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1 Introduction

Two-dimensional conformal field theories (CFTs) include many models with important

physical applications and have provided a rich playground for exact solutions of CFTs.

Even though extensive methods have been developed for rational CFTs throughout the

years [2], non-rational 2D CFTs are much less understood. So far, all non-rational CFTs

that have been solved are versions of Liouville. A CFT is solved when its two and three

point correlation functions are obtained and a crucial step in doing this for the Liouville

CFT was the proposal of the 3-point function by Dorn-Otto-Zamolodchikov-Zamolodchikov

(DOZZ) [3, 4] based on insightful and powerful consistency checks. This proposal was
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rigorously derived by Teschner [5] who showed that the DOZZ 3-point function is a solution

of the crossing symmetry equation.

The next natural step is to study multifield non-rational CFTs, a prototype of which

is the Toda CFT. Obtaining the 3-point functions of the Toda CFT is a long-standing

problem in mathematical physics. Attacking this problem purely by using 2D CFT tech-

niques is a notoriously difficult task and results exist only for particular specializations

of the external momenta. The state of the art can be found in the works of Fateev and

Litvinov [6–8], who obtained the 3-point functions of primary operators if one of them is

appropriately degenerate.

In a previous publication [1], we presented a formula for the 3-point functions of three

arbitrary primaries of the Toda CFT. Our formula (2.16) was obtained using techniques of

a very different nature than [6–8], namely topological stings, 5-brane web physics and the

AGT-W correspondence. The purpose of the present paper is to push forward the program

of further understanding and checking it. We begin with (2.16), specialize appropriately

one of the external momenta and obtain the formula of Fateev-Litvinov [6] after a direct

calculation, thus presenting a highly non-trivial check of our proposal. Specializing means

that the Verma module for the primary field has a null-vector descendant at level one. In

the rest of the paper, we will refer to them as semi-degenerate,1 as opposed to the com-

pletely degenerate ones, containing N − 1 linearly independent null-vectors. Furthermore,

we believe that the techniques of [1] will provide the solution not only for the 3-points

functions of WN primaries, but also for those involving descendent fields. We leave this

for a future work.

The quirks of our formula for the 3-point functions (2.16) stem from the strategy

employed in [1] to derive it. A key element was the AGT-W correspondence [9, 10], which

is a relation between 4D N = 2 SU(N) quiver gauge theories and the 2D WN Toda

CFT. Specifically, upon an appropriate identification of the parameters, the correlation

functions of the 2D Toda CFT are equal to the partition functions of the corresponding 4D

N = 2 gauge theories. The conformal blocks of the 2D CFTs are given by the instanton

partition functions of Nekrasov [9, 10], while the 3-point structure constants are obtained

by the partition functions of the TN superconformal theories [11, 12]. The TN theories

have no Lagrangian description and thus their partition functions were unknown until

recently [1, 12, 13]. The sole exception was the W2 ≡ Vir case, i.e. the Liouville case,

whose 3-point structure constants are given by the famous DOZZ formula [3, 4] and equal

to the partition function of four free hypermultiplets [12, 14].

We were able to bypass the fact that the TN theories have no known Lagrangian de-

scription by using a generalized version of AGT-W: a relation between 5D gauge theories

compactified on S1 and 2D q-deformed Liouville/Toda CFT [12, 15–28], where the circum-

ference β of the S1 corresponds to the deformation parameter q = e−β of the CFT. In

5D, the partition functions can be computed not only using localization, which requires

a Lagrangian, but also by using the powerful tool of topological strings [29]. Employing

1A representation of WN can contain a null vector at some level higher than one. Such representa-

tions are called semi-degenerate as well. The 3-point functions containing one primary belonging to such

representation and two generic ones will not be considered in the present paper.
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this technology, we calculated in [12] (see also [13]) the partition functions of the 5D TN
theories and suggested that they should be interpreted as the 3-point structure constants

of the q-deformed Toda. Subsequently, we showed in [1] how to take the 4D limit, corre-

sponding to β → 0 or equivalently to q → 1, thus obtaining the partition function (3.5) of

the 4D TN theories. We want to stress that taking this limit is a tricky business, as the

expression (2.16) includes non-trivial multiple sums and integrals. This is the reason why

we will always work with the q-deformed formulas and take the limit only at the end.

This article is organized as follows. After briefly reminding the reader of the essentials

of Toda CFTs, we recall the formula by Fateev and Litvinov for a special class of 3-point

functions of Toda primaries, as well as its straightforward generalization to the conjectural

q-deformed Toda theory. We then conclude section 2 by quoting our general proposal for

generic 3-point functions of Toda primaries. To spell out the details of it, we will need some

basics of the AGT dictionary collected in section 3. In the next section 4, the discussion

temporarily deviates from the CFT matters focusing rather on the interplay between the

moduli spaces of the corresponding gauge theories and 5-brane web physics. We argue

that the semi-degeneration of a primary field on the (q-deformed) CFT side mirrors a

Higgsing of the TN theory on the 4D (5D) side. A more CFT-oriented reader can skip this

section, with the exception of 4.3. The AGT genesis of Fateev-Litvinov formula for W3

Toda 3-point function, via pinching an integration contour by a particular residue of the

corresponding integrand and applying non-trivial summation theorems, is what section 5

focuses upon. With the details of W4 computation deferred to the appendix C, we then

proceed to a discussion of the general WN case in section 6. The conclusion and the

outlook follow, whereas the remaining appendices are devoted to overview of notations and

special functions, most importantly to describing and elaborating on the properties of the

Kaneko-Macdonald-Warnaar sl(N ) hypergeometric functions which play a major role in

our calculations.

2 Toda CFT: a recap and a proposal

In this section we briefly summarize some relevant facts about the Toda CFT, closely

following [6–8]. Furthermore, we spell out the Fateev-Litvinov formula for a special subset

of Toda structure constants and present our proposal for the Toda 3-point functions of

generic primary fields.

The Lagrangian of the AN−1 Toda CFT is given by

L =
1

8π
(∂νϕ, ∂

νϕ) + µ
N−1∑
k=1

eb(ek,ϕ), (2.1)

where ϕ :=
∑N−1

i=1 ϕiωi, with ek, ωk being the simple roots and the fundamental weights

of sl(N) respectively. The definition of the inner product (·, ·) along with other useful Lie-

algebraic definitions and notations are collected in appendix A.2 for the convenience of the

reader. The parameter µ is called the cosmological constant, in analogy to the Liouville case

(N = 2) where it determines the constant curvature of a surface described by the classical
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equation of motion. The normalization of the Lagrangian is chosen in such a way that

ϕi(z, z̄)ϕj(0, 0) = −δij log|z|2 + · · · at z → 0. (2.2)

Following [7, 8], we consider the correlators on a two-sphere, which prescribes putting a

background charge at the north pole in order to render the Toda action finite:

ϕ(z, z̄) = −Q log|z|+ · · · at z →∞, (2.3)

where Q := Qρ = (b+ b−1)ρ with the Weyl vector ρ defined in (A.8).

Analyzing the path integral of the theory (2.1), one can argue that the Toda CFT

must have an exchange symmetry b↔ b−1 on a quantum level which simultaneously sends

the cosmological constant to its dual µ̃, defined as

(
πµ̃γ(b−2)

)b !
=
(
πµγ(b2)

) 1
b =⇒ µ̃ =

(
πµγ(b2)

)1/b2
πγ(1/b2)

, (2.4)

where γ(x) := Γ(x)
Γ(1−x) . As we mentioned in the introduction, the Toda CFT also has a

WN higher spin chiral symmetry generated by the fields W2 ≡ T , W3, . . . ,WN of spins

2, . . . , N . The primaries under the full symmetry algebra WN ×WN are the exponential

fields of spin zero labeled by a weight of sl(N):

Vα := e(α,ϕ). (2.5)

In what follows, we will parametrize the fundamental weight decomposition of a weight

αi as

αi = N
N−1∑
j=1

αjiωj . (2.6)

By looking at the corresponding OPEs, one reads off the central charge c of the Toda CFT

and the conformal dimensions ∆(α) of its primary fields:

c = N − 1 + 12 (Q,Q) = (N − 1)
(
1 +N(N + 1)Q2

)
, ∆(α) =

(2Q−α,α)

2
, (2.7)

with the anti-holomorphic conformal dimensions of the primary fields being equal to the

holomorphic ones.

The conformal dimension, as well as the eigenvalues of all the other higher spin currents

Wk are invariant under the affine2 Weyl transformations (A.13) of the weights αi, which

roughly means that several exponential fields correspond to the same ‘physical’ field. The

primary fields of Toda CFT transform under an affine Weyl transformations α → w ◦ α
given in (A.13) as

Vw◦α = Rw(α)Vα (2.8)

2One should not confuse the affine Weyl transformation, i.e. Weyl reflections accompanied by two trans-

lations, with Weyl reflections belonging to the Weyl group of the affine Lie algebra.
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with the reflection amplitude R given by the expression

Rw(α) :=
A(α)

A(w ◦α)
(2.9)

in terms of the function

A(α) :=
(
πµγ(b2)

) (α−Q,ρ)
b

∏
e>0

Γ (1− b (α−Q, e)) Γ
(
−b−1 (α−Q, e)

)
. (2.10)

The two-point correlation functions of primary fields are fixed by conformal invariance

and by the normalization (2.5). They read

〈Vα1(z1, z̄1)Vα2(z2, z̄2)〉 =
(2π)N−1δ(α1 +α2 − 2Q) + Weyl-reflections

|z1 − z2|4∆(α1)
, (2.11)

where “Weyl-reflections” stands for additional δ-contributions that come from the field

identifications (2.8).

The coordinate dependence of 3-point functions of primary fields (2.5) is fixed by

conformal symmetry up to an overall coefficient C(α1,α2,α3) called the 3-point struc-

ture constant:

〈Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)〉 =
C(α1,α2,α3)

|z12|2(∆1+∆2−∆3)|z13|2(∆1+∆3−∆2)|z23|2(∆2+∆3−∆1)
,

(2.12)

where zij := zi − zj and ∆i is the conformal dimension of the primary Vαi .

Up to now, the CFT machinery has produced expressions only for a restricted subset

of 3-point functions, as well as for some interesting physical limits of those, see [6–8] for the

state of the art. The formula of Fateev and Litvinov [6] which we will quote in a moment

gives the Toda structure constants for the particular semi-degenerate case when one of the

fields contains a null-vector at level one, implying that the corresponding weight becomes

proportional to the first ω1 or to the last ωN−1 fundamental weight of sl(N). Specifically,

if one sets3 α1 = NκωN−1, the structure constants read

C(NκωN−1,α2,α3) =
(
πµγ(b2)b2−2b2

)(2Q−
∑3
i=1 αi,ρ)
b

×
Υ′(0)N−1Υ(Nκ)

∏
e>0 Υ((Q−α2, e))Υ((Q− α3, e))∏N

i,j=1 Υ(κ + (α2 −Q, hi) + (α3 −Q, hj))
,

(2.13)

where the function Υ is an entire function defined in appendix A.3.

Before presenting our formula for the 3-point functions, we need to introduce the

q-deformed Toda theory. Albeit no Lagrangian description of the q-deformed version of

Toda field theory has been found yet, many quantities of this conjectural deformation are

algebraically well-defined, in full analogy to the Toda CFT (see [30] and references therein).

While the q-deformed Toda CFTs are vastly unexplored, for the q-deformed Liouville case

3We use a slightly different convention than [6]. One has to rescale κ → κ
N

to match the expressions.
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a bit more is known [12, 15–28]. The details of our working definition for the q-deformed

Toda are presented in section 3.4 of [1]. The building blocks of our proposal are q-deformed

functions who reproduce the known limit as q := e−β → 1, keep the same symmetries and

transformation properties as well as the poles and zeros4 of the undeformed ones. In the

Toda CFT, the dependence on the cosmological constant µ is fully fixed by a Ward identity

coming from the path integral formulation. The absence of a path integral formulation for

the q-deformed Toda implies that such quantities as structure constants of the theory are

ambiguous up to a function of µ, b and q. Due to this, we define the q-deformed structure

constants here up to the πµγ(b2) term, having q-deformed only the part respecting the

symmetry b↔ b−1:

Cq(NκωN−1,α2,α3) ∼=

((
1− qb

)2(
1− qb−1)2b2

(1− q)2(1+b2)

)(2Q−
∑3
i=1 αi,ρ)
b

×
Υ′q(0)N−1Υq(Nκ)

∏
e>0 Υq((Q−α2, e))Υq((Q−α3, e))∏N

i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))
,

(2.14)

where the function Υq is a q-deformation of Υ, also defined in appendix A.3. To match with

the undeformed Toda structure constants in the limit q → 1, one has to set, respectively:

Cq(α1,α2,α3)
q→1−→

(
πµγ(b2)

)−(2Q−
∑3
i=1 αi,ρ)
b C(α1,α2,α3) . (2.15)

In our calculations, we will reproduce the q-deformed Fateev-Litvinov formula (2.14) which

then gives the undeformed one (2.13) upon taking the limit q → 1 and reintroducing the

µ-dependence as in (2.15).

We finish this section with our proposal for the 3-point function of of generic primary

fields of the Toda theory

C(α1,α2,α3) = const×
(
πµγ(b2)b2−2b2

)(2Q−
∑3
i=1 αi,ρ)
b

× lim
β→0

β−2Q
∑3
i=1(αi,ρ)

∮ N−2∏
i=1

N−1−i∏
j=1

[
dÃ

(j)
i

2πiÃ
(j)
i

|M(t, q)|2
] ∣∣∣Ztop

N

∣∣∣2 (2.16)

where by “const” we mean an overall function of only b that is independent of the weights

of the CFT primaries. To spell out the details of the right-hand side, in particular the

topological string amplitude Ztop
N , we require some notions and notations which will come

in the next section. The impatient reader may skip the explanations and proceed straight to

the formulae (3.7), (3.13), (3.15), (3.16), (3.17), (3.18) consulting also appendices A.3, A.4

for definitions of the encountered special functions.

4To be more precise, the q-deformed functions have a whole tower of zeroes/poles for each zero/pole

of the undeformed function. The tower is generated by beginning with the undeformed zero/pole and

translating it by r 2πi
log q

= −r 2πi
β

, where r is a positive integer.

– 6 –
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3 AGT dictionary

According to the AGT-W correspondence [9, 10], the correlation functions of the 2D Toda

CFT are obtained from the partition functions of the corresponding 4D N = 2 gauge

theories as

ZS4
=

∫
[da]

∣∣∣Z4D
Nek(a,m, τ, ε1,2)

∣∣∣2 ∝ 〈Vα1(z1) · · ·Vαn(zn)〉Toda , (3.1)

where the Omega deformation parameters are related to the Toda coupling constant5 via

ε1 = b and ε2 = b−1. Moreover, a stands for the set of Coulomb moduli of the theory, m for

the masses of the hypermultiplets and τ for the coupling constants. The correspondence

relates the masses m to the weights αi and the couplings constants τ to the insertion points

zi of the primary fields. In particular, the conformal blocks of the 2D CFTs are given by

the appropriate Nekrasov instanton partition functions [9, 10] and the 3-point structure

constants by the partition functions of the TN superconformal theories on S4 [11, 12].

A similar relation between 5D gauge theories and 2D q-CFT exists [12, 15–28], which

relates the 5D Nekrasov partition functions on S4 × S1 to correlation functions the of

q-deformed Liouville/Toda field theory:

ZS4×S1
=

∫
[da]

∣∣∣Z5D
Nek(a,m, τ, β, ε1,2)

∣∣∣2 ∝ 〈Vα1(z1) · · ·Vαn(zn)〉q-Toda , (3.2)

where β = − log q is the circumference of the S1. The exponentiated Omega background

parameters

q = e−βε1 , t = eβε2 , (3.3)

are used in this case. The partition function on S4 × S1 is the 5D superconformal index,

which as discussed in [29] can also be computed using topological string theory techniques

ZS4×S1
=

∫
[da] |Z5D

Nek(a)|2 ∝
∫

[da] |Ztop(a)|2 . (3.4)

In [12] we computed the partition functions of the 5D TN theories on S4×S1 (see also [13])

and suggested that they should be interpreted as the 3-point structure constants of q-

deformed Toda. We read them off from the toric-web diagrams of the TN junctions of [31]

by employing the refined topological vertex formalism of [32, 33]. In a subsequent paper [1],

part one of the present series of papers, we showed how the 4D limit, corresponding to β → 0

or q → 1, is to be taken. We thus obtained the partition function of the 4D TN theories

on S4

ZS4

N = const× lim
β→0

β
− χN
ε1ε2ZS4×S1

N , (3.5)

where by “const” we mean a function of ε1, ε2 that is independent of the mass parameters

of the theory. The degree of divergence was determined as proportional to the quadratic

5We also use the notation ε+ = ε1 + ε2. When we specialize ε1 = b and ε2 = b−1 in order to connect the

topological string expressions to the Toda expressions, we have ε+ = b+ b−1 = Q.

– 7 –
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Figure 1. This figure depicts the identification of the α weights appearing on the Toda CFT side

with the position of the flavor branes on the TN side, here drawn for the case N = 5.

Casimir of SU(N)3

χN = −
∑

1≤i<j≤N

[
(mi −mj)

2 + (nj − ni)2 + (li − lj)2
]

= −N
3∑
i=1

(αi −Q,αi −Q) ,

(3.6)

where Q := Qρ = (b+b−1)ρ with the SU(N) Weyl vector ρ defined in (A.8). After the first

equality of (3.6), we have introduced the mass parameters mi, ni and li of the TN theory,

which, as shown in figure 1, are connected to the Toda theory parameters [1]

mi = (α1 −Q, hi) = N
N−1∑
j=i

αj1 −
N−1∑
j=1

jαj1 −
N + 1− 2i

2
Q ,

ni = − (α2 −Q, hi) = −N
N−1∑
j=i

αj2 +

N−1∑
j=1

jαj2 +
N + 1− 2i

2
Q ,

li = − (α3 −Q, hN+1−i) = −N
N−1∑

j=N+1−i
αj3 +

N−1∑
j=1

jαj3 −
N + 1− 2i

2
Q .

(3.7)

It is important to note, that the mass parameters are not all independent, but obey

N∑
i=1

mi =
N∑
i=1

ni =
N∑
i=1

li = 0 , (3.8)

which is reflected in the fact that the sum of the weights hi of the fundamental SU(N)

representation is zero. Then the structure constants of three primary operators in the

q-Toda theory are given by the TN partition functions on S4 × S1 as

Cq(α1,α2,α3) = const×

 3∏
j=1

Yq(αj)

 (1− q)−χNZS4×S1

N , (3.9)

where by “const” we mean a function of ε1, ε2 and β that is independent of the mass pa-

rameters of the theory. We stress that the superconformal index ZS4×S1

N is invariant under

the affine Weyl transformations (A.12) and that all the non-trivial Weyl transformation

– 8 –
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Figure 2. The figure illustrates the desired Higgsing procedure for the general TN diagram. We

denote 7-branes by crossed circles. The left part of the figure shows the original TN 5-brane web

diagram, while the right one depicts the web diagram obtained by letting N − 1 of the left 5-branes

terminate on the same 7-brane.

properties of the structure constants are captured by the following special functions:

Yq(α) :=

[(
1− qb

)2b−1(
1− qb−1)2b

(1− q)2Q

]−(α,ρ)∏
e>0

Υq ((Q−α, e)) , (3.10)

with the functions Υq defined in (A.34) and the product taken over all positive roots e of

SU(N). The partition function on S4×S1, or the superconformal index, for the TN theory

is given by an integral over the refined topological string amplitude with an integration

measure containing the refined MacMahon function6 M(t, q) [29]

ZS4×S1

N :=

∮ N−2∏
i=1

N−1−i∏
j=1

[
dÃ

(j)
i

2πiÃ
(j)
i

|M(t, q)|2
] ∣∣∣∣∣Ztop

N

Zdec
N

∣∣∣∣∣
2

. (3.11)

Here, we have removed the decoupled degrees of freedom, referred to as “non-full spin

content” in [12],∣∣∣Zdec
N

∣∣∣2 :=
∏

1≤i<j≤N

∣∣∣M(M̃iM̃
−1
j )M(t/qÑiÑ

−1
j )M(L̃iL̃

−1
j )
∣∣∣2

= const×
3∏

k=1

(1− q)N(αk,αk−2Q)
((

1− qb
)2b−1(

1− qb−1)2b)(αk,ρ)
Yq(αk) ,

(3.12)

where the function M is defined in (A.29). Interestingly enough, as noted in [1], these

degrees of freedom are responsible for the Weyl covariance of the Toda structure constants.

Here and elsewhere, we shall use the shorthand notation

|f(U1, . . . , Ur; t, q)|2 := f(U1, . . . , Ur; t, q)f(U−1
1 , . . . , U−1

r ; t−1, q−1) . (3.13)

Inserting (3.11) into (3.9), we find the nice expression

Cq(α1,α2,α3) = const×
∮ N−2∏

i=1

N−1−i∏
j=1

[
dÃ

(j)
i

2πiÃ
(j)
i

|M(t, q)|2
] ∣∣∣Ztop

N

∣∣∣2 . (3.14)

6See (A.40) for the definition of the refined MacMahon function M(t, q).
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The topological string amplitude is Ztop
N obtained from the TN web-diagram by using the

refined topological vertex formalism and reads

Ztop
N = Zpert

N Z inst
N , (3.15)

where the “perturbative” partition function7 is

Zpert
N :=

N−1∏
r=1

∏
1≤i<j≤N−r

M
(
Ã

(r−1)
i Ã

(r−1)
j

Ã
(r−1)
i−1 Ã

(r−1)
j+1

)
M
(√

t
q

Ã
(r−1)
i Ã

(r)
j−1

Ã
(r−1)
i−1 Ã

(r)
j

)
M
(√

t
q

Ã
(r)
i Ã

(r−1)
j

Ã
(r)
i−1Ã

(r−1)
j+1

)
×

∏
1≤i<j≤N−r−1

M

(
t

q

Ã
(r)
i Ã

(r)
j

Ã
(r)
i−1Ã

(r)
j+1

)
, (3.16)

and the “instanton” one is

Z inst
N :=

∑
ν

N−1∏
r=1

N−r∏
i=1

(
ÑrL̃N−r

Ñr+1L̃N−r+1

) |ν(r)i
|

2

×
N−1∏
r=1

∏
1≤i≤j≤N−r

N
β

ν
(r−1)
i ν

(r)
j

(
a

(r−1)
i + a

(r)
j−1 − a

(r−1)
i−1 − a(r)

j − ε+/2

)
Nβ
ν
(r−1)
i ν

(r−1)
j+1

(
a

(r−1)
i + a

(r−1)
j − a(r−1)

i−1 − a(r−1)
j+1

)

×
Nβ
ν
(r)
i ν

(r−1)
j+1

(
a

(r)
i + a

(r−1)
j − a(r)

i−1 − a
(r−1)
j+1 − ε+/2

)
Nβ
ν
(r)
i ν

(r)
j

(
a

(r)
i + a

(r)
j−1 − a

(r)
i−1 − a

(r)
j − ε+

)
 , (3.17)

where the a
(j)
i are defined via Ã

(j)
i = e−βa

(j)
i , while the Nβλµ are given in (A.46). The

summation goes over N(N−1)
2 partitions ν

(r)
i , r = 1, . . . , N − 1, i = 1, . . . , N − r. The

“interior” Coulomb moduli Ã
(i)
j = e−βa

(j)
i are independent, while the “border” ones are

given by

Ã
(0)
i =

i∏
k=1

M̃k , Ã
(i)
0 =

i∏
k=1

Ñk , Ã
(N−i)
i =

i∏
k=1

L̃k , (3.18)

where M̃k := e−βmk and similarly for Ñk and L̃k. See appendix A for more details on the

parametrization of the TN junction.

The formula (2.16) (correspondingly, (3.9)) for the structure constants of three primary

fields of (q-deformed) Toda CFT, has the correct symmetry properties, the zeros that it

should and, for N = 2, gives the known answer for the Liouville CFT [1]. However, it

is very implicit, requiring to perform N(N−1)
2 sums over the partitions ν

(j)
i , followed by a

(N−1)(N−2)
2 -dimensional8 integral over the Coulomb moduli Ã

(j)
i and finally to take the 4D

7We put the words “perturbative” and “instanton” inside quotation marks because for the TN there is

no notion of instanton expansion, since there is no coupling constant.
8It is the number of faces of the left diagram in figure 2.
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Figure 3. On the left we depict the sphere with three full punctures that corresponds to the

un-Higgsed TN with SU(N)3 global symmetry. On the right we show the sphere with two full

punctures and one L-shaped {N − 1, 1} puncture. This particular Higgsing of TN leads to a theory

with with SU(N)× SU(N)×U(1) global symmetry. The partition function of this theory will lead

to the Toda 3-point function with one semi-degenerate primary insertion.

Figure 4. On the left part of this figure, we see N 5-branes ending on n 7-branes in bunches of

`1, . . . , `n 5-branes each. On the right side of the figure, we depict the Young diagram {`′1, `′2, . . . , `′n}
that gives the flavor symmetry of the corresponding puncture. Having n bunches of 5-branes, each

ending of a 7-brane leads to a puncture in the Gaiotto curve with flavor symmetry S(U(k1)× · · · ×
U(kr)), where the widths ki of the boxes are equal to the numbers of stacks with the same number

of branes per stack.

(q → 1) limit (3.5). In the subsequent parts of the paper we will show how to derive the

special case (2.13), known due to Fateev and Litvinov [6–8], from our formula (2.16). This

provides a strong check of our general proposal.

4 Semi-degeneration from Higgsing the TN theories

In this section we argue that a particular way of Higgsing the TN theories, as depicted

in figure 2, corresponds to the degeneration with one simple and two full punctures. On

the Toda side, this is equivalent to the semi-degeneration of Fateev and Litvinov. On

the gauge theory side, the partition function of the theory with one simple and two full

punctures is the partition function of N2 free hypermultiplets. Our discussion is based

on the physics of (p, q) 5-brane webs and their symmetries. In particular, we identify

which Higgsing mechanism corresponds to the Fateev and Litvinov semi-degeneration by

introducing 7-branes on the 5-brane web. Finally, in this section, we discuss the domain

in which the mass parameters, or Toda weights, take value, which will dictate the contour

for the integral (2.16).

In the next sections we will use the intuition acquired here to explicitly substitute

the values dictated by the web diagram, (4.10) and (4.6), in (3.9) so as to obtain the

formula (2.13) by Fateev and Litvinov.
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4.1 Higgsing the TN — Review

The physics of the (p, q) 5-brane webs that we will need in the context of this section is

studied in [13, 31, 34, 35]. We give a short review of their relevant results. A very useful

way of realizing 4D N = 2 quiver gauge theories in string theory is by using type IIA

string theory and the Hanany-Witten construction [36] of D4 branes suspended between

NS5 branes [37]. This configuration can be lifted to M-theory, where both the D4 and

the NS5 branes become a single M5 brane with non-trivial topology, physically realizing

the Seiberg-Witten curve in which all the low energy data are encoded [37]. Similarly,

5D N = 1 gauge theories can be realized using type IIB string theory with D5 branes

suspended between NS5 branes forming (p, q) 5-brane webs [38, 39]. A large class of N = 2

SCFTs, called class S, can be reformulated (from the realization in [37] with a single M5

brane with non-trivial topology) as a compactification of N M5 branes on a sphere [40].

This point of view is very useful since intersections of these N M5 branes with other M5

branes can be thought of as insertions of defect operators on the world volume of the M5

branes and thus punctures on the sphere. The name simple puncture is used for defects

that are obtained from the intersection of the original N M5 branes with a single M5 brane

(originating from D4’s ending on an NS5 in the Hanany-Witten construction), while full or

maximal punctures stem from defects corresponding to intersections with N semi-infinite

M5 branes (external flavor semi-infinite D4’s in [37]).

More general punctures, naturally labeled by Young diagrams consisting of N boxes,

are also possible [40, 41]. In the (p, q) 5-brane web language, they can be described when

additional 7-branes are introduced [31]. Semi-infinite (p, q) 5-branes are equivalent to

(p, q) 5-branes ending on (p, q) 7-branes [42]. Consider N 5-branes and let them end on n

7-branes, as shown on the left of figure 4. The jth 7-brane carries `j 5-branes. We define

the numbers `′j as a permutation of the `j such that they are ordered

`′1 ≥ `′2 ≥ · · · ≥ `′n , (4.1)

and arrange them as the columns of a Young diagram9 {`′1, `′2, . . . , `′n}, see the right hand

side of figure 4. As we started with N 5-branes, the `′js must obey the condition
∑n

j=1 `
′
j =

N . The integers ka are defined recursively

ka = {# `′j : `′j = `′k1+···ka−1+1} , (4.2)

and are equal to the number of columns of equal height. Since the diagonal U(1) of

the whole set of the N 5-branes is not realized on the low energy theory [42], the flavor

symmetry of the corresponding puncture in the Gaiotto curve is S(U(k1)×· · ·×U(kr)) [40].

The Coulomb branch of the TN theories, corresponding to normalizable deformations

of the web which do not change its shape at infinity, has dimension equal to the number of

faces in the TN web diagram, see the left part of figure 2, and has dimension (N−1)(N−2)
2 ,

as it should [41]. Moreover, the dimension of the Higgs branch of the TN theories, known

9In this article, we draw the Young diagrams in the English notation. By {c1, . . . , cr} we mean a Young

diagram with r columns for which the j-th column has cj boxes, j = 1, . . . , r. Furthermore, we use the

notation {ab} for the partition {a, . . . , a} with b columns.
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Figure 5. In this figure we present the dot diagrams of T4 with three different Higgsings. On

the left we have the un-Higgsed dot diagram with three full punctures, SU(4)3 global symmetry

and three Coulomb moduli. In the middle, the four D5 branes end on two D7 branes with two D5

branes on each, which corresponds to the Young diagram {2, 2}. This theory has apparent global

symmetry SU(4)2×SU(2) and one closed polygon corresponding to one leftover Coulomb modulus.

Finally, on the right we have the fully-Higgsed theory with three D5 branes on the first D7 brane

and one D5 brane on the second D7. This theory has no Coulomb moduli left.

to be 3N2−N−2
2 [41], was obtained by terminating all the external semi-infinite 5-branes on

7-branes and counting the independent degrees of freedom for moving them around on the

web-plane [31]. Finally, the global symmetry SU(N)3 of the TN theories is realized on the

7-branes.

Higgsed TN theories can also be understood in this way [31]. Beginning with the TN 5-

brane webs which correspond to the sphere with three full punctures (labeled by the Young

diagrams {1N}) and grouping the N parallel 5 branes of the punctures into smaller bunches

(labeled by the Young diagrams {`′1, `′2, . . . , `′n}), 5-brane configurations which realize 5D

theories with E6,7,8 flavor symmetry were obtained. These theories have Coulomb and

Higgs branches of smaller dimension than the original TN which can be counted using a

generalization of the s-rule [43–45] from the so-called dot diagrams,10 see also [13, 34, 35].

For us, the important result from [31] is that the dimension of the Higgs moduli space of

a puncture corresponding to the Young diagram depicted in figure 4 is

dimHMp
H =

n∑
j=1

(j − 1) `j , (4.3)

and that the Coulomb branch is the number of closed dual polygons in the dot diagram.

4.2 The Fateev-Litvinov degeneration from Higgsing

We need to decide which puncture (Young diagram {`′1, `′2, . . . , `′n}) corresponds to the

Fateev-Litvinov semi-degenerate primary operator. This puncture should have only U(1)

symmetry (for N > 2). Thus, it can be obtained by grouping the N 5-branes in two

bunches of unequal number of 5-branes, N − 1 and 1 respectively, forming the L-shaped

Young diagram {N − 1, 1} shown in figure 3. For N = 2, the puncture has an SU(2) flavor

symmetry, while for N ≥ 3 the flavor symmetry gets reduced to U(1), as required for the

semi-degenerate field. This Young diagram {N −1, 1} corresponds to the simple punctures

10The dot diagrams are the dual graphs of the web diagrams with the additional information about the

7-branes encoded in white and black dots.
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Figure 6. This figure shows the way two 5-branes are brought on the same 7-brane [13].

discussed before. The Higgs moduli space of this configuration has dimHMsemi-deg
H = 1

which is consistent with the fact that we have only one parameter κ in the CFT side.

Finally, the dot diagrams tell us that the dimension of the Coulomb branch in this case is

zero, which, as we will see later, is consistent with what one gets by just substituting (4.7)

in (3.9).

Now, let us discuss what happens with the Kähler moduli that parametrize the TN
partition functions as we bring together N − 1 parallel horizontal external D5 branes on a

single D7 brane. These we will then translate in the language of mass parameters mi, ni, li
(i = 1, . . . , N) and Coulomb moduli ar (r = 1, . . . , (N−1)(N−2)/2) using the dictionary of

appendix A.1 and in particular equation (A.4) and, finally, to the Toda weights α1,2,3

using (3.7). We follow closely the discussion in [34]. For simplicity, we begin with two

parallel D5 branes that originally end on different D7 branes. This process is depicted in

figure 6. First we need to shrink u2 of U2 = e−βu2 to zero while still having two 7-branes.

In the process of sending the u1 of U1 = e−βu1 to zero, one of the two D7 branes will meet

a D5 brane and the two parallel D5 branes will fractionate on the D7 branes. After moving

the cut piece to infinity it effectively decouple from the rest of the web.

For the unrefined topological strings, i.e. for ε2 = −ε1, shrinking the length of a 5-

brane that is parametrized11 by U = e−βu corresponds to setting U = 1. This is not true

any more in the case of the refined topological string where zero size will correspond either

to U =
√

t/q or U =
√

q/t [46–49]. It turns out that both choices are equivalent as is

extensively discussed in [34]. In this paper we wish to consider only the parameter space

that corresponds to Toda CFT with Q = ε1 + ε2 > 0, i.e. t/q > 1, and thus we have to pick

U =
√

t/q.

For the T3 case the situation is exactly the same as the simple example depicted in

figure 6. The following two Kähler parameters

Q
(1)
m;1 = A−1M̃1Ñ1 and Q

(1)
l;1 = AM̃−1

2 Ñ−1
1 (4.4)

are the ones we have to shrink, where A ≡ Ã
(1)
1 is the Coulomb modulus of T3. See

appendix A.1 for notations and figure 9 for the web diagram of T3. Thus, we have to set

Q
(1)
m;1 = Q

(1)
l;1 =

√
t

q
. (4.5)

11The parameter u in the exponent is the length of the 5-brane segment.
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In general for TN as depicted in figure 13 we must tune

Q
(j)
m;i = Q

(j)
l;i =

√
t

q
with i = 1, . . . , N − 2, j = 1, . . . , N − 1− i . (4.6)

Going back to the Toda side, we wish to semi-degenerate the weight α1, i.e. set it to

α1 = NκωN−1 ⇐⇒ mi =


κ − N + 1− 2i

2
Q i = 1, . . . , N − 1 ,

−(N − 1)κ +
N − 1

2
Q i = N ,

(4.7)

where the implications from (3.7) of the semi-degeneration on the mass parameters are

written on the right. For the T3 case that implies for the exponentiated mass parame-

ters that

M̃1 =
t

q
K̃ = e−β(κ−Q) and M̃2 = K̃ (4.8)

which is consistent with (4.4) and (4.5) when the Coulomb moduli is tuned to the value

A =

√
t

q
K̃Ñ1 . (4.9)

This is compatible with the statement that after Higgsing, the T3 the dimension of the

Coulomb branch is zero, and also with the fact that we will discuss in next section, the

contour integral gets pinched once one substitutes (4.7) in (3.9). In the general TN case,

Higgsing forces the Coulomb parameters to become

Ã
(j)
i =

(
t

q

) i(N−i−j)
2

K̃i
j∏

k=1

Ñk , (4.10)

where i, j = 1, . . . , N − 2, i + j ≤ N − 1 and K̃ = e−βκ. This implies that the Kähler

parameters obey (4.6).

At the level of partition functions, the Fateev-Litvinov formula for the special 3-point

functions can be identified with the partition function of N2 free hypermultiplets, after

removal of the decoupled degrees of freedom (3.12). We know from [12, 14], that the

partition function of a single free hypermultiplet is given by

ZS4

free hyper =
1

Υ(m− ε+
2 )

,

ZS4×S1

free hyper =
1

|M(e−βm
√

t
q)|2

=
(1− q)−

m2

ε1ε2∣∣∣M(√
t
q ; t, q

)∣∣∣2
1

Υq(m− ε+
2 )

. (4.11)

Thus, the 5D superconformal index of N2 free hypermultiplets is the product of N2 such

partition functions

ZS4×S1

N2 free hypers
=

1∏N
i,j=1

∣∣∣M(√
t
qe
−βmij

)∣∣∣2 . (4.12)
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Figure 7. The figure illustrates the change of the Käher parameters upon flopping.

Up to factors that for now we drop and using (3.12), we can identify

Cq(NκωN−1,α2,α3)∣∣Zdec
N

∣∣2 ∼ 1∏N
i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))

∼ ZS4×S1

N2 free hypers
.

(4.13)

From this knowledge, one could go ahead and guess some of the complicated summation

formulas like (5.20), as was done by [34] for the T3 case.

4.3 The domain of the parameters restricts the contour

An important step we will have to take is to perform the contour integral in (2.16). For

that we need to carefully discuss the domain in which our parameters take values. On the

Toda side, this type of conditions is obtained by considering the physicality of the WN

Toda weights α is in order. Denoting by ∆(α) the conformal dimension of the primary

field Vα, the formula for the 2-point functions

〈
Vα′(z

′, z̄′)Vα(z, z̄)
〉

=
(2π)N−1δ(α+α′ − 2Q) + Weyl-reflections

|z − z′|4∆(α)
, (4.14)

tells us that requiring that Vα′ be the conjugate field to Vα leads to the following reality

condition12

<(α) = Q ⇐⇒ mi, ni, li ∈ iR . (4.15)

The physicality condition for the Toda weights (4.15) implies through the dictionary (3.7)

that the mass parameters are purely imaginary. On the (p, q) 5-brane web diagram side,

distances are measured by the real part of the mass parameters, see equations (2.7-2.12)

of [20] for a review of our conventions. When the 5-branes are on top of each other, i.e.

when their distance is zero,13 TN has SU(N)3 symmetry [31] and we can have physical

Toda theory states. Since Q = Q
∑N−1

i=1 ωi and since semi-degeneration requires that

α = NκωN−1, we see that semi-degeneration/Higgsing is incompatible with the physicality

condition (4.15). This agrees with a CFT intuition [5].

We wish to conclude this section by stressing that the formulas we are dealing with

have different domains with different convergent expansions depending on the values of the

masses, just like in (A.29). In the topological string language they correspond to different

12See section 4 and 11 of [5] for a detailed discussion of the physicality condition in the Liouville case.
13In the refined topological vertex, the Seiberg-Witten curve is replaced by its quantum version in which

zero distance is understood as integer multiples of ε+.
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Figure 8. The figure shows an example of contour pinching. As the poles at a and at b collide,

the contour integral diverges, which is why we regulate it by multiplying with a − b. In the limit

a→ b, the integral is given by a single residue.

geometries that are related to each other by flopping. For each Kähler parameter U , we

distinguish between the region |U | > 1 and the one with |U | < 1; to each we associate a

different (p, q) 5-brane web diagram. Going from one region to the other involves “flopping”

which transforms the Kähler parameters as depicted in figure 7. See [50] for a recent

discussion of the topic. In the next section, we explain how the contour in (3.9) is to be

chosen and we argue that the contour is dictated by the choice of the flopping frame.

5 The semi-degenerate W3 3-point functions

In this section we explicitly derive the Fateev-Litvinov result for the semi-degenerate 3-

point functions of the sl(3) Toda theory from our general formula. To succeed in this

calculation, we need to do two things: to evaluate the contour integral in (3.14) and to

perform the sum in (3.17). For general values of the parameters, infinitely many poles

contribute to the contour integral, but luckily in the semi-degeneration limit only two of

them do for the sl(3) case. This is due to a phenomenon known as “pinching”, which we

illustrate in the beginning of the section with a very simple example. Then, we show that in

the sl(3) case, there are two possible poles where the contour can be pinched, each of them

corresponding to a different flopping frame of the T3 geometry. From this observation, we

infer three different possible choices for the contour in (3.14). We compute the integral for

each of them and find the same result. Finally, we show that for the particular residues

that contribute it is possible to compute the sum in the “instanton” factor.

Let us first make a simple example to illustrate pinching. Let g be a meromorphic

function in a domain D ⊂ C that has only simple poles at the points a, b and pi, meaning

that it can be written as

g(z) =
f(z)

(z − a)(z − b)
∏
i(z − pi)

, (5.1)

where f is a holomorphic function in D. Let C be a closed contour in D that encircles a

as well as the pi but not b. We write a = p + δ and b = p − δ and take the limit δ → 0,

thus letting the two points a and b collide on the contour C on both sides, as depicted in

figure 8. If we now compute the contour integral of g around C and multiply it by a − b,
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Figure 9. This figure shows the two flopping frames for T3. One can obtain the right geometry

from the left one by applying two flopping moves, see figure 7, to the encircled segments.

we obtain

(a− b)
∮
C

dz

2πi
g(z) =

f(a)∏
i(a− pi)

+
∑
i

(a− b)f(pi)

(pi − a)(pi − b)
∏
j 6=i(pi − pj)

δ→0−→ f(p)∏
i(p− pi)

= lim
a→b

[(a− b)Res(g(z), a)] . (5.2)

Thus, in the limit a→ b, the contour gets pinched at the point a = b = p and the integral

is given by a single residue. This is essentially the contour integral version of the identity

limε→0
ε

(x+iε)(x−iε) = πδ(x). This example can also be easily generalized to the case in

which g has not only simple poles, but we will not need it.

We now want to explain how this simple example applies to our integral formulas for

the correlation functions of sl(3). In the sl(3) case, our contour integral formula (3.14) for

the structure constants reads

Cq(α1,α2,α3) = const×
∮

dA

2πiA
|M(t, q)|2 |Ztop

3 |
2 , (5.3)

where A
(1)
1 ≡ A = e−βa while the integrand is

|Ztop
3 |

2 = |Zpert
3 |2|Z inst

3 |2

=

∣∣∣∣∣∣∣∣
∏

1≤i<j≤3M
(
M̃i

M̃j

)
∏3
k=1

[
M
(√

t
qAM̃kL̃3

)
M
(√

t
q

A
M̃kÑ1

)] M
(
A2L̃3

Ñ1

)
M
(

Ñ1

A2L̃3

)
M
(√

t
q
AÑ2

L̃1

)
M
(√

t
q
AÑ3

L̃2

)
∣∣∣∣∣∣∣∣
2

×

∣∣∣∣∣∣∣∣
∑
ν

(
Ñ1L̃2

Ñ2L̃3

) |ν(1)1 |+|ν(1)2 |
2

(
Ñ2L̃1

Ñ3L̃2

) |ν(2)1 |
2

×

∏3
k=1

[
Nβ
ν
(1)
1 ∅

(a−mk − n1 − Q/2)Nβ
∅ν(1)2

(a +mk + l3 − Q/2)

]
Nβ
ν
(1)
1 ν

(1)
1

(0)Nβ
ν
(1)
2 ν

(1)
2

(0)Nβ
ν
(2)
1 ν

(2)
1

(0)

×
Nβ
ν
(1)
1 ν

(2)
1

(a + n2 − l1 − Q/2)Nβ
ν
(2)
1 ν

(1)
2

(a + n3 − l2 − Q/2)

Nβ
ν
(1)
1 ν

(1)
2

(2a− n1 + l3)Nβ
ν
(1)
2 ν

(1)
1

(−2a + n1 − l3)

∣∣∣∣∣∣
2

, (5.4)
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with the sum going over all partitions ν = {ν(1)
1 , ν

(1)
2 , ν

(2)
1 }. Since we wish to evaluate the

contour integral (5.3) in the semi-degenerate limit α1 = 3κω2, we introduce a regulator δ

and parametrize the three masses labeling the positions of the branes on the left as

m1 = κ + δ −Q , m2 = κ − δ , m3 = −2κ +Q , (5.5)

which implies that the exponentiated masses M̃i = e−βmi are

M̃1 =
t

q
K̃e−βδ , M̃2 = K̃eβδ , M̃3 =

q

t
K̃−2 , (5.6)

with K̃ = e−βκ. The semi-degenerate limit then corresponds to δ → 0. For these values of

the masses, the numerator of |Ztop
3 |2 in (5.4) goes to zero, just like the term a − b in the

simple example (5.2) above, since

|M(M̃1M̃
−1
2 )|2 = (1− e−2βδ)× reg. ≈ δ × reg. , (5.7)

where “reg” are terms that don’t vanish for δ → 0.

The next step is to analyze the poles in the integrand of (5.4) and determine which ones

will contribute in the semi-degenerate limit. We make the assumption14 that only poles

from the “perturbative” part, i.e. the first line of (5.4), are relevant for this computation,

which will be justified by the final result.

Due to the vanishing of the numerator (5.7), we need to have pinching in order to

get a non-zero answer. As we learned from the simple example at the beginning of the

section, we need to find poles that lie on different sides of the contour and that collide

when the regulator is removed. The poles in the integrand come from the zeroes of the

functions |M(U)|2 in the first line of (5.4). Since, in order to obtain the Toda theory from

topological strings we wish to have b > 0, so that |q| < 1 and |t| > 1, we get from (A.29)

the expression

|M(U ; t, q)|2 =M(U ; t, q)M(U−1; t−1, q−1) =

∞∏
i,j=1

(1− U t−iqj)(1− U−1t1−iqj−1) . (5.8)

Thus, the zeroes of |M(U)|2 are to be found on the points

U = t−mqn , U = tm+1q−n−1 , (5.9)

for m,n ∈ N0 = {0, 1, 2, . . .}. We see that there are two classes of poles of |Ztop|2, namely

those that condense around zero in the A complex plane and those that condense around

infinity.

14This can be supported by a following simple observation. The integral in our formula (2.16) for the

Toda three-point function should be regarded as a complicated deformation of a conventional Mellin-Barnes

contour integral of ratio of gamma functions multiplying a hypergeometric function. The “perturbative”

part of the integrand corresponds to the deformed gamma functions, whereas the “instanton” part is the

analogue of the hypergeometric function. As the usual hypergeometric function is an entire function of its

parameters, it cannot give residue contributions to the value of the Mellin-Barnes integral. It is natural to

expect the same property for its deformation.
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Figure 10. As the variable δ is sent to zero, the contour gets pinched between two zeroes and

the contributions are given by finite number of residues, indicated by circles. The set of poles are

labeled according to (5.11). The first contour picks up a single residue from the line of poles 1, the

second one a single residue from the line of poles 3, while the third one, shown on the right, picks

both of these residues.

When we then take the limit δ → 0, some poles from the exterior of the contour

integral with coincide with some from the interior, leading to a divergence that will cancel

the zero of (5.8), just like in the simple example of equation (5.2). We easily see that the

relevant terms in the denominator of the first line of (5.4) are∣∣∣∣M(√
t

q
AM̃−1

1 Ñ−1
1

)
M
(√

t

q
AM̃−1

2 Ñ−1
1

)
M
(√

t

q
AM̃1L̃3

)
M
(√

t

q
AM̃2L̃3

)∣∣∣∣2 .
(5.10)

The other zeroes in the denominator will not pinch the integral once the regulator δ is set

to zero and can be ignored, just like the pi terms in (5.2). Numbering the functions M as

1 to 4 in (5.10) from left to right, using (5.9) and the parametrization (5.5), we know that

we have first order poles in the integrand if

(1) A = K̃Ñ1e
−βδt−m+ 1

2 qn−
1
2 , (1̄) A = K̃Ñ1e

−βδtm+ 3
2 q−n−

3
2 ,

(2) A = K̃Ñ1e
βδt−m−

1
2 qn+ 1

2 , (2̄) A = K̃Ñ1e
βδtm+ 1

2 q−n−
1
2 ,

(3) A = K̃−1L̃−1
3 eβδt−m−

3
2 qn+ 3

2 , (3̄) A = K̃−1L̃−1
3 eβδtm−

1
2 q−n+ 1

2 ,

(4) A = K̃−1L̃−1
3 e−βδt−m−

1
2 qn+ 1

2 , (4̄) A = K̃−1L̃−1
3 e−βδtm+ 1

2 q−n−
1
2 , (5.11)

for m,n ∈ N0. We have labeled with a ·̄ those sets of poles that coalesce around A = ∞.

We see in figure 10 that there are two places where the towers of poles collide, namely

where the first pole of the tower 1 hits the first pole of the tower 2̄ and where the first

pole of the tower 3 hits the first of the tower 4̄. Now the time has come for us to choose

the form of the contour. Given the fact that we need to pinch the contour, we have three

possible options, depicted in 10. We will compute the integral for each of the three choices.

We begin with the first contour, see figure 10, passing between the towers 1 and 2̄ but

avoiding the pinching of the towers 3 and 4̄. We see that, due to set of poles 1 colliding

with the set of poles 2̄ for m = n = 0, the integral gets pinched as δ → 0 and that the
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Figure 11. The figure shows the Higgsed geometry corresponding to the residue (5.12). For this

residue, the Kähler parameters take the values (4.5).

result is given by the residue at

A =

√
t

q
K̃Ñ1e

−βδ . (5.12)

It is very important as a guiding principle to note that this first contour corresponds to

Higgsing in the flopping frame of figure 11. We furthermore see that for the choice of

contour in figure 10, the fact that for δ → 0 we get an overlap between a pole from 3 and

a pole from 4̄ is of no consequence since they both lie of the same side of the contour.

Let us now compute the residue of |Ztop
3 |2 at (5.12) directly. We first need a couple

of technical results. We can use the fact that for a function f that has no pole at Btkql,

we have

Res

(
f(A)

A|M(AB−1)|2
,A = Btkql

)
=

g−k,l

|M(t, q)|2
f(Btkql) . (5.13)

Here |M(t, q)|2 is the norm squared of the refined MacMahon function defined in (A.40)

and the function gkl is defined as

gkl(t, q) := lim
U→1

|M(U)|2

|M(U t−kql)|2
=

k∏
i=1

(t−iql+1; q)∞
(tiq−l; q)∞

l∏
j=1

(t−1qj ; t−1)∞
(q−j ; t−1)∞

, (5.14)

where we have used the shift properties (A.33) of the M functions and the last equality is

only valid for k, l ∈ N0. The above expression can be continued for negative k and l with

gkl = −g−k−1,−l−1. In particular g−n,0 = g0,−n = 0 for n ≥ 1. Thus, we can now finally

write down the residue for the pole (5.12) using (5.13)

lim
δ→0

∮
dA

2πiA
|M(t, q)|2 |Ztop

3 |
2 = |M(t, q)|2 Res

(
|Ztop

3 |
2,A =

√
t

q
K̃Ñ1e

−βδ
)

(5.15)

=

∣∣∣M(K̃−3)
∣∣∣2∣∣∣∏3

k=1M
( ÑkL̃4−k

K̃

)∣∣∣2
∣∣Z inst

3

∣∣2∣∣A=
√

t
q
K̃Ñ1

.

One can observe that due to (A.48), the sum over ν
(1)
1 in

∣∣Z inst
3

∣∣2∣∣A=
√

t
q
K̃Ñ1

drops out and
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Figure 12. The figure shows the Higgsed geometry corresponding to the residue (5.18).

we obtain the following result for the “instanton” partition function

(
Z inst

3

)∣∣A=
√

t
q
K̃Ñ1

=
∑
ν1,ν2

(
Ñ2L̃1

Ñ3L̃2

) |ν1|
2
(
Ñ1L̃2

Ñ2L̃3

) |ν2|
2

(5.16)

×
Nβν1∅(n3 + l1 − κ)Nβν2ν1(n2 + l2 − κ)Nβ∅ν2(n1 + l3 − κ)

Nβν1ν1(0)Nβν2ν2(0)
, (5.17)

where we denoted ν
(2)
1 ≡ ν1, ν

(1)
2 ≡ ν2.

Next, we also need to compute the the contour integral for the second contour, depicted

in blue in figure 10. We find that the result is given by the residue of
∣∣∣Ztop

3

∣∣∣2 at

A =

√
q

t
K̃−1L̃−1

3 e−βδ , (5.18)

which, together with (5.5) implies for δ → 0 the Higgsed geometry shown in figure 12.

Computing the residue, we find that the “perturbative” contribution, i.e. the prefactor of∣∣Z inst
3

∣∣2 in (5.16), is the same as before. Furthermore, we find after relabeling ν
(1)
2 ↔ ν

(1)
1

and using (A.49) that the “instanton” contribution in (5.16) is unchanged, i.e.(
Z inst

3

)∣∣A=
√

t
q
K̃Ñ1

=
(
Z inst

3

)∣∣A=
√

q
t
K̃−1L̃−1

3

. (5.19)

Finally, for the third contour, shown on the right hand side of figure 10, we simply find the

sum of the results of contour one and two.

In order to complete the computation, we need to calculate the sum in (5.16) over the

two remaining partitions. For this purpose, we shall use the following identity that we shall

state in full generality in section 6 and prove in appendix B:

∑
ν1,ν2

(
V1

√
U1U2

)|ν1| (
V2

√
U2U3

)|ν2| Nβν1∅ (u1 − Q/2)Nβν2ν1 (u2 − Q/2)Nβ∅ν2 (u3 − Q/2)

Nβν1ν1 (0)Nβν2ν2 (0)

=
M
(
U1V1

)
M
(
t
qV1U2

)
M
(
U2V2

)
M
(
t
qV2U3

)
M
(
U1V1U2V2

)
M
(
t
qV1U2V2U3

)
M
(√

t
qV1

)
M
(√

t
qV2

)
M
(√

t
qU1V1U2

)
M
(√

t
qV1U2V2

)
M
(√

t
qU2V2U3

)
M
(√

t
qU1V1U2V2U3

) ,
(5.20)

where Ui := e−βui . Upon making the following substitutions in (5.20)

Uk =

√
q

t

Ñ4−kL̃k

K̃
, V1 =

√
t

q

K̃

Ñ3L̃2

, V2 =

√
t

q

K̃

Ñ2L̃3

, (5.21)
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where k = 1, 2, 3, we arrive at

(
Z inst

3

)∣∣A=
√

t
q
K̃Ñ1

=
M
(
L̃1

L̃2

)
M
(
L̃2

L̃3

)
M
(
L̃1

L̃3

)
M
(
t
q
Ñ1

Ñ2

)
M
(
t
q
Ñ2

Ñ3

)
M
(
t
q
Ñ1

Ñ3

)
M
(
Ñ1L̃1

K̃

)
M
(
Ñ1L̃2

K̃

)
M
(
Ñ2L̃1

K̃

)
M
(
t
q

K̃
Ñ2L̃3

)
M
(
t
q

K̃
Ñ3L̃2

)
M
(
t
q

K̃
Ñ3L̃3

) .
(5.22)

Inserting the above into (5.15), we arrive at

lim
δ→0

∮
dA

2πiA
|M(t, q)|2 |Ztop

3 |
2 =

∣∣∣M(K̃−3)
∏

1≤i<j≤3M
(
Ñj/Ñi

)
M
(
L̃i/L̃j

)∣∣∣2∣∣∣∏3
i,j=1M(ÑiL̃jK̃−1)

∣∣∣2 (5.23)

=
(1− q)ϕ3

Λ2

Υq(3κ)
∏

1≤i<j≤3 Υq(ni − nj)Υq(l4−i − l4−j)∏3
i,j=1 Υq(κ − ni − l4−j)

,

where we have used (A.34), (A.35) and defined the exponent

ϕ3 =

(
Q

2
− 3κ

)2

+
∑

1≤i<j≤3

[(
Q

2
+ nj − ni

)2

+

(
Q

2
+ l4−j − l4−i

)2
]

−
3∑

i,j=1

(
Q

2
+ ni + l4−j − κ

)2

= 2Q

(
3κ +

3∑
i=1

i(ni + l4−i)

)
− Q2

2
= −2Q

(
2Q−

3∑
i=1

αi, ρ

)
− Q2

2
, (5.24)

where in the last line we have used our sl(3) conventions, see appendix A.2 and equa-

tion (3.7). Now we employ (A.41) and rearrange the prefactors of (5.23) to obtain the

q-deformed W3 Fateev-Litvinov structure constants (2.14) in the form conjectured by [1]:

Cq(3κω2,α2,α3) =
(
β |M(t, q)|2

)2 ((
1− qb

)2b−1(
1− qb−1)2b)(2Q−

∑3
i=1αi,ρ)

× lim
δ→0

∮
dA

2πiA
|M(t, q)|2 |Ztop

3 |
2 (5.25)

=

((
1− qb

)2b−1(
1− qb−1)2b

(1− q)2Q

)(2Q−
∑3
i=1αi,ρ)

×
Υ′q(0)2Υq(3κ)

∏
e>0 Υq((Q−α2, e))Υq((Q−α3, e))∏3

i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))
.

Taking here the 4D limit q → 1 and reintroducing the cosmological constant dependence

according to (2.15) leads to the Fateev-Litvinov formula (2.13) for N = 3. To conclude,

we see that any of the three contours that we presented leads to the desired formula, up to

a factor of two for the third one that should be absorbed in the proportionality constant.

6 The general WN case

Having computed the structure constants for the W3 case in the previous section, we now

want to turn our attention to the general case. Starting with W4, corresponding to the T4
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gauge theory, one has to deal with multiple integrals and their residues. We relegate the

investigation of the subtleties associated to those to appendix C.

We begin with the following conjecture concerning the choice of the contour. As we

saw in the last section, there are multiple choices that we believe all lead to the same final

result, up to a multiplicity factor. Hence, here we make the simplest possible choice of the

contour, corresponding to the flopping frame of figure 2, which pinches at just one pole.

We parametrize the masses as follows

M̃i =

(
t

q

)N+1−2i
2

K̃di for i = 1, . . . , N − 1, M̃N =
(q
t

)N−1
2 1

K̃N−1
, (6.1)

where the di = e−βδi are regulators satisfying
∏N−1
i=1 di = 1 and K̃ = e−βκ. The numerator

of
∣∣Ztop

∣∣2 has a zero of order (N−2)(N−1)
2 in the limit δi → 0 since

∏
1≤i<j≤N

∣∣∣M( M̃i

M̃j

)∣∣∣2 = reg×
∏

1≤i<j≤N−1

∣∣∣M(( t
q

)j−i di
dj

) ∣∣∣2 , (6.2)

and
∣∣M ((

t/q
)n)∣∣2 = 0 for n ≥ 0. These zeroes can all be canceled by divergences coming

from the pinching of the (N−2)(N−1)
2 integrals if we choose the contour carefully, see for

instance figure 14 for an example in the T4 case. Thus the final answer is obtained by

taking the residues in the integration variables Ã
(j)
i at

Ã
(j)
i =

(
t

q

) i(N−i−j)
2

K̃i
j∏

k=1

Ñk . (6.3)

Computing the residues, we obtain the result:

lim
δa→0

∮ N−2∏
i=1

N−1−i∏
j=1

[
dÃ

(j)
i

2πiÃ
(j)
i

|M(t, q)|2
]
|Ztop
N |

2

=

∣∣∣M(K̃−N )
∣∣∣2∣∣∣∏N

k=1M
( ÑkL̃N+1−k

K̃

)∣∣∣2 ×
∣∣∣∣∣ ∑
ν1,...,νN−1

[N−1∏
i=1

(
ÑN−iL̃i

ÑN−i+1L̃i+1

) |νi|
2 ]

(6.4)

×
Nβν1∅ (nN + l1 − κ)

[∏N−2
i=1 Nβνi+1νi (nN−i + li+1 − κ)

]
Nβ∅νN−1

(n1 + lN − κ)∏N−1
i=1 Nβνiνi (0)

∣∣∣∣∣
2

.

Here νi for i = 1, . . . , N−1 denote the partitions corresponding to the N−1 brane junctions

not affected by Higgsing at the given pole. For our choice of flopping frame, see figure 2,

these partitions are readily identified as νi := ν
(N−i)
i , i = 1, . . . , N − 1, see figure 4 of [1]

for the notation.

The remaining sums in (6.4) will be now performed by using the summation iden-

tity (B.18) proven in appendix B.2, which we reproduce here for convenience.
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Theorem:

∑
ν1,...,νN−1

[
N−1∏
i=1

(
Vi
√
UiUi+1

)|νi|
Nβνiνi (0)

]
Nβν1∅ (u1 − ε+/2)

×

[
N−2∏
i=1

Nβνi+1νi (ui+1 − ε+/2)

]
Nβ∅νN−1

(uN − ε+/2)

=
N−1∏
i=1

N−i∏
j=1

M
(∏i+j−1

s=j UsVs
)
M
(
t
q
Ui+j
Uj
·
∏i+j−1
s=j UsVs

)
M
(√

t
qUi+j

∏i+j−1
s=j UsVs

)
M
(√

t
q

1
Uj

∏i+j−1
s=j UsVs

) . (6.5)

Setting the parameters here to be equal to

Ui =

√
q

t

ÑN−i+1L̃i

K̃
, Vj =

√
t

q

K̃

ÑN−j+1L̃j+1

, (6.6)

for i = 1, · · ·N and j = 1, · · ·N − 1, one straightforwardly obtains:

∑
ν1,...,νN−1

[N−1∏
i=1

(
ÑN−iL̃i

ÑN−i+1L̃i+1

) |νi|
2 ]

×
Nβν1∅ (nN + l1 − κ)

[∏N−2
i=1 Nβνi+1νi (nN−i + li+1 − κ)

]
Nβ∅νN−1

(n1 + lN − κ)∏N−1
i=1 Nβνiνi (0)

=
∏

1≤i<j≤N

M
(
L̃i
L̃j

)
M
(
t
q
ÑN−j+1

ÑN−i+1

)
M
( ÑN−j+1L̃i

K̃

)
M
(
t
q

K̃
ÑN−i+1L̃j

) . (6.7)

Substituting (6.7) in (6.4) and expressing everything in term of the Υq functions

through formula (A.34) one obtains

lim
δa→0

∮ N−2∏
i=1

N−1−i∏
j=1

[
dÃ

(j)
i

2πiÃ
(j)
i

|M(t, q)|2
]
|Ztop
N |

2

=
(1− q)ϕN

ΛN−1

Υq(Nκ)
∏

1≤i<j≤N [Υq(ni − nj)Υq(lN+1−i − lN+1−j)]∏N
i,j=1 Υq(κ − ni − lN+1−j)

(6.8)

where the exponent

ϕN =

(
Q

2
−Nκ

)2

+
∑

1≤i<j≤N

[(
Q

2
+ nj − ni

)2

+

(
Q

2
+ lN+1−j − lN+1−i

)2
]

−
N∑

i,j=1

(
Q

2
+ ni + lN+1−j − κ

)2
(6.9)
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after a little algebra simplifies into

ϕN = 2Q

(
N(N − 1)

2
κ +

N∑
i=1

i(ni + lN+1−i)

)
− N − 1

4
Q2 (6.10)

= − 2Q

(
2Q−

3∑
i=1

αi, ρ

)
− N − 1

4
Q2 . (6.11)

Now we will employ our sl(N) conventions, see appendix A.2, equation (3.7) as well as

equations (A.35), (A.41) and rearrange the prefactors to obtain the the q-deformed Fateev-

Litvinov 3-point function in the form conjectured by [1]:

Cq(NκωN−1,α2,α3) =
(
β |M(t, q)|2

)N−1 ((
1− qb

)2b−1(
1− qb−1)2b)(2Q−

∑3
i=1αi,ρ)

× lim
δa→0

∮ N−2∏
i=1

N−1−i∏
j=1

[
dÃ

(j)
i

2πiÃ
(j)
i

|M(t, q)|2
]
|Ztop
N |

2 (6.12)

=

((
1− qb

)2b−1(
1− qb−1)2b

(1− q)2Q

)(2Q−
∑3
i=1αi,ρ)

×
Υ′q(0)N−1Υq(Nκ)

∏
e>0 Υq((Q−α2, e))Υq((Q−α3, e))∏N

i,j=1 Υq(κ + (α2 −Q, hi) + (α3 −Q, hj))
.

Taking here the 4D limit q → 1 and reintroducing the cosmological constant dependence

according to (2.15) leads to the Fateev-Litvinov formula (2.13) for general N .

7 Conclusions and outlook

This paper is a second in the series of papers proposing a general formula (2.16) for primary

3-point functions of Toda CFT. Here we provided a very convincing check of (2.16) by

reproducing an important known special case when one of the primaries has a null-vector

at level one, a result due to Fateev and Litvinov [6]. Before giving an outlook of interesting

problems we would like to be addressed next, let us briefly summarize the main points of

this note.

After introducing a required background material, we discussed in section 4 how the

degeneration of the primary fields on the Toda side corresponds to Higgsing on the (p, q)

5-brane web diagram side. Committing to the choice of the flopping frame which then

dictates the form of the contour, we demonstrated that, in the semi-degenerate limit, the

contour integral expressing Toda structure constants is given by a single residue. This

considerably simplified the flow of the subsequent calculation. Using a summation formula

derived from q-binomial identities (6.5) for Kaneko-Macdonald-Warnaar sl(n) hypergeo-

metric functions, we proved that the sums over partitions still present in the residues can

be computed exactly. Eventually, our result (6.12) indeed gives the expression of Fateev

and Litvinov (2.13) after one takes the q → 1 limit and reintroduces (2.15) the dependence

on the cosmological constant µ that is fixed from a corresponding Ward identity.
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Reproducing the Fateev-Litvinov formula is a powerful test in support of our proposal

for 3-point functions of generic Toda exponential fields. We would, of course, like to

obtain further checks of (3.9) which is currently the work in progress. There are two

natural steps to take here. The first one involves placing a more general semi-degenerate

field to the 3-point function. Specifically for W3, if a semi-degenerate condition reads

α1 = Nκω2−mbω1, where m is a positive integer, it corresponds to a primary field having

a null-vector on a level m + 1 > 1. The Toda 3-point functions containing such a field

are also known from [8]. In fact, these are the best of the CFT knowledge for the 3-point

functions of generic primaries. The corresponding formula (see (3.11) and appendix B

of [8]) involves two very different pieces: a straightforward generalization of (2.13) and

a 4m-dimensional Coulomb integral. This intriguing factorization indeed looks like to be

reproducible from our general perspective.

The second natural step is matching the known semi-classical asymptotics [7]. We

observe that in such a limit the combinatorial functions Nβλµ factorize as

Nβλµ(m; b, b−1)
b→∞−→ Nβλ∅(m; b, b−1)Nβ∅µ(m; b, b−1) . (7.1)

The sums over partitions thus disentangle, and proper generalizations of hypergeometric

identities for the case of sl(2) KM hypergeometric functions can be found to perform

them. In fact, this step could then serve as a launch pad for a more ambitious goal of

guessing a still unknown ‘Lagrangian’ for the q-deformed Toda theory. One would have to

begin here by looking for the Lagrangian description of the q-deformed Liouville theory,

returning to the work of [21, 22]. It could well be that the 2D space has to be made

non-commutative [51–53].

Having checked the known cases, it is very interesting to go beyond them, the ultimate

goal being to compute the contour integral in (3.14) exactly for generic values of the

parameters. This will mean a considerable simplification of our general formula for the

3-point functions of Toda primaries. Doing so requires finding a closed form expression

for the “instanton” sum of (3.17), meaning that a suitable generalization of the KMW

sl(n) hypergeometric functions, as well as corresponding summation identities for them,

have to be found. As an exercise to do before going for this serious problem, one could

like to compute the corresponding sums for the cases with E6,7,8 flavor symmetry studied

in [13, 31, 34, 35] which are obtained from the general TN by a less severe Higgsing than

the one we perform here.

Putting the above into the perspective of a full solution of the Toda theory, let us

mention the remaining ingredients of it. First, a well-known fact is that, unlike the Virasoro

case, the WN symmetry is not restrictive enough to constrain the 3-point functions of

descendent fields from those of primaries [54]. The number of corresponding Ward identities

is simply too small to find from them the descendent structure constants. This means

that in order to find all the 3-point correlators, one needs to calculate independently the

3-point structure constants of two primaries and one descendent. It is however rather

straightforward from the topological strings point of view.

The second remaining ingredient of a complete solution of Toda CFT are the conformal

blocks. The paper [55] describes the particular family of blocks which can be obtained
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by gluing the Fateev-Litvinov 3-point functions (2.13). Gluing the general (q-deformed)

Toda 3-point functions in the same way would give the general conformal blocks of the

(q-deformed) Toda CFT. Addressing this problem for q-Liouville, that is a starting point

in such an investigation, is work in progress [56]. Due to many uncertainties in properly

defining a q-deformed Liouville (Toda) theory, such a finding would then as well work in

opposite direction, allowing to know more about the q-deformed AGT-W correspondence

and its relation to topological strings (see [57]). The novel identities for Kaneko-Macdonald-

Warnaar sl(n) hypergeometric functions could probably be as helpful here as they were in

the present note, to sum up known and new expressions for conformal blocks.

We finish with two remarks on the gauge theory side. The degeneration we study in

this paper, and in general Higgsing, should also be understood on the 4D/5D gauge theory

side using a generalization of the AGT correspondence with additional co-dimension two

half-BPS surface defects [58] as in [46, 59–61]. See also [62, 63]. The partition functions

with half-BPS surface operators can be obtained form certain 2D partition functions [64].

This 2D/4D relation has its q-deformation to a 3D/5D relation that was initiated by [21]

and further studied by [22–24]. See [65] for the latest advancements on the subject.

Lastly, by observing that the Higgsed geometry corresponding to the degeneration, see

the right side of figure 2, is related to the strip geometry T̃N , see figure 7 in [11], by the

Hanany-Witten effect. We refer the interested reader to [11, 66] for a nice discussion on

the subject. The invariance of the topological string amplitude under the Hanany-Witten

transition is non-trivial. It would be important to see how one can relate formula (2.14)

for the q-deformed structure constants to the topological string amplitude for the strip, see

equation (4.66) of [12].
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Figure 13. Parametrization for TN . We denote the Kähler moduli parameters corresponding to

the horizontal lines as Q
(j)
n;i, to the vertical lines as Q

(j)
l;i , and to tilted lines as Q

(j)
m;i. We denote the

breathing modes as Ã
(j)
i . The index j labels the strips in which the diagram can be decomposed.

A Notations, conventions and special functions

In this appendix, we summarize our conventions and the main properties of the special

functions that we use the most.

A.1 Parametrization of the TN junction

We gather in this appendix all necessary formulas for the parametrizations of the Kähler

moduli of the TN . First, the “interior” Coulomb moduli Ã
(i)
j = e−βa

(j)
i are independent,

while the “border” ones are given by

Ã
(0)
i =

i∏
k=1

M̃k, Ã
(j)
0 =

j∏
k=1

Ñk, Ã
(N−i)
i =

i∏
k=1

L̃k. (A.1)

The parameters labeling the positions of the flavors branes obey the relations

N∏
k=1

M̃k =
N∏
k=1

Ñk =
N∏
k=1

L̃k = 1⇐⇒
N∑
k=1

mk =

N∑
k=1

nk =

N∑
k=1

lk = 0. (A.2)

Therefore, Ã
(0)
0 = Ã

(0)
N = Ã

(N)
0 = 1 and we can invert relation (3.18) as

M̃i =
Ã

(0)
i

Ã
(0)
i−1

, Ñi =
Ã

(i)
0

Ã
(i−1)
0

, L̃i =
Ã

(N−i)
i

Ã
(N−i+1)
i−1

. (A.3)
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All placements are illustrated in figure 13. The Kähler parameters associated to the edges

of the TN junction are related to the Ã
(j)
i as follows

Q
(j)
n;i =

Ã
(j)
i Ã

(j)
i−1

Ã
(j−1)
i Ã

(j+1)
i−1

, Q
(j)
l;i =

Ã
(j)
i Ã

(j−1)
i

Ã
(j)
i−1Ã

(j−1)
i+1

, Q
(j)
m;i =

Ã
(j−1)
i Ã

(j)
i−1

Ã
(j)
i Ã

(j−1)
i−1

. (A.4)

For each inner hexagon of (13), the following two constraints are satisfied

Q
(j)
l;i Q

(j)
m;i+1 = Q

(j+1)
m;i Q

(j+1)
l;i , Q

(j)
n;iQ

(j+1)
m;i = Q

(j)
m;i+1Q

(j)
n;i+1. (A.5)

A.2 Conventions and notations for SU(N)

For the convenience of the reader we summarize here our SU(N) conventions. The weights

of the fundamental representation of SU(N) are hi with
∑N

i=1 hi = 0. We remind that the

scalar product is defined via (hi, hj) = δij − 1
N . The simple roots are

ek := hk − hk+1 , k = 1, . . . , N − 1 , (A.6)

and the positive roots e > 0 are contained in the set

∆+ := {hi − hj}Ni<j=1 = {ei}N−1
i=1 ∪ {ei + ei+1}N−2

i=1 ∪ · · · ∪ {e1 + · · ·+ eN−1} . (A.7)

The Weyl vector ρ for SU(N) is given by

ρ :=
1

2

∑
e>0

e =
1

2

N∑
i<j=1

(hi − hj) =
N∑
i=1

N + 1− 2i

2
hi = ω1 + · · ·+ ωN−1, (A.8)

and it obeys (ρ, ei) = 1 for all i. The N − 1 fundamental weights ωi of SU(N) are given by

ωi =
i∑

k=1

hk , i = 1, . . . , N − 1 (A.9)

and the corresponding finite dimensional representations are the i-fold antisymmetric tensor

product of the fundamental representation. They obey the scalar products (ei, ωj) = δij ,

i.e. they are a dual basis. Furthermore, we find the following scalar products useful

(ρ, hj) =
N + 1

2
− j, (ρ, ωi) =

i(N − i)
2

, (hj , ωi) =


1− i

N
j ≤ i

− i

N
j > i

, (A.10)

as well as

(ωi, ωj) =
min(i, j) (N −max(i, j))

N
, (ρ, ρ) =

N(N2 − 1)

12
. (A.11)

The Weyl group of SU(N) is isomorphic to SN and is generated by the N − 1 Weyl

reflections associated to the simple roots. If α is a weight, we define the Weyl reflections

with respect to the simple root ei

wi ·α := α− 2
(ei,α)

(ei, ei)
ei = α− (ei,α) ei . (A.12)

Furthermore, we define the affine Weyl reflections with respect to ei as follows

wi ◦α := Q+ wi · (α−Q) = wi ·α+Qei = α− (α−Q, ei) ei , (A.13)

where Q := Qρ = (b+ b−1)ρ.
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A.3 Special functions

In this section we gather the definitions and properties of the special functions used in the

main text.

We begin with the function Υ(x) which is defined for 0 < <(x) < Q = b + b−1 as

the integral

log Υ(x) :=

∫ ∞
0

dt

t

(Q
2
− x
)2

e−t −
sinh2

[(
Q
2 − x

)
t
2

]
sinh bt

2 sinh t
2b

 . (A.14)

It is clear from the definition that

Υ(x) = Υ(Q− x), Υ

(
Q

2

)
= 1. (A.15)

One can show from the alternative definition below that the following shift identities are

obeyed

Υ(x+ b) = γ(xb) b1−2bx Υ(x), Υ(x+ b−1) = γ(xb−1) b2xb
−1−1 Υ(x). (A.16)

where γ(x) := Γ(x)
Γ(1−x) . An useful implication is

Υ(x+Q) = b2(b−1−b)x Γ
(
1 + bx

)
Γ
(
b−1x

)
Γ
(
1− bx

)
Γ
(
− b−1x

)Υ(x), (A.17)

which is used in the derivation of the reflection amplitude (2.9). It follows from (A.16)

that Υ is an entire function with zeroes at

x = −n1b− n2b
−1, or x = (n1 + 1)b+ (n2 + 1)b−1, (A.18)

where ni ∈ N0.

The function Υ can be connected to the Barnes Double Gamma function Γ2(x|ω, ω2).

First, we define Γ2(x|ω1, ω2) via the analytic continuation (the sum is only well-defined if

<(t) > 2) of

log Γ2(s|ω1, ω2) =

 ∂
∂t

∞∑
n1,n2=0

(s+ n1ω1 + n2ω2)−t


t=0

. (A.19)

From this definition, one can prove (see A.54 of [67]) the difference property

Γ2(s+ ω1|ω1, ω2)

Γ2(s|ω1, ω2)
=

√
2π

ω
s
ω2
− 1

2

2 Γ
(
s
ω2

) , Γ2(s+ ω2|ω1, ω2)

Γ2(s|ω1, ω2)
=

√
2π

ω
s
ω1
− 1

2

1 Γ
(
s
ω1

) . (A.20)

In order to express the Υ function using the Barnes double Gamma function, we have to

first define the normalized function

Γb(x) :=
Γ2(x|b, b−1)

Γ2(Q2 |b, b−1)
. (A.21)
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The log of the function Γb(x) has an integral representation as

log Γb(x) =

∫ ∞
0

dt

t

 e−xt − e−
Qt
2

(1− e−tb)(1− e−tb−1)
−

(
Q
2 − x

)2

2
e−t −

Q
2 − x
t

 . (A.22)

Then, using (A.21) we can express the Υ(x) as

Υ(x) =
1

Γb(x)Γb(Q− x)
. (A.23)

This, together with the difference properties of Γ2 proves the shift identities (A.16).

We proceed by defining some q-deformed special functions we need in the main text,

such as shifted factorials15

(U ; q)p :=

p∏
i=1

(1− Uqi−1) (A.24)

for positive p, which is continued to negative p according to

(U ; q)p =
1

(Uqp; q)−p
. (A.25)

In particular for p → ∞, and for arbitrary number of q’s, we have (we require for conver-

gence that |qi| < 1 for all i)

(U ; q1, . . . , qr)∞ :=
∞∏

i1=0,...,ir=0

(1− Uqi11 · · · q
ir
r ) . (A.26)

We can extend the definition of the shifted factorial for all values of qi by imposing

the relations

(U ; q1, . . . , q
−1
i , . . . , qr)∞ =

1

(Uqi; q1, . . . , qr)∞
. (A.27)

Furthermore, they obey the following shifting properties

(qjU ; q1, . . . , qr)∞ =
(U ; q1, . . . , qr)∞

(U ; q1, . . . , qj−1, qj+1, . . . , qr)∞
. (A.28)

We then define the function M(U ; t, q) as

M(U ; t, q) := (Uq; t, q)−1
∞ =



∏∞
i,j=1(1− U ti−1qj)−1 for |t| < 1, |q| < 1∏∞
i,j=1(1− U ti−1q1−j) for |t| < 1, |q| > 1∏∞
i,j=1(1− U t−iqj) for |t| > 1, |q| < 1∏∞
i,j=1(1− U t−iq1−j)−1 for |t| > 1, |q| > 1

, (A.29)

converging for all U . This function can be written as a plethystic exponential

M(U ; t, q) = exp

[ ∞∑
m=1

Um

m

qm

(1− tm)(1− qm)

]
, (A.30)

15A good source for the properties of the shifted factorials is [68].
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which converges for all t and all q provided that |U | < q−1+θ(|q|−1)tθ(|t|−1). Here and

elsewhere θ(x) = 1 if x > 0 and is zero otherwise. The following identity is obvious from

the definition

M(U ; q, t) =M(U t/q; t, q) . (A.31)

From the analytic properties of the shifted factorials (A.27), we read the identities

M(U ; t−1, q) =
1

M(U t; t, q)
, M(U ; t, q−1) =

1

M(Uq−1; t, q)
, (A.32)

while from (A.28) we take the following shifting identities

M(U t; t, q) = (Uq; q)∞M(U ; t, q), M(Uq; t, q) = (Uq; t)∞M(U ; t, q) . (A.33)

We define the q-deformed Υ function as

Υq(x|ε1, ε2) = (1− q)−
1

ε1ε2
(x−

ε+
2 )

2 ∞∏
n1,n2=0

(1− qx+n1ε1+n2ε2)(1− qε+−x+n1ε1+n2ε2)

(1− qε+/2+n1ε1+n2ε2)2

= (1− q)−
1

ε1ε2
(x−

ε+
2 )

2

∣∣∣∣∣∣M(q−x; t, q)

M(
√

t
q ; t, q)

∣∣∣∣∣∣
2

,

(A.34)

where we have used the definition (3.13) for the norm squared. From time to time we will

use the short-hand notation

Λ :=

∣∣∣∣M(√
t

q
; t, q

)∣∣∣∣2 . (A.35)

If follows from the definition (A.34) that Υq(ε+/2|ε1, ε2) = 1, that Υq(x|ε1, ε2) = Υq(ε+ −
x|ε1, ε2) and that Υq(x|ε1, ε2) = Υq(x|ε2, ε1). Furthermore, from the shifting identities for

M, we can easily prove that

Υq(x+ ε1|ε1, ε2) =

(
1− q

1− qε2

)1−2ε−1
2 x

γqε2 (xε−1
2 )Υq(x|ε1, ε2) , (A.36)

together with a similar equation for the shift with ε2. Here, we have used the definition of

the q-deformed Γ and γ functions

Γq(x) := (1− q)1−x (q; q)∞
(qx; q)∞

, γq(x) :=
Γq(x)

Γq(1− x)
= (1− q)1−2x (q1−x; q)∞

(qx; q)∞
, (A.37)

valid for |q| < 1. They obey Γq(x+1) = 1−qx
1−q Γq(x), implying γq(x+1) = (1−qx)(1−q−x)

(1−q)2 γq(x).

Because of the normalization of Υq(x|ε1, ε2) and since the factors of the right hand side

of (A.36) have a well defined limit for q → 1, we find by comparing functional identities that

Υq(x|ε1, ε2)
q→1−→ Υ(x|ε1, ε2) :=

Γ2

( ε+
2 |ε1, ε2

)2
Γ2

(
x|ε1, ε2

)
Γ2

(
ε+ − x|ε1, ε2

) . (A.38)

where Γ2 is the Barnes Double Gamma function. In particular, the usual function Υ(x) in-

troduced in [4] is equal to Υ(x|b, b−1). We shall often just write Υq(x) instead of Υq(x|ε1, ε2)

and indicate in the text whether the εi parameters are arbitrary or whether b = ε1 = ε−1
2 .
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We will also need to evaluate the derivative of Υq(x) at x = 0. Since the zero of Υq(x)

at x = 0 is due to the factor (1 − qx) in the numerator of (A.34), we find that the only

piece of the derivative that survives is

Υ′q(0) =
β

1− q
Υq(b) . (A.39)

From this formula we can then obtain an identity useful for the calculations of the main

text. Let us define the norm squared of the refined McMahon function following [29]:

|M(t, q)|2 := lim
U→1

|M(U ; t, q)|2

1− U−1
= |M(q−1; t, q)|2 = (1− q)

(ε1−ε2)
2

4ε1ε2 ΛΥq(ε1) . (A.40)

Then, from (A.35) and (A.39) we get for ε1 = b and ε2 = b−1

|M(t, q)|2 =
1

β
(1− q)(

Q
2 )

2

ΛΥ′q(0) . (A.41)

A.4 Combinatorial special functions

We shall use in the following

|λ| :=
`(λ)∑
i=1

λi, ||λ||2 :=

`(λ)∑
i=1

λ2
i , n(λ) :=

`(λ)∑
i=1

(i− 1)λi =
||λt||2 − |λ|

2
, (A.42)

where `(λ) is the number of rows of the partition λ. We also define the relative arm-length

aµ(s), arm-colength a′µ(s), leg-length lµ(s) and leg-colength l′µ(s) of a given box s of the

partition λ with respect to another partition µ as:

aµ(s) := µi − j , a′µ(s) := j − 1 , lµ(s) := µtj − i , l′µ(s) := i− 1 . (A.43)

It is of course also possible to have λ = µ. The (q, t)-deformed factorial of U depending on

a partition λ is then given as a following product over its boxes:

(U ; q, t)λ :=

`(λ)∏
i=1

(U t1−i; q)λi =
∏
s∈λ

(1− Uqa
′(s)t−l

′(s)) . (A.44)

The next piece of notation that we need are the (q, t)-deformations of the hook product

of a Young diagram λ. There are two inequivalent ways for this number to be deformed to

a two-variable polynomial, namely:

hλ(q, t) :=
∏
s∈λ

(1− qa(s)tl(s)+1) , h′λ(q, t) :=
∏
s∈λ

(1− qa(s)+1tl(s)) . (A.45)

Our last definition is that of the 5D uplift of Nekrasov functions, which we write as

Nβλµ(u; ε1, ε2) :=
∏

(i,j)∈λ

2 sinh
β

2

[
u+ ε1(λi − j + 1) + ε2(i− µtj)

]
×
∏

(i,j)∈µ

2 sinh
β

2

[
u+ ε1(j − µi) + ε2(λtj − i+ 1)

]
(A.46)

=
∏
s∈λ

2 sinh
β

2
[u+ ε1 (aλ(s) + 1)− ε2lµ(s)]

×
∏
s∈µ

2 sinh
β

2
[u− ε1aµ(s) + ε2 (lλ(s) + 1)]
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where the products are taken over boxes of partitions λ and µ, respectively. By pulling

some factors out of the products, the definition can also be rewritten as

Nβλµ(u; ε1, ε2) :=

(√
t

q

1

U

) |λ|+|µ|
2

t
||λt||2−||µt||2

4 q
||µ||2−||λ||2

4

∏
(i,j)∈λ

(
1− U tµ

t
j−iqλi−j+1

)

×
∏

(i,j)∈µ

(
1− U t−λ

t
j+i−1q−µi+j

)
, (A.47)

where U = e−βu. For particular values of the parameter u, the introduced functions behave

like Kronecker−δ functions, namely

Nβλ∅(−ε+) = Nβ∅λ(0) = δλ∅, (A.48)

where ε+ = ε1 + ε2. Furthermore, they obey the exchange identities

Nβλµ(u;−ε2,−ε1) = Nβµtλt(u− ε+; ε1, ε2),

Nβλµ(−u; ε1, ε2) = (−1)|λ|+|µ|Nβµλ(u− ε+; ε1, ε2), (A.49)

Nβλµ(u; ε2, ε1) = Nβλtµt(u; ε1, ε2).

Finally, there are two relations involving the functions we just defined, namely

1

hλ(q, t)h′λ(q, t)
=

(−1)|λ|t−
||λt||2

2 q−
||λ||2

2

Nβλλ (0)
(A.50)

as well as

(U)λ ≡ (U ; q, t)λ =

(√
t

q
U

) |λ|
2

t−
||λt||2

4 q
||λ||2

4 Nβλ∅ (u− ε+) , (A.51)

where U = e−βu.

B The sl(N) Kaneko-Macdonald-Warnaar hypergeometric functions

This appendix contains the derivation of the summation formula (6.5) used in the main

text. It exploits a binomial identity for the Kaneko-Macdonald-Warnaar extension of ba-

sic hypergeometric functions [69] which generalizes the Kaneko-Macdonald sl(2) identity

of [70–72].

B.1 The sl(N) KMW hypergeometric functions and their q-binomial identity

The Macdonald polynomials Pλ(x; q, t) (in the case of infinite alphabet x referred as the

Macdonald symmetric functions) are labeled by a number partition λ = (λ1, . . . , λ`(λ)) and

form an especially convenient basis in the ring of symmetric functions of x = (x1, x2, . . . )

over the field F = Q(q, t) of rational functions in two variables q and t [73].
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Having many nice properties, the Macdonald polynomials are applied in various areas

of contemporary mathematics. One of them is the theory of sl(N ) Kaneko-Macdonald-

Warnaar analogues of basic hypergeometric functions. These functions, of type (r + 1, r),

are defined as

r+1Φr

[
A1, . . . , Ar+1

B1, . . . , Br
; q, t; x(1), . . . , x(N−1)

]
:=

′∑
λ(1),...,λ(N−1)

(A1, . . . , Ar+1; q, t)λ(N−1)

(qtkN−1−1, B1, . . . , Br; q, t)λ(N−1)

(B.1)

×
N−1∏
s=1

[
tn(λ(s)) (qtks−1; q, t)λ(s)

h′
λ(s)

(q, t)
Pλ(s)(x

(s); q, t)

]

×
N−2∏
s=1

ks∏
i=1

ks+1∏
j=1

(qtj−i−1+ks−ks+1 ; q)
λ
(s)
i −λ

(s+1)
j

(qtj−i+ks−ks+1 ; q)
λ
(s)
i −λ

(s+1)
j

,

where the integer parameters ks are such that 0 ≡ k0 < k1 < k2 < · · · < kN−1 and the

summations are performed over partitions λ(s), 1 ≤ s ≤ N − 1 satisfying ks ≥ `(λ(s)). We

have used here the definitions (A.24), (A.42), (A.44), (A.45). The prime symbol above

marks the fact that entries of the partitions giving a non-zero contribution to the sum all

satisfy an additional condition λ
(s)
i ≥ λ

(s+1)
i−ks+ks+1

for 1 ≤ i ≤ ks. It provides a convenient

visualization of the multiple sum as running over single skew plane partitions of shape

η − ν, where η = (kN−1
N−1) is a rectangle and ν = (kN−1 − k1, . . . , kN−1 − kN−2).

In the following, it will be enough to restrict ourselves to a so-called principal spe-

cialization of a Macdonald polynomial, for which the string of arguments x is set to

x̃ := z(1, t, . . . , tk−1):

Pλ(x̃; q, t) = z|λ|tn(λ) (tk; q, t)λ
hλ(q, t)

. (B.2)

The corresponding specialization of the sl(N) multiple q-binomial theorem is then writ-

ten as:

Theorem: [See [69], Cor. 3.1]

1Φ0

[
A

−
; q, t; x̃(1), . . . , x̃(N−1)

]
=

N−1∏
s=1

ks−ks−1∏
i=1

(Azs · · · zN−1t
i+s+ks−1+···+kN−2−N ; q)∞

(zs · · · zN−1ti+s+ks−1+···+kN−2−N ; q)∞
(B.3)

×
∏

1≤s≤r≤N−2

ks−ks−1∏
i=1

(qzs · · · zrti+s−r+ks−1+···+kr−kr+1−2; q)∞
(zs · · · zrti+s−r+ks−1+···+kr−1−1; q)∞

,

where x̃(s) := zs(1, t, . . . , t
ks−1) for 1 ≤ s ≤ N − 1 and “−” indicates the absence of the

parameters Bi in the definition (B.1).

B.2 The summation formula

It will be convenient for the subsequent argument to rewrite the above formula (B.3)

in the topological string conventions. This turns out to be possible due to the identi-

ties (A.29), (A.50), (A.51) and the following lemma:
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Lemma:
k1∏
i=1

k2∏
j=1

(Atj−i)λ1,i−λ2,j
(Atj−i+1)λ1,i−λ2,j

= t
k1|λ2|−k2|λ1|

2

Nβλ2λ1 (−a)

Nβλ2∅ (−a− k1ε2)Nβ∅λ1 (−a+ k2ε2)
, (B.4)

where `(λ1) ≤ k1, `(λ2) ≤ k2 and A := e−βa.

Proof. Let us first notice that by using definition (A.47) as well as exchange identi-

ties (A.49), the right-hand side of the above formula can be written as a following product:

t
k1|λ2|−k2|λ1|

2

Nβλ2λ1 (−a)

Nβλ2∅ (−a− k1ε2)Nβ∅λ1 (−a+ k2ε2)

=
∏

(i,j)∈λ1

1−A t
q t
λt2,j−iqλ1,i−j+1

1−A t
q t
k2−iqλ1,i−j+1

∏
(i,j)∈λ2

1−A t
q t
−λt1,j+i−1q−λ2,i+j

1−A t
q t
−k1+i−1q−λ2,i+j

. (B.5)

In proving the lemma, we will deal with formal power series in variables t and q, so that we

will not be concerned with issues of convergence of the intermediate expressions, requiring

only that t, q 6= 1. We also extend the entries of partitions λ1 and λ2, such that

λ1,i := 0, i > `(λ1), λ2,i := 0, i > `(λ2) (B.6)

and for now assume `(λ1) = k1, `(λ2) = k2.

So, let us start with the following obvious identity:

∞∑
i,j=1

tj−i
(

1− qλ1,i−λ2,j
)

=

(
k1∑
i=1

k2∑
j=1

+

∞∑
i=k1+1

k2∑
j=1

+

k1∑
i=1

∞∑
j=k2+1

)
tj−i

(
1− qλ1,i−λ2,j

)
.

(B.7)

Taking the last two sums of the right-hand side, shifting their summation indices and using

convention (B.6), one gets:( ∞∑
i=k1+1

k2∑
j=1

+

k1∑
i=1

∞∑
j=k2+1

)
tj−i

(
1− qλ1,i−λ2,j

)

=

∞∑
i=1

k2∑
j=1

tj−i−k1
(

1− q−λ2,j
)

+

k1∑
i=1

∞∑
j=1

tj−i+k2
(

1− qλ1,i
)

=
1

t−1 − 1

(
−

k2∑
j=1

tj−1−k1
(

1− q−λ2,j
)

+

k1∑
i=1

t−i+k2
(

1− qλ1,i
))

, (B.8)

where in the last step we used the sum of an infinite geometric progression. Substituting

this back and multiplying the whole expression by t−1 − 1, we obtain:

(t−1 − 1)

∞∑
i,j=1

tj−i
(

1− qλ1,i−λ2,j
)

= (t−1 − 1)

k1∑
i=1

k2∑
j=1

tj−i
(

1− qλ1,i−λ2,j
)

−
k2∑
j=1

tj−1−k1
(

1− q−λ2,j
)

+

k1∑
i=1

t−i+k2
(

1− qλ1,i
)
.

(B.9)
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Now we will use the following identity which the reader can find for instance in [32]:

−(t−1 − 1)
∞∑
i=1

qλ1,it1−i = (q−1 − 1)
∞∑
i=1

t−λ
t
1,iqi. (B.10)

Multiplying it by
∑∞

j=1 t
j−1q−λ2,j and subtracting from the result the same with λ1, λ2 set

to zero, we find:

(t−1 − 1)
∞∑

i,j=1

tj−i
(

1− qλ1,i−λ2,j
)

= (q−1 − 1)
∞∑

i,j=1

tj−1qi
(
t−λ

t
1,iq−λ2,j − 1

)
. (B.11)

Substituting this back as a left-hand side of (B.9) and dividing everything by q−1 − 1, we

obtain the following:

∞∑
i,j=1

tj−1qi
(
t−λ

t
1,iq−λ2,j − 1

)
=

k1∑
i=1

k2∑
j=1

q
(
tj−i−1 − tj−i

) 1− qλ1,i−λ2,j

1− q

+

k2∑
j=1

q1−λ2,j tj−1−k1 1− qλ2,j

1− q
+

k1∑
i=1

qt−i+k2
1− qλ1,i

1− q
,

(B.12)

where one can now use the formula for finite geometric progression to get rid of the fractions

in the right-hand side:

∞∑
i,j=1

(
tj−1−λt1,iqi−λ2,j − tj−1qi

)
=

k1∑
i=1

k2∑
j=1

λ1,i−λ2,j∑
l=1

(
tj−i−1 − tj−i

)
ql

+

k2∑
j=1

λ2,j∑
i=1

tj−1−k1qi−λ2,j +

k1∑
i=1

λ1,i∑
j=1

t−i+k2qj . (B.13)

For clarity, the upper bound of the first summation on the right is written schematically,

implying that for terms having λ1,i−λ2,j < 0 the sum should be replaced by an equivalent

corresponding to a negative Pochhammer symbol.

For the left-hand side one now should employ an identity from [74] (our t and q are

interchanged with respect to the formula there):

∞∑
i,j=1

(
tj−1−λt1,iqi−λ2,j − tj−1qi

)
=
∑
s∈λ1

tlλ2 (s)qaλ1 (s)+1 +
∑
s∈λ2

t−lλ1 (s)−1q−aλ2 (s)

≡
∑

(i,j)∈λ1

tλ
t
2,j−iqλ1,i−j+1 +

∑
(i,j)∈λ2

ti−λ
t
1,j−1qj−λ2,i . (B.14)

Interchanging the indices in the second summand of the right-hand side of (B.13), changing

the summation order in the third summand and moving them to the left, one finally obtains:∑
(i,j)∈λ1

(
tλ
t
2,j−i − tk2−i

)
qλ1,i−j+1 +

∑
(i,j)∈λ2

(
t−λ

t
1,j+i−1 − t−k1+i−1

)
q−λ2,i+j

=

k1∑
i=1

k2∑
j=1

λ1,i−λ2,j∑
l=1

(
tj−i−1 − tj−i

)
ql. (B.15)
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Substituting here t, q −→ tr, qr, multiplying by
(
A t

q

)r
/r and using a series expansion of the

logarithm, we get

∑
(i,j)∈λ1

ln

(
1−A t

q t
λt2,j−iqλ1,i−j+1

1−A t
q t
k2−iqλ1,i−j+1

)
+

∑
(i,j)∈λ2

ln

(
1−A t

q t
−λt1,j+i−1q−λ2,i+j

1−A t
q t
−k1+i−1q−λ2,i+j

)

=

k1∑
i=1

k2∑
j=1

ln

(λ1,i−λ2,j∏
l=1

1−Atj−iql−1

1−Atj−i+1ql−1

)
.

(B.16)

Exponentiation concludes the proof.

Remark. Tracing the above argument, one can see that it can be literally extended to

the case `(λ1) ≤ k1, `(λ2) ≤ k2. This will be crucial for what follows.

Having the lemma, we now can show that (B.3) is equivalent to:

′∑
λ(1),...,λ(N−1)

[
N−2∏
i=1

(
zi
t
t
ki−1

2
+ki−

ki+1
2

)|λ(i)|]
·
(√

A
t

q

zN−1

t
t
kN−2+kN−1

2

)|λ(N−1)|

×

[
N−1∏
i=1

Nβ
λ(i)λ(i−1) ((ki−1 − ki)ε2 − ε+)

Nβ
λ(i)λ(i)

(0)

]
· Nβ∅λ(N−1) (−a) (B.17)

=
∏

1≤i≤j≤N−2

M
(
ti−(j+1)+ki−kj+1 ·

∏j
s=i(zst

ks)
)
M
(
t
q · t

(i−1)−j+ki−1−kj ·
∏j
s=i(zst

ks)
)

M
(
t · t(i−1)−(j+1)+ki−1−kj+1 ·

∏j
s=i(zst

ks)
)
M
(

1
q · ti−j+ki−kj ·

∏j
s=i(zst

ks)
)

×
N−1∏
i=1

M
(
A
q · t

i−(N−1)+ki−kN−1 ·
∏N−1
s=i (zst

ks)
)
M
(
t
q · t

(i−1)−(N−1)+ki−1−kN−1 ·
∏N−1
s=i (zst

ks)
)

M
(
At
q · t(i−1)−(N−1)+ki−1−kN−1 ·

∏N−1
s=i (zstks)

)
M
(

1
q · ti−(N−1)+ki−kN−1 ·

∏N−1
s=i (zstks)

) .
Finally, we are in position to prove the required summation formula:

Theorem:

∑
λ(1),...,λ(N−1)

[
N−1∏
i=1

(
Vi
√
UiUi+1

)|λ(i)|
Nβ
λ(i)λ(i)

(0)

]
Nβ
λ(1)∅ (u1 − ε+/2)

×

[
N−2∏
i=1

Nβ
λ(i+1)λ(i)

(ui+1 − ε+/2)

]
Nβ∅λ(N−1) (uN − ε+/2) (B.18)

=
N−1∏
i=1

N−i∏
j=1

M
(∏i+j−1

s=j (VsUs)
)
M
(
t
q
Ui+j
Uj
·
∏i+j−1
s=j (VsUs)

)
M
(√

t
qUi+j ·

∏i+j−1
s=j (VsUs)

)
M
(√

t
q

1
Uj
·
∏i+j−1
s=j (VsUs)

) ,
with N site parameters Ui = e−βui and N − 1 link parameters Vj . One can visualize the

right-hand side of this formula by noticing that the arguments of numerator are precisely

all the simply-connected combinations of even number of site and link parameters (multi-

plied by t
q when starting with a link parameter), whereas the arguments of denominator

represent all the simply-connected combinations of odd number of site and link parameters

(multiplied by
√

t
q , single site parameters are excluded).
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Proof. We use a so-called specialization technique [73]. Let us group all terms on the left

having the same powers of Vi, i = 1, . . . , N − 1, i.e. grade our infinite sum with respect

to a number of boxes of partitions we sum over. The coefficient of each combination of

V i1
1 · · ·V

iN−1

N−1 is a polynomial in variables Ui, i = 1, . . . , N of degree 2(i1 + · · · + iN−1),

having its coefficients in F. Similarly, expanding the right-hand side as a series in Vi
and re-summing geometric progressions in q, t into rational functions, we learn that the

corresponding coefficients are as well polynomial in variables Ui with coefficients in F.

Let us now take any ordered combination of positive integers ki, k1 < · · · < kN−1,

such that

ki+1 − ki ≥ `(λ(i+1)). (B.19)

One can see that the condition λ
(i)
s ≥ λ

(i+1)
s−ki+ki+1

is trivially satisfied in this way, turning

the corresponding skew plane partition into a horizontal strip plane partition. Making the

following specialization of Ui (remember that k0 ≡ 0):

Ui =

√
t

q
tki−ki−1 , i = 1, . . . , N − 1 (B.20)

and reparametrizing the remaining variables as

Vj =

√
q

t

zj
t
tkj−1+kj−kj+1 , j = 1, . . . , N − 2 (B.21)

as well as

UN =

√
q

t

1

A
, VN−1 =

√
t

q
A
zN−1

t
tkN−2 (B.22)

one can readily check that formula (B.18) then degenerates to the established sl(N) q-

binomial identity (B.17). Correspondingly, the above statement on equality of two poly-

nomial coefficients translates into a statement on equality of corresponding polynomial

coefficients of zi11 · · · z
iN−1

N−1 , which holds true.

We see that two polynomials in N − 1 variables16 coincide on an (N − 1)-dimensional

semilattice, meaning they just coincide. Term by term, this proves the theorem.

Finally, let us remark that the summation formula (B.18) for N = 2

∑
λ(1)

(
V1

√
U1U2

)|λ(1)| Nβ
λ(1)∅ (u1 − ε+/2)Nβ∅λ(1) (u2 − ε+/2)

Nβ
λ(1)λ(1)

(0)

=
M
(
U1V1

)
M
(
t
qV1U2

)
M
(√

t
qV1

)
M
(√

t
qU1V1U2

) (B.23)

16According to the above specialization, UN can be kept generic.
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reproduces the non-trivial part of (5.3) of [11], whereas, taken for N = 3

∑
λ(1),λ(2)

(
V1

√
U1U2

)|λ(1)| (
V2

√
U2U3

)|λ(2)|

×
Nβ
λ(1)∅ (u1 − ε+/2)Nβ

λ(2)λ(1)
(u2 − ε+/2)Nβ∅λ(2) (u3 − ε+/2)

Nβ
λ(1)λ(1)

(0)Nβ
λ(2)λ(2)

(0)
(B.24)

=
M
(
U1V1

)
M
(
t
qV1U2

)
M
(
U2V2

)
M
(
t
qV2U3

)
M
(
U1V1U2V2

)
M
(
t
qV1U2V2U3

)
M
(√

t
qV1

)
M
(√

t
qV2

)
M
(√

t
qU1V1U2

)
M
(√

t
qV1U2V2

)
M
(√

t
qU2V2U3

)
M
(√

t
qU1V1U2V2U3

) ,
it is equivalent to the formula (6.7) conjectured in [13].

C Higgsing and iterated integrals for the W4 case

We saw in section 5 how for T3 the semi-degeneration of the mass parameters mi pinches

the integral contour, so that the W3 structure constants are given by a finite number of

residues — one or two depending on the choice of contour in figure 10. The purpose of

this section is to show a similar computation in the T4 case, in order to illustrate some of

the complexities that arise when we are confronted with iterated contour integrals. For

simplicity of notation, we set A1 ≡ A
(1)
1 , A2 ≡ A

(1)
2 and A3 ≡ A

(2)
1 . From (3.16), we read

the “perturbative” part of the the topological string partition function

∣∣∣Zpert
4

∣∣∣2 =

∣∣∣∣∣∣∣∣
∏

1≤i<j≤4M
(
M̃i

M̃j

)
∏4
k=1

[
M
(√

t
q

A1

M̃kÑ1

)
M
(√

t
q
A1M̃k
A2

)
M
(√

t
qA2M̃kL̃4

)]
∣∣∣∣∣∣∣∣
2

(C.1)

×

∣∣∣∣∣∣
M
(

A2
1

A2Ñ1

)
M
(
A2Ñ1

A2
1

)
M
(
A1A2L̃4

Ñ1

)
M
(

Ñ1

A1A2L̃4

)
M
(√

t
q

A1A3

A2Ñ1Ñ2

)
M
(√

t
q

A2A3

A1L̃1L̃2

)
M
(√

t
q
A3Ñ3

L̃1

)
M
(√

t
q
A3Ñ4

L̃2

)
∣∣∣∣∣∣
2

×

∣∣∣∣∣∣∣
M
(
A2

2L̃4

A1

)
M
(

A1

A2
2L̃4

)
M
(

A2
3

Ñ1Ñ2L̃1L̃2

)
M
(
Ñ1Ñ2L̃1L̃2

A2
3

)
M
(√

t
q
A1Ñ2
A3

)
M
(√

t
q

A2

A3L̃3

)
M
(√

t
q

A1A3

Ñ1L̃1L̃2

)
M
(√

t
q
A2A3L̃4

Ñ1Ñ2

)
∣∣∣∣∣∣∣
2

.

In addition, the “instanton” part (3.17) takes for N = 4 the form

Z inst
4 =

∑
ν

(
Ñ1L̃3

Ñ2L̃4

) |ν(1)1 |+|ν(1)2 |+|ν(1)3 |
2

(
Ñ2L̃2

Ñ3L̃3

) |ν(2)1 |+|ν(2)2 |
2

(
Ñ3L̃1

Ñ4L̃2

) |ν(3)1 |
2

×
Nβ
ν
(1)
2 ν

(2)
2

(
−a1 + a2 + a3 − l1 − l2 − Q

2

)
Nβ
ν
(2)
2 ν

(1)
3

(
a2 − a3 − l3 − Q

2

)
Nβ
∅ν(1)2

(
a1 − a2 +m1 − Q

2

)
Nβ
ν
(1)
1 ν

(1)
1

(0)Nβ
ν
(2)
1 ν

(2)
1

(0)Nβ
ν
(3)
1 ν

(3)
1

(0)Nβ
ν
(1)
2 ν

(1)
2

(0)

×
Nβ
∅ν(1)3

(
a2 + l4 +m1 − Q

2

)
Nβ
∅ν(1)2

(
a1 − a2 +m2 − Q

2

)
Nβ
∅ν(1)3

(
a2 + l4 +m2 − Q

2

)
Nβ
ν
(2)
2 ν

(2)
2

(0)Nβ
ν
(1)
3 ν

(1)
3

(0)Nβ
ν
(1)
2 ν

(1)
3

(−a1 + 2a2 + l4)
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×
Nβ
ν
(1)
2 ∅

(
−a1 + a2 −m3 − Q

2

)
Nβ
∅ν(1)3

(
a2 + l4 +m3 − Q

2

)
Nβ
ν
(1)
2 ∅

(
−a1 + a2 −m4 − Q

2

)
Nβ
ν
(1)
2 ν

(1)
3

(−a1 + 2a2 −Q+ l4)Nβ
ν
(1)
1 ν

(1)
2

(2a1 − a2 − n1)Nβ
ν
(1)
1 ν

(1)
2

(2a1 − a2 −Q− n1)

×
Nβ
ν
(1)
3 ∅

(
−a2 − l4 −m4 − Q

2

)
Nβ
ν
(1)
1 ν

(2)
2

(
a1 + a3 − l1 − l2 − n1 − Q

2

)
Nβ
ν
(1)
1 ∅

(
a1 −m2 − n1 − Q

2

)
Nβ
ν
(1)
1 ν

(1)
3

(a1 + a2 + l4 − n1)Nβ
ν
(1)
1 ν

(1)
3

(a1 + a2 −Q+ l4 − n1)

×
Nβ
ν
(1)
1 ∅

(
a1 −m3 − n1 − Q

2

)
Nβ
ν
(1)
1 ∅

(
a1 −m4 − n1 − Q

2

)
Nβ
∅ν(1)1

(
−a1 +m1 + n1 − Q

2

)
Nβ
ν
(2)
1 ,ν

(2)
2

(2a3 − l1 − l2 − n1 − n2)Nβ
ν
(2)
1 ,ν

(2)
2

(2a3 −Q− l1 − l2 − n1 − n2)

×Nβ
ν
(2)
1 ν

(1)
2

(
a1−a2+a3−n1−n2−

Q

2

)
Nβ
ν
(2)
1 ν

(1)
3

(
a2+a3+l4−n1−n2−

Q

2

)
×Nβ

ν
(1)
1 ν

(2)
1

(
a1−a3+n2−

Q

2

)
Nβ
ν
(3)
1 ν

(2)
2

(
a3−l2+n4−

Q

2

)
×Nβ

ν
(2)
1 ν

(3)
1

(
a3−l1+n3−

Q

2

)
, (C.2)

where the summation goes over partitions ν = {ν(1)
1 , ν

(1)
2 , ν

(1)
3 , ν

(2)
1 , ν

(2)
2 , ν

(3)
1 }. Let us per-

form the contour integrals over the Coulomb moduli Ai’s. As demonstrated in 5, there are

multiple ways to choose the contour in such a way that the contours gets pinched in the

semi-degeneration limit. We will in this appendix just show the computation for a contour

that leads to a single residue contributing. We have also performed the computation for

other contours and, up to an irrelevant multiplicity, have obtained the same results.

Let us start by looking at the mass parameters. Using the T4 parametrization of (A.4),

we find the expressions for the Kähler parameters Q
(j)
m;i and Q

(j)
l;i . The mass parameters for

the 5-branes on the left side of the T4 junction are parametrized as follows

M̃1 =

(
t

q

) 3
2

K̃d1 , M̃2 =

(
t

q

) 1
2

K̃d2 , M̃3 =

(
t

q

)− 1
2

K̃d3 , M̃4 =

(
t

q

)− 3
2

K̃−3 ,

(C.3)

with
∏3
i=1 di = 1. We set di = e−βδi with

∑3
i=1 δi = 0. We will compute the integrals in

the order A1, A2 and A3 and are interested in the result in the limit δa → 0. Thus, in the

calculation of the contour integrals, we will only keep the residues that will diverge when

the regulators δi are finally all set to zero. Their divergences will be canceled in the limit

by the zeroes coming from the
∣∣M(M̃iM̃

−1
j

)∣∣2 in the numerator.

Let us now consider the contour integral over A1. The possible contributing poles

come from the following terms in the denominator of (C.1)∣∣∣∣∣∣
3∏
j=1

M

(√
t

q

A1

M̃jÑ1

)
3∏

k=1

M

(√
t

q

A1M̃k

A2

)∣∣∣∣∣∣
2

. (C.4)

We number the terms with j = 1, 2, 3 as 1 to 3 and those with k = 1, 2, 3 as 4 to 6 and

we need to investigate which of them might pinch the integral contour. The situation for

imaginary δa is depicted in figure 14. We see that for |K̃| > 1 and imaginary masses ni
and li the contour for A1 can be chosen in such a way that in the limit δa → 0 only one
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Figure 14. The figure presents our choice of the integration contour for A1. As the regulators δa
are taken to zero, the integral is given by just one residue whose position is indicated by a small

circle.

residue contributes, namely the one for

A1 =
t

q
K̃Ñ1d1 . (C.5)

Thus, we can compute the integral over A1 just as in the T3 case and, after some simplifi-

cations, obtain the integral expression

lim
δa→0

∮ 3∏
k=1

[
dAk

2πiAk
|M(t, q)|2

] ∣∣∣Ztop
4

∣∣∣2
= lim

δa→0

∮ 3∏
k=2

[
dAk

2πiAk
|M(t, q)|2

]
Res

(∣∣∣Ztop
4

∣∣∣2 ,A1 = K̃Ñ1d1
t

q

)

= lim
δa→0

∮ 3∏
k=2

[
dAk

2πiAk
|M(t, q)|2

] ∣∣∣M(
t
q
d2
d3

)
M
(

t2

q2
K̃4d2

)
M
(

t
qK̃

4d3

)∣∣∣2∣∣∣M(
A2d2
K̃2Ñ1

)
M
(
q
t
A2d3
K̃2Ñ1

)
M
(

t
qA2K̃L̃4d2

)
M
(
A2K̃L̃4d3

)∣∣∣2
×

∣∣∣M(
q
t

A2

K̃2Ñ1d21

)
M
(

t
qA2K̃L̃4d1

)
M
(
q
t

A2
2L̃4

K̃Ñ1d1

)
M
(

A2
2L̃4

K̃Ñ1d1

)∣∣∣2∣∣∣M(
q
t
A2L̃4

K̃3

)
M
(

t
q
A2K̃2

Ñ1d1

)
M
(√

t
q

A2

A3L̃3

)
M
(√

q
t

A2Ñ2

A3K̃d1

)
M
(√

q
t

A2A3

K̃Ñ1L̃1L̃2d1

)
M
(√

t
q
A2A3L̃4

Ñ1Ñ2

)∣∣∣2
×

∣∣∣M(
A2

3

Ñ1Ñ2L̃1L̃2

)
M
(

t
q

A2
3

Ñ1Ñ2L̃1L̃2

)∣∣∣2∣∣∣∣M(√
t
q
A3Ñ4

L̃2

)
M
(√

t
q
A3Ñ3

L̃1

)
M
((

t
q

) 3
2 A3K̃d1

L̃1L̃2

)
M
((

t
q

) 3
2 K̃Ñ1Ñ2d1

A3

)∣∣∣∣2
∣∣Z inst

4

∣∣2∣∣A1= t
q
K̃Ñ1d1

(C.6)

where we have used (5.13).

We must now perform the integration over A2. We find that the relevant terms in the

denominator of the integrand in (C.6) are∣∣∣∣M(
A2d2

K̃2Ñ1

)
M
(
q

t

A2d3

K̃2Ñ1

)
M
(
t

q
A2K̃L̃4d2

)
M
(
A2K̃L̃4d3

)∣∣∣∣2 . (C.7)
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From the above, we read that there are two poles that are potentially relevant for the

semi-degenerate limit, namely those for

A2 =
t

q
K̃2Ñ1d

−1
3 , A2 = K̃−1L̃−1

4 d−1
3 . (C.8)

These are the two residues that could contribute due to pinching. We need now to set the

exact integral contour for A2 to see which one of them actually contributes. The contour

can be chosen in such a way as to have the residue at A2 = t
qK̃

2Ñ1d
−1
3 , but not the one at

A2 = K̃−1L̃−1
4 d−1

3 . Finally, we have to compute the integral over A3. Arguments similar

to the ones used for A2 tell us that the contour can be chosen such as to have a pinching

when the regulators are removed at the pole

A3 =

√
t

q
K̃Ñ1Ñ2d1. (C.9)

Performing the same kind of computation that led to (C.6), we obtain the integral in the

semi-degenerate limit

lim
δa→0

∮ 3∏
k=1

[
dAk

2πiAk
|M(t, q)|2

] ∣∣∣Ztop
4

∣∣∣2

=

∣∣∣∣∣∣
M
(
K̃−4

)
∏4
i=1M

(
Ñ5−iL̃i
K̃

)
∣∣∣∣∣∣
2 ∣∣Z inst

4

∣∣2∣∣Ã(j)
i →

(
t
q

) i(4−i−j)
2 K̃i

∏j
k=1 Ñk

. (C.10)

Computing the “instanton” contribution to residues, we find that inserting the values of he

Coulomb moduli, namely (C.5), the left part of (C.8) as well as (C.9) into (C.2) immediately

gets rid of the sums over ν
(1)
1 , ν

(2)
1 and ν

(1)
2 due to (A.48). Thus, we obtain the “instanton”

contribution to the contour integral in the semi-degenerate limit:(
Z inst

4

)∣∣A1= t
q
K̃Ñ1d1,A2= t

q
K̃2Ñ1,A3=

√
t
q
K̃Ñ1Ñ2

=
∑

ν
(3)
1 ,ν

(2)
2 ,ν

(1)
3

(
Ñ3L̃1

Ñ4L̃2

) ∣∣∣∣ν(3)1

∣∣∣∣
2
(
Ñ2L̃2

Ñ3L̃3

) ∣∣∣∣ν(2)2

∣∣∣∣
2
(
Ñ1L̃3

Ñ2L̃4

) ∣∣∣∣ν(1)3

∣∣∣∣
2

×
Nβ
ν
(3)
1 ∅

(n4 + l1 − κ)Nβ
ν
(2)
2 ν

(3)
1

(n3 + l2 − κ)Nβ
ν
(1)
3 ν

(2)
2

(n2 + l3 − κ)Nβ
∅ν(1)3

(n1 + l4 − κ)

Nβ
ν
(3)
1 ν

(3)
1

(0)Nβ
ν
(2)
2 ν

(2)
2

(0)Nβ
ν
(1)
3 ν

(1)
3

(0)
. (C.11)

We can now plug the summation formula (6.5) in (C.11) and inserting the result in (C.10)

we get the final result:

lim
δa→0

∮ 3∏
k=1

[
dAk

2πiAk
|M(t, q)|2

] ∣∣∣Ztop
4

∣∣∣2 =

∣∣∣M(K̃−4)
∏

1≤i<j≤4M
(
Ñj/Ñi

)
M
(
L̃i/L̃j

)∣∣∣2∣∣∣∏4
i,j=1M(ÑiL̃jK̃−1)

∣∣∣2 .

(C.12)

Thus, we obtain our general formula (6.4), specialized for N = 4.
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