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1 Introduction

Maldacena’s famous AdS/CFT correspondence [1–3] is the best elaborated holographic

duality conjecture between gauge and string theories. The discovery of integrability on

both sides of the correspondence [4], created a hope to find the exact solution of the theory

in the planar limit. The mathematical apparatus offered by integrability, proved to be the

most efficient in computing the planar spectrum of anomalous dimensions/string energies.

In the large volume limit the spectrum1 was described by the Asymptotic Bethe Ansatz

(ABA) equations [5] which account for all power-like corrections in volume, but neglects

the exponentially small wrapping corrections. The wrapping corrections [6] were taken

into account by the so-called Lüscher-formulae [7–11] which are now available up to the

second order in wrapping [12, 13]. The Thermodynamic Bethe Ansatz (TBA) technique

was the first method which could sum up all wrapping corrections to the ABA in the

form of a set of infinite component nonlinear integral equations [14–19]. Though the TBA

equations could provide important results, both in the weak [20–22] and in the strong [23–

26] coupling regimes,2 its analytical and numerical treatment proved to be tedious, due to

the cumbersome kernels and the infinite number of unknown functions. Later the FiNLIE

method [27], which can be considered as an improved finite version of the TBA, allowed

one to reach better results in the perturbative regime [28, 29], but the structure of the

equations was still so complicated that it required reasonable human effort to reach higher

and higher orders in the perturbative regime.

Recently the spectral problem of AdS/CFT (or equivalently the TBA) was reformu-

lated as a nonlinear Riemann-Hilbert problem for a few unknown functions. The new for-

mulation is called the Quantum Spectral Curve (QSC) or Pµ-system [30, 31]. The efficiency

of the QSC method was demonstrated by numerous remarkable analytical and numerical

results, the computation of which seemed to be hopeless in the framework of TBA.

First of all, QSC made it possible to reach in principle arbitrarily high orders in the

perturbative regime. In [32, 33] even 10-loop analytical results were obtained for some op-

erators in the sl(2) sector. QSC was powerful to get analytical results also in the near-BPS

regimes [30, 34]. In [34] analytical next-to leading order results were obtained in the small

spin expansion for the anomalous dimensions of twist operators in the sl(2) sector, providing

also analytical predictions for the strong coupling expansion coefficients of the anomalous

dimensions for some local operators and for the BFKL pomeron intercept. In [35] leading

order BFKL equation was derived by performing the S → −1 analytical continuation.

Later, in [36] an efficient numerical algorithm was proposed for solving the Pµ-system

and it was used to confirm 2 previously known and to predict several previously unknown

coefficients in the weak coupling expansion of the BFKL pomeron intercept.

Recently, analytical expression was obtained for the next-to-next-to leading order of

the BFKL pomeron eigenvalue in [37], and the QSC description of cusped Wilson-lines [38]

and of the quark-anti-quark potential [39] were worked out.

1In this context large volume means: long single trace operators in the super Yang-Mills (SYM) side or

equivalently string states with large J-charge in S5.
2The strong coupling results came from fitting the data from the numerical solution of the equations.
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In this paper we consider twist-2 operators with even positive integer spin. Using the

numerical method of [36], we perform the numerical solution of the Pµ-system for the

twist-2 states with S = 2, 4, 6, 8 in a wide range of the ’t Hooft coupling.

Though analytical strong coupling results are available in the literature for the anoma-

lous dimensions of the states under consideration, they come from small spin results

matched with classical and quasi classical string-theory results [34] and not directly from

the strong coupling solution of the Pµ-system. This is why the aim of the paper is to gain

a deeper insight into the strong coupling behaviour of the solutions of the Pµ-system.

In the S = 2, 4, 6, 8 cases, our accurate numerical results confirmed the analytical

predictions of [34] for the first 4 coefficients of the strong coupling expansion for ∆. In the

case of the Konishi operator, due to the high precision of the numerical data, we could give

numerical predictions to the values of two further coefficients.

Beyond the numerical investigation of the anomalous dimensions, we investigated nu-

merically the strong coupling behaviour of the coefficients ca,n in the power series repre-

sentation of the Pa-functions. Based on our high precision numerical data, in the regime,

where the index of the coefficients is much smaller than λ1/4, we conjectured that the coef-

ficients have polynomial index dependence at strong coupling. This allowed us to propose

a strong coupling series representation for the Pa-functions being valid far enough from

the real short cut. To get some insight into the behaviour of Pa close to the real branch

cut, we also investigated the qualitative strong coupling behaviour of the P-functions at

the branch points.

The paper is organized as follows: in sections 2 and 3 we recall the Pµ- and Qω-

descriptions of the states under consideration and explain, how the free parameters coming

from the symmetries of the QSC are fixed. The next section contains the detailed descrip-

tion of the numerical method together with all necessary technical subtleties which make it

possible to implement the numerical code in C++ programming language. The analysis of

the numerical data is presented in sections 5 and 6. The paper is closed by the summary of

our results. Some technical details of the numerical method and some tables of numerical

data are placed into the appendices of the paper.

2 Preliminaries

In this paper adapting the method of [36], we solve numerically the QSC equations for

some twist-2 operators in the sl(2)-sector of the theory. The corresponding operators can

be schematically represented as:

O = Tr(DS ZL) + . . . , (2.1)

where Z is a complex scalar field of the theory, D denotes the light-cone covariant derivative,

L is the twist, and S is the spin of the state. Here we investigate the case when L = 2

and S, the spin of the state, is even. The reason for this choice is to avoid treating null

vectors in the internal linear problems of the numerical method (See remark at the end of

subsection 4.2).

– 3 –
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So that we could use the high order perturbative results of [32] as initial values for the

numerical iterative algorithm, we parametrized the P-functions and fixed the symmetries

of the Pµ-system in the same way as it was done in [32].

Now, we recall the most necessary equations and relations of the QSC framework. The

QSC method [30, 31] describes the full planar spectrum of AdS5/CFT4 by the solutions

of a set of nonlinear Riemann-Hilbert equations. The fundamental objects of QSC are

the eight P- and Q-functions which separately form a basis on the 28 element of the

Q-system of AdS5/CFT4. In the sl(2) sector, due to the left-right symmetry of the T-

hook, one can describe the whole Q-system by only four Pa, a = 1, . . . , 4 or four Qi, i =

1, . . . 4-functions, such that the other four (upper indexed) components are simple linear

combinations of them:

Pa = χab Pb, Pa Pa = 0, a = 1, . . . , 4 (2.2)

Qi = −χij Qj , Qi Qi = 0, i = 1, . . . , 4, (2.3)

where χ is a constant matrix:

χ =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 . (2.4)

The Pa and Qi functions are analytic in the spectral parameter u with branch cuts. The

positions of the branch points depend on the ’t Hooft coupling: λ and they may be located

at u = ±2g + iZ, where g =
√
λ

4π . All branch points are assumed to be of square root type.

This means that, the result of two subsequent analytical continuations around a branch

point is an identity transformation. The advantage of the choice of Pas or Qis as basis is

their very simple discontinuity structure. On the complex u-plane, Pa has a single short

cut, while Qi has only a single long cut, such that the discontinuities lie on the real axis.

2.1 The Pµ-system and the H-symmetry fixing

Since the states we study lie in the left-right symmetric sl(2) sector of the theory, we

specify the presentation of the Riemann-Hilbert equations of the QSC for this sector. For

any function f(u), denote f̃(u) the analytical continuation around the branch point ±2g

and for short f [±n](u) stands for f(u± in2 ). Then the Pµ-equations take the form [30]:

µab − µ̃ab = P̃a Pb − P̃b Pa, (2.5)

P̃a = (µχ) b
a Pb, (2.6)

µ̃ab = µ
[2]
ab , (2.7)

where µab = −µba and (µχ) b
a = µacχ

cb. The equations are valid in the strip 0 < Imu < 1,

and elsewhere by their analytical continuations. In this representation µab has infinitely

many short cuts and as a consequence of (2.5)–(2.7), it satisfies the Pfaffian-relation:

Pf(µ) ≡ µ12µ34 − µ13µ24 + µ14µ23 = 1. (2.8)

– 4 –
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In the sl(2) sector µ14 = µ23. For twist-L states, the large u behaviour of Pa and µab is

fixed to [30]:

P1 ' A1 u
−L+2

2 , P2 ' A2 u
−L

2 , P3 ' A3 u
L−2

2 , P4 ' A4 u
L
2 ,

µ12 ∼ u∆−L, µ13 ∼ u∆−1, µ14 = µ23 ∼ u∆, µ24 ∼ u∆+1, µ34 ∼ u∆+L, (2.9)

where S is the spin of the state and ∆ is its conformal dimension. In addition the prefactors

are constrained by the relations:

A1A4 =
[(L− S + 2)2 −∆2][(L+ S)2 −∆2]

16iL(L+ 1)
,

A2A3 =
[(L+ S − 2)2 −∆2][(L− S)2 −∆2]

16iL(L− 1)
. (2.10)

Following the lines of [32] we also introduce the pa functions by a rescaling of the origi-

nal Pas;

pa ≡ (g x)
L
2 Pa. (2.11)

Here x ≡ xs(u/g), where

xs(u) =
u

2

(
1 +

√
1− 4

u2

)
, |xs(u)| > 1, (2.12)

is the short cut solution of the equation x+ 1
x = u. By the introduction of pa, the sign am-

biguity arising in the cases of odd L can be eliminated. In addition to the previously listed

equations and properties, analyticity constraints are also imposed on the possible solutions

of (2.5)–(2.7). Namely, in the QSC formulation of the spectral problem of AdS4/CFT5

correspondence, it is postulated [30] that Pa and µab have no poles on the first sheet and

their absolute value is bounded at the branch points.

The Pµ-system (2.5)–(2.7) is invariant under the linear redefinitions (H-symmetry [32]):

Pa → Ha
b Pb , µab → Ha

cHb
dµcd , χab → χcd(H−1)c

a(H−1)d
b , (2.13)

whereH is a constant matrix with detH = 1. In principle H might have 15 components, but

if one would like to preserve the prescriptions (2.9) for the large u asymptotics, then only

6 non-zero elements remain to be fixed. These elements can be fixed by fixing the values

of A1 and A2 and by imposing the value of 4 other coefficients in the large u expansion of

pa. In our numerical framework, we used the H-symmetry fixing conditions of [32]. The

requirements are as follows:

• A1 ≡ g2 and A2 ≡ 1,

• p2 has no term proportional to u−1 in its large u expansion,

• p3 has no term proportional to u0 in its large u expansion,

• p4 has no terms proportional to u0 and u−1 in its large u expansion.

– 5 –
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We used this H-symmetry fixing scheme, so that we could use the high order perturbative

results of [32] as initial values for our numerical iterative algorithm. Nevertheless, since

we study left-right symmetric states, also parity symmetries can be imposed on the first

sheet. For the twist-2 case, we required that on the first sheet:

• P1 is even and real3 function of u.

• P2 is odd and real function of u.

• P3 is even and imaginary4 function of u.

• P4 is odd and imaginary function of u.

These conditions allow us to use the following series representations for the pa-functions

at L = 2:

p1 =
g

x
+

∞∑
n=1

c1,n

x2n+1
, p2 = 1 +

∞∑
n=1

c2,n

x2n
, (2.14)

p3 = A3 u+

∞∑
n=0

c3,n

x2n+1
, p4 = A4 u

2 +

∞∑
n=1

c4,n

x2n
. (2.15)

The coefficients ca,n are functions of the coupling constant g. In our case c1,n and c2,n

are real, while c3,n and c4,n are pure imaginary.5 In (2.14) the leading terms of the 1/x

expansion are fixed by the H-symmetry fixing conditions A1 = g2 and A2 = 1. In (2.15)

A3 and A4 are considered as functions of ∆ and g, if we express them by the fixed A1 = g2

and A2 = 1 coefficients through (2.10). These series representations automatically satisfy

all the symmetry requirements discussed above and converge on the entire u plane [36].

The radius of convergence in 1/x is R = |xs(2 + i
g )|. As a consequence P̃a can also be

represented by the analytical continuation (x → 1/x) of the series (2.14) and (2.15), but

it is not convergent on the entire u plane. Its convergence is restricted to a oval domain

lying around the real short cut of pa [36].

Thus, the parameters to be determined by the numerical solution of the Pµ-system

are as follows:

• The coefficients: c1,n, n = 1, . . . , c1,n ∈ R,

• The coefficients: c2,n, n = 1, . . . , c2,n ∈ R,

• The coefficients: c3,n, n = 0, . . . , c3,n ∈ iR,

• The coefficients: c4,n, n = 1, . . . , c4,n ∈ iR,

• The anomalous dimension: ∆ ∈ R.

3Here we call f real, if f(u)∗ = f(u∗).
4Here we call f imaginary, if f(u)∗ = −f(u∗).
5We note that in accordance with the H-symmetry fixing conditions and (2.11), (2.14), (2.15), by defi-

nition c1,0 ≡ g, c2,0 ≡ 1, c4,0 ≡ 0.
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In the numerical solution, pas are represented as truncated versions of (2.14) and (2.15),

thus only a finite number of coefficients are to be determined.

The concrete numerical solution of QSC [36] is implemented through the Pω-system.

This means that starting from the Pa functions, one should determine the Qi functions of

the Qω-system and the coefficients are determined from the discontinuity equations of the

Qω-system. To do so, we have to recall the Qω-system and its relation to the Pµ-system.

3 The Qω-system and its relation to the Pµ-system

The nonlinear Riemann-Hilbert equations for the Qω-system are very similar to those of

the Pµ-system [31]:

ωij − ω̃ij = Q̃i Qj − Q̃j Qi, (3.1)

Q̃i = −(ωχ) j
i Qj , (3.2)

ωij = ω
[2]
ij , (3.3)

where ωij = −ωji and (ωχ) j
i = ωikχ

kj . The equations are valid in the strip 0 < Imu < 1,

and elsewhere by their analytical continuations. In this representation ωij has infinitely

many short cuts and as a consequence of (3.1)–(3.3), it satisfies the Pfaffian-relation:

Pf(ω) ≡ ω12ω34 − ω13ω24 + ω14ω23 = 1. (3.4)

In the sl(2) sector ω14 = ω23. For large u, ωij tends to a constant and the large u

asymptotics of Qi is governed by the global charges of AdS5 [31]:

Qi ∼
(
B1 u

∆−S
2 , B2 u

∆+S−2
2 , B3 u

−∆+S
2 , B4 u

−∆+S−2
2

)
. (3.5)

In the sl(2)-sector, the prefactors Bi satisfy an equation similar to (2.10):

B1B4 =
i (−2 + L+ S −∆)(L+ S −∆)(L− S + ∆)(2 + L− S + ∆)

16(−1 + S)∆(1− S + ∆)
,

B2B3 =
i (−2− L+ S + ∆)(−L+ S + ∆)(−2 + L+ S + ∆)(L+ S + ∆)

16(−1 + S)∆(−1 + S + ∆)
.

(3.6)

This means that fixing two of the coefficients Bi is in our hand. For the sake of brevity,

we introduce the vectors [36]:

M̃a =

{
L

2
+ 1,

L

2
,−L

2
+ 1,−L

2

}
, (3.7)

M̂i =

{
∆− S

2
+ 1,

∆ + S

2
,−∆ + S

2
+ 1,

−∆ + S

2

}
. (3.8)

Then the large u asymptotics can be given by the short formulae:

Pa ∼ Aau−M̃a , Qi ∼ BiuM̂i−1, Pa ∼ AauM̃a−1, Qi ∼ Biu−M̂i . (3.9)

– 7 –
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The Q-functions can be constructed from the P-functions in the following way. First, one

should find 16 upper half plane analytic functions Qa|i as solutions of a set of homogeneous

linear difference equations:

Qa|i
(
u+

i

2

)
−Qa|i

(
u− i

2

)
= −Pa (u) Pb (u) Qb|i

(
u+

i

2

)
a, i ∈ {1, 2, 3, 4}. (3.10)

The index i of Qa|i labels the 4 linearly independent solutions of (3.10). Then the Q-

functions are defined by the formula:

Qi(u) = −Pa(u) Qa|i(u+ i/2) Imu > 0. (3.11)

Since Qa|i is upper half plane analytic, the determination of Q̃i is simple:

Q̃i(u) = −P̃a(u)Qa|i(u+ i/2). (3.12)

As a consequence, (3.10) can be rephrased as follows:

Qa|i
(
u+

i

2

)
−Qa|i

(
u− i

2

)
= Pa(u) Qi(u). (3.13)

From this equation the leading order large u behaviour of Qa|i can be determined [31]:

Qa|i ' Ba|i u−M̃a+M̂i , Ba|i =
−i AaBi
−M̃a + M̂i

. (3.14)

3.1 The brief description of the numerical method

The strategy of the numerical method is as follows [36]. One starts from the series represen-

tations (2.14), (2.15) of Pa and the goal is to compute numerically ∆ and those coefficients

of the series, which are left undetermined after fixing the symmetries of QSC.

Then from the representations (2.14), (2.15), P̃a can be determined by an x → 1/x

transformation. This representation of P̃a is convergent in an oval shaped region containing

entirely the branch cut on the real axis.

The next step is to solve the recursion for Qa|i. This is done in two steps: first it is

solved in the large u limit, and then the recurrence relations (3.10) are used to pull back

the solution to the real axis. Then Qi and Q̃i are constructed from (3.11), (3.12).

In order to exploit the Qω-equations, one has to determine ωij , as well. It is computed

from Qi and Q̃i by an integral expression derived from (3.1) and (3.3) (See (4.24) later).

All the quantities computed so far, are considered as functions of ∆ and the unknown

coefficients of the series (2.14), (2.15). This discrete set of variables is determined by

imposing the equations (3.2).

In practice the whole process goes iteratively. One starts from a “good” approximation

for the unknown coefficients and ∆, and goes through the steps discussed above. By the

solution of (3.2), one gets the new initial values for the unknowns and the procedure is

repeated until convergent result is obtained.

In the next section we describe the numerical method in detail, this is why the reader,

who is interested in only the numerical results, might skip the next section.

– 8 –
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4 The numerical method

In this section we describe our implementation of the numerical solution of QSC equations.

We try to write down all important details and subtleties, in order to give help to those, who

would like to solve numerically QSC equations in a fundamental programming language like

C++ or Fortran. The technical details, we are going to write down, help to reduce each step

of the numerical method to solving linear equations and to summations. The numerical

implementation of these two simple mathematical problems is quite straightforward in any

fundamental programming language.

4.1 Initial values and the discretization

In the previous section we described the set of unknown coefficients to be determined by

the numerical method. The H-symmetry of the Pµ-system was partly fixed by fixing the

values of A1 = g2 and A2 = 1. Then A3 and A4 are given by (2.10) and they depend

on A1, A2 and ∆, provided L and S are fixed previously. As we mentioned, this choice of

H-symmetry fixing was made to be able to use the perturbative results of [32] as initial

values. Thus, for the twist-2 states with even S, in the weak coupling regime, where

g . 1
4 , we used the six-loop perturbative results of [32] for the unknowns as initial values

for the iterations. According to our experience beyond the radius of convergence of the

perturbative series (i.e. g = 1/4), the perturbative results were not good initial values for

the iterations anymore. For 1
4 . g, the numerical method failed to converge if we used the

high loop perturbative results of [32] as initial values. For higher values of the coupling

constant g, the initial values of the unknowns should be made out of the numerical data

belonging to smaller values of g. This means that beyond g ' 1/4, one should increase

g in small steps, and the initial values should be determined as appropriate compositions

of the previously computed data. In our concrete numerical studies, we increased g with

∆g = 0.1, 0.05, 0.02, 0.01 and the initial values were given by a 4, 5, or 6 order Taylor-series

composed of the previously computed numerical data. This construction of initial values

is given in appendix A.

Since the numerical method uses also the Qω-system, we have further freedom to fix

2 of the coefficients Bi. We fixed the values of B1 and B2, then B3 and B4 are completely

determined by (3.6). For the sake of simplicity, for small g we used the choice:

B1 = 1, B2 = 1. (4.1)

For higher values of g, the choice of these coefficients play important role in the conver-

gence of the numerical algorithm. Our experience suggests decreasing their values as g is

increased. For example, in case of the Konishi operator (S = 2) the B1 = B2 = 1/g2 choice

was necessary6 to reach satisfying convergence in the regime g > 2.

So far we explained, how to fix the “free” coefficients and how to construct good initial

values for the iterative numerical algorithm. The next step is to choose the discretization

points for our functions. The final equation (3.2) is imposed on the short cut of the real

6In case one insisted on not decreasing ∆g below 0.05.
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axis, this is why we need to give an appropriate discretization of the interval [−2g, 2g]. The

discretization should be dense enough to be able to compute the integral expressions for

ωij with high enough numerical precision. Since all functions in the QSC framework have

square root-type behaviour at the branch points, it is plausible to choose the discretization

points as zeros of the Chebyshev-polynomials. The reason is that on the interval [−1, 1]

the Chebyshev-polynomials of the second kind form an orthonormal basis with respect to

the square-root type weight function
√

1− u2. A summary on the necessary properties and

identities of the Chebyshev-polynomials is given in appendix B.

In order to be able to use the advantages of formulae (B.9) and (B.10), the dis-

cretization points are chosen to be the zeros of the appropriately scaled7 lcth Chebyshev-

polynomial of the first kind (Tlc(
u
2g )). The integer number lc measures, how dense the

discretization is. Then the formula for our discretization points reads as:8

uA = −2 g cos

(
π (A− 1

2)

lc

)
, Tlc

(
uA
2g

)
= 0, A = 1, . . . , lc. (4.2)

4.2 The determination of Qa|i

The necessary values: Qa|i(uA + i
2), A =, . . . , lc are determined by (3.10) in two steps.

In the first step, (3.10) is solved analytically for large u in the context of a 1/u expansion.

One introduces an integer index cutoff NI , such that the first NI terms of the 1/u series

are computed. Then another integer truncation index Nu is introduced, such that at the

points u′A = uA + i (Nu + 1
2), the series representation of Qa|i truncated at NI , should

approximate Qa|i(u′A) within the required numerical accuracy. Then, in the second step,

the desired discrete values Qa|i(uA + i
2), are computed from Qa|i(u′A) by the successive

application of the recurrence relation (3.10).

In the large u regime the following series representations are used:

Qa|i(u) ' Ba|i u−M̂i+M̃a

∞∑
n=0

ba|i,n

u2n
, ba|i,0 ≡ 1, (4.3)

Pa(u) ' Aa u−M̃a

∞∑
n=0

ka,n
u2n

, ka,0 ≡ 1, (4.4)

Pa(u) ' Aa uM̃a−1
∞∑
n=0

k a
n

u2n
, k a

0 ≡ 1. (4.5)

As a consequence of the parity symmetries of Pa, only even powers of u appear in the

sums. From (2.2) it follows that: Aa = χabAb and k a
n = |χab| kb,n. The relation among the

coefficients of the 1/u (4.4), (4.5) and the 1/x (2.14), (2.15) expansions can be computed

by the x↔ u relation:

x−n =
(g
u

)n ∞∑
s=0

κ(n)
s

(g
u

)2 s
, (4.6)

7Scaling means only a u → u
2g

scaling of the argument, such that the polynomial to be defined on

[−2g, 2g] instead of the usual interval of definition [−1, 1].
8The same set of discretization points were chosen in [38].
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where

κ(n)
s =


(−1)s+1 n

s

(
n+2 s−1
s−1

)
n+ 2 s ≤ 0 and n 6= 0,

n
s

(
n+2 s−1
s−1

)
n+ 2 s > 0,

δs,0 n = 0.

(4.7)

Formulae (4.6) and (4.7) are valid for non-integer values of n, as well. In the twist-2

case the concrete forms of the ka,n ↔ ca,n relations read as follows:

k1,m =
g

A1

m∑
n=0

c1,n (σ1)n,m, c1,0 ≡ g =
A1

g
, (4.8)

k2,m =
1

A2

m∑
n=0

c2,n (σ2)n,m, c2,0 ≡ 1 = A2, (4.9)

k3,m = κ(1)
m g2m + Θ(m− 1)

g

A3

m−1∑
n=0

c3,n (σ1)n,m−1, (4.10)

k4,m = κ(1)
m g2m + Θ(m− 1)

1

A4

m−1∑
n=0

c4,n (σ2)n,m−1, c4,0 ≡ 0, (4.11)

where Θ is the unit-step function and

(σ1)n,m = g2m
m−n∑
s=0

κ(1)
s κ

(2n+1)
m−n−s, (σ2)n,m = g2m

m−n∑
s=0

κ(1)
s κ

(2n)
m−n−s. (4.12)

Substituting the series representations (4.3), (4.4), (4.5) into (3.10), a coefficient ba|i,m is

determined by such a 4 × 4 linear problem, whose matrix T a b|im depend only on L, S,∆,

while its source vector Fa|im depends on ba|i,m′ with m′ < m. Starting with m = 1, this fact

allows the successive determination of ba|i,m. The linear problem determining ba|i,m takes

the form:
4∑
b=1

T a b|im ba|i,m = Fa|im , m = 1, 2, . . . , NI (4.13)

where

T a b|im = AaA
bBb|i − i δabBa|i (−αa|i + 2m), (4.14)

with αa|i = −M̃a + M̂i. The source term is the difference of two terms:

Fa|im = Fa|i1,m −F
a|i
2,m, (4.15)

with

Fa|i1,m = −i Ba|i

{(
αa|i

2m+ 1

) (
−1

4

)m
+
m−1∑
n=1

ba|i,n

(
−2n

2m− 2n+ 1

) (
−1

4

)m−n

+
2m−1∑
n=1

(
αa|i

2m+ 1− n

) [n/2]∑
k=1

ba|i,k

(
−2 k

n− 2 k

) (
−1

4

)m−k

+ αa|i

m−1∑
k=1

ba|i,k

(
−2 k

2m− 2 k

) (
−1

4

)m−k}
,

(4.16)
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Fa|i2,m = AaA
bBb|i


m∑
n=0

qabm−n

(αb|i
2n

)(
−1

4

)n
+
n−1∑
j=1

bb|i,j

(
−2 j

2n− 2 j

) (
−1

4

)n−j

+

2n−1∑
k=1

[k/2]∑
j=1

bb|i,j

(
−2 j

k − 2 j

) (
−1

4

)n−j( αb|i
2n− k

)+

m−1∑
n=1

bb|i,n q
ab
m−n

 ,

(4.17)

where

qabn =

n∑
l=0

ka,n−l k
b
l qab0 ≡ 1, (4.18)

and in the summation limits [. . .] stands for integer part. To avoid any confusion, we note

that throughout the paper, in case the letter i stands for an index, then it denotes a positive

integer number running from 1 to 4. In any other cases it denotes the imaginary unit i.e.

i2 = −1. The solution of (4.13) for m = 1, . . . , NI ,through (4.3), gives a numerically

accurate approximation of Qa|i(uA + i(Nu + 1
2)). Then Qa|i(uA + i

2) is computed by the

successive application of the recurrence relation (3.10):

Qa|i
(
uA+

i

2

)
= [U (uA+i) U (uA+2 i) . . . U (uA+iNu)]a

bQb|i
(
uA+i

(
Nu+

1

2

))
,

(4.19)

where the 4× 4 matrix U(u) is given by [36]:

U(u)a
b = δa

b + Pa(u) Pb(u). (4.20)

With the help of (3.11) and (3.12) it is easy to determine Qi and Q̃i at the discretiza-

tion points:

Qi(uA) = −Pa(uA + i 0) Qa|i(uA + i/2), (4.21)

Q̃i(uA) = −P̃a(uA + i 0)Qa|i(uA + i/2). (4.22)

The +i 0 prescription is to avoid the evaluation of functions on their branch cuts. When

one takes the series representations (2.14), (2.15) at uA + i 0, it is better to use the mirror

x, the long cut version of x, since it is regular in [−2g, 2g]:

x→ xs((uA + i 0)/g) = 1/xm(uA/g), with xm(u) =
u

2
− i

2

√
4− u2. (4.23)

We close this subsection with a remark, which explains why we choose even integer

values for S in the numerical studies. The reason is that in case of left-right symmetric

states: det T a b|im ∼ S ± 2m − 1, which9 means that for odd values of S, one should take

care of the zero modes of T a b|im . This problem is absent in the even S case.

4.3 The computation of ωij

For the numerical algorithm we need to determine10 ωij at the positions uA+i 0. From (3.1)

and (3.3) the following integral representation can be derived [36]:

ωij(u) = ω
(0)
ij (u) + ωcij , (4.24)

9Here the sign ± means that for i = 3, 4 the +, and for i = 1, 2 the − sign should be meant.
10We note that in the second version of [36], it was shown that due to fine analyticity considerations the

computation of ωij can be eliminated from the numerical method. Nevertheless, in this work we used the

first proposed numerical method of [36], which required the determination of ωij , as well.

– 12 –



J
H
E
P
0
8
(
2
0
1
6
)
0
6
1

where ω
(0)
ij accounts for the discontinuity relations and periodicity,

ω
(0)
ij (u) =

i

2

2 g∫
−2 g

dv coth [π (u− v)]
[
Q̃i(v) Qj(v)−Qi(v) Q̃j(v)

]
, (4.25)

and ωcij is a constant matrix to fulfill (3.2) close to infinity [36]:

ωcij = i Iij cot(π M̂j), Iij =
i

2

2 g∫
−2 g

dv
[
Q̃i(v) Qj(v)−Qi(v) Q̃j(v)

]
. (4.26)

In the sl(2)-sector, the antisymmetry of ωcij is ensured by I12 = I21 = I14 = I41 = I23 =

I32 = I24 = I42 ≡ 0. In [36], it was explained that for numerical purposes, instead of

using (3.2) as a final equation to fix the unknown coefficients, it is better to use a more

regular version:

Q̃i(u) = ωreg
ij (u) Qj(u), (4.27)

where ωreg
ij (u) = 1

2(ωij(u) + ω̃ij(u)) has no branch cut along the real axis. Our task is

to compute ωreg
ij (uA), A = 1, . . . , lc from the, so far computed, discrete set of Qi(uA)

and Q̃i(uA).

The strategy goes as follows. Since Qi and Q̃i are bounded at the branch points ±2g,

their antisymmetric combination can be represented as:

Q̃i(u) Qj(u)−Qi(u) Q̃j(u) =
√

4 g2 − u2 ρij(u), u ∈ [−2g, 2g], (4.28)

where ρij(u) is a smooth bounded function on the real short cut. This allows one to repre-

sent ρij(u) as a convergent series with respect to some sequence of orthogonal polynomials.

For practical purposes explained in appendices B and C, we choose the Chebyshev-

polynomials of the second kind Un( u2g ) as basis for this expansion:

ρij(u) =

∞∑
n=0

a
(n)
ij Un

(
u

2g

)
. (4.29)

As a consequence of the convergence of this series, the coefficients quite fast tend to

zero. Thus, ρij can be computed very accurately from the appropriately truncated version

of (4.29). If the first lc terms are left from (4.29) after truncation, then the coefficients

can be computed from well known formulae for the Chebyshev-polynomials. First, we

introduce the matrix:

Ck,i = cos

(
π (k − 1

2)(i− 1)

lc

)
, k, i = 1, . . . , lc. (4.30)

Then we compute the expansion coefficients with respect to the Chebyshev-polynomials of

the first kind:

b
(n)
ij =

2

lc

lc∑
A=1

Q̃i(uA) Qj(uA)−Qi(uA) Q̃j(uA)√
4 g2 − u2

A

Clc−A+1,n+1, n = 0, 1, . . . , lc − 1,

(4.31)
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and finally using the identity (B.6), the coefficients of (4.29) are given by:

a
(n)
ij =

b
(n)
ij − b

(n+2)
ij

2
, 0 ≤ n ≤ lc − 3,

a
(n)
ij =

b
(n)
ij

2
, n = lc − 2, lc − 1.

(4.32)

Using the results of appendix C, ωij and ωreg
ij can be expressed in terms of the coefficients

a
(n)
ij by the formulae:

ωij(uA) ' ig
lc−1∑
n=0

a
(n)
ij

{
xm

(
uA
g

)n+1

+

∞∑
k=1

(
1

xs(
uA−ik
g )n+1

+
1

xs(
uA+ik
g )n+1

)}
+ωcij , (4.33)

ωreg
ij (uA) ' ig

lc−1∑
n=0

a
(n)
ij

{
Tn+1

(
uA
2g

)
+
∞∑
k=1

(
1

xs(
uA−ik
g )n+1

+
1

xs(
uA+ik
g )n+1

)}
+ωcij , (4.34)

where Tn denotes nth Chebyshev-polynomial of the first kind, and the expression of Iij

entering ωcij is also simple in terms of a
(n)
ij :

Iij = i g2 π a
(0)
ij . (4.35)

One can recognize that in (4.34) the multiplier of a
(n)
ij depend on only g and the discretiza-

tion points uA. This is why it is useful to compute it at the beginning of the numerical

method. The computation of the quantity:

ΩA,n(g) =
∞∑
k=1

(
1

xs(
uA−i k
g )n

+
1

xs(
uA+i k
g )n

)
, A, n = 1, . . . lc (4.36)

involves an infinite sum. The numerical method for computing it within a given numerical

accuracy, is described in appendix D.

The coefficients of (2.14), (2.15) and ∆ are determined by imposing the equations:

Fi(uA) ≡ Q̃i(uA)− ωreg
ij (uA) Qj(uA) = 0, i, j = 1, . . . 4, A = 1, . . . , lc. (4.37)

Instead of solving numerically (4.37) as an equation, [36] proposed to solve it as an opti-

mization problem. This means that one tries to find the numerical solution of (4.37) by

minimizing the quantity:

S =
4∑
i=1

lc∑
A=1

|Fi(uA)|2. (4.38)

This is performed by the Levenberg-Marquardt algorithm described in detail in the

next subsection.
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4.4 The Levenberg-Marquardt algorithm

The minimization of S is achieved via the Levenberg-Marquardt algorithm. To describe it,

we put all unknowns into a single vector c. In our case certain unknowns are real,11 while

others are pure imaginary.12 The real unknowns are put into the first Λ1 components of c,

while the other components are the imaginary ones:

ck ∈ R, k = 1, . . . ,Λ1,

ck ∈ iR, k = Λ1 + 1, . . . ,Λ.

If we truncate the sums in (2.14) at N0th term, then the number of real unknowns is

Λ1 = 2N0 + 1. The reason is that the number of coefficients in the truncated versions

of (2.14) is 2N0, plus 1, because ∆ is also a real unknown. If the sums in (2.15) are also

truncated at the N0th term, then the number of imaginary components is Λ − Λ1 = 2N0.

Thus, if all infinite sums are truncated at the N0th term, then c is a Λ = 4N0 + 1

component vector.

For short, we introduce the multi-index I = (i, A), i = 1, . . . , 4, A = 1, . . . , lc and

denote FI = Fi(uA). In this notation (4.38) takes the form:

S(c) =

4 lc∑
I=1

FI(c)F∗I (c), (4.39)

and our task is to find the vector c̃, which minimizes S(c). Assuming that c is close to

c̃, S(c) can be linearized around the minimum and the minimization process consists of

subsequent iterative minimizations of the linearized approximations of S(c).

To expand (4.39) around the minimum one needs to compute the derivative matrix:

JIk(c) =
∂FI(c)

∂ck
, I = 1, . . . , 4 lc, k = 1, . . . ,Λ. (4.40)

In practice it is done with the help of a second order formula for the first derivative:

f ′(u) = f(u+h)−f(u−h)
2h + O(h2) with h being a small number. Thus JIk(c) is numerically

approximated by the formula:

JIk(c) ≈

{
FI({cj+h δjk})−FI({cj−h δjk})

2h , k = 1, . . . ,Λ1
FI({cj+i h δjk})−FI({cj−i h δjk})

2h i , k = Λ1 + 1, . . . ,Λ.
(4.41)

It is worth to introduce its sign modified conjugate:

J̃ ∗Ik(c) =

{
J ∗Ik(c), 1 ≤ k ≤ Λ1,

−J ∗Ik(c), Λ1 < k ≤ Λ.
(4.42)

If c is close to the minimum c̃ of S(c), then using a linear approximation:

S(c̃) ≈
4 lc∑
I=1

[
FI(c)−

Λ∑
k=1

JIk(c) (ck − c̃k)

]
·

[
F∗I (c)−

Λ∑
k=1

J̃ ∗Ik(c) (ck − c̃k)

]
(4.43)

11The coefficients of p1 and p2 and ∆ are the real ones.
12The coefficients of p3 and p4 are the imaginary ones.
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and imposing the minimum condition S(c̃)
∂c̃k

= 0, one gets a set of linear equations for the

components of the minimum vector:

c̃k = ck −
Λ∑
j=1

M−1
kj (c) vj(c), k, j = 1, . . . ,Λ, (4.44)

where

vj(c) =

4 lc∑
I=1

{
JIj(c)F∗I (c) + J̃ ∗Ij(c)FI(c)

}
, j = 1, . . . ,Λ, (4.45)

Mjk(c) =

4 lc∑
I=1

{
JIj(c) J̃ ∗Ik(c) + J̃ ∗Ij(c)JIk(c)

}
, j, k = 1, . . . ,Λ. (4.46)

In practice, during the iteration, equation (4.44) determines the new values of the unknowns

from the old ones. Namely, if c(n) denotes the value of c after the nth iteration, then its

value after the n+ 1st iteration is given by:

c
(n+1)
k = c

(n)
k −

Λ∑
j=1

M−1
kj (c(n)) vj(c

(n)), k = 1, . . . ,Λ. (4.47)

The iterational prescription (4.47) works very well, if the initial value of c is very close

to the exact solution. Otherwise, it does not define a convergent iteration. In such cases

the Levenberg-Marquardt (LM) modification of (4.47) is needed to decrease the difference

|c(n+1) − c(n)| at each step of the iteration [36], and so to slow down and stabilize the

iteration process. In the Levenberg-method, equation (4.47) is modified by adding a unit-

matrix multiplied with an iteration number dependent number to M. In case of the

Marquardt-method the unit-matrix is changed to the diagonal part of M:

Mkj(c
(n))→Mkj(c

(n)) + λ(n) δkj , Levenberg-method,

Mkj(c
(n))→Mkj(c

(n)) + λ(n)Mkk(c
(n)) δkj , Marquardt-method,

(4.48)

where λ(n) is an iteration number dependent number. The main drawback of the Levenberg-

Marquardt modification is that, it defines a quite stable, but very slowly converging al-

gorithm. To find the minimum of S(c) within practically acceptable amount of time, the

term proportional to λ should be switched off after a few number of iterations. Here, we

have to mention, another important property of the LM-algorithm, namely the larger the

value of λ, the slower the convergence is. This is why, it is also desirable to decrease the

value of λ at each step of the iteration.

Taking into account the facts and experiences above, we used the LM-algorithm in the

following way:

First, we choose a not too large initial value for λ(0) and a divisor ν > 1. For the

states under consideration we took λ(0) = 2.1 and ν = 2.0. At the nth step starting from

c(n), we go through the whole iteration process with λ(n) and get the new vector c(n+1). If

S(c(n+1)) < S(c(n)), then we decrease the value of λ by dividing it by ν, i.e. λ(n+1) = λ(n)

ν .
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Otherwise we increase the value of λ by multiplying it by ν: λ(n+1) = λ(n) ν and the new

iteration starts from the old initial values i.e. c(n+1) = c(n). After a certain number of

such iterations, when S(c(n)) becomes small enough (∼ 1), the action of λ is switched off

and the further iterations are done with the λ(n) ≡ 0 formula (4.47). We note that in our

concrete numerical computations we used the Marquardt-type (4.48) modification of (4.47)

and in practice we do not compute the inverse of M, but solve the following set of linear

equations for c(n+1):

Λ∑
j=1

Mkj(c
(n)) (c

(n)
j − c

(n+1)
j ) = vk(c

(n)), k = 1, . . . ,Λ. (4.49)

4.5 The complete algorithm

In this subsection we write down the process of the numerical algorithm.

• First, initial values are chosen for c(0), λ(0), and ν.

• Going through the process described in the previous subsections, we compute FI(c(0)).

• To compute the derivative Jjk, one does the same computation another 2 Λ times,

but starting from the 1-component shifted initial value vectors:

c
(0)
k± = {c(0)

1 , . . . , c
(0)
k−1, c

(0)
k ±H, c

(0)
k+1, . . . , c

(0)
Λ }, whereH = ±h orH = ± i h depending

on the properties of ck under complex conjugation.

• Then the quantities Jjk, J̃jk,Mjk, vj and S(c(0)) are computed.

• The corrected values of the unknowns (i.e. c(1)) are computed by the Marquardt-

version of (4.47).

• S(c(1)) is computed from c(1).

• The initial values of the next iteration are chosen by the rule:

If S(c(1)) < S(c(0)), then λ(1) = λ(0)

ν and the next iteration starts from c(1). Otherwise

λ(1) = λ(0) ν and the new iteration starts from the old initial values i.e. c(1) = c(0).

• The whole process starts from the beginning. . .

• After several such iterations λ is set to be zero, and (4.47) determines the new

approximations for the unknowns.

5 Numerical results for the Konishi operator

The Konishi operator is the most studied element of the set of single trace operators in

the N = 4 super Yang-Mills (SYM) theory. The set of twist-2 operators with even spin

also includes it as the L = S = 2 special case. In this section we summarize our numerical

results obtained for the Konishi operator.

We solved the QSC equations in the range g ∈ [0.1, 7.0] and by fitting the numerical

data, we determined numerically the first few coefficients of the large g expansion of some
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important quantities. Previous numerical investigations [23–26] could determine the first

few coefficients of the large g series of the anomalous dimension ∆. Now, beyond the

numerical determination of the coefficients of the strong coupling series of ∆, we also

determine the large g behaviour of the coefficients of the 1/x series in (2.14), (2.15). We also

study the strong coupling behaviour of the pa functions around the branch points u = ±2g.

We note that the numerical data for ∆(g) can be found in the DELTAdata.nb ancillary

notebook file, while the numerical values of ca,n(g) can be downloaded from the arxiv site

of the paper13 [arXiv:1604.02346].

5.1 Numerical results for ∆

We are interested in the coefficients of the strong coupling expansion of ∆:

∆ = ∆(0)λ
1
4 + ∆(1)λ−

1
4 + ∆(2)λ−

3
4 + ∆(3)λ−

5
4 + +∆(4)λ−

7
4 + ∆(5)λ−

9
4 + . . . (5.1)

For the twist-L operators in the sl(2) sector, there are analytical predictions for the first

four coefficients of (5.1). The coefficients depend on L and S and take the form [34]:

∆(0) =
√

2S, ∆(1) =
2L2 + S(3S − 2)

4
√

2S
, (5.2)

∆(2) =
−21S4 + (24− 96 ζ3)S3 + 4

(
5L2 − 3

)
S2 + 8L2S − 4L4

64
√

2S3/2
, (5.3)

∆(3) =
187S6 + 6 (208 ζ3 + 160 ζ5 − 43)S5 +

(
−146L2 − 4 (336 ζ3 − 41)

)
S4

512
√

2S5/2

+

(
32 (6 ζ3 + 7)L2 − 88

)
S3 +

(
−28L4 + 40L2

)
S2 − 24L4S + 8L6

512
√

2S5/2
. (5.4)

The first two coefficients in (5.2) can be determined either from Basso’s slope function [43]

or from semi-classical computations in string theory [40–42]. The next two coefficients

were determined by matching the O(S2) term of the small spin expansion with classical

and semi-classical results [34].

To determine numerically the coefficients in (5.1), we computed ∆ numerically in

the range g ∈ [0.1, 7.0] range with approximately 20 digits of accuracy and in the range

g ∈ [4.6, 7] we fitted the numerical data with a power series of the form of (5.1).

The fitting method went as follows. We fitted a power series of type (5.1) to the

numerical data. We increased the order of the truncation of the series until the numerical

values of the coefficients stabilized. First, we concentrated on the first coefficient ∆(0).

We experienced that it is very close to the exact value (5.2). This is why we assumed

that its value is equal to the analytical prediction. Then we subtracted ∆(0)λ
1
4 from

the numerical data and fitted the new set of data with a truncated power series of type

∆(1)λ−
1
4 +∆(2)λ−

3
4 + . . .. Again, we increased the order of the truncation of the series until

the numerical values of the coefficients stabilized. Then we concentrated on the coefficient

∆(1). We experienced that, the fitted value of the coefficient ∆(1) is very close to the

analytical prediction given by (5.2). Again, we assumed that the exact value of ∆(1) is

13We did not attach the text files containing all numerical data, because of their very large size.
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n ∆
(n)
exact ∆

(n)
fitted δrel∆

(n)

0 2.0 1.999999999999898 5.0 · 10−14

1 2.0 1.999999999995831 2.8 · 10−12

2 -3.106170709478783 -3.106170709557684 2.5 · 10−11

3 15.48929958253284 15.48929957822780 2.8 · 10−10

4 – -91.97602372540774 8.2 · 10−9

5 – 758.5146133674111 1.1 · 10−6

Table 1. Comparison of the analytical predictions and the fitted values for ∆(n). δrel∆
(n) denotes

the relative error.

given by (5.2), and we subtracted also the second term of (5.1) from the numerical data.

Then to get ∆(2), we fitted the new set of data with a series starting at of order λ−
3
4 etc.

Our results for the fitted values of the coefficients of (5.1) are shown in table 1. The

numerical data confirms with high precision the analytical predictions for the n = 0, 1, 2, 3

cases. Table 1 contains fitted values for the n = 4, 5 cases as well. Since so far there

are no available analytical predictions for these coefficients, we gave numerical estimations

for further two previously unknown coefficients of the strong coupling expansion of the

anomalous dimension for the Konishi state .

In table 1 δrel∆
(n) denotes the relative error defined by

∣∣∆(n)
exact−∆

(n)
fitted

∆
(n)
exact

∣∣ . For n = 4, 5 in

the lack of analytical results, δrel∆
(n) was computed as the ratio of the estimated error for

∆
(n)
fitted and ∆

(n)
fitted.

Apart from fitting the coefficients of the strong coupling expansion of ∆, we also

constructed a Pade-approximation like formula for ∆. According to our estimation, our

approximation formula gives the values of ∆ with 14-digits of accuracy in the range of

available numerical data i.e g ∈ [0.1, 7.0] and with at least 9-digits of accuracy for g > 7.0.

The description of our Pade-approximation like formula for the anomalous dimension of

the Konishi state can be found in appendix G, and its actual form can be found in the

ancillary approx.nb notebook file.

5.2 The strong coupling behaviour of pa

In this subsection the strong coupling behavior of the pa-functions is studied through

the investigation of the strong coupling behavior of the coefficients of the series (2.14)

and (2.15). First, let us see, how the coefficients ca,n(g), look as functions of n at fixed

g. Since the coefficients decay exponentially fast with a rate determined by the radius of

convergence R(g) = |xs(2 + i
g )| of the problem, for demonstrational purposes it is worth to

introduce ĉa,n(g) by the definition:

ĉa,n(g) = ca,n(g)R(g)2n+da , da = δa,1 + δa,3. (5.5)

In order for the readers to get a taste about the n-dependence of ĉa,n(g), as an example

we show ĉ1,n(g) at g = 4.4 in figure 1. In the other a = 2, 3, 4 cases, at a fixed value of
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Figure 1. The plot of ĉ1,n at g = 4.4. The data points are connected by an interpolating function

only for demonstrational purposes.

g, the picture is structurally very similar. Namely, at fixed g, the n-dependence is given

by a “wave-like” function with an enveloping curve which decays at large n. The most

important properties of ĉa,n(g) at fixed g, can be summarized as follows (For more details

see appendix F):

• The enveloping curve of ĉa,n(g) has a power like decay at large n: ĉa,n(g) ∼ n−εa(g).

• If ĉa,n(g) is considered as a continuous function of n, then it has infinitely many zeros.

• In the large n regime the zeros are located periodically.

• At fixed g the characteristic wavelength Λa(g) of the large n periodicity is independent

of the value of the index a.

Moreover our numerical data suggests the following strong coupling behavior for the

characteristic wavelength Λa(g) and the exponent εa(g):

• At strong coupling Λa(g) = c0
√
g (1 + . . . ), with c0 = 4.35(5) and dots stand for

terms negligible at g →∞.

• At strong coupling the powers εa(g) tend to constant values, which lie in the interval14

[1.55, 1.75]. For the numerical values of εa(g) at different values of g and a see figure 6.

One can recognize another interesting property of the coefficients, if one plots ĉa,n(g)

at all available values of g on the same plot. They all have very similar shape, which

14We note that, though the numerical data doesnot exclude that the strong coupling limit of εa(g) is

a-independent, but because of the remarkable error bars, we avoid to draw such a conclusion.
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Figure 2. The demonstration of the strong coupling scaling property of ĉa,n(g) for a = 1 (left)

and a = 2 (right) cases.

Figure 3. The demonstration of the strong coupling scaling property of ĉa,n(g) for a = 3 (left)

and a = 4 (right) cases.

suggests that in the strong coupling limit they can be transformed into a universal g-

independent function with some scale transformation. Indeed, figures 2 and 3 show that

the transformed coefficients g−n̂a ĉa,√gν with (n̂1, n̂2, n̂3, n̂4) = (1, 0, 3, 2) tend to universal

g-independent functions Ka(ν) at strong coupling. For later purposes, we write it down in

a formula as well:

g−n̂a ĉa,√gν = Ka(ν) + . . . , (5.6)

where the dots stand for negligible terms for g →∞.
This fact shows that the in the strong coupling limit the relevant scale of the problem

is given by
√
g or equivalently λ

1
4 as it is expected from the strong coupling behaviour of

the anomalous dimension.

5.2.1 Strong coupling behaviour of ca,n for fixed n

In this subsection we investigate, how the coefficients of the series (2.14) and (2.15) behave

at strong coupling, if we fix the value of the index n. We considered the first 12 or 14

coefficients of the series (2.14) and (2.15). I.e. ca,n with a = 1, . . . , 4 and n = 0, . . . , 14.

Then in the range g ∈ [4.6, 7.0] we fitted the numerical data with a series15 in 1/g. Our

numerical data was consistent with the series expansions as follows:

ca,n(g) = gna

∞∑
k=0

c
(k)
a,n

gk
, (5.7)

15We tried to fit other types of series in g, like series in 1/
√
g etc., but only the 1/g case gave numerically

stable coefficients.
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n c
(0)
1,n c

(0)
2,n Imc

(0)
3,n Imc

(0)
4,n

0 1 1 -52.637890142265 0

1 0.999999999978 1.33333333332 -131.594725354130 -8.77298169101892

2 0.999999999972 1.33333333330 -131.594725352303 -35.091926761981

3 0.999999999975 1.33333333330 -131.594725351127 -35.091926761524

4 0.999999999981 1.33333333331 -131.594725350389 -35.091926761099

5 0.999999999989 1.33333333331 -131.594725349952 -35.091926760721

6 0.999999999997 1.33333333332 -131.594725349753 -35.091926760392

7 0.999999999997 1.33333333333 -131.594725349575 -35.091926760235

8 0.999999999923 1.33333333332 -131.594725353134 -35.091926759769

9 0.999999991211 1.3333333316 -131.59472498873 -35.09192675312

10 0.999999696177 1.3333332528 -131.59470707428 -35.09192702373

11 0.999994934595 1.3333316031 -131.59437309066 -35.09193282608

12 0.999948649172 1.3333119412 -131.59080568467 -35.09196891042

13 0.999643526630 1.3331583442 -131.56546821836 -35.09189673341

14 0.998177159531 1.3323036598 -131.43562861485 -35.08931535172

Table 2. The numerical values of c
(0)
a,n.

where the integer leading power na and the numerical values of c
(k)
a,n were determined from

the fitting process. The best fits yield the following values for the leading powers:16

(n1, n2, n3, n4) = (1, 0, 3, 2). (5.8)

For a = 1 and a = 2 we know from our H-symmetry fixing conditions that c1,0 ≡ g and

c2,0 ≡ 1 exactly. For a = 1, 2, (5.8) shows that at large g in leading order all coefficients

behave in the same way, and this leading order power behaviour is determined by the H-

symmetry fixing condition. The situation is very similar in the a = 3, 4 cases. There the

leading powers are the same as those of A3 u = A3 g (x + 1
x) and A4 u

2 = A3 g
2 (x + 1

x)2

with x being fixed. From (2.10) and (5.1) it follows that, at large g: A3 ∼ g2/A2 = g2, i.e.

g A3 ∼ g3 ⇒ n3 = 3. Similarly: A4 ∼ g2/A1 = 1, i.e. g2A4 ∼ g2 ⇒ n4 = 2.

Next, we can concentrate on the first, leading order coefficients17 c
(0)
a,n in (5.7). Table 2

shows their fitted values. Looking at the data, one can recognize the remarkable fact that

for fixed values of the index a, and for n ≥ 1 + δa,4 the coefficients c
(0)
a,n seem to be n-

independent. The difference between the numerical values of the columns are supposed to

be the consequence of numerical errors. Then, it is tempting to guess the exact values of

c
(0)
a,n from the available numerical data of table 2.

It is not hard to make good proposals for the cases a = 1, 2:

c
(0)
1,n = 1, c

(0)
2,n =

4

3
, n = 1, 2, . . . (5.9)

16We note that na = n̂a of (5.6) for a = 1, 2, 3, 4.
17We just recall that c

(k)
a,n are real for a = 1, 2 and are pure imaginary for a = 3, 4.
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To guess the exact values of c
(0)
a,n for a = 3, 4 seem to be more difficult, but the following train

of thoughts leads to reasonable proposals. One can recognize that based on (5.9), in the case

of a = 1, 2, in (2.14) all 1/x powers has the same coefficient.18 Then one can suspect that

the same thing might happen for the cases a = 3, 4. Such an assumption gives analytical

predictions for the differences c
(0)
3,1 − c

(0)
3,0 and c

(0)
4,2 − c

(0)
4,1. The leading order expressions

for A3 and A4 can be computed from (2.10) and the H-symmetry fixing conditions by

exploiting (5.1), (5.2):

A3 = −8π2 g2 i+ . . . A4 = −8

3
π2 g i+ . . . . (5.10)

Then substituting u→ g(x+ 1
x) into (2.15) and imposing that the coefficients of each 1/x

power are equal, one gets the analytical predictions:

c
(0)
3,1 − c

(0)
3,0 = −8π2 i, (5.11)

c
(0)
4,2 − c

(0)
4,1 = −8

3
π2 i. (5.12)

Using the data of table 2, one can check that (5.11) and (5.12) are satisfied with high

precision. Now, (5.11) and (5.12) suggests that
c
(0)
3,n

π2 and
c
(0)
4,n

π2 are simple fractions. This

assumption and further analysis of the numerical data of table 2, led us to the following

proposals for the exact values of the coefficients:

c
(0)
3,0 = −16

3
π2 i, c

(0)
3,n = −40

3
π2 i, n = 1, 2, . . .

c
(0)
4,1 = −8

9
π2 i, c

(0)
4,n = −32

9
π2 i, n = 2, 3, . . . (5.13)

At the points n = 1, 2, 3 (5.13) agrees with the numerical values of table 2 with at about

9-digits of precision. As n increases the deviation from (5.13) also increases. The in-

creasing deviation from (5.13) is due to the fact that the numerical errors increase as

n-increases. Nevertheless, for larger values of n, there are still so many digits of agreement

between (5.13) and the numerical values of table 2 that we have very little doubt about

that (5.9) and (5.13) give the analytical values for c
(0)
a,n. If we accept (5.9) and (5.13) as the

exact analytical values for c
(0)
a,n, we can sum up the emerging geometrical series and give

analytical formulae for the leading order large g behaviour of the functions pa. The results

of the summations take the forms:

p1 = g
x

x2 − 1

(
1 +O

(
1

g

))
, p2 = 1 +

4

3

1

x2 − 1
+O

(
1

g

)
, (5.14)

p3 = −i g3

{
8π2 x+

40π2

3

x

x2 − 1

} (
1 +O

(
1

g

))
, (5.15)

p4 = −i g2

{
8π2

3
x2 +

16π2

3
+

32π2

9

1

x2 − 1

} (
1 +O

(
1

g

))
. (5.16)

The above formulae has the common property that they have poles at x = ±1. The

positions of these poles are in accordance with the g →∞ limit of the radius of convergence

18In leading order for large g.
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R. Nevertheless, there are two facts, which indicate that (5.14), (5.15), (5.16) cannot be

good approximations of the functions pa on the entire u-plane at strong coupling.

First, in (5.14), (5.15), (5.16) the neglected terms are O(1/g) with respect to the

leading ones, in case the multipliers of 1/g in the correction terms are bounded functions

of u with g independent upper and lower bounds. We will see in the next subsection that

this is not the case.

Another problem, which indicates the restricted validity of (5.14), (5.15), (5.16),

emerges when one would like to compute p̃a at strong coupling. Naively, it can be done by

a simple x→ 1/x transformation in (5.14), (5.15), (5.16). But the result does not account

for the the p̃a(u) ∼ u4
√
π g+... large u asymptotics expected from (2.9) and (5.1), (5.2).

The main reason for these discrepancies is that the coefficients ca,n(g) depend on n

and g. This is why the result of the g → ∞ limit depends on the relative magnitude of

these two variables.

In the expansion (5.7) we considered the limit, when n ∼ 1 and g → ∞. To be more

precise, we will see later that, the n � √g limit is the one, which corresponds to the

expansion (5.7).

5.2.2 Terms beyond the leading order

From the available numerical data, one can fit further coefficients in (5.7), as well. We

determined numerically the coefficients c
(k)
a,n for n ∈ {1, . . . , 12} and k ∈ {1, . . . , 8}. In

this range of k the fitted coefficients are n-dependent. The scaling property (5.6) implies

that c
(k)
a,n ∼ n2k at large n. The simplest function, which accounts for this behaviour is

a polynomial of order 2k. Indeed, table 3. and the tables of appendix H show that the

numerical values of c
(k)
a,n can be perfectly described by polynomials of order 2k. This is why,

we make the following conjecture:

• The coefficients c
(k)
a,n are polynomials of order 2k in n.

As a consequence, the polynomials can be given by 2k+1 n-independent parameters, which,

for practical purposes, we parametrized as follows:

c(k)
a,n =

2k+1∑
m=1

α
(m)
a,k c

(m,a)
n , n ≥ 1 + δa,4, k = 0, 1, 2, . . . , (5.17)

where:

c(1,a)
n ≡ 1, and c(m,a)

n =

m−1∏
j=1

(n− j + da)

(m− 1)!
, da = δa,1 + δa,3, m = 2, 3, . . . (5.18)

The symbols c
(m,a)
n are chosen to account for the pure pole terms at x = ±1 arising in

pa of x:

xda

(x2 − 1)m
=

∞∑
n=1−da

c
(m,a)
n

x2n+da
. (5.19)
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n c
(1)
1,n α

(n)
1,1 ∆Prel

1 -0.7288876650125799 0 0

2 -1.868353108854596 -0.7288876650125799 0

3 -3.418396331525119 -0.4105777788294359 2.5 · 10−13

4 -5.379017333025561 – 2.7 · 10−13

5 -7.750216113353829 – 4.2 · 10−13

6 -10.53199267250888 – 7.7 · 10−13

7 -13.72434701051003 – 2.7 · 10−13

8 -17.32727912734954 – 1.4 · 10−12

9 -21.34078902283901 – 6.2 · 10−12

10 -25.76487669904681 – 6.2 · 10−11

11 -30.59954215432269 – 1.1 · 10−10

12 -35.84478537778597 – 1.4 · 10−10

13 -41.50060635466954 – 9.4 · 10−10

14 -47.56700499419227 – 4.0 · 10−9

Table 3. Numerical values of c
(1)
1,n and the estimated values of the coefficients α

(n)
1,1 of the polynomial

Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description of the

various coefficients.

We note that in the k = 0 special case, by definition α
(m)
a,0 = c

(0)
a,a δm,1 and that (5.17) can

be used only when n ≥ 1 + δa,4.

The conjectured (5.17) representation of c
(k)
a,n implies the following series representation

for pa(x) at strong coupling:

pa(x) = δa,2 +δa,3

(
gA3(g)x+

A3(g)

x

)
+δa,4

(
g2A4(g) (x2 + 2) +

A4(g)

x2

)
+ gna

( ∞∑
k=1

1

gk

2k+1∑
m=1

α
(m)
a,k

xδa,1+δa,3

(x2 − 1)m

)
,

(5.20)

where A3(g) and A4(g) admit the strong coupling series representations:

A3(g) = g2
∞∑
k=0

A(k)
3

gk
, A4(g) = g

∞∑
k=0

A(k)
4

gk
. (5.21)

The first few values of A3(g) and A4(g) are given in the table 4. All elements of table 4

are small numbers, lying in the range of numerical errors. This fact suggests us to make

the following conjecture:

• A(k)
3 and A(k)

4 of (5.21) are zero for all k ≥ 0.

As a consequence A3(g) = A4(g) ≡ 0, which implies that besides of the 1
(x2−1)m

type of

terms, there are no 1
x or 1

x2 terms present in the strong coupling series (5.20).
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k ImA(k)
3 ImA(k)

4

0 3.7 · 10−11 6.4 · 10−11

1 −4.6 · 10−8 −1.28 · 10−8

2 2.0 · 10−5 1.45 · 10−6

Table 4. The first three numerical values of A(k)
3 and A(k)

4 . All values are in the magnitude of the

numerical errors.

The formula (5.20) indicates that in the a = 1 case there is some simplification due

to the H-symmetry fixing condition c1,0 ≡ g. This implies that in the large x expansion

of (5.20) the coefficient of 1
x does not get 1

g corrections. As a consequence: α
(1)
1,k ≡ 0 for

k ≥ 1. This means that in the a = 1 case only 2k parameters describe the conjectured

polynomials of order 2k. This fact was built in the polynomial fits as it is demonstrated

by table 3.

Reshuffling the series part of (5.20), it can be written as a series in 1
g(x2−1)2 :

pa(x) = δa,2+δa,3

(
gA3(g)x+

A3(g)

x

)
+δa,4

(
g2A4(g)(x2 + 2)+

A4(g)

x2

)
+pseries

a (x),

pseries
a (x) = gna xδa,1+δa,3

 1

x2 − 1

∞∑
n=0

α
(2n+1)
a,n

[g(x2 − 1)2]n

1 +

∞∑
k=1

1

gk

α
(2n+1)
a,n+k

α
(2n+1)
a,n


+

∞∑
n=0

α
(2n)
a,n

[g(x2 − 1)2]n

1 +

∞∑
k=1

1

gk

α
(2n)
a,n+k

α
(2n)
a,n

 . (5.22)

Now, we are in the position to discuss the regime of validity of (5.22) in the rapidity

plane. Formula (5.22) implies that at strong coupling the variable z = 1
g(x2−1)2 becomes

relevant and within the range of convergence, apart from sum trivial factors, pseries
a (x) can

be represented as a sum of functions of z, such that each function is suppressed with an

inverse power of g:

pseries
a (x) = gna xδa,1+δa,3

{
1

x2 − 1

∞∑
k=0

1

gk
fodd
a,k (z) +

∞∑
k=0

1

gk
feven
a,k (z)

}
, (5.23)

To study the range of validity of (5.22), one has to determine the radius of convergence of

the series representations of fodd
a,0 (z) and feven

a,0 (z). We just recall:

fodd
a,0 (z) =

∞∑
n=0

α(2n+1)
a,n zn, feven

a,0 (z) =

∞∑
n=0

α(2n)
a,n zn. (5.24)

The radius of convergence of these series is determined by the large n behaviour of the

coefficients. Our numerical data suggests that:

α(2n+1)
a,n ∼ 42n, α(2n)

a,n ∼ 42n
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Figure 4. The oval region outside of which the strong coupling series representation (5.22) accounts

for all power like contributions in 1
g .

for large n. This implies that the radius of convergence of f
odd/even
a,0 (z) is 1

4 . Thus one can

conclude that the validity of the series representation (5.22) is restricted by the inequality:

4

g(x2 − 1)2
< 1. (5.25)

In the strong coupling limit, (5.25) may fail, if x is close to ±1. In the language of the

rapidity19 u, this means that u is close to the branch points ±2. Using the series represen-

tation:

xs(2 + v) = 1 +
√
v +

v

2
+O(v3/2), (5.26)

one obtains that (5.22) is convergent if:

4

g|v|
< 1 ⇒ 4

g
< |v|, u=±2+v. (5.27)

Thus, naively one might conclude that the series representation (5.22) gives the correct

strong coupling approximation of pa in the domain where, the distance of the rapidity u

from the branch points is larger than 4
g . Unfortunately the situation is a bit worse. The

series (5.22) will be an appropriate strong coupling approximation for pa(u) only outside

of an oval region containing the real short cut [−2, 2], such that the horizontal dimension

of the oval region is 4 plus a number of order 1
g , and its vertical dimension is of order 1√

g .

See figure 4.

The reason is as follows. Rephrasing (5.7) one obtains that:

ca,n(g) = gna Ka
(
n
√
g

)
·
(

1 +O

(
1
√
g

))
. (5.28)

The O( 1√
g ) magnitude of the corrections is a consequence of (5.17). From (5.28) it follows

that the n = fixed, g → ∞ limit corresponds to the n√
g → 0 limit. This implies that the

strong coupling series representation (5.7) of the coefficients is a good approximation until

n� √g. (5.28) also implies that, at strong coupling a typical sum appearing in pa can be

roughly estimated by an integral:∑
n

ca,n x
−2n ∼ gna

∑
n

Ka
(
n
√
g

)
x−2n ∼ gna+ 1

2

∑
n

1
√
g
Ka
(
n
√
g

)
x
−2
√
g n√

g

∼ gna+ 1
2

∫
dz′Ka(z′) e−2 z′

√
g lnx.

(5.29)

19Throughout this section, we use the convention, when the branch points are scaled to be located at ±2.
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The strong coupling series (5.22) was obtained by inserting the series (5.7) into (2.14)

and (2.15) and evaluating the sums from 1 to infinity. In this representation the strong

coupling corrections go as inverse powers of g. Since the validity of (5.7) is restricted to n�
√
g, (5.22) can be appropriate representation of pa, if the neglected contributions coming

from the
√
g . n region are exponentially small in g. As (5.29) shows, the exponentially

small corrections grow up to power like in the regime, where
√
g lnx or equivalently |x|−

√
g

becomes of order 1. Now we will show that this can happen in an appropriate neighborhood

of the real short cut of the u-plane.

At the branch points, x is given by (5.26), therefore
√
g lnx ∼ 1, when u lies within a

circle of radius ∼ 1
g , whose center is located at the branch points ±2.

On the other hand x is a pure phase on the real cut, i.e. |x| = 1. If u0 ∈ [−2, 2],

then lnx(u) can be expanded in a regular Taylor-series around u0. This yields that

|x(u0 + δu)|−
√
g ∼ 1 if δu ∼ 1√

g .

To summarize, the contributions of the
√
g . n terms are not negligible in (2.14)

and (2.15) if u lies in an oval domain containing the real short cut [−2, 2], such that the

horizontal dimension of the oval region is 4 plus a number of order 1
g , and its vertical

dimension is of order 1√
g . (See figure 4.) This is the region, where the strong coupling

formula (5.22) becomes invalid. To be more precise, the neglected contributions of the
√
g . n terms are exponentially small outside of this oval domain, and become power-like

inside the domain.

Now, we have shown that conjecture (5.20) cannot be an appropriate approximation

of pa close to the real short cut, this is why we also studied the behaviour of pa close to the

branch points in the context of a series expansion in the deviation from the branch points.

5.2.3 Series expansion around the branch points

Now, we study the behaviour of pa at the branch points. Inserting the power series20 (5.26)

into the series representations (2.14) and (2.15), one ends up with the expansions:

pa(2 + v) =
∞∑
k=0

βa,k(g) vk/2, (5.30)

where we use the convention, when the rapidity is scaled, such that the branch points are

at ±2 and v denotes the deviation from them. The coefficients βa,k(g) are certain linear

combinations of the momenta21 of the coefficients ca,n(g). For example the first coefficient

is just the sum of the coefficients ca,n(g), i.e. βa,0(g) =
∞∑
n=0

ca,n(g).

We fitted the coefficients βa,k(g) by a power series in
√
g. The coefficients of the

numerical fits proved to be stable with respect to increasing the truncation index of the

series, in case the following g dependence was assumed:

βa,k(g) = gna+1/2+k/2
∞∑
n=0

γ
(n)
a,k

gn
. (5.31)

20Its infinite order version.

21Here, by momentum we mean sums like:
∞∑

n=0

nk ca,n(g),with k ∈ N.
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k γ
(0)
1,k γ

(0)
2,k Imγ

(0)
3,k Imγ

(0)
4,k

0 1.9168(4) 2.5549(6) -252.1(1) -67.34(2)

1 -4.603(1) -6.133(3) 605.9(1) 160.9(4)

2 8.517(3) 11.34(1) -1120.5(5) -297(1)

3 -13.079(6) -17.44(1) 1720(1) 474(6)

4 17.27(1) 23.04(2) -2270(3) -633(15)

5 -20.00(1) -26.66(2) 2628(3) 726(16)

Table 5. Numerical values of the first few γ
(0)
a,k.

k γ
(1)
1,k γ

(1)
2,k Imγ

(1)
3,k Imγ

(1)
4,k

0 -0.774(4) -0.507(3) 135.8(8) 37.49(6)

1 2.98(1) -1.88(2) -223.8(8) 167(2)

2 -7.18(2) 4.53(5) 527(4) -401(7)

3 13.32(5) -8.11(5) -968(8) 596(42)

4 -20.6(1) 12.4(1) 1473(16) -910(104)

5 27.3(2) -16.4(2) -1941(21) 1323(115)

Table 6. Numerical values of the first few γ
(1)
a,k.

The numerical values of the first few coefficients γ
(n)
a,k can be found in tables 5 and 6.

Concentrating on only the leading order behaviour of (5.30), the following pattern arises:

pa(2 + v) = gna+1/2
∞∑
k=0

γ
(0)
a,k (g v)k/2 + gna−1/2

∞∑
k=0

γ
(1)
a,k (g v)k/2 + . . . , (5.32)

where dots mean terms negligible for large g.

As a consequence we can conclude that for large g, close to the branch points pa
behaves like a function of gv and the sub-leading corrections are suppressed by positive

integer powers of 1
g :

pa(2 + v) = gna+1/2

(
f (0)
a (g v) +

1

g
f (1)
a (g v) + . . . .

)
. (5.33)

6 Higher spin results

In this section we publish the numerical results obtained in the S = 4, 6, 8 cases. For these

higher spin values, we could not reach as large values of the coupling constant g as it was

done in the case of the Konishi operator. The reason for this, is that increasing the spin, the

numerical algorithm becomes more and more sensible to the choice of initial values. This

fact forced us to increase g in very small ∆g ∼ 0.02 steps. As a consequence, we needed to

run 50 jobs subsequently in order to increase g with one single unit. Unfortunately, this
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n ∆
(n)
exact ∆

(n)
fitted δrel∆

(n)

0 2.828427125 2.828428230 3.9 · 10−7

1 4.242640687 4.242592283 1.1 · 10−5

2 -13.91210165 -13.91277126 4.8 · 10−5

3 113.9955688 113.9696603 2.3 · 10−4

4 – -1279.745751 1.8 · 10−3

Table 7. Comparison of the analytical predictions and the fitted values for ∆(n) at S = 4.

n ∆
(n)
exact ∆

(n)
fitted δrel∆

(n)

0 3.464101615 3.464115090 3.9 · 10−6

1 7.505553499 7.504893894 8.7 · 10−5

2 -33.36441949 -33.35019106 4.2 · 10−4

3 373.4996131 373.1565665 9.1 · 10−4

4 – -5914.704399 3.0 · 10−3

Table 8. Comparison of the analytical predictions and the fitted values for ∆(n) at S = 6.

process proved to be very time consuming. By increasing S, also the internal precision of the

computations must have been increased, in order to get convergence and reach the required

precision for ∆ and ca,n. For example at strong coupling g & 2.7, the S = 4, 6, 8 cases

required 60-, 80- and 100-digits of precision respectively. The necessity of the application

of such high precisions made also the runtime of the jobs very long.

Because of these difficulties, in the S = 4, 6, 8 cases, the numerical results we obtained

were less accurate than those of the Konishi state. This is why, in the higher spin cases,

we restricted our numerical work to 3 types of investigations. Namely,

• Numerical determination of the first 4 coefficients ∆(n) of the strong coupling series

of ∆.

• Numerical determination of the coefficients c
(0)
a,n of (5.7).

• Investigation of the qualitative strong coupling behaviour of the pa-functions at the

branch points.

The fitted values of the coefficients in (5.1) at different values of S can be found in

tables 7, 8, and 9. The numerical estimations of the first coefficients beyond the analytical

prediction (i.e. ∆(4)) are also presented, but only to “give a taste” about their magnitude.

Though the precision of the coefficients is not so high as it was in the Konishi case, the first

four coefficients can be compared to the analytical predictions (5.2), (5.3) and (5.4). Our

numerical data confirms the analytical predictions within the range of numerical errors.

In the higher spin cases, we also computed numerically the first few coefficients from

the set of c
(0)
a,n in (5.7). The fitting process went in exactly the same manner as in the case
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n ∆
(n)
exact ∆

(n)
fitted δrel∆

(n)

0 4.0 4.000128998 3.2 · 10−5

1 11.5 11.49670954 2.8 · 10−4

2 -62.63061568 -62.54108289 1.4 · 10−3

3 876.3952895 873.6934855 3.0 · 10−3

4 – -17585.48981 5.0 · 10−3

Table 9. Comparison of the analytical predictions and the fitted values for ∆(n) at S = 8.

n c
(0)
1,n c

(0)
2,n Imc

(0)
3,n Imc

(0)
4,n

0 1 1 -210.5519430 0

1 1.000000992 1.333333771 -526.3809637 -35.09247158

2 1.000007109 1.333336921 -526.3848403 -140.3681036

3 1.000009244 1.333341357 -526.4039857 -140.3688672

4 0.999915635 1.333283501 -526.3719528 -140.3678449

Table 10. The numerical values of c
(0)
a,n at S = 4.

n c
(0)
1,n c

(0)
2,n Imc

(0)
3,n Imc

(0)
4,n

0 1 1 -473.7436596 0

1 1.000001918 1.333334730 -1184.362710 -78.95735532

2 1.000011630 1.333337367 -1184.375396 -315.8330460

3 1.000024550 1.333342392 -1184.301685 -315.8459872

4 0.999746232 1.333356285 -1184.435398 -315.8606964

Table 11. The numerical values of c
(0)
a,n at S = 6.

n c
(0)
1,n c

(0)
2,n Imc

(0)
3,n Imc

(0)
4,n

0 1 1 -842.2397513 0

1 1.000038353 1.333329759 -2105.636060 -140.3852803

2 0.999981037 1.333336736 -2105.828532 -561.5275144

3 1.000424364 1.333489157 -2106.476479 -561.5864962

Table 12. The numerical values of c
(0)
a,n at S = 8.

of the Konishi operator. The fitted values at different values of the spin are summarized

in tables 10, 11, and 12.

Though the numerical values of the coefficients are not as accurate as they were in the

case of the Konishi operator, one can see that the same structure shows up. Namely, for

n ≥ 1 + δa,4 the coefficients seem to be n-independent. Using the same train of thoughts,

as it was done in the Konishi case, based on the numerical data of tables 10, 11, and 12,
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we made the following proposals for the exact values of the coefficients:

c
(0)
1,n = 1, c

(0)
2,n =

4

3
, n = 1, 2, . . . (6.1)

c
(0)
3,0 = −4

3
π2 S2 i, c

(0)
3,n = −10

3
π2 S2 i, n = 1, 2, . . .

c
(0)
4,1 = −2

9
π2 S2i, c

(0)
4,n = −8

9
π2 S2 i, n = 2, 3, . . . (6.2)

We also constructed Pade-approximation like formulae to determine numerically ∆ in

the whole range the coupling constant. The description of out Pade-approximation like

formulae for the cases S = 4, 6, 8 can be found in appendix G, while their concrete form

can be found in the approx.nb notebook file. Unfortunately, these approximations are

not so accurate as that of the Konishi operator. The reason for that is two-fold. First,

because we did not reach too large values of g during our numerical work.22 The second

reason is the lower precision of the available numerical data. Nevertheless, according to

our estimations, our Pade-approximation like formulae give the numerical values of ∆ with

8-digits of accuracy in the range, where numerical data are available, and with 4-5 digits

of accuracy for higher values of g.

The last problem, we studied in the higher spin cases, is the strong coupling behaviour

of pa functions at the branch points. Without listing any fitted numerical data, we just

note that our numerical results suggest that close to the branch points the qualitative

strong coupling behaviour of pa functions is given by (5.33). Thus, it is independent of the

concrete value of the spin.23

7 Summary

In this paper, we solved numerically the QSC equations corresponding to some twist-2

single trace operators from the sl(2) sector of AdS5/CFT4 correspondence. Namely, we

considered the twist-2 operators with spins S = 2, 4, 6, 8. The primary purpose of the

numerical study was to gain some information about the strong coupling behaviour of the

solutions of the Pµ-system.

We applied the numerical method of [36] to solve the QSC equations and we wrote

down all technical details, which were necessary to implement the numerical code in C++

language. Roughly speaking, the whole numerical algorithm consist of summations and of

numerical solutions of linear sets of equations. Both mathematical problems can be easily

programmed in any fundamental programming languages.

The most accurate numerical results were obtained in the case of the Konishi-operator.

There, λ ∼ 7737 was the highest value of the ’t Hooft coupling, which was reached by the

numerical computations. From our high precision numerical data, we could numerically

confirm the analytical predictions of [34] for the first 4 coefficients of the strong coupling

22The largest values of g reached during the numerical work were 4.1, 3.5 and 2.74 in the cases S = 4, 6, 8

respectively.
23At least in case the spin is an even and positive integer number.
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series of ∆. Moreover, due to the high precision of the numerical data, we could give nu-

merical predictions for 2 further coefficients in the strong coupling expansion of ∆. In the

cases of S = 4, 6, 8 the numerical data were less precise, nevertheless they proved to be

precise enough to confirm the analytical predictions of [34], though with much less preci-

sion. We also constructed Pade-approximation like formulas which allow one to compute

the anomalous dimensions of the states under consideration within short time and with

satisfactory high precision. (See appendix G and ancillary notebookfile approx.nb.)

Beyond the numerical determination of ∆, we also focused our attention to deter-

mine the strong coupling limit of the pa functions. Since, in the numerical method the

coefficients of their series representations (2.14), (2.15) were the basic objects, we tried to

determine the strong coupling behaviour of these coefficients. From the numerical data,

we found that, at strong coupling, when n � √g , the coefficients admit the series rep-

resentations (5.7) with na given by (5.8). The accurate numerical values obtained for the

coefficients of (5.7), inspired us to make analytical proposals for the values of the leading

order coefficients (6.1), (6.2).

For the Konishi operator, based on the high precision numerical data, we conjectured

that the coefficients c
(k)
a,n in (5.7) are polynomials of order 2k in n. This recognition led us

to propose a strong coupling series representation (5.20) for the pa-functions.24 We argued

that (5.20) is an appropriate strong coupling representation of pa(u), if the rapidity u lies

outside of an oval domain25 containing the short real cut, such that its horizontal dimension

is equal to 4 plus a number of order 1
g and its vertical dimension is ∼ 1√

g . (See figure 4.)

Furthermore, outside of this domain (5.20) accounts for all power like contributions in g,

but neglects the exponentially small ones, which come from the index range
√
g . n.

Because of this restricted validity of (5.20), we also studied the behaviour of the so-

lutions close to the branch points. The result of this investigation can be summarized by

the scaling behaviour given by (5.33).

The strong coupling investigation of the numerical data suggested the strong coupling

scaling behaviour (5.28) for the coefficients. This indicates that
√
g is the relevant scale of

the problem at strong coupling and it tells us that there are 3 important regimes of n in

the strong coupling limit. These are the n � √g, n ∼ √g and n � √g regimes. In the 3

different regimes the coefficients have different strong coupling behaviours.

We also discussed some general properties of the coefficients at fixed values of the

coupling constant. If ca,n is considered as a continuous function of n, the numerical data

implied that

• that ca,n has infinitely many zeros located periodically at large n, and

• that ca,n decays as ∼ n−εa(g)R−2n at large n, where R = |xs(2 + i
g )| is the radius

of convergence of the series (2.14), (2.15) and εa(g) is a numerical constant, whose

strong coupling behavior is discussed in appendix F.

24The fundamental functions Pa of the QSC method are connected to pa by the simple formula (2.11),

this why the results given for pa in the previous sections, can be translated to the language of Pa in a

straightforward manner.
25Here, the rapidity convention is the one, when the branch points are scaled to be at ±2.
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Our numerical work contributes to the deeper understanding of the strong coupling

behaviour of the solutions of the QSC-equations and hopefully it will help in finding the a

method for the systematic analytical solution of the Pµ-system in the strong coupling limit.
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A Construction of initial values at strong coupling

For small values of the coupling constant g, the numerical iterations can start from the

perturbative solution of the problem [32]. This strategy works for g . 1
4 . For larger values

of g, the good26 initial values should be composed of the previously obtained numerical

data.

In this appendix we describe, how to construct good initial values for the numerical

iterations, provided we have the numerical solution of the problem for several smaller

values of g. To construct good initial values, one should increase the value of g in small

steps. We increased the value of g uniformly at each step by ∆g = 0.1, 0.05, or 0.02. If we

assume that every unknown coefficient is a smooth function of g, then a good initial value

of the numerical problem can be given by a numerical Taylor-series, constructed from the

numerical data belonging to previous values of g. Here, let f a function of g. f should be

considered here as the analog of any unknown coefficient of the numerical problem. E.g.

∆(g) is one of them.

In case ∆g is small enough, a good initial value can be constructed as a second order

Taylor-series:

f(g + ∆g) = f(g) + f ′(g) ∆g +
1

2
f ′′(g) ∆g2 +O(∆g3). (A.1)

For the numerical implementation of (A.1), one needs to compute the appropriately accu-

rate numerical formulae for the derivatives:

f ′(g) =
f(g + ∆g)− f(g −∆g)

2 ∆g
+O(∆g2), (A.2)

f ′′(g) =
f(g + ∆g) + f(g −∆g)− 2 f(g)

∆g2
+O(∆g2). (A.3)

Inserting (A.2) and (A.3) into (A.1), and making the g → g − ∆g substitution, one gets

the formula:

f(g) = 3 f(g1)− 3 f(g2) + f(g3) +O(∆g3), (A.4)

where for later convenience we introduced the notation: gn = g − n∆g. By increasing the

order of the Taylor-series method and using the same procedure, higher order formulae can

26Good initial value means that the numerical algorithm converges if the process starts from it.
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be derived. Here, we list them up to the sixth order. The forms of the 4-, 5- and 6-order

formulae take the form:

f(g) = 4 f(g1)− 6 f(g2) + 4 f(g3)− f(g4) +O(∆g4), (A.5)

f(g) = 5 f(g1)− 10 f(g2) + 10 f(g3)− 5 f(g4) + f(g5) +O(∆g5), (A.6)

f(g) = 6 f(g1)− 15 f(g2) + 20 f(g3)− 15 f(g4) + 6 f(g5)− f(g6) +O(∆g6). (A.7)

Finally, we mention that, in case we had numerical data at least for six consecutive values

of g, then we used the 6-point rule (A.7) to construct the initial values of the numerical

algorithm for the next value of g.

B Chebyshev-polynomials

In this appendix we summarize some useful properties and integral formulae of the

Chebyshev-polynomials. The Chebyshev-polynomials of the first kind Tn(u) form a se-

quence of orthogonal polynomials on [−1, 1] with respect to the weight function: 1√
1−u2

.

The orthogonality relation is given by the integral formula:

1∫
−1

du
1√

1− u2
Tn(u)Tm(u) = δnm

π

2
(1 + δn,0), n,m = 0, 1, 2, . . . (B.1)

The Chebyshev-polynomials can be given by the explicit formula:

Tn(u) = cos(n arccosu), n = 0, 1, 2, . . . (B.2)

For practical purposes, we define their slightly modified version:

T̂n(u) =

{
1
2 , n = 0,

Tn(u), n = 1, 2, . . .
(B.3)

In the QSC method, close to the branch points, the relevant functions behave like√
4 g2 − u2. This is why, in our numerical studies the Chebyshev-polynomials of the sec-

ond kind Un(u) become important, since they form an orthonormal basis on [−1, 1] with

respect to the weight function
√

1− u2. They can be given by the explicit formula:

Un(u) =
sin((n+ 1) arccosu)

sin(arccosu)
, n = 0, 1, 2, . . . (B.4)

and the orthogonality relations they satisfy, read as:

1∫
−1

du
√

1− u2 Un(u)Um(u) = δnm
π

2
n,m = 0, 1, 2, . . . (B.5)

The two kinds of Chebyshev-polynomials are related by a simple recurrence relation:

T̂n(u) =
Un(u)− Un−2(u)

2
, n = 0, 1, 2, . . . , (B.6)
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where Un(u) for n < 0 is zero by definition. According to the theory of orthogonal polyno-

mials, on [−1, 1] any smooth function f can be represented as a convergent series in either

Tn or Un:

f(u) =
∞∑
n=1

bn T̂n(u) =
∞∑
n=1

an Un(u), u ∈ [−1, 1]. (B.7)

As a consequence of (B.6), the coefficients are related by:

an =
bn − bn+2

2
, n = 0, 1, 2 . . . . (B.8)

In our numerical approach, we expand our functions in terms of Un. Nevertheless, in

practice the coefficients of this expansion are determined via (B.8) from the coefficients of

the expansion with respect to Tn. The reason is that during the numerical computations,

we have the values of the functions at discrete set of points and we should determine the

coefficients of the series from these discrete values. If the function under consideration is

computed at the positions of the zeros of the lcth Chebyshev-polynomial Tlc with lc being

a large integer, then there are simple formulae in the literature to determine the first lc
coefficients bn in (B.7). Using the matrix (4.30) they are given by:

bn =
2

lc

lc∑
s=1

f(us) Clc−s+1,n+1, n = 0, 1, . . . , lc − 1, (B.9)

where the discretization points are chosen to be zeros of Tlc :

us = − cos

(
π (s− 1

2)

lc

)
, Tlc(us) = 0, s = 1, . . . , lc. (B.10)

Here, it is assumed that lc is so large that the coefficients with higher index are so small

that they are irrelevant up to the numerical precision required. Thus the series is truncated

at the index lc.

In our actual numerical computations, the following integral formulae for Un are im-

portant:

1∫
−1

du

√
1− u2 Un(u)

u− v
= − π

xs(2 v)n+1
, v ∈ C \ (−1, 1), (B.11)

−
1∫
−1

du

√
1− u2 Un(u)

u− v
= −π T̂n+1(v), u ∈ (−1, 1), (B.12)

where xs is given in (2.12) and (B.12) contains a principal value integration.

C The derivation of formulae (4.33) and (4.34)

In this appendix we show, how to use the Chebyshev-expansions to the derivation of the

formulae (4.33) and (4.34) for ωij and ωreg
ij . First, we start with some remarks concerning

the coefficients of the series representations (2.14), (2.15).
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Let f(u) be a function on C with the properties as follows:

• It has no poles,

• It has a single branch cut at [−2g, 2g] with square root type discontinuity.

• The discontinuity on the branch cut is given by i ρ(u).

• The discontinuity becomes zero at the branch points, which means that it behaves

like ∼
√

4 g2 − u2 at ±2g.

• f decays at least as fast as 1
u at infinity.

Then f(u) can be expressed by its discontinuity by the formula:

f(u) =

2g∫
−2g

dv

2π

ρ(v)

v − u
. (C.1)

Moreover, since ρ(±2g) = 0, it can be represented as:

ρ(u) =
√

4 g2 − u2 ρ0(u), u ∈ [−2g, 2g], (C.2)

where ρ0(u) is a smooth regular function on [−2g, 2g]. This is why it can be expanded in

a convergent series with respect to Uns:

ρ0(u) =

∞∑
n=0

an Un

(
u

2 g

)
. (C.3)

As a consequence of (C.1), (C.2), (C.3) and (B.11) f(u) admits the convergent series

representation as follows:

f(u) = −g
∞∑
n=0

an
1

xs(
u
g )
, u ∈ C \ [−2 g, 2 g]. (C.4)

Consequently, we can conclude that the coefficients in the expansions (2.14) and (2.15) are

nothing else, but the coefficients of the Chebyshev-series of the discontinuity functions27

of pas. In this sense the formulae (4.33) and (4.34) are the periodic analogs of (C.4).

Now we show, how to derive (4.33), (4.34) and (4.35) from (4.24), (4.25), (4.26). The

derivation of (4.35) goes as follows. One inserts (4.29) into (4.28) and the result into

Iij of (4.26). Then evaluating the integrals with the help of the appropriately scaled28

version (B.5) taken at m = 0, one ends up with (4.35).

To derive (4.33), first one has to rephrase the kernel as an infinite sum:

coth(π (u− v)) =
1

π (u− v)
+

1

π

∞∑
k=1

(
1

u− v + i k
+

1

u− v − i k

)
. (C.5)

27In the sense of (C.2) and (C.3).
28I.e. u→ u

2g
substitution in the integral.
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Then inserting (C.5), (4.28) and (4.29) into (4.25) and evaluating the integrals with the

help of (B.11) one ends up with (4.33).

To derive (4.34), one should represent ωreg
ij by the formula:

ωreg
ij (u + i 0) = 1

2(ωij(u + i 0) + ωij(u − i 0)). The derivation of (4.34) is very similar to

that of (4.33). The only difference comes from the ∼ 1
u−v term of (C.5). Now, the ±i 0

prescriptions become important. If they are treated by the Sokhotski-Plemelj formula, only

the principal value part remains. This principal value integral can be evaluated with the

help of (B.12), which gives the term Tn+1(u) in (4.34).

D A method to compute (4.36) numerically

In the implementation of the numerical method for solving QSC equations, only such simple

mathematical operations appear, like summations and finding the solutions of some linear

equations. Both methods can be easily implemented in C++ language. There is only one

subtle quantity ΩA,n(g) defined in (4.36), which requires the accurate computation of an

infinite sum. In this appendix, we describe, how to reduce the computation of this quantity

to finite summations, provided one needs the result with a given numerical accuracy. Here,

we recall the definition of ΩA,n(g),

ΩA,n(g) =
∞∑
k=1

(
1

xs(
uA−i k
g )n

+
1

xs(
uA+i k
g )n

)
, A, n = 1, . . . lc (D.1)

where uA ∈ [−2 g, 2 g] are the discretization points. For the sake of simplicity, in the sequel

we will omit the index A from uA. First, we sketch the idea of the numerical computation

and the deeper technical details will be given in the subsequent paragraphs. For practical

purposes, we introduce a short notation for the summand:

I
(n)
X (k, u) =

1

xs(
u−i k
g )n

+
1

xs(
u+i k
g )n

. (D.2)

We introduce also an integer cutoff ΛX to write the infinite sum as a sum of two terms:

∞∑
k=1

I
(n)
X (k, u) =

ΛX∑
k=1

I
(n)
X (k, u) +

∞∑
k=ΛX

I
(n)
X (k, u). (D.3)

The first term in the r.h.s. of (D.3) is a finite sum, so it can be evaluated numerically by a

computer. Since ΛX is chosen to be large, in the second term on the r.h.s. we can use the

large k expansion of the summand. It defines a series in 1/k, and the explicit sums of the

1/k powers can be expressed by the Riemann-zeta function. To reach a given accuracy,

only a finite number of terms of the 1/k series needed to be taken into account. If 1
kNx

is

the last term, which is summed in the large k series, then the magnitude of the numerical

error is ∼ 1

ΛNx
X

.

Unfortunately, this naive estimation needs to be corrected, when one takes a deeper

look at the structure of the summand (D.2). This is why, in the next paragraphs, we write

down in more detail the numerical computation of (D.1).
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The first ingredient is the large k expansion of the summand I
(n)
X (k, u). It can be

obtained by inserting the following two series expansions into (D.2):

xs

(
u

g

)−α
=
(g
u

)α ∞∑
s=0

κ(α)
s

g2s

u2s
, (D.4)

1

(u+ i k)n+2s
=

1

(i k)n+2s

∞∑
m=0

(
−n− 2s

m

) ( u
i k

)m
, (D.5)

twhere κ
(α)
s is given by (4.7). The final form of the expansion takes the form:

I
(n)
X (k, u) =

∞∑
p=0

1

ip+n
(1 + (−1)p+n)

1

kp+n

[p/2]∑
s=0

gn+2s up−2s κ(n)
s

(
−n− 2s

p− 2s

)
, (D.6)

where [. . .] stands for integer part.

(D.6) allows us to make the appropriate choice for the cutoff parameters ΛX and Nx.

For the sake of simplicity concentrate on the power like terms in (D.6). A typical such

term looks like ∼ gn−q uq

kn . In the numerical algorithm, we need to compute (D.3) at the

discretization points, which lie in the interval [−2g, 2g]. This is why we can give an upper

estimation for this typical power-like term:∣∣∣∣gn−q uqkn

∣∣∣∣ . (2 g

k

)n
, u ∈ [−2g, 2g]. (D.7)

This inequality tells us that, not the powers of 1/k determine the magnitudes of the terms

in the 1/k series, but the powers of 2 g
k . This means that, if 1

kNx
is the last term, we sum

from ΛX to infinity in (D.3), then the numerical error can be estimated by
(

2g
ΛX

)Nx

instead

of the naively expected value
(

1
ΛX

)Nx

.

Now, we are in the position to make a choice for the values of ΛX and Nx. We

require Nc digits of accuracy for (D.3). This means that the estimated error term should

be ∼ 10−Nc . In accordance with the content of the previous paragraph, this requirement

imposes an inequality among the parameters ΛX , Nx and Nc.(
2g

ΛX

)Nx

. 10−Nc . (D.8)

The value of ΛX is chosen to “maximize” the inequality:

ΛX ' 2 g · 10Nc/Nx . (D.9)

Certainly, (D.9) does not allow to determine both ΛX and Nx. One of them is free to

choose and the other one is given by (D.9). In our actual numerical computations, we

made the choices:

ΛX = [200 · g], (D.10)

and in accordance with (D.9):

Nx =

[
1 +Nc ·

ln 10

ln 100

]
+ ∆Nx, ∆Nx = 0, 1. (D.11)
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Here, the value of ∆Nx is chosen in order for Nx to be even. This makes the numerical im-

plementation a slightly simpler. Since the first term in the r.h.s. of (D.3) is straightforward

to compute numerically, we concentrate on the computation of the second term:

Ω
(n)
ΛX

(u) =

∞∑
k=ΛX

I
(n)
X (k, u). (D.12)

From (D.6) it can be seen that the summand is non-zero in case n+ p is even. Thus, when

n is even, only the even values of p enter the sum and in case n is odd, only the odd values

of p contribute. This is why, we write down separately the formulae for the n even and

odd cases.

The even n case. Let n = 2n0, n0 = 1, 2, . . ., and p = 2p0, p0 = 0, 1, 2, . . ..

Then (D.6) takes the form:

I
(2n0)
X (k, u) = 2

∞∑
p0=0

(−1)p0+n0
1

k2(p0+n0)

p0∑
s=0

g2(n0+s) u2(p0−s) κ(2n0)
s

(
−2(n0 + s)

2(p0 − s)

)
, (D.13)

If the 1/k series is truncated at Nx, then the sum in p0 is also truncated as a consequence

of the inequality: 2(p0 + n0) ≤ Nx. Thus, the upper limit of the summation becomes:29

pmax
0 = Nx

2 − n0. Now the summation can be performed explicitly with the help of the

Riemann-zeta function ζ(z). Up to the required accuracy, the final result can be written

as a finite sum:

Ω
(2n0)
ΛX

(k, u) = 2

pmax
0∑
p0=0

(−1)p0+n0 ζΛX
(2(p0 + n0))

p0∑
s=0

g2(n0+s)u2(p0−s)κ(2n0)
s

(
−2(n0 + s)

2(p0 − s)

)
,

(D.14)

where ζΛX
(z) = ζ(z)−

ΛX∑
k=1

1
kz .

The odd n case. Again, we take the parametrizations: n = 2n0 + 1, n0 = 0, 1, 2, . . .,

and p = 2p0 + 1, p0 = 0, 1, 2, . . .. Then (D.6) takes the form:

I
(2n0+1)
X (k, u) = 2

∞∑
p0=0

(−1)p0+n0+1

k2(p0+n0+1)

p0∑
s=0

g2(n0+s)+1u2(p0−s)+1κ(2n0+1)
s

(
−2(n0 + s)− 1

2(p0 − s) + 1

)
.

(D.15)

The 1/k series is truncated at Nx, thus the sum in p0 becomes also truncated. From the

inequality: 2(p0 + n0 + 1) ≤ Nx, the upper limit of the summation becomes: p̃max
0 =

Nx
2 − n0 − 1, and the final result becomes a finite sum again:

Ω
(2n0+1)
ΛX

(k, u) = 2

p̃max
0∑
p0=0

(−1)p0+n0+1 ζΛX
(2(p0 + n0 + 1))

×
p0∑
s=0

g2(n0+s)+1 u2(p0−s)+1 κ(2n0+1)
s

(
−2(n0 + s)− 1

2(p0 − s) + 1

)
.

(D.16)

29This was reason, why we choose Nx to be even. Easier to program.
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We close this appendix with a remark on the usage of the ζ-function in C++. During

the development of our C++ code, we recognized that neither double nor long double pre-

cisions are not enough to get accurate results at strong coupling. These built in precisions

were not enough even to reach some kind of convergence. This is why, we used an arbitrary

precision package to C++, called CLN (Class Library of Numbers). In the CLN library

ζ(z) is a built in function and it could be used to our purposes. If one uses pure C, or

C++, it should be recognized that we need ζ(z) at a finite number of integers. Thus one

can compute the necessary values e.g. in Mathematica with high precision and then they

can be copied into the C-code and stored in a constant array.

E Some remarks on the implementation of the numerical method at

strong coupling

In section 4 we explained, that at strong coupling the convergence of the numerical method

requires initial values being sufficiently close to the exact solution. To get such good initial

values, the value of g was increased in small steps and for a given value of g the initial values

were constructed from the previously computed numerical data belonging to neighboring

values of g. If one is interested in the strong coupling regime of the solutions, this method

seems disadvantageous, since one needs to run the numerical code many times in order to

reach the strong coupling regime. One might wonder, whether the strong coupling results

of section 5 make it possible to skip this lengthy process and to jump directly in the strong

coupling regime?

To answer this question, first let us recall the parameters of the numerical method:

• ”PRECISION” is the number of decimal digits used in the computations.

• N0 is the cutoff of the series (2.14) and (2.15).

• lc is the number of discretization points (4.2).

• NI is the cutoff parameter in the large u series (4.3), (4.4) and (4.5).

• Nu is an integer being large enough to get Qa|i(uA + i(Nu + 1
2)) within the de-

sired precision.

• h is small shift parameter to compute the derivatives: (4.41).

• λ and ν determine the damping parameter of the Levenberg-Marquardt

method (4.48).

• ”SWITCHOFF” is an integer number which determines the number of iterations be-

yond which the Levenberg-Marquardt damping parameter is switched off (I.e. λ = 0).

• “RESULT PRECISION” is an integer which stops the run of the numerical algorithm,

if S of (4.38) becomes smaller than 10−RESULT PRECISION.
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Looking at the list of parameters, it is obvious that a lot of parameters must be kept under

control. Each parameter has an effect on the speed of convergence and on the runtime

of the numerical code, but the first six parameters have the greatest influence on the

convergence, since they strongly affect the magnitudes of the numerical errors within the

numerical algorithm.

It follows, that not only the inappropriate choice of the initial values can lead to the

loss of convergence, but also the numerical errors caused by the inappropriate choice of the

parameters of the numerical method.

Let us assume, that one can construct appropriate initial values at strong coupling.

Then increasing g in large steps induces the following problem:

• The parameters of the numerical method must be changed appropriately, as well. If

they are set inappropriately, the numerical algorithm would fail to converge. Then

due to the high dimension of the parameter space, it would be very hard (practically

almost impossible) to find the optimal choice of parameters which would allow the

convergence.

In case g is increased in small steps, the parameters are to be changed by only “small”

amounts, ensuring a good control over them.

Another practical difficulty is that a strong coupling initial value formula will never

allow to construct such accurate initial values, which can be obtained from the high order

Taylor series methods of appendix A with g increased in small steps. If an initial value

configuration lies farther from the exact solution in the space of solutions, then it requires

more number of iterations to reach the exact solution. Thus, it might happen30 that the

increment of g in several smaller units can lead to the numerical solution of the problem

at a larger value of g even faster than g was increased in one single step.

Here we would also like to mention some technical limitations concerning the strong

coupling implementation of the numerical algorithm. If one uses an ordinary PC with an

i7 Intel core to run the numerical code, then at g ∼ 7 the running job uses ∼ 12 − 16

GigaByte of memory and the runtime is ∼ 3−4 days31 if one would like to get the solution

with ≈ 20− digits of precision. So, we think, that ordinary PC’s we used, are appropriate

for the numerical computations only in the regime g / 10 − 14. This gives a technical

limitation on the highest available value of g.

We just mention, that the large memory requirement and the long runtime are partly

the consequence of the necessity of using an arbitrary precision package for the C++

implementation. In our work we used the CLN (Class Library for Numbers) package.32

Finally, as closure we would like shed light on some difficulties in constructing appro-

priate strong coupling initial values from the results of section 5. The main difficulty is

that one should construct good initial values for ca,n(g) for all values of n. The conjectured

polynomial in n behavior allows one to get good initial values for ca,n(g), when n � √g.

30The authors had such concrete experience.
31Without exploiting the possibility of parallelization!
32http://www.ginac.de/CLN.
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Taking into account, that the characteristic wavelength of ca,n(g) in n is ∼ √g, the poly-

nomial behavior allows one to construct good initial values only for the “first wave” of

ca,n(g). (See figure 1.) Then at large n, the strong coupling fits of appendix F allows one

to construct initial values for ca,n(g). Though the precision of these initial values is not as

high as that of the n� √g “polynomial” regime. For the middle n ∼ √g regime we have

no formula to construct good initial values. Nevertheless, based on some extrapolations we

tried to construct initial values for this regime, as well. Unfortunately, such a construction

of initial values did not lead to the convergence of the numerical algorithm for the values

of g we tried.

F The large n behavior of ca,n(g) at strong coupling for the Konishi

operator

As it is demonstrated in figure 1, the large n behavior of ĉa,n(g) defined in (5.5) looks as

if it was a sine-function with some power-like enveloping curve. This is why, at large n we

fitted our numerical data by the following large n Ansatz:

ĉa,n(g) ' Ba(g)

(2n)εa(g)
sin

(
2π

Λa(g)
n+ ϕa(g)

)
. (F.1)

The fitting process was done by Mathematica’s NonlinearModelFit function. The error

bars indicated at the figures correspond to the range of 95% confidence intervals.33 The

fit ranges in n and g were [40, 80] and [5.1, 7.0] respectively. Figure 5 shows the numerical

values of Λa(g) together with the error bars at the discrete values of g in the range [5.1, 7.0].

The numerical data shown in figure 5, suggests that the value34 of Λa(g) is independent

of the value of the index a. On the other hand at strong coupling we fitted the data

points for Λa(g)√
g with a series in 1√

g . The first, constant coefficient of the fits proved to be

stable under changing the different parameters of the fitting process. Thus we made the

following conjecture:

Λa(g) = c0
√
g (1 + . . . ), a = 1, 2, 3, 4 (F.2)

with a common coefficient c0 = 4.35(5) and the dots stand for terms negligable for g →∞.
Another important parameter of the large n behavior is the exponent εa(g). The nu-

merical data together with the estimated error bars can be seen in figure 6. Looking at

figure 6, one can immediately see that the errors are much larger, than those of the char-

acteristic wavelengths. Figure 6 suggests that the exponents εa(g) tend to constant values

when g →∞. The 4 constant values are close to each other, but because of the large error

bars, one cannot conclude that they would be the same.

The data for the phase factors ϕa(g) are shown in figure 7. Figure 7 suggests, though

with large error bars, that the phases also tend to constant values at g → ∞, but these

constants depend on a.

33We just note, that the actual errors can be even larger due to systematic errors.
34At least within the numerical precison of Λa(g), which is somewhere between 10−3 and 10−4.
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5.5 6.0 6.5 7.0

g

10.5

11.0

11.5

12.0

Figure 5. The common plot of the numerical values of Λa(g) for a = 1, 2, 3, 4. The sizes of

the dots indicate the estimated error bars. The data points corresponding to different values of

a are distinguished by different colors. The colors: red, green, blue and purple correspond to the

a = 1, 2, 3 and 4 cases respectively. Here the data are so close to each other, that one cannot make

a difference between them. The plotted line corresponds to the ∼ √g fit of the numerical data.

5.5 6.0 6.5 7.0

g

1.60

1.65

1.70

1.75

1.80

Figure 6. The common plot of the numerical values of εa(g) for a = 1, 2, 3, 4. The data points

corresponding to different values of a are distinguished by different colors. The colors: red, green,

blue and purple correspond to the a = 1, 2, 3 and 4 cases respectively. Error bars are also indicated.
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5.5 6.0 6.5 7.0

g

2.0

2.2

2.4

2.6

2.8

Figure 7. The common plot of the numerical values of ϕa(g) for a = 1, 2, 3, 4. The data points

corresponding to different values of a are distinguished by different colors. The colors: red, green,

blue and purple correspond to the a = 1, 2, 3 and 4 cases respectively. Error bars are also indicated.

Finally, we close this appendix with some remarks concerning the estimated errors of

the parameters of the large n Ansatz (F.1). From figures 5, 6 and 7 it can be seen that the

parameters of the large n Ansatz (F.1) cannot be determined with high accuracy from the

numerical data of ca,n(g). There are 3 reasons for that:

• In the numerical method the series representaions (2.14) and (2.15) are truncated in

n. These truncations lead to increasing relative errors for ca,n with large n. Unfortu-

nately, this is the regime, where the Ansatz (F.1) is used.

• Another source of the large errors might be that the intuitively chosen Ansatz (F.1)

is not the 100% correct form of the asymptotic large n behavior of ĉa,n.

• Even if the intuitive Ansatz (F.1) gives the correct leading order large n behavior

of ĉa,n, the numerically accurate determination of its parameters would require the

knowledge of correction terms as well. Unfortunately, the analytic form of these terms

are unkown.

G Pade-approximation like formulae for the anomalous dimensions

In order for the readers to get some taste about the magnitude of the anomalous dimensions,

we begin this appendix with listing the numerical values of the anomalous dimensions at

some values of the coupling constant g =
√
λ

4π .

Apart from the numerical values we listed in the tables, the interested readers can

find all the numerical data we obtained for the anomalous dimensions, in the ancillary

DELTAdata.nb notebook file.
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g ∆ g ∆

0.5 5.71272342478773903062 4.0 14.45378636296056157594

1.0 7.60407071704738848334 4.5 15.29901169250471532720

1.5 9.11375404891588560886 5.0 16.09983932145390471841

2.0 10.40482174344050611272 5.5 16.7128504510418019769

2.5 11.55154711104216029680 6.0 17.5923066098442921880

3.0 12.59378147179885650906 6.5 18.2928791532391552907

3.5 13.55582301629291387584 7.0 18.9675672851951075502

Table 13. Some numerical values of ∆ for the Konishi operator.

g ∆S=4 ∆S=6 ∆S=8

0.5 8.378286749267 10.805035317202 13.12115866686

1.0 11.02483082714 13.965696581702 16.67666058421

1.5 13.13499808832 16.498636307379 19.54186450481

2.0 14.94093551777 18.673499820718 22.01043492694

2.5 16.54666414765 20.611840708885 24.21585170200

2.7 17.14616785384 21.336481745366 25.04143686845

3.0 18.00750137760 22.378417558485 –

3.5 19.35706856273 24.012697674227 –

4.0 20.61764227985 – –

4.1 20.86053885660 – –

Table 14. Some numerical values of ∆ for the twist-2 operators with S = 4, 6, 8.

Apart from fitting the strong coupling series coefficients of the the anomalous dimen-

sions, we also used the numerical data to construct Pade-approximation like formulas in

order to describe the anomalous dimensions of the operators under consideration at all val-

ues of the coupling constant with satisfying numerical precision. Instead of the computation

of an interpolating function composed of rational polynomials, we performed a nonlinear

model fit to the data points. This approach gave smooth approximants for real values of

the coupling constant, and could inform us about the validity of the approximation as well.

We found that fitting a naive rational polynomial approximation for ∆(g) does not

give stable35 values for the coefficients of the rational polynomial. This is not surprising, if

one observes that in the perturbative expansion around g = 0 only even powers are present,

while in the strong coupling regime the leading term is ∼ √g and the corrections go as

inverse powers of g.

To have an optimal form for the approximation, we basically followed the Ansatz used

in [23]:

∆(g) = (g2 + g2
b )

1/4a0 + a1h+ . . . anh
n

1 + b1h+ . . . bnhn
. (G.1)

35Here, by stability, we mean stability with respect to increasing the order of polynomials in the fitted

rational expressions.
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Figure 8. The plot of the Pade-approximation like formula and the data points for the anomalous

dimension of the Konishi operator.

Where h = g2√
g2+( 1

4)
2

and gb is a suitable constant, whose value was chosen to be 2 in the

cases of S = 2, 4 and it was set to be 1 in the cases of S = 6, 8.

In principle some analytical information can be built into the Ansatz from the pertur-

bative results [32], by fixing some relations between coefficients. For practical calculations

however, we exploited only the known value36 of ∆(0) and the leading order strong coupling

asymptotics of ∆(g) given in (5.2). These data fixed a0 and the ratio of an and bn.

Because of the high precision of the numerical data, an unusually high number of

coefficients could be fitted. For the Konishi operator, we stopped at n = 15, where the

coefficients seem to be still stable with respect to changing the value of n.

We performed the fits by Mathematica’s build in NonlinearModelFit function, which

provides “prediction bands”37 allowing one to infer to the accuracy of the Pade-approxi-

mation like formula, as well.

The measured points and the fitted curve are shown in figure 8.

Because of the small magnitude of the deviations, we show separately the residual plot

of the data in figure 9. Figure 9 shows that the data points are so close to the fitted curve

that the data points are approximated with the Pade-approximation like formula with 14

digits of accuracy.

To predict the accuracy of the fitted curve beyond the measured interval, we used

Mathematica’s build in “MeanPredictionBands” function and we set the confidence level

to 99%. Figure 10 shows that even outside of the range of available numerical data, the

fitted Pade-approximation like formula can be taken seriously up to 9 digits of accuracy.

36I.e. ∆(0) = L+ S, where L = 2 for twist-2 operators and S = 2 for the Konishi- state.
37Interested readers can gain more information about this function in the help of Mathematica.
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Figure 9. The plot of the difference of the Pade-approximation like formula and the data points

for the anomalous dimension of the Konishi operator.

Figure 10. Magnitude of the confidence interval radius calculated from the mean prediction bands

at confidence level 99% for the anomalous dimension of the Konishi operator.

Analogously to (G.1), Pade-approximation like formulas were constructed for the S =

4, 6, 8 cases, as well. The structure of the approximation formulae are the same as that

of the Konishi operator, the only difference is the actual form of the rational h-dependent

factor in (G.1). The concrete form of the bulky approximation formulae can be found in

the approx.nb notebook file attached to the paper.

H Various tables of numerical data

This appendix contains some tables of numerical data which demonstrates that the coeffi-

cients c
(k)
a,n of (5.7) are polynomials of order 2k in n.
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n c
(2)
1,n α

(n)
1,2 ∆Prel

1 0.1804664578815959 0 0

2 1.481738156681282 0.1804664578815959 0

3 5.247995942046115 1.120805240918091 0

4 13.30837177138386 1.344180845647056 0

5 27.97694871345078 0.4849511117607040 1.5 · 10−11

6 52.05276094865590 – 3.4 · 10−11

7 88.81979377072911 – 3.4 · 10−11

8 142.0469835827955 – 3.8 · 10−11

9 215.9882178816906 – 1.3 · 10−10

10 315.3823355026930 – 4.3 · 10−10

11 445.4531260569294 – 8.0 · 10−10

12 611.9093290618418 – 1.1 · 10−9

13 820.9446344509916 – 2.3 · 10−8

14 1079.237672828109 – 7.4 · 10−8

Table 15. Numerical values of c
(2)
1,n and the estimated values of the coefficients α

(n)
1,2 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.

n c
(3)
1,n α

(n)
1,3 ∆Prel

1 -0.006431714483032767 0 0

2 -0.6062295975751446 -0.006431714483032767 0

3 -4.686060101968099 -0.5933661686090790 0

4 -19.97352168384532 -2.886666452691764 0

5 -62.52223158770824 -4.840932003491656 0

6 -161.1215781979589 -3.485086784826361 0

7 -362.6311389926113 -0.9246655667562551 9.8 · 10−11

8 -738.2397638237687 – 3.8 · 10−11

9 -1390.649323143346 – 9.5 · 10−10

10 -2462.183134098600 – 2.2 · 10−9

11 -4143.819016121646 – 3.8 · 10−9

12 -6685.146976936698 – 7.4 · 10−9

13 -10405.25164211582 – 3.1 · 10−8

14 -15704.51870008449 – 1.0 · 10−7

Table 16. Numerical values of c
(3)
1,n and the estimated values of the coefficients α

(n)
1,3 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.
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n c
(1)
2,n α

(n)
2,1 ∆Prel

1 -0.6227843696181658 -0.6227843696181658 0

2 -1.793005777675029 -1.170221408056863 0

3 -3.510664224170827 -0.5474370384389350 0

4 -5.775759709104784 – 1.3 · 10−13

5 -8.588292232476890 – 2.7 · 10−13

6 -11.94826179428543 – 5.4 · 10−13

7 -15.85566839449540 – 3.0 · 10−12

8 -20.31051203322899 – 2.4 · 10−13

9 -25.31279271044849 – 3.3 · 10−12

10 -30.86251042620811 – 8.9 · 10−12

11 -36.95966518654400 – 1.8 · 10−10

12 -43.60425697643396 – 9.2 · 10−11

Table 17. Numerical values of c
(1)
2,n and the estimated values of the coefficients α

(n)
2,1 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.

n c
(2)
2,n α

(n)
2,2 ∆Prel

1 0.09585846497288947 0.09585846497288947 0

2 1.021217323436306 0.9253588584634161 0

3 4.167297736496755 2.220721554597033 0

4 11.56177286163683 2.027673157482597 0

5 25.87891733851396 0.6466014821748191 0

6 50.43960728878038 – 3.5 · 10−12

7 89.21132031318082 – 4.3 · 10−11

8 146.8081355087541 – 6.8 · 10−14

9 228.4907334402296 – 3.3 · 10−11

10 340.1663961625466 – 6.9 · 10−11

11 488.3890078651079 – 1.4 · 10−9

12 680.3590519535390 – 6.5 · 10−10

Table 18. Numerical values of c
(2)
2,n and the estimated values of the coefficients α

(n)
2,2 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.
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n Imc
(1)
3,n Imα

(n)
3,1 ∆Prel

0 5.524784188107441 – –

1 64.74543991933578 -13.32477173346874 0

2 196.8455216110168 78.07021165280452 0

3 382.9754733415742 54.02987003887646 0

4 623.1352951111397 – 2.1 · 10−13

5 917.3249869194190 – 1.1 · 10−13

6 1265.544548767033 – 4.2 · 10−13

7 1667.793980652089 – 2.9 · 10−13

8 2124.073282581139 – 1.7 · 10−12

9 2634.382454575155 – 1.3 · 10−11

10 3198.721496788098 – 7.6 · 10−11

11 3817.090409134617 – 1.4 · 10−10

12 4489.489191747794 – 2.4 · 10−10

Table 19. Numerical values of c
(1)
3,n and the estimated values of the coefficients α

(n)
3,1 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.

n Imc
(2)
3,n Imα

(n)
3,2 ∆Prel

0 5.325801411122541 – –

1 -2.288843244285942 6.431972167002477 0

2 -118.7316609148375 -8.720815411288419 0

3 -498.9700840592895 -107.7220022592632 0

4 -1362.894724197043 -156.0736032146372 0

5 -2994.213201152263 -63.81700830476387 0

6 -5740.450143161579 – 1.9 · 10−11

7 -10012.94718658865 – 2.5 · 10−11

8 -16286.86297686484 – 6.9 · 10−11

9 -25101.17316925544 – 2.0 · 10−10

10 -37058.67044144858 – 7.6 · 10−10

11 -52825.96445690946 – 1.2 · 10−9

12 -73133.48191514628 – 1.8 · 10−9

Table 20. Numerical values of c
(2)
3,n and the estimated values of the coefficients α

(n)
3,2 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.
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n Imc
(1)
4,n Imα

(n)
4,1 ∆Prel

1 7.173847962732688 9.268243065061945 –

2 28.16886240030072 18.90061933523877 0

3 61.47744707921176 14.40796534367226 0

4 109.1939971017951 – 0

5 171.3185124681082 – 3.4 · 10−13

6 247.8509931781603 – 7.3 · 10−13

7 338.7914392317561 – 5.2 · 10−13

8 444.1398506280317 – 1.8 · 10−12

9 563.8962273730128 – 5.7 · 10−12

10 698.0605694634556 – 1.3 · 10−11

11 846.6328769665629 – 9.9 · 10−11

12 1009.613149902535 – 1.3 · 10−10

Table 21. Numerical values of c
(1)
4,n and the estimated values of the coefficients α

(n)
4,1 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.

n Imc
(2)
4,n Imα

(n)
4,2 ∆Prel

1 -2.022552224999431 -0.9871619756651118 –

2 -9.130909582033406 -8.143747606368294 0

3 -45.43588371906081 -28.16122653065911 0

4 -149.3926321550942 -39.49054776834688 0

5 -377.5095715450139 -17.01786888653341 0

6 -803.3129874302336 – 0

7 -1517.347034225805 – 8.5 · 10−12

8 -2627.173735175549 – 4.2 · 10−11

9 -4257.372983040239 – 6.4 · 10−11

10 -6549.542538591222 – 1.2 · 10−10

11 -9662.298038790211 – 8.8 · 10−10

12 -13771.27298617740 – 2.0 · 10−9

Table 22. Numerical values of c
(2)
4,n and the estimated values of the coefficients α

(n)
4,2 of the polyno-

mial Ansatz (5.17). ∆Prel is the relative error measuring, how precise the polynomial description

of the various coefficients.
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