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Abstract: Through timelike dualities, one can generate exotic versions of M -theory with

different spacetime signatures. These are the M∗-theory with signature (9, 2,−), the M ′-

theory, with signature (6, 5,+) and the theories with reversed signatures (1, 10,−), (2, 9,+)

and (5, 6,−). In (s, t,±), s is the number of space directions, t the number of time direc-

tions, and ± refers to the sign of the kinetic term of the 3 form.

The only irreducible pseudo-riemannian manifolds admitting absolute parallelism are,

besides Lie groups, the seven-sphere S7 ≡ SO(8)/SO(7) and its pseudo-riemannian version

S3,4 ≡ SO(4, 4)/SO(3, 4). [There is also the complexification SO(8,C)/SO(7,C), but it is of

dimension too high for our considerations.] The seven-sphere S7 ≡ S7,0 has been found to

play an important role in 11-dimensional supergravity, both through the Freund-Rubin so-

lution and the Englert solution that uses its remarkable parallelizability to turn on non triv-

ial internal fluxes. The spacetime manifold is in both casesAdS4×S7. We show that S3,4 en-

joys a similar role in M ′-theory and construct the exotic form AdS4×S3,4 of the Englert so-

lution, with non zero internal fluxes turned on. There is no analogous solution inM∗-theory.
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1 Introduction

Duality suggests that even the spacetime signature is a relative concept that depends

on the description [1, 2]. The change of signature induced by duality transformations

can be given a group theoretical interpretation in terms of the infinite-dimensional Kac-

Moody algebras E11 or E10 that have been conjectured to be “hidden symmetries” of

11-dimensional supergravity or an appropriate extension [3–10]. Weyl reflections in the

exceptional root may change the spacetime signature. In the orbit of the standard signature

(10, 1,+) of M -theory (the one on which we shall focus in this paper) appear also the

signatures (9, 2,−) (“M∗-theory”), (6, 5,+) (“M ′-theory”), and the theories with reversed

signatures (1, 10,−), (2, 9,+) and (5, 6,−) [11–14]. In (s, t,±), s is the number of space

directions, t the number of time directions, and ± refers to the sign of the kinetic term of

the 3 form. The analysis can be extended to other hidden symmetry algebras [15]. Multiple

time physics has a long history (for a survey of two-time physics, see [16]) and has recently

been shown to be connected with supergroup gauge theories and negative branes [17].
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For all these reasons, it is of interest to explore solutions with exotic spacetime sig-

natures in the context of M -theory. This is the object of this note. The analogues of the

Freund Rubin solutions [18] have been already studied in [19]. We derive here the analogue

of the Englert solution [20].

It is known that the seven-sphere S7 ≡ SO(8)/SO(7) is one of the only spheres that are

parallelizable [21–23]. If one allows pseudo-riemannian signatures, the family includes also

the pseudo-sphere S3,4 [24, 25], which is the space of constant curvature SO(4, 4)/SO(3, 4)

or space of unit split octonions (see also [26]).1 Now, the seven-sphere plays an important

role in eleven-dimensional supergravity [27], either through the Freund-Rubin solution

where it leads to the SO(8) gauged supergravity [28] or through the Englert solution [20]

which breaks the SO(8) symmetry down to Spin(7) [29] through the turning on of internal

fluxes. We show that there is an analogue of the Englert solution in M ′-theory, which takes

the form AdS4×S3,4. Just as its original parent, this exotic form of the Englert solution is

characterized by internal fluxes provided by a torsion that parallelizes S3,4. These internal

fluxes break the SO(4, 4) symmetry of the pseudo-sphere S3,4 ≡ SO(4, 4)/SO(3, 4) down to

Spin+(3, 4) (see appendix B for information on the pseudo-sphere S3,4, the split octonions

and the relevant associated groups).

2 Action principle and general ansatz

2.1 Action

Our starting point is the bosonic action of 11-dimensional supergravity with mixed signa-

ture [1, 2, 27], written as

S =
1

2κ2

∫

dxs+tL, (2.1)

where the Lagrangian L is

L=
√

|gs+t|
(

R− η

24
FMNPQF

MNPQ − 2
√
2

124
1

√

|gs+t|
εM1...M11FM1...M4

FM5...M8
AM9...M11

)

.

(2.2)

Here, s+ t-dimensions (s+ t = 11) refers to s spacelike directions and t timelike directions

and FMNPQ = 4∂[MANPQ]. The sign of η is determined as2

η = +1 if (s− t)mod 8 = 1 i.e. in dimensions 10 + 1, 6 + 5, 2 + 9, (2.3)

η = −1 if (s− t)mod 8 = 7 i.e. in dimensions 1 + 10, 5 + 6, 9 + 2. (2.4)

1Of course, the negative curvature spaces obtained by multiplying the metric by an overall minus sign,

which are the pseudo-hyperbolic spaces H0,7 and H4,3 (see appendix A for conventions), also enjoy this

property.
2From the point of view of fermionic content of the theory, whenever η = +1 there exists a purely real

representation of Clifford algebra and as a result spinors are Majorana. However, if η = −1 then there

exists a purely imaginary representation of Clifford algebra and the spinors are pseudo-Majorana [30].
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The equations of motion are

RMN − 1

2
gMNR = − η

48
(gMNF 2 − 8FMPQRF

PQR
N ), (2.5)

FMNPQ
;M =

1

η

18
√
2

124
1

√

|g11|
εM1...M8NPQFM1...M4

FM5...M8
. (2.6)

As we mentioned in the introduction, M -theory corresponds to η = 1, (s, t) = (10, 1),

whereas M∗-theory corresponds to η = −1, (s, t) = (9, 2) and M ′-theory corresponds to

η = 1, (s, t) = (6, 5). The equations of motion are invariant under the sign change of the

metric gMN → −gMN accompanied by η → −η as well as AMNP → AMNP . We recall that

with our conventions, ǫ01···10 changes sign since in the transformation gMN → −gMN , the

parity of the number of time directions changes. Because of this invariance, we concentrate

on M -theory, M∗-theory and M ′-theory, leaving to the reader the trivial task of deriving

the solutions for the reversed signature theories corresponding to the other theories in the

same duality orbit as ordinary supergravity.

2.2 Product of constant curvature spaces

We assume that the eleven-dimensional spacetime manifold (referred to as the “ambient

space” in the sequel) splits as the product of a four-dimensional manifold (“background

spacetime”) and a seven-dimensional manifold (“internal space”).3 The metric itself is

a direct sum and splits into two parts, the metric on the internal space, and the one

on the background spacetime. Capital Latin indices M,N, . . . run over 0, . . . , 10. Small

Latin indices m,n, . . . are internal space indices and run over 4, . . . , 10. Greek indices

µ, ν, . . . are background spacetime indices running over 0, 1, 2, 3. Notice that here |g11| is
the absolute value of the determinant of the metric of the total space. We use the absolute

value everywhere when needed for the determinant of the ambient, internal and background

metrics since, a priori, there is no restriction on the signature of the aforementioned metrics.

We also assume that spacetime and the internal space are spaces of constant curva-

ture, i.e., either a pseudo-sphere or a pseudo-hyperbolic space, with curvatures respectively

given by

Rmnrs =
a

6
(gmrgns − gmsgnr) , (2.7)

Rµνρσ =
b

3
(gµρgνσ − gµσgνρ) , (2.8)

where a and b are constants, which are positive for pseudo-spheres and negative for pseudo-

hyperbolic spaces. The conventions and notations used in this paper are collected in ap-

pendix A. This implies in particular

Rmn = a gmn, (2.9)

Rµν = b gµν , (2.10)

Rmµ = 0. (2.11)
3We stress that the “internal space” is thus in our terminology always the seven-dimensional manifold,

independently of its curvature or signature.
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3 Freund-Rubin type solutions

We first derive the analogues of the Freund-Rubin solutions. These were already considered

in [19].

The Freund-Rubin ansatz assumes in addition to the above conditions on the metric

that the only 4-form flux is in spacetime and reads explicitly:

Fµνρσ =
1

√

|g4|
f√
4!
εµνρσ, (3.1)

FmPQR = 0 , (3.2)

where f is a constant. There is no internal flux.

Now, from (2.5) and the ansatz, one finds that

Rmn =

(

−1

3

)

η

24
f2(−1)T

′

gmn, (3.3)

Rµν =

(

+
2

3

)

η

24
f2(−1)T

′

gµν , (3.4)

where T ′ is the number of timelike directions in the four-dimensional background spacetime

metric. We shall also introduce T as the number of timelike directions in the internal space,

so that t (the number of timelike directions of the eleven-dimensional ambient space) is

equal to t = T + T ′. Comparing with (2.9) and (2.10), we find

a = −1

3

η

24
f2(−1)T

′

, b = −2a, (3.5)

as in [19]. For example, the standard Freund-Rubin solution is obtained by setting η = +1,

T ′ = 1.

The Freund-Rubin solutions constitute a one-parameter family of solutions. One can

take f as the free parameter characterizing the solutions. The curvature of the background

spacetime and of the internal space are then determined by f and are of opposite signs.

Note that they depend in fact on f2 and so are invariant under f → −f as it should.

The sign of a is easily seen to be always equal to (−1)T : for M -theory and M ′-theory,

one has η = 1 and (−1)T
′

= −(−1)T because T + T ′ = t is odd. This is also true for the

reversed M∗-theory with signature (2, 9) and η = 1. For M∗-theory, one has η = −1 but

t is now even and then (−1)T
′

= (−1)T . The same is true for the reversed signature M -

and M ′-theories. In all cases, the curvatures in the four-dimensional spacetime and in the

internal manifold have opposite signs.

All Freund-Rubin solutions that can be obtained in this way are maximally supersym-

metric [19].

4 Englert type solutions

4.1 Ansatz

The Englert type solutions [20] can be considered as spontaneous breakings of the Freund-

Rubin solutions through non-vanishing expectation values for some of the internal compo-
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nents of the 4-form. In other words there is now an internal flux which breaks completely

the supersymmetry.

The Englert construction is available when the internal manifold is parallelizable. This

occurs when the internal space of constant curvature is either the sphere S7,0, corresponding

to the original Englert solution [20], or the pseudo-sphere S3,4 (as well, of course, as

the cases trivially obtained from these ones by an overall change of sign of the metric,

corresponding to the pseudo-hyperbolic spaces H0,7 and H4,3). All the other cases (S6,1,

S5,2, H6,1 etc) are not parallelizable.

By matching the signatures, one easily sees that there are a priori four cases where

the parallelizable seven-(pseudo-)spheres might appear for the theories in the time-duality

orbit of M -theory. These are

• Case 1: M -theory with spacetime manifold M3,1 × S7,0,

• Case 2: M∗-theory with spacetime manifold M2,2 × S7,0,

• Case 3: M ′-theory with spacetime manifold M3,1 × S3,4,

• Case 4: reversed M ′-theory with spacetime manifold M2,2 × S3,4,

as well as the reversed signature solutions. Here, Mp,q is a priori either Sp,q or Hp,q, i.e., we

leave the sign of the curvature of four-dimensional spacetime open. It will be determined

by the equations. We shall show that only cases 1 and 3 are actually compatible with the

equations of motion and furthermore, that M3,1 is then the anti-de Sitter space H3,1.

We note that in all cases, the product η(−1)T
′

, where T ′ is the number of time direc-

tions in the four-dimensional background spacetime, is equal to −1,

η(−1)T
′

= −1.

Indeed, one has η = 1 for cases 1 and 3 with T ′ odd, and η = −1 for cases 2 and 4 but T ′

is now even. Furthermore, the curvature a of the internal space is positive,

a > 0,

and the number of time directions in the internal space is even (a would of course be

negative and T odd for the reversed signature solutions.)

The Englert ansatz [20] consists in imposing the earlier conditions (2.7), (2.8), (3.1) and

FmµQR = 0. (4.1)

The condition that the internal flux should vanish is, however, dropped, i.e., one allows

Fmnpq 6= 0. In fact, one postulates instead

Fmnpq = λS[npq,m] = λSnpq;m. (4.2)

where Snpq is one of the (metric compatible) torsions that parallelizes the internal space,

i.e., such that when added to the Levi-Civita torsion-free connection, the resulting connec-

tion is flat (zero curvature). In (4.2), λ is a constant parameter.
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As Cartan and Schouten showed [21, 22] (see also [20]), the torsions satisfy the following

identities:

Str
mStrn = a gmn, (4.3)

S r
tm S s

rn S t
sp =

1

2
aSmnp, (4.4)

Snpq;m = St[npS
t
q]m = S[npq,m]. (4.5)

The parallelisms are respectively related to the octonion and split octonion algebras. Be-

cause these algebras are non-associative, there are in each case two infinite classes, denoted

+ and −. We refer to [31] for useful information concerning the S7,0 sphere, easily ex-

tendable to S3,4. The corresponding torsions can be expressed in terms of the structure

constants of the octonion or split-octonion algebras. The invariance group at any given

point of these 3-forms is isomorphic to G2 (G∗

2,2) in the Riemannian (pseudo-Riemannian)

case (see appendix B). The fact that there are only two possible internal manifolds S7,0 or

S3,4, and that S6,1, S5,2 etc are excluded, is connected with the fact that there are only

two real forms of the octonion algebra, and two real forms of the Lie algebra g2.

Furthermore, one finds from (4.3)–(4.5) that the torsion 3-forms are eigenfunctions of

the (pseudo-)Laplace operator in 7 dimensions,

S ;m
npq;m = −2

3
aSnpq. (4.6)

One can also prove that the torsions are dual or anti-dual to their curvature [20],

Smnp = ±
√

6

a

1

4!

1
√

|g7|
εmnpqrstS[rst,q], (4.7)

Smnp = ±
√

6

a

1

4!

√

|g7|εmnpqrstS
[rst,q]. (4.8)

where the ± sign depends on the ±-class to which the torsion belongs.

With the above assumptions, the equation (2.6) for FMNPQ reduces to

F ;m
mnpq =

(−1)T
′

η

f

2(12)3/2

√

|g7| εrstunpqF rstu, (4.9)

and is therefore solved in view of (4.2) and (4.6) if we impose

a = −3

4

η

24
f2(−1)T

′

=
1

32
f2. (4.10)

Given a, the two choices f = ±|f | = ±
√
32a correspond to the + or − parallelism,

respectively.

Now, the equation (2.5) is equivalent to

RMN = − η

48

(

2

3
gMNF 2 − 8FMPQRF

PQR
N

)

, (4.11)
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Using the form of the fields obtained so far, the (mn)-components of (4.11) read

a =
4

9
a+

1

24

10

9
ηλ2a2 , (4.12)

yielding

λ2 = η
12

a
. (4.13)

Since a > 0, this equation has no (real) solution when η = −1, i.e., for cases 2 and 4 above.

When η = 1, this equation determines λ in terms of a,

λ = ±
√

12

a
. (4.14)

The (µν)-components of (4.11) determine then the radius of curvature b of the four-

dimensional background spacetime,

b = −5

3
a, (4.15)

which is thus negative. The four-dimensional background spacetime is therefore anti-de

Sitter space AdS4 ≡ H3,1.

4.2 Summary of solutions

We thus see that there are only two cases among the cases listed above that can actually

be realized (and the cases obtained by reversing the signature). These are

1. The Englert solution H3,1 × S7,0 in M -theory.

2. The “exotic” Englert solution H3,1 × S3,4 in M ′-theory.

For all these solutions λ2 = 12
a and b = −5

3a, in consistency with [20].

The parallelizable seven-sphere or seven-pseudo-sphere with internal torsion (fluxes)

turned on is therefore a possible solution only in M -theory and M ′-theory. M∗-theory does

not accomodate such solutions. Furthermore, the four-dimensional background spacetime

is in both cases anti-de Sitter, with a single time. There is no solution with two time

directions in the four-dimensional background spacetime.

4.3 Breaking of symmetry

The Englert solution of M -theory breaks both supersymmetry and the SO(8)-symmetry of

the seven-sphere down to Spin(7) [29].

A similar situation prevails in M ′-theory. The internal fluxes of the Englert-type

solution break the SO(4, 4) symmetry of the pseudo-sphere S3,4. This is because the 4-form

Fmnpq at any given point is not invariant under the full isotropy subgroup SO(3, 4). It is

only invariant under the subroup G∗

2,2 of the split octonions, since the torsion is determined

by the structure constants of the split octonions. Now, the pseudo-sphere is also equal to

Spin+(3, 4)/G∗

2,2, where the group Spin+(3, 4) is the connected component of Spin(3, 4)

(see [32] and appendix B). This implies that the symmetry group of the M ′-theory Englert

solution is Spin(3, 4). Similarly, supersymmetry is broken.
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5 Conclusions and comments

If one adopts the idea suggested by duality that the spacetime signature is a relative concept

that depends on the description [1, 2], it is natural to explore solutions of the exotic forms of

M -theory in which there is more than one time direction. We have shown in this note that

an exotic version of the Englert solution exists in M ′-theory, where the internal manifold

is the parallelizable pseudo-sphere S3,4. Through the non-vanishing internal fluxes, this

solution breaks the SO(4, 4) symmetry of the pseudo-sphere down to Spin+(3, 4).

It is interesting to note that M -theory and M ′-theory have differences s − t of the

number of space directions minus the number of time directions that are equal modulo 8

(10 − 1 = 6 − 5 modulo 8). Accordingly, they have spinor representations with similar

properties. In fact, the spinor representations of SO(7) and SO(3, 4) are in both cases

8-dimensional and real.

The pseudo-sphere S3,4 admits Killing spinors in terms of which one can express the

torsions [32]. Deformation by squashing of the pseudo-sphere can aso be contemplated.
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A Notation

In this paper, we generally follow the notation of [33]. For concreteness, we spell out the

needed ones here:

• s: number of space directions of the ambient space manifold

• t: number of time directions of the ambient space manifold

• T : number of time directions of the internal manifold

• T ′: number of time directions of spacetime “background” manifold

• gMN =
(

gµν 0
0 gmn

)

: the metric on 11 dimensional ambient space, M,N = 0, . . . , 10.

• gmn: the metric on 7 dimensional internal space, m,n = 4, . . . , 10.

• gµν : the metric on 4 dimensional spacetime, µ, ν = 0, . . . , 3.

• FMNPQ = 4∂[MANPQ].

• εM1...M11
: the 11 dimensional Levi-Civita antisymmetric covariant tensor density of

rank 11 and weight −1, with ε01234... = +1.

– 8 –



J
H
E
P
0
8
(
2
0
1
7
)
0
1
2

• εM1...M11 : the 11 dimensional Levi-Civita antisymmetric contravariant tensor density

of rank 11 and weight +1, with ε01234... = (−1)t. This choice is such that

1
√

|g11|
εM1...Mp =

√

|g11|gM1N1gM2N2 · · · gM11N11εN1...Np ,

where g11 is the determinant of gMN .

•

εM1...MkMk+1...Mk+p
εM1...MkNk+1...Nk+p = (−1)t k! δ

Nk+1...Nk+p

Mk+1...Mk+p

= (−1)t k! p! δ
Nk+1

[Mk+1
δ
Nk+2

Mk+2
. . . δ

Nk+p

Mk+p]
.

• SO(p, q): the group of all transformations which leaves invariant the bilinear form

ηp,q =
∑p

i=1 dx
2
i −

∑q
j=1 dx

2
j .

• The pseudo-sphere Sp−1,q = SO(p, q)/SO(p − 1, q) (p ≥ 1, q ≥ 0) is a manifold with

induced metric of signature (p− 1, q) and positive curvature. In particular, Sp−1,0 is

the standard (p− 1)-sphere Sp−1.

• The pseudo-hyperbolic space Hp,q−1 = SO(p, q)/SO(p, q − 1) (p ≥ 0, q ≥ 1) is a

manifold with induced metric of signature (p, q − 1) and negative curvature. While

one removes a spacelike direction from the ambient space to get Sp−1,q, one removes a

timelike direction for Hp,q−1 (see appendix B for an explicit example). In particular,

Hp,0 is the standard hyperbolic space Hp of dimension p.

B The pseudo-sphere S3,4 and the split octonions

B.1 The pseudo-sphere S3,4 as a homogeneous space

Let R
4,4 be the 8-dimensional real vector space endowed with the flat metric of mixed

signature (4, 4),

ds24,4 =
(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2

+
(

dx4
)2 −

(

dy1
)2 −

(

dy2
)2 −

(

dy3
)2 −

(

dy4
)2

. (B.1)

We consider the hypersurfaces:

S3,4 :
(

x1
)2

+
(

x2
)2

+
(

x3
)2

+
(

x4
)2 −

(

y1
)2 −

(

y2
)2 −

(

y3
)2 −

(

y4
)2

= 1 (B.2)

H4,3 :
(

x1
)2

+
(

x2
)2

+
(

x3
)2

+
(

x4
)2 −

(

y1
)2 −

(

y2
)2 −

(

y3
)2 −

(

y4
)2

= −1 (B.3)

These are connected. Because the signature of the embedding space is symmetric for the

exchange of the space and time directions, these hypersurfaces are clearly isomorphic. The

“pseudo-sphere” S3,4 has an induced metric with signature (3, 4) (three + signs and four

− signs), while the “pseudo-hyperbolic space” H4,3 has an induced metric with signature

(4, 3). One goes from one to the other by an overall sign change of the metric.

The split group O(4, 4) and its subgroups SO(4, 4) and SO+(4, 4) act transitively on

S3,4 and H4,3. The stability subgroups at a point are respectively O(3, 4), SO(3, 4) and

– 9 –
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SO+(3, 4) for S3,4, and O(4, 3), SO(4, 3) and SO+(4, 3) for H4,3. Of course, the groups

O(3, 4) and O(4, 3) (as well as SO(3, 4) and SO(4, 3), or SO+(3, 4) and SO+(4, 3)) are

isomorphic, but we prefer to adopt different notations in each case to keep track of the

signature of the metric. Thus, the pseudosphere S3,4 and pseudo-hyperbolic spaceH4,3 are

the homogeneous spaces:

S3,4 =
O(4, 4)

O(3, 4)
=

SO(4, 4)

SO(3, 4)
=

SO+(4, 4)

SO+(3, 4)
(B.4)

and

H4,3 =
O(4, 4)

O(4, 3)
=

SO(4, 4)

SO(4, 3)
=

SO+(4, 4)

SO+(4, 3)
(B.5)

The pseudo-sphere S3,4 and pseudo-hyperbolic space H4,3 are not only homogeneous

spaces, they are in fact maximally symmetric and hence spaces of constant curvature,

Rmnpq = K (gmpgnq − gmqgnp) (B.6)

with K = 1 > 0 for the pseudo-sphere S3,4 and K = −1 < 0 for the pseudo-hyperbolic

space H4,3, in agreement with the observation that under an overall change of sign of the

metric, the Riemann curvature changes sign but the product (gmpgnq − gmqgnp) does not,

so that K changes sign.

B.2 Split octonions

Let a and b be two quaternions, a = a0+a1i+a2j+a3k, b = b0+b1i+b2j+b3k (ai, bi ∈ R,

i2 = j2 = k2 = −1, ij = k = −ji etc). The split octonions are pairs of quaternions a+ bℓ,

where ℓ is a new element, for which one defines the product as

(a+ bℓ)(c+ dℓ) = ac+ (ℓ)2d̄b+ (da+ bc̄)ℓ , (B.7)

where

ℓ2 = +1 , (B.8)

instead of −1 as for the standard octonions. In (B.7), the overbar denotes quaternionic

conjugation, d̄ = d0 − d1i− d2j − d3k.

Setting e0 = 1, e1 = i, e2 = j, e3 = k, e4 = ℓ, e5 = iℓ, e6 = jℓ and e7 = kℓ, one gets the

same products eiej as for the standard octonions, except when two ℓ’s are involved, in which

case one gets an additional minus sign. For instance e1e4 = e5 as for octonions, but e4e5 =

−e1 while it is +e1 for standard octonions. Similarly, e24 = e25 = e26 = e27 = +1 instead of −1.

One defines octonionic conjugation for a general split octonion

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7, xi ∈ R (B.9)

as

x̄ = x0e0 − x1e1 − x2e2 − x3e3 − x4e4 − x5e5 − x6e6 − x7e7. (B.10)

One has

xy = ȳx̄ , (B.11)
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and of course x̄ = x. A scalar product can then be introduced as

(x, y) =
1

2
(xȳ + yx̄) =

1

2
(x̄y + ȳx) . (B.12)

Explicitly, one finds

(x, y) = x0y0 + x1y1 + x2y2 + x3y3 − x4y4 − x5y5 − x6y6 − x7y7 (B.13)

= x0y0 +
7

∑

i=1

ηijx
iyj , (B.14)

where ηij is the flat metric with signature (3, 4).

An octonion is pure imaginary if x̄ = −x. The unit octonions ei are pure imaginary.

The pure imaginary condition is equivalent to (e0, x) = 0.

One can rewrite the product of the unit octonions ei as

eiej = −ηije0 + a k
ij ek , (B.15)

where the structure constants a k
ij are such that the aijk ≡ a m

ij ηkm are completely anti-

symmetric in (i, j, k). The tensor aijk has value +1 for (ijk) = (123), (154), (167), (264),

(275), (374) and (356) (and cyclic permutations).

The squared norm N(x) ≡ (x, x) of x reads

N(x) =
(

x0
)2

+
(

x1
)2

+
(

x2
)2

+
(

x3
)2 −

(

x4
)2 −

(

x5
)2 −

(

x6
)2 −

(

x7
)2

(B.16)

= ηλµx
λxµ (λ, µ = 0, 1, · · · , 7) (B.17)

where ηλµ is the flat metric with signature (4, 4). The split octonions form a composition

algebra, i.e.,

N(xy) = N(x)N(y). (B.18)

Just as the standard octonions, the split octonions do not form an associative algebra.

However, in the same way as for the standard octonions, the associator [x, y, z] of three

split octonions x, y, z, defined through

[x, y, z] = (xy)z − x(yz) (B.19)

is an alternating function of x, y, z, i.e.

[x, y, z] = [x, y, z] = [z, x, y] = −[y, x, z] = −[x, z, y] = −[z, y, x] (B.20)

More information on the split octonions can be found in [34, 35].

B.3 Parallelizations of the pseudo-sphere S3,4

There exist two infinite families of parallelizations of the pseudo-sphere S3,4. We first start

by describing one of these parallelizations.

Consider the pseudo-sphere S3,4 of unit octonions, x ∈ S3,4 ⇔ N(x) = 1. The real

number 1 is the “North pole”. The tangent space at the North pole can be identified with
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the seven-dimensional vector space of imaginary octonions. A Lorentz basis of this tangent

space is given by the ei’s. Let x ∈ S3,4. Right multiplication by x maps the North pole to

x, and the tangent space at the North pole to the tangent space at x. Indeed, the vectors

ei at the North pole are mapped on t+i ≡ eix. One has:

(t+i , x) = 0, (t+i , t
+
j ) = ηij . (B.21)

The first equality expresses that the seven octonions t+i , viewed as vector in R
4,4 are

orthogonal to x and hence tangent to the pseudo-sphere S3,4 at x. The second equality

expresses that the t+i ’s form a Lorentz basis of that tangent space.

We have thus defined at each point of the pseudo-sphere S3,4 a Lorentz basis of the

tangent space. This provides an absolute parallelism for S3,4. The tangent vector at x

parallel to the tangent vector ei at 1 is the vector eix obtained by right multiplication with

x. The corresponding parallel transport preserves the metric of S3,4 and its geodesics can

be verified to coincide with those defined by the metric. The parallelization defined by

{t+i } is thus consistent with the metric.

Similarly, left multiplication also defines a parallelization of S3,4 that maps the tangent

basis {ei} at 1 on the tangent basis {t−i ≡ xei} at x. The two parallelisms are inequivalent

since the tangent vectors t+i and t−i coincide only at the North pole and at the “South

pole” −1.

Yet other parallelizations can be defined by using a reference point on S3,4 different

from unity. More precisely, let α ∈ S3,4. One goes from α to x by multiplying α by ᾱx,

α(ᾱx) = x. One defines the tangent vector (α)t+i at x parallel to the tangent vector eiα at

α through right multiplication by the octonion ᾱx that connects α to x, (α)t+i = (eiα)(ᾱx).

The tangent vectors (α)t+i and t+i at x do not coincide because octonionic multiplication is

not associative. A similiar construction yields the parallelism (α)t−i = (xᾱ)(αei).

Because the families of parallelisms given by the above construction are consistent

with the metric, the corresponding torsion tensors obey the equations (4.3)–(4.5) given

above [21, 22, 24, 25].

The parallelisms of S3,4 are related to the split octonions in the same way as the

parallelisms of the seven-sphere are related to the standard octonions. For that reason,

the reader can find more information on the parallelisms of S3,4 in the literature on the

parallelisms of the seven-sphere. A reference that we have found useful is [31].

C Spin+(3, 4) and G∗

2,2

The complex Lie agebra g2 possesses two real forms, the compact one and the split one. To

the compact real form corresponds the unique compact group G2. To the split real form

correspond the simply connected non compact group G2,2 with center Z2 and the quotient

G∗

2,2 ≡ G2,2

Z2
(“adjoint real form”) which has trivial center (and is not simply connected).

The group G∗

2,2 is the automorphism group of the split octonions.

The group Spin(7) is well-known to have a transitive action on the seven-sphere

S7, with isotropy group G2. Similarly, the group Spin+(3, 4) (connected component of
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Spin(3, 4)) has a transitive action on the pseudo-sphere S3,4 with isotropy group G∗

2,2 [32].

We can thus also identify S3,4 with the homogeneous space Spin+(3, 4)/G∗

2,2,

S3,4 ≃ Spin+(3, 4)

G∗

2,2

(C.1)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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