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1 Introduction

One of the most appealing aspects of AdS/CFT, besides its use for pragmatic reasons to

access strongly-coupled physics, is the geometrization of CFT structures in the dual gravi-

tational description. Indeed, attempts to make conformal symmetries manifest in geometric

constructions predate the AdS/CFT correspondences: Dirac’s use of “conformal space” for

writing covariant field equations [1] and the use of asymptotically-AdS geometries to con-

struct curvature invariants which are covariant under Weyl transformations by Fefferman

and Graham [2] are two prominent examples. Whenever constructions in AdS/CFT can

build on such geometric structures in conformal field theories, the dictionary between grav-

ity and the CFT side takes a particularly natural form: Dirac’s conformal space allows for a

natural identification of the conformal boundary of AdSd+1 with the conformal class of the

CFT geometry, and the Fefferman-Graham coordinates and constructions are ubiquitous

in AdS/CFT.
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A more recent program to geometrize CFT structures, and in particular the operator

product expansion (OPE), was started in [3–6]. In these papers the notion of kinematic

space was introduced as a space of doubled dimension with a metric of balanced signature,

on which the basic building blocks of OPEs admit a natural description as fields obey-

ing wave equations. This notion of kinematic space can be defined for arbitrary CFTs,

whether they admit a holographic description or not, and provides an intuitive way to

understand OPEs. Moreover, this new geometric structure, once established, allows for

an elegant formulation of the basic dictionary underlying the AdS/CFT correspondences:

the OPE blocks of the CFT correspond to fields on kinematic space, which can in turn

be reinterpreted as the space of geodesics or minimal surfaces in the AdS geometry of

the dual gravitational description. The OPE blocks themselves are then mapped to bulk

operators smeared over these geodesics or minimal surfaces. Note that, in this example,

everything has been fixed by symmetry: the bulk AdS geometry, the auxiliary kinematic

space geometry, the OPE blocks, and the geodesic operators.

Beyond conformal kinematics, we would like to know whether kinematic space is still

a useful organizational principle for studying AdS/CFT. More specifically, we would like

to know how the kinematic space construction can be extended to describe states other

than the vacuum. A state (ψ) other than the vacuum is distinguished, in part, by CFT

operators that have non-vanishing vacuum expectation values (vevs),

〈Oi〉ψ 6= 0 , (1.1)

that determine the dual bulk geometry. Perhaps the simplest such example is the vacuum

of a CFT with a boundary (bCFT), where the SO(2, d) symmetry has been broken down

to the smaller group SO(2, d − 1). With y the coordinate transverse to the boundary,

operators can take a vev

〈Oi(x, y)〉 =
Ai

(2y)2∆i
, (1.2)

that is fixed by symmetry up to a free parameter Ai. Thus, the bCFT vacuum is charac-

terized by vevs that depend on dynamical data of the theory. Correspondingly, when the

bCFT has a gravitational dual, the metric is only constrained to take the form

ds2 = e2A(r)ds2
AdSd

+ dr2 , (1.3)

where the function A(r) is again determined by dynamical, rather than kinematic, data.

In this paper, we ask:

1. Is there a corresponding notion of kinematic space for bCFTs?

2. Does kinematic space help reconstruct the emergent gravitational physics for suitable

bCFTs?

The main structural novelty in CFTs with boundary is the existence of a boundary

operator expansion (bOPE), which expresses an operator at a generic point of the CFT

geometry in terms of a series of boundary-localized operators. Our first main result is

– 2 –
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the definition of a kinematic space associated with this bOPE and the identification of its

holographic representation in the dual bulk geometry. We then use the dynamical data of

the bOPE and our dictionary for bOPE blocks to demonstrate how the bulk geometry can

be reconstructed from the CFT data. We explain how the bOPE provides the spectrum

and asymptotic values of a radial mode expansion of a bulk field. This is a well-known set

of data for solving analogous inverse problems in asymptotically-flat space. The solution

of the asymptotically-AdS inverse problem is expected to follow a similar pattern, but we

leave the details for future work.

We note that complementary aspects of bCFTs and kinematic space have been studied

in [7, 8]. In contrast to our focus on the bOPE and a kinematic operator dictionary, these

works discuss the kinematic space for bulk geodesics ending in the ambient space and

connections to tensor networks and entanglement entropy.

The paper is organized as follows. We start with a review of the relevant aspects of

kinematic space and the kinematic dictionary for AdS/CFT in section 2 and discuss the

structure of OPEs in bCFTs in section 3. In section 4 we extend the notion of kinematic

space to CFTs with boundary and in particular to blocks in the bOPE, and establish the

holographic dual for these bOPE blocks. Next, in section 5 we discuss how the bOPE

organizes the data of the bulk geometry, and allows one to reconstruct the warp factor in

the metric. We conclude with a brief discussion of open questions in section 6.

2 The kinematic dictionary

In this section we review the connection between the OPE blocks, Bk, of a CFT in d

dimensions and geodesic operators in the holographic dual.

2.1 A kinematic space for OPE blocks

OPE blocks are eigenfunctions of the conformal Casimir operator [9]. The generators LAB
(where A, B run over the d+ 2 directions of the linear space on which the conformal group

acts as SO(2, d) matrices) of the conformal group can be written as differential operators

acting on a single coordinate1 XM . The conformal group has a quadratic Casimir operator

LABL
AB. When acting on a primary operator O(X1) of dimension ∆ and spin l the Casimir

operator pulls out the eigenvalue

LAB,1L
AB,1O(X1) = − [∆(∆− d) + l(l + d− 2)] O(X1) ≡ C∆,lO(X1). (2.1)

Since the descendants of O are in the same representation of the conformal group as the

primary O itself, they all have the same eigenvalue under the action of the Casimir operator.

Now the conformal block should correspond to the contribution of a primary of dimension

∆k and spin lk and all its descendants appearing in the OPE of Oi(X1) and Oj(X2). As

1In anticipation of the boundary we are about to introduce, we use M , N = 0, . . . , d − 1 to label the d

spacetime dimensions XM of the CFT. In the presence of a boundary we will break up XM = (xµ, y) with

µ = 0, . . . , d− 2 labeling the d− 1 directions along the defect and y the transverse direction.

– 3 –
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in [3, 4] we restrict to the case where ∆i = ∆j = ∆. The block should therefore be an

eigenfunction of the quadratic Casimir

L2
12 = (LAB,1 + LAB,2)(LAB,1 + LAB,2) (2.2)

with eigenvalue C∆k,lk . In terms of the standard generators of the conformal group,

D (scale), PM (translation), KM (special conformal) and MMN (rotation & boost) the

quadratic Casimir reads

LABL
AB = −2D2 − (K · P + P ·K) +MMNMMN . (2.3)

Using the standard representation of these as differential operators acting on scalar fields

D = ixM∂M , PM = −i∂M , KM = i(2xM (xN∂N )− x2∂M ),

MMN = −i(xM∂N − xN∂M ) (2.4)

it is straightforward to evaluate the operator L2
12 from (2.2) to be given by

L2
12 = 2IMN (x1 − x2)2 ∂xM1

∂xN2
, (2.5)

where IMN is the standard inversion operator

IMN (x1 − x2) =

(
ηMN − 2

(x1 − x2)M (x1 − x2)N
(x1 − x2)2

)
. (2.6)

The OPE block Bk thus obeys a quadratic differential equation(
L2

12 − c∆,l

)
Bk(X1, X2) = 0 , (2.7)

where L12 is the differential operator in (2.5).

Equation (2.7) can be viewed as an equation of motion for a free scalar field as follows:

We promote the pair of spacelike-separated points that specify the OPE block to be coor-

dinates on an auxiliary ‘kinematic space,’ Kg.2 With a pair of spacetime coordinates, this

space is 2d-dimensional. The metric structure on Kg has signature (d, d) and is uniquely

determined by conformal invariance. It takes the form

ds2 = IMN (x1 − x2)
dxM1 dxN2
|x1 − x2|2

. (2.8)

We can now reexamine the equation of motion, eq. (2.7). The quadratic differential operator

that appears is the Laplacian in Kg, and the equation of motion is then that of a free field

in Kg with mass m2
k = −c∆,l: (

�K +m2
k

)
Bk(X1, X2) = 0 . (2.9)

Together with the boundary condition limX1→X2 Bk ∼ |X12|∆kOk, and a set of constraints,3

this equation completely defines the OPE block.

2We restrict our attention to the kinematic space for spacelike-separated points, Kg. More general

constructions are discussed in [4].
3Kinematic space has signature (d, d), and so the usual equation of motion is no longer hyperbolic,

but ultra-hyperbolic. To set up a well-posed boundary value problem, one must also provide a set of

constraints [4, 5]. This is another way of stating that the 2d-dimensional kinematic space has more degrees of

freedom and redundantly encodes the d+1-dimensional bulk geometry. The constraints are best-understood

in d = 2 where the symmetry algebra factorizes and the extra constraint equation is just the second quadratic

Casimir.

– 4 –
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2.2 A kinematic space for geodesic operators

A pair of boundary spacelike-separated points also defines a unique minimal geodesic in

the bulk, namely the geodesic that ends on these points. Thus, the points of Kg also label

bulk geodesics.

This allows us to assign a natural set of bulk operators to points in kinematic space: for

any local bulk operator φ, and a geodesic γ(X1, X2), we can consider the X-ray transform

of that operator

R [φ] (X1, X2) =

∫
γ(X1,X2)

ds φ . (2.10)

To characterize the geodesic operator R [φ], we would like to understand what equation

of motion in Kg it obeys. This can be accomplished by noting that there is a simple

intertwining relation for the X-ray transform [4, 10, 11]:

�KR [φ] = −R [�AdSφ] . (2.11)

Applied to the equation of motion for a free field in AdS, this gives(
�AdS −m2

k

)
φ = 0 =⇒

(
�K +m2

k

)
R [φ] = 0 . (2.12)

Together with the boundary condition limX1→X2 R [φk] ∼ |X12|∆kOk, which just uses the

standard local holographic dictionary as the geodesic shrinks to the boundary, and a set of

constraints equivalent to those obeyed by the OPE blocks (here known in the mathematical

literature as John’s equations), this equation of motion determines our geodesic operator.

The kinematic dictionary. As we reviewed, the OPE block Bk and the geodesic op-

erator R [φk] obey the same equation of motion, and have the same boundary conditions

and constraints:(
�K +m2

k

)
Bk = 0

(
�K +m2

k

)
R [φk] = 0

Bk ∼ |x12|∆k Ok R [φk] ∼ |x12|∆k Ok . (2.13)

Thus, we can conclude that Bk and R [φk] become equivalent operators upon the usual

identification of bulk and boundary Hilbert spaces [4].

3 Operator products in bCFT

In this section we review the structure of operator products in CFTs with boundary as

developed in general dimension in [12], following earlier developments in 1+1 dimensions

which are nicely reviewed in [13].

What is a boundary CFT? Instead of considering a CFT on the d-dimensional plane,

we instead consider a CFT on the upper-half plane with, hence, a planar boundary. Doing

so requires one to specify boundary conditions, possibly including a coupling of the original

CFT to a (d−1)-dimensional theory restricted to the boundary. By an appropriate choice of

boundary conditions and boundary theory, one can preserve a residual SO(2, d−1) subgroup

of the conformal symmetry that leaves the boundary invariant. Such ‘conformal boundary

– 5 –
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conditions’ control the universal long-distance behavior of many physical systems with

natural boundaries, such as quantum impurities (most notably in the context of the Kondo

model as reviewed nicely in [14]), quenches [15], and many other examples of boundary

critical phenomena [13], or open strings and D-branes [16].

The residual SO(2, d− 1) symmetry of a bCFT preserves the full conformal invariance

of the boundary theory. Away from the boundary, however, we must adjust our typical

restrictive assumptions of unbroken conformal invariance. As mentioned in the introduc-

tion, non-trivial expectation values are now consistent with the residual symmetry. If the

boundary is at y = 0, then a scalar operator of dimension ∆i can have a vev

〈Oi(x, y)〉 =
Ai

(2y)2∆i
, (3.1)

controlled by a free parameter Ai. Likewise, a scalar two-point function now has the general

form

〈Oi(xi, yi)Oj(xj , yj)〉 =
g(ξ)

(2yi)2∆i(2yj)2∆j
. (3.2)

where g(ξ) is an arbitrary function of the invariant cross-ratio

ξ =
(xi − xj)2 + (yi − yj)2

4yiyj
. (3.3)

To make an intuitive connection to the kinematics of a typical CFT, one can imagine

mirroring the upper-half plane and the operator insertions across the boundary. Then the

bCFT one-point function has the form of a two-point function in the mirrored CFT and

the bCFT two-point function has the form of a 4-point function in a mirrored CFT. The

‘mirroring’ of the bCFT should make it clear that, while the product of two operators has

an interesting dynamical expansion in a CFT, a single operator will have an interesting

dynamical expansion in a bCFT.

For the remaining discussion we will use the following terminology: as in [17], we

refer to the “bulk” of the CFT as the ambient space, so we can reserve the term bulk

for the holographically dual spacetime geometry.4 To avoid confusion we will also refer

to the kinematic space of section 2 as ambient kinematic space. The main new feature

is the expansion of ambient-space operators in terms of boundary-localized operators, the

bOPE [12], and does actually not involve an operator product at all.

3.1 bOPE

In the boundary operator product expansion (bOPE) [12], a single ambient space operator

Oi(x, y) is expanded in terms of boundary localized operators on as

Oi(x, y) =
∑
n

cni
(2y)∆i−∆n

(
1 + an,1y

2�x + an,2y
4�2

x + . . .
)
on(x) , (3.4)

where �x is the d’Alembertian in the boundary directions. We have grouped together an

infinite sum over boundary descendants, given by powers of the d’Alembertian acting on a

4That is, the CFT lives in a d dimensional ambient space with a d− 1 dimensional boundary. The dual

gravitational description lives in a d+ 1 dimensional bulk.
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primary. The explicit form of this sum can be found in [12], and is completely fixed by the

SO(2, d−1) boundary conformal symmetry. The numerical coefficients of the primaries we

label as cni , and are called the bOPE coefficients.5

Note that, were we to do this expansion about another ambient point, this would just

be a simple Taylor expansion:

Oi(x, y) =
∞∑
n=0

1

n!
(y − y0)n∂ny0

Oi(x, y0) . (3.5)

The operator dimensions and coefficients that appear in the Taylor expansion are entirely

fixed. But, when we take ∂ny0
Oi(x, y0) to the boundary, the derivative operators may mix

with other boundary operators and acquire anomalous dimensions. Thus, the fact that we

are expanding about a point on the boundary means that the operator dimensions and

bOPE coefficients are not pre-determined by the geometry.

As boundary conformal invariance completely fixes the contribution of all the descen-

dants in terms of those of the primary, we introduce the compact notation:

Oi(x, y)

(2y)∆i
=
∑
n

cni Bn(x, y) . (3.6)

The blocks Bn(x, y) implicitly depend on the location of the boundary, so, unlike Oi itself,

they are not localized at fixed (x, y). Much like the ambient space conformal blocks dis-

cussed in [4] are bilocal, they depend on (x, y) as well as (x, 0), and are non-local operators.

This will be reflected in the bulk dual as well.

Standard conformal blocks are usually introduced as a contribution to the four point

function rather than a non-local operator. One can think of the 4-pt function as being given

by the 2-pt function of the non-local operators Bk. This is one of the crucial ingredients in

the conformal bootstrap program. Similarly, in conformal field theories with boundaries,

the 2-pt function in the ambient space can be expressed in terms of 2-pt functions of

boundary operators. As described in detail in [18], this allows a conformal bootstrap

program for conformal field theories with boundaries already at the level of 2-pt functions.

The bootstrap equation, as depicted in figure 1, posits equivalence of expanding operators

in terms of the standard OPE or the bOPE.

3.2 Kinematic space for bCFT blocks

The boundary conformal blocks defined in (3.6) obey a Casimir relation very similar to

that of the standard conformal blocks. While the boundary blocks themselves had first

been worked in [12] by explicitly doing the sum of descendants, the Casimir method for

boundary blocks was first introduced in [18]. Instead of the SO(2, d) generators LAB one

needs to consider the SO(2, d−1) generators Lab that leave a planar defect invariant. While

5The precise bOPE coefficients depend on a choice of normalization for both the boundary and am-

bient operators. We normalize boundary operators so that they have canonical two-point functions:

〈on(x1)on(x2)〉 = |x1 − x2|−2∆n . We normalize the ambient operators so that far from the boundary

they are also canonically normalized: limy→∞〈Oi(x1, y)Oi(x2, y)〉 = |x1 − x2|−2∆i .

– 7 –
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Figure 1. Two-point function crossing symmetry underlying the conformal boundary bootstrap.

In the presence of boundaries, one-point functions need not vanish, so the sum on the right hand

side is non-trivial. Also, two-point functions can depend on one non-trivial conformally invariant

cross-ratio and so there is already interesting information contained at that level.

the commutator algebra of this SO(2, d−1) subgroup is the same as the conformal algebra

of a d− 1 dimensional field theory living on the defect, its action as differential operators

acting on fields is distinct. In particular, the dilation operator does not just rescale the xµ
coordinates along the defect, but also the y direction orthogonal to it,

D̂ = i(y∂y + xµ∂µ) , (3.7)

where we used hats to denote the generators of SO(2, d− 1) even though, as generators of

a genuine subgroup, they are identical to their SO(2, d) counterparts. Similarly we have

K̂µ = i(2xµ(XM∂N )−X2∂µ) . (3.8)

Here XM∂M = y∂y + xµ∂µ and X2 = xµxµ + y2. The remaining generators take their

expected form

P̂µ = −i∂µ, M̂µν = −i(xµ∂ν − xν∂µ) , (3.9)

and the quadratic Casimir of the boundary subalgebra is

L2
∂ = −2D̂2 − (K̂µP̂µ + P̂µK̂µ) + M̂µνM̂

µν . (3.10)

A boundary OPE block is a contribution to the expansion (3.6) of an ambient space

operator in terms of defect operators that is an eigenfunction of the defect conformal

Casimir, L2
∂ , with eigenvalue

A∆ = C∆,l=0|d→d−1 = −∆(∆− d+ 1). (3.11)

Spelling out L2
∂ acting on scalar blocks in terms of the differential operators of (3.7)–(3.9),

we find that the boundary conformal blocks are eigenfunctions of the operator

L2
∂ = 2y2(∂2

y + ∂µ∂
µ)− 2(d− 2)y∂y = 2

(
yd∂yy

2−d∂y + y2∂µ∂
µ
)
. (3.12)

– 8 –
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Similarly to the discussion in section 2.1, we can interpret this as a Laplace operator on

an auxiliary boundary kinematic space, K∂ . This space is d-dimensional and naturally

equipped with metric

ds2
K∂ =

1

2y2
(dy2 + dxµdxµ). (3.13)

That is, boundary kinematic space is simply AdSd with its standard signature (d− 1, 1).6

Then, the bOPE blocks are free fields in K∂ with mass m2
k = −A∆:(

�K∂ +m2
k

)
Bk(x, y) = 0 . (3.14)

Unlike the other kinematic spaces, this differential equation is hyperbolic and the boundary-

value problem is well-posed without additional constraints. We need only specify the

boundary condition that distinguishes this block from the ‘shadow block’ that has the same

Casimir. As the block approaches the boundary, the correct condition is for it to approach

the local boundary operator: limy→0 Bk ∼ y∆kok(x). This now completely defines the

OPE block.

3.3 Boundary kinematic space as a subspace of Kg

The relation of boundary kinematic space to the regular (ambient space) kinematic space

can easily be understood. In the discussion of kinematic space, we were implicitly assum-

ing that the conformal field theory lives on flat Minkowski space. In this case, the only

conformally invariant boundaries we can introduce are planar defects. To understand the

structure of correlation functions in the presence of a planar boundary, one can resort to

the method of images. That is, when we want to study correlation functions including an

operator O(X) with XM = (y, xµ) in a boundary conformal field theory, we can usually

ensure that the boundary conditions on the planar defect are obeyed by including a mirror

operator Ô(Rx) inserted at the reflected point

Rx = (−y, xµ). (3.15)

The details of the boundary conditions and boundary dynamics are included in the proper-

ties of Ô. The boundary block expansion can be thought of as the standard OPE between O
and its mirror operator. Note that we usually want to think of boundaries as codimension

one objects in space; that is, the orthogonal coordinate y is spacelike, and hence so will be

the separation between x and Rx. This suggests that boundary kinematic space should be

a submanifold of Kg, the kinematic space of spacelike separated points we reviewed above,

and not its timelike counterpart. The submanifold is given by the d embedding equations

x2 = Rx1. (3.16)

With this identification we find

dxµ1 = dxµ2 =: dxµ, dy1 = −dy2 =: dy, Iµν = δµν , Iyy = −1, Iµy = 0 (3.17)

and indeed the induced metric on the subspace (3.16) of Kg (with its metric given in (2.8))

becomes the AdSd metric of (3.13).

6This fact has basically been realized in a very different context already in [17], where it was shown that

a field obeying a scalar wave equation in AdSd can exactly reproduce the blocks of the bOPE. We will come

back to this construction when we discuss the holographic realization of boundary kinematic space.
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4 A kinematic dictionary for bCFT

In 3.2 we studied the quadratic Casimir equations and constructed an appropriate auxiliary

space in which bOPE blocks became free fields. Now, we construct the corresponding

dual geodesic operators and complete the dictionary. We begin by reviewing the dual

holographic geometry for a suitable bCFT.

4.1 Holographic duals for bCFTs

The holographic dual description for conformal field theories with conformally invariant

boundaries was given in [19, 20]. The SO(2, d − 1) conformal symmetry preserved by the

defect ensures that the d+ 1 dimensional bulk metric can be written as an AdSd slicing:

ds2 = e2A(r)ds2
AdSd

+ dr2. (4.1)

AdSd+1 itself, dual to a conformal field theory on all of Minkowski space, can be written

in this form. In this case the warp factor is given by eA = cosh r/L. This exhibits two

manifest asymptotic regions at r → ±∞. In the field theory these two asymptotic regions

are conformal to two halves of the flat boundary spacetime. Without loss of generality we

can identify them with the y < 0 and y > 0 regions of Minkowski space, where y is one of

the spatial coordinates. In addition, we can also reach the boundary of the bulk spacetime

by approaching the boundary on the AdSd slice at fixed r. This boundary component maps

to the y = 0 plane separating the left and right half of spacetime.

A more general warp factor eA(r) that asymptotes to cosh(r/L) both at r = ±∞
corresponds to an interface CFT, with two potentially different CFTs on the left (y < 0) and

right (y > 0) half of Minkowski space being connected by conformal invariance preserving

boundary conditions on the y = 0 interface. The two CFTs can in general be different and

additional matter can be present on the interface. Examples of such interface CFTs are

the Janus solution [21] or the D3/D5 system of [19, 22]. The former describes an interface

between 3+1 dimensional N = 4 super Yang-Mills (SYM) theory with two different values

of the coupling constant on the two sides. The latter describes the addition of a small

number (much less than Nc, the number of colors) of interface localized matter multiplets

into N = 4 SYM with SU(Nc) gauge group. Such interface CFTs can always be interpreted

as boundary CFTs via the folding trick: we can simply redefine the y coordinate for the

CFT living on the left half of space to −y, so that both CFTs live on the same y > 0

half space. This way we rewrite the interface CFT as a boundary CFT with the special

feature that in the ambient space the action describes two completely decoupled sectors

with interactions between the two sectors confined to the interface. So in principle any such

interface CFT (iCFT) can be seen as a special example of a CFT with boundary (bCFT).

For a genuine CFT with boundary, the metric (4.1) only has one asymptotic region,

say at large positive r, corresponding to half space. As usual, the warp factor should

asymptotically approach the cosh(r/L) form in this region. The CFT boundary itself is

dual to, as before, the asymptotic region that is reached by approaching the boundary of

the AdSd slice. To avoid the appearance of the second asymptotic region, the bulk geometry

has to terminate at some r∗. There are various options of how this can be implemented
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1. The simplest option is to impose a discrete identification on AdSd+1 under r → −r.
In the CFT this identifies the two halves of space, giving a particular realization of

a CFT with boundary. The bulk geometry ends at the orbifold locus, r∗ = 0.

2. Spacetime can end in a hard wall, which can be implemented in a bottom up-way

by a brane with tension. This is the proposal of [20]. These spaces are solutions to

consistent classical equations of motion. As they stand, these solutions do not typi-

cally follow from a string theory embedding and are hence at best seen as toy models

for the complicated internal geometry. Correspondingly it is difficult to establish a

particular dual CFT Lagrangian.

3. One finds a smooth 10d solution of, say, IIB supergravity, whose non-compact part

takes the form (4.1) with the full geometry smoothly ending at a finite r∗ by internal

cycles shrinking. In this case the simple d+1 dimensional metric (4.1) is not sufficient

and the full 10d metric is needed. For the case of N = 4 super Yang-Mills on half

space with supersymmetry preserving boundary conditions corresponding to NS5 or

D5 branes, the full solution has been found in [23, 24] and analyzed in [25]. The

geometry is AdS4×S2×S2 warped over a 2d Riemann surface Σ and the metric takes

the form

ds2 = f2
4 (u, v)ds2

AdS4
+ f2

A(u, v)ds2
S2
A

+ f2
B(u, v)ds2

S2
B

+ dΣ2 , (4.2)

where u and v are the coordinates on Σ.

4.2 Geodesic operators for bCFT

We now identify the geodesics and geodesic operators that should be associated to boundary

kinematic spaces.

4.2.1 Geodesics

In analogy to the interpretation of Kg as the space of geodesics connecting two points, we

can similarly think of boundary kinematic space as the space of geodesics connecting an

ambient point (y, xµ) and its mirror (−y, xµ). This is exactly what happens in the case of

an orbifold identification or an iCFT, case 1) in our list of possible holographic realizations,

and one can again get the block from an X-ray transform.

For the case of a wall, either the hard wall of case 2) or the geometric wall of case 3),

space really ends at r∗ and there is no obvious geometric realization of the mirror point.

The way space ends will induce a boundary condition on the geodesic, so that one geodesic

between (y, xµ) and the wall will be singled out. We want to argue here that there is a

unique bulk geodesic associated to any ambient space point (y, xµ) that is consistent with

the boundary conformal invariance.

Let us first exhibit the special geodesic in our 4 examples and postpone a look at

its symmetry properties for later. The case of (folded) iCFTs as well as our examples 1

(orbifold) and 2 (Takayanagi’s bottom-up construction) are based on the AdSd sliced metric

of (4.1). Without loss of generality we can use translation invariance in the directions along

– 11 –
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the slice to set xµ = 0 and so we are interested in geodesics emanating from the boundary

point (y0, 0). By rotation symmetry in the xµ space we expect the geodesic to be given by

xµ(r) = 0 and so it can be completely parameterized by y(r), where we chose the metric

on the AdSd slice as

ds2 =
dy2 + dxµdxµ

y2
. (4.3)

The effective geodesic Lagrangian for y(r) becomes

L =

√
1 +

(y′)2e2A

y2
. (4.4)

While the generic solution to the geodesic equation is quite complicated, it is easy to see

that the equation of motion

∂r

 e2Ay′

y2
√

1 + (y′)2e2A

y2

 = − (y′)2e2A

y3
√

1 + (y′)2e2A

y2

(4.5)

allows for the simple solution

y(r) = y0 (4.6)

for all r. It is similarly easy to see that y(u, v) = y0 with xµ = 0 identically is also a

solution to the geodesic equation in the more general geometry of (4.2)

Out of all the geodesics that end in the point (y0, 0) this geodesic is clearly special.

It exist in all holographic duals to bCFTs, regardless of details. It is also the closest bulk

manifestation we have of a geodesic connecting the point and “its mirror” in the cases

where there is no second asymptotic region. If we extend the geometry into the unphysical

region, we end up exactly with the mirror point. We would like to argue that this special

geodesic is also singled out by symmetry. This is easiest to see when we work with global

AdSd coordinates on the slice, that is instead of (4.3) we use

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
d−2. (4.7)

Choosing our boundary point to be ρ = 0, the center of AdS, the special geodesic7 reads

ρ(r) = 0. (4.8)

At the point ρ = 0 the full SO(d − 1) rotation symmetry associated with the Ωd−2 factor

in the metric is preserved. Any non-trivial ρ dependence would lead to reduced symme-

try. So at least for this special boundary point, the constant geodesic is singled out by

enhanced symmetry. These rotations are part of the boundary conformal group we want

to preserve. But, since AdSd is a maximally symmetric and homogeneous space, all points

are equivalent. That is by a boundary conformal transformation any point in AdSd, which

is conformally equivalent to half-Minkowski space, can be mapped to ρ = 0 by an AdSd

7This special geodesic was already used in [26] to calculate the entanglement entropy associated with

iCFTs.
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isometry. In the bottom-up models one would have expected that out of all the geodesics

that emanate from a given boundary point one gets picked by a boundary condition im-

posed at the “wall” at r = r∗. Our claim is that unless the geodesic that gets picked is

the special y = y0 geodesic, the boundary conditions imposed on the CFT are inconsistent

with the symmetries of a bCFT. The boundary breaks the conformal symmetry.

To connect back to kinematic space, our proposal is that from the holographic bulk

point of view kinematic space should be viewed as the space of these geodesics with en-

hanced symmetry, so that there is a unique enhanced symmetry geodesic associated with

each boundary point.

4.2.2 bOPE geodesic operators

We would like to use the geodesics constructed in the previous subsection to define the ana-

log of an X-ray transform and the corresponding geodesic operators for the gravitational

dual of bCFTs. First note that there is no analog of the constraints (John’s equations) that

were required in the original CFT kinematic space. In the bOPE expansion of a scalar am-

bient space operator only scalar boundary operators are allowed by Lorentz symmetry [18].

So no additional restriction arises from asking the block to correspond to a scalar operator -

this is automatically true. We also see that this time the dimension of boundary kinematic

space, d, is less than the dimension of the d+1 dimensional bulk space time. Furthermore,

the bulk geometry is no longer uniquely fixed by symmetry. The metric (4.1) contains a

free function A(r) and we expect this function to influence the X-ray transform.

In fact, a precise connection between scalar fields in AdSd+1 and conformal blocks

appearing in the bOPE has been established previously in [17] and we can easily recast

the results obtained in there in terms of a modified X-ray transform. Any bulk scalar

field φ(r, y, xµ) obeying a wave equation with bulk mass M on the d + 1 dimensional

geometry (4.1) can be decomposed by a separation of variables ansatz

φ(r, y, xµ) =
∑
n

ψn(r)φ̄n(y, xµ). (4.9)

Here the φn are scalar fields on the AdSd slice

�AdSd φ̄n = m2
nφ̄n (4.10)

with mass m2
n, which together with fn are the eigenvalues and eigenfunctions of a 1d linear

operator depending on the warp factor A(r)

ψ′′n + dA′ψ′n + e−2Am2
nψn −M2ψn = 0. (4.11)

Primes denote derivatives with respect to r. The mode functions ψn are eigenfunctions of

a Hermitian operator and so can be chosen to be orthonormal∫
dr e(d−2)A(r)ψnψm = δnm. (4.12)

Here, and in what follows, the r-integral goes form −∞ to ∞ in the case of a holographic

dual to an iCFT and from r∗ to∞ for the dual of a genuine bCFT. One interesting aspect of
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the separation of variables is that the coordinate y on the slice exactly plays the role of the

coordinate y of the field theory living on the boundary. This way the scalar eigenfunctions

on AdSd directly encode a non-local operator on the boundary. So we expect the scalar

eigenfunctions φn(y, xµ) to exactly be the conformal blocks of the boundary field theory.

This has in fact been established to be true in [17]. The space on the slice in this sense is

kinematic space. The dimension of the operator dual to φ̄n appearing in the bOPE dual is

given by the usual relation for AdSd/CFTd−1

∆n(∆n − (d− 1)) = m2
n (4.13)

in terms of the eigenvalues m2
n. The leading near boundary behavior of the mode functions

encodes the coefficients with which the given primary appears in the bOPE. That is, the

mode decomposition (4.9) encodes much richer information than the scalar wave equation

in kinematic space itself: in addition to the blocks we also get the bOPE coefficients.

We can use this construction to define a weighted X-ray transform associated with the

holographic dual to bCFTs. What we want the X-ray transform to do is to map a scalar

field on the bulk AdSd+1 to a scalar field on boundary kinematic space K∂ , which is AdSd.

Clearly the map has to be one-to-many, just by counting dependent variables. We can

define a family of weighted X-ray transforms

Rnφ(γ) =

∫
γ
dsψn(x)φ(x). (4.14)

That is, we integrate the AdSd+1 function φ(x) along the enhanced symmetry geodesic

γ (which is uniquely parametrized by a field theory point (y, xµ)) weighted by the eigen-

functions ψn, which encode the details about the warp factor. Given the mode decom-

position (4.9), the orthogonality of the modes, and the fact that our enhanced symmetry

geodesic was just given by y = const., we can calculate

Rnφ(γ) =

∫
dr ψnφ(r, y, xµ) = φ̄n(y0, xµ). (4.15)

It is then immediate that the weighted X-Ray transform satisfies the same equation as the

bOPE block:

(�AdSd −m
2
n)Rnφ = 0 . (4.16)

In parallel with the discussion of ambient kinematic space and eq. (2.11), we can write this

as an intertwining relation, by simply using �AdSd+1
f = M2f , as

M2�AdSdRn[f ](γ) = m2
nRn[�AdSd+1

f ](γ) . (4.17)

Boundary conditions. It remains now to explicitly show that the weighted X-ray trans-

form and the bOPE block satisfy the same boundary conditions. As mentioned in the

previous section, in the limit y → 0 the bOPE block becomes simply

lim
y→0

Bn(x, y) = (2y)∆non(x) +O(y∆n+2) (4.18)
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for the primary operator on(x). For the weighted X-ray transform, we also showed above

how it is a canonically normalized bulk field, φ̄n(x, y), living on a lower-dimensional AdSd
where the dual CFT is just the CFT living on the boundary [17]. The y → 0 limit of

the geodesic operator is then just the standard limit as a bulk operator approaches the

boundary [12], albeit in one lower dimension. This gives

lim
y→0

Rnφ(x, y) = ad−1,∆ny
∆non(x) +O(y∆n+2) ,

ad−1,∆n =
1

2∆n − (d− 1)

√
π(d−1)/2Γ(∆n − d−1

2 )

(2∆n − (d− 1)) Γ(∆n)
. (4.19)

Thus, the geodesic operator approaches the local boundary primary operator, as desired.

Matching the two boundary conditions, we finally conclude

Rnφ(x, y) = bnBn(x, y) , bn = 2−∆nad−1,∆n . (4.20)

This establishes the bulk-to-boundary dictionary for bOPE blocks and weighted X-ray

transforms.

5 Bulk reconstruction

We have now generalized the holographic dictionary for geodesic operators that was pro-

posed in [4] to the bOPE expansion. In the prior work, much use was made of the sym-

metries of the problem; indeed, the bulk AdS geometry is a homogeneous space fixed by

symmetry. Here, however, our bulk geometry depends on dynamical data. It is thus

already interesting that we can find a simple correspondence between bOPE blocks and

simple geodesic operators.

We would like to do more though: how do we invert this data to find local bulk

fields and to determine the local bulk geometry? And, how is this encoded in the CFT

dynamical data?

To invert our geodesic transform and obtain the local bulk field, we must write

φ(xµ, y, r) =
∑
n

ψn(r)φ̄n(xµ, y) . (5.1)

We have already shown precisely that

Rnφ(xµ, y) = φ̄n(xµ, y) = bnB(xµ, y) , (5.2)

so that the only missing information to reconstruct the bulk field is knowledge of the radial

mode functions ψn(r). The radial mode functions are solutions of the linear equation (4.11),

which we recall is

ψ′′n + dA′ψ′n + e−2Am2
nψn −M2ψn = 0 , (5.3)

where the eigenvalues m2
n are the known Casimirs of the bOPE block. The only unknown

data in this equation is the function A(r), the warp factor of the metric (4.1).
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A closely related reconstruction problem is to determine the bulk metric, (4.1), which

we recall is

ds2 = e2A(r)ds2
AdSd

+ dr2 . (5.4)

This metric is determined up to the warp factor A(r), and this missing information is the

same missing information needed to determine the mode functions.8

In effect, we are asking how to ‘hear the shape of a drum’ by reconstructing the bulk

geometry and local fields from specified knowledge about the eigenfunctions. We will give

a strong indication that this is possible.

5.1 Bulk data from the bOPE

To understand if the bOPE allows us to hear the shape of the bulk, let us collect the

information that the CFT readily provides about the bulk radial eigenfunctions.

The first piece of data is obvious. As we have already established, the radial eigenvalues

are the known bOPE Casimirs {m2
n}∞n=0.

The next place to look for useful data in the CFT is the set of bOPE coefficients, cni .

Consider the standard limit as a bulk field approaches the boundary of AdS: as r → ∞,

the bulk field φi(x, y, r) approaches an ambient space operator Od,i(x, y) as

lim
r→∞

φi(x, y, r) = ad,i(e
r)−∆iOd,i(x, y) + . . . (5.5)

Using the mode expansion (4.9), we find that

Od,i(xµ, y) =
a−1
d,i

(2y)∆i

∑
n

Cnφ̄n(xµ, y) , (5.6)

where Cn is the leading coefficient of the radial mode function as r →∞:

ψn(r) = Cn(er)−∆i +O
(
(er)−∆i−2

)
. (5.7)

Substituting the normalization of our bulk modes in terms of the OPE blocks, we then find

Od,i(xµ, y) =
a−1
d,i

(2y)∆
d

∑
n

CnbnBn(xµ, y) . (5.8)

Thus the bOPE coefficients cni determine the bulk data

cni = Cn 2−∆n
ad−1,n

ad,i
, (5.9)

where the only unknown quantity is the leading coefficient, Cn, of ψn(r). It will be useful

to phrase this data in a different way. Let us rescale the mode functions so that Cn = 1.

Then we have that the bOPE coefficients fix the norm of the radial mode functions:

αn :=

∫
dr e(d−2)A(r)|ψn|2 =

(
1

cni
2−∆n

ad−1,n

ad,i

)2

. (5.10)

8If the field is not free, and there are non-trivial expectation values turned on, then the differential

equation will depend more generally on a potential function. It is these potential functions, then, that we

would be interested in directly reconstructing for different bulk fields, with the warp factor to be determined

as a consequence of the ensemble.
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These two sets of discrete data, {m2
n}∞n=0 and {αn}∞n=0 are commonly chosen as suf-

ficient data for solving inverse Sturm-Liouville problems. We briefly review this proce-

dure below.

5.2 The inverse Sturm-Liouville problem

We will describe the Gelfand-Levitan-Marchenko method for solving the inverse Sturm-

Liouville problem [27–29]. In the interest of brevity, we will ignore many subtleties that

will not be directly relevant to the more general point we wish to illustrate. In appendix A

we give a loose derivation of the algorithm in a more familiar language to physicists.

See [28, 29], for example, for mathematical details.

Consider the Sturm-Liouville boundary value problem

− ϕ′′(r) + q(r)ϕ(r) = λϕ(r) (5.11)

on the real line with q(r) the potential, λ the spectral parameter. Let us assume we do not

know the potential function q(r), except that it vanishes outside some finite interval. On

the other hand, let us assume that we do know the set of spectral parameters λn = −m2
n

for the bound states in the potential and the norm of the associated eigenfunctions

αn =

∫ ∞
0

dr|ϕn(r)|2 , (5.12)

where the eigenfunctions have been normalized such that

lim
r→∞

ϕn(r) = e−mnr + . . . . (5.13)

From this discrete data we can construct an auxiliary function

R̃d(r) = 2

N∑
n=0

α−1
n e−2mnr . (5.14)

As the potential vanishes asymptotically, we also have a continuous spectrum of eigenstates

for which we must also have knowledge of the reflection coefficient, R̃c(r), which we define

in appendix A. Then, we can set

R̃(r) = R̃c(r) + R̃d(r) , (5.15)

and solve the integral equation

K(y, r) + R̃(y + r) +

∫ ∞
0

R̃(r + y + s)K(s, r)ds = 0 , y > 0 . (5.16)

The solution of this equation determines the potential via

q(r) = − d

dr
K(0, r) . (5.17)

Thus, we have used the set of spectral parameters for the bound states in the potential and

the norm of the associated eigenfunctions, along with the continuum of non-bound states,

to solve the inverse problem.
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What do we learn from this example? We have an analogous set of data (eigenvalues

and norms) for the mode functions in an asymptotically-AdS geometry. In our case, as in a

finite interval or confining potential, there are no continuous modes. It seems reasonable to

propose, then, that the bOPE contains sufficient information to solve our inverse problem.

Unfortunately, we are not aware of a solution of our particular inverse Sturm-Liouville

problem in the existing mathematical literature. It would be nice to extend the Gelfand-

Marchenko-Levitan method to asymptotically-AdS boundary conditions and work out the

reconstruction for specific examples, but this problem is beyond the scope of this paper.

6 Discussion and outlook

We have extended the concept of kinematic space to conformal field theories with interfaces,

defects or a boundary. As an example of a theory where the vacuum state is not fixed by

kinematics alone, this constitutes a first step towards generalizing kinematic space beyond

pure kinematics. The most intriguing new feature in this class of theories, as far as operator

product expansions are concerned, is the bOPE, for which we have constructed a boundary

kinematic space which is naturally embedded into the ambient kinematic space and on

which bOPE blocks are scalar fields satisfying a Laplace equation. As holographic duals of

the bOPE blocks we have identified bulk operators smeared over a special geodesic which

is anchored on the conformal boundary at the point where the operator is inserted, and

connects it to the extension of the CFT boundary into the bulk. Remarkably, detailed

knowledge of the bOPE expansions appears to be enough to reconstruct the dual bulk

geometry, and we have outlined the reconstruction procedure, which amounts to solving

an inverse Sturm-Liouville problem.

Kinematics vs. dynamics. We take the natural way in which the concept of kinematic

space extends to bCFTs as indication that it can indeed capture more than purely kinematic

information. The crucial step in elevating this from an expectation to a solid statement

will be to understand how the mapping of ambient space OPE blocks to smeared bulk

operators is affected by the breaking of the ambient space conformal symmetry. The bulk

geodesic anchored at two given boundary points is clearly affected by the choice of state

in the CFT, as that affects the bulk geometry. The OPE block, on the other hand, is

defined and mapped to its bulk representation as an operator. If kinematic space is to be

useful beyond kinematics, the choice of state must be encoded in the mapping between

OPE block and smeared bulk operator. bCFTs provide a good starting point to address

this question, due to the large amount of preserved symmetry: the defect conformal group

already provides a large amount of symmetry, and far away from the defect even the full

conformal symmetry can be employed [18]. Other examples where this could be investigated

are finite temperature states or the Coulomb branches of supersymmetric theories.

Background-independent operators. We established that the bOPE block is dual

to a geodesic operator, regardless of the particular bulk warp factor. Thus, our bOPE

dictionary provides an example of a background-independent operator (although perhaps a

rudimentary example of such), in the sense that its definition does not refer to a particular

– 18 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
9

C

D γ

folding

C

Bγ

Figure 2. Folding of a geodesic across the defect in a dCFT to a long geodesic in a bCFT. C denotes

the conformal boundary of the asymptotically-AdS geometry while D/B labels the extension of the

defect/boundary into the bulk.

background. We did not need to know the bulk geometry to write down the bOPE block

operator, and it has a simple, well-defined interpretation for any warp factor. It would

be even more interesting to determine background-independent CFT operators whose bulk

interpretation does not depend on smearing with a radial mode-function.

Consistency of operator products. bCFTs, in fact, naturally produce an even richer

hierarchy of kinematic spaces, with non-trivial consistency relations between them: in direct

analogy with the ambient space OPE one can define an OPE purely among boundary fields,

and a corresponding kinematic space of dimension 2(d− 1). It is tempting to argue that in

the bulk this kinematic space is realized by geodesics that are confined to e.g. the hard wall

of the models in [20]. But whatever the representation, consistency relations like the one

illustrated in figure 1 impose non-trivial constraints on the holographic dual representations

and the involved geodesics, and thus good consistency checks.

bCFT correlation functions. A standard procedure for computing correlation func-

tions in a bCFT is to use the bOPE to expand higher-point correlators in terms of boundary

conformal blocks. A simple example is the expansion of an ambient space two-point func-

tion in terms of two-point conformal blocks. Each conformal block is the correlator of two

bOPE block operators (this is represented diagrammatically on the l.h.s. of figure 1). With

our new construction, the expansion in terms of boundary conformal blocks now has a bulk

expression: a bCFT correlation function can now be expanded in terms of the contribu-

tions of bulk geodesic operators. In the case of the two-point function, the conformal block

expansion is a sum over two-point functions of bulk geodesic operators; this is the bCFT

generalization of geodesic Witten diagrams in [30]. We leave the details of this expansion

in specific examples to future work and refer to [31] for recent related work in the context

of probe branes.

Long geodesics. Finally, topology also enters the stage. As discussed in section 4.1, a

defect CFT can be mapped to a bCFT by folding, and the special geodesic relating to the

bOPE can be understood as arising from the usual OPE of an operator with its mirror

operator after folding. Imagine now starting with operators asymmetrically inserted on

both sides of the defect, as shown in figure 2. After folding such a product is mapped to

a product of ambient space operators, but the folding clearly instructs us to identify the

corresponding OPE blocks not with the shortest geodesic connecting the insertion points,

but with a “long” one going through the boundary. This is reminiscent of the long geodesics
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playing a role in entanglement entropy calculations, and one may wonder if they play a

role beyond the very special setup of a folded dCFT. We leave those and other topics for

the future.
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A A derivation of the Gelfand-Marchenko-Levitan method

The brief description of the GLM method in the main text may seem rather opaque.

However, we can describe the method in the more familiar language of quantum mechanical

scattering, following [28, 29, 32]. We will demonstrate this in the simpler case where the

potential has a continuous spectrum of scattering states, but no bound states.

Our differential equation has the form of a one-dimensional time-independent Schrö-

dinger equation on R with a potential Q̂:

(Ĥ0 + Q̂)|ψ(k)〉 = k2|ψ(k)〉 , (A.1)

where Ĥ0 is the free Hamiltonian. If the potential falls of sufficiently quickly, then this

equation will have solutions that are purely incoming or outgoing asymptotically. Such

solutions are found by using the Lipmann-Schwinger equation

|ψ(±)(k)〉 = | ± k〉+
1

k2 − Ĥ0

Q̂|ψ(±)(k)〉 (A.2)

where Ĥ0| ± k〉 = k2|k〉. We will choose the somewhat non-standard Green’s function

G(±)(r, r
′
) = Θ(±(r

′ − r))
sin
(
k(r − r′)

)
k

(A.3)

which is like a retarded/advanced propagator, except the roles of time and space have

been exchanged. Using these propagators, the Lipmann-Schwinger equation becomes, in

position space,

ψ(+)(k, r) = eikr + k−1

∫ ∞
r

dr
′
sin
(
k(r − r′)

)
Q(r

′
)ψ(+)(k, r

′
) (A.4)

ψ(−)(k, r) = e−ikr + k−1

∫ r

−∞
dr
′
sin
(
k(r − r′)

)
Q(r

′
)ψ(−)(k, r

′
) . (A.5)

(The solutions to this integral equation are also known as the Jost solutions.) If we consider

a solution that scatters an incoming wave from r = ∞, so that it is purely outgoing at

r → −∞, χ(k, r) ∼ T (k)e−ikr, then we can write it in the form

T (k)ψ(−)(k, r) = ψ(+)(−k, r) +R(k)ψ(+)(k, r) . (A.6)

– 20 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
9

The equality necessarily holds because there are only two linearly-independent solutions.

This equation defines the transmission and reflection coefficients T (k) and R(k).

We can now take the Fourier transform of (A.6), with respect to k, to find that the

r.h.s. becomes

δ(t+ r) +G(−t, r) + Ř(t− r) +

∫ ∞
−∞

Ř(t− τ)G(τ, r)dτ (A.7)

where

Ř(t) =
1

2π

∫ ∞
−∞

e−iktR(k)dk , G(t, r) =
1

2π

∫ ∞
−∞

e−iktψ(+)(k, r)dk − δ(t− r) . (A.8)

We can interpret t quite literally as a time coordinate, and our Helmholtz equation becomes

a wave equation. At large r where the potential vanishes, our solution is just δ(t+r)+R(t−
r), which is just a left-moving delta-function wave and its reflection. Thus, by causality,

both our solution and R(t− r) must vanish whenever t < −r. As a result, we find

G(−t, r) + Ř(t− r) +

∫ ∞
r

Ř(t− τ)G(τ, r)dτ = 0 , t < −r (A.9)

We then use the transformation

G(t, r) =
1

2
K(1

2(t− r), r) , R̃(r) = 2Ř(−2r) . (A.10)

so that this equation becomes

K(y, r) + R̃(y + r) +

∫ ∞
0

R̃(r + y + s)K(s, r)ds = 0 , y > 0 . (A.11)

This is the Gelfand-Levitan-Marchenko equation, allowing us to solve for K(y, r) from the

scattering data R(k). It remains then, only to check that

Q(r) = − d

dr
K(0, r) , (A.12)

which we can do by substituting ψ̌(+)(t, r) back into the wave equation that it solves.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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