) ϑ[1/21/2](
`B+`C

2πL |τ)

∣∣∣ . (4.3)

This has been studied, and we focus on the other contribution. The second one has all the

dependences on the current and chemical potential.

Iµ,Jn =
1

1−n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ[1/2−a−Jb−1/2 ]( kn

`A
2πL+τ1J+iτ2µ|τ) ϑ[1/2−a−Jb−1/2 ]( kn

`B
2πL+τ1J+iτ2µ|τ)

ϑ[1/2−a−Jb−1/2 ](τ1J+iτ2µ|τ) ϑ[1/2−a−Jb−1/2 ]( kn
`A+`B

2πL +τ1J+iτ2µ|τ)

∣∣∣2 .
(4.4)

It is interesting to note that the parts of the mutual information that depend on the

current and the chemical potential are actually independent of `C , the separation distance

between the two sub-systems. This is even more clearer when we evaluate the information

explicitly below. We note that it would be interesting to find out some special cases where

Iµ,Jn dominates over I0
n, so that the chemical potential and current dependences would be

clearly visible.

We provide detailed studies of it for the Dirac fermion as a function of chemical poten-

tial or/and current on a torus in the low temperature, large radius, and high temperature

limits, in turn. For each limit, the computation is similar to the previous cases, and we fo-

cus on the results and their physical properties. We organize each sub-section by presenting

the results for NSNS sector, followed by RNS sector.

4.1 Low temperature limit

In this section, we consider the mutual information of the Dirac fermion in the low tem-

perature limit, β →∞. We evaluate the NSNS sector and RNS sector in turn.

Anti-periodic fermion. In the low temperature limit, we compute the Mutual Rényi

information for the NSNS sector for both the anti-periodic boundary conditions on spatial

and temporal circles. We use the formula (4.4) with b = 1/2, a+ J = 1/2 and take the low

temperature limit β →∞.

Iµ,Jn (A,B) =
1

1−n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ3( kn

`A
2πL+τ1J+iτ2µ|τ) ϑ3( kn

`B
2πL+τ1J+iτ2µ|τ)

ϑ3(τ1J+iτ2µ|τ) ϑ3( kn
`A+`B
2πL +τ1J+iτ2µ|τ)

∣∣∣2
=

2

n−1

∞∑
m,l=1

(−1)l−1

leβl(m−1/2)

[
e−βµl cos

(
αl

[
m− 1

2

]
+αJl

)

+eβµl cos

(
αl

[
m− 1

2

]
−αJl

)]
×

[
n−

sin
(
l`A
2L

)
sin
(
l
n
`A
2L

)− sin
(
l`B
2L

)
sin
(
l
n
`B
2L

)+
sin
( l(`A+`B)

2L

)
sin
(
l
n
`A+`B

2L

) ] . (4.5)
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This result is valid for −1/2 < µ < 1/2. For other values of µ, one can get modified results

similar to those of the entropies. The computation is straightforward. The corresponding

mutual information can be evaluated by taking n→ 1 limit.

Iµ,J(A,B) = 2

∞∑
m,l=1

(−1)l−1

leβl(m−1/2)

[
e−βµl cos

(
αl

[
m− 1

2

]
+αJl

)
+eβµl cos

(
αl

[
m− 1

2

]
−αJl

)]

×
[
1− l

2L

{
`A cot

(
l`A
2L

)
+`B cot

(
l`B
2L

)
−(`A+`B)cot

(
l (`A+`B)

2L

)}]
. (4.6)

There are several interesting observations to make here. First, we confirm that the mutual

(Rényi) information Iµ,Jn (A,B) is independent of `C , and thus the separation between the

two sub-systems, while the part I0(A,B) depends on `C . Second, Iµ,Jn (A,B) has the same

functional dependences on µ and J as the entropies. This can be explicitly checked with

the results given in (3.73) and (3.74). Third, we compute the mutual information for the

special case `A = `B = ˜̀
t.

IµJ = 2

∞∑
l,m=1

(−1)l−1

l

cos(αl[J−m+ 1
2 ])

e(m− 1
2
−µ)βl

[
1+e−2lβµ cos(αl[J+m− 1

2 ])

cos(αl[J−m+ 1
2 ])

][
1−l

˜̀
t

L
csc

(
l
˜̀
t

L

)]
.

(4.7)

This can be compared with (3.74). The mutual information is identical to the entanglement

entropy, except the dependence on the subsystem sizes.

For the special case J = α = 0, we get the chemical potential dependent part of the

Mutual Rényi information.

Iµn =
2

n−1

∞∑
l=1

(−1)l−1

l

cosh(lβµ)

sinh( lβ2 )

n− sin
(
l`A
2L

)
sin
(
l
n
`A
2L

)− sin
(
l`B
2L

)
sin
(
l
n
`B
2L

)+
sin
(
l(`A+`B)

2L

)
sin
(
l
n
`A+`B

2L

)
 . (4.8)

The result is only valid for −1/2 < µ < 1/2. For the other values of µ, it is straightforward

to evaluate following the previous discussion. On the other hand, the current dependent

Mutual Rényi information can be obtained by µ = 0.

IJn =
4

n− 1

∞∑
m,l=1

(−1)l−1

leβl(m−1/2)
cos

(
αl

[
m− 1

2

])
cos(αJl)

[
n− · · ·

]
, (4.9)

where the · · · represent the same dependence of sine function given in the Mutual Rényi

information in (4.5). We find that the mutual (Rényi) information has the same dependence

on µ and J as the entropies.
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Periodic fermion. The Mutual Rényi information for the RNS sector for the periodic

boundary condition on the spatial circle can be computed in a similar way. We use b =

1/2, a+ J = 0

Iµ,Jn (A,B) =
1

1−n

n−1
2∑

k=−n−1
2

log
∣∣∣ϑ2( kn

`A
2πL+τ1J+iτ2µ|τ) ϑ2( kn

`B
2πL+τ1J+iτ2µ|τ)

ϑ2(τ1J+iτ2µ|τ) ϑ2( kn
`A+`B

2πL +τ1J+iτ2µ|τ)

∣∣∣2

=
2

n−1

∞∑
l=1

(−1)l−1

l

n− sin
(
l`A
2L

)
sin
(
l
n
`A
2L

)− sin
(
l`B
2L

)
sin
(
l
n
`B
2L

)+
sin
( l(`A+`B)

2L

)
sin
(
l
n
`A+`B

2L

)
 (4.10)

×

[
e−βµl cos(αJl)+

∞∑
m=1

e−βlm
{
e−βµl cos(αl[m+J ])+eβµl cos(αl[m−J ])

}]
.

This result is valid for 0 ≤ µ < 1. The corresponding mutual information can be evaluated

by taking n→ 1 limit.

Iµ,J (A,B) = 2

∞∑
l=1

(−1)l−1

l

[
cos(αJl)

eβµl
+

∞∑
m=1

e−βlm
{
e−βµl cos(αl[m+J ])+eβµl cos(αl[m−J ])

}]

×
[
1− l

2L

{
`A cot

(
l`A
2L

)
+`B cot

(
l`B
2L

)
−(`A+`B)cot

(
l(`A+`B)

2L

)}]
. (4.11)

The mutual (Rényi) information Iµ,Jn (A,B) is independent of `C and has the same func-

tional dependences on µ and J as the entropies, similar to the anti-periodic case.

Compared to the mutual (Rényi) information of the NSNS sector given in (4.5), that

of the RNS sector has a distinct contribution that is proportional to cos(αJl) in the first

line. Interestingly, this term provide a non-zero contribution in the zero temperature limit,

βµ = M̃ = const. for β →∞, µ→ 0.

2
∞∑
l=1

(−1)l−1

l

cos(αJl)

eM̃l

[
1− l

2L

{
`A cot

(
l`A
2L

)
+`B cot

(
l`B
2L

)
−(`A+`B)cot

(
l(`A+`B)

2L

)}]
.

(4.12)

The mutual (Rényi) information turns out to be non-zero for

µ =
N

2
, (4.13)

which can be identified as the energy levels of the Dirac fermion on a circle. This is

explained in detail in the previous section 3.3 with µ 6= 0 and J = 0.

For the special case J = α = 0, we get the chemical potential dependent part of the

Mutual Rényi information.

Iµn =
2

n−1

∞∑
l=1

(−1)l−1

l

(
e−βµl+

cosh(lβµ)

e
βl
2 sinh( lβ

2
)

)n− sin
(
l`A
2L

)
sin
(
l
n
`A
2L

)− sin
(
l`B
2L

)
sin
(
l
n
`B
2L

)+
sin
(
l(`A+`B)

2L

)
sin
(
l
n
`A+`B

2L

)
 .

(4.14)
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The result is only valid for 0 ≤ µ < 1. For the other values of µ, it is straightforward

to evaluate following the previous discussion. On the other hand, the current dependent

Mutual Rényi information can be obtained by µ = 0.

IJn =
4

n− 1

∞∑
l=1

(−1)l−1

l

(
cos(αJl) + 2

∞∑
m=1

e−βlm cos(αlm) cos(αJl)

)[
n− · · ·

]
, (4.15)

where the · · · represent the same dependence of sine function given in the Mutual Rényi

information in (4.5). We find that the mutual Rényi information has the same dependence

on µ and J . The first term in the bracket is special for the RNS sector.

4.2 Large radius limit

The large radius limit of the mutual (Rényi) information is straightforward to evaluate. The

computation becomes much more complicated compared to the entropies. It is relatively

easy to see that the Mutual information also vanishes at least O
(

( `AL )2, ( `BL )2, `A`B
L2

)
. We

are not going to explicitly write the result here.

4.3 High temperature limit

For the analysis in the high temperature limit, the general formulas (4.3) and (4.4) can

be rewritten by using the modular transformation. The mutual information (4.3) that is

independent of the background gauge fields slightly change

Ĩ0
n(A,B) = −n+ 1

6n
log
∣∣∣e− iπτ (

`A+`B+`C
2πL

)2− iπ
τ

(
`C
2πL

)2

e−
iπ
τ

(
`A+`C
2πL

)2− iπ
τ

(
`B+`C
2πL

)2

ϑ[1/21/2](
`A+`B+`C

2πLτ |−1
τ ) ϑ[1/21/2](

`C
2πLτ |

−1
τ )

ϑ[1/21/2](
`A+`C
2πLτ |

−1
τ ) ϑ[1/21/2](

`B+`C
2πLτ |

−1
τ )

∣∣∣ .
(4.16)

The high temperature limit is sensitive to the parameter α = 2πτ1. For α 6= 0, it is

straightforward to evaluate the zero temperature limit β → 0 by using 1
τ = 2π

α+iβ →
2π
α .

We get

Ĩ0
n = −n+ 1

6n
log

[
sin(π `A+`B+`C

Lα ) sin(π `CLα)

sin(π `A+`C
Lα ) sin(π `B+`C

Lα )

×
[

cos(2π `A+`B+`C
Lα )− cos(4π2

α )
][

cos(2π `CLα)− cos(4π2

α )
][

cos(2π `A+`C
Lα )− cos(4π2

α )
][

cos(2π `B+`C
Lα )− cos(4π2

α )
] ] . (4.17)

For α = 0, the oscillating behavior changes into a decaying one. Thus we get

Ĩ0
n =

n+ 1

6n

1

β

`A`B
L2
− n+ 1

6n
log

[
sinh(π `A+`B+`C

Lβ ) sinh(π `CLβ )

sinh(π `A+`C
Lβ ) sinh(π `B+`C

Lβ )
(4.18)

×
[

cosh(2π `A+`B+`C
Lβ )− cosh(4π2

β m)
][

cosh(2π `CLβ )− cosh(4π2

β )
][

cosh(2π `A+`C
Lβ )− cosh(4π2

β )
][

cosh(2π `B+`C
Lβ )− cos(4π2

β )
] ]

.
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The chemical potential and current dependent mutual information has further contri-

butions as

Ĩµ,Jn =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣e− iπτ ( k

n

`A
2πL

+τ1J+iτ2µ)2 e−
iπ
τ

( k
n

`B
2πL

+τ1J+iτ2µ)2

e−
iπ
τ

(τ1J+iτ2µ)2 e−
iπ
τ

( k
n

`A+`B
2πL

+τ1J+iτ2µ)2
(4.19)

×
ϑ[ 1/2−b

1/2−a−J]( kn
`A

2πLτ + τ1J+iτ2µ
τ |−1

τ ) ϑ[ 1/2−b
1/2−a−J]( kn

`B
2πLτ + τ1J+iτ2µ

τ |−1
τ )

ϑ[ 1/2−b
1/2−a−J]( τ1J+iτ2µ

τ |−1
τ ) ϑ[ 1/2−b

1/2−a−J]( kn
`A+`B
2πLτ + τ1J+iτ2µ

τ |−1
τ )

∣∣∣2 .
We study this mutual information in some details in this section.

Anti-periodic fermion. For the anti-periodic fermion in the NSNS sector, we have

a + J = 1/2, b = 1/2. For α = 0, we have the following result for the mutual Rényi

information

Iµ,Jn = −n+ 1

12n

1

β

2`A`B
L2

+ 4

∞∑
m,l=1

(−1)l−1

l
e
− 4π2l

β cos[2πµl]

× 1

n− 1

n− sinh
(
π
β
l`A
L

)
sinh

(
π
β
l
n
`A
L

) − sinh
(
π
β
l`B
L

)
sinh

(
π
β
l
n
`B
L

) +
sinh

(
π
β
l(`A+`B)

L

)
sinh

(
π
β
l
n
`A+`B
L

)
 . (4.20)

The mutual Rényi information for α = 0 decays except the first term, which can be

combined with that of (4.18). The corresponding mutual information is straightforward to

compute. For α 6= 0, we get different results.

Ĩµ,Jn =
2

1−n

∞∑
m=1

n−1
2∑

k= 1−n
2

log

[[
cos(2π[J+ k

nα
`A
L ])+cos(4π2

α )
][

cos(2π[J+ k
nα

`B
L ])+cos(4π2

α ))
][

cos(2πJ)+cos(4π2

α )
][

cos(2π[J+ k
nα

`A+`B
L ])+cos(4π2

α )
] ]

.

(4.21)

Periodic fermion. For the periodic fermion in the RNS sector, we have a+ J = 0, b =

1/2. The exact expression is similar to the NSNS sector. The only difference comes from

the sign change between the ϑ3 and ϑ4. Thus for α = 0, we have the following result

Iµ,Jn = −n+ 1

12n

1

β

2`A`B
L2

− 4

∞∑
m,l=1

1

l
e
− 4π2l

β cos[2πµl]

× 1

n− 1

n− sinh
(
π
β
l`A
L

)
sinh

(
π
β
l
n
`A
L

) − sinh
(
π
β
l`B
L

)
sinh

(
π
β
l
n
`B
L

) +
sinh

(
π
β
l(`A+`B)

L

)
sinh

(
π
β
l
n
`A+`B
L

)
 . (4.22)

Again we need to add (4.18) to get the full result. For α 6= 0,

Ĩµ,Jn =
2

1−n

∞∑
m=1

n−1
2∑

k= 1−n
2

log

[[
cos(2π[J+ k

nα
`A
L ])−cos(4π2

α )
][

cos(2π[J+ k
nα

`B
L ])−cos(4π2

α ))
][

cos(2πJ)−cos(4π2

α )
][

cos(2π[J+ k
nα

`A+`B
L ])−cos(4π2

α )
] ]

.

(4.23)

This also need to be combined to have the full result with (4.17). The mutual (Rényi)

information is an oscillating function of the current J .
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5 Outlook

In this paper we carry out explicit and detailed computations of the entanglement entropy,

the Rényi entropy and the mutual information of the 2-dimensional Dirac fermions in

the presence of the background gauge fields. We summarize the salient features in the

introduction and also previously in [19]. Here we comments on some future directions.

First of all, it would be interesting to perform similar computations for discrete mod-

els (for example, [25–28]) with some background gauge fields for appropriate boundary

conditions to check whether they would bear similar physical properties such as chemical

potential and current dependences of the entropies at zero temperature, beat frequency,

and more. Precise computations of the entropies and especially the mutual information

emphasizing the dependence on the background fields and the boundary conditions would

be helpful to identify them in available experiments [29].

In the presence of a current J , we have computed the entropies and mutual information

for definite spin structures of the Dirac fermion by taking a periodic or anti-periodic bound-

ary condition. These are the natural physical boundary conditions. It will be interesting

to understand how the entropies interpolate these two different behaviors as a function of

a parameter, the current J , that connects those two boundary conditions. To do so, we

need to reformulate the entropies and the mutual information for 0 < a + J < 1/2. This

turns out to require numerical approach that is beyond the scope of this paper.

It is also interesting to study the role of the parameter α in the entropies. At the high

temperature limit, there are two equivalent behaviors for the entropies depending on the

presence or absence of the parameter. It is well known that α = 0 is connected to the

usual thermodynamic entropy at high temperature. It is natural to ask whether the other

limit with α 6= 0 is physical or not. Apparently, there is no reason to consider that case

as unphysical. Thus it is reasonable to investigate this case more carefully. Especially,

one can ask how these two different limits are connected to the low temperature limit,

where taking α → 0 or α → ∞ is a smooth limit. This is even more curious once we

remind ourselves that the low and high temperature limits are equivalent because they are

connected by modular transformation or Poisson resummation. Due to technical reasons,

investigating this also requires a numerical method.
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A A finite contribution for β → ∞

We quote the answer for the sum over the index k in the expression (3.27)

1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣(1 + y−1

1 q1/2
)(

1 + y−1
2 q1/2

)∣∣∣2 =
1

1− n

n−1
2∑

k=−n−1
2

log
∣∣∣
(

1 + eM−2πi k
n
`t
L

)
(1 + eM )

∣∣∣2

=
1

1− n
log

[
enM

(1 + enM )2n QPochhammer
[
−eM−

πi(n−1)
n

`t
L , e

2πi
n

`t
L , n

]
×QPochhammer

[
−e−M−

πi(n−1)
n

`t
L , e

2πi
n

`t
L , n

]]
, (A.1)

where the QPochhammer[a, q, n] symbol is given by

QPochhammer[a, q, n] =



∏n−1
j=0 (1− aqj) , n > 0 ,

1 , n = 0 ,∏|n|
j=1(1− aq−j)−1 , n < 0 ,∏∞
j=0(1− aqj) , n =∞ .

(A.2)
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