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1 Introduction and summary

This is a continuation of our recent works [1, 2] in which the two- and three-point correlation
functions of the supercurrents and flavour current multiplets in three-dimensional (3D) N-
extended superconformal field theories have been computed for the cases 1 < N < 4. The
present paper extends the results of [1, 2] to the 3D field theories possessing N' =5 [3] and
N =6 [4, 5] superconformal symmetry. The A = 6 superconformal field theories are often
referred to as the ABJ(M) theories.!

Although the family of N-extended superconformal field theories in three dimensions
is very large for N' < 4, it becomes much smaller for 5 < A/ < 8. The latter families in-
variably consist of superconformal Chern-Simons theories interacting with supersymmetric
matter in the bi-fundamental representation of the gauge group G such that the amount
of supersymmetry depends on the choice of G. The allowed gauge groups are as follows:
Sp(2M) x O(N) for N' =5 [3], U(M) x U(N) or Sp(2M) x O(2) for N' = 6 [3, 4], and
only the gauge group SU(2) x SU(2) for N' = 8 [8-10]. Clearly the range of N' =5 and
N = 6 superconformal field theories are still pretty wide, and their properties are known
to be quite fascinating.

In supersymmetric field theory in d dimensions, the supercurrent [11] is a supermulti-
plet containing the energy-momentum tensor and the supersymmetry currents, along with
some additional components such as the R-symmetry current. Thus the supercurrent con-
tains fundamental information about the symmetries of every supersymmetric field theory.

!These theories possess the remarkably simple formulation [6] in A/ = 3 harmonic superspace [7].



In the case of 3D extended superconformal field theories with N > 4, the supercurrent was
introduced in [12, 13] (see also [1]). Tt is described by a primary real SO(N') four-form
superfield JI/KL — JUJKL] of dimension 1, I = 1,...,N. The conformal supercurrent is
subject to the conservation equation

DL j/KLP _ pll JJKLP] _ 4 DQJQUKLSPIL (1.1)
where D! denotes the spinor covariant derivative. In the N = 5 case, it is convenient to
replace the four-form J//X% with its Hodge-dual one-form J! defined by
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In terms of J/, the conservation equation (1.1) turns into
1
DY — g5”1)3]@ =0. (1.3)

In the A/ = 6 case, it is useful to switch from J//5% to its Hodge-dual two-form J!7
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EIJKLPQJKLPQ . (1.4)
In terms of J!7, the conservation equation (1.1) turns into
DLJ7K = DILj7Kl — %D?JQWKV : (1.5)

A remarkable property of A/ = 6 supersymmetry in three dimensions is that the supercur-
rent conservation equation (1.5) coincides with the Bianchi identity for an Abelian vector
multiplet [13].

An important feature of the 3D extended superconformal theories with A/ > 5 is
the non-existence of conserved flavour current multiplets. This point has recently been dis-
cussed in [14], and here we follow almost verbatim the discussion in [14]. In supersymmetric
field theory in d dimensions, the conserved current multiplet is defined to be a supermulti-
plet containing a single conserved vector current V? (equivalently, a closed (d — 1)-form),
0,V = 0, along with some other scalar and spinor components. In three dimensions, one
may think of a conserved current V¢ as the Hodge dual of the gauge-invariant field strength
F = dA of a gauge one-form A. For this reason an N -extended conserved current multiplet
may be characterised by the same superfield type and the differential constraints as the
field strength of an N-extended Abelian vector multiplet [7, 15-19].2 Thus for V' > 2,
the conserved current multiplet should be defined to be a real antisymmetric superfield,
L' = — 7T constrained by
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For N' > 4, it turns out that the off-shell multiplet constrained by (1.6) possesses more
than one conserved current at the component level. Moreover, it also contains higher spin

2The conserved current multiplets with A/ < 4 were reviewed in [1, 2].



conserved currents for N' > 4 [20, 21]. Indeed, for N' = 6 the conservation equation (1.6) co-
incides with the supercurrent conservation equation (1.5). As a consequence, L' contains
a symmetric, traceless and conserved energy-momentum tensor 7%

7% = b T =0, T =0, (1.7)

In the N' = 5 case, L'/ contains a conserved symmetric spinor current Sapy = S(asy)
(supersymmetry current) defined by

Sagfy XX €]JKLMD£DéD$LLM|9:0 . (18)

In this paper we find the most general expressions for the two- and three-point corre-
lation functions of the NV = 5 and N’ = 6 supercurrent multiplets, which are allowed by
the superconformal symmetry and are compatible with the conservation equations (1.3)
and (1.5), respectively. We show that the functional form of each of these correlators is
determined by these requirements modulo a single overall coefficient to be denoted by cys
for the two-point functions and dys for the three-point ones. The ratio of these coefficients
turns out to be fixed by the superconformal Ward identities.

Every N =5 or N = 6 superconformal field theory is a special N' = 4 superconformal
field theory. It is of interest to understand what additional restrictions on the structure of
N = 4 correlation functions are implied by the N > 4 extended superconformal symmetry.
For this we consider the reduction to N' = 4 superspace of the obtained correlators of the
N =5 and N = 6 supercurrents and compare them with the results of the work [2]. It is
worth recalling that in general A' = 4 superconformal field theories the supercurrent three-
point function has two linearly independent functional structures with free coefficients da—4
and dp—s. We demonstrate that one of these coefficients is equal to zero for all A'-extended
superconformal field theories with NV > 4, JN:4 = 0. In general, it was shown in [2] that
JN:4 is non-zero in those N' = 4 superconformal theories which are not invariant under
the mirror map. As discussed in [2], d N'—4 1is proportional to the difference of the numbers
of left and right hypermultiplets [2]. However, it will be demonstrated in section 2.3 that
every N' > 4 theory has an equal number of left and right hypermultiplets in the same
representation of the gauge group. As a consequence, all N > 4 superconformal field
theories are invariant under the mirror map.

As a by-product of the N' = 4 superspace reduction of the N' = 5,6 supercurrent
correlation functions, we obtain new correlators in the A/ = 4 superspace which correspond
to conserved currents of extended supersymmetry and R-symmetry. These results are
presented in the next two sections, which are devoted to the A" = 5 and N = 6 theories,
respectively.

In the study of correlation functions we follow the superspace approach which was
originally elaborated for 4D A = 1 superconformal field theories in [22] and generalised
to the 4D N = 2 case in [23]. For 3D superconformal field theories this approach was
originally developed in [24] and recently applied in [1, 2] to study correlation functions of
supercurrents and flavour current multiplets. In the present paper we use the superconfor-
mal formalism and definitions introduced in our works [1, 2], which are somewhat different
from those adopted in [24]. The summary of our definitions is given in the appendix.



2 N = 5 superconformal field theories

General N/ = 5 superconformal field theories are supersymmetric Chern-Simons-matter
models with appropriately chosen interaction potentials [3, 5]. In this section we compute
the two- and three-point correlation functions of supercurrents in such theories and consider
their reduction to N = 4 superspace.

2.1 Correlators of N =5 supercurrent

As discussed in section 1, the N = 5 supercurrent is a primary dimension-1 superfield
J! obeying the conservation equation (1.3). The two-point function of the supercurrent,
which is compatible with this conservation law, reads

T (50)) = ene 2
(J7(21)J7 (22)) = en=s (2.1)

x19?
where cyr—s is a free coefficient. Using the explicit form of the two-point structures @22
and ul{ given by (A.4) and (A.5), respectively, it is not hard to check that (2.1) obeys (1.3)
at separate points, z; # z9.
We look for the three-point function (J(z1).J7(22)J% (23)) in the form
I J K Uﬁlugé] / I'V'K
(1 (21)7 (22) T (z3)) = I8 g1 (X3 05 (22)
T13°T23

where H!/K is a tensor depending on the three-point structures (A.8). Since the super-
current has dimension 1, this tensor should have the following scaling property

HYE(Z2X A0) = \2H!E (X, 0), (2.3)

for a real positive .
The supercurrent conservation law (1.3) implies that the tensor H/X obeys the dif-
ferential equation

DUFIKL _ %511DyHMKL —0, (2.4)

where D! is the generalised covariant derivative (A.13).
The ansatz (2.2) can be applied to different orders of the operators J!(z1), J7(22) and

JH(23). In particular, interchanging the order of the operators J/(z1) and J7(22) in the

correlator (2.2), one finds the following symmetry property of H!/X

HYE(x 0)=H/™M (X" -0). (2.5)
Similarly, swapping the operators J!(z1) and J(z3) in (2.2), one uncovers the constraint
HR(=XT,-01) = 215> X3 u{f U uif i BT (X 3,03) . (2.6)

This equation was derived with the help of identities (A.9).



We find the general solution of the equations (2.3)—(2.5) in the form:

ALM ALMANP
HIJK:4dN:5€IJKLM +dN:5(5IJ€KLMNP o 5IK€JLMNP o 5JK€ILMNP)

X3 X5 '

(2.7)
where dp—5 is a free coefficient and the matrix A7 is defined in (A.12). It is possible to
show that the tensor (2.7) obeys also the equation (2.6) which ensures the invariance of
the correlation function under the replacement J!(z1) +— J¥(23). In checking this, it is
useful to express (2.7) in terms of the orthogonal matrix U’/ given in (A.11)

UK — —T12dN:5(H1IJK ~ SHIK | gIIKY), (2.8)
where
HIJK — (51K JPQRS | §IK IPQRS | (1] 8KPQRS)U PC;U v ’ (2.92)
HITE — (UIL&.JLKPQ _ LI JILKPQ _ €IJKPQ)UXPQ 7 (2.9b)
Here we have used the following identities:
X=X+ 294 , (2.10)
(ILKMN gLJ | (JLKMN 4LIy AMN _ i(élKSJMNPQ 1 §TE IMNPQ
_94lJ KMNPQ) AMN 2PQ (2.11)

AIJKLMNP LM gNP _ _2€IJKPQAPQ@4X2+2(@K@L)EIJLPQAPQ@2X2 _
(2.12)

The identity (2.10) follows from (A.10) while the other two are direct consequences
of (A.12).

Using the identities (A.9) it is not hard to verify that each line in (2.9) obeys (2.6).
This ensures the invariance of the obtained expression for the correlation function (2.2)
under the interchange of operators J7(z1) and J&(23).

2.2 N =5 — N =4 superspace reduction

As discussed in section 1, every N/ = 5 superconformal field theory is a special N' = 4
one. The N = 5 supercurrent is equivalent to two N = 4 supermultiplets, one of which is
the N' = 4 supercurrent. As a result, the three-point function of the N' = 5 supercurrent
is equivalent to several three-point functions in N' = 4 superspace. Here we elaborate on
the A/ = 5 — A = 4 superspace reduction of the A/ = 5 supercurrent and its correlation
functions.

We split the Grassmann coordinates 6¢ of N/ = 5 Minkowski superspace M3I19 onto
two subsets: (i) the coordinates 0?, with I =1,....,4, corresponding to N/ = 4 Minkowski



superspace M3I8: and (ii) two additional coordinates 6. The corresponding splitting of
the spinor derivatives D! is D£ and D3. Given a superfield V on M310 its bar-projection
onto M®® is defined by V| := V]gs—=0- The N = 5 supercurrent J? reduces to the following
N = 4 superfields:

sl=jl,  J=J0. (2.13)

The N = 5 supercurrent conservation law (1.3) implies that ST and J obey the constraints

D{sh — i&”Dﬁfsk ~0, (2.14a)
~ ~ 1 PN N ~
D*ply — Zé”DQQDg,] =0. (2.14b)

Eq. (2.14b) tells us that J is the N’ = 4 supercurrent [1, 2]. The second multiplet, st ,
contains among its components the current of the fifth supersymmetry and the currents of
the remaining SO(5)/SO(4) R-symmetry.

Note that the two-point structure u{QJ is the integral part of two- and three-point

functions (2.1) and (2.2). Its reduction to N' = 4 superspace leads to
iJj iJj I5 I5
“12(N:5)| = Ui(v=4)> “12(/\/:5)| =07 (2.15)
Here we have assigned the labels (M = 4) and (N = 5) to distinguish these structures in
the corresponding superspace. Below we will omit these labels to simplify the notation.
Using the relations (2.15) we find the AN/ = 4 superspace reduction of the two-point
correlator (2.1)

1J

(5(21)87 (22)) = envms (2.16a)
()T () = 5 (2.16D)

The latter correlation function coincides with the two-point correlator of the A/ = 4 super-
current found in [2] provided we identify car—y = cpr—s.

The N' = 5 supercurrent three-point correlator (2.2) reduces to the following four
correlation functions of the NV = 4 superfields ST and J

(s1s7sKy  (sisdyy, (STygy, (JJJ), (2.17)

which can be found from different projections of the tensor (2.7). In particular, since
H!/K| =0 and H®%| = 0, two of the four correlation functions in (2.17) vanish

(s1s7sky =0, (sly)=o0. (2.18)

The other two correlators are non-trivial. They are

7 J uﬁ/ujj/ Y
(S7(21)87(22)J (23)) = %HN:AX&@:Q, (2.19a)
HIL, = %) — gy IKEAT st ki ATATE o
N=4 — - N=5E X3 N=5 € X5 ) .



and

HN:4(X37®3)
(J(21)J (22)J (23)) = EE TN (2.20a)
Al aKL
H_/\f:4 = H555’ = —d_/\/':E)EIJKLT . (220b)

We recall that the most general form of the function Har—4, which defines the correla-
tion function of the N' = 4 supercurrent, is [2]

dn=4 rikn AT ARE
HN=4:T—dN=45 x5

where dy—4 and dy—4 are two independent coefficients. Comparing (2.21) with (2.20b)

(2.21)

we make the following two conclusions: (i) only those A/ = 4 superconformal field theories
for which

dp—g =0 (2.22)

may possess extended N > 4 supersymmetry; (ii) the coefficients dyr—4 and dy—5 are equal,
dn=g = dpar=5 . (2.23)

Recall that the coefficients car—4 and dar—4 are related to each other by the superconformal
Ward identity [2]. As a consequence of (2.23) the same identity holds for car—s and dpr=s:
dy=4 dy=s 1

CN—4  Cn—5 167

In conclusion of this subsection, let us briefly comment on the condition (2.22) which is

(2.24)

satisfied for all N > 4 superconformal models. In [2] it was shown that the da—y-part of the
N = 4 supercurrent correlation function is non-trivial for those AN/ = 4 models which have
non-equal numbers of the left and right hypermultiplets (transforming in (2,0) and (0,2)
representations of the group SU(2);, x SU(2)g which is the double cover of the N' = 4 R-
symmetry group SO(4) = (SU(2)r, x SU(2)R)/Zs. Thus, only those N = 4 superconformal
field theories may possess extended N' > 5 supersymmetry which contain the same number
of left and right hypermultiplets. In the next subsection we will confirm this statement
by considering equations of motion of general NV = 5 superconformal theories. We will
demonstrate that every N' = 5 superconformal field theory realised in N’ = 4 superspace
has equal number of left and right hypermultiplets.

2.3 Superconformal theories in N' = 5 superspace

The R-symmetry group of the ' = 5 super-Poincaré algebra is SO(5) = USp(4)/Zs, where
the group USp(4) consists of matrices g = (ga") € GL(4, C) constrained by

gdlg=14, ¢"Q=0Q, (2.25)

for a given non-singular real symplectic metric Q = (Q,,) = —QT. This tensor is used to
raise and lower the USp(4) indices,

X=Xy, X,=QXP. (2.26)
Here Q1 = (Q2P) is the inverse of Q, €,,QP¢ = 6¢.



We recall that the isomorphism SO(5) = USp(4)/Za can be established by making use
of a set of gamma-matrices vy = ((vj)ab) for SO(5) with the properties

Yivs + Yoy = 20151y, it =11, 1T = Oy, I=1,...,5. (2.27)

An explicit realisation for the matrices €2 and ~; is as follows:

Q:<;g>v e=(eg)=—¢', é=()=-¢", enn=c=1 (228)

and 7 = (¥,74,75).

R 0 ic 0 1o T, O
_ _ _ 2.28b
Y ( 7 0 ) y V4 ( 1y 0 > y V5 ( 0 —1s ) ) ( )

with & the Pauli matrices. Here and below, we represent an USp(4) index as a pair of
SU(2) ones, X* = (X*, X7).

They allow one to establish an isomorphism between R® and the following linear space
L of 4 x 4 matrices X constrained by

Xt=Xx, XTo=0X, trX =0. (2.29)

The isomorphism between R5 and £ is defined as follows: given a five-vector X = (X7) e
R, its image is X = X!v; € £. The group USp(4) naturally acts on £ by nonsingular
linear operators. Given a group element g € USp(4), the corresponding transformation ¢
on L is defined by §: X — gXg~'. This induces a linear transformation A(g) on R® that
preserves the inner product (X|Y) = %tr(f( V). It may be checked that the correspondence
g — A(g) defines a homomorphism of USp(4) onto SO(5) with the kernel Zy = {£14}.

Using the symplectic metric Q and its inverse Q~!, let us introduce gamma-matrices
with upper and lower indices

(7)™ = (1), (V1)ab = Que(11)a = (71)2P . (2.30)

These matrices are antisymmetric and €2-traceless

()™ = =()™, (71)*Qa, = 0 . (2.31)

Thus, any SO(5) vector X! is equivalent to an antisymmetric Q-traceless second-rank spinor

1
Xab.—qabxl o xT = Zygbxab : (2.32)
Using the rule (2.32) we introduce the spinor covariant derivatives with SO(5) spinor
indices, D! — D#> = 42> DI Their anti-commutation relations follow from (A.14),
{D2P, D'} = 21(Q** Q! — 26*P0) 0,5 . (2.33)

Let us consider a gauge theory in the N' = 5 superspace

Ong — Vg = Oap +1Vap, DX - Vi = pab 4 jyab, (2.34)



where (V,3, V2b) are gauge connections. To describe the vector multiplet, the gauge co-
variant derivatives are subject to a covariant constraint which implies

{Vzb7 V%d} _ Qi(QabQCd o 2Eade)Vaﬁ + 5aﬁ(QaCWbd - chWad o Qadec + deWaC) )
(2.35)
Here W2P = W2 is the field strength obeying the Bianchi identity

vabpyed 4 %Qa@vacewd)e =0. (2.36)

In complete analogy with the N' = 6 analysis in [18], we now consider a matter super-
field ®* in some representation of the gauge group. The equation of motion for the matter
superfield is

1
vabee) — gga(bvgd@d =0. (2.37)
The consistency condition for the equation (2.37) is
W@bge) = (2.38)
To solve this constraint we should assume that W2P is a composite of the matter superfields
= =1K 0 .
wab = wabrA | Wi =ik gap®@TEO) (2.39)

where x is some coefficient, T are generators of the representation and g4 is an invariant
quadratic form on the Lie algebra of the gauge group. Note also that the Hermitian
conjugate for ®* is ®, = (®*)!, where we assume that ®* = (®5) is a column vector in
some representation of the gauge group and the letters p, ¢, 7, s from the middle of Latin
alphabet denote gauge indices.

Substituting (2.39) into the consistency condition (2.38) we find

gap®EeLe) (T8) 1(T4),* =0, (2.40)

or
gap(Th),\YTB),*) =0 . (2.41)

The latter equation imposes strong constraints on the possible gauge group and its repre-
sentations. These constraints were analysed in the works [3, 5] where the admissible gauge
groups were classified.

Let us consider the A" = 5 supercurrent J/ in the USp(4) spinor notation J2> = ~2b JI.
The conservation law (1.3) turns into

S
10

For the N' = 5 superconformal theories described by the equations (2.37) and (2.39), we
find the following expression for the supercurrent in terms of the matter superfields

DaPJ 4+ DT 4 — (P — 262 D Jop = 0 . (2.42)

_ 1 _
Jb = ol 4+ 193%%0 . (2.43)



It is possible to check that this expression obeys (2.42) due to the equations of motion (2.37)
and (2.39).

Now we consider the N = 4 superfield reduction of A/ = 5 superconformal models
described above. This reduction amounts to setting #2 = 0 in the superfields ®* and WaP.
The R-symmetry group of the N = 4 superspace is SO(4) = (SU(2)1, x SU(2)r)/Zs. This
suggests that the USp(4) index ‘a’ splits into a pair of SU(2) indices i and 1,

> = (¢',q") . (2.44)

Here ¢' and qz are left and right hypermultiplets, correspondingly. The N = 5 gauge
superfield strength W2P has the following four N = 4 superfield components:

Wb (Wi W Wi Wiy (2.45)

Here the superfields W% and Wil constitute the field strength of the large N' = 4 vector
multiplet [25].

It is not hard to check that the NV = 5 equation (2.37) leads to the standard hyper-
multiplet equations of motion

Viigh —¢,  viligh —q. (2.46)

« «

The N = 5 Bianchi identity (2.36) leads to the Bianchi identities for the N' = 4 large
vector multiplet } L
vilipyik) — ViR = . (2.47)

Reducing the equations (2.39) to the N' = 4 superspace gives

Wi =ikgapd"TP¢", W,? = i’ﬂgABq(zTBqD> (2.48a)
Wi = ikgapd' TP, WY =ikgapd®T? . (2.48b)

The equations obtained coincide with the N' = 4 superfield equations of motion in the
ABJM theory, which were given in [25].

The relation (2.44) has the following important consequence: every N’ = 5 supercon-
formal field theory contains the same number of the left and right N' = 4 hypermultiplets
transforming in the same representation of the gauge group. This explains the vanishing
of the coefficient dy-—4 in (2.21) for those " = 4 superconformal theories which possess
N =5 extended supersymmetry.

3 N = 6 superconformal field theories

Three-dimensional N' = 6 superconformal field theories play an important role in
the AdS,4/CFTj correspondence which has been intensively studied starting from the
works [4, 5]. The equations of motion of such theories in N/ = 6 superspace were studied
in [18]. In this section we will compute the two- and three-point correlation functions of
the supercurrent in these models and study their reduction to the N = 5 and N/ = 4
superspaces.

,10,



3.1 Correlators of N/ = 6 supercurrent

As discussed in section 1, the N = 6 supercurrent is a primary dimension-1 superfield

JI = —J71 subject to the conservation equation (1.5). The two-point function which is

compatible with this conservation law is given by

<JIJ(21)JKL(Z2)> _ CN:GU{?U{QL:B— u{%uleK ,
12

where cn—g is a free coefficient.

For the three-point correlator we make the standard ansatz

1J KL MN u{gu‘{gj luégKlU%sL / I'J'K'L' MN
(J7(21) I " (22) T (23)) = H (X3,03),
2813255232

where the tensor H!/KLMN — [lIJIIKLIIMN] gheys the equation

g’D(];HIJKLMN + lpg(HQIKLMN(SJP o HQJKLMN(SIP)
3

ot

1
_g(DguHJPKLMN +/DiHPIKLMN) =0,

which is a consequence of (1.5). It has the scaling property similar to (2.3)
HIJKLMN()\QX )\@) — )\72HIJKLMN(X @)
and obeys the equations

HIJKLMN(X, @) — HKLIJMN(_XT’ _@) ’

/ / ’ / / / ’ /
HIJKLMN(—X}‘,—@]_) _ .’17132X32 1, JJ' KK’ LL' NG MM’ NN U3 PU3 R

U3 U3 Uz U3 Uiz U3
M'N'PRI'J'
x H (X37 @3) 5

(3.1)

(3.2)

(3.3)

which follow from the invariance of the correlation function (3.2) under interchange of the

order of operators.

We look for a solution of the above equations for the tensor H!/KLMN ip the follow-

ing form

HIJKLMN — E :CnHéJKLMN,
n

— 11 —

(3.7)



where ¢,, are some coefficients and

IJKLMN

€

HIJKLMN _ — (3.8a)

HIJKLMN _ f}; 3Q [/ KMNPQGIL | JILMNPQgIK _ JIKMNPQSJL _ JLMNPQ4IK) (3 g}

HIJKLMN _ /Al): 3Q [TKMPQGLN _ [IJLMPQSKN _ JIJKNPQGLM | JIJLNPQGKM) (3 ge)

HIJKLMN _ 1‘;: j [KLIMPQGIN | (KLINPQgIM _ KLIMPQgIN _ (KLINPQIM) (3 gq)
APQARS

HIJKLMN ?[eMNPQRS((;JK(SIL _ TR GIL)] (3.8¢)
APQ ARS

HIJKLMN = [l /PQRS (SLMGKN _ gKMGLNY] (3.8f)
APQARS

HIJKLMN _ []LPQRS (§IM §IN _ §IM gINY) (3.8g)

X°

PQ ARS

HSIJKLMN _ A [gJKPQRS((SIMéLN _ 5IN5LM) _ glKPQRS((sJM&LN _ 5JN5LM)

X5
_6JLPQRS(5IM6KN _ 5IN6KM) + EILPQRS((SJM(sKN _ 6JN5KM)] 7 (38h)
HéJKLMN — AP;?(?RS [&JMPQRS((;JK(SLN _ 5JL5KN) _ E’.JMPQRS((SIK(SLN _ 51L5KN)
_EINPQRS((SJK(SLM o 5JL5KM) _|_€JNPQRS(5[K5LM o 5IL5KM)]’ (381)
H[JKLMN_ APQARS KMPQRS 5IL5JN _5JL5[N _ LMPQRS 5IK5JN _ 6JK51N
g - AL Rpans ) - s )
76KNPQRS(6IL5JM 75JL5]M) +6LNPQRS(51K5JM 75JK5]M)]’ (38J)
PQRSTUAPQARSATU
Hlli]KLMNZE < [6JK(5IM5LN_5IN6LM)_5IK(6JM5LN_5JN6LM)
+5IL(5JM5KN _ 5JN(5KM) _ 5JL(5IM5KN _ 6IN5KM)] . (381{)

The tensors (3.8) obey the constraints (3.4) and (3.5) by construction. Imposing the
equation (3.3) we find the coefficients ¢y,

1
c=2dy=s, a=a=a=dv=, 1= gdy=s, (3.9)
1

Csr=Ce = C7y = C8 — Cg = C10 — ZdN:EH (310)
where djr—g is a free coefficient. It is possible to show that for these values of the coefficients
the tensor (3.7) obeys the equation (3.6) which ensures the invariance of the correlation
function under the interchange of operators J?/(z1) and JM¥ (z3). However, it is a tedious
exercise to demonstrate this directly. Instead of embarking on such an exercise, we will
take a shortcut and prove the required symmetry property using the N =6 — N =5
superspace reduction of the superfield operators and their correlation functions.

— 12 —



3.2 N =6— N =5 superspace reduction

Let us split the SO(6) index I as I = (f, 6), I =1,2,3,4,5. Upon reduction to N' = 5
superspace, the N’ = 6 supercurrent J 17 leads to two N =5 superﬁeldAsA, one of which is
the N = 5 supercurrent J! and the other is an antisymmetric tensor K'7:

gl =glio gl = gl (3.11)

where the bar-projection means setting #¢ = 0. As a consequence of the N = 6 supercur-
rent conservation equation (1.5), J! proves to obey the ' = 5 supercurrent conservation

equation (1.3), while for K7 we obtain the following constraint
~ ~ A ~ PPN 1 ~ Al A Aa
DI KK = pll /K] 5DgKL[J(SKV : (3.12)

The N = 6 — N = 5 superspace reduction of the two-point structure u{g is similar
to (2.15). Therefore, the reduction of the two-point correlation function (3.1) is rather

trivial

Ik, JL _ 1L, JK

Ij T u u — U5 U
<K]J(21)KKL(22)> = CN=6 12 12$122 12 %12 ’ (313&)
o i
(T (z2)) = en=o5 - (3.13b)

The three-point function (3.2) reduces to the following four correlation functions in
the N/ = 5 superspace

These correlators can be obtained by considering different components of the tensor (3.7).
In particular, from the explicit form of the tensors (3.8) we immediately see that two of
the four correlators vanish

(KTTRRLRMNy — o (glTgR gLy — ¢ . (3.15)

For the other two we find

PN g i ull'wf{ ik
(J'(21)J7 (22) " (23)) = WHN:E) (X3,03), (3.16a)
K _ prisioks) _ g /\/:6%( 51 RLVINP _ gIR JLNINP _ 5jf<€f£MNP)AMj( f;N P
Y
+dpr—e! TEEM (3.16b)

X3 7
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and

77 % vas UIIUJJ/URA, 213 2T K
(K (21) T (20) KM (29)) = 31328 g/ KMN (X4 @), (3.17a)
3013 ﬂlc23
IJKMN IJK6NN 5ijMN
Hyy =H | = 2dy—g————
X
APQ e
E ININPO 5JK SIMNPQ 511{ JINPQKM
X3
4 EijﬁQ 5KN f(fMPQ 5JN KJMPQ 51N KfNPQ 5]M f(jNPQ 517\?1}

+dN =67

1 APQAR KPQRS (sJM sIN IN cJN jP YRS (cIM KN KM ¢IN
+ydn=s—5 e QRS (§IMGIN _ gIM§INY _ JPQRS(GIMSEN _ KM SINY
+ 5175@1%5*( 5jM 5[”(1\/ 5JN 5KM) + 61\}115@}%3( 51K 6JN 6JK 51N)

NPQRS((;IK(;JM 5JK51M)} ' (3.17b)
Comparing (3.16b) with (2.7) we find the relation among the coefficients
dn— = 4dp—s5 . (3.18)

This relation, in conjunction with (2.24), gives us the ratio between the coefficients of two-
and three-point functions

dyv—g  dyes 1
N=6 _ gIN=5 _ — (3.19)

CN=6 cy=5 4w
This relation is a manifestation of a Ward identity which relates the supercurrent two-point

and three-point functions.

The tensor (3.17b) can be represented in the equivalent form

HIJKLM — dpy—g Z aanjkﬁM : (3.20a)

where the coefficients a,, are

1 1 1
ap =az =1, a3 =4 =—5, G5=0g=07 =03 =, (9=—7, (3.20b)
1 3 3
pr— pr— pr— pr— p— = -— e = — 3,20
ajp = @11 = a12 = a3 = a4 = 415 g aie g’ arr 61° ( c)

— 14 —



and the tensors
IJKNIN _
Hl —_—
IJKNIN _
5 =

TJKMN _
Hj; =

HIJKMN

IJKMN _
Hy =

TJKMN _
Hg =

HIJKMN

TJKMN _
Hy =

HIJKMN

IJKMN
H14

[JRNIN _
H15 -

HIJKMN

LIRNIN _
H17 -

HIJKLM are expressed in terms of the covariant objects (A.8)

EIJKMN

e (3.20d)
KR LIR NN
5T7 (3.20e)
PO
_;UXQ (gJMNPQ(SIK IMNPQéJK) (320f)
LUk NIIPQ _ [pNK NI1TPQ
(U U ) (3.20g)
2 X
PO o A n
_;UXQ (€IJMPQ5KN_5IJNPQ5KM), (3.20h)
EUP (e KIMPQgIN _ _KIMPQIN _ _KINPQgJM + eKJNPQ(;IM) (3.201)
2 X
1U Q(UJK MNIPQ _ jIK MNJPQ) (3.20)
2 X
1UPQU£K . n A a mmaa JPRA A aa A
S~ (§TMLNIPQ | §IN LMIPQ _§IN LMIPQ _ sIM_LNJPQ) = (3 90k)
2 X ’
RS .. ..
i(]ig KPQRS(51M5JN 5JM51N) (3.201)
1UPQURS .o N R
_ ZT[slPQRS(éJM(SKN — §INGEMY _ ([ & J)], (3.20m)
PQIrRS . . A
:%%[ MPQRS((SINUJK 5JNUIK) (MHN)], (320H)
PQrrRS . .. .. . .
— %%[ MPQRS(51K5JN 5JK(51N) (M < N)J, (3.200)
1UPQURS .. .. R .
= LT [P GIIUNE _ GINGIEY (f s ), (3.20p)
s @4
IJKMNF , (3.20q)
KK ITK'MN g4
€ : (3.20r)
X3

;;;3 UPQ( KIMPQ(SJN KIMPQSIN _ KINPQ(SJM KjNPQ(SfM)’ (3.208)

@8 A
— el JEMN (3.20t)

In verifying that (3.20) coincides with (3.17b), it is advantageous to use the rela-
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tions (2.10)—(2.12) as well as the following N' = 5 superspace identities

AT AKL _ glIJ gAKL] _ }X2(BIKBJL _ BJKBIL) (3.21)
3 T
%BQK(BPIEMNJPQ B BPJgMNIPQ) _ gBPK(BQMéJJNPQ B BQNEIJMPQ)
—202BPEJIMNE (3.22)

APQ<BIK€MNJPQ _ BJKgMNIPQ) _ APQ(BNKEIJPQM _ BMKEIJNPQ)

where B!/ = e/*0/.
For the tensor H!/AMN in the form (3.20) it is possible to check that it obeys the
equation

RN (CXT —01) = 215> Xs?ufl uf uflS K ulf ufiN UK PN P (X5 03)
(3.24)
which ensures the invariance of the correlation function (3.17) under the interchange of
operators Kfj(zl) and KMN(Zg). Thus, the two N' = 5 projections (3.16) and (3.17)
are invariant under interchange of positions of operators. This proves that the N' = 6
correlation function (3.2) also respects this symmetry.

3.3 Further N =5 — N = 4 superspace reduction

The N = 6 correlator (3.2) reduces to two N = 5 correlation functions (3.16) and (3.17),
one of which is just the N' = 5 supercurrent correlator while the other is the mixed
correlator. The reduction to the N = 4 superspace of the N' = 5 supercurrent correlation
function was considered in section 2.2. Here we will study the A/ = 4 superspace reduction
of the mixed correlator (3.17).

In this subsection the SO(5) indices are denoted by I, J, K, ..., while the SO(4) indices
are denoted by the same letters with hats, e.g., f, j, R’, ... The N/ = 4 superspace com-
ponents of the N' = 5 supercurrent are given in (2.13). We define the N/ = 4 superspace
projections of the antisymmetric tensor K'7 as

L =g, Rl =K, (3.25)
where the bar-projection means 63 = 0. As a consequence of (3.12) they obey the following
equations

DIL/K = pUpJK] ;pfgLi[jéW, (3.26)
DURD — iaffoERf‘ ~0. (3.27)

The latter equation coincides with (2.14a) while the former shows that L1 describes the
N = 4 flavour current multiplets. The antisymmetric tensor L’/ can be further decomposed
into two components Lfr‘] and L7 with different self-duality properties

1

25”3%? =+ (3.28)
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The correlator (K17 JK KMN) reduces to the following six correlation functions of the
N = 4 superfields

(LITGK [Ny ([ ANy 1T gR ity (1 ypity  (RIGK gty (Rl yRiTy
(3.29)

They can be found by taking N' = 4 superspace projections of the tensor (3.17b). In
particular, it is easy to see that three of these six correlators vanish

(LITSKLMNy — o (LI JRMy =0, (RISKRM)=0. (3.30)
For the other three we find
. . i, JjJj
(L1 (20) T (22) LMV (zg)) = A8 18 [l NN (X, @) (3.31a)
1613 1U23

IJMN IAPQARS
X 1 x5

€

I _ g o CPQRS (gINIGIN _ 5NN (3 31

+AP @ CIVPQGIN | INPQaIN _ INPQSINT _ _1NPQsIN)

X3 ( ;
TP S ull wl uBK pigen
<L (Zl)S (ZQ)R (2’3)> = —H (X3,®3) (3.32&)
CIZ132£L'232
IJKL PQ RS
IJKL __ € EA A PQRS JK <IL 1K ¢JL
H = dn—g|2 < t1 5 ¢ (7Bl — s1E§IL) (3.32b)
APQ  Gipa ik | JipOsik | _1IPOAKL . KIPOsIL  _RIPOSIL
+5 (e QeIE _ JLPQ§IK _ JIPQSKL 4 KIPQsIL _ KIPQ§ )],
N N uH’ '
(RI(21)J(2) R’ (23)) = %HI /(X 3,03), (3.33a)
x13°T 93>
. Ai{ﬁ AKLAMN
HIJ — _dN=6 [ I1JKL X3 + 5IJ KILNMN X5 (3.33b)

The correlation function (3.31) can be decomposed into two parts with opposite self-
duality properties

i, JjJ

(L (21) (o) LAY () = 8V T 08, ) (3.342)
x 1322037
S N S| 1 RN
HiJMN _ *HIJMN:i: ZEIJKL}IKLMN _ d./\f- X( IJMN :|:61M5JN 6IN5JM)
- é o APE?RS CPQRS (DNt gIN _ sVt gIN o TNy
L APQ oI _INPOGIN _ _INPQSIN _ _INPOsIN
‘l‘*d/\/’:ﬁﬁ[ﬁ Q(S +eée Q5 — & Q(S — & Q5
+2677 (5N QM gMIGQN ) - 95PT(§NT§QM _ sMT5QN )] (3.34b)

This correlator was found in [2] in another form within the iso-spinor formalism. We point
out that in (3.34a) there is no mixed correlator involving both L/ and L!7.

,17,



4 Discussion

As continuation of the program initiated in [1, 2], in this paper we have computed the two-
and three-point correlation functions of the supercurrent multiplets in general N’ = 5,6
superconformal field theories in three dimensions. We demonstrated that the functional
form of each of these correlators is completely determined by the superconformal symmetry
modulo a single overall coefficient. The ratio of the coefficients arising in the two-point
and three-point functions is fixed by the Ward identities. The remaining coefficients are
model-dependent.

Every N =5 or N' = 6 superconformal field theory can be viewed as a special N’ = 4
superconformal field theory. We demonstrated that the general property of the A’ =5 or
N = 6 superconformal field theories is that they are invariant under the A/ = 4 mirror map.

As is explained in section 1, the A/ = 5 supercurrent is described by an iso-vector
J! while the N/ = 6 supercurrent is given by an antisymmetric tensor J//. As a conse-
quence, their three-point correlation functions are specified by rank-3 H'/X and rank-6
HTJELMN tensors, respectively. Although the form of the tensor H!/X is relatively com-
pact, see (2.7), the N = 6 tensor H!/KELMN hag rather clumsy form because of proliferation
of SO(6) indices (3.8). It is desirable to develop a superspace formalism that provides a
compact form for these correlators. It is natural to expect that this should be a version of
harmonic/projective superspace since supercurrents in such superspaces may be realised
as scalar superfields.

A few years ago, ref. [26] presented a family of homogeneous spaces, MBIV X% , of the
3D N-extended superconformal group OSp(N2,R), for any positive integer m < [N/2],
with [AN/2] the integer part of N'/2. Here MP*V denotes the compactified N-extended
Minkowski superspace on which the superconformal group OSp(N]2, R) acts by well-defined

VB3IV

transformations. The usual Minkowski superspace is embedded in as a dense open

subset. The internal sector X of M3V x Xﬁ{ is realised in terms of odd supertwistors
subject to certain conditions [26]. For many applications, it suffices to work with the
dense open subset M2V x XN of MPIZV x XN Then the points of X can be identified
with m complex N-vectors Z4 = (Z;2) € CN — {0} which are required to (i) be linearly
independent; (ii) obey the null conditions

Zi.zk .=z 7k =0, Vik=1,...,m; (4.1)
and (iii) be defined modulo the equivalence relation
Zii ~ ZED, D= (D) e GL(m,C) . (4.2)

In the case NV = 3 and m = 1, M3I6 x X‘;’ may be seen to be equivalent to the standard
N = 3 harmonic superspace M3l% x CP! [7]. Tt was shown in [26] that for NV > 2 and
m = 1 the internal manifold le\/ is a symmetric space,

XY = SO(N)/SON —2) x SO(2), N >2. (4.3)

When dealing with the N/ = 5 supercurrent J!, it is natural to make use of the
harmonic/projective superspace MBI10 % X3. Using the null five-vector Z; parametrising
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X3, we introduce the first-order operators
Do:=2ZDL, {D,,D5}=0 (4.4)

and associate with J! the superfield J := Z;J!. Then, the supercurrent conservation
equation (1.3) implies that J is an analytic superfield,

Da3=0. (4.5)

When dealing with the A" = 6 supercurrent J// = —J’1 it is natural to make use of the
harmonic/projective superspace MBI12 X$§. Using the null six-vectors Z 7L parametrising
X§, we introduce the first-order operators

and associate with J!/ the superfield J := %QEZ%Z%JU, with £, an antisymmetric tensor.
Then the supercurrent conservation equation (1.5) implies that J is an analytic superfield,

D53=0. (4.7)

It is clear that the correlation functions of the N' =5 and A/ = 6 supercurrent mul-
tiplets should simplify if the above harmonic/projective superspace settings are used. It
would be interesting to develop superconformal formalisms to compute correlation func-
tions of primary analytic superfields in such superspaces.

In a recent work [27], a non-standard N' = 6 harmonic superspace was introduced
with the aim to study the three-point correlation functions of BPS operators in NV = 6
superconformal field theories. It was pointed out that the supercurrent multiplet is a BPS
operator, and therefore [27] provided a harmonic-superspace expression for the supercurrent
three-point correlator. However, the authors of [27] did not describe how their harmonic
superspace is related to the superspaces M3/12 x X6 introduced in [26]. As a result, a precise
relationship between the results of [27] and the present paper remains to be understood.

Another possible extension of the present work is the study of four-point correlation
functions of conserved currents in three-dimensional superconformal field theories. One can
hope that the extended supersymmetry imposes so strong constraints, for sufficiently large
N, on the four-point correlators that their form can be found explicitly, as demonstrated
for the 4D N =4 SYM theory [28]. We leave these issues for further studies.
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A Two- and three-point building blocks

In this appendix we give a brief summary of the two- and three-point superconformal
structures N-extended superspace, which were introduced in [1]. These structures have
been used in the construction of the supercurrent correlation functions in the main body
of the paper.

Consider N-extended Minkowski superspace MBIV parametrised by real bosonic z*? =

2P and fermionic 0% coordinates
A _ af pa _ _
2% = (x*7,0%), a=1,2, I=1,...,.N. (A1)

Here a, B are the SL(2,R) spinor indices, while I is the R-symmetry index. All building
blocks are composed of the two-point structures

) = (w1 — 22)°7 + 2108705) — 105,00, . (A.22)
01or = (01 — 02)7 . (A.2b)

A useful object is the square of this matrix
2 1 af
1o = —521712 L1208 - (A4)

One more important two-point structure is the N' x N matrix

up = (uly), uy = 6" +2i69 (5312 )a6912 ) (A.5)
where .
-1 128a
x = — A6
( 12 ) af 122 ( )

is the inverse for (wu)aﬁ, that is (asl_Ql)a,@(wm)ﬁ” = 64. One may check that the matrix
u19 is orthogonal and unimodular,

u1T2u12 = ]l/\[, det U = 1. (A7)

As is shown in [1], the two-point structures (A.2a), (A.4) and (A.5) transform covariantly
under the superconformal group i.e., as the tensors with Lorentz and SO(N) indices at both
superspace points. Here we do not give their transformation laws referring the readers to
our previous works [1, 2].

Associated with three superspace points z1, zo and z3 are the following three-point

structures:
_ S, —
Xiag = _($211)a7mg3(37131)6ﬁ, (A.8a)
@{a = (5'321 )aﬂ912 (‘1331 )a6913 ) (A.8b)
U7 = uiy udstugi . (A.8c)
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These objects are labeled by the index 1 reflecting the fact that they transform as tensors
in the superspace point z;. Performing the cyclic permutation of superspace points z1, z9
and z3 one can obtain similar objects transforming as tensors in points zo and z3. The
three-point structures at different superspace points are related to each other as follows

/ 88 1 X7
285 Xawpah” = —(X; 1) = X2 (A.9a)
o
o1, @5 X355 = ui3 035, (A.9b)
Ul = Wil uKiylyd (A.9c)

The three-point structures (A.8) have several important properties. In particular, the
tensor (A.8a) can be decomposed into symmetric and antisymmetric parts

i

Xap = Xag — 3

€ap©?, (A.10)

where the symmetric spinor X,3 = Xpg, is equivalently represented as a three-vector X, =

—% ab Xap- Here and below we suppress the subscript labelling the superspace point.
Next, the matrix (A.8c) can be expressed in terms of (A.8a) and (A.8b) similarly

to (A.5):

AIJ N @Ioe@i @2

X2 Xz

Ul =" 420l (X *Pey =" -2 (A.11)

where

Al —ielex, ;078 . (A.12)

We point out that the three-point objects (A.8) look like local expressions. In fact,
in computing correlators we consider functions of these objects obeying certain differential
equations. These differential equations involve generalised superspace derivatives such as

+ iyglﬁefﬂi . (A.13)

DI
oxm

90
“ 009

This derivative should not be confused with the usual superspace derivative D} = % +
I

17;”59] B amim which acts on the superspace coordinates (A.1). The anticommutation relations
for these derivatives are

{D},D}} = 216" 04, (A.14)

and similar for the generalised ones (A.13).
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