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Abstract: Starting with QCD, we derive an effective field theory description for for-

ward scattering and factorization violation as part of the soft-collinear effective field the-

ory (SCET) for high energy scattering. These phenomena are mediated by long distance

Glauber gluon exchanges, which are static in time, localized in the longitudinal distance,

and act as a kernel for forward scattering where |t| � s. In hard scattering, Glauber glu-

ons can induce corrections which invalidate factorization. With SCET, Glauber exchange

graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear,

or ultrasoft gluons. We derive a complete basis of operators which describe the leading

power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity

singularities and subtractions which prevent double counting. Our results include a novel

all orders gauge invariant pure glue soft operator which appears between two collinear ra-

pidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov

vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator

basis is derived using tree level and one-loop matching calculations from full QCD to both

SCETII and SCETI. The one-loop amplitude’s rapidity renormalization involves mixing of

color octet operators and yields gluon Reggeization at the amplitude level. The rapidity

renormalization group equation for the leading soft and collinear functions in the forward

scattering cross section are each given by the BFKL equation. Various properties of Glauber

gluon exchange in the context of both forward scattering and hard scattering factorization

are described. For example, we derive an explicit rule for when eikonalization is valid, and

provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In

hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure

that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely,

certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by

taking them to be in specific directions. We also discuss criteria for factorization violation.
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1 Introduction

Progress in our understanding of interacting four dimensional quantum field theories has

come from various directions. The profoundly rich structure of asymptotically free confin-

ing theories, such as QCD, has been illuminated through the use of various tools which

have been developed over the past 50 years. For certain nonperturbative problems we have

lattice calculations at our disposal, while for heavy particles and hard scattering processes

perturbative QCD has significant predictive power when used in conjunction with factor-

ization theorems or operator expansions. In these cases there are effective field theory

(EFT) tools for various power expansions, for example, in the lattice spacing, in light and

heavy quark masses, and in ratios of kinematic variables, and the field theory formalism

to carry out these expansions has been worked out to subleading orders.

A large number of open questions in QCD arise when considering aspects of near

forward scattering, which dominates the total cross section, and where approximations are

often needed to study the leading power term. If we consider two-to-two scattering then

we can define near forward scattering with Mandelstam variables as |t| � s, where “near”

is quantified by the small ratio |t|/s. This limit is often referred to as the high-energy limit

or the Regge limit. Beyond two to two scattering there are more possibilities and one or

more observables must be chosen to quantify the notion of nearness which take the place of

|t|. It could, for instance, be t-channel momenta defined through various pairs of particles,

or a cut on the rapidity or momentum transverse to the scattering axis. Near forward

scattering can be contrasted with the case of hard scattering where |t| ∼ s are both large.

In forward scattering, if t or a suitable generalization is much larger than the scale

of strong coupling, |t| � Λ2
QCD, then there is a well defined notion of a perturbative

scattering vertex and one may attempt to factorize the long distance physics, with wave-

lengths of order the scale ΛQCD, from the relatively short distance physics at the scale

t. In particular we can aim to find observables for which one can factorize rates into a

perturbative scattering kernel and a set of long distance matrix elements like parton dis-

tribution functions, in such a way as to preserve a reasonable amount of predictive power.

At leading power in the forward scattering limit, there are no states with virtuality of

order s contributing to the cross section, and the scale s arises dynamically through a

separation of modes in rapidity space, where the sum of contributions from two sectors

lnQ± can yield lnQ+ + lnQ− = ln s. The scale s still plays an important role, due to

the existence of parametrically large logs from the hierarchy |t|/s � 1, which can cause

standard perturbation theory to break down. From the relation x ∼ |t|/s that appears

in DIS and Drell-Yan, the forward scattering limit is also often referred to as the small-x

limit. Examples of formalisms designed to sum these logarithms and to treat the associated

small-x physics include the classic Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [1, 2],

the dipole approximation [3], the Balitsky-Kovchegov (BK) equation [4, 5], the Balitsky-

Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (BJIMWLK) equation [6, 7], as

well as general calculational tools like the use of Wilson lines [8–10], effective actions [11, 12]

and the multi-Wilson line EFT [4, 13, 14]. The structure of the BJIMWLK evolution of

Wilson lines at higher orders has been analyzed in [15]. These resummations are of phe-
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Figure 1. Tree level gluon exchange for q-q̄ forward scattering. In a) we show the full QCD

graph with a gluon exchange between a quark carrying n-collinear momenta pn2,3 and an antiquark

carrying n̄-collinear momenta pn̄1,4. In b) we show the two notations we will use for this leading

power forward scattering in the Effective Theory.

nomenological relevance and are also useful tools for checking all orders ansätze which are

often made when trying to form theorems regarding the all orders form of amplitudes, see

e.g. [16–18]. Finally when t becomes of O(Λ2
QCD) we are dealing with the non-perturbative

scattering of partons that are most often within a bound proton or nucleus, and there is

no longer a factorization between t and Λ2
QCD.

The study of hard scattering processes at hadron colliders is crucial for exploring short

distance physics. Here an important role is played by factorization formulae which allow one

to define universal functions describing different types of perturbative and nonperturbative

physics. The near forward scattering region can play an important role in hard scattering

processes as well, since not all of the partons in a hadron are active, i.e. involved in the

hard scattering. These additional “spectator” partons can interact with each other even

when they are in hadrons traveling in opposite directions, through processes closely akin to

forward scattering. These interactions can spoil factorization for a hard scattering process,

since they couple together partons associated to different hadrons, and hence cannot be

described solely by single hadron matrix elements, like parton distribution functions. The

process through which massless spectators interact is called “Glauber exchange” and prov-

ing that such interactions cancel in various observables has been a subject which, while well

appreciated, has often not received the attention it deserves. Derivations of factorization

theorems for hadron collisions exist in only a few special cases, namely for Drell-Yan-like

process [19–21], for single inclusive hadron production [22, 23], and recently for double-

parton scattering [24] (with arguments for situations with observed jets in [25]), each using

the techniques of CSS [21]. These results are often used to motivate using factorization to

make predictions in other hadron-hadron scattering observables without complete proofs.

In general there are many other important ingredients in factorization proofs, including

hard-collinear factorization, soft-collinear factorization, ultrasoft-collinear factorization,

factorization for the observable, as well as the uniqueness of soft and collinear Wilson lines.

The Soft-Collinear Effective Theory (SCET) [26–30] has allowed this set of questions to be

addressed with Lagrangian and operator based methods, facilitating significant advances in

the range of processes to which we can consider applying factorization formulae. However,

an operator based description of Glauber exchange has not yet been formulated in SCET.

An example of a Glauber exchange is shown in figure 1. These exchanges are re-

sponsible both for leading power forward scattering as well as factorization violation in

– 3 –
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hard scattering, and are discussed in more detail in sections 3 and 5. If Glauber exchange

contributions do not spoil factorization, a formalism to treat Glauber exchange can still

provide a useful perturbative tool to facilitate the summation of large logs that appear

from the forward limit, ln(s/t) or ln(x), where x is an appropriate Bjorken-type variable.

In situations where factorization is violated a formalism to treat Glauber exchange can be

a useful tool for both calculating and characterizing the nature of the violations.

The purpose of this paper is to set up a systematic effective theory with which to

study the near forward scattering region of QCD and factorization violation in hard scat-

tering processes in a single framework. We will work within the framework of SCET. We

construct a complete leading power Lagrangian for Glauber exchange and show that it fits

seamlessly with the current tools used to study hard, collinear, soft, and ultrasoft factor-

ization in hard scattering processes, without inducing double counting. By working in the

framework of an effective field theory, one is able to systematically keep track of terms in

the power expansion, exploit symmetries, and derive when certain approximations (like the

eikonal approximation) are valid and when they break down. Our EFT will also employ

a MS style renormalization for rapidity divergences, making it simple to derive rapidity

renormalization group equations. Through matching calculations we can also directly de-

rive and prove results by calculations in full QCD in the appropriate limit. The formalism

presented here gives a starting point for using a field theoretic method to study the physics

of the near forward region, even beyond leading power. It also provides a direct method

of calculating (possible) factorization violating contributions, and potentially could yield

field theoretic methods for handling underlying event contributions in hadronic collisions.

Before proceeding, we briefly comment on the connections of our work to earlier lit-

erature. First we note that in the CSS formalism [21, 31] that Glauber contributions are

discussed in detail, but are treated as a momentum region and hence are not fully separated

from soft and collinear gluon dynamics. This has advantages for certain steps of a factor-

ization proof, but makes it more difficult to associate unique contributions with Glauber

exchange, and also to see how factorization arises for processes that retain nontrivial soft

functions. The method of regions [32] has been used to study the Glauber region in ref. [33],

but an effective field theory for Glauber exchange has not emerged from this framework.

Although Glauber gluons have been formulated as distinct fields in SCET in refs. [34–38],

this has only been done for cases where they are treated as a background field, such as

heavy-ion collisions. This formalism with background fields is referred to as SCETG, and

we reserve this notation for referring to background Glauber fields. For this case issues with

singularities and double counting are easier to control. For the situation of interest here,

Glauber gluon exchange should be treated with operators yielding a scattering potential

involving soft and collinear fields rather than explicit Glauber fields, as discussed in [39].

A subtraction formalism that avoids double counting for Glauber gluon exchange in loop

diagrams was discussed in refs. [39, 40], but so far only simpler abelian cases have been

addressed. (We also note that Glauber interactions cannot in general be completely eikon-

alized as in ref. [41].) In ref. [42] the importance of Glauber exchange in SCET for Regge

phenomena was emphasized, and in ref. [43] Glauber exchange was analyzed for scalar φ3

theory, arguing that its absence in the threshold expansion with certain regulators is not
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indicative of its absence in a unitary effective field theory. Steps toward deriving an SCET

based operator description of Glauber exchange for the full non-abelian case of QCD were

taken in ref. [44], but a full Lagrangian was not obtained.

Various examples of factorization violation have been studied in the literature. An

important type of factorization violation occurs if we cannot disentangle the physics as-

sociated to the colliding protons into independent parton distribution functions, as in the

CSS analysis [21]. Other examples include processes where the measurement does not fac-

torize in a sufficiently simple manner, such as for the Jade algorithm, see [45], or where

the structure of collinear Wilson lines cannot be uniquely determined for the hard scatter-

ing process such as hadron production H1 + H2 → H3 + H4 + X with a measured small

pT (H3H4) [46–49]. There are also examples of factorization violation at the amplitude

level. This includes factorization violation for splitting functions in space-like collinear

limits [50, 51], which are connected to superleading logarithms [52]. Another example is

Regge Factorization violation from terms that go beyond the Regge amplitude formula [53–

55]. These examples of factorization violation are related to Glauber gluon exchange, and

hence can be explored in our formalism.

In the context of small-x physics a multi-Wilson line effective field theory for forward

scattering was constructed by Balitsky in refs. [4, 13, 14]. In this framework rapidity fac-

torization separates the amplitude into coefficient functions and matrix elements of multi-

Wilson line operators, and the effective Lagrangian has an infinite number of terms. In

contrast, in our EFT rapidity factorization separates soft and collinear modes at the level

of a Glauber Lagrangian with a fixed number of terms at leading power, and the soft and

collinear modes themselves still appear on the same footing as modes in the EFT. This lead-

ing Lagrangian can be inserted any number of times when constructing leading power ampli-

tudes. Our Glauber interactions are not a priori eikonal, but become so when it is appropri-

ate. This makes it possible to use our EFT framework for both forward and hard scattering

processes. The soft modes in our Glauber operators have soft Wilson line interactions which

are the most relevant at the leading logarithmic order, as well as terms involving dressed

soft field strengths that are important at higher orders. Our collinear modes effectively

provide an EFT for the Wilson coefficient source terms of ref. [14]. We will elaborate on the

connection between our EFT and the multi-Wilson line framework in sections 9.2 and 9.3.

2 Guide for the reader

This paper is written in a fairly modular fashion so that readers can meet their needs

without necessarily reading the entire manuscript. In section 3 we introduce the EFT

quark and gluon modes for forward and hard scattering, and in section 4 we provide a short

review of SCET and our notation, which covers the material needed for the remainder of the

paper. (Further background information on EFT and SCET can be obtained from the free

online 8.EFTx course [56].) Readers whose primary interest lies in the construction of the

Glauber Exchange EFT should read sections 5, 6, 7, those interested in forward scattering

and resummation should read sections 5, 7, 8, 9, and those who are interested the role of

Glaubers in hard scattering and factorization violation can read sections 5, 10, 11.

– 5 –
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As a further guide, we also summarize individual sections in greater detail. In sec-

tion 4.1 we discuss the Lagrangians involving various soft and collinear fields in SCETI

and SCETII, and give in section 4.2 the standard gauge invariant building blocks for SCET

operators. Section 5.1 gives the key results for the gauge invariant Glauber operators in

SCETI and SCETII. These operators describe offshell Glauber exchanges at leading order

in the power counting and to all orders in αs. Many of the results listed in this section are

derived systematically in later sections. In section 5.2 we describe our method for regulat-

ing rapidity singularities which uses and builds on refs. [57, 58], and discuss the structure

of zero-bin subtractions [59] in the presence of Glauber modes. In section 5.3 we give the

power counting formula for SCET in the presence of Glaubers that is valid to all orders in

αs and all orders in the power expansion, as well as discuss the completeness of our leading

power Glauber Lagrangian. Observables to which the Glauber Lagrangian contributes are

discussed in section 5.4.

In section 6.1 we derive the structure of collinear and soft Wilson lines in the Glauber

operators by carrying out tree level matching calculations. Because of time-ordered prod-

uct contributions from diagrams with onshell propagators in the EFT these matching

calculations are more non-trivial than the SCET matching done to yield Wilson lines in

refs. [27, 29, 30]. The use of the equations of motion are also crucial to our formulation

of gauge invariant Glauber operators. This use of the equations of motion explains why

the contributions from these operators appear to be so different from those that one would

infer by attempting to use the method of regions to define Glauber interactions in an EFT

setting. In section 6.2 we show that the one-gluon Feynman rule of a particular soft opera-

tor (OABs ) reproduces the Lipatov vertex. In sections 6.3 and 6.4 we construct a complete

basis of soft operators and carry out tree level matching calculations with up to two soft

gluons in order to derive the complete soft operator appearing in the Glauber Lagrangian

between n and n̄ rapidity sectors from first principles.

In sections 7.1 and 7.3 we carry out one-loop matching calculations for qq̄ forward

scattering in SCETII and SCETI respectively. This allows us to demonstrate our use of

dimensional regularization and rapidity regulators, showing how the infrared divergences

due to an IR mass or offshellness in the full QCD results are exactly reproduced by a sum of

contributions in the effective theory. Each diagram in the effective theory also probes only

one scale for the invariant mass µ and one scale for the rapidity renormalization parameter

ν. We demonstrate that even the full theory one-loop constants are reproduced by the EFT

calculation, and explain the connection of this result to the absence of nontrivial dynamics

at the hard scale in forward scattering. In section 7.2 we consider the renormalization

of the rapidity divergences that appear in the one-loop virtual amplitudes in SCETII,

demonstrating that the manner in which they renormalize the octet operators precisely

corresponds with gluon Reggeization. This result appears for all operators with octet

quantum numbers (both from two quarks and from two gluons), and operator mixing plays

an important role in yielding the Reggeization.

In section 8 we square, factorize, and renormalize the first non-trivial amplitude for

forward scattering in the presence of Glauber gluon exchange. In particular, we consider

processes involving n-n̄ scattering without phase space restrictions on soft gluons. For these

– 6 –
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processes we define novel soft and collinear functions in section 8.1, and determine their

rapidity renormalization group evolution by extending the earlier soft virtual calculations

to include divergences from real soft radiation. We explicitly compute the one-loop rapidity

renormalization group equation for this soft function and show that it is given by the BFKL

equation in section 8.2. Using renormalization group consistency we also show that the

rapidity renormalization group equation (RGE) for each of the collinear functions is given

by a BFKL equation in section 8.3.

In section 9.1 we calculate graphs appearing from iterations of the Glauber operator.

Any crossed diagram carrying Glauber momentum vanishes to all orders in αs with our

rapidity regulator. The sum of all pair-wise iteration diagrams yields the classic eikonal

phase, exp
[
iφG(b⊥)

]
, where b⊥ is the distance between the particles in transverse impact

parameter space (conjugate to the exchanged transverse momenta q⊥). We also give a

spacetime picture for the rapidity regulator for Glauber potentials. In section 9.2 we discuss

the general structure of iterated Glauber exchange in the presence of radiation and non-

Glauber loops. We show that such instantaneous iterations yield vanishing graphs unless

they can be collapsed to a common longitudinal position. We also derive the conditions

under which source propagators that accompany Glauber exchange eikonalize. Then in

section 9.3 we make the connection between Glauber exchange and the semiclassical picture,

and derive the connection of our EFT framework to the multi-Wilson line EFT framework

and the shock-wave picture.

In section 10 we consider graphs involving Glauber operators in the presence of a hard

scattering vertex. In section 10.1 we demonstrate that for interactions between active lines

there is an overlap between Glauber exchange and a contribution that is naively present

in soft gluon exchange. In particular, the Glauber 0-bin subtraction for soft loop graphs

is exactly equal to the Glauber contribution, implying that the same results are obtained

for this type of hard scattering diagram whether or not Glauber exchange is included. In

section 10.2 we extend this analysis to a single soft gluon emission at one-loop in the ee, ep

and pp channels, showing how Glauber exchange reproduces the iπ terms in the one-loop

soft current of ref. [60]. Then in section 10.3 we extend our discussion of active lines with

soft and Glauber diagrams and their overlaps to two-loops.

In section 11 we consider the additional complications that arise when including inter-

polating fields for the initial proton states in a collider hard scattering process. This leads

to a classification of Glauber exchange diagrams into spectator-spectator (S-S), active-

spectator (A-S) and active-active (A-A) cases which are treated in sections 11.1, 11.2,

and 11.3, respectively. For the simplest examples in these categories we show that iterated

Glauber exchange yields either phases or contributions that are related to the direction of

soft or collinear Wilson lines in the hard scattering operators (i.e. can be absorbed into

Wilson lines), and hence cancel for an inclusive cross section.

In section 12 we conclude. Several more technical calculations are included in ap-

pendices. This includes a derivation of a general SCET power counting formula in the

presence of Glauber exchange in appendix A. In appendix B we summarize useful formula

for coupling expansions, loop integrals, and a few Feynman rules we use that are not given

in section 5. In appendix C we carry out several iterative Glauber exchange calculations

that produce phases in the presence of a hard scattering.
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3 Glauber exchange and modes for forward and hard scattering

The mechanism for near forward scattering is often referred to as “Glauber exchange”1

which applies to the exchange of an off shell gluon(s) or photon(s) whose transverse mo-

mentum (relative to the incoming beams) is hierarchically larger than the longitudinal

components of the momentum four vector, k2
⊥ � k+k−. This is distinct from the limit asso-

ciated to Coulomb exchange, ~k 2 � (k0)2, where m+k0 is the total energy of a heavy source

of mass m. (For the Coulomb case with two heavy sources the power counting is done in the

relative velocity v ∼ k0/|~k| ∼ |~k|/m.) A tree level example of Glauber exchange between

a forward scattered qq̄ pair is shown in figure 1, where the graph gives rise to a potential

VG(q⊥) = −8παs(µ)

~q 2
⊥

=
8παs(µ)

t
. (3.1)

Glauber and Coulomb exchange share many of the same properties: both are instanta-

neous in time and lead to poles in scattering amplitudes in the t/s → 0 and v → 0 limits

respectively. The Glauber and Coulomb exchanges both generate classical field configu-

rations via summing ladder diagrams (see section 9), and dressing these exchanges with

loop graphs gives rise to large logs of the dimensionless parameters v and t/s respectively.

Differences include the fact that Glauber exchange is instantaneous in longitudinal dis-

tance and hence more singular, and that Glauber sources can undergo collinear splittings

at leading power, unlike heavy particles. The structure of modes in SCET that we describe

below (with Collinear, Soft, Ultrasoft, and Glauber modes) also has both similarities and

differences to the formulation of NonRelativistic QCD (NRQCD) in ref. [62] (involving

potential operators, and simultaneously soft and ultrasoft modes).

The field theory ingredients for our formalism are familiar from hard scattering factor-

ization, namely various soft and collinear fields and their corresponding regions in momen-

tum space. To introduce some of the key concepts consider as an example the factorization

theorem for inclusive Higgs production via gluon fusion,

σ(mH) =

∫
dY
∑
i,j

∫
dξa
ξa

dξb
ξb

H incl
ij

(
xa
ξa
,
xb
ξb
,mH , µ

)
fi(ξa, µ)fj(ξb, µ) , (3.2)

where mH is the Higgs mass, Y is the Higgs rapidity, xa = mHe
Y /Ecm, and xb =

mHe
−Y /Ecm. Here fi(ξa, µ) is the parton distribution function (PDF), which is a long-

distance matrix element that encodes the probability of finding the parton of type i inside

the proton with a light-cone momentum fraction ξa. The coefficient function H incl
ij de-

scribes the short-distance hard scattering process which at its core involves gluons fusing

with the heavy top-quark loop, and producing the Higgs boson. The renormalization scale

µ is a gauge and Lorentz invariant cutoff that separates the short distance dynamics at

scales > µ into H incl
ij , while the long distance dynamics at scales < µ appears in fi and fj .

The result in eq. (3.2) is valid to all orders in αs, including the dominant nonperturbative

corrections through fi and fj , while corrections to this formula are suppressed by powers

of ΛQCD/mH � 1.

1To our knowledge, the use of “Glauber” for exchanges with these momenta occurred first in ref. [61].
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The physics program at a collider like the LHC employs a much richer spectrum of

observables than the Drell-Yan-like process in eq. (3.2). For these more general observables

there is often belief in the validity of the factorization hypothesis, but no complete proofs.

The differential cross section for observables a1, a2, a3, . . . is often written as

dσ

da1 da2 da3 · · ·
= σ̂ijk`...(a1, a2, . . .)⊗ fp/i fp/j{⊗ fk→H ⊗ · · · ⊗ f`→H ⊗ Fm} , (3.3)

where fi and fj are PDFs, we denote convolution integrals by ⊗, their is an implicit sum

over color channels and flavor indices for the partons, and we may also have fragmentation

functions f`→H for a parton ` converting into hadron H. Here σ̂ijk`... encodes corrections

that can be calculated perturbatively using quarks and gluons as the degrees of freedom,

with or without log resummation, so it has an expansion in αs(µ) � 1, with or without

αs(µ) ln(an/am) ∼ 1. The function Fm denotes final state nonperturbative hadronization

corrections for the channel m. These corrections are important for some jet observables,

and for cases where they arise from soft dynamics can be formulated as vacuum transition

matrix elements in quantum field theory [63–69]. For cases with large logarithms between

perturbative scales, there is usually a further factorization of the perturbative calculation

into components describing different momentum regions. For example, for an exclusive jet

cross section with precisely N -jets,

σ̂κ =
∑
κi

tr HN
κH
IκaIκbJκ1 × · · · × JκNSNκS , (3.4)

where the κs denote parton channel indices, the hard function HN denotes short distance

dynamics at the collision scale that produces N energetic partons, the I encodes initial state

energetic perturbative radiation, the Js denote final state energetic radiation in the jets,

and SN denotes perturbative soft radiation between the initial and final state partons.

For simplicity we have suppressed convolutions between the various functions shown in

eq. (3.4), and encoded the color matrix structure of HN and SN in the indices κH , κS .

Each of these functions encodes physics at different invariant mass scales and rapidities

appearing in the process, and renormalization group evolution of these functions can be

used to sum large logarithms. (See for example ref. [70] for a factorization formula for the

N-jettiness event shape for pp collisions with invariant mass resummation, or ref. [58, 71]

for a factorization formula for pT resummation in Higgs production in a pp collision where

both invariant mass and rapidity renormalization appear.) An even less inclusive example

of the use of factorization as in eq. (3.3) is in parton shower Monte Carlos like Pythia [72]

and Herwig [73]. Here in principle one can ask for a cross section that is fully differential

in all final state hadronic momenta, but it is well appreciated that only some subset of

more inclusive observables will satisfy the criteria for factorization. In the Monte Carlo

implementation there is also a separation/factorization of the initial state and final state

perturbative showers from the PDFs and final state hadronization, making the structure

somewhat analogous to eq. (3.4).

The key ingredients underlying the idea of factorization is the separation of momen-

tum fluctuations that occur at different scales, much like the standard idea of scale sep-

aration in quantum field theory. For factorization at hadron colliders the key infrared
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mode fields pµ momentum scaling physical objects

onshell

na-collinear ξna , Aµna (na · p, n̄a · p, p⊥a) ∼ Q(λ2, 1, λ) collinear initial state jet a

nb-collinear ξnb , A
µ
nb

(nb · p, n̄b · p, p⊥b) ∼ Q(λ2, 1, λ) collinear initial state jet b

nj-collinear ξnj , A
µ
nj (nj · p, n̄j · p, p⊥j) ∼ Q(λ2, 1, λ) collinear final state jet in n̂j

λ, (λ2, 1, λ)

soft ψS, AµS pµ ∼ Q(λ, λ, λ) soft virtual/real radiation
λ3/2, λ

ultrasoft ψus, A
µ
us pµ ∼ Q(λ2, λ2, λ2) ultrasoft virtual/real radiation

λ3, λ2

offshell

Glauber — pµ∼Q(λa, λb, λ) with a+ b > 2 forward scattering potential
(here {a, b}={2, 2}, {2, 1}, {1, 2})

hard — p2 & Q2 hard scattering

Table 1. Infrared momentum regions relevant to hard scattering processes at hadron colliders and

the corresponding quark and gluon fields in SCET. Here Q is the scale of the hard interaction, and

λ � 1 is a dimensionless power counting parameter. Below the EFT fields we show their power

counting (all collinear cases are analogous). The collinear directions nµi = (1, n̂i) are different for the

incoming beams i = a, b and for each outgoing identified jet where n̂j is the jet direction. Another

standard convention that we will use is the auxiliary vector n̄i = (1,−n̂i), so that ni · n̄i = 2. For

Glauber exchange between n-collinear, n̄-collinear, and soft particles we have the cases {a, b} =

{2, 2} (n-n̄ Glauber), {a, b} = {2, 1} (s-n Glauber), and {a, b} = {1, 2} (s-n̄ Glauber).

momentum regions can be identified either physically, or with analyses that determine the

infrared structure of amplitudes [74], use the Coleman-Norton theorem [75], or exploiting

the method of regions [76]. (For a detailed analysis of the method of regions that includes

the Glauber region see [33].) Some work must still be done to correctly associate these

results with degrees of freedom in an effective theory. For most collider observables this re-

sults in the momentum regions identified in table 1, or a subset of these regions for simpler

processes. Indeed, expansions involving these momentum regions are central to utilizing

both the factorization methods of CSS where they determine the leading infrared regions,

as well as those in SCET where they determine the relevant low energy fields present in

the effective theory. In the SCET literature observables are often divided into two types,

those that measure invariant mass type variables which require ultrasoft modes and the

use of SCETI techniques, and those that measure transverse-momenta, which require soft

modes and the use of SCETII [77]. SCETII observables sometimes require the use of ra-

pidity renormalization techniques [57]. For example, measuring the invariant mass of a jet

p2
J = p+

J p
−
J − ~p⊥ 2

J , induces physical contributions at the ultrasoft scale p+ ∼ λ2, causing

ultrasoft modes to give nontrivial contributions. Measuring a parametrically small trans-

verse momentum, pT ∼ λ, causes soft modes to give nontrivial contributions. A pictorial

representation of the physics described by these various modes, and their correspondence

with functions in eq. (3.4), is given in figure 2. In general soft, collinear, and hard modes

can talk to each other at leading order in the power counting, but the nature of the hard

collision dramatically simplifies these interactions so that they can be put into a factor-
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soft, ultrasoft, 

or Glauber
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cn

cn

Figure 2. Contributions from different infrared momenta to a hard scattering process at a hardon

collider.

ized form. Of the steps needed to prove hard scattering factorization, the most difficult is

the cancellation of contributions from the Glauber region which directly couple modes in

different regions together but which cannot be captured entirely by Wilson lines.

We will also see that there is a nontrivial interplay between the standard SCET interac-

tions and Glauber operators. Once Glauber operators are present there are also always soft

fields even in SCETI in addition to the ultrasoft fields.2 For example soft fields are respon-

sible for vacuum polarization of the Glauber gluon. The diagrams that cause the Glauber

vacuum polarization are shown in figure 3 in both full QCD and in SCET with Glauber

operators. The vacuum polarization is a clear example showing that Glauber gluons cause

interactions between the soft and collinear fields in SCET, in addition to giving an interac-

tion between n and n̄ collinear fields in different directions as discussed above in figure 1.

At leading power Glauber exchange can connect any two modes with different rapidities

but the same transverse momentum, {n, n̄, s}, as well as simultaneously all three of these.

Interestingly, because we formulate these operators in a gauge invariant fashion there are

no ghosts fields in the Glauber operators. So for example the soft gluon loop in figure 3b

produces the full 11CA/3 term in the logarithm related to the QCD β function that shows

up due to the running of the αs(µ) coupling in the tree level Glauber exchange graph of

figure 1. On the other hand, ultrasoft gluons do not couple to Glauber gluons directly

at leading power (nor to soft gluons). So the only new interactions with ultrasoft gluons

appear due to their coupling to collinear fields that show up in the Glauber operators.

In this paper we develop a set of operator based tools within SCET to address these

questions. We construct a Lagrangian that encodes all Glauber effects and show that it fits

seamlessly with the current tools used to study hard, collinear, and soft factorization in hard

scattering processes, without inducing double counting. We also explicitly demonstrate

the connection of this operator formalism to forward scattering phenomena by showing

that the one-loop rapidity renormalization of our operators yields gluon Reggeization at

the amplitude level, the BFKL equation at the cross section level, and reproduces the

shockwave picture.

2The presence of both soft and ultrasoft fields with Glauber operators in SCETI is akin to NRQCD as

formulated in ref. [62] with soft and ultrasoft modes. In NRQCD the soft modes are not radiated but play

a crucial role in correcting the potentials. In the case of SCETI forward scattering the softs also provide

virtual loop corrections to the Glauber exchange potential.
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Figure 3. a) QCD gluon, quark, and ghost vacuum polarization graphs for forward scattering.

b) Soft gluon and quark loop graphs in SCET with Glauber vertices that contain the vacuum

polarization (as well as other contributions in the gluon loop graph). Due to the gauge invariance

of the soft-collinear Glauber operators inserted at the red ellipse vertices, a soft ghost loop graph

does not appear at this order.

4 Review of SCET and notation

4.1 SCET Lagrangians

For each type of onshell momentum mode in table 1 there are both quark and gluon fields

in SCET. The small power counting parameter λ� 1 sets the typical size for the momen-

tum fluctuations for each mode. An nj-collinear mode describes the infrared structure of

fluctuations close to a collinear direction n̂j , where nµj = (1, n̂j), and directions for different

collinear fields are distinct, ni · nj � λ2.

All hard offshell modes are integrated out of the effective theory, leading to operators

OK that describe hard scattering processes. These operators get inserted only once for each

amplitude, but more than one operator may contribute for a given physical process. The

Glauber modes in table 1 are also offshell modes since the scaling of their momenta forbids

p+p− = ~p 2
⊥, but they are offshell by an amount of order p2

⊥ ∼ λ2 rather than ∼ λ0. These

offshell Glauber modes are still integrated out of the effective theory at the hard scale, much

like potential modes in NRQCD [62], since the simultaneous requirements of gauge invari-

ance and homogeneous order-by-order power counting can otherwise not be satisfied.3 Since

the Glauber operators yield a leading order potential there is no power counting restriction

on how many times they may appear in the amplitude or cross section for a given process.

In a general notation the leading power hard scattering operators OK for some desired

SCETI process, and the leading power Lagrangian for any SCETI process, can be written as

Lhardscatter
SCETI

=
∑
K

CK ⊗OK({ξni , Ani}, ψus, Aus) , (4.1)

3In this EFT there is a trade-off between 3 things, 1) having locality at an infrared scale, since the 1/~k 2
⊥

Glauber potential is non-local, 2) implementing gauge invariance and 3) maintaining a homogeneous power

counting in λ. Since for many calculations and analyses we need to treat our operators non-perturbatively

in αs, we choose in favor of maintaining the latter two principals while giving up locality. This is the same

choice made for NRQCD in the vNRQCD [62, 78–82] or pNRQCD [83–85] formalisms. It is also the same

choice made for SCETII, where the soft Wilson lines are non-local at a scale p+ ∼ p⊥ ∼ λ. (Without

Glauber operators SCETI maintains locality at infrared scales.)
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L(0)

SCETI
=

[
L(0)
us

(
ψus, Aus

)
+
∑
ni

L(0)
ni

(
ξni , Ani , ni ·Aus

)]
+
{
LI(0)
G

(
{ξni , Ani}, ψS, AS

)
+ L(0)

S (ΨS, AS)
}
.

Here CK are hard Wilson coefficients that depend on large momenta n̄i ·p of collinear gauge

invariant products of collinear fields. (Note that ultrasoft gauge fields can appear in the

leading order hard scattering operator in eq. (4.1) for some SCETI processes. Although this

is usually not the case for collider physics with massless hard scattering producing jets, it is

well known in inclusive B-meson decays where the Heavy Quark Effective Theory b-quark

field is ultrasoft or soft.) The hard scattering operator and two terms in square brackets

in eq. (4.1) are what we refer to as classic SCETI, and are the terms usually considered

in the SCET literature. We will discuss OK further in section 4.2. Glauber operators are

contained in LI(0)
G which we discuss in section 5.1, and must be included when writing down

the full SCETI Lagrangian. A leading power soft Lagrangian L(0)
S also appears in SCETI

along with LI(0)
G since it is necessary (for example) to reproduce the vacuum polarization

of the Glauber gluon shown in figure 3. Recall that both L(0)
us (ψus, Aus) and L(0)

S (ψS, AS)

are each identical to copies of the standard full QCD Lagrangian (prior to subtractions).

Also recall that dropping the coupling to ultrasoft gluons and subtractions, L(0)
n (ξn, An, 0)

just involves collinear fields in a single sector and is again equivalent to a copy of full QCD

(though it is QCD written in the form that is more familiar from light-cone quantization

which only involves the “large” components of the fermion field ξn). The full collinear

Lagrangian is a sum of quark and gluon pieces

L(0)
n = L(0)

nξ (ξn, An, n ·Aus) + L(0)
ng (An, n ·Aus) , (4.2)

where in general L(0)
ng also contains ghost fields and gauge fixing terms that are gauge

covariant with respect to the ultrasoft covariant derivative in ·Dus. The full expression for

L(0)
ng can be found in ref. [29]. The result for the leading power collinear quark Lagrangian is

L(0)
nξ = e−ix·P ξ̄n

(
in ·D + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

)
/̄n

2
ξn . (4.3)

Here the covariant derivatives are given by

iDµ
n = i∂µn + gAµn , ∂µn = Pµ +

n̄µ

2
in·∂ ,

in ·D = in · ∂ + gn ·An + gn ·Aus , (4.4)

and in ·D contains both the collinear and ultrasoft gauge fields. P is the so-called “label

operator”, which picks out the large component of a given momentum. The phase e−ix·P is

related to the implementation of the multipole expansion that was carried out for ultrasoft

k⊥ and n̄ · k momenta traveling through collinear propagators. Using momentum labels

for the large momenta, and position dependence to encode the small momenta, the full

position space field ξ̂n(x) has been written as

ξ̂n(x) = e−ix·P
∑
p` 6=0

ξn,p`(x) ≡ e−ix·Pξn(x) , (4.5)
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where pµ` = n̄ · p` nµ/2 + pµ`⊥. The ξn(x) are the fields we use in eq. (4.3). In SCETI we

have O(λ2) residual momenta in all components, so the argument (x) on the field is a full

xµ. In SCETII we only have O(λ) ⊥-momenta so the fields do not depend on x⊥, and we

represent the ⊥-momenta as a continuous variable in momentum space.

In the form in eq. (4.3) the collinear fermion field satisfies /nξn = 0. If we integrate

back in the “small” components of the collinear fermion field as an auxiliary field, then the

leading power collinear quark Lagrangian in eq. (4.3) becomes

L(0)
nξ = e−ix·P ψ̄n i /Dn ψn , Dµn = (n̄µ/2)n ·D + (nµ/2) n̄ ·Dn +Dµ

n⊥ , (4.6)

where the relation between the quark fields with four and two active components field is

ψn =
[
1 + (1/in̄·Dn)i /Dn⊥(/̄n/2)

]
ξn. In this form it is even more obvious that, for the case

where we drop the ultrasoft couplings, each collinear Lagrangian L(0)
n (ξn, An, 0) is just a

copy of full QCD. Due to the eikonal coupling to ultrasoft gluons in n · D, the result in

eq. (4.6) is not the same as full QCD in general.

With the SCETI Lagrangian in eq. (4.1) the assumption of ignoring rescattering effects

between different momentum regions, means dropping LI(0)
G + L(0)

S . Since only the fields

in LI(0)
G couple to those in the classic SCETI Lagrangian, it is enough to prove that LI(0)

G

interactions do not contribute to a hard scattering observable to prove the decoupling of

Glauber gluon effects. If this decoupling occurs then the standard tools of SCETI can be

used to treat hard-collinear factorization, soft-collinear factorization, factorization of the

observable, and the uniqueness of various operators with Wilson lines, in order to attempt

to derive a factorization formula.

Next we repeat the above discussion for SCETII. Here there are no ultrasoft fields,

and soft fields contribute even in the classic SCET framework in both real and virtual

diagrams. In a general notation the leading power hard scattering operators OII
K for some

desired SCETII process, and the leading power Lagrangian for any SCETII process, can be

written as

Lhardscatter
SCETII

=
∑
K

CII
K ⊗OII

K({ξni , Ani}, ψS , AS) , (4.7)

L(0)

SCETII
=

[
L(0)

S

(
ψS, AS

)
+
∑
ni

L(0)
ni

(
ξni , Ani

)]
+ LII(0)

G

(
{ξni , Ani}, ψS, AS

)
.

Here CII
K are hard Wilson coefficients that depend on the large momenta n̄i · p of collinear

gauge invariant products of collinear fields, and on momenta ni · p of soft gauge invariant

products of soft fields.4 We sum over all operators K that are leading order in the power

counting and have distinct color and spin indices. The hard scattering operator and the two

terms in square brackets are what we refer to as classic SCETII. We will discuss OII
K further

in section 4.2. Glauber operators are contained in LII(0)
G and must be included when writing

down the full SCETII Lagrangian. In this language the assumption of ignoring Glauber

4The dependence on ni · p can be thought of as arising from integrating out hard-collinear propagators

in a SCETI theory, where the hard-collinear fields have an offshellness of size n̄i · p ni · p [77]. Following this

construction we can generate the final SCETII theory by the matching sequence QCD→ SCETI → SCETII.
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gluons in SCETII means dropping LII(0)
G . In eq. (4.7) the soft Lagrangian L(0)

S is again

just the standard QCD Lagrangian for these fields, and since there are no ultrasoft fields

each collinear Lagrangian L(0)
n is equivalent to a copy of full QCD, as discussed above for

SCETI. In the leading order classic SCETII Lagrangian there is no coupling between the

soft and collinear sectors. So all the couplings between sectors come either from the hard

interaction operators or LII(0)
G . It is enough to prove that the net effect of LII(0)

G interactions

vanishes for a hard scattering observable to prove the decoupling of Glauber gluon effects,

and then one can use standard SCETII to attempt to prove factorization theorems.

Note that when EFT fields are contracted they can lead to loop diagrams that are

referred to as collinear, soft, ultrasoft, or Glauber. The meaning of this language is that

the corresponding loop momentum has this type of scaling as in table 1.

We will discuss the Glauber operators appearing in LII(0)
G and LI(0)

G in section 5.1.

4.2 SCET operator building blocks

In this section we discuss gauge invariant operator building blocks for quark and gluon

operators in SCET [27, 28, 30]. At any order in the power counting the most general

building blocks for n-collinear components of SCET operators for QCD (other than the

leading power kinetic term) contain three terms [86]

χn , Bµn⊥ , Pµn⊥ . (4.8)

The full expressions for χn and Bµn⊥ are given below in eqs. (4.10) and (4.15) and carry

global fundamental and adjoint color indices (also discussed below), but are gauge invariant

under local collinear gauge transformations due to the presence of collinear Wilson lines.

When expanded these quark and gluon building block fields contain the physical quark

and gluon components, χn = ξn + . . . and Bµn⊥ = Aµn⊥ − (Pµ⊥/P̄)n̄ · An + . . .. To reduce

operators down to the three objects in eq. (4.8) we rewrite all n̄ ·An’s as Wn Wilson lines,

and absorb dependence on n̄ · P into Wilson coefficients. We also use the equations of

motion to remove in · ∂ χn, in · ∂ Bn⊥, P̄ n · Bµn, in · ∂ n · Bn, and use operator identities to

remove [iDµ
n⊥, iD

ν
n⊥] and [iDµ

n⊥, in ·Dn] [86]. Here g n · Bn =
[
W †nin ·DnWn

]
. Using the

scaling of the fields deduced from their kinetic terms, the power counting for these collinear

building blocks is χn ∼ λ, Bµn⊥ ∼ λ, and Pµn⊥ ∼ λ.

We will find it useful to also use the following building blocks for soft fields

ψns , BnµS⊥ . (4.9)

Here the n superscript denotes the soft gauge field component n ·As appearing in the soft

Wilson lines in these operators. For an analysis involving back-to-back n-collinear and

n̄-collinear sectors we will see that ψns , ψn̄s , BnµS⊥, and Bn̄µS⊥ (defined below in eqs. (4.10)

and (4.15)) all appear. Using the scaling of the fields deduced from their kinetic terms, the

power counting for these soft building block fields is ψns ∼ ψn̄s ∼ λ3/2 and BnµS⊥ ∼ B
n̄µ
S⊥ ∼ λ.
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The collinear and soft building blocks that have a single quark field at lowest order in

the coupling are

χn = W †nξn , Wn = FT Wn[n̄ ·An] = FT P exp

(
ig

∫ 0

−∞
ds n̄ ·An(x+ n̄s)

)
,

χn̄ = W †n̄ξn̄ , Wn̄ = FT Wn̄[n ·An̄] = FT P exp

(
ig

∫ 0

−∞
ds n ·An̄(x+ ns)

)
,

ψns = S†nψs , ψn̄s = S†n̄ψs , Sn = FT Sn[n ·AS ] = FT P exp

(
ig

∫ 0

−∞
ds n ·AS(x+ ns)

)
,

(4.10)

where FT is for Fourier transform, and P stands for path ordering. The Fourier transform

is often written out in momentum space which enables making explicit the notation for

the multipole expansion (the lines remain local in the coordinate corresponding to residual

momenta, even though they are extended for the larger momentum associated with the s

coordinate shown here). Under a collinear gauge transformation ξn → Unξn, Wn → UnWn,

so χn is invariant, and a similar property holds for the other fields with transformations that

have support in their respective momentum sectors. Although we show only one direction

in eq. (4.10) the integrals could instead extend over [0,∞]. Expressions for Wilson lines over

(0,∞) and (−∞, 0) and their Feynman rules are summarized in appendix B.4, and we note

that the difference corresponds to the choice of n̄ ·k± i0 in eikonal propagators. In general

the direction of the Wilson lines in the fields in eq. (4.10) can be discussed in the context of

matching calculations from full QCD. As we will discuss in some detail, in SCET there are

soft and Glauber 0-bin subtractions for collinear Wilson lines which cancel this direction

dependence (which comes from the region n̄ · k → 0). The same thing happens for soft

Wilson lines due to Glauber 0-bin subtractions. Ultrasoft Wilson line directions in SCETI

are determined by the physical directions since their diagrams do not have subtractions.

At various points below we will discuss the direction of Wilson lines explicitly.

Note that we follow a convention where the subscript on the collinear field indicates the

type of collinear gluon field that the operator contains, rather than the light-like direction

of the Wilson line. Thus the n subscript on collinear building blocks means something

different than the n superscript on soft building blocks.

We denote fundamental collinear Wilson lines by Wn, where n̄ · An = n̄ · AAnTA in

eq. (4.10), and adjoint collinear Wilson lines by Wn, where n̄ · An = n̄ · AAnTAadj with

(TAadj)BC = −ifABC . Note that

W †nWn = 1 , WAB
n WCB

n = δAC , (4.11)

and

(n̄ ·D)Wn = 0 , (n̄ ·D)Wn = 0 . (4.12)

We also have the following relationship between Wilson lines in the fundamental and

adjoint representations

W †nT
AWn =WAB

n TB , WnT
AW †n =WBA

n TB . (4.13)
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Their momentum space expansion with an incoming momentum k for the gluon are

Wn = 1−
g TA n̄ ·AAn,k

n̄ · k + . . . , W †n = 1 +
g TA n̄ ·AAn,k

n̄ · k + . . . ,

WAB
n = δAB +

g ifCAB n̄ ·ACn,k
n̄ · k + . . . , (W†n)AB = δAB −

g ifCAB n̄ ·ACn,k
n̄ · k + . . . . (4.14)

We have analogous results for the fundamental soft Wilson lines Sn, S†n, and adjoint soft

Wilson lines Sn and Sn̄.

The collinear and soft building blocks that involve a single gluon field at lowest order

in the coupling are

Bµn⊥ =
1

g

[
W †niD

µ
n⊥Wn

]
=

1

g

1

n̄ · P W
†
n

[
in̄ ·Dn , iD

µ
n⊥
]
Wn ,

Bµn̄⊥ =
1

g

[
W †n̄iD

µ
n̄⊥Wn̄

]
=

1

g

1

n · P W
†
n̄

[
in ·Dn̄ , iD

µ
n̄⊥
]
Wn̄ ,

BnµS⊥ =
1

g

[
S†niD

µ
S⊥Sn

]
=

1

g

1

n · P S
†
n

[
in ·DS , iD

µ
S⊥
]
Sn ,

Bn̄µS⊥ =
1

g

[
S†n̄iD

µ
S⊥Sn̄

]
=

1

g

1

n̄ · P S
†
n̄

[
in̄ ·DS , iD

µ
S⊥
]
Sn̄ , (4.15)

where the Wilson lines here are the same as those in the quark building blocks, again with

a direction dependence that as we will discuss is removed by Glauber subtractions, and

hence only becomes fixed if we aim to absorb Glauber contributions. The square brackets

after the first equalities indicate that the covariant derivatives only act inside the brackets.

These gluon operators are in an adjoint representation so we can write Bµn⊥ = BµAn⊥TA etc.

The Wilson lines appearing here can be combined into a single Wilson line in the adjoint

representation, for example we have

BAµn⊥ =
1

n̄ · P n̄νiG
Bνµ⊥
n WBA

n , BAµn̄⊥ =
1

n · P nνiG
Bνµ⊥
n̄ WBA

n̄ , (4.16)

with the adjoint collinear Wilson lines WBA
n =WBA

n [n̄ ·An] and WBA
n̄ =WBA

n̄ [n ·An̄], and

collinear field strengths igGAµνn TA = [iDµ
n, iDν

n]. A useful relation is

W †niD
µ
n⊥Wn = Pµ⊥ + gBµn⊥ . (4.17)

To lowest order in the coupling expansion

Bµn⊥ = Aµn⊥ −
kµ⊥
n̄ · k n̄ ·An,k + . . . . (4.18)

There are analogous expressions for operators in other sectors, including the soft operators.

The Bµn⊥ operator is gauge invariant under n-collinear transformations since iDµ
n⊥Wn →

UniD
µ
n⊥Wn and W †n →W †nU

†
n. Again a similar statement holds for the other gluon building

block fields with gauge transformations that have support in each of their respective sectors.

We also will make use of fields that are matrices in the color octet space, which we

denote with a tilde, such as

B̃ABn⊥ = −ifABCBCn⊥ , B̃nABS⊥ = −ifABCBnCS⊥ , G̃µν ABs = −ifABCGµνCs , (4.19)
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where the soft field strength igGAµνs TA = [iDµ
s , iDν

s ]. We also have the adjoint relation

WT
n iD

µ
n⊥Wn = Pµ⊥ + gB̃n⊥ . (4.20)

In the hard scattering operators in both SCETI and SCETII we often need to specify

the large momenta for the collinear gauge invariant building blocks, χn and Bn⊥, for which

we use the notation

χn,ω = δ(ω − n̄ · P)χn , Bµn⊥,ω = δ(ω − n̄ · P)Bµn⊥ ,
χn̄,ω′ = δ(ω′ − n · P)χn̄ , Bµn̄⊥,ω′ = δ(ω′ − n · P)Bµn̄⊥ . (4.21)

In SCETII we also need to specify one component of the momentum of soft operators, since

dependence on this momentum is induced in the Wilson coefficients CII
K by the existence

of collinear components in these operators with large momentum in an opposite light-cone

component. To encode this dependence we can use the notation

ψnS,k = δ(k − n · i∂s)ψns , BnµS⊥,k = δ(k − n · i∂s)BnµS⊥ ,
ψn̄S,k = δ(k − n̄ · i∂s)ψn̄s , Bn̄µS⊥,k = δ(k − n̄ · i∂s)Bn̄µS⊥ . (4.22)

In SCETII the general hard scattering operator appearing in eq. (4.7) has terms

OII
K

(
{ωa1 , . . .}, {ka1 , . . .}

)
(4.23)

=
(
χn1,ωa1

χn1,ωb1
· · ·
)(
χ̄n1,ωc1

χ̄n1,ωd1
· · ·
)(
B⊥n1,ωe1

B⊥
n1,ω

f
1

· · ·
)(
χn2,ωa2

· · ·
)(
χ̄n2,ωb2

· · ·
)(
B⊥n2,ωc2

· · ·
)
· · ·

×
(
ψn1

S,ka1
ψn1

S,kb2
· · ·
)(
ψ̄n1

S,kc1
ψ̄n1

S,kd1
· · ·
)(
B⊥n1

S,ke1
B⊥n1

S,kf1
· · ·
)(
ψn2

S,ka2
· · ·
)(
ψ̄n2

S,kb2
· · ·
)(
Bn2⊥
S,kc2
· · ·
)
· · · ,

where for simplicity we have suppressed color, flavor, and Lorentz indices, and have not

displayed factors of P⊥ or soft derivatives.

For SCETI the hard scattering operators OK are analogous to eq. (4.23) but will con-

tain ultrasoft fields without momentum labels in place of the soft building block fields. In

this EFT the ultrasoft-collinear decoupling is obtained from the BPS field redefinition [29]

ξn → Ynξn, Aµn → YnA
µ
nY
†
n , which allows us to factorize the ultrasoft fields into gauge in-

variant products in the hard scattering operators, such as (Y †nψus), [Y †n iD
µ
us⊥Yn], etc, quite

analogous to the combinations that appear inside the soft building block fields in eq. (4.23).

It is important to understand that when we say that the building blocks are “collinear

gauge invariant” or “soft gauge invariant” we mean up to some transformation at null

infinity where the Wilson lines end, which is sometimes synonymous with a global gauge

transformation. The quark and gluon building blocks carry color indices which trans-

form covariantly under these remaining transformations. These indices are always fully

contracted to give scalar Lagrangians. The inverse derivatives, 1/P2
⊥, correspond to a sep-

aration in the transverse positions. To ensure the same gauge invariant results obtained

here for covariant gauges are also obtained in light-cone gauge, additional transverse Wilson

lines at null infinity will presumably be required. In SCET Wilson lines of this type have

been considered in [87, 88]. Repeating the tree level matching calculations using n ·A = 0

gauge in QCD it is straightforward to check that for a single Glauber exchange between n

and n̄ particles, our same Onsn̄qq operator in eq. (5.9) is obtained.
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5 SCET with Glauber operators

In this section we present the SCET operators for Glauber Exchange, which determine

LI(0)
G and LII(0)

G in eqs. (4.1) and (4.7), and discuss some of their key properties.

5.1 Operators for Glauber exchange in SCET

Let us now discuss the gauge invariant basis of Glauber operators in SCET which mediate

interactions between collinear fields in different sectors and between soft and collinear

fields. The full operators and the lowest order matching are discussed here and the details

of the matching calculations needed to derive these operators are left to later sections,

including the derivation of the structure of Wilson lines which is given in section 6.1, as

well as the derivation of the full structure of the soft mid-rapidity operator which is given

in sections 6.3 and 6.4.

The Glauber operators can be organized by the number of sectors {n, n̄, s} with differ-

ent rapidities that are involved in each interaction. Operators describing n-n̄ interactions

also involve soft gluons, and hence three rapidity sectors. These are described first in sec-

tion 5.1.1, while those for two rapidity sectors, n-s or n̄-s, are described in section 5.1.2.

Section 5.1.3 carries out the lowest order matching for all gluon polarizations.

5.1.1 Collinear-collinear forward scattering

At tree level we can match onto the Glauber operators in SCET by considering forward scat-

tering diagrams between collinear particles in any two different collinear sectors ni 6= nj , or

between a soft sector and any collinear sector. Let us start by consider two collinear sectors

ni and nj . The relevant forward scattering graphs in QCD with t-channel singularities are

shown in figure 4a. Each external momentum can be decomposed in light-cone coordinates

along the two collinear directions, so

pµ =
nµi

2κij
nj · p+

nµj
2κij

ni · p+ pµ⊥ . (5.1)

For two generic collinear directions ni and nj the vector pµ⊥ is defined to be orthogonal to

nµi and nµj , and κij = (ni · nj)/2 6= 1 (and κij � λ2 for the two directions to be distinct).

With these coordinates a loop measure can be decomposed as

d4p =
1

2κij
d(ni · p) d(nj · p) d2p⊥ =

1

κij
dEij dp

z
ij d

2p⊥ , (5.2)

where we have defined a generalized “energy” and “longitudinal momentum” by

Eij =
ni · p+ nj · p

2
, pzij =

ni · p− nj · p
2

. (5.3)

For simplicity we will carry out most of our calculations using the back-to-back choice with

ni = n, nj = n̄, and κij = (n · n̄)/2 = 1. Here we have

pµ =
nµ

2
n̄ · p+

n̄µ

2
n · p+ pµ⊥ , (5.4)
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Figure 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full

QCD graphs with t-channel singularities. In b) we show the corresponding Glauber operators

for the four operators in SCET with two equivalent notations. The notation with the dotted line

emphasizes the factorized nature of the n and n̄ sectors in the SCET Glauber operators, which

have a 1/P2
⊥ between them.

and the variables in eq. (5.3) reduce to the true energy and longitudinal momentum

d4p =
1

2
d(n · p) d(n̄ · p) d2p⊥ = dp0 dpz d2p⊥ . (5.5)

We will often use the shorthand p+ = n ·p and p− = n̄ ·p. All of our calculations, including

our final results, will apply equally well to the more general case in eq. (5.1). For this more

general case factors of κij must be inserted, but can be inferred by using the invariance

to simultaneous rescaling ni → ρini and n̄i → n̄i/ρi for each i, which follows from the

allowed values for these collinear basis vectors in constructing SCET. This symmetry is

called RPI-III invariance [89, 90]. When we refer to the longitudinal momentum, for this

more general case we always mean pzij .

We use a common convention for the collinear momenta of the external lines in the

2–2 scattering graphs in figure 4a, so q(pn2 )+ q̄(pn̄1 )→ q(pn3 )+ q̄(pn̄4 ), where the superscripts

are included to indicate the type of collinear momentum, and we have the same labeling

for the gluon scattering cases. This is illustrated in figure 1. When we need to provide

further labels to an external particle we will use the same subscript as the momenta,

such as for color indices A1, A2, etc, and for vector indices µ1, µ2, etc. Momentum

conservation implies p1+p2 = p3+p4. The momentum in the exchange t-channel propagator

is q = p3 − p2 = p1 − p4. The Glauber gluon does not carry large momenta, so the ∼ λ0

collinear momenta of the particles on the top and bottom of each diagram are conserved:

n̄ · p2 = n̄ · p3 , n · p1 = n · p4 . (5.6)

These constraints are what ensure the diagrams give forward scattering. To leading power

the large Mandelstam invariant is s = n · p1 n̄ · p2 = n · p4 n̄ · p3 and we have the hierarchy
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s ∼ λ0 � |t| ∼ λ2. For simplicity we often work in a frame where

p⊥1 = −p⊥4 = q⊥/2 , p⊥3 = −p⊥2 = q⊥/2 . (5.7)

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
⊥ = −~q 2

⊥ < 0.

For this matching calculation there are four relevant QCD tree graphs, shown in fig-

ure 4a. They will result in four different Glauber operators, whose Feynman diagrams for

this matching are represented by figure 4b. For simplicity, here we take ⊥-polarization

for the external gluon fields (leaving the calculation with the full set of polarizations to

section 5.1.3). Expanding in λ the results for the top row of diagrams at leading order is

i

[
ūn
/̄n

2
TBun

][−8παs(µ)δBC

~q 2
⊥

][
v̄n̄
/n

2
T̄Cvn̄

]
, (5.8)

i
[
ifBA3A2gµ2µ3

⊥ n̄ · p2

][−8παs(µ)δBC

~q 2
⊥

][
v̄n̄
/n

2
T̄Cvn̄

]
,

i

[
ūn
/̄n

2
TBun

][−8παs(µ)δBC

~q 2
⊥

][
ifCA4A1gµ1µ4

⊥ n · p1

]
,

i
[
ifBA3A2gµ2µ3

⊥ n̄ · p2

][−8παs(µ)δBC

~q 2
⊥

][
ifCA4A1gµ1µ4

⊥ n · p1

]
.

In writing these results we have written out the collinear quark spinors but left off the

collinear gluon polarization vectors εµ2A2
n (p2) etc, for simplicity. We use color index Ai for

the external gluon of momentum pi. We are also using a 3̄ representation for the antiquark

spinors and color generators.5

We begin our analysis by discussing the SCETII operators whose tree level matrix

elements reproduce the results in eq. (5.8). The four SCETII operators whose matrix

elements reproduce eq. (5.8) factorize into collinear and soft operators separated by 1/P2
⊥

factors, so we adopt the notation:

Oqqnsn̄ = OqBn
1

P2
⊥
OBCs

1

P2
⊥
OqCn̄ , Ogqnsn̄ = OgBn

1

P2
⊥
OBCs

1

P2
⊥
OqCn̄ ,

Oqgnsn̄ = OqBn
1

P2
⊥
OBCs

1

P2
⊥
OgCn̄ , Oggnsn̄ = OgBn

1

P2
⊥
OBCs

1

P2
⊥
OgCn̄ . (5.9)

On the left-hand side the subscripts indicate that these operators involve three sectors

{n, s, n̄}, while the first and second superscript determine whether we take a quark or

gluon operator in the n-collinear or n̄-collinear sectors. Without soft gluons we have OBCs =

8παsδ
BCP2

⊥.

The n-collinear quark and gluon terms, which occur in the first square bracket in each

of the four terms in eq. (5.8), are matrix elements of the n-collinear operators

OqBn = χnT
B /̄n

2
χn , OgBn =

[
i

2
fBCDBCn⊥µ

n̄

2
· (P+P†)BDµn⊥

]
. (5.10)

5The relation between our notation and that of ref. [91] is
[
v̄n̄(4) /

n

2
T̄Cvn̄(1)

]us
=

−
[
v̄n̄(1) /

n

2
TCvn̄(4)

]Peskin
, where T̄C = −(TC)T and vn̄(i) = [v∗n̄(i)]Peskin. Our notation puts quark

and antiquark spinors on the same footing, absorbing the (−1) from permuting the fields that create and

annihilate the antiquarks into the color structure, as is often done in the spinor-helicity notation [92].
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Each of these operators are bilinears in the quark or gluon building blocks. For the gluon

operator, an extra factor of 1/2 is included to compensate for the symmetry factor from

switching the two Bn⊥s when computing the corresponding Feynman rules. The operator

OgBn is even under this swap because both the color factor and momentum factor n̄·(P+P†)
give a change of sign. The n̄-collinear quark and gluon terms appear as the contributions

in the last square brackets of each of the four terms in eq. (5.8), and are matrix elements

of the operators,

OqBn̄ = χn̄T
B /n

2
χn̄ , OgBn̄ =

[
i

2
fBCDBCn̄⊥µ

n

2
· (P+P†)BDµn̄⊥

]
. (5.11)

Examining eqs. (5.10) and (5.11) we see that the n-collinear and n̄-collinear results are the

same, just with n ↔ n̄. These collinear operators are bilinears of the fundamental quark

and gluon gauge invariant building block operators in SCET. Furthermore, both of these

operators are octet combinations of the building blocks. Due to momentum conservation,

and the fact that there are only two building blocks in each collinear sector, each collinear

bilinear has a conserved momentum in its large ∼ λ0 component. This implements the

forward scattering kinematics. The tree level matching that yields the proper Wilson line

structure in the operators in eqs. (5.10) and (5.11) is actually non-trivial due to operator

mixing, and is described in detail in section 6.1.

The middle terms in square brackets in eq. (5.8), those involving αs, do not have objects

like polarization vectors or spinors that correspond to external lines. Nevertheless, they

are actually matrix elements of a soft operator which involves soft gluon fields as well as

soft Wilson lines. Accounting for the 1/P2
⊥ factors in eq. (5.9) these operators must reduce

to 8παsδ
BCP2

⊥ when all soft fields are turned off. The full soft operator is non-trivial, and

is derived in section 6.2, where we obtain

OBCs = 8παs

{
Pµ⊥STn Sn̄P⊥µ − P⊥µ gB̃

nµ
S⊥STn Sn̄ − STn Sn̄gB̃

n̄µ
S⊥P⊥µ − gB̃

nµ
S⊥STn Sn̄gB̃n̄S⊥µ

− nµn̄ν
2
STn igG̃µνs Sn̄

}BC
. (5.12)

Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near

eq. (4.13) and the other field objects B̃nS⊥, B̃n̄S⊥, and G̃s are matrices in the adjoint space

as in eq. (4.19). The adjoint soft Wilson lines Sn and Sn̄ are necessary to maintain soft

gauge invariance and are generated from integrating out off-shell lines, with virtuality

p2 ∼ Q2λ � Q2λ2, that arise from the emission of a soft line off of a collinear line. The

operator in eq. (5.12) is gauge invariant under soft gauge transformations that vanish at

infinity. The fact that we have a non-trivial soft operator OBCs is related to the existence of

the soft sector that sits at rapidities between the n-collinear and n̄-collinear fields. Here we

have been deliberately glib about the multipole expansion for this non-local operator, but

will describe this fully in section section 5.2.2 below. The directions for these soft Wilson

lines are discussed in section 5.2.3.

At lowest order the Feynman diagrams for these operators will be denoted as in fig-

ure 4b. Two notations are used, one with an extended red dashed line which serves to
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n

n

n

n

k

= −8πiαs
(~̀⊥−~k⊥)2

[
ūn

/̄n
2
TAun

][
v̄n̄

/n

2
T̄Avn̄

]
n

n

n

n
k

μ,B ν,C

A

' '

=
−8παsf

ABC

(~̀′⊥−~k′⊥)2

[
ūn

/̄n
2
TAun

][
n·k′ gµν⊥ − nµ`′ν⊥ − nνk′µ⊥ +

`′⊥·k′⊥nµnν
n·k′

]

n

n

n

n

k
μ,B ν,C

A

=
−8παsf

ABC

(~̀⊥−~k⊥)2

[
n̄·k gµν⊥ − n̄µ`ν⊥ − n̄νkµ⊥ + `⊥·k⊥n̄µn̄ν

n̄·k
][
v̄n̄

/n

2
T̄Avn̄

]

n n
n n
μ,B ν,C

λ,D τ,E
' k'

k =
8πiαsf

ABCfADE

(~̀⊥−~k⊥)2

[
n̄·k gµν⊥ − n̄µ`ν⊥ − n̄νkµ⊥ + `⊥·k⊥n̄µn̄ν

n̄·k
]

×
[
n·k′ gλτ⊥ − nλ`′τ⊥ − nτk′λ⊥ +

`′⊥·k′⊥nλnτ
n·k′

]
Figure 5. Lowest order Feynman rules for the Glauber operators Oijnsn̄ for n-n̄ forward scattering.

remind us that the matrix element of OBCs is non-local, giving a potential that scales as

λ−2. The alternate notation collapses this red dashed line to an elliptical blob to indicate

that it has no field dependent dynamics. In general the elliptical red Glauber blob indicates

an interaction between either three or two rapidity sectors in this manner,

= or . (5.13)

The complete tree level Feynman rule for the quark operator Oqqnsn̄ is identical to the result

used for the matching in eq. (5.8), but this is not the case for the gluon operators since

they have terms from other polarizations (derived below in section 5.1.3). For future use

we record the full set of Feynman rules at lowest order in the coupling expansion in figure 5.

There are additional Feynman rules when the operators emit another gluon. For

example, consider Oqqnsn̄ where q⊥ = p1⊥−p4⊥ and q′⊥ = p3⊥−p2⊥ are momentum transfers

stemming from the n and n̄-collinear quarks respectively (following figure 1), and k is the

incoming momentum of the gluon. Then the Feynman rules with one additional n-collinear

gluon, n̄-collinear gluon, or soft gluon emitted are shown in figure 6.

The Feynman rule with the soft gluon has contributions from all polarizations and

reproduces the Lipatov vertex [93] used in small-x physics. Our soft operator has terms

beyond the Lipatov vertex from two and more gluon terms which we will discuss and make

use of later on. The two soft gluon Feynman rule is shown in figure 7. The result in

eq. (5.12) has not previously appeared in either the QCD or SCET literature, and gives

a completely gauge invariant factorized operator that reproduces both forward scattering

and the Lipatov vertex.
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n

n

n

n

n
μ,C

k

=
n

n

n

n

μ,C

n k

q' = i

[
ūn

/̄n
2
TAun igfAB

′C n̄µ

n̄·k

][
−8παsδB

′B

~q ′2⊥

][
v̄n̄

/n

2
T̄Bvn̄

]

n

n

n

n

n
μ,C

k

= n

n

n

n

μ,C

n
k

q = i

[
ūn

/̄n
2
TAun

][
−8παsδAA

′

~q 2
⊥

][
−igfA′BC nµ

n·k v̄n̄
/n

2
T̄Bvn̄

]

n

n

n

n

S μ,C

=

n

n

n

n

S

μ,Cq

q'

= i

[̄
un

/̄n
2
TAun

][
8παs
~q 2
⊥ ~q
′2
⊥
igfABC

(
qµ⊥+q′µ⊥ −n · q′ n̄

µ

2
− n̄ · q nµ

2
− n

µ~q 2
⊥

n · q′ −
n̄µ~q ′2⊥
n̄ · q

)][̄
vn̄

/n

2
T̄Bvn̄

]

Figure 6. One gluon with incoming momentum k emitted from the OqqnSn̄ Glauber operator.

The first two Feynman rules come from Wilson lines in the n-collinear and n̄-collinear part of the

operator. The last Feynman rule comes from the soft component of the operator, and corresponds

with the Lipatov vertex.

n

n

n

n

s

s

A

B

q

q'

k

k





Cμ, ,

Cμ, ,
= i

[̄
un

/̄n
2
TAun

][̄
vn̄

/n

2
T̄Bvn̄

](
8παs
~q 2
⊥ ~q
′2
⊥

)

×
{
g2fC1AEfC2BE

[
− gµ1µ2

⊥ −n
µ1(2q′µ2

⊥ +kµ2

2⊥)

n · k1

+
(2qµ1

⊥ −kµ1

1⊥)n̄µ2

n̄ · k2

+
n̄µ1nµ2−nµ1n̄µ2

2

+
nµ1n̄µ2

n · k1 n̄ · k2

(
~q⊥ ·~q ′⊥+~k1⊥ ·~k2⊥+~k1⊥ ·~q⊥−~k2⊥ ·~q ′⊥− 1

2
n · k2 n̄ · k2− 1

2
n · k1 n̄ · k1

)
+nµ1nµ2

(
~q 2
⊥

n · q′ n · k2

+
n̄ · k2

2n · k1

)
+ n̄µ1n̄µ2

( −~q ′2⊥
n̄ · k1 n̄ · q

+
n · k1

2n̄ · k2

)]
+g2fC2AEfC1BE

[
− gµ1µ2

⊥ +
n̄µ1(2qµ2

⊥ −kµ2

2⊥)

n̄ · k1

− (2q′µ1

⊥ +kµ1

1⊥)nµ2

n · k2

+
nµ1n̄µ2−n̄µ1nµ2

2

+
n̄µ1nµ2

n · k2 n̄ · k1

(
~q⊥ ·~q ′⊥+~k1⊥ ·~k2⊥+~k2⊥ ·~q⊥−~k1⊥ ·~q ′⊥− 1

2
n · k2 n̄ · k2− 1

2
n · k1 n̄ · k1

)
+nµ1nµ2

(
~q 2
⊥

n · q′ n · k1

+
n̄ · k1

2n · k2

)
+ n̄µ1n̄µ2

( −~q ′2⊥
n̄ · k2 n̄ · q

+
n · k2

2n̄ · k1

)]}

Figure 7. Two Soft Gluon Feynman rule for the Oqqnsn̄ operator. The terms in {· · · } times (8παs)

are the universal two soft gluon contribution from OABs .
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The scaling for the component operators in eq. (5.9) are all identical: OiBn ∼ λ2,

OiBn̄ ∼ λ2, and OABs ∼ λ2. Thus the overall operators in eq. (5.9) scale as Oijnsn̄ ∼ λ2.

As we will see below in section 5.3, for this type of Glauber operator this scaling yields

contributions that are leading order in the power counting for both forward scattering and

for hard scattering processes once the scaling of the measure is included. Therefore the

operators in eq. (5.9) contribute to the leading order Lagrangian in SCET. Due to our

normalization of OBCs the tree level Wilson coefficient for all four of these operators are

1, and we will later argue that this is true to all orders. These are the first four terms

appearing in our Glauber Lagrangian. We can summarize our matching result, and extend

it to other pairs of distinct collinear sectors by writing

LII(0)
G = e−ix·P

∑
n1,n2

∑
i,j=q,g

OiBn1

1

P2
⊥
OBCs

1

P2
⊥
OjCn2

+ . . . , (5.14)

where the ellipses denote additional leading power terms involving rescattering of soft

fields to be discussed below. In this sum n1 and n2 label distinct collinear sectors. (When

n1 ·n2 6= 2 there are factors of (2/n1 ·n2) in a couple of places which can be inserted using

the RPI symmetry.)

5.1.2 Soft-collinear forward scattering

An analogous matching calculation can be done for the forward scattering between soft and

n-collinear fields. We show the diagrams for this matching calculation in figure 8 and label

the momenta for this calculation as q(pn2 ) + q̄(pS1 ) → q(pn3 ) + q̄(pS4 ). We use an analogous

labeling for the cases with gluons. Here the large O(λ0) n-collinear momentum is conserved

as before. Since the soft momenta n · p1,4 ∼ λ � n · p2,3 ∼ λ2 they are also conserved by

the exchanged Glauber gluon, so we again for these diagrams we have forward scattering

with the constraints

n · p1 = n · p4 , n̄ · p2 = n̄ · p3 . (5.15)

Or in other words, the n·ps momentum is conserved on the soft line and the n̄·pn momentum

is conserved on the n-collinear line. The ⊥-momenta are the same size here as in the n-n̄

scattering case, and we follow again the convention that p⊥1 = −p⊥4 = p⊥3 = −p⊥2 = q⊥/2.

Again it is convenient to use ⊥ polarizations to carry out the matching. (In section 5.1.3

we will show how all the polarizations can be matched when the on-shell conditions are

used.) Computing the full QCD graphs in figure 8a and expanding in λ gives

i

[
ūn
/̄n

2
TBun

][−1

~q 2
⊥

][
8παsv̄s

/n

2
T̄Bvs

]
, (5.16)

i

[
ūn
/̄n

2
TBun

][−1

~q 2
⊥

][
8παsif

BA4A1gµ1µ4

⊥ n · p1

]
, i

[
ifBA3A2gµ2µ3

⊥ n̄ · p2

][−1

~q 2
⊥

][
8παsv̄s

/n

2
T̄Bvs

]
,

i
[
ifBA3A2gµ2µ3

⊥ n̄ · p2

][−1

~q 2
⊥

][
8παsif

BA4A1gµ1µ4

⊥ n · p1

]
.

Thus despite the differences in the scaling of momenta, the results for the n-s scattering

are essentially the same as for the n-n̄ scattering given above in eq. (5.8). The reason

for this is that the comparison of light-cone momenta in these two cases is the same, the
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Figure 8. Tree level matching for the nnss Glauber operators. In a) we show the four full

QCD graphs with t-channel singularities. In b) we show the corresponding Glauber operators in

SCET. The matching between the two is given by reading down each column. Results for n̄n̄ss are

analogous with n↔ n̄.

n

s

n

s

k

= −8πiαs
(~̀⊥−~k⊥)2

[
ūn

/̄n
2
TAun

][
v̄s

/n

2
T̄Avs

]
n

s

n

s
k

μ,B ν,C

A

' '

=
−8παsf

ABC

(~̀′⊥−~k′⊥)2

[
ūn

/̄n
2
TAun

][
n·k′ gµν⊥ − nµ`′ν⊥ − nνk′µ⊥ +

`′⊥·k′⊥nµnν
n·k′

]

n

s

n

s

k
μ,B ν,C

A

=
−8παsf

ABC

(~̀⊥−~k⊥)2

[
n̄·k gµν⊥ − n̄µ`ν⊥ − n̄νkµ⊥ + `⊥·k⊥n̄µn̄ν

n̄·k
][
v̄s

/n

2
T̄Avs

]

s s
n n
μ,B ν,C

λ,D τ,E
' k'

k =
8πiαsf

ABCfADE

(~̀⊥−~k⊥)2

[
n̄·k gµν⊥ − n̄µ`ν⊥ − n̄νkµ⊥ + `⊥·k⊥n̄µn̄ν

n̄·k
]

×
[
n·k′ gλτ⊥ − nλ`′τ⊥ − nτk′λ⊥ +

`′⊥·k′⊥nλnτ
n·k′

]
Figure 9. Lowest order Feynman rules for the Glauber operators Oijns for n-s forward scattering.

Results for Oijn̄s are analogous with n↔ n̄.

n̄ · p momenta are largest for the n-collinear particles, and the n · p momenta are larger

for the n̄ or soft particles than they are for the n-collinear particles. For the four SCET

operators that are responsible for forward scattering of soft with n-collinear particles we

write operators with n-collinear and soft components separated by a 1/P2
⊥ factor

Oqqns = OqBn
1

P2
⊥
OqnBs , Oqgns = OqBn

1

P2
⊥
OgnBs , Ogqns = OgBn

1

P2
⊥
OqnBs , Oggns = OgBn

1

P2
⊥
OgnBs .

(5.17)

The structure of soft Wilson lines in OqnBs and OgnBs is determined by the direction of

the collinear fields, explaining why we add the additional subscript n to the quark and gluon

superscripts: qn and gn. The SCET operators which reproduce the result in eq. (5.16) again

involve OqBn or OgBn from eq. (5.10) for the n-collinear sector terms in the left-most square

brackets, just as was the case for reproducing eq. (5.8). For the soft-collinear scattering
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there does not exist a set of fields that are between these sectors in rapidity, hence here

there is no analog of the soft operator with two adjoint indices in eq. (5.14), and the 1/P2
⊥

gives the central terms in square brackets in eq. (5.16). The remaining right most terms in

square brackets are reproduced by the soft quark and gluon operators:

OqnBs = 8παs

(
ψ̄nS T

B /n

2
ψnS

)
,

OgnBs = 8παs

(
i

2
fBCDBnCS⊥µ

n

2
· (P+P†)BnDµS⊥

)
. (5.18)

Here the soft fields with n superscripts carry Sn Wilson lines and were defined in eqs. (4.10)

and (4.15) above. The appearance of these Wilson lines is necessary to preserve soft

gauge invariance, and we will see in section 6.1 that they arise from integrating out soft

attachments to the n collinear lines. By convention we group the gauge coupling αs with

the soft component of the operator. This is convenient since the running of this αs occurs

from soft loops.6 Due to our normalization conventions the total operators in eq. (5.17)

have Wilson coefficients that are 1 at tree level. To derive the scaling of the operators we

note that OiBn ∼ λ2, and OiBs ∼ λ3, so with the 1/P2
⊥ ∼ λ−2 we have the total scaling

Oijns ∼ λ3. This is the correct scaling for a mixed n-s Glauber operator that contributes

at leading power in the SCET Lagrangian, once the scaling of the measure is included, as

shown below in section 5.3. The lowest order Feynman rules for n-s forward scattering

from the operators in eq. (5.17) are shown in figure 9.

If there is another collinear sector, such as our n̄, then there will be a set of soft-n̄

scattering operators analogous to eq. (5.17), which we can simply obtain by taking n↔ n̄

in the above analysis. Here the forward scattering conditions are that the n̄ ·ps momentum

is conserved on the soft line and the n · pn̄ momentum is conserved on the n̄-collinear line.

The corresponding operators are

Oqqn̄s = OqBn̄
1

P2
⊥
Oqn̄Bs , Oqgn̄s = OqBn̄

1

P2
⊥
Ogn̄Bs , Ogqn̄s = OgBn̄

1

P2
⊥
Oqn̄Bs , Oggn̄s = OgBn̄

1

P2
⊥
Ogn̄Bs ,

(5.19)

which now involve the n̄-collinear bilinear operators in eq. (5.11), and the soft operators

Oqn̄Bs = 8παs

(
ψ̄n̄S T

B /̄n

2
ψn̄S

)
,

Ogn̄Bs = 8παs

(
i

2
fBCDBn̄CS⊥µ

n̄

2
· (P+P†)Bn̄DµS⊥

)
, (5.20)

where the fields ψn̄s and Bn̄DµS⊥ can be found in eqs. (4.10) and (4.15). Once again with

our conventions these operators have tree level Wilson coefficients equal to 1, and we will

later argue that this is true to all orders. The lowest order Feynman rules for n̄-s forward

scattering from the operators in eq. (5.19) are given by those in figure 9 with n↔ n̄.

So far the soft-n and soft-n̄ Glauber operators appear to be just like those for n-

n̄ forward scattering, except without an intermediate rapidity sector. However, this is

6The apparent symmetry between soft and collinear fields in these forward scattering operators is broken

by the fact that the two types of fields have different 0-bin subtractions.
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µ + n · k1

n̄µ

2
− n̄ · k2
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q µ = q µ
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⊥ + n · (k1+k2)
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2

Figure 10. Example of the momentum routing in a T-product of soft-n and soft-n̄ Glauber

operators which produces two soft gluons. The virtual soft gluon is space-like and the two Glauber

operators each still satisfy their forward scattering conditions.

not always the case, due to the fact that the forward scattering constraints in eqs. (5.6)

and (5.15) only restricts one light-cone momentum of each scattering particle, and the

light-cone soft momenta are much smaller than either the momentum of the n-collinear or

n̄-collinear particles, n·ks � n·pn̄ and n̄·ks � n̄·pn. In particular we can have diagrams that

satisfy the soft forward scattering constraints even though physically they do not appear

to be forward scattering soft particles. For example, consider the time-ordered product of

an Oqgns and Oqgn̄s shown in figure 10. Here the two soft gluons are produced in the final

state and have momenta n ·ki > 0 and n̄ ·ki > 0 for i = 1, 2. Nevertheless, the two Glauber

attachments to the soft gluons still satisfy the forward scattering constraints since n · q2 =

n·k1 > 0 and −n̄·q2 = n̄·k2 > 0. This is enabled by the n and n̄ collinear particles which can

absorb the O(λ) soft light-cone momenta in one of the two directions. Due to the collinear

power counting constraints the momentum n̄ · (k1 + k2) must travel through the Glauber

potential with momentum q into the n-collinear particles, and the momentum n · (k1 + k2)

must travel through the Glauber potential with momentum q′ from the n̄-collinear particles.

This type of time ordered product will play an important role in our calculations later on.

Considering all terms which cause scattering between either colllinear or soft fields we

can write the full Glauber Lagrangian for SCETII as

LII(0)
G = e−ix·P

∑
n,n̄

∑
i,j=q,g

Oijnsn̄ + e−ix·P
∑
n

∑
i,j=q,g

Oijns

≡ e−ix·P
∑
n,n̄

∑
i,j=q,g

OiBn
1

P2
⊥
OBCs

1

P2
⊥
OjCn̄ + e−ix·P

∑
n

∑
i,j=q,g

OiBn
1

P2
⊥
OjnBs . (5.21)

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sec-

tors {n, s, n̄} and operators connecting 2 rapidity sectors {n, s} (and {n̄, s}). This is the

complete result for the Glauber Lagrangian, since as we will explain below in section 5.3

there are no loop corrections to this form. For future reference we summarize the operators

relevant to forward scattering in table 2.

If we consider the interactions of soft and collinear particles in SCETI then none of

the tree level calculations that we have done in SCETII change, and hence the Glauber

operators are precisely the same as in SCETII. In this case we are considering SCETI prior
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OqBn = χnT
B /̄n

2
χn OgBn = i

2
fBCDBCn⊥µ n̄

2
· (P+P†)BDµn⊥

OqBn̄ = χn̄T
B /n

2
χn̄ OgBn̄ = i

2
fBCDBCn̄⊥µ n

2
· (P+P†)BDµn̄⊥

OBCs = 8παs

{
Pµ⊥S

T
n Sn̄P⊥µ−P⊥µ gB̃nµS⊥S

T
n Sn̄−STn Sn̄gB̃n̄µS⊥P

⊥
µ −gB̃nµS⊥S

T
n Sn̄gB̃n̄S⊥µ−

nµn̄ν
2
STn igG̃µνs Sn̄

}BC
OqnBs = 8παs

(
ψ̄nS T

B /n

2
ψnS

)
OgnBs = 8παs

(
i
2
fBCDBnCS⊥µ n

2
· (P+P†)BnDµS⊥

)
Oqn̄Bs = 8παs

(
ψ̄n̄S T

B /̄n
2
ψn̄S

)
Ogn̄Bs = 8παs

(
i
2
fBCDBn̄CS⊥µ n̄

2
· (P+P†)Bn̄DµS⊥

)

Table 2. Summary of operators appearing in the leading power Glauber exchange Lagrangian in

eq. (5.21).

to making the BPS field redefinition, so

LI(0)
G = LII(0)

G . (5.22)

However due to the appearance of couplings between the collinear and ultrasoft fields in

L(0)
ni for SCETI, and the differences between how momentum sectors are distinguished (via

subtraction terms), the precise behavior of these operators in loop diagrams will in general

be different. We will see this explicitly when comparing our one-loop matching calculations

in sections 7.1 and 7.3 for SCETII and SCETI respectively.

We can also consider the form of the Lagrangian LI(0)
G after the BPS field redefinition.

This field redefinition only changes the collinear quark and gluon fields, inducing lines Yn
or Yn for n-collinear fields, but leaves the soft fields unchanged. Due to the octet nature of

the Glauber operators in LI(0)
G , only the adjoint lines Yn and Yn̄ appear in this Lagrangian.

Additional ultrasoft lines can appear from interpolating fields for collinear initial and final

states. For a situation where SCETI is the relevant theory there are no soft real emissions,

since they are ruled out by restrictions from the observable being measured, and hence the

soft gluons appearing in SCETI due to the presence of Glauber operators can only appear

as virtual soft fluctuations.

5.1.3 Matching for all polarizations

For completeness, we can also repeat the matching calculations involving external gluons

with arbitrary external polarizations. This amounts to not specifying a specific basis for the

physical states, and allows us to see how the scattering with non-transverse polarizations

are matched by the EFT. To carry out this calculation it is important to use the equations

of motion to simplify the gluon matrix elements. For a full theory scattered gluon of

momentum p the equations of motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p⊥ ·A⊥(p) . (5.23)

As an explicit example we consider the two-gluon two-quark matching calculation given

by the diagrams shown in figure 11. Since the Glauber operator Ogqn̄s obviously only yields

n̄ · A and A⊥ polarizations, we use eq. (5.23) to eliminate the n ·A polarization terms
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Figure 11. Tree level matching for the nnn̄n̄Glauber operators, considering all gluon polarizations.

In a) we show the three full QCD graphs that contribute, and in b) we show the Glauber operator

that they match onto.

in the full theory amplitude. We also will use the forward condition on the amplitude,

n̄ · p2 = n̄ · p3 and the relation q = p3 − p2. Using eq. (5.23) we can set pµ2εµ(p2) = 0,

pν3εν(p3) = 0, and write the objects that are dotted into these ε polarization vectors as

gµν → gµν⊥ −
pµ2⊥n̄

ν

n̄ · p2
− n̄µpν3⊥

n̄ · p2
− n̄µn̄νn · (p2 + p3)

2n̄ · p2
, pν2 → (pν2⊥ − pν3⊥) +

1

2
n · (p2 − p3)n̄ν ,

pµ3 → (pµ3⊥ − p
µ
2⊥) +

1

2
n · (p3 − p2)n̄µ . (5.24)

With these manipulations, and canceling various terms, the amplitude from the first of the

full theory diagrams in figure 11a is

g2fABC

q2

[
v̄n̄
/n

2
T̄Cvn̄

]{
2 n̄ · p2 g

µν
⊥ − 2n̄µpν2⊥ − 2pµ3⊥n̄

ν − n·(p2 + p3)n̄µn̄ν
}
, (5.25)

while the leading power contribution from the sum of the two remaining full theory (Comp-

ton) diagrams in figure 11a is

g2fABC

q2

[
v̄n̄
/n

2
T̄Cvn̄

]{
− q2

n̄ · p2

}
n̄µn̄ν . (5.26)

To obtain eq. (5.26) we have dropped the +i0 in the propagators. Keeping the +i0 gives

rise to an additional term proportional to δ(n̄ ·p2) which we can set to zero, since the large

momentum n̄ · p2 > 0 for this matching calculation. The n̄ · p2 = 0 contribution is properly

accounted for in Glauber loop graphs, such as those discussed below in section 5.2.1. Adding

the results for the full theory graphs, and using the equations of motion to carry out the

simplification q2 + n̄ · p2 n · (p2 + p3) = −2p2⊥ · p3⊥, we find

2g2fABC

q2

[
v̄n̄
/n

2
T̄Cvn̄

]{
n̄ · p2 g

µν
⊥ − n̄µpν2⊥ − p

µ
3⊥n̄

ν +
p2⊥ ·p3⊥
n̄ · p2

n̄µn̄ν
}
. (5.27)

This result is precisely identical to the complete Feynman rule for the EFT contribution

shown in figure 11b, so the complete set of polarizations are reproduced by the EFT

operator. (The Feynman rule was given above in figure 5.)

This same calculation also demonstrates that the full set of polarizations are present

in the operator with two soft gluons (the second graph in figure 8b). In a similar manner,

using the equations of motion the full set of polarizations for gluon-gluon soft-collinear and

n-n̄ scattering are reproduced by the EFT Glauber operators.
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Figure 12. One loop iterations of the Glauber potential for n–n̄ forward scattering of a qq̄ pair.

5.2 Formalism for multi-Glauber diagrams

Here we discuss additional formalism that is needed for diagrams with multiple insertions

of Glauber operators. In section 5.2.1 we discuss the regulation of Glauber exchange

iterations, then in section 5.2.2 we write the Glauber Lagrangian in transverse momentum

space and fully implement its multipole expansion, and finally in section 5.2.3 we discuss

the rapidity regulator for Glauber operators and the implementation of 0-bin subtractions.

5.2.1 One-loop Glauber box and cross-box diagrams

To illustrate the presence of additional singularities that occur in the presence of Glauber

gluons, in this section we will consider the one-loop computation for the iteration of two

Glauber operators. We will see that it is necessary to introduce a rapidity regulator into

LII(0)
G in order to yield well defined results for the various possible contractions of two

operators which induce a loop momentum with Glauber scaling.

To see some of the difficulties inherent in having well defined Glauber potentials, we

will start by considering the iteration of two Oqqnsn̄ potentials to generate a loop graph. We

can contract the n-collinear quarks and the n̄-collinear quarks to give the “box” and “cross

box” graphs shown in figure 12. To keep the particles onshell in the effective theory the

loop momentum k must not spoil the power counting for any of the propagators in the

loop. Therefore we must have n · k ∼ λ2 and n̄ · k ∼ λ2, but can have k⊥ ∼ λ. We will

refer to this as an n-n̄ Glauber loop momentum. We decompose

d−dk ≡ ddk

(2π)d
=

1

2
d−k+d−k−d−d−2k⊥ (5.28)

where d = 4 − 2ε, and recall the forward conditions p+
4 = p+

1 and p−3 = p−2 . The box and

cross-box loop integrals involve two Glauber denominators and two propagators from the

collinear quarks. They are

IGbox =

∫
d−d−2k⊥ d−k+ d−k−

2(~k 2
⊥)(~k⊥+~q⊥)2

(
k++p+

3 −(~k⊥+~q⊥/2) 2/p−2 +i0
)(
−k−+p−4 −(~k⊥+~q⊥/2) 2/p+

1 +i0
) ,

IGcbox =

∫
d−d−2k⊥ d−k+ d−k−

2(~k 2
⊥)(~k⊥+~q⊥)2

(
k++p+

3 −(~k⊥+~q⊥/2) 2/p−2 +i0
)(

+k−+p−1 −(~k⊥+~q⊥/2) 2/p+
1 +i0

) .
(5.29)

These graphs involve log divergent integrals of the type
∫
dk+/(k+ + ∆ ± i0) and∫

dk−/(k− + ∆ ± i0) that are not regulated by dimensional regularization. These sin-

gularities must be dealt with systematically by introducing an additional regulator.
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In the case of the potential for two heavy quarks in NRQCD, the cross-box diagram

would be zero because both poles in the energy contour integral would be on the same side,

and the box diagram would be convergent since both fermion propagators would carry the

loop energy. Indeed, in NRQCD their are no crossed diagrams for potential iterations at

any order in αs, and the iterated box diagrams yield the Coulomb Greens function. In

our case the Glauber potential is instead static in both time and longitudinal distance, or

equivalently static in the two light-cone times x+ and x−. For the diagrams in figure 12 this

implies that we have x−1 = y−1 , x+
1 = y+

1 , and x−2 = y−2 , x+
2 = y+

2 in position space, where

the xi and yi coordinates are defined in the figures. Naively this would seem to imply that

only the Glauber box diagram can exist, because in the cross-box diagram the ordering of

the 1 and 2 Glauber potential vertices is different for the n-collinear and n̄-collinear lines.

However due to the multipole expansion, which ensures that the collinear propagators are

homogeneous in the power counting in eq. (5.29), the n-collinear propagator only depends

on the n · k ∼ λ2 Glauber momentum, and not on the n̄ · k � n̄ · pn component, whereas

we have the opposite situation for the n̄-collinear propagator. Thus each of the collinear

sectors only sees one of these two times x+ or x−, and we must consider both the box with

x+
2 > x+

1 and x−2 > x−1 , and the cross-box with x+
2 > x+

1 and x−1 > x−2 where the Glauber

vertices have the opposite ordering on each line.

In the abelian limit we can determine IGbox + IGcbox without an additional regulator,

by adding the integrands and manipulating them to obtain δ(k+)δ(k−). We carry out

these computations explicitly in appendix C.1, where we also show that this same trick

works to all orders in the iterations of Glauber potentials, and leads to the expected eikonal

phase result eiφ − 1 for the Greens function obtained from the abelian forward scattering

potential. To obtain this result at the integrand level the crossed box type diagrams play

a role. However in QCD the box and crossbox have different color factors, so this type of

manipulation does not suffice.

To regulate the integrals in eq. (5.29) for the nonabelian case we will use the rapidity

regulator w2|2qz|−ηνη of ref. [58], where w = w(ν) is a renormalized coupling used to derive

RG equations, and in the limit η → 0 we set w(ν) = 1. In terms of light-cone momenta

qz = (q− − q+)/2, and results and counterterms are identified by taking η → 0 prior to

expanding for ε→ 0. The parameter ν introduces an extra cutoff parameter that behaves in

a similar way to µ of the MS scheme in dimensional regularization. This regulator acts as a

factorization scale that separates modes with equal invariant mass but different rapidity. To

regulate multiple iterations of these Glauber potentials we will have one factor of w|2qz|−ηνη
for each Glauber potential carrying momentum q. We will refer to this as the η-regulator.7

In the next section we formulate this regulator for Glauber potentials at the level of the

Glauber Lagrangian, and also discuss the regularization of rapidity divergences from soft

and collinear loop graphs. In this section the coupling w(ν) will play no role (since as we

will see, the graphs do not have 1/η poles), so we will from the start set w(ν) = 1 below.

For the Glauber loop momentum in figure 12, qz = kz ∼ λ2, so we have a factor of

|kz|−η(ν/2)η for each of the two potential insertions in these graphs. The presence of the

7Including an η-regulator for each Glauber potential is distinct from the definition used in ref. [58],

where it was used for group momenta in soft and collinear Wilson lines.
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|kz|−η factor means that the Glauber exchange is no longer static in longitudinal distance.

We will recover the static nature of the exchange in this direction only when η → 0. With

this regulator the loop integrals become well defined because we are forced to consider the

contour integral in the analytic variable k0, rather than using any time slice that involves

some amount of kz. With this regulator the Glauber cross-box integral becomes

IGcbox =

∫
d−d−2k⊥ d−k0 d−kz |kz|−2η (ν/2)2η

(~k 2
⊥)(~k⊥+~q⊥)2

(
k0− kz+p+

3 −(~k⊥+ ~q⊥
2 )2/p−2 +i0

)(
k0+ kz+p−1 −(~k⊥+ ~q⊥

2 )2/p+
1 +i0

)
= 0 , (5.30)

since the poles are on the same side. For the Glauber box integral we get

IGbox =

∫
d−d−2k⊥ d−k0 d−kz |kz|−2η (ν/2)2η

(~k 2
⊥)(~k⊥+~q⊥)2

(
k0−kz+p+

3 −(~k⊥+ ~q⊥
2 ) 2/p−2 +i0

)(
−k0−kz+p−4 −(~k⊥+ ~q⊥

2 ) 2/p+
1 +i0

)
= −i

∫
d−d−2k⊥d−kz |kz|−2η (ν/2)2η

(~k 2
⊥)(~k⊥+~q⊥)2(−2kz−2∆+i0)

=
−i
4π

∫
d−d−2k⊥

(~k 2
⊥)(~k⊥+~q⊥)2

[
(ν/2)2η (−2iπ) csc(2πη) sin(πη) (i∆)−2η

]
=

(−i
4π

)∫
d−d−2k⊥

(~k 2
⊥)(~k⊥+~q⊥)2

[
− iπ +O(η)

]
, (5.31)

where the kz integral is evaluated in eq. (B.4). Here

2∆ =
(~k⊥+ ~q⊥/2) 2

p+
1

+
(~k⊥+ ~q⊥/2) 2

p−2
−p−4 −p+

3 (5.32)

and the η dependent term evaluates to (−iπ) as η → 0 for any value of this ∆. This extra

(−i) is the factor necessary for the Glauber potential to exponentiate into a phase. The

result in eq. (5.31) for the η-regulated box is exactly the same as the result obtained from

manipulating the integrands in the sum of the box and cross-box in the abelian case in

appendix C.1.

Effectively the η-regulator has decoupled the spacetime constraints so that the box

diagram alone is integrating the two Glauber potentials over x±, while the cross box does

not contribute. This is the same spacetime picture that is obtained by adding the box and

cross-box integrands in the abelian theory to get a δ(k+)δ(k−) type structure. In the non-

abelian theory it is important as far as the color structure is concerned that it is the box

graph alone that contributes. The non-abelian part of the cross-box topology contributes

only for another momentum region, namely when we have the loop graph with two soft

gluons. In SCET this contribution has the non-abelian color structure and is given by first

graph in figure 3b. (This graph does not correspond solely to vacuum polarization, and en-

codes the cross box contribution from terms involving soft Wilson lines.) These soft graphs

come from contractions of Oqgns and Oqgn̄s with a soft loop momentum. Since the soft gluon

terms in the operator involve fABC they explicitly do not have an abelian contribution, so

it is a regulator independent statement that the abelian contribution is entirely carried by
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Figure 13. One loop iterations of the Glauber potential for n-soft forward scattering of a qq̄ pair.

the Glauber iterations. Any consistent regulator for the Glauber singularities must have

these properties.

We will see in section 9.1 that the above properties of the η-regulator extend in a

nice way for arbitrary iterations of Glauber potentials with Glauber loop momenta. Any

iteration diagram with crossed Glauber potential lines will give zero in the same manner

as the crossed box above, and the η-regulated iterated boxes alone yield an eiφ − 1 Greens

function even in the nonabelian theory. We will also give a more physical picture for the

action of the η-regulator in Glauber loops in section 9.1. In the abelian theory the phase

φ is one-loop exact. In the nonabelian theory there will be one-loop corrections to the

forward scattering kernel from graphs involving soft and collinear loop momenta, and the

full set of such diagrams will be computed in section 7.1 and section 7.3.

If we consider quark-quark scattering rather than quark-antiquark scattering, then the

same loop integrals in eqs. (5.30) and (5.31) appear, and we get the same result other

than a modified color structure. We can also extend the above analysis to iterations of

Glauber potentials other than Oqqnsn̄. If we consider n-n̄ scattering where either or both

of the external collinear lines are ⊥-gluons, then from the form of the Feynman rules in

figure 5 we note that the internal gluon is also ⊥ and we have the same momentum integrals

as those analyzed above, again with a n-n̄ Glauber loop momentum. So iterations of these

operators also yield the same loops as in qq̄ scattering.

We can also consider Glauber potentials obtained by iterations of the operator Oijns or

by iterations of Oijn̄s. In these cases the loop momentum will be Glauber if we have the

s-n or s-n̄ Glauber scaling, namely kµ ∼ (λ2, λ, λ) for Oijns iterations, or kµ ∼ (λ, λ2, λ)

for Oijn̄s iterations. The graphs for two Oqqns iterations are shown in figure 13. At the level

of 4-point functions the Feynman rules for the scattering involving n-s are direct analogs

of those for the n-n̄ scattering. Keeping pµ2,3 as n-collinear, but letting pµ1.4 be soft, the

iteration of two Oqqnss gives the same denominators as in the box and cross-box integrals

shown in eq. (5.29), since the collinear and soft propagator denominators are

n-s box:
[
(k++p+

3 )p−3 −(~k⊥+~p3⊥)2+i0
][

(p−4 −k−)p+
4 −(~k⊥−~p4⊥)2+i0

]
, (5.33)

n-s crossbox:
[
(k++p+

3 )p−3 −(~k⊥+~p3⊥)2+i0
][

(p−1 +k−)p+
1 −(~k⊥+~p1⊥)2+i0

]
.

Here k+ ∼ λ2, while k− ∼ λ, but each loop integral scales as λ5/λ7 = λ−2 as before. To

regulate these n-s Glauber loops we can use |n ·k−βn̄ ·k|−η instead of |2kz|−η in eqs. (5.30)

and (5.31), where β ∼ λ is a boost factor that ensures that the two terms in the regulator

have the same ∼ λ2 scaling. However, the results for these integrals are the same as if we
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took β = 1 since they are independent of β as long as β > 0. To see this simply change

variables to k′− = βk−, noting that this gives back the regulator |n · k − n̄ · k′|−η, and

d−k−/(k− −∆) = d−k′−/(k′− −∆/β). The cross-box again vanishes and the box yields the

same ∆ independent result that we found in eq. (5.31) once we expand and drop O(η) terms.

5.2.2 Transverse momentum Glauber Lagrangian and multipole expansion

In the Glauber Lagrangian in eq. (5.21) the ⊥-momenta are all O(λ) and hence are

encoded by continuous label momenta on soft and collinear fields, without residual ⊥-

momenta. The overall
∫
d2x⊥ integration then just enforces momentum conservation

through
∫
d2x⊥ exp(−ix⊥ · P⊥) = (2π)2δ2(P⊥). It is convenient to make this explicit

by writing the Glauber action entirely in transverse momentum space. To do this we insert

the identity in the form

OiAn =

∫
d2q⊥

[
OiAn δ2(q⊥ − P†⊥)

]
=

∫
d2q⊥ OiAn (q⊥) , (5.34)

which allows us to write the Lagrangian in terms of the n-collinear bilinear with definite

injected transverse momentum q⊥:

OiAn (q⊥) =
[
OiAn δ2(q⊥ − P†⊥)

]
. (5.35)

We make similar definitions for the other bilinear operators with definite transverse mo-

menta

OjBn̄ (−q′⊥) =
[
OjBn̄ δ2(q′⊥ + P†⊥)

]
, OjnAs (−q⊥) =

[
OjnAs δ2(q⊥ + P†⊥)

]
. (5.36)

Using these definitions for the n- and n̄-collinear operators, and then moving the overall

momentum conserving δ2(P⊥) so that it acts only on the soft fields, the Glauber action

with d = 4 in transverse momentum space is∫
d4xLII(0)

G =
∑
n,n̄

∑
i,j=q,g

∫
dx+dx−

2
e−ix̃·P(2π)2

∫
d2q⊥
q2
⊥

d2q′⊥
q′ 2⊥
OiAn (q⊥) OABs (q⊥, q

′
⊥)OjBn̄ (−q′⊥)

+
∑
n

∑
i,j=q,g

∫
dx+dx−

2
e−ix̃·P(2π)2

∫
d2q⊥
q2
⊥
OiAn (q⊥) OjnAs (−q⊥)

=
∑
n,n̄

∑
i,j=q,g

∫
[dx±]

∫
d2q⊥
q2
⊥

d2q′⊥
q′ 2⊥
OiAn (q⊥) OABs (q⊥, q

′
⊥)OjBn̄ (−q′⊥)

+
∑
n

∑
i,j=q,g

∫
[dx±]

∫
d2q⊥
q2
⊥
OiAn (q⊥) OjnAs (−q⊥) , (5.37)

where all the operators depend on the positions x+ and x− and we will make the multi-

pole expansion for these components explicit below. The two color index soft operator in

transverse momentum space that appears in eq. (5.37) is

OBCs (q⊥, q
′
⊥) = 8παs δ

2(q⊥ − q′⊥ − P⊥)

{
q⊥ · q′⊥ STn Sn̄ − q⊥µ gB̃nµS⊥STn Sn̄ − STn Sn̄gB̃

n̄µ
S⊥q

′
⊥µ

− gB̃nµS⊥STn Sn̄gB̃n̄S⊥µ −
nµn̄ν

2
STn igG̃µνs Sn̄

}BC
. (5.38)
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For convenience we have defined the short hand notations

[dx±] ≡ 1

2
dx+dx− exp(−ix̃ · P)(2π)2 , x̃µ ≡ n · x n̄

µ

2
+ n̄ · x n

µ

2
. (5.39)

The factor of (2π)2 in [dx±] combine together with the overall ⊥-momentum conserving

δ-function and hence drop out in the Feynman rules when momentum conservation is taken

into account explicitly.

Next we consider the flow of +-momenta and −-momenta in the Glauber Lagrangian.

Unlike the ⊥-momenta which were always O(λ), from table 1 we see that here there is a

hierarchy between the n-collinear, n̄-collinear and soft momenta:

k+
n � k+

s � k+
n̄ , k−n̄ � k−s � k−n . (5.40)

These expansions are included in our Glauber Lagrangian due to the presence of a multipole

expansion [94] that is implemented using the mixed momentum-space and position-space

label formalism [62], as implemented for SCET in refs. [28, 29].

Before discussing the Lagrangian in greater detail, we consider a practical application

of these expansions for a graph that simultaneously involves soft, n, and n̄ fields, namely

the last diagram in figure 6. The momentum space multipole expansion implemented with

labels ensures that the light-cone momenta will only be routed in a way which is consistent

with the power counting and the fields in SCET remaining nearly onshell. Here the soft

gluon with incoming momentum k = q − q′ implies that k± ∼ λ momenta must flow

through the dashed Glauber potentials and into the n-collinear and n̄-collinear fields. To be

consistent with the power counting the n̄ · k soft momentum must flow into the n-collinear

fields, since n̄ · k � n̄ · pn̄ and would knock the n̄-collinear particles offshell. Similarly,

the n · k soft momentum must flow into the n̄-collinear fields. Here the Glauber potentials

have momenta scaling as q′ ∼ (λ, λ2, λ) and q ∼ (λ2, λ, λ) for the (+,−,⊥) components

respectively. The 1/P2
⊥ potentials still correctly describe these exchanges since we still

have q+q− � q2
⊥ and q′+q′− � q′ 2⊥ . The q ∼ (λ2, λ, λ) scaling found here also occurred in

the potential exchanges in figure 13. Also note that the k− ∼ λ momentum which flows

into the n-collinear fields is always suppressed relative to the large p−n ∼ λ0 momenta, and

hence does not appear in the leading power n-collinear propagators or purely n-collinear

interactions (it will show up in power suppressed terms). Likewise the k+ ∼ λ momentum

flowing into the n̄-collinear fields is suppressed relative to p+
n̄ ∼ λ0 momenta. Thus the

presence of these smaller momentum components does not change the homogeneous scaling

of collinear propagators. In our formalism the lines carry the smaller momentum compo-

nents even if they do not show up in the leading power propagators, and we have separate

momentum conservation for the O(λ0), O(λ) and O(λ2) components of the momenta.

Next consider how this multipole expansion effects the dependence of various operators

in the Glauber Lagrangian. As already discussed, the large O(λ0) momenta carried by

collinear fields is conserved within the collinear bilinear operators, corresponding to the

near forward scattering constraint in eq. (5.6). These momenta are implemented with label

momenta, but since they are not exchanged between sectors in the Glauber operators we

will not bother to make this explicit in our notation. On the other hand, soft momentum
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k± ∼ λ injected by the soft operators will be carried by the collinear fields, and we will

denote these by momentum labels to distinguish them from the residual collinear momenta

that are O(λ2). Residual momenta are encoded in the dependence of all operators on

the spacetime coordinates x±. The Glauber action from eq. (5.37) with the multipole

expansion made explicit is∫
d4xLII(0)

G =
∑
n,n̄

∑
i,j=q,g

∫
[dx±]

∑
k+,k−

∫
d2q⊥
q2
⊥

d2q′⊥
q′ 2⊥
OiAn,k−(q⊥)OABs,−k±(q⊥, q

′
⊥)OjB

n̄,k+(−q′⊥)

+
∑
n

∑
i,j=q,g

∫
[dx±]

∑
k−

∫
d2q⊥
q2
⊥
OiAn,k−(q⊥)OjnA

s,−k−(−q⊥) . (5.41)

In this form derivatives of the position space coordinates x+ and x− are ∼ λ2. Here k+

and k− are O(λ) soft momenta, that for the collinear operators appear as subleading label

momenta underneath the large momenta p−n and p+
n̄ in n-collinear and n̄-collinear operators

respectively. Since they are subleading, they do not appear in the propagators or leading

power Feynman for collinear fields, but these labels on the collinear operators are important

for conserving momenta. In terms of transverse momentum space fields for example

OqA
n,k−(q⊥) =

∫
d2p⊥

∑
k′−

χ̄n,k′−+k−(p⊥ + q⊥, x
+, x−)

/̄n

2
TAχn,k′−(p⊥, x

+, x−) . (5.42)

Here the conserved large O(λ0) label momenta p− for the χn fields are not shown for

simplicity.

To understand the form of the original Glauber Lagrangian in eq. (5.21) and the equiv-

alent Glauber action given in eq. (5.41) it is useful to look at mass-dimensions (counted

with Qs) and power counting dimensions (counted with λs) for the various components.

For eq. (5.21) the collinear operators OiAn ∼ Q3λ2, OjBn̄ ∼ Q3λ2, the soft operators

OjnAs ∼ Q3λ3, OABs ∼ Q2λ2, and 1/P2
⊥ ∼ Q−2λ−2. Accounting for the exp(−ix · P) the

largest momenta determine the scaling of the coordinates in d4x, so for the 3-rapidity oper-

ators we have d4x ∼ Q−4λ−2, whereas for the 2-rapidity operators we have d4x ∼ Q−4λ−3.

Therefore
∫
d4xOiAn (1/P2

⊥)OABs (1/P2
⊥)OjBn̄ ∼ Q0λ0, and

∫
d4xOiAn (1/P2

⊥)OjnAs ∼ Q0λ0,

as expected. Next consider the Glauber action in eq. (5.41) where the operators have trans-

verse momentum arguments. Using eqs. (5.35), (5.36), (5.38), we have OiAn (q⊥) ∼ Qλ0,

OjBn̄ (q⊥) ∼ Qλ0, OjnAs (q⊥) ∼ Qλ, and OABs (q⊥, q
′
⊥) ∼ Q0λ0. Again the largest momenta

determine the measure scaling, so [dx±] ∼ Q−2λ0 for the 3-rapidity sector operators and

[dx±] ∼ Q−2λ−1 for the 2-rapidity sector operators. Therefore both the 2 and 3-rapidity

sector terms in eq. (5.41) scale as ∼ Q0λ0, as before.

5.2.3 Rapidity regulator and zero-bin subtractions

When there are soft and collinear modes that live at the same invariant mass scale in

SCET, we in general need an additional regulator in rapidity space to distinguish these

modes and handle divergences [59]. This can be achieved using the rapidity regulator of

ref. [58], which distinguishes modes using a rapidity factorization scale ν. In this subsection

we highlight some differences related to the fact that the rapidity regulator must also be
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introduced to distinguish Glauber contributions. We also discuss zero-bin subtractions [59]

from the Glauber region for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w

∣∣∣∣2Pzν
∣∣∣∣−η/2, w2

∣∣∣∣n · Pν
∣∣∣∣−η, w2

∣∣∣∣ n̄ · Pν
∣∣∣∣−η, (5.43)

for Wilson lines involving (n ·As or n̄ ·As) soft gluons, n ·An̄ n̄-collinear gluons, and n̄ ·An
n-collinear gluons respectively [58]. At one-loop rapidity divergences will appear as 1/η

poles with a corresponding logarithmic dependence on the cutoff ν. Since ν is dimensionful,

it technically is ν/µ that is associated to the rapidity, but we will still follow the common

practice of referring to ν as the rapidity scale. Here w is a book keeping coupling used to

calculate anomalous dimensions through

ν
∂

∂ν
w2(ν) = −η w2(ν) , lim

η→0
w(ν) = 1 . (5.44)

The powers of η are fixed to ensure that the rapidity divergences cancel when summing over

sectors. That the correct choice has been made can be seen by regulating the corresponding

full theory diagrams and expanding around the soft and collinear limits. Counterterms will

have both 1/η and 1/ε poles, and are identified by taking η → 0 prior to expanding for

ε→ 0. The regulated expressions for the momentum space Wilson lines are

Sn =
∑

perms

exp

{ −g
n · P

[
w|2Pz|−η/2
ν−η/2

n ·As
]}

, Sn̄ =
∑

perms

exp

{ −g
n̄ · P

[
w|2Pz|−η/2
ν−η/2

n̄ ·As
]}

,

(5.45)

Wn =
∑

perms

exp

{ −g
n̄ · P

[
w2|n̄ · P|−η

ν−η
n̄ ·An

]}
, Wn̄ =

∑
perms

exp

{ −g
n · P

[
w2|n · P|−η

ν−η
n ·An̄

]}
.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators −g/P act on all fields to the right when the

exponentials are expanded. We separately regulate every soft or collinear gluon from the

Wilson lines in order to maintain consistency with our use of the rapidity regulator for

Glauber loops (rather than introducing the regulator only for the group momentum as in

ref. [58]). We have confirmed that our choice maintains exponentiation for matrix elements

that only involve Wilson lines, since the exponentiation can be derived by permutations

of momenta under which the regulator is symmetric. An additional complication in the

operators we consider is the presence of inverse factors of n̄ ·P and n ·P that appear outside

of the Wilson lines. Since our operators can be written in different equivalent forms, these

factors are required for consistency. Examples where this occurs include OgBn , OgBn̄ , OgnBs ,

and Ogn̄Bs , see for example eq. (4.15). Here, the inverse power to that in eq. (5.43) is used,

so for example n̄ · P → n̄ · P 1
w2

∣∣ n̄·P
ν

∣∣+η in the numerator of the n-collinear operator OgBn ,

and n̄ · P → n̄ · P 1
w

∣∣2Pz
ν

∣∣+η/2 in the numerator of the soft operator OgnBs .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2
⊥ factors

in the manner discussed in in section 5.2.1. The limit η → 0 is always considered first,

with the rapidity renormalization carried out at finite ε, and then the limit ε→ 0 is taken.
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Graphs without rapidity divergences or sensitivity will give the same answer whether one

sets η = 0 before or after the loop integration. We introduce factors of the η-regulator for

each Glauber potential between the forward scattering components of the operators, so the

Glauber action with d = 4 becomes∫
d4xLII(0)

G =
∑
n,n̄

∑
i,j=q,g

∫
[dx±]

∑
k+
r ,k
−
r

∫
d2q⊥
q2
⊥

d2q′⊥
q′ 2⊥
OAB
s,−k±r

(q⊥, q
′
⊥) (5.46)

×
[
OiA
n,k−r

(q⊥)w2

∣∣∣∣∣ in ·
←
∂ +in̄ ·~∂
ν

∣∣∣∣∣
−η

OjB
n̄,k+

r
(−q′⊥)

]

+
∑
n

∑
i,j=q,g

∫
[dx±]

∑
k−r

∫
d2q⊥
q2
⊥
OiA
n,−k−r

(q⊥)w2

∣∣∣∣∣−βns k−r + in̄ · ~∂
ν

∣∣∣∣∣
−η

OjnA
s,k−r

(−q⊥) .

Here ν is the rapidity renormalization scale and the operators in transverse momentum

space are given above in section 5.2.2. In the 3-rapidity sector operator, the factor |in · ←∂
+ in̄ · ~∂|−η regulates the n-n̄ Glauber potential, and for graphs where O(λ2) momenta

do not flow into the soft sector, one can integrate by parts and it becomes |2i~∂z|−η =

|in̄ · ~∂ − in · ~∂|−η. Here these derivatives only pick out O(λ2) momenta. In the 2-rapidity

sector operator the regulator involves a combination of the n-collinear O(λ2) momentum

and the O(λ) soft momentum because it is regulating a soft-collinear Glauber potential.

The inclusion of the boost parameter βns > 0 where βns ∼ λ here ensures that these

momenta appear together in a homogeneous combination in the rapidity regulator. For

the pure Glauber potential in n-n̄ scattering we have no soft gluons, so can set

OBC
s,−k±r

(q⊥, q
′
⊥) = 8παs q

2
⊥ δ

2(q⊥ − q′⊥) δk+
r ,0
δk−r ,0 , (5.47)

and eq. (5.46) gives a factor of |2i∂z|−ηνη → |2qz|−ηνη for each potential carrying momen-

tum q. This then yields the rapidity regulator factors used in the box and cross-box calcu-

lations in section 5.2.1. For n-s scattering the regulator for each potential is made homoge-

neous by the inclusion of the boost factor βns ∼ λ. As discussed in section 5.2.1, the result

for Glauber loops from Oijns iterations is independent of βns. In section 10.3 we encounter

two-loop examples where both the η regulator in the Glauber potentials and in the Wilson

lines are needed simultaneously and justifies the choice of the power of η in eq. (5.46).

As a more complicated example of how the rapidity regulators work, we can consider

the H-graph involving two Lipatov vertices, which is shown in figure 14 for two different

momentum routings. In figure 14a we have a soft loop momentum `µ ∼ λ and a n-n̄

Glauber loop momentum kµ ∼ (λ2, λ2, λ) for its (+,−,⊥) components. In figure 14b the

same diagram is shown but now using a n-s Glauber loop momentum kµ1 ∼ (λ2, λ, λ) and a

n̄-s Glauber loop momentum kµ2 ∼ (λ, λ2, λ). The routing of momentum in the two graphs

are related by the changes of variable

n · k1 = n · k , n̄ · k1 = n̄ · (k + `) , k1⊥ = k⊥ + `⊥ , (5.48)

n · k2 = n · (`− k) , n̄ · k2 = −n̄ · k , k2⊥ = −k⊥ .
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Figure 14. Two different momentum routings for the two loop diagram stemming from the time

ordered product of two Oqqnsn̄ insertions with one soft gluon. The soft momentum `µ = kµ1 + kµ2
can only be routed in a way which is consistent with the power counting. In a) the loops are soft

and n-n̄ Glauber with `µ ∼ (λ, λ, λ) and kµ ∼ (λ2, λ2, λ) respectively, while in b) the loops are s-n

Glauber and s-n̄ Glauber with kµ1 ∼ (λ2, λ, λ) and kµ2 ∼ (λ, λ2, λ) respectively.

In order that these two momentum routings give the same results, it is important that the

rapidity regulators also are transformed into one another under this change of variable,

and of course also will regulate the singularities in the diagram. Eq. (5.46) with the in · ∂
and in̄ ·∂ factors satisfies both these criteria. In particular for the loop integrals in the two

routings we have

figure 14a :

∫
d−dk d−d` |2kz|−2η|2`z|−η Na(`, k⊥, q⊥)G0(k⊥)G0(k⊥+`⊥)G0(k⊥+`⊥−q⊥)G0(k⊥−q⊥)[

k++p+
2 −

(~k⊥+~p2⊥+~̀⊥)2

p−2
+i0

][
−k−+p−1 −

(~k⊥−~p1⊥)2

p+
1

+i0

][
`2+i0

] ,

figure 14b :

∫
d−dk d−d` |k+

1 +k−2 |−2η|k−1 +k−2 −k
+
1 −k

+
2 |−η Nb(k

−
1 , k

+
2 , k1⊥, k2⊥, q⊥)[

k+
1 +p+

2 −
(~k1⊥+~p2⊥)2

p−2
+i0

][
k−2 +p−1 −

(~k2⊥+~p1⊥)2

p+
1

+i0

][
k+

2 k
−
1 −(~k1⊥+~k2⊥)2+i0

]
×G0(k1⊥)G0(k2⊥)G0(k1⊥−q⊥)G0(k2⊥+q⊥), (5.49)

where for this equation only, G0(k⊥) = (ig2)/~k 2
⊥. Here Na and Nb are functions that

are each obtained from the contraction of two Lipatov vertices from figure 6. For the two

routings the factors of |2kz|−2η and |k+
1 +k−2 |−2η are each obtained from the |in · ←∂ + in̄ ·~∂|−η

regulator in eq. (5.46). This regulates the dk+dk− integrations in the figure 14a routing,

and the dk+
1 dk

−
2 integrations in the figure 14b routing. The other factors, |2`z|−η and

|k−1 + k−2 − k+
1 − k+

2 |−η, are generated by the regulator in the soft Wilson lines in OABs ,

and hence only depend on the soft gluons momentum in each case. They regulate eikonal

factors that appear inside Na and Nb. Noting that Nb → Na under the transformation in

eq. (5.48), it is easy to see that the two results in eq. (5.49) are exactly equivalent under

this transformation.

The SCET graphs also have zero-bin subtractions [59] which are necessary to avoid

double counting between contributions from the various infrared modes. These subtrac-

tions are determined by the SCET propagators appearing in loop diagrams. For SCETII

the overlapping modes are collinear, soft, and Glauber. At leading power collinear gluon

propagators have subtractions from the soft and Glauber regions, and soft gluon propa-

gators have subtractions from the Glauber region. At one-loop, if we consider a soft loop

diagram S with only soft gluon propagators, or a n-collinear loop diagram Cn with only
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collinear gluon propagators, then the structure of the subtractions is

S = S̃ − S(G) , Cn = C̃n − C(S)
n − C(G)

n + C(S)(G)
n . (5.50)

Here the superscript indicates the momentum region that the subtraction comes from.

The (G) for the soft subtraction can be any one of the three Glauber momentum scalings

(+,−,⊥) ∼ (λ2, λ2, λ) or (λ2, λ, λ) or (λ, λ2, λ), while the (G) subtraction for the n-collinear

case only includes scalings of the form (+,−,⊥) ∼ (λ2, λ2, λ) or (λ2, λ, λ). The result for Cn̄
is analogously obtained by taking n→ n̄ in Cn. If we start with the naive soft loop graph

S̃ with loop momentum k, then the Glauber subtraction S(G) is obtained from scaling

the S̃ integrand into the region k+k− � ~k 2
⊥ and keeping only terms that are the same

order in the λ power counting as the original integrand. If we have a naive n-collinear

loop graph C̃n with loop momentum `, then there is a soft subtraction C
(S)
n from the

region `µ ∼ λ, and a Glauber subtraction C
(G)
n from the region `+`− � ~̀2

⊥, plus a term

C
(S)(G)
n that adds back the soft-Glauber overlap region so that it is not over subtracted.

This overlap term is constructed from the Glauber limit of the C
(S)
n integrand. Even at

one-loop, subtractions other than those in eq. (5.50) are possible, since the subtractions

are induced by propagators rather than by the type of loop momentum. For instance,

Glauber loops which contain a soft gluon propagator can also have a Glauber subtraction,

and we will see examples of this in section 10.2. The zero-bin subtractions are formulated

iteratively to all loop orders [59] at the level of the SCET Lagrangian, and a two-loop

example with subtractions can be found in section 10.3. For certain cases at leading power

it is known how to formulate subtractions which appear as Wilson line matrix elements

together with matrix elements involving full QCD fields, which are equivalent to the zero-

bin subtractions, see refs. [95, 96]. It would be interesting to try to extend this to the

SCET subtractions that occur in the presence of Glauber loops, but we will not do so here.

Note that when we consider the scaling limits to construct the 0-bin subtractions we

do not change the form of the rapidity regulator (the original and subtraction integrals

must share the same regulators for the subtraction to properly remove any double counted

contributions). With the rapidity regulator we use here these subtractions often lead to

scaleless integrals that just convert whatever divergences occur from the IR or UV, but for

some diagrams we will consider they do not give scaleless integrals and play an important

role in avoiding double counting. Note that in general, scaleless integrals that are log-

divergent in the UV and IR are not treated as vanishing in the EFT. Without the Glauber

dependent subtractions the results in eq. (5.50) reduce to the standard soft subtraction on

collinear integrands in SCETII.

For completeness we also discuss here the 0-bin subtractions for the collinear, soft and

Glauber loop graphs in SCETI at one-loop. Once again the form of these subtractions are

determined by propagators. Here collinear gluon propagators can have soft, ultrasoft, and

Glauber subtractions, soft gluon propagators can have ultrasoft and Glauber subtractions,

and Glauber propagators can have ultrasoft subtractions. If we have loops Cn, S, and G

where the gluons that appear are purely n-collinear, soft, or Glauber respectively, then the

– 41 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
5

form of the subtractions are

Cn = C̃n − C(S)
n − C(G)

n − C(U)
n + C(S)(G)

n + C(G)(U)
n + C(S)(U)

n − C(S)(G)(U)
n , (5.51)

S = S̃ − S(G) − S(U) + S(G)(U) ,

G = G̃−G(U) ,

Subtractions for the analogous Cn̄ are the same as those for Cn with n ↔ n̄. Due to

the presence of the lower invariant mass ultrasoft modes there are more subtraction terms

in SCETI, and in particular the loops with Glauber exchange propagators also have an

ultrasoft subtraction. In the limit that we neglect soft loops in SCETI, so that there

are only ultrasoft gluons (or the soft gluon can be absorbed into the ultrasoft), then the

subtractions in eq. (5.51) agree with those of ref. [40].

In general, the soft and collinear Wilson lines in the operators of the Glauber La-

grangian, eq. (5.21), or in expressions like eq. (5.45), should have their position space

directions (0,∞) or (−∞, 0) specified. This corresponds with the appearance of ±i0 fac-

tors in the momentum space Feynman rules, see appendix B.4. However, the dependence

on whether the line extends to ±∞ will be canceled by the 0-bin subtractions. Soft lines

generate propagators such as (n · k ± i0) with n · k ∼ λ, while it is the Glauber region

which properly describes the region of smaller momenta n · k ∼ λ2 which includes the pole

n · k = −i0. The situation is similar for collinear Wilson lines, which have both soft and

Glauber 0-bin subtractions. We will show explicitly the cancellation of Wilson line direction

dependence by 0-bins for soft and collinear loop graphs in one-loop and two-loop calcula-

tions for forward scattering in sections 7.1 and 7.3 and for hard scattering in sections 10.1

and 10.3. In particular, we explain in section 10.3 that the directions of the soft Wilson lines

in the leading power Glauber Lagrangian can be chosen to be either as (0,∞) or as (−∞, 0)

without changing our results. This occurs due to the presence of Glauber region 0-bin sub-

tractions. On the flip side, we will see that Glauber interactions in certain hard scattering

diagrams can be absorbed into the direction of soft and collinear Wilson lines in the hard

scattering operators. In general, the dependence on these directions may then still cancel

out in factorization theorems where infinite Wilson lines are combined into finite lines.

5.3 Power counting theorem and operator completeness

In this section we give the all orders power counting formulae for SCETI and SCETII that

hold in the presence of loops carrying Glauber momenta, and arbitrary power suppressed

interactions. We then discuss the complete basis for Glauber exchange at leading power,

namely O(λ0). The ingredients needed for this analysis are an SCET power counting

theorem valid to any order in λ in the presence of Glauber effects, information about the

structure of infrared divergences in gauge theory, gauge symmetry, dimensional analysis,

and the momentum structure of forward scattering operators in the limit s� t.

In appendix A we derive a general power counting formula for an arbitrary diagram

with operators at any order in the power counting in both SCETI and SCETII. As shown

there, the final formula can be applied to both of these theories and says that the graph
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will scale as λδ where

δ = 6−Nn −N n̄ −NnS −N n̄S + 2u , (5.52)

+
∑
k

(k − 8)V us
k + (k−4)

(
V n
k + V n̄

k + V S
k

)
+ (k−3)

(
V nS
k + V n̄S

k

)
+ (k−2)V nn̄

k .

Note that the scaling includes power counting factors for the external lines in the graph (for

example, each collinear fermion or ⊥ collinear gauge boson gives a factor of λ). There are

various ingredients in this formula. We count the operators whose fields plus derivatives

give a scaling of λk, by letting V Ω
k be the number of such operators of type Ω. We use

V us
k to count operators that contain only ultrasoft fields, V n

k for operators with only n-

collinear and ultrasoft fields, V n̄
k for only n̄-collinear and ultrasoft fields, and V S

k for only

soft and ultrasoft fields. The index V nS
k counts operators with n-collinear and soft fields,

and possibly ultrasoft fields, but no n̄ fields, V n̄S
k for those with both n̄ and soft, and

possibly ultrasoft fields, but no n fields, and V nn̄
k for n and n̄ fields, and possibly soft and

ultrasoft fields. Thus operators containing all types of fields are counted by V nn̄
k . The

factor +2u in eq. (5.52) is relevant for graphs with only ultrasoft fields where one sets

u = 1, and otherwise one sets u = 0. Since the V Ω
k indices count the number of insertions

of gauge invariant operators, the power counting formula for δ is explicitly gauge invariant.

The remaining ingredients in eq. (5.52) are topological in nature. The index Nn counts

the number of disconnected n-collinear subgraphs if field lines of all other types are erased,

N n̄ does likewise for n̄-collinear subgraphs. Finally NnS is the number of disconnected

subgraphs if just n̄-collinear fields are erased, and N n̄S is the number if just n-collinear

fields are erased. Note that at leading order in the power counting, that graphs with a

loop involving one of the Glauber type loop momenta must involve at least one of the

Glauber potential vertices. (This is no longer true at subleading power, for an example see

appendix A.) Further details of the derivation of eq. (5.52) can be found in appendix A,

including how this result reduces to the earlier results given in refs. [97, 98] in special

cases. In appendix A we also show how eq. (5.52) can be used to demonstrate that all time

ordered products scale as a power of λ that is at least given by the sum of contributions

from its constituent operators. The correspondence of our method of power counting with

that of CSS [74, 99, 100] is also discussed in ref. [97].

Consider applying eq. (5.52) to the operators in eq. (5.21). Counting up the scaling

of the building block fields OjBn ∼ OjBn̄ ∼ λ2 and OABs ∼ λ2, and counting 1/P2
⊥ ∼ λ−2

we see that Oijnsn̄ ∼ λ2 and contributes to V nn̄
2 for each insertion. Due to the (k − 2)

prefactor in eq. (5.52) the operator Oijnsn̄ contributes to the leading power Lagrangian.

Noting that OjnBs ∼ λ3 we find Oijns ∼ λ3, and this operator contributes to V nS
3 which has

the prefactor (k−3), so again this is a leading power contribution. Due to the local nature

of gauge theories like QCD, we can have at most a quadratic divergence as the difference

of the external momentum of two lines goes to zero. This implies that we have at most

a 1/t power-law singular structure in our Glauber potentials, and hence at most a 1/P2
⊥

between operators living in two different rapidity sectors. (An amplitude can have a 1/(tt′)

where t and t′ correspond to two different propagtors, but these are reproduced by a time

ordered product of two Glauber operators in the effective theory.) For a Glauber operator
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the scattering is forward, and we must therefore have two building blocks for each sector

which contributes to the lowest order Feynman rule in order to conserve the large forward

momenta and satisfy gauge invariance. For the n or n̄ collinear sectors the lowest order

bilinears are therefore ∼ λ2. The quark bilinear operators will be dimension 3. Gluon

bilinear operators start at dimension 2 but must include an extra derivative to become

dimension 3 in order to compensate the −2 dimension of a 1/t insertion in a Glauber

operator (and due to the antisymmetry in color). This derivative is O(λ0) for a collinear

sector, but adds an additional power of λ for a soft bilinear gluon operator. Therefore

both the soft quark and gluon octet operators OjnBs start at ∼ λ3 in Glauber operators.

The lowest order soft operator that appears between two collinear sectors, OABs , must also

be either bilinear in the O(λ) building blocks Pµ⊥, BnBS⊥µ, and Bn̄BS⊥µ in order to have an

even number of ⊥ Lorentz indices to contract in the operators, or linear in Gµν ABs ∼ λ2.

Therefore OABs must start at O(λ2) and be purely gluonic, since a fermionic contribution

with soft quark fields ψ̄sψs starts at O(λ3). Mixed operators with ψ̄sψn are also at least

O(λ5/2). Thus we always have V nn̄
≤1 = 0, V nS

≤2 = 0, and there are no Glauber operators

that are lower order in the power counting than those in eq. (5.21). Obviously there can

be no Glauber operators which contribute to V us
k , V n

k , V n̄
k , or V S

k since these indices do

not contain fields from two of the n, n̄, or soft sectors.

Thus we are left to consider the possibility of additional operators that contribute to

the indices V nn̄
2 , V nS

3 , and V n̄S
3 , beyond those given above in section 5.1. We assume we

have a single power of 1/t for any particular t, and hence for example with a single 1/t that

the operator dimensions add to 6 to give a dimension 4 Lagrangian. Since we must use

the minimum number of λ’s, but preserve large momentum conservation for the forward

scattering, preserve gauge invariance, and rotational invariance in the transverse plane, only

operators bilinear in the building blocks (or with a single Gµνs ) are possible for each sector.

We will construct the complete basis of operators for OABs below in section 6.3. Preserving

fermion number the possible collinear bilinear operators are just χ̄αnχ
β
n and BAn⊥n̄ · PBBn⊥,

and their analogs in the n̄ and soft sectors. Examining the SU(3) quantum numbers we see

that qq̄ gives 1⊕ 8, and gg gives 1S ⊕ 8A ⊕ 8S ⊕ 10A ⊕ 1̄0A ⊕ 27S . When we combine the

operators in different sectors we must produce an overall color singlet, so it is possible to

form singlets with other color representations. However, from tree level matching only the

operators in eq. (5.21) (with octet quantum numbers for the collinear bilinears, etc.) are

generated by integrating out offshell Glauber exchanges and offshell hard lines. Thus, the

key question is whether any other operators governing Glauber exchange can be generated

by loop-level matching. The answer to this is no.

Essentially our Lagrangian in eq. (5.21) is obtained by simultaneously removing offshell

Glauber propagators that have p2
⊥ ∼ λ2 (representing them as a potential) as well as offshell

hard propagators with p2 � λ2 which contribute to generating Wilson lines. The loop level

matching for forward scattering operators is done to integrate out physics at the scale s and

represent offshell non-local physics at the scale t as a potential. But there are no hard-loop

diagrams with momenta of order s that have the required overall scaling as ∝ 1/t. This can

be seem from the fact that a hard loop can be contracted to a point which would generate
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a higher dimensional operator suppressed by powers of s. Furthermore, in loop graphs the

offshell lines that can have Glauber scaling are instantaneous in time and the n · x− n̄ · x
longitudinal coordinate, and hence are always sequestered in tree level subcomponents of

the graph. These components are tied together by propagators that have onshell scaling

for their momenta, which are represented by the onshell fields in the EFT, and hence

such contributions are represented by time ordered products of tree level induced Glauber

exchange operators in SCET. This is true at any loop order, so eq. (5.21) is the full Glauber

Lagrangian. Thus the form of the Lagrangian is determined at tree-level. In section 7 we

explicitly demonstrate this at one-loop for quark-quark scattering, showing that no other

operators are generated at one-loop and that the coefficients of the operators in eq. (5.21)

receives no one-loop corrections.

5.4 Forward scattering and observables

In the previous sections we setup the Lagrangian for Glauber exchange between collinear

particles traveling in different light-like directions, as well as those involving soft particles,

for situations where there are kinematic variables s � |t|. Here we briefly discuss a few

classes of observables where Glauber exchange between these degrees of freedom can play

a role.

Perhaps the simplest example are situations where we have a hierarchy |t|/s� 1 from

measuring the momentum in an external current, without making direct measurements

on the hadronic final state. The canonical example of this is DIS, where we measure the

electrons momentum in the final state, and consider Bjorken x� 1. Here x = Q2/(2p · q)
where p is the initial state proton momentum and q is the virtual photon momentum. For

DIS the ratio (−t)/s is determined by x, and Q2 = −q2 = −t � Λ2
QCD is a perturbative

scale. In this situation the Glauber operators can be used to sum ln x factors in the cross

section and/or parton distribution functions. Indeed the BFKL equation for the rapidity

renormalization of the collinear functions in section 8.3, is related to this resummation for

both DIS and Drell Yan. A detailed analysis of these small x resummations in SCET will

be given elsewhere.

Another application of the Glauber operators is to the study of factorization violation

in hard collision processes with initial state hadrons. Examples of how Glauber exchange

operators appear in these processes are discussed in section 11. Of particular concern

is the final state interactions between spectator partons (those not directly participating

in the hard scattering). It is known that final state rescattering effects will cancel out at

leading power for the inclusive Drell-Yan process [21]. However, observables that make mea-

surements of the final state hadronic radiation, such as transverse-thrust [101] and beam

thrust [102], can be more sensitive to Glauber interactions. Indeed, it has been proposed

that the sensitivity of such measurements to the multiple parton interactions (underlying

event) in Monte Carlo programs is related to factorization violation from the Glauber mo-

mentum regime [103]. Recently, the presence of factorization violating contributions from

the Glauber regime has been demonstrated in [104] for a beam thrust spin asymmetry

with scalar quarks. So far these investigations have not fully accounted for the distinc-

tion between perturbative Glauber exchange at the scale of the event shape measurements

– 45 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
5

|t| � Λ2
QCD, that could in principle be treated with forward scattering factorization based

methods order-by-order in the strong coupling, and non-perturbative Glauber exchange

that couples together hadron-hadron matrix elements at the scale Λ2
QCD, which can only be

handled with di-hadron matrix elements. Factorization violating observables have also been

associated to those containing rapidity gaps between jets and super-leading logarithms [51,

52, 105]. Our Glauber exchange Lagrangian provides an efficient method for computing

various (potentially) factorization violating contributions, as demonstrated in sections 10

and 11, and can be utilized to address these observables and questions about factorization

more precisely. A related goal would be to build more sophisticated treatments of multi-

parton interactions (underlying event) based on calculations utilizing Glauber exchange.

A final category of observables are those typically associated with forward scattering,

including things like the total hadronic cross section, and diffractive processes. Since

these are dominated by physics from the forward scattering limit they can be described

in part with the Glauber exchange operators. Depending on the precise observable and

how inclusive or exclusive the measurements are, the description with SCET will change,

in much the same way that the same formalism describes factorization for exclusive and

inclusive hard scattering processes in a different manner (such as at the amplitude versus

cross section level). In later sections we will discuss the resummation of large rapidity

logarithms in the operators for forward scattering, both for amplitudes by Reggeization

in section 7 and for scattering cross sections via the BFKL equation in section 8. Note

that Reggeization occurs in SCET due to the rapidity factorization of soft and collinear

virtual diagrams which are not effected by the final state measurement, whereas the BFKL

equation includes also the real emission diagrams. In general this is expected to lead to

modified evolution equations which depend on the precise nature of the measurement.

6 Tree level matching calculations

In this section we present several tree level calculations which are important for deriving the

Glauber EFT presented in section 5 above. In section 6.1 we demonstrate how the Wn and

Wn̄ Wilson lines in the Glauber operators are generated through tree level matching from

the full theory, which involves both local and time-ordered product terms in the EFT. In

sections 6.2, 6.3, and 6.4 we construct a complete basis of allowed operators and carry out

one-gluon and two-gluon matching calculations to derive the mid-rapidity operator OBCs
given in eq. (5.12). Complete one loop calculations for SCETII and SCETI are carried out

later in section 7.

6.1 Wilson lines W and S from tree level matching

For standard hard scattering operators in SCET the collinear Wilson lines Wn appear in a

manner which ensures n-collinear gauge invariance in the hard-collinear factorization [28].

These Wilson lines are generated by integrating out hard offshell full QCD quark and

gluon propagators, and can be readily derived using the auxiliary Lagrangian formalism

presented in the appendices of refs. [29, 30].
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Figure 15. a) Full theory graphs for the tree level matching of quark-antiquark forward scattering

with one extra n-collinear gluon. b) EFT graphs for the tree level matching for the four quark

operator with one extra n-collinear gluon. Note that the first EFT graph is a time ordered product

of a Glauber operator and a collinear Lagrangian interaction.

The situation is different for the W Wilson lines appearing in the Glauber operators.

In this case we want to integrate out offshell propagators that are either Glauber or hard,

but the relevant matching calculation involves diagrams in the full theory with at least

one onshell propagator (meaning a propagator whose p2 is such that it is not offshell from

the point of view of SCET). In fact, part of the sum of these graphs are nonlocal, whereas

another part localizes into a potential. On the EFT side of the calculation there will

be both a non-local term involving a T-product that involves an onshell propagator, and

the localized potential term involving the Wilson line. The sum of these two terms will

reproduce the full theory result.

As a first example, we consider the matching for the q-q̄ scattering process with one

additional n-collinear gluon, q(p2n) + q̄(p1n̄) → q(p3n) + q̄(p4n̄) + g(kn). The relevant full

theory diagrams for this matching calculation are shown in figure 15a, while the diagrams

in the EFT are shown in figure 15b. There are additional full theory diagram that are

not shown, where the kn gluon attaches, via a Lagrangian insertion, to the either of the

quarks on the top-line, but these on-shell contributions are exactly reproduced by gluon

attachments to the n-collinear quarks in an Oqqnsn̄ insertion in the EFT (also not shown).

The full theory graphs in figure 15a have a gluon with n-collinear scaling that either

attaches to a triple gluon vertex involving one Glauber propagator and one onshell (n-

collinear) propagator, or attaches to the n̄-collinear quark leading to a hard offshell quark

propagator plus an exchange gluon with n-collinear scaling. To carry out the matching

calculation, we first use the equations of motion relation in eq. (5.23) to eliminate n ·A(kn)

in terms of A⊥(kn) and n̄ ·A(kn) in the first full theory diagram in figure figure 15a. Then

if we consider the kn external gluon to have ⊥-polarization for µ, only the first full theory

diagram in figure 15a and the first SCET diagram in figure 15b are nonzero, and these ⊥
contributions exactly match. In contrast the n̄ · A polarization for these two diagrams do

not match. This agreement for the ⊥ polarizations is very analogous to the agreement we

saw earlier for the diagrams in figure 11, just with an extra quark line attached to one of

the gluons there, and use of the equations of motion on only one gluon.
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When the kn external gluon has n̄µ polarization all the diagrams in figure 15 contribute.

For this case the analogy with simply adding a quark line to one of the gluons in figure 11

breaks down, since using the equations of motion on only one gluon line no longer suffices

to achieve agreement. In this case, the result for the sum of the full theory graphs in

figure 15a is

figure 15a = 2g3fABC n̄µ
[
ūn
/̄n

2
TBun

][
v̄n̄
/n

2
T̄Cvn̄

]
1

q2(q − k)2 n̄ · k
[
q2 + 2n·k n̄·k

]
. (6.1)

The result for the first graph in SCET is

figure 15b1 = 2g3fABC n̄µ
[
ūn
/̄n

2
TBun

][
v̄n̄
/n

2
T̄Cvn̄

]
1

q2(q − k)2 n̄ · k
[
2k⊥ · (q⊥ − k⊥)

]
. (6.2)

Using k2 = n·k n̄·k + k2
⊥ = 0 and q = q⊥ the difference is

figure 15a− figure 15b1 = 2g3fABC n̄µ
[
ūn
/̄n

2
TBun

][
v̄n̄
/n

2
T̄Cvn̄

]
1

q2(q − k)2 n̄ · k
[
q2
⊥ − 2k⊥ · q⊥

]
= 2g3fABC n̄µ

[
ūn
/̄n

2
TBun

][
v̄n̄
/n

2
T̄Cvn̄

]
1

q2
⊥ n̄ · k

= figure 15b2 , (6.3)

which, as indicated, is precisely the contribution from the W Wilson lines in the second

graph in figure 15b. Thus we validate the presence of both the nonlocal T-product and

local Wilson line contributions in SCET.

The same matching calculation can also be carried out for the gluon-quark n-n̄ scatter-

ing, to validate the appearance of additional n̄ ·An fields in the Bn⊥ building blocks of the

Glauber operator Ogqnsn̄. The necessary full theory diagrams are shown in figure 16a, while

the SCET diagrams are shown in figure 16b. As above we work in Feynman gauge for the

internal gluon propagators, and remove n ·An polarizations using the equations of motion.

If all three external n-collinear gluons have ⊥-polarization, then the first and second graphs

in figure 16a precisely matches with the first graph in figure 16b. To test the Wilson line

contribution we can take two gluons to have ⊥-polarization and one to be a n̄ ·An. In this

case there are contributions from all four full theory graphs, and both SCET diagrams.

Once again the sum of contributions in the full and effective theories exactly match up after

using the equations of motion to simplify terms. For gluon-gluon n-n̄ scattering, one can

carry out a similar matching calculation to check the structure of Wn Wilson lines in the

Glauber forward scattering operator, and once again the full and effective theories agree.

Due to the symmetry under n ↔ n̄, the above analysis also immediately yields the

anticipated result for the 1-gluon part of the Wn̄ Wilson lines in the Glauber operators.

Carrying out these low order matching calculations for the Wn and Wn̄ Wilson lines is

important for determining their directions (iε prescription), and general structure. By

power counting we know that only the O(λ0) fields n̄ · An and n · An̄ fields can appear

in these Wilson lines, and that they must appear in a manner that makes the Glauber

operators n-collinear gauge invariant and n̄-collinear gauge invariant. This suffices to fix

the structure of these Wilson lines beyond the one-gluon level in the Glauber operators.

Furthermore, the same matching calculations can also be done for the Glauber op-

erators involving soft-collinear forward scattering, namely Oijns and Oijn̄s. As discussed in
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Figure 16. a) Full theory graphs for the tree level matching of gluon-quark forward scattering

with one extra n-collinear gluon. b) EFT graphs for the tree level matching for the gluon-quark

scattering operator with an extra n-collinear gluon.
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Figure 17. One Soft Gluon Matching for the Mid-Rapidity Operator in SCET appearing in quark-

antiquark scattering. a) Full theory graphs. b) EFT Mid-Rapidity Operator graph with one soft

gluon, shown by two equivalent diagrams which exploit a localized or factorized notation.

section 5.1.2, the results here are very analogous to n-n̄ forward scattering, because we still

have the same hierarchy of momenta in each component. For example, for Oijns the only

difference is that the overall size of the conserved n · ps soft momenta is smaller than the

n̄ · pn collinear momenta. For this reason the n-n̄ collinear-collinear scattering calculations

discussed above carry over verbatim to the soft-collinear case, and we will not write out

the analysis in detail. We have carried out explicit matching calculations to test the soft

and collinear Wilson lines, confirming that they are correctly included in these operators.

For Oijns, examples of the necessary diagrams can be obtained by replacing An̄ gluons in

figures 15 and 16 by As gluons. In this analysis it is the large momentum direction nµ of

the remaining An fields that determines the components of the soft gluons that show up

in the soft Sn Wilson lines.

6.2 Soft operator from tree level matching

In the Ons and On̄s operators there are two different rapidity sectors present, and the full

structure of the operators is determined by the analysis of sections 5.1 and 6.1, whereas
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Figure 18. One Soft Gluon Matching for the Mid-Rapidity Operator in SCET appearing in gluon-

quark scattering. a) Six full theory graphs. b) EFT graph from Mid-Rapidity Operator with one

soft gluon of momentum k.

for the operator Onsn̄ there are three rapidity sectors, and we can have a non-trivial soft

operator in addition to the n-collinear and n̄-collinear components. While the structure of

the collinear part of these operators was derived through the analysis of the section 6.1,

the matching corrections considered so far have not probed the soft operator. To do that

we must consider soft gluon emission in the presence of n-n̄ forward scattering, which we

will do in this section.

At the one soft gluon level, this emission is governed by the famous Lipatov vertex.

This vertex is the combined Feynman rule for the emission of a soft gluon in the presence

of the forward scattering of energetic quarks or gluons. For quark-antiquark scattering

the corresponding full theory diagrams are shown in figure 17a, and the contribution from

SCET is in figure 17b. At leading power the full theory diagrams give

figure 17a = i

[
ūn
/̄n

2
TAun

][
v̄n̄
/n

2
T̄Bvn̄

]
(6.4)

× 8παs
~q 2
⊥~q
′2
⊥
igfABC

[
qµ⊥+ q′µ⊥− n · q′

n̄µ

2
− n̄ · qn

µ

2
− n̄µ~q ′2⊥

n̄ · q −
nµ~q 2

⊥
n · q′

]
,

where the 3-gluon vertex graph gives the first four terms, and the soft gluon attachments

to the quark lines give the last two. To obtain this result we have used n · k = −n · q′ and

n̄ · k = n̄ · q. These momenta are O(λ) whereas n · q ∼ n̄ · q′ ∼ λ2. Note that we have

not used the gluon equations of motion to simplify the result obtained here. Comparing

eq. (6.4) with the Feynman rule from the Oqqnsn̄ operator of figure 17b (shown above in

figure 6), we see that the two precisely agree. Thus, the one-gluon Feynman rule from the

soft component of this Glauber operator, which is OABs in eq. (5.12), directly generates the

full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear

quark lines in figure 17 are replaced by collinear gluons. The corresponding graphs for

the matching calculation with the top line replaced by an n-collinear gluon are shown in

figure 18. Taking this n-collinear gluon to have ⊥ polarization, the full theory result is

– 50 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
5

again the same as the SCET Feynman rule

figure 18a = i
[
ifA2A1Agαβ⊥ n̄ · p2

][
v̄n̄
/n

2
T̄Bvn̄

]
(6.5)

× 8παs
~q 2
⊥~q
′2
⊥
igfABC

[
qµ⊥ + q′µ⊥ − n · q′

n̄µ

2
− n̄ · qn

µ

2
− n̄µ~q ′2⊥

n̄ · q −
nµ~q 2

⊥
n · q′

]
= figure 18b ,

where the SCET graph is given by the Feynman rule for Ogqnsn̄. Here the graph with the

4-gluon vertex does not contribute at this order in the power expansion (it is suppressed

by O(λ)) and hence can be neglected. Once again the same universal soft operator OABs is

responsible for the soft gluon Lipatov vertex in this scattering. A key ingredient in deriving

this is the universal nature of the eikonal coupling for soft gluons. The same universal result

also holds when a soft gluon is added to quark-gluon scattering with Oqgnsn̄ and gluon-gluon

scattering with Oggnsn̄. Essentially, all that changes between these calculations is the color

generators for the collinear lines, which still obey the same algebra.

6.3 The basis of all possible soft components in the Oij
nsn̄ Glauber operator

In section 5.1 we wrote down the final form of the soft piece which sits between the collinear

sectors of the Glauber operator, and in the last section we showed that it is consistent with

the matching when including an external gluon. In this and the next section we give the

complete derivation of the O(λ2) mid-rapidity operator in eq. (5.12). We write the general

expansion of the soft piece of the mid-rapidity operator as

OABs = 8παs
∑
i

CiO
AB
i , (6.6)

where OABi is the full set of operators which are consistent with soft gauge invariance,

have mass dimension 2, and scale as O(λ2). To build an operator in the adjoint matrix

space we make use of pairs of adjoint Wilson lines STn Sn̄ or STn̄ Sn, the adjoint matrix gluon

building blocks B̃nABS⊥ and B̃n̄ABS⊥ , the soft gluon field strength made invariant with Wilson

lines STnGµνs Sn̄ or STn̄Gµνs Sn, plus P⊥. Note that soft fermions ψnS ∼ λ3/2 do not contribute

to terms in the operator basis, since these quark fields must come in pairs, and hence soft

fermion terms are at least O(λ3).

We can also reduce the list of possible operators in the basis using hermiticity, since

LII(0)
G is hermitian. Examining (LII(0)

G )† we have

∑
n,n̄

∑
i,j

∫
d2q⊥d

2q′⊥
q2
⊥ q
′2
⊥

[
OiAn (q⊥)OABs (q⊥, q

′
⊥)OjBn̄ (−q′⊥)

]†
(6.7)

=
∑
n,n̄

∑
i,j

∫
d2q⊥d

2q′⊥
q2
⊥ q
′2
⊥
OjBn̄ (q′⊥)

[
OABs (q⊥, q

′
⊥)
]†
OiAn (−q⊥)

=
∑
n,n̄

∑
i,j

∫
d2q⊥d

2q′⊥
q2
⊥ q
′2
⊥
OiAn (q⊥)

[
Os(q′⊥, q⊥)

]†AB
n↔n̄
OjBn̄ (−q′⊥) ,

where to obtain the last line we swapped n↔ n̄, q⊥ ↔ q′⊥, and A↔ B. If we write factors

of q⊥ and q′⊥ using the operator P⊥ then swapping of these momenta is automatically
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accounted for in the hermitian conjugation, so we see that hermiticity requires that the

soft operators satisfy

O†i
∣∣
n↔n̄ = Oi . (6.8)

For simplicity we left off the adjoint color labels AB for the operators, and will continue to

do so below with the understanding that they are matrices in this space. Next, note that

each term in the Lagrangian conserves ⊥-momentum, so the total ⊥-momentum is zero

and we can freely let a P⊥ operator act in either direction, Pµ⊥ = P†µ⊥ . We use this freedom

to eliminate all P†⊥s. Finally, whenever possible we will use the operator identities[
Pµ⊥(STn Sn̄)

]
= −gB̃nµS⊥(STn Sn̄) + (STn Sn̄)gB̃n̄µS⊥ , (6.9)[

Pµ⊥(STn̄ Sn)
]

= −gB̃n̄µS⊥(STn̄ Sn) + (STn̄ Sn)gB̃nµS⊥ ,

to eliminate P⊥s in terms of B̃S⊥s. Here the Pµ⊥ acts only inside the square brackets and

these relations follow immediately from the definition of BnµS⊥ and Bn̄µS⊥ in eq. (4.15).

In addition to the above constraints, we will also impose the restriction that at most

one Sn Wilson line and one Sn̄ Wilson line appear in the soft operators Oi. Note that the

non-local products (STn Sn̄) and (STn̄ Sn) are dimensionless, have power counting λ0, and

are soft gauge invariant (up to the global transformation at ∞). If we did not adopt the

restriction of having only one soft line of each type, then it would be possible to insert

multiple products of these two-line structures, and the set of potential operators would

be substantially larger. The correct picture is that the Sn and Sn̄ adjoint Wilson lines

are generated by integrating out offshell lines attaching to the color octet n-collinear and

n̄-collinear sector operators respectively, at the same time that we remove propagators

associated with Glauber exchange. Therefore the restriction we impose that only one of

each type of soft Wilson line appears is very natural. In standard SCET applications to

hard scattering, the presence of only one soft line for each collinear operator in a given

representation follows immediately from the use of the BPS field redefinition [29] in SCETI,

with subsequent SCETI to SCETII matching by lowering the p2 scale for the collinear

fields to that of the soft fields. This method becomes more complicated in the current

case, because we are simultaneously removing offshell and Glauber propagators, and when

doing the matching we must consider time order product graphs on the SCET side of the

calculation rather than just the localized operator whose Wilson lines we want to determine.

Based on the simple structure of the collinear operators, we do not expect more than one

Sn or Sn̄ to appear in the soft operators at any order in the αs expansion.

We decompose the basis into operators with zero, one, or two B̃S⊥ fields, or one Gµνs
field, and consider these classes in turn. Without any B̃S⊥ fields the minimal basis satisfying

the constraints discussed above is

O1 = Pµ⊥STn Sn̄P⊥µ , O2 = Pµ⊥STn̄ SnP⊥µ . (6.10)

Both of these operators satisfy the hermiticity condition in eq. (6.8) individually. Note

that we do not include the operator P2
⊥ because it does not contain any soft Wilson lines.8

8It turns out that if we did add this P2
⊥ operator to our basis, that it would actually be ruled out by

the full matching calculation discussed in the next section.
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Also note that we have not included operators with P2
⊥ acting on soft Wilson lines since

they can be eliminated using the identity

P2
⊥(STn Sn̄) + (STn Sn̄)P2

⊥ =
[
P2
⊥(STn Sn̄)

]
+ 2Pµ⊥(STn Sn̄)P⊥µ , (6.11)

plus using eq. (6.9) to eliminate
[
P2
⊥(STn Sn̄)

]
in terms of operators with at least one B̃S⊥.

In addition, we do not need to include
[
Pµ⊥(STn Sn̄)

]
Pµ⊥ since

[
Pµ⊥(STn Sn̄)

]
Pµ⊥ + h.c. =

P2
⊥(STn Sn̄) + (STn Sn̄)P2

⊥ − 2Pµ⊥(STn Sn̄)P⊥µ . Direct analogs of these relations are also used

to eliminate operators when the Wilson lines are in the other order, (STn̄ Sn).

Accounting for the fact that the fields B̃nS⊥ and B̃n̄S⊥ are Hermitian, the minimal basis

with just a single B̃S⊥ includes four operators,

O3 =P⊥ ·(gB̃nS⊥)(STn Sn̄)+(STn Sn̄)(gB̃n̄S⊥)·P⊥ , O4 =P⊥ ·(gB̃n̄S⊥)(STn̄ Sn)+(STn̄ Sn)(gB̃nS⊥)·P⊥ ,
O5 =P⊥µ (STn Sn̄)(gB̃n̄µS⊥)+(gB̃nµS⊥)(STn Sn̄)P⊥µ , O6 =P⊥µ (STn̄ Sn)(gB̃nµS⊥)+(gB̃n̄µS⊥)(STn̄ Sn)P⊥µ .

(6.12)

These operators all satisfy the hermiticity requirement in eq. (6.8) because they each have

two terms. To see that they satisfy the restriction of having only one soft Wilson line in

each direction we note that

(STn Sn̄)(gB̃n̄µS⊥) = (STn Sn̄)
[
STn̄ iDµ

s⊥Sn̄
]

=
[
STn iDµ

s⊥Sn̄
]
, (6.13)

(gB̃nS⊥)(STn Sn̄) =
[
STn (−i)←−Dµ

s⊥Sn
]
(STn Sn̄) =

[
STn (−i)←−Dµ

s⊥Sn̄
]
,

(STn̄ Sn)(gB̃nµS⊥) = (STn̄ Sn)
[
STn iDµ

s⊥Sn
]

=
[
STn̄ iDµ

s⊥Sn
]
,

(gB̃n̄S⊥)(STn̄ Sn) =
[
STn̄ (−i)←−Dµ

s⊥Sn̄
]
(STn̄ Sn) =

[
STn̄ (−i)←−Dµ

s⊥Sn
]
.

Thus to satisfy the rule of only having a single Sn and Sn̄ in our operators, we must group

BnS⊥ next to an Sn and Bn̄S⊥ next to an Sn̄. For example, this rules out the operator

P⊥·(gB̃nS⊥) + (gB̃n̄S⊥)·P⊥ (it has two Sns in the first term, and two Sn̄s in the second term).

It also eliminates P⊥µ (STn Sn̄)(gB̃nµS⊥) + (gB̃n̄µS⊥)(STn Sn̄)P⊥µ as an operator in the basis (it has

four irreducible soft Wilson lines). An additional thing to note about eq. (6.12) is that P⊥
factors are always on the outside. We do not include additional operators with Pµ⊥ in the

middle since they can always be eliminated in terms of operators in eq. (6.12), plus terms

with two B̃S⊥s. For example,

(STn Sn̄)P⊥µ (gB̃n̄µS⊥) = P⊥µ (STn Sn̄)(gB̃n̄µS⊥)−
[
P⊥µ (STn Sn̄)

]
(gB̃n̄µS⊥) , (6.14)

where the last term can be reduced with eq. (6.9). Also combinations with
[
Pµ⊥(STn Sn̄)

]
are directly removed with eq. (6.9), and combinations with

[
P⊥µ (gB̃n̄µS⊥)

]
are removed in

terms of the other operators by integration by parts.

Next we turn to the operator basis with two B̃S⊥s. The minimal basis here is given by

just two operators

O7 = (gB̃nµS⊥)STn Sn̄(gB̃n̄S⊥µ) , O8 = (gB̃n̄µS⊥)STn̄ Sn(gB̃nS⊥µ) . (6.15)

These operators each satisfy eq. (6.8) alone. Due to the grouping of soft Wilson lines

next to appropriate BS⊥s in eq. (6.15), the operators again have only one soft Wilson
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line in each direction once we use eq. (6.13). This restriction eliminates operators such as

gBnS⊥ · gBn̄S⊥ (4 lines total) and gBnS⊥ · gBnS⊥ + gBn̄S⊥ · gBn̄S⊥ (two Sn lines in the first term,

two Sn̄ lines in the second term). It also eliminates operators like (gBnµS⊥)(STn̄ Sn)(gBn̄S⊥µ)

and (gBnµS⊥)(STn̄ Sn)(gBnS⊥µ) + (gBn̄µS⊥)(STn̄ Sn)(gBn̄S⊥µ).

Finally we have the operator with a single soft gluon field strength, of which there are

two

O9 = STn nµn̄ν(igG̃µνs )Sn̄ , O10 = STn̄ nµn̄ν(igG̃µνs )Sn , (6.16)

In principle this operator could be eliminated in terms of BnS⊥, BbnS⊥, P⊥, ψnS , and ψn̄S fields

using the soft gluon equations of motion. However doing so would introduce non-local

factors of 1/in · ∂s and 1/in̄ · ∂s which we have not allowed in our construction. Therefore

we must keep these two field strength operators.

All together the 10 operators in eqs. (6.10), (6.12), (6.15), (6.16) give a complete basis

for the soft operator OABs . Note that the odd and even operators in the basis are related

by Oi+1 = Oi
∣∣
n↔n̄, and that this differs from the hermiticity condition in eq. (6.8). In the

next section we consider the constraints obtained by matching with up to two soft external

gluons in order to fix the corresponding coefficients C1,...,10 in eq. (6.6).

6.4 All orders soft operator by matching with up to two soft gluons

Here we consider the basis of operators O1,...,10 determined above in eqs. (6.10), (6.12),

(6.15), (6.16),

O1 = Pµ⊥STn Sn̄P⊥µ, O2 = Pµ⊥STn̄ SnP⊥µ, (6.17)

O3 = P⊥ ·(gB̃nS⊥)(STn Sn̄)+(STn Sn̄)(gB̃n̄S⊥)·P⊥, O4 = P⊥ ·(gB̃n̄S⊥)(STn̄ Sn)+(STn̄ Sn)(gB̃nS⊥)·P⊥,
O5 = P⊥µ (STn Sn̄)(gB̃n̄µS⊥)+(gB̃nµS⊥)(STn Sn̄)P⊥µ , O6 = P⊥µ (STn̄ Sn)(gB̃nµS⊥)+(gB̃n̄µS⊥)(STn̄ Sn)P⊥µ ,
O7 = (gB̃nµS⊥)STn Sn̄(gB̃n̄S⊥µ), O8 = (gB̃n̄µS⊥)STn̄ Sn(gB̃nS⊥µ),

O9 = STn nµn̄ν(igG̃µνs )Sn̄, O10 = STn̄ nµn̄ν(igG̃µνs )Sn,

and determine their corresponding Wilson coefficients through matching calculations in-

volving 0, 1, or 2 soft gluons. For this analysis it suffices to consider quarks for the

n-collinear and n̄-collinear external lines. If one or both of the forward collinear external

lines are taken to be gluons then the same result will obtained. This equality was discussed

for one soft gluon in section 6.2, and is also true for two soft gluons, essentially resulting

from the presence of the eikonal approximation that occurs for soft gluons attached to

collinear lines, and the universality of the soft attachments to the exchanged gluon which

has Glauber momentum scaling.

With zero soft gluons the resulting amplitude was given in eq. (5.8), and requires that

the soft operators
∑

iCiOi reduce to P2
⊥δ

AB when no gluons are present. Only O1 and O2

have this property, so the constraint from the zero soft gluon emission amplitude is

C1 + C2 = 1 . (6.18)

For the matching with one external soft gluon of incoming momentum k we consider

the five full theory diagrams in figure figure 17a, and consider all possible projections of the
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gluon’s polarization with respect to {n, n̄,⊥}, without exploiting the equations of motion,

which gives eq. (6.4). While we have already verified in section 6.2 that the combination of

operators given in eq. (5.12) reproduces this 1 soft gluon result, we have not yet proven that

it is the unique combination which can do so. Using momentum conservation k = q−q′, the

one soft gluon matching generates the structures {q′µ⊥ , nµq⊥ · q′⊥/n · q′, nµq2
⊥/n · q′, nµq′2⊥/n ·

q′, nµn̄ · q} which give the following five constraints on the operators O1,...,10 in our basis,

C3 + C4 + C5 + C6 = −1 , (6.19)

C1 − C2 + C3 − C4 − C5 + C6 = 0 ,

−C3 − C6 = +1 ,

C4 + C5 = 0 ,

C9 + C10 = −1

2
,

respectively. Eq. (6.19) reproduces the full theory amplitude for one soft gluon without

using the equation of motion, a fact that will come in handy when we consider the two

soft gluon matching below. Other momentum structures with qµ⊥ or n̄µ are related to these

by the hermiticity condition in eq. (6.8). Simplifying eq. (6.19) and combining it with

eq. (6.18) gives

C1 = 1 , C2 = 0 , C3 + C6 = −1 , C4 + C5 = 0 , C9 + C10 = −1

2
. (6.20)

Since C1 = 1 and C2 = 0, we see that between these two operators, the one with (STn Sn̄)

contributes, whereas the one with (STn̄ Sn) does not. We will see this pattern continue below

for the operators with B̃s⊥s.

To generate the remaining constraints we carry out the matching with two external

soft gluons of incoming momentum k1 and k2. Matching with two soft gluons goes beyond

the level of the Lipatov vertex, and indeed unlike the Lipatov vertex, the soft operator in

SCET has Feynman rules with one or two soft ⊥ gluons, and any number of soft n · As
and n̄ · As gluons. It is in fact necessary to have at least two soft gluons in order for

the operators O7 and O8 with two B̃s⊥ fields to contribute. Since operators with three

B̃s⊥s cannot appear in the basis for OABs (due to the dimensionality and power counting

constraints), the matching with 3 or more soft gluons is not necessary to determine the

coefficients of the operators in the basis. Feynman rules for three or more soft gluons are

determined by symmetry once those up to two soft gluons are fixed.

For n-n̄ quark-antiquark forward scattering with two soft gluons, there are 28 diagrams

in the full theory, shown in figure 19a. Since we were able to match with one soft gluon

without recourse to the equations of motion, we know that we will automatically reproduce

all the graphs in the first row in figure 19a via the first graph shown in figure 19b, which

is the time ordered product of the one soft gluon OABs operator and a triple gluon vertex.

The remaining 23 full theory diagrams, from rows other than the first one in figure 19a, all

contribute to the matching in a non-trivial fashion. On the SCET side there are contribu-

tions from the second and third time ordered product graphs in figure 19b, which must be

included along with the direct OABs contribution shown by the fourth graph in figure 19b,
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in order to reproduce the full theory. One would expect that the SCET time ordered

product graphs will reproduce more non-local terms in the full theory, in particular those

involving full soft propagator denominators 1/k2, as opposed to the expected non-locality

of the Glauber potential, 1/k2
⊥. In fact, after subtracting these SCET T-product graphs

from the 23 full theory diagrams, the result remains non-local. However after using the

equations of motion in the form k2
1 = 0, k2

2 = 0, and

~k1⊥ ·~ε⊥(k1) =
n̄·k1 n·ε(k1) + n·k1 n̄·ε(k1)

2
,~k2⊥ ·~ε⊥(k2) =

n̄·k2 n·ε(k2) + n·k2 n̄·ε(k2)

2
,

(6.21)

and momentum conservation, k1 + k2 = q − q′, the results all localize into the form of the

Glauber potentials, and can be reproduced by the terms in our basis for OABs . Notice that

using eq. (6.21) has the effect of moving some contributions from ⊥-⊥ to the {n-⊥, ⊥-n,

n̄-⊥, ⊥-n̄, n-n̄, n̄-n, n-n, n̄-n̄} final state polarizations, and some from n-⊥, ⊥-n, n̄-⊥,

and ⊥-n̄ into {n-n̄, n̄-n, n-n, n̄-n̄}. The constraints on the operator coefficients follow

from matching polarizations, independent kinematic factors, and color structures, of which

there are two fC1AEfC2BE and fC2AEfC1BE necessitated by Bose symmetry (after using

the Jacobi identity).

The matching of the ⊥-⊥ final states is only sensitive to O7,9 and O8,10 and receives

contributions from the first diagram in the second row and the first two diagrams in the

third row of figure 19a. The last three SCET graphs all contribute. For this polarization

choice the T-product graphs with a propagating soft gluon reproduce the graphs with the

3-gluon vertices in the full theory (after using the equations of motion), and the matching

result comes from the four gluon vertex graph, giving

C7 + C8 = −1. (6.22)

The n-⊥ 2-gluon state receives contributions from four of the full theory graphs, as

well as from equation of motion terms from ⊥-⊥. This gives four constraints, from the

coefficients of the four structures nµ1

n·k1

{
qµ2

⊥ f
C1AEfC2BE , q′µ2

⊥ fC1AEfC2BE , qµ2

⊥ f
C2AEfC1BE ,

q′µ2

⊥ fC2AEfC1BE
}

,

C3 + C5 − C7 = 0 , (6.23)

C3 + C5 + C7 = −2 ,

−C4 − C6 − C8 = 0 ,

−C4 − C6 + C8 = 0 .

These same constraints also cause the n̄-⊥ polarization choice to agree between the full

theory and SCET, and by symmetry the ⊥-n and ⊥-n̄ polarizations as well. Simplifying

these results we conclude that

C3 + C5 = −1 , C4 + C6 = 0 , C7 = −1 , C8 = 0 , (6.24)

and if we combine these results with those from eq. (6.20) we get

C1 = 1 , C2 = 0 , C3 + C5 = −1 , C4 = −C5 = −C6 , (6.25)

C7 = −1 , C8 = −0 , C9 + C10 = −1

2
.
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Figure 19. Two Soft Gluon Matching for the Mid-Rapidity Operator. a) Full theory graphs with

scaling for external particles labeled. b) SCET graphs involving the mid-rapidity Operator and

two soft gluons. The first three graphs are T-products while the last is the direct Mid-Rapidity

Operator two gluon term.

Since not all coefficients are fixed we must proceed to compare additional polarization

projections.

The constraints for the n-n̄ polarization choice are little more tricky because there are

11 full theory diagrams that contribute, and we get contributions from using the equations

of motion in the results for ⊥-⊥, n-⊥, and ⊥-n̄. Also, there are many more kinematic

variables involved and thus many more constraints, and one must pick a minimal basis

of momentum structures after using the momentum conservation and the equations of

motion. We find 14 constraints that need to be satisfied, but 10 of them provide only

redundant information. For our choice of independent structures the four that provide

new information come from the structures k1⊥ · k2⊥f
C1AEfC2BE , k1⊥ · k2⊥f

C2AEfC1BE ,

q′2⊥f
C1AEfC2BE , and q′2⊥f

C2AEfC1BE , giving respectively

C9 = −1

2
(6.26)

C10 = 0 ,

C3 +
1

2
C7 − C9 = −1 ,

−C6 +
1

2
C8 + C10 = 0 .
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Combining these results with eq. (6.25) yields a unique solution for all the coefficients,

giving our final answer

C2 = C4 = C5 = C6 = C8 = C10 = 0 , (6.27)

C1 = −C3 = −C7 = +1 , C9 = −1

2
.

Thus we see that all operators in the basis involving (STn̄ Sn) have zero coefficients, while

all operators with (STn Sn̄) except O5 have nonzero coefficients. As a consistency check, we

have verified that the full theory results for the remaining polarizations {n-n̄, n-n, n̄-n̄}
are also correctly reproduced.

Putting the results in eq. (6.27) back into eq. (6.6) the final result is

OBCs = 8παs

{
Pµ⊥STn Sn̄P⊥µ − P⊥µ gB̃

nµ
S⊥STn Sn̄ − STn Sn̄gB̃

n̄µ
S⊥P⊥µ − gB̃

nµ
S⊥STn Sn̄gB̃n̄S⊥µ

− nµn̄ν
2
STn igG̃µνs Sn̄

}BC
. (6.28)

This is precisely the result for OABs that we quoted earlier in eq. (5.12).

7 One loop matching calculations

In section 7.1 we do a complete one-loop forward scattering matching calculation between

the full theory and SCETII theory with Glauber operators. The structure of virtual rapidity

divergences, and their relation to gluon Reggeization is derived in section 7.2. The one-loop

matching calculation is also carried out for SCETI, and is presented in section 7.3.

7.1 One loop matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs

in the full theory and in SCET. The goals of this analysis are to check the completeness

of our EFT description by checking that all infrared (IR) divergences in the full theory

are correctly reproduced by SCET, to understand the structure of ultraviolet and rapidity

divergences that appear in the SCET diagrams, and to characterize the type of corrections

that can be generated at the hard scale by matching.

To be definite, we will consider quark-antiquark forward scattering. (This is directly

related to quark-quark forward scattering since the extra exchange diagrams for the quark-

quark case go as 1/u rather than 1/t, and hence are power suppressed.) The external mo-

mentum routing we use is the same as shown labeled on figure 1, which we repeat for conve-

nience on the first graph of figure 20. The large forward momenta are conserved, n̄·p2 = n̄·p3

and n ·p1 = n ·p4, and the large Mandelstam invariant s = n ·p1 n̄ ·p2 = n ·p4 n̄ ·p1 to leading

power. The exchanged momentum is given by the much smaller Mandelstam invariant

t = q2
⊥ = −~q 2

⊥ where q = p3 − p2 = p1 − p4, and we take p⊥1 = −p⊥2 = p⊥3 = −p⊥4 = q⊥/2.

To regulate IR divergences in the full theory in a manner that can also be implemented

in SCETII, we include a small gluon mass m. For SCETII the mass m is included for both

soft and collinear gluons in loops, as well as for the Glauber potential from 1/P2
⊥ terms
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Figure 20. Full theory graphs for the matching calculation of quark-antiquark forward scattering

at one-loop. The results for the graphs are expanded with their external momenta as labeled.

via 1/~k 2
⊥ → 1/(~k 2

⊥+m2). Since we take m→ 0 whenever possible, this does not cause any

problems with gauge invariance in this one-loop calculation (for example we set m = 0 from

the start for the vacuum polarization graphs). The full theory is UV finite after coupling

renormalization, and we make use of dimensional regularization with d = 4−2ε to regulate

divergences in individual diagrams. For SCETII dimensional regularization with d = 4−2ε

will be used with factorization scale µ in MS to regulate invariant mass divergences.

We also use a rapidity regulator [58] to regulate additional divergences that are as-

sociated with distinguishing soft and collinear modes [59]. These divergence arise as a

consequence of the fact that the soft and collinear fields have the same virtuality and to

distinguish them we must choose a rapidity factorization scale ν. This regulator is imple-

mented in the manner discussed in section 5.2.3, and shows up in both Glauber, soft, and

collinear loops. The limit η → 0 is always considered first, with the rapidity renormaliza-

tion carried out at finite ε, and then the limit ε → 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one sets η = 0 before or after

the loop integration. The graphs in SCET have subtractions which ensure there is no dou-

ble counting, and for the calculations here this corresponds to using eq. (5.50). At one-loop

we will see that graphs with rapidity divergences only have scaleless 0-bin subtractions.

However, there are graphs without rapidity divergences for which the 0-bin subtractions

are not scaleless integrals and are crucial for avoiding double counting. In the presence of

Glauber gluons, the appropriate 0-bin subtractions for soft and collinear one-loop graphs

are given in eq. (5.50). In the SCETII calculations we are considering in this section, there

are no 0-bin subtractions for the Glauber loop graphs.

7.1.1 Full theory graphs

Consider first the full QCD graphs shown in figure 20 which we number from a) to j).

These graphs are computed exactly, and then the results are expanded in the EFT limit

with |t| � s. There are two additional box-type graphs obtained by rotating figure 20a,b

by 90◦, but neither of these graphs contributes at leading power in this limit. The proper

cut structure is obtained with s = s + i0 and t = t + i0, where we note that for our

kinematics s > 0 and t < 0. The i0 will be implied in the rest of the paper. The group
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theory and spinor factors come in one of four combinations which we denote

Snn̄1 = −
[
ūnT

ATB
/̄n

2
un

][
v̄n̄T̄

AT̄B
/n

2
vn̄

]
, Snn̄2 = CF

[
ūnT

A /̄n

2
un

][
v̄n̄T̄

A /n

2
vn̄

]
,

Snn̄3 = CA

[
ūnT

A /̄n

2
un

][
v̄n̄T̄

A /n

2
vn̄

]
, Snn̄4 = TFnf

[
ūnT

A /̄n

2
un

][
v̄n̄T̄

A /n

2
vn̄

]
. (7.1)

Since the techniques for carrying out one-loop integrals are standard, we will only quote

the result for the QCD graphs at the integrand level, and then the final expanded result

for each graph. For the full theory box graph we have

figure 20a = −g4

∫
d−dk

[
ū(p3)TATBγµ(/k + /p3

)γνu(p2)
][
v̄(p4)T̄AT̄Bγµ(/k − /p4

)γνv(p1)
]

[k2 −m2](k + p3)2(k − p4)2[(k + q)2 −m2]

=
−4iα2

s

t
Snn̄1

[
2 ln

(
s

t

)
ln

(−t
m2

)
+ ln2

(−t
m2

)
− π2

3

]
+ . . . , (7.2)

where the ellipses indicate terms that are higher order in t/s. Similarly for the cross-box

we have

figure 20b = −g4

∫
d−dk

[
ū(p3)TATBγν(/p2

− /k)γµu(p2)
][
v̄(p4)T̄BT̄Aγµ(/k − /p4

)γνv(p1)
]

[k2 −m2](k − p2)2(k − p4)2[(k + q)2 −m2]

=
4iα2

s

t

(
Snn̄1 − 1

2
Snn̄3

)[
2 ln

(−s
t

)
ln

(−t
m2

)
+ ln2

(−t
m2

)
− π2

3

]
+ . . . . (7.3)

For the two Y-graphs with a single three-gluon vertex the graphs give equal contributions

and we have

figures 20c+ 20d =
g4 CA
q2

ιεµ2ε

∫
d−dk

[
ū(p3)TAγν/kγλu(p2)

][
v̄(p4)T̄Aγµv(p1)

]
Tµνλ(q,−k − p3, k + p2)

k2[(k + p2)2 −m2][(k + p3)2 −m2]

=
iα2
s

t
Snn̄3

[
6

ε
+ 6 ln

(
µ2

−t

)
+ 8 ln

(
−t
m2

)
+ 4

]
+ . . . . (7.4)

Here we have included the factor that implements the MS scheme,

ιε = (4π)−εeεγE (7.5)

as well as a µ2ε. The triple gluon vertex momentum factor is Tµνλ(k1, k2, k3) = gµν(k1 −
k2)λ+gνλ(k2−k3)µ+gλµ(k3−k1)ν . Since there are four external fermions, the wavefunction

renormalization graph shown in figure 20e contributes through 2(Zψ − 1) multiplying the

tree level t-channel exchange diagram, and we will refer to this contribution as the result

for figure 20e,

figure 20e =
ig2

q2

[
ū(p3)TAγνu(p2) v̄(p4)T̄Aγνv(p1)

]
2i
d

d/p
ιεµ2ε

∫
d−dk

(−g2CF )γµ(/k + /p)γµ

[k2 −m2](k + p)2

=
iα2
s

t
Snn̄2

[
− 4

ε
− 4 ln

(
µ2

m2

)
+ 2

]
. (7.6)

The two vertex renormalization graphs give the same contribution, and we find

figures 20f+20g =
g4 (2CF−CA)

q2
ιεµ2ε

∫
d−dk

[
ū(p3)TAγν(/k+/p3

)γµ(/k+/p2
)γνu(p2)

][
v̄(p4)T̄Aγµv(p1)

]
[k2 −m2](k + p2)2(k + p3)2

=
iα2
s

t

(
Snn̄2 − 1

2
Snn̄3

)[
4

ε
+ 4 ln

(
µ2

−t

)
− 4 ln2

(
m2

−t

)
− 16 ln

(
m2

−t

)
− 16

]
. (7.7)
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Figure 21. SCETII graphs for the matching calculation of quark-antiquark forward scattering

at one-loop. The first two graphs involve the Glauber potential. The next three graphs involve

soft gluon or soft quark loops. The second and third rows involve collinear loops with either the

quark-gluon Glauber scattering operators or the quark-quark Glauber scattering operator, plus

wavefunction renormalization.

Finally for the full theory vacuum polarization graphs we have the standard Feynman

gauge results (here we can set m2 = 0 from the start),

figures 20h+20i+20j =
iα2
s

t
Snn̄3

[
10

3ε
+

10

3
ln

(
µ2

−t

)
+

62

9

]
+
iα2
s

t
Snn̄4

[
− 8

3ε
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.8)

The sum of UV divergences from eqs. (7.4)–(7.8) only involves Snn̄3 and Snn̄4 , and is canceled

by the MS coupling counterterm Zg − 1 = −(αs/8π)(11CA/3 − 4TFnf/3), which adds a

contribution

Zg counterterm graph =
iα2
s

t

(
− Snn̄3

22

3ε
+ Snn̄4

8

3ε

)
. (7.9)

Adding up all the full theory one-loop graphs plus the coupling counterterm graph we find

Full Theory = figures 20 + Zg c.t.

=
iα2
s

t
Snn̄1

[
8iπ ln

(−t
m2

)]
+
iα2
s

t
Snn̄2

[
− 4 ln2

(
m2

−t

)
− 12 ln

(
m2

−t

)
− 14

]

+
iα2
s

t
Snn̄3

[
− 4 ln

(
s

−t

)
ln

(−t
m2

)
+

22

3
ln

(
µ2

−t

)
+

170

9
+

2π2

3

]

+
iα2
s

t
Snn̄4

[
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.10)

7.1.2 SCETII loop graphs and matching

Next consider the SCET forward scattering graphs shown in figure 21. The first two graphs

involve loops with Glauber loop momenta, the next three with soft loop momenta, and the
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Figure 22. a) Additional collinear graphs with the fermion two-gluon vertex from L(0)
n,n̄ which

vanish. b) Additional tadpole collinear loops graphs for forward scattering. These graphs do not

contribute to the matching calculation since they vanish due to their soft zero-bin subtractions.

remaining ten with n- or n̄-collinear loop momenta. We number these graphs from a) to

o). Both notations for the Glauber operators are used (with and without the dashed red

lines, see eq. (5.13)), depending on what is most convenient. Note that we do not draw

wavefunction or vertex renormalization graphs involving a soft gluon attached to a collinear

quark, since these graphs vanish in Feynman gauge where they are proportional to n2 = 0.

The two graphs with an iteration of the Glauber operator, figure 21a,b, were discussed

above in section 5.2.1. These graphs require regulation by the rapidity regulator to yield

well defined answers, but their results are independent of η as η → 0. In particular

figure 21b vanishes (with or without the mass IR regulator), and

Glauber Loops =
n

n

n

n
G G

= (−4g4) Snn̄1 IGbox = (−4g4) Snn̄1

(−i
4π

)∫
d−d−2k⊥ (−iπ)

[~k 2
⊥ +m2][(~k⊥+~q⊥)2 +m2]

=
iα2
s

t
Snn̄1

[
8iπ ln

(−t
m2

)]
. (7.11)

Thus we already see that the iterated Glauber exchange reproduces the full Snn̄1 piece of

eq. (7.10).

Next we consider the SCET graphs contributing to the CFT
A ⊗ T̄A color structure,

ie. that have terms involving Snn̄2 . This occurs only in the collinear loop graphs in fig-

ures 21i,j,n,o. The loops in these graphs involve only Lagrangian insertions and a single

collinear sector, therefore it is easy to check that they contribute the same result as in

full QCD, which is the sum of eqs. (7.6) and (7.7) (this follows immediately from eq. (4.6)

above). Therefore,

n

n

n

n

n

+
n

n

n

n
n

+

(
n

n
n + n

n
n

)
n

n

n

n

=
iα2
s

t
Snn̄2

[
− 4 ln2

(
m2

−t

)
− 12 ln

(
m2

−t

)
− 14

]
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+
iα2
s

t
Snn̄3

[
− 2

ε
− 2 ln

(
µ2

−t

)
+ 2 ln2

(
m2

−t

)
+ 8 ln

(
m2

−t

)
+ 8

]
. (7.12)

Looking at only the Snn̄2 term, we see that the SCETII graphs reproduce the full Snn̄2 piece

of eq. (7.10). The situation is similar for the nfTFT
A⊗ T̄A term, ie. Snn̄4 . The only SCET

graph that is proportional to nf is the soft loop graph in figure 21d which gives the same

results as the quark vacuum polarization in the full theory,

n

n

n

n

S =
iα2
s

t
Snn̄4

[
− 8

3ε
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.13)

So the full theory Snn̄4 term in eq. (7.10) is also exactly reproduced.

This leaves the final color structure CAT
A⊗ T̄A, ie. Snn̄3 . Here things are more compli-

cated, many graphs contribute, and there is no one-to-one correspondence between graphs

in the full theory and effective theories. For our SCETII calculation we have contributions

from figures 21i,n given above in eq. (7.12), as well as from figures 21c,e,f,g,h,k,l,m which

we will consider in turn. We will encounter rapidity divergences in these diagrams. There

are also additional collinear graphs given in figures 22 which we will discuss, but which do

not in the end contribute (those in figure 22a because the integral vanishes, while those in

figure 22b vanish only after accounting for their soft 0-bin subtraction).

First consider the contribution from the T-product of two Glauber operators, Oqgns with

Oqgn̄s, which is shown in figure 21c. The Feynman rules for these soft-collinear scattering

operators are given in figure 9. Due to the presence of 1/n · k and 1/n̄ · k propagators this

soft loop graph will have rapidity divergences, and we must include the rapidity regulator.

Note that if we collapse our dashed Glauber propagators to blobs that this graph can also

be drawn as
n

n

n

n

S =
n

n

n

n

S

(7.14)

and for this reason, and to remind the reader that this graph contains more than just

vacuum polarization, we will refer to it as a “soft eye” graph. For this “soft eye” diagram

we find

n

n

n

n

S =
4g4

t2
Snn̄3 ιεµ2ε

∫
d−dk |2kz|−η νη

[k2 −m2][(k + q)2 −m2]

{
4w2[k⊥ · (k⊥ + q⊥)]2

n̄ · k n · k + (d− 2)n · k n̄ · k

+ 2(k⊥ + q⊥)2 + 2k2
⊥

}
1

2

= − iα
2
s

t
Snn̄3

{
8

η
g(ε, µ2/t) +

4

ε2
+

4

ε
ln

(
µ2

ν2

)
+ 4 ln

(
µ2

ν2

)
ln

(
µ2

−t

)
− 2 ln2

(
µ2

−t

)
+
π2

3

+ 2

(
− 11

3ε
− 11

3
ln
µ2

−t −
67

9

)}
. (7.15)

Here inside the integral the denominators in square brackets have a +i0, the factor of

(d − 2) = gµν⊥ g
⊥
µν , and the rapidity divergence comes only from the first term in curly
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brackets. The factor of 1/2 in the first line is a symmetry factor. The function multiplying

the 1/η rapidity divergence for the result in eq. (7.15) is

g(ε, µ2/t) = eεγE
(
µ2

−t

)ε
cos(πε)Γ(−ε)Γ(1 + 2ε) . (7.16)

We have included the bookkeeping parameter w in the first line of eq. (7.15). In this

section, where we are concerned with the matching, we will keep these factors only in

the integrand, then drop them when quoting results. For the result in eq. (7.15), it is

interesting to note that the full 11CA/3ε factor needed for the 1-loop β-function for the

strong coupling has been generated from a graph only involving gluons, without a ghost

contribution. This arises due to the form of the soft gauge invariance of the gluon operator

in the EFT. Only the rapidity divergent integral in eq. (7.15) is non-standard, and we carry

it out in appendix B.

The choice of ±i0 factors in the (n̄·k±i0) and (n·k±i0) denominators of eq. (7.15) does

not change the result for this integral, due to the Glauber 0-bin subtraction that must be

carried out for this soft graph. The easiest way to see this is to carry out the k0 integration

by contours. If the eikonal propagators are (n̄ · k + i0)(n · k + i0) or (n̄ · k − i0)(n · k − i0)

then we can close the k0 contour to only pick the poles from the propagators [k2 −m2 +

i0][(k + q)2 −m2 + i0], and doing the integral gives the result quoted in eq. (7.15). In this

case the naive soft integral is the full result, S = S̃, and the Glauber 0-bin subtraction is

zero, because these propagators become [k2
⊥−m2 + i0][(k⊥+q⊥)2−m2 + i0] in the Glauber

limit, and the k0 poles in the eikonal propagators are on the same side. The vanishing of

this Glauber 0-bin subtraction occurs for the same reason as the vanishing of the Glauber

cross-box. On the other hand if the eikonal propagators are taken to have opposite sign

i0s, (n̄ ·k+ i0)(n ·k− i0) or (n̄ ·k− i0)(n ·k+ i0), then when we calculate the naive soft loop

S̃ by closing the k0 contour, relative to the above we have to include an additional additive

contribution from an eikonal pole. When we pick this pole, we either set n·k = 0 or n̄·k = 0

in the other propagators, so the relativistic propagators are exactly reduced to their form

in the Glauber limit. Therefore, in this case this extra contribution in S̃ is exactly canceled

by the fact that the graph now has a nonzero Glauber 0-bin subtraction, S(G),

S(G)(figure 21c) =
4g4

t2
w2Snn̄3 ιεµ2ε

∫
d−dk |2kz|−η νη

[k2
⊥ −m2][(k⊥ + q⊥)2 −m2]

4[k⊥ · (k⊥ + q⊥)]2

(n̄ · k ± i0)(n · k ∓ i0)
. (7.17)

Note that the numerator remained unchanged under the Glauber limit, and that the

terms without eikonal propagators are power suppressed in this limit and hence dropped.

Thus, when we calculate the full soft loop result as S = S̃ − S(G) the extra term from

picking the eikonal pole cancels out, and the result is again the one given in eq. (7.15).

This cancellation is the reason that the choice for the direction of the soft Wilson lines is

not important in the Glauber Lagrangian.

The remaining soft loop graph is figure 21e, which is generated by the self contraction

of the two gluon Feynman rule from the soft operator OABs shown in figure 7, and which

we refer to as the “soft flower” graph. The integrand for this loop graph involves a gluon

propagator with the IR regulator, 1/(k2−m2), times the part of the OABs Feynman rule in
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{· · · } that is obtained by setting k1 = −k2 = k, q′ = q, and contracting with δC1C2gµ1µ2 :

{
· · ·
}
δC1C2gµ1µ2

(k2 −m2)
=

g2CAδ
AB

(k2 −m2)

[
− 2(d− 2) +

4
(
k2
⊥ − q2

⊥
)

−n · k n̄ · k + 4

]
=

4g2CAδ
AB

(k2 −m2)

[
1 + ε− k2

n · k n̄ · k −
~q 2
⊥

n · k n̄ · k

]
. (7.18)

Looking at the terms in the square brackets, the 1 + ε term has its scale set by m2, and

hence vanishes as the IR regulator m→ 0. The k2/(n · k n̄ · k) term has a numerator that

cancels the (k2 −m2) denominator, and hence is scaleless in the k⊥ integral and vanishes.

This leaves only the last term which gives a rapidity divergent contribution:

n

n

n

n

S =
4g4

t
Snn̄3 w2ιεµ2ε

∫
d−dk

|2kz|−η νη
[k2 −m2](n · k)(n̄ · k)

(7.19)

= − iα
2
s

t
Snn̄3

{
8

η
h(ε, µ2/m2)− 4

ε2
− 4

ε
ln

(
µ2

ν2

)
− 4 ln

(
µ2

ν2

)
ln

(
µ2

m2

)
+2 ln2

(
µ2

m2

)
+
π2

3

}
,

where the coefficient of the rapidity divergence involves the function

h(ε, µ2/m2) = eεγE
(
µ2

m2

)ε
Γ(ε) . (7.20)

The result in eq. (7.15) could have been obtained by just keeping the Pµ⊥(STn Sn̄)P⊥µ term

in OABs , since the other operators only contributed to the terms identified in eq. (7.18)

which vanished. Once again the choice of ±i0 in the eikonal propagators does not change

the result for this loop diagram due to its Glauber 0-bin subtraction. The mathematics of

this cancellation are exactly the same as discussed above for the soft eye graph.

The sum of the three one-loop graphs with soft loops from eqs. (7.13), (7.15), (7.19) is

figures 21c, d, e = − iα
2
s

t
Snn̄3

[
8

η
h(ε, µ2/m2) +

8

η
g(ε, µ2/t) + 4 ln

(
µ2

ν2

)
ln

(
m2

−t

)
+ 2 ln2

(
µ2

m2

)
− 2 ln2

(
µ2

−t

)
+

2π2

3
+ 2

(
− 11

3ε
− 11

3
ln
µ2

−t −
67

9

)]
+
iα2
s

t
Snn̄4

[
− 8

3ε
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.21)

Note that the 1/ε2 and ln(µ2/ν2)/ε terms have canceled in this result, leaving only the

1/η rapidity divergences and 1/ε UV divergences. Since the bare soft operator OABs has

a factor of αbare
s = Zαµ

2εαs(µ) multiplying the fields, there is a Zα coupling counterterm

contribution in the operator Feynman rule. It gives the contribution

soft αs counterterm =
iα2
s

t

(
− Snn̄3

22

3ε
+ Snn̄4

8

3ε

)
. (7.22)
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This result exactly cancels the 1/ε terms in eq. (7.21), so with the counterterm the total

sum of all soft loop graphs is given by

Soft Loops = figures 21c, d, e+ Zα c.t.

=
iα2
s

t
Snn̄3

{
− 8

η
h(ε, µ2/m2)− 8

η
g(ε, µ2/t)− 4 ln

(−t
ν2

)
ln

(
m2

−t

)
− 2 ln2

(−t
m2

)
+

22

3
ln

(
µ2

−t

)
+

134

9
− 2π2

3

}
+
iα2
s

t
Snn̄4

[
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.23)

Thus in SCETII the sum of graphs in the soft sector only has rapidity divergences. The

logarithms from these soft loops are minimized for µ ∼ ν ∼ √−t which is consistent

with our power counting. It is interesting to note that the full two-loop cusp anomalous

dimension, which is determined by K = (67/18 − π2/6)CA − 10nfTF /9, appears as the

constant term for our one-loop soft exchange result9 in eq. (7.23),

iα2
s

t

{(
134

9
− 2π2

3

)
CA −

40

9
TFnf

}[
ūnT

A /̄n

2
un

][
v̄n̄T̄

A /n

2
vn̄

]
=

4iα2
s

t
K

[
ūnT

A /̄n

2
un

][
v̄n̄T̄

A /n

2
vn̄

]
.

(7.24)

It would be interesting to investigate in detail the reason for this correspondence.

Finally we consider the remaining collinear diagrams, in figure 21f,g,h,k,l,m. The two

V-graphs in figure 21f,k give related contributions, and are induced by the Glauber operator

involving n-collinear gluons, mixing back into n-collinear quarks (and likewise for the n̄-

collinear loop). The Ogqnsn̄ Glauber operator only produces An⊥ and n̄ · An gluons, so for

the n-collinear V-graph we have

n

n

n

n

nn =
−ig4

t
fABC

[
v̄n̄T̄

C /n

2
vn̄

] ∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη) n̄ · (k + p3)

[k2 −m2][(k + q)2 −m2](k + p3)2
(7.25)

×
[
2w2n̄ · k gµν⊥ +

2k⊥ · (k⊥+q⊥)n̄µn̄ν

n̄ · k − 2n̄µ(kν⊥+qν⊥)− 2kµ⊥n̄
ν

]
× ūnTBTA

/̄n

2

(
nν+

γ⊥ν (/k⊥+/p3⊥)

n̄ · (k+p3)
+
/p3⊥γ

⊥
ν

n̄ · p3

)(
nµ+

γ⊥µ /p2⊥
n̄ · p3

+
(/k⊥+/p3⊥)γ⊥µ
n̄ · (k+p3)

)
un

=
−g4CA

2t

[
v̄n̄T̄

A /n

2
vn̄

]∫
d−dk (ιεµ2ε|n̄ · k|−ηνη)

[k2 −m2][(k + q)2 −m2](k + p3)2
ūnT

A /̄n

2

{
8w2k⊥ ·(k⊥+q⊥)n̄·(k+p3)

n̄ · k

+ 2n̄·k n̄· (k+p3)

(
γν⊥(/k⊥+/p3⊥)

n̄ · (k+p3)
+
/p3⊥γ

ν
⊥

n̄ · p3

)(
γ⊥ν /p2⊥
n̄ · p3

+
(/k⊥+/p3⊥)γ⊥ν
n̄ · (k+p3)

)
− 4n̄· (k+p3)

[
(/k⊥+/q⊥)(/k⊥+/p3⊥)

n̄ · (k+p3)
+
/p3⊥(/k⊥+/q⊥)

n̄ · p3
+
/k⊥/p2⊥
n̄ · p3

+
(/k⊥+/p3⊥)/k⊥
n̄ · (k+p3)

]}
un .

Only the first term in curly braces has a rapidity divergence, and we give the result for

this integral in appendix B. All the other loop integrals are standard. The result for the

9We thank Hua-Xing Zhu for discussions about this.
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n̄-collinear V-graph in figure 21k is the same as the final answer with p3 → p4. Combining

the results for these two graphs after doing the integrals we find

n

n

n

n

nn +

n

n

n

n

nn (7.26)

=
iα2
s

t
Snn̄3

[{
4

η
g(ε, µ2/t)− 4

ε
ln

(
ν

n̄ · p3

)
− 4 ln

(
ν

n̄ · p3

)
ln

(
µ2

−t

)
− 3

ε
− 3 ln

(
µ2

−t

)
− 6 +

4π2

3

}
+

{
4

η
g(ε, µ2/t)− 4

ε
ln

(
ν

n · p4

)
− 4 ln

(
ν

n · p4

)
ln

(
µ2

−t

)
− 3

ε
− 3 ln

(
µ2

−t

)
− 6 +

4π2

3

}]

=
iα2
s

t
Snn̄3

{
8

η
g(ε, µ2/t)− 4

ε
ln

(
ν2

s

)
− 4 ln

(
ν2

s

)
ln

(
µ2

−t

)
− 6

ε
− 6 ln

(
µ2

−t

)
− 12 +

8π2

3

}
.

Here the factors of ln(s) appear from adding the two diagrams and using ln(n̄ · p3) + ln(n ·
p4) = ln s.

For the collinear loop integral in eq. (7.25) we must consider the soft and Glauber 0-bin

subtractions, C = C̃ − C(S) − C(G) + C(S)(G), but here we will see that the subtractions

give vanishing contributions. In the soft limit kµ ∼ λ, so in eq. (7.25) the denominator

(k + p3)2 → (n · k n̄ · p3). Only the rapidity divergent term gives an integral scaling as λ0,

whereas all the remaining terms in the curly brackets give integrals scaling as O(λ) that

are dropped. The contribution for the soft subtraction is therefore

C(S)(figure 21f) = −g
4

2t
Snn̄3

∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη)

[k2 −m2][(k + q)2 −m2](n · k + i0)

8w2k⊥ ·(k⊥+q⊥)

n̄ · k . (7.27)

This integral can be performed by contours in k+ = n · k. Since q is purely transverse the

poles in the two relativistic propagators are on the same side for either k− > 0 or k− < 0,

so the full result is obtained from the k− < 0 region by closing about the n · k = −i0 pole.

This leaves a vanishing scaleless integral in k−,∫ 0

−∞
dk−

(−k−)−η

k−
= −

∫ ∞
0

dk−
(k−)−η

k−
=

1

η
− 1

η
= 0 , (7.28)

so the soft subtraction C(S)(figure 21f) = 0. The remaining subtractions come from the

Glauber limit, and soft+Glauber limit, and are considered together. Again power counting

implies that only the rapidity divergent term must be considered and we find

C(G)(figure 21f)− C(S)(G)(figure 21f) = −g
4

2t
Snn̄3

∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη) n̄·p3

[k2
⊥ −m2][(k⊥ + q⊥)2 −m2]

8w2k⊥ ·(k⊥+q⊥)

n̄ · k

×
[

1

n̄·p3 n·(k+p3)+(k⊥+p3⊥)2 + i0
− 1

n̄·p3 n·k + i0

]
. (7.29)

In the difference we have two poles on the same side in the n · k contour integral, so the

contributions from the subtractions in eq. (7.29) vanish. Thus, with our regulators all the

0-bin subtractions vanish for the collinear graph and result for the n-collinear V-graph loop

in eq. (7.25) is simply obtained from the naive integral, C = C̃. The situation is identical

for the 0-bin subtractions for the n̄-collinear V-graph.

Next we consider the collinear Wilson line graphs in figure 21h,i,m,n. Using the Feyn-

man rules from figure 6, we see that the contractions with the incoming or outgoing collinear
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quark give the same contribution. In particular, a sign from the color structure cancels

against a sign from the eikonal propagator from flipping the direction of the gluons momen-

tum, and only the large momenta n̄ ·p3 = n̄ ·p2 and n ·p1 = n ·p4 appear in the answer. Due

to the presence of the fABC the color structure simplifies, −ifABCTCTA = (CA/2)TB, so

only the structure Snn̄3 appears. For the collinear Wilson line graphs we find

n

n

n

n

n

+
n

n

n

n

n

+
n

n

n

n
n

+
n

n

n

n
n

(7.30)

= Snn̄3

2w2g4

t

[ ∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη) n̄ · (k + p3)

[k2 −m2](k + p3)2(n̄ · k)
+

∫
d−dk

(ιεµ2ε|n · k|−ηνη) n · (k + p4)

[k2 −m2](k + p4)2(n · k)

]
=
iα2
s

t
Snn̄3

{
4

η
h(ε, µ2/m2)+

4

ε
ln

(
ν

n̄·p3

)
+4 ln

(
ν

n̄·p3

)
ln

(
µ2

m2

)
+

4

ε
+4 ln

(
µ2

m2

)
+4− 2π2

3

}
+
iα2
s

t
Snn̄3

{
4

η
h(ε, µ2/m2)+

4

ε
ln

(
ν

n·p4

)
+4 ln

(
ν

n·p4

)
ln

(
µ2

m2

)
+

4

ε
+4 ln

(
µ2

m2

)
+4− 2π2

3

}
=
iα2
s

t
Snn̄3

{
8

η
h(ε, µ2/m2) +

4

ε
ln

(
ν2

s

)
+ 4 ln

(
ν2

s

)
ln

(
µ2

m2

)
+

8

ε
+ 8 ln

(
µ2

m2

)
+ 8− 4π2

3

}
.

The result for this loop integral is described in appendix B. Again the ln(s) factors here

appear from adding the n-collinear and n̄-collinear graphs, ln( n̄·p3

ν ) + ln(n·p4

ν ) = ln( s
ν2 ). In

precisely the same manner as for the collinear V-graphs, the soft 0-bin and Glauber 0-bin

subtractions all vanish for these collinear Wilson line graphs.

Next we consider the graphs in figure 22. The diagrams in figure 22a arise because

there is a two-quark two-gluon Feynman rule in the L(0)
n and L(0)

n̄ collinear Lagrangians.

This n-collinear loop graph is proportional to a vanishing loop integral∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη) n̄ · k
[k2 −m2][(k + q)2 −m2] n̄ · (k + p3)

= 0 , (7.31)

and the same is true for the n̄-collinear loop graph. On the other hand, the tadpole diagrams

in figure 22b do not have vanishing collinear integrals. In all these tadpole graphs the three

propagators are q2k2(k + q)2 (with an additional IR regulator −m2 when appropriate), so

the large collinear momenta n̄·p3 and n·p4 do not appear. Although the vertex in the gluon

loop graphs could introduce an eikonal denominator, for these graphs it is always canceled

since the same eikonal factor appears in the numerator. In all diagrams the collinear

gluon propagator that is outside the loop gives the q2 = q2
⊥ which looks like a Glauber

potential. Indeed, these tadpole graphs are double counting a contribution that has already

been included from the soft diagrams in figure 21c,d. Therefore it is not surprising that

when we consider the soft zero-bin subtractions for each of these diagrams, that we obtain

precisely the same loop integrals and

C̃(figure 22b)− C(S)(figure 22b) = 0 , C(G)(figure 22b)− C(S)(G)(figure 22b) = 0 (7.32)

for each diagram in figure 22b. Thus the collinear loop diagrams in figure 22 do not

contribute.
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The sum of all the collinear graphs from eqs. (7.12), (7.26), (7.30) gives

Collinear Loops = figures 21f -o

=
iα2
s

t
Snn̄3

{
8

η
h

(
ε,
µ2

m2

)
+

8

η
g

(
ε,
µ2

−t

)
+ 4 ln

(
ν2

s

)
ln

(−t
m2

)
+ 2 ln2

(
m2

−t

)
+4+

4π2

3

}
+
iα2
s

t
Snn̄2

[
− 4 ln2

(
m2

−t

)
− 12 ln

(
m2

−t

)
− 14

]
. (7.33)

Again there are cancellations that have occurred for the sum of graphs, the ln(ν2/s)/ε

terms have canceled, as have all the 1/ε terms. (This is also true separately for the n-

collinear graphs and n̄-collinear graphs.) Thus the collinear graphs also only have rapidity

divergences. The logarithms from these collinear loops are minimized with µ ∼
√
t and ν ∼

n̄ ·p3 ∼ n ·p4 ∼
√
s. Once again this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from

eqs. (7.11), (7.23), (7.33). In the sum of soft and collinear loops the 1/η rapidity diver-

gences cancel, as expected since they arose from defining EFT modes that were sensitive

to a single rapidity scale to avoid having large logs which are ratios of rapidity scales. Note

that the rapidity divergences h(ε, µ2/m2)/η from the soft and collinear Wilson line graphs

cancel, independent from the rapidity divergences g(ε, µ2/(−t))/η appearing in the soft

eye-graph and collinear V-graphs, which also cancel. We find

Total SCET = figures 21a-o+ Zα c.t.

=
iα2
s

t
Snn̄1

[
8iπ ln

(−t
m2

)]
+
iα2
s

t
Snn̄2

[
− 4 ln2

(
m2

−t

)
− 12 ln

(
m2

−t

)
− 14

]
+
iα2
s

t
Snn̄3

{
− 4 ln

(
s

−t

)
ln

(−t
m2

)
+

22

3
ln
µ2

−t +
170

9
+

2π2

3

}
+
iα2
s

t
Snn̄4

[
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.34)

This total SCET result agrees exactly with the full theory one-loop result in eq. (7.10) for all

color structures, all IR divergences, all logs, and all constant terms. Since all IR divergences

are correctly reproduced this provides a non-trivial test of our EFT framework. The ln µ2

−t
dependence is proportional to the one-loop beta function, and hence exactly corresponds

with the µ dependence in the αs(µ) of the tree level Glauber exchange diagram. This

logarithm shows that the scale µ2 ' −t > 0 is the preferred value for this potential. The

various ln m2

−t are infrared in origin. Finally, since s � −t there is one large logarithm,

ln s
−t , which is generated by the separation of rapidity singularities in the soft and collinear

diagrams (as opposed to invariant mass singularities). The resummation of these logarithms

leads to gluon Reggeization in the EFT operators, which we discuss in more detail in the

next section.

Notice that although we have used Feynman gauge in this calculation the result does

not depend upon the choice of which generalized covariant gauge we use. The reason for

this is straightforward as the gauge dependent terms are contracted with the light-cone

vector associated with the Wilson line which will cancel an eikonal propagator leading to
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a rapidity finite result. Thus for the gauge dependent pieces the rapidity regulator can be

omitted, and these pieces will then cancel in the standard fashion.

It is natural to consider what the difference would be if we had considered quark-quark

scattering, rather than quark-antiquark scattering. This corresponds to the crossing of two

external lines, p1 ↔ −p4, which takes s→ u = −s at leading order in the power expansion

−t� s. In the full theory the only non-trivial change is to the box and cross-box diagrams

which are interchanged under the crossing. The full result for quark-quark scattering is

obtained from eq. (7.10) by the simple replacement Snn̄i → Snn̄iqq, where

Snn̄1qq = −
[
ūnT

ATB
/̄n

2
un

][
ūn̄T

ATB
/n

2
un̄

]
, Snn̄2qq = CF

[
ūnT

A /̄n

2
un

][
ūn̄T

A /n

2
un̄

]
,

Snn̄3qq = CA

[
ūnT

A /̄n

2
un

][
ūn̄T

A /n

2
un̄

]
, Snn̄4qq = TFnf

[
ūnT

A /̄n

2
un

][
ūn̄T

A /n

2
un̄

]
. (7.35)

In the SCET calculation the only changes are to the color structures, and the final result

is again obtained from eq. (7.34) by taking Snn̄i → Snn̄iqq. Thus, once again the total SCET

and full theory results agree.

The fact that the SCET result in eq. (7.34) agrees exactly with the full theory result in

eq. (7.10) implies that there are no hard matching corrections to the Glauber operator at

the scale µ2 ∼ s. (The analogous statement in the threshold expansion is that there are no

contributions to the forward scattering at leading power from hard loop momenta.) It is

easy to see that the pattern observed here at one loop continues to higher orders in αs for

all leading power terms: there are no individual SCET diagrams that can possibly depend

on ln(s) since the relevant momenta that form this combination cannot occur in any loop

integral by the power counting. To get a ln(s) from a single loop requires a loop that

knows about both scattering particles, but a hard loop of this type will give a 1/s rather

than the leading power 1/t. At leading power the ln(s) dependence only arises from the

rapidity divergences which are sensitive to the large p−n and p+
n̄ collinear momenta. This

is a general feature of the EFT for leading power forward scattering, there are no hard

matching corrections. Thus, as we argued in section 5.3, the tree level results for all the

Glauber exchange operators actually include the complete all-order Wilson coefficients.

One can repeat this one loop forward matching calculation in other kinematic scenarios.

In section 7.3 we repeat this matching for SCETI kinematics, where there are now simul-

taneously soft and ultrasoft modes, and the results for the various diagrams above change.

Again we find that the full theory result, which now includes a ln2(s), is exactly reproduced

by the SCETI calculation, the IR divergences are properly reproduced, and there is no hard

matching corrections for the Glauber Lagrangians. One can also repeat the matching calcu-

lation for n-soft forward scattering at one-loop in SCETII, and although the precise form of

the diagrams change, drawing parallels with the results obtained in this section, it is again

clear that the full theory result will be exactly reproduced by the sum of EFT diagrams.
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7.2 Reggeization from rapidity renormalization

Given that the large logarithm in the one-loop forward scattering amplitude of eq. (7.34)

is generated by adding up modes that are separated in rapidity,

ln
s

−t = ln
p+

3

ν
+ ln

p−4
ν

+ ln
ν2

−t , (7.36)

one can resum these logarithms by carrying out a separate rapidity renormalization and

resummation of the soft and collinear components of the amplitudes. The anomalous di-

mension in rapidity space is determined by the coefficient of the 1/η poles, and is connected

to the coefficient of the ln(ν2) terms in the soft and collinear amplitudes. From eqs. (7.23)

and (7.33) we see that the coefficient of the ln(ν2) terms involves the logarithm ln(−t/m2),

and hence is IR divergent. Obviously an IR divergent anomalous dimension does not make

sense. This infrared divergence is a reflection of the fact that the separate renormalization

of soft and collinear objects should be done at the level of the squared amplitude including

phase space integrals, where the corresponding soft and collinear functions include both

virtual and real radiation diagrams, and are IR finite. Nevertheless, the contribution to this

renormalization from virtual diagrams can be examined at the amplitude level, and we will

see that it corresponds to the classic result for gluon Reggeization. Therefore for the pur-

pose of this section we put aside the presence of the ln(m2) IR divergence, and demonstrate

how the classic IR divergent result emerges in SCET. In the next section we will carry out

the renormalization for the soft function, where the IR divergence is properly resolved.

7.2.1 Notation for virtual counterterms and anomalous dimensions

The rapidity divergent n-collinear loops in figure 21 consist of the V-graphs (figure 21f,k)

and the W -Wilson line graphs (figure 21g,h,l,m). In addition the sum of vertex and wave-

function renormalization graphs (figure 21i,j,n,o) contribute a CA/ε pole that cancels that

of the V-graphs. From the point of view of the n-collinear sector, the V-graphs involve

a mixing of OgAn into OqAn . On the other hand the Wilson line, vertex, and wavefunction

graphs take OqAn back to OqAn . Thus we see that the n-collinear virtual renormalization can

be viewed as involving mixing with a 2 × 2 matrix structure

~OAbare
n = V̂On · ~OAn (ν, µ) , V̂On =

(
1 + δV qq

n δV qg
n

δV gq
n 1 + δV gg

n

)
, ~OAn =

(
OqAn
OgAn

)
. (7.37)

Here we use the notation “V ” rather than a traditional “Z” for the renormalization factors

to remind the reader that these are just the divergent 1/ε and 1/η contributions from virtual

graphs and may still involve the IR regulator m. They are not the complete renormalization

results. The component notation for terms in ~OAn in eq. (7.37) applies to both the bare

and renormalized operators. The terms δV qq
n and δV gq

n are determined by graphs with

external quark fields, whereas δV gg
n and δV qg

n are analogs with external gluon fields (which

therefore cannot be obtained simply from subcomponents of the results in figure 21). We

have built in the fact that the renormalization is diagonal in color space by using the same
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index A for the bare and renormalized operators. The same decomposition applies for the

n̄-collinear sector with n→ n̄ for all terms, which we write out just to be definite

~OBbare
n̄ = V̂On̄ · ~OBn̄ (ν, µ) , V̂On̄ =

(
1 + δV qq

n̄ δV qg
n̄

δV gq
n̄ 1 + δV gg

n̄

)
, ~OBn̄ =

(
OqBn̄
OgBn̄

)
. (7.38)

The structure for the rapidity divergent soft sector is more complicated since we have

operators OqnAs , OgnAs , Oqn̄As , Ogn̄As , as well as OABs . Phrased in the language of mixing, the

single color index operators with Sn Wilson lines, OqnAs and OgnAs , will mix with themselves,

but not with Oqn̄As and Ogn̄As which have Sn̄ Wilson lines. This occurs because soft loops

and emissions from a soft operator alone do not generate Wilson lines. Thus for these

single index operators we have

~OAbare
sn = V̂Osn · ~OAsn(ν, µ) , V̂Osn =

(
1 + δV qq

sn δV qg
sn

δV gq
sn 1 + δV gg

sn

)
, ~OAsn =

(
OqnAs

OgnAs

)
, (7.39)

plus a direct analog for Oqn̄As and Ogn̄As obtained with n → n̄. For the double index

operator OABs we have self renormalization as well as mixing from time-ordered products

(T-products) with the same color structure, such as i
∫
d4xTOgnAs (x)Ogn̄Bs (0). Since in

OABs the index A couples to an n-collinear sector and the index B couples to a n̄-collinear

sector, we must maintain this same structure on the T-product terms. Since OABs has a

no-gluon Feynman rule, to mix into it one must have the fields in the T-product annihilate

each other. At O(αs) this can only occur through either a soft quark or gluon loop, which

allows only certain products of operators to appear, but at higher orders other terms can

also contribute. The full form of the mixing equation is

~OABbare
s = V̂Os · ~OABs (ν, µ) , (7.40)

V̂Os =



1 + δVs 0 0 0 0

δV Tqq
s

V̂Osn ⊗ V̂Osn̄
δV Tgq

s

δV Tgg
s

δV Tqg
s


, ~OABs =



OABs
i
∫
d4x T OqnAs (x)Oqn̄Bs (0)

i
∫
d4x T OgnAs (x)Oqn̄Bs (0)

i
∫
d4x T OgnAs (x)Ogn̄Bs (0)

i
∫
d4x T OqnAs (x)Ogn̄Bs (0)


.

Here the lower-right 4×4 block in V̂Os is determined by the renormalization factor V̂Osn in

eq. (7.39) and its analog with n→ n̄, since these terms just involve the renormalization of

individual operators appearing in the T-products. For example, the (2, 4) entry of V̂Os is

δV qg
sn δV

qg
sn̄ . The 1× 1 entry of V̂Os is the self renormalization of OABs , and the four entries

below it are due to mixing of the T-products into OABs . The entries with 0s indicate that

the operator OABs does not mix into the T-products. At one-loop the nonzero entries are

δVs (from the soft subgraph in figure 21e), δV Tqq
s (from the soft part of figure 21d), δV Tgg

s

(from the soft part of figure 21c), and the terms in the 4× 4 submatrix V̂Osn ⊗ V̂Osn̄ .

The independence of the bare collinear and bare soft operators to the rapidity renor-

malization scale ν and to the invariant mass renormalization scale µ, (νd/dν)Obare = 0
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and (µd/dµ)Obare = 0, leads to renormalization group equations in the standard fashion.

Thus we have

ν
∂

∂ν
~OAn (ν, µ) = γ̂νOn · ~OAn (ν, µ) , γ̂νOn = −V̂ −1

On · ν
∂

∂ν
V̂On =

(
γqqnν γ

qg
nν

γgqnν γ
gg
nν

)
, (7.41)

µ
∂

∂µ
~OAn (ν, µ) = γ̂µOn · ~O

A
n (ν, µ) , γ̂µOn = −V̂ −1

On · µ
∂

∂µ
V̂On =

(
γqqnµ γ

qg
nµ

γgqnµ γ
gg
nµ

)
,

with analogous results for γ̂νOn̄ and γ̂µOn̄ by taking n→ n̄. In particular we have the relation

γijn̄ = γijn

∣∣∣
n→n̄

(7.42)

between n-collinear and n̄-collinear anomalous dimensions. The ν-anomalous dimension is

entirely determined by the 1/η pole in V̂On , and the µ-anomalous dimension by the 1/ε

pole in V̂On .

For the soft operators with one color index we have similar results

ν
∂

∂ν
~OAsn(ν, µ) = γ̂νOsn · ~O

A
sn(ν, µ) , γ̂νOsn = −V̂ −1

Osn · ν
∂

∂ν
V̂Osn =

(
γqqsnν γ

qg
snν

γgqsnν γ
gg
snν

)
,

(7.43)

µ
∂

∂µ
~OAsn(ν, µ) = γ̂µOsn · ~O

A
sn(ν, µ) , γ̂µOsn = −V̂ −1

Osn · µ
∂

∂µ
V̂Osn =

(
γqqsnµ γ

qg
snµ

γgqsnµ γ
gg
snµ

)
,

and again obtain results for γ̂νOsn̄
and γ̂µOsn̄

by taking n→ n̄. Finally for the soft operators

with two-color indices we have

ν
∂

∂ν
~OABs (ν, µ) = γ̂νOs · ~OABsn (ν, µ) , µ

∂

∂µ
~OABs (ν, µ) = γ̂µOs · ~O

AB
s (ν, µ) , (7.44)

γ̂νOs = −V̂ −1
Os · ν

∂

∂ν
V̂Os , γ̂µOs = −V̂ −1

Os · µ
∂

∂µ
V̂Os

γ̂νOs =



γdir
sν 0 0 0 0

γTqqsν

γ̂Oνsn ⊗ γ̂Oνsn̄
γTgqsν

γTggsν

γTqgsν


, γ̂µOs =



γdir
sµ 0 0 0 0

γTqqsµ

γ̂Oµsn ⊗ γ̂Oµsn̄
γTgqsµ

γTggsµ

γTqgsµ


.

7.2.2 Relations between virtual anomalous dimensions in SCETII

Having established notations for the anomalous dimensions, we next consider the con-

straints imposed by the fact that there is no overall ν or µ dependence for the scattering

of soft and collinear particles or the scattering of n-collinear and n̄-collinear particle, since

there are no ν or µ dependent Wilson coefficients in these Lagrangians. For simplicity we

will work out these constraints at one-loop order, which is the level needed for our analy-

sis. First consider the scattering between two neighboring rapidity sectors, n-soft scattering
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mediated by one or more Oijns operators. Here there is no mixing of multiple insertions of

LII(0)
G back into a single insertion. The only such diagram involves the iteration OiknsO

kj
ns

with a Glauber loop that has one soft and one collinear propagator, and this loop diagram

is identical to the box calculation in section 5.2.1, and hence is finite. Therefore, at this

order we can look at the Oijns (defined in eq. (5.17)) alone.

The fact that the tree level matching is exact and that quark and gluon operators have

identical coefficients, places strong constraints on the anomalous dimensions. Imposing the

condition that

ν
d

dν

∑
ij=q,g

Oijns = ν
d

dν
(OqAn +OgAn )

1

P2
⊥

(OqnAs +OgnAs ) = 0 (7.45)

implies that

ν
d

dν
(OqAn +OgAn ) = γnν(OqAn +OgAn ) , ν

d

dν
(OqnAs +OgnAs ) = γsnν(OqnAs +OgnAs ) , (7.46)

i.e. the sum of the two operators must mix into itself. Furthermore, eqs. (7.41) and (7.44)

imply that these constants of proportionality are given by

γnν ≡ γqqnν + γgqnν = γggnν + γqgnν , γsnν ≡ γqqsnν + γgqsnν = γggsnν + γqgsnν . (7.47)

These results can also be derived starting only with eq. (7.45), differentiating all

terms, and setting to zero the linear combinations of anomalous dimensions multiplying

OiAn (1/P2
⊥)OjnAs for each choice of i and j. The result in eq. (7.47) constrains the sum of

entries in the columns of γ̂νOn to be equal. The fact that only the combination (OqAn +OgAn )

appears also implies that γnν is the only combination of entries from γ̂νOn that we need,

with analogous results for the soft γ̂νOsn . The root of these results is that the rapidity

renormalization only depends on the presence of the octet color index A, and not on the

choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cutoffs in the neighboring soft and n-

collinear sectors for Oijns as expressed by eq. (7.45), we also have the additional relation

γqqnν + γgqnν = −γqqsnν − γgqsnν , or γnν = −γsnν . (7.48)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are

equal with opposite signs. For the anomalous dimensions for operators appearing in Oijn̄s
analogous results to eqs. (7.47) and (7.48) also hold, simply replacing n → n̄. Therefore

we also define

γn̄ν ≡ γqqn̄ν + γgqn̄ν = γggn̄ν + γqgn̄ν , γsn̄ν ≡ γqqsn̄ν + γgqsn̄ν = γggsn̄ν + γqgsn̄ν . (7.49)

There is also no overall µ dependence for the n-soft scattering operator

µ
d

dµ

∑
ij=q,g

Oijns = µ
d

dµ
(OqAn +OgAn )

1

P2
⊥

(OqnAs +OgnAs ) = 0 . (7.50)
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This relation is ensured by the fact that there is no µ dependence for the individual soft

and collinear sectors at this order,

µ
d

dµ
(OqAn +OgAn ) = 0 , µ

d

dµ
(OqnAs +OgnAs ) = 0 , (7.51)

which implies even simpler relations for the µ anomalous dimensions,

γnµ ≡ γqqnµ + γgqnµ = γggnµ + γqgnµ = 0 , γsnµ ≡ γqqsnµ + γgqsnµ = γggsnµ + γqgsnµ = 0 . (7.52)

Again we have analogous results with n→ n̄.

Next we consider the consistency equations for the scattering of two rapidity sectors

when there is another rapidity sector in between, namely n-n̄ scattering. In this case

multiple insertions of LII(0)
G can mix back into a single insertion through the intermediate

rapidity sector. At one-loop the graph built from iterations of Glauber potentials, Oiknsn̄O
kj
nsn̄

with one n-collinear and one n̄-collinear propagator, are again finite. However we also

have graphs with soft loops of gluons or quarks from the T-product of two operators,∑
k=q,g O

ik
nsO

jk
n̄s, that mix back into a single Oijnsn̄. These T-products are precisely the

graphs shown in figure 21c,d. Due to this mixing the consistency equation for n-n̄ scattering

takes place at the level of demanding that there is no ν dependence for the time evolution

operator induced by the LII(0)
G Lagrangian, rather than for the Lagrangian itself. At one-

loop we therefore have

ν
d

dν

∑
ij=q,g

(
Oijnsn̄(0) +

∑
kk′=q,g

iT

∫
d4x Oikns(x)Ojk

′

n̄s (0)

)
= 0 . (7.53)

Due to the previous result in eq. (7.45) there is no contribution from the individual op-

erators in the T-product, but when k = k′ the T-product itself can still mix into Oijnsn̄
through the anomalous dimensions γT ijsν . The operator Oijnsn̄ can also mix back into itself.

Since Oijnsn̄ = OiAn (1/P2
⊥)OABs (1/P2

⊥)OjAn̄ , and the anomalous dimensions for the collinear

operators are already constrained by eq. (7.47), this relation will provide a constraint on

the remaining coefficients in the soft anomalous dimension γ̂νOs . At one-loop only γdir
sν ,

γTqqsν , and γTggsν can possibly be nonzero, so eq. (7.53) gives the relation

γsν ≡ γdir
sν + γTqqsν + γTggsν = −γnν − γn̄ν . (7.54)

This result encodes a cancellation of rapidity cutoff dependence between the n-collinear,

n̄-collinear, and soft sectors.

For the µ anomalous dimension we also have

µ
d

dµ

∑
ij=q,g

(
Oijnsn̄(0) +

∑
kk′=q,g

iT

∫
d4x Oikns(x)Ojk

′

n̄s (0)

)
= 0 . (7.55)

Given eqs. (7.50) and (7.52) this implies that at one-loop

γsµ ≡ γdir
sµ + γTqqsµ + γTggsµ = 0 . (7.56)
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We will see in the next section that if we consider the virtual ν-anomalous dimensions

alone, then they depend on a logarithm of the IR regulator, ln(m2). This dependence

is canceled when we consider the full anomalous dimensions obtained by the sum of di-

vergences in virtual and real radiation graphs. Because of this cancellation, the relations

derived here in eqs. (7.48) and (7.54) also apply for the corresponding real radiation graphs.

7.2.3 One-loop virtual anomalous dimension results

Here we consider the one-loop calculation of the various virtual contributions to anomalous

dimensions discussed in section 7.2.1 with the goal of identifying the non-trivial terms and

cross-checking the various relations discussed in section 7.2.2. With external quarks the

results can be determined from the SCETII diagrams given in section 7.1, while our results

below with external gluons required additional calculations.

First consider the n-collinear sector with the bilinear quark and gluon operators OqAn
and OgAn . For OqAn mixing back into OqAn there are W Wilson line graphs and the vertex

graph (plus wavefunction renormalization), all of which can be read off from the results in

section 7.1 by stripping off the appropriate prefactor that is related to the other sectors.

We have

n n

n
+ n n

n
+ n n

n
n n + w.fn. renorm

= Snq αsCA
4π

[
w2 2h

(
ε, µ

2

m2

)
η

+ w2 2

ε
ln

(
ν

n̄ · p

)
+

3

2ε

]
= Snq δV qq

n , (7.57)

where the spinors are contained in the tree level matrix element Snq = ūnT
A /̄n

2un, and

h(ε, µ2/m2) was defined in eq. (7.20). Here and below we will drop the factors of w which

multiple the pure 1/ε poles. To obtain eq. (7.57) we have taken figure 21g,h,i, stripped off a

prefactor of i(v̄n̄T̄
A /n

2 vn̄)(8παs)/t, which includes the factors associated with the tree level

matrix element of the non n-collinear parts of the operator, namely (1/P2
⊥)OABs (1/P2

⊥)OBn̄ ,

as well as an overall i. Since we are interested in determining anomalous dimensions,

only the divergent terms that are needed to determine the δV qq
n counterterm are shown

in eq. (7.57) and the results below, and we now include factors of the rapidity coupling

w2 = w2(ν) (which is needed to determine the rapidity anomalous dimension, and then

can be set to 1). Just as discussed in the matching calculation, the collinear tadpole loop

graphs vanish due to their soft zero-bin subtractions

n n
n

n n

= 0 ,

n n
n

n n

= 0 . (7.58)

There is only one nonzero graph where the operator OgAn mixes into OqAn , namely the V-

graph. This result can be again found from the results in section 7.1, and determines the
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δV gq
n counterterm,

n n

nn

n

= Snq αsCA
4π

[
w2

2 g
(
ε, µ

2

−t
)

η
− w2 2

ε
ln

(
ν

n̄ · p

)
− 3

2ε

]
= Snq δV gq

n , (7.59)

where the function g(ε, µ2/(−t)) is given in eq. (7.16).

To determine the remaining n-collinear counterterms we need to consider graphs in-

volving external gluons, which require new calculations. Rather than giving a detailed

discussion of these diagrams we simply relegate non-trivial ingredients like the 3-gluon ver-

tex from Oggn to appendix B, and quote here the final results for the divergent terms (using

Feynman gauge):

n
n

n + n n
n

= Sng αsCA
4π

[
w2 2h

(
ε, µ

2

m2

)
η

+ w2 2

ε
ln

(
ν

n̄ · p

)
− 1

2ε

]
,

n nn
= Sng αsCA

4π

[
w2

2 g
(
ε, µ

2

−t
)

η
− w2 2

ε
ln

(
ν

n̄ · p

)
− 7

6ε

]
,

gluon w.fn. = Sng αs
4π

[
5

3ε
CA −

4

3ε
nfTF

]
, (7.60)

where Sng = ifABCgβγ⊥ n̄ · p εBβ εCγ is the tree level matrix element of OgAn . Just like in the

quark calculation, the collinear gluon tadpole graphs give zero due to their soft zero-bin

subtraction. There is also a graph with the four-gluon vertex which has a vanishing integral

even before the zero-bin subtraction. Thus we have

n n
n

n n

= Sng αsCA
4π

[
5

3ε
− 5

3ε

]
= 0 ,

n n

n n

= 0 . (7.61)

The remaining contributions determine the δV gg
n counterterm to be

δV gg
n =

αs
4π

[
2w2h

(
ε, µ

2

m2

)
+ 2w2g

(
ε, µ

2

−t
)

η
CA −

4

3ε
nfTF

]
. (7.62)

It is interesting to note that that the CA/ε terms cancel.

Finally, we consider the mixing of OqAn into OgAn . The relevant diagrams are

n

n

n

n

n
+

n

n

n

n

n
= Sng αsnfTF

4π

[
4

3ε

]
, (7.63)

where we have summed over all possible nf light flavors that can appear in the OqAn
operator. Again the collinear quark loop tadpole graph is exactly canceled by the soft

zero-bin subtraction,

n n
n

n n

= Sng αsnfTF
4π

[
− 4

3ε
+

4

3ε

]
= 0 . (7.64)
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Thus, the result in eq. (7.63) yields the counterterm for OqAn mixing into OgAn ,

δV qg
n =

αs
4π

[
4

3ε
nfTF

]
. (7.65)

At one-loop order the n-collinear rapidity anomalous dimension contributions are given

by γijnν = −(νd/dν)δV ij
n . Differentiating both the explicit ln ν dependence and the ν

dependence in the coupling w by using (νd/dν)w2 = −ηw2 (then setting the renormalized

w = 1), and expanding to O(ε0), we have

γqqnν = −αsCA
4π

[
− 2h(ε, µ2/m2) +

2

ε

]
=
αs(µ)CA

2π
ln

(
µ2

m2

)
, (7.66)

γgqnν = −αsCA
4π

[
− 2g(ε, µ2/(−t))− 2

ε

]
=
αs(µ)CA

2π
ln

(−t
µ2

)
,

γggnν = −αsCA
4π

[
− 2g(ε, µ2/(−t))− 2h(ε, µ2/m2)

]
=
αs(µ)CA

2π
ln

(−t
m2

)
,

γqgnν = 0 .

For the µ anomalous dimensions at one-loop we have γijnµ = −(µd/dµ)δV ij
n . Noting

that αs(µ)g(ε, µ2/(−t)) and αs(µ)h(ε, µ2/m2) are both µ-independent, and recalling that

(µd/dµ)αs(µ) = −2εαs(µ) +O(α2
s) we find

γqqnµ =
αs(µ)CA

2π

[
2 ln

(
ν

n̄ · p

)
+

3

2

]
, (7.67)

γgqnµ = −αs(µ)CA
2π

[
2 ln

(
ν

n̄ · p

)
+

3

2

]
,

γggnµ = −2αs(µ)nFTF
3π

,

γqgnµ =
2αs(µ)nFTF

3π
.

Note that these results satisfy the necessary condition for the paths in ν and µ space to be

independent [58], (νd/dν)γijnµ = (µd/dµ)γijnν . From these results we can immediately check

that we reproduce the first relation in each of eq. (7.47) and eq. (7.52), γqqnν+γgqnν = γggnν+γqgnν
and γqqnµ + γgqnµ = γggnµ + γqgnµ = 0. Thus there is no overall µ anomalous dimension for the

relevant combination of operators, (OqAn + OgAn ), as anticipated. It is interesting to note

that this occurs due to a cancellation of terms between the anomalous dimensions generated

by the two individual operators. We also obtain the relevant rapidity anomalous dimension

for (OqAn +OgAn ) which is

γnν =
αsCA

2π
ln

(−t
m2

)
. (7.68)

Again mixing plays a key role in obtaining this result. In particular, the graph that

contributes the ln(−t) in the anomalous dimension for OqAn is initiated by gluons, and

enters through γgqnν .

Next we turn to the soft anomalous dimensions. For the operators OqnAs and OgnAs the

contributing diagrams are very similar to our analysis of the n-collinear operators above,
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but there is not a one-to-one correspondence to the diagrams, and the soft calculation also

has contributions related to the running coupling that appears explicitly in OinAs . Due to

the similarities we do not bother to give a detailed discussion of the various diagrams. The

key difference is that for the soft graphs the rapidity regulator appears as |n̄·k−n·k|−η rather

than |n̄ · k|−η, which reverses the sign of the 1/η poles. For this reason, the final rapidity

anomalous dimension for the relevant combination of single color index soft operators,

(OqnAs +OgnAs ) has the opposite sign to the n-collinear case,

γsnν = γqqsnν + γgqsnν = γggsnν + γqgsnν = −αsCA
2π

ln

(−t
m2

)
. (7.69)

Together eq. (7.68) and eq. (7.69) satisfy the expected relation in eq. (7.48), that γsnν =

−γnν . Just like for the collinear operators there is no overall µ anomalous dimension for

(OqnAs +OgnAs ).

The final operator to consider is the two index soft operator OABs . The results needed

for the renormalization of this operator at one-loop can all be read off of those from

section 7.1. There are two types of contribution, the mixing of OABs back into OABs , and

contributions from products of the single index soft operators, OknAs Okn̄Bs mixing into OABs .

Considering OABs we have the flower graph and the counterterm from the αs prefactor

S
AB

+ Zαs -counterterm = −4δABCA α
2
sw

2 t

{
2

η
h(ε, µ2/m2)− 1

ε2
− 1

ε
ln

(
µ2

ν2

)}

− 2δABα2
s t

(
11CA

3ε
− 4nfTF

3ε

)
= δAB (8παs) t δVs , (7.70)

where h(ε, µ2/m2) was defined in eq. (7.20). To obtain eq. (7.70) we have taken the result

for figure 21c, and stripped off a prefactor of i(ūnT
A /̄n

2un)(v̄n̄T̄
B /n

2 vn̄)/t2. This prefactor

includes terms associated with the tree level matrix element of the non soft parts of the

operator, namely OAn (1/P2
⊥) on one side and (1/P2

⊥)OBn̄ on the other, as well as an overall

i. From the remaining terms we again show only the divergences in eq. (7.70), since only

the renormalization is being considered here. This result determines

δVs = −αs(µ)

4π
CAw

2

{
4

η
h(ε, µ2/m2)− 2

ε2
− 2

ε
ln

(
µ2

ν2

)}
− αs(µ)

4π

(
11CA

3ε
− 4nfTF

3ε

)
. (7.71)

The final contributions come from T-products of two soft operators OknAs Okn̄Bs for k = g, q,

which occurred in our one-loop matching calculation in figure 21c,d.

S

A

B

= +δABnfTF α
2
s t

(
− 8

3ε

)
= δAB (8παs) t δV

Tqq
s , (7.72)

S

A

B

= −4δABCAw
2α2

st

{
2

η
g(ε, µ2/(−t))+

1

ε2
+

1

ε
ln

(
µ2

ν2

)
− 11

6ε

}
=δAB(8παs)tδV

Tgg
s ,
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giving the results

δV Tqq
s =

αs(µ)

4π

(
− 4nfTF

3ε

)
, (7.73)

δV Tgg
s = −αs(µ)

4π
CAw

2

{
4

η
g(ε, µ2/(−t)) +

2

ε2
+

2

ε
ln

(
µ2

ν2

)
− 11

3ε

}
.

At one-loop order the soft rapidity anomalous dimension contributions are given by

γXsν = −(νd/dν)δV X
s . Differentiating both the explicit ln ν dependence and the ν depen-

dence in the coupling w by using (νd/dν)w2 = −ηw2 (then setting the renormalized w = 1),

and expanding to O(ε0), we have

γdir
sν =

αsCA
4π

[
− 4h(ε, µ2/m2) +

4

ε

]
= −αs(µ)CA

π
ln

(
µ2

m2

)
, (7.74)

γTqqsν = 0 ,

γTggsν =
αsCA

4π

[
− 4g(ε, µ2/(−t))− 4

ε

]
= −αs(µ)CA

π
ln

(−t
µ2

)
.

Thus for the relevant soft virtual contribution to the rapidity anomalous dimension, γsν =

γdir
sν + γTqqsν + γTggsν , we obtain

γsν = −αs(µ)CA
π

ln

(−t
m2

)
. (7.75)

Utilizing eq. (7.68), and noting that γn̄ν = γnµ, we see that γsν = −γnν − γn̄ν as expected.

For the µ anomalous dimensions at one-loop we have γXsµ = −(µd/dµ)δV X
s . Noting

that the combinations αs(µ)g(ε, µ2/(−t)) and αs(µ)h(ε, µ2/m2) are µ-independent, and

recalling that (µd/dµ)αs(µ) = −2εαs(µ) +O(α2
s) we find

γdir
sµ =

αs(µ)

2π

[
2CA ln

(
µ2

ν2

)
− 11CA

3
+

4nfTF
3

]
, (7.76)

γTqqsµ =
αs(µ)

2π

[
− 4nfTF

3

]
,

γTggsµ =
αs(µ)

2π

[
− 2CA ln

(
µ2

ν2

)
+

11CA
3

]
.

Thus for the only relevant combination of µ-anomalous dimensions we find γsµ = γdir
sµ +

γTqqsµ + γTggsµ = 0, so there is no µ-evolution for the SCETII soft operator as expected.

7.2.4 Solving the virtual rapidity RGE: reggeization

As we have seen in the matching calculation, the result for the one loop scattering amplitude

for collinear particles, involves a logarithm of the ratio s/(−t). To resum these logarithms

to higher orders in perturbation theory we can utilize the rapidity renormalization group

to encode the large logarithms in an evolution factor and ensure that all of the individual

factorized pieces of the amplitude are evaluated at the appropriate rapidity scales ν where

they do not have large logarithms. From eq. (7.23) we see that the soft piece of the
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factorized amplitude will not have large logarithms if we choose ν = µ =
√−t, while from

eq. (7.33) we see that the collinear parts of the factorized amplitude will not have large

logarithms if we choose ν =
√
s. In fixed order perturbation theory the large logarithms

arise because only one of these two choices for ν is possible.

Choosing ν = µ =
√−t, the soft piece of the amplitude does not have large logarithms,

and the large logs reside in the two collinear amplitudes. Therefore we must use the rapid-

ity renormalization group to connect these collinear amplitudes to the rapidity scale where

their logarithms are minimized. Since we are interested in the leading-logarithmic resum-

mation we only need as boundary conditions the matrix elements at tree level, and hence it

suffices to sum the logarithms in Oijnsn̄ (given in eq. (5.9)) with i, j summed over both quarks

and gluons. From the first result in eq. (7.46) we have the rapidity evolution equation

d

d log ν
(OqAn +OgAn ) = γnν(OqAn +OgAn ) , (7.77)

where the leading order anomalous dimension γnν = αs(µ)CA
2π ln(−t/m2) was computed in

eq. (7.68). Since this anomalous dimension is independent of ν it is trivial to integrate

eq. (7.77), and thus obtain the relation between the renormalized collinear operators

evaluated at two different rapidity scales ν:

(OqAn +OgAn )(ν1) =

(
ν0

ν1

)−γnν
(OqAn +OgAn )(ν0) . (7.78)

Taking ν1 =
√−t and ν0 =

√
s we can now connect the collinear operator to the scale

ν =
√
s where logarithms in its amplitude are minimized,

(OqAn +OgAn )(ν =
√
−t) =

(
s

−t

)−γnν/2
(OqAn +OgAn )(ν =

√
s) . (7.79)

For OjAn̄ we have the same rapidity anomalous dimension equation with γn̄ν = γnν , and

hence the same resummed result, namely

(OqAn̄ +OgAn̄ )(ν =
√
−t) =

(
s

−t

)−γnν/2
(OqAn̄ +OgAn̄ )(ν =

√
s) . (7.80)

Putting these results together the leading logs are summed in the operator Oijnsn̄ by,∑
i,j=q,g

Oijnsn̄(ν =
√
−t) (7.81)

= (OqAn +OgAn )(ν =
√
−t) 1

P2
⊥
OABs (ν =

√
−t) 1

P2
⊥

(OqBn̄ +OgBn̄ )(ν =
√
−t)

=

(
s

−t

)−γnν
(OqAn +OgAn )(ν =

√
s)

1

P2
⊥
OABs (ν =

√
−t) 1

P2
⊥

(OqBn̄ +OgBn̄ )(ν =
√
s) .

For the renormalized operators on the right-hand side there are no large logarithms in their

matrix elements, since they are evaluated at the scales ν which minimize their respective

rapidity logarithms. (If we had instead started the evolution at ν =
√
s then there would
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be no evolution for the collinear operators, and the soft operator’s evolution would generate

this same result.)

The factor of ( s
−t)
−γnν in eq. (7.81) is the standard Reggeized gluon result, where αg =

−γnν is the gluon Regge exponent. At the leading logarithmic resummed order we have this

same factor for quarks and gluon channels. At higher order there are distinctions between

the channels, see for example [55], in particular factors of ( st )
−γnν also appear. Since

( st )
−γnν = ( s

−t)
−γnνeiπγnµ the two factors differ only at next-to-leading logarithmic order.

7.3 One loop matching in SCETI

In this section we repeat the matching calculation carried out in section 7.1, but in the

theory SCETI. Although our focus in the majority of this paper is on SCETII, we mentioned

in section 5.1 that, prior to the BPS field redefinition, the Glauber Lagrangian for SCETI

is identical in form to that for SCETII, and only differs in the form of its 0-bin subtractions.

This section will serve to check at one-loop that we have the proper form of the Glauber

Lagrangian for SCETI, and highlight some differences between the results in various sectors

between SCETII and SCETI. The main distinction for SCETI is the presence of ultrasoft

modes, which live at a scale parametrically smaller than the soft, collinear, and Glauber

modes. Here Glauber exchange graphs also have 0-bin subtractions due to the ultrasoft

region, and there are additional subtractions for soft and collinear loop diagrams. Because

we are studying Glauber dependent processes in SCETI, we must simultaneously consider

soft and ultrasoft diagrams.

Just as in section 7.1 we consider quark-antiquark forward scattering of energetic

particles with the same external momenta. To regulate IR divergences in the full theory

in a manner that is suitable for SCETI, we take the external particles to be offshell10 with

p2
2 = p2

3 ≡ −p2 < 0 , p2
1 = p2

4 ≡ −p̄2 < 0 . (7.82)

For this SCETI matching calculation we no longer have a gluon mass in any diagrams.

The hierarchy of invariant mass scales here is s � −t ∼ p2 ∼ p̄2 � p2p̄2/s, where the

soft, Glauber, and collinear modes live at the intermediate scale, and only the ultrasoft

modes live at the small p2p̄2/s “see-saw scale”. When necessary we will also include the

η-regulator to handle rapidity divergences that are not regulated by the combination of

the offshellness and dimensional regularization. In SCETI the 0-bin subtractions for the

collinear, soft and Glauber one loop graphs were given above in eq. (5.51). We will again

make use of the Dirac and color decomposition Snn̄1,2,3,4 given in eq. (7.1).

The full theory diagrams for this matching calculation are the same ones shown in

figure 20, but now calculated with the offshellness IR regulator. Here we simply quote the

10Utilizing an off-shell regulator disallows the use of the BPS field redefinition.
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sum of all the diagrams

Full Theory = figures 20 + Zg c.t. (7.83)

=
iα2
s

t
Snn̄1

[
8iπ ln

( −st
p2p̄2

)
+ 4π2

]

+
iα2
s

t
Snn̄2

[
− 4 ln2

(−t
p2

)
− 4 ln2

(−t
p̄2

)
+ 6 ln

(−t
p2

)
+ 6 ln

(−t
p̄2

)
− 4− 8π2

3

]

+
iα2
s

t
Snn̄3

[
− 2 ln2

( −st
p2p̄2

)
+4 ln2

(−t
p̄2

)
+4 ln2

(−t
p̄2

)
+

22

3
ln

(
µ2

−t

)
+

170

9
+2π2

]

+
iα2
s

t
Snn̄4

[
− 8

3
ln

(
µ2

−t

)
− 40

9

]
.

Interesting differences from the case of the mass IR regulator in eq. (7.10) include the

presence of ln2(s) in the CAT
A⊗TA color structure, as well as a iπ ln(s) in the phase term.

For the SCETI calculation the EFT diagrams are shown in figure 23. These are the

same diagrams as we had for SCETII, except for the addition of graphs with an ultrasoft

gluon in figure 23p,q,r,s. Some of the diagrams from the SCETII calculation will take on

different values here, since they are now evaluated with the offshellness regulator and with

different 0-bin subtractions.

We start with the ultrasoft diagrams, shown in the last row of figure 23. Since we

are working in Feynman gauge, graphs where the ultrasoft gluon connects two n-collinear

lines, or two n̄-collinear lines are zero, and hence are not shown. For the sum of the four

displayed ultrasoft diagrams we have

n

n

n

n

u

+ n

n

n

n

u

+
n

n

n

n

u +
n

n

n

n

u (7.84)

=
4g4

t

∫
d−dk

k2+i0

[
2Snn̄1

(n · k+p̃3+i0)(n̄ · k−p̃4−i0)
− 2Snn̄1′

(n · k−p̃3−i0)(n̄ · k−p̃4−i0)

]
,

where

p̃3 = p2
3/n̄ · p3 = p2

2/n̄ · p2 = −p2/n̄ · p3 , p̃4 = p2
4/n · p4 = p2

1/n · p1 = −p̄2/n · p4 , (7.85)

and the additional color structure Snn̄1′ = −
(
ūn

/̄n
2T

ATBun
)(
v̄n̄

/n
2 T̄

BT̄Avn̄
)
, and satisfies

Snn̄1′ = Snn̄1 − Snn̄3 /2. Performing the integrals in eq. (7.84) we find

Ultrasoft Loops = figures 23p, q, r, s (7.86)

=
iα2
s

t
Snn̄1

[
8iπ

ε
+ 8iπ ln

(
µ2s

p2p̄2

)
+ 4π2

]
+
iα2
s

t
Snn̄3

[
− 4

ε2
− 4

ε
ln

(
µ2s

p2p̄2

)
− 2 ln2

(
µ2s

p2p̄2

)
− π2

]
.

Since the ultrasoft gluon is the mode with the lowest invariant mass, it has no 0-bin

subtractions. Note that the logs are minimized at the smallest see-saw scale, µ2 ∼ p2p̄2/s,

as expected.
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Figure 23. SCETI graphs for the matching calculation of quark-antiquark forward scattering

at one-loop. The first two graphs involve the Glauber potential. The next three graphs involve

soft gluon or soft quark loops. The second and third rows involve collinear loops with either the

quark-gluon Glauber scattering operators or the quark-quark Glauber scattering operator, plus

wavefunction renormalization. The last row shows the ultrasoft diagrams which contribute. Addi-

tional collinear graphs (which vanish) are shown in figure 22.

Next we consider the Glauber loop graphs in figure 23a,b. As usual these graphs require

the rapidity regulator |2kz|−ηνη to make them well defined. Just like for our analysis in

SCETII the Glauber cross-box in SCETI (figure 23b) has two poles in k0 on the same

side of the contour, and hence vanishes. Thus, once again only the Glauber box graph is

nonzero. It is given by

Glauber Loops =
n

n

n

n
G G

= (−4g4) Snn̄1 IGbox = (−4g4) Snn̄1

(−i
4π

)∫
d−d−2k⊥ (−iπ)

~k 2
⊥ (~k⊥+~q⊥)2

=
iα2
s

t
Snn̄1

[
− 8iπ

ε
− 8iπ ln

(
µ2

−t

)]
, (7.87)

where the Glauber box integral IGbox is the same as in eq. (5.31), and hence the only

difference is the absence of m in the ~k⊥ integral. Examining this integrand, we see that

the 1/ε in eq. (7.87) is an IR divergence from ~k⊥ → 0 and ~k⊥ → −~q⊥. However, in SCETI

we must also subtract the ultrasoft 0-bin subtractions for this Glauber loop to get the full

result, G = G̃−G(U). The subtractions occur from the regions kµ ∼ λ2 and kµ + qµ ∼ λ2,

giving two equal contributions, whose sum is
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G(U)(figure 23a) =
8g4

t
Snn̄1

∫
d−d−2k⊥ d

−k0 d−kz |kz|−2η (ν/2)2η

(~k 2
⊥)

(
k0−kz+p+

3 −
(
~q⊥
2

) 2

/p−2 +i0

)(
−k0−kz+p−4 −

(
~q⊥
2

) 2

/p+
1 +i0

)
=

8g4

t
Snn̄1

∫
d−d−2k⊥ d

−k0 d−kz |kz|−2η (ν/2)2η(
~k 2
⊥
)(
k0 − kz + p̃3 + i0

)(
− k0 − kz + p̃4 + i0

)
=
iα2
s

t
Snn̄1

[
− 8iπ

ε
+

8iπ

εuv

]
. (7.88)

This result involves the difference of a UV and IR 1/ε pole. Thus when we subtract this

0-bin contribution from the original integrand in eq. (7.87), G̃ − G(U), we find that the

proper interpretation of the 1/ε in the result for the SCETI Glauber box graph is as a UV

divergence.

Examining all the diagrams in figure 23 we see that only the ultrasoft and Glauber

loops have contributions with the Snn̄1 color structure. Adding the results for these diagrams

from eqs. (7.86) and (7.87) we have

Ultrasoft + Glauber Loops = figures 23a, p, q, r, s (7.89)

=
iα2
s

t
Snn̄1

[
+ 8iπ ln

( −st
p2p̄2

)
+ 4π2

]
+
iα2
s

t
Snn̄3

[
− 4

ε2
− 4

ε
ln

(
µ2s

p2p̄2

)
− 2 ln2

(
µ2s

p2p̄2

)
− π2

]
.

Note that the UV divergences have canceled out in the sum of the ultrasoft and Glauber

diagrams. iα2
sSnn̄1 /t

[
8iπ/ε − 8iπ/ε

]
= 0. Comparing the full Snn̄1 term here with that of

the full theory in eq. (7.83), we see that the full theory result is exactly reproduced in the

sum of the ultrasoft and Glauber graphs of SCETI. The presence of the ln(s) in this term

arises because of the presence of the ultrasoft see-saw scale p2p̄2/s.

Next we consider the SCETI graphs contributing to the CFT
A ⊗ T̄A color structure,

ie. terms involving Snn̄2 . This occurs only in the collinear loop graphs in figures 23i,j,n,o.

Just as in SCETII, the loops in these graphs involve only Lagrangian insertions and a single

collinear sector, and are the same result as in full QCD. With the offshellness regulator we

have

n

n

n

n

n

+
n

n

n

n
n

+

(
n

n
n + n

n
n

)
n

n

n

n (7.90)

=
iα2
s

t
Snn̄2

[
− 4 ln2

(
p2

−t

)
− 4 ln2

(
p̄2

−t

)
+ 6 ln

(
p2

−t

)
+ 6 ln

(
p̄2

−t

)
− 4− 8π2

3

]
+
iα2
s

t
Snn̄3

[
2 ln2

(
p2

−t

)
+ 2 ln2

(
p̄2

−t

)
+ 4 ln

(
p2

−t

)
+ 4 ln

(
p̄2

−t

)
− 2

ε
− 2 ln

(
µ2

−t

)
+

4π2

3

]
,

where the 1/ε is UV. Looking at only the Snn̄2 term, we see that the SCETI graphs reproduce

the full Snn̄2 piece of eq. (7.83). The situation is similar for the nfTFT
A⊗ T̄A term, ie. Snn̄4 .

The only SCETI graph that is proportional to nf is the soft graph in figure 23d which gives
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the same result as in SCETII, and as the quark vacuum polarization in the full theory,

n

n

n

n

S =
iα2
s

t
Snn̄4

[
− 8

3ε
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.91)

So the full theory Snn̄4 term in eq. (7.83) is also exactly reproduced.

This leaves the final color structure CAT
A ⊗ T̄A, ie. Snn̄3 . Just as for SCETII, this

color structure involves the most complicated calculations, and there is no one-to-one cor-

respondence between graphs in the full theory and in SCETI.

For this SCETI calculation we have contributions from figures 23i,n,p,q given above

in eqs. (7.89) and (7.90), as well as from figures 23c,e,f,g,h,k,l,m which we will consider

in turn. We will encounter rapidity divergences in these diagrams. Again we should

consider the additional collinear graphs shown in figures 22, but they vanish for the same

reasons discussed above in our SCETII calculation, since the results discussed there were

independent of the choice of IR regulator.

First consider the contribution from the T-product of two Glauber operators with a

soft gluon loop, Oqgns with Oqgn̄s, which is shown in figure 23c. For this soft eye diagram in

SCETI we find the same result as in SCETII,

n

n

n

n

S = − iα
2
s

t
Snn̄3

{
8

η
g(ε, µ2/(−t)) +

4

ε2
+

4

ε
ln

(
µ2

ν2

)
+ 4 ln

(
µ2

ν2

)
ln

(
µ2

−t

)

− 2 ln2

(
µ2

−t

)
+
π2

3
+ 2

(
− 11

3ε
− 11

3
ln
µ2

−t −
67

9

)}
, (7.92)

where g(ε, µ2/(−t)) was given above in eq. (7.16). To see why the result for this graph

in SCETI and SCETII are the same, we can look back at eq. (7.15) and notice that

the result was independent of m2. For the SCETI soft eye graph we drop m2 from the

start, but this does not change the result. Just as described in detail for SCETII, the

Glauber 0-bin for this SCETI soft loop again ensures that the sign ±i0 in the eikonal

propagators does not effect the result. Finally, we consider the two ultrasoft 0-bins for the

integrand in eq. (7.15) (with m2 = 0), first by considering kµ ∼ λ2, and then by switching

variables to k′µ = kµ + qµ and considering k′µ ∼ λ2. In both cases one of the relativistic

propagators becomes a q2 = t, so the ultrasoft 0-bin integral scales as a power suppressed

term λ8λ4/[t3λ4] ∼ λ2 and hence does not contribute.

The remaining soft loop graph is the flower graph in figure 23e. The naive integrand

for this soft loop graph is the same as that for SCETII in eq. (7.19) just setting m2 = 0.

However, now the soft loop integral also has an ultrasoft 0-bin subtraction, and since there

is no scale in the soft integral, this subtraction integral is identical to the original one.

Once again the choice of ±i0 in the eikonal propagators does not change the result for this

loop diagram or for the ultrasoft 0-bin subtraction, due to the Glauber 0-bin subtractions
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S(G) and S(G)(U). Thus in SCETI the soft flower graph vanishes

S(figure 23e) = S̃(figure 23e)− S(U)(figure 23e) (7.93)

=
4g4

t
Snn̄3 ιεµ2ε

[ ∫
d−dk

|kz|−η νη
[k2](n · k)(n̄ · k)

−
∫
d−dk

|kz|−η νη
[k2](n · k)(n̄ · k)

]
= 0 .

This occurs because the contribution of the soft flower graph is already contained in the

ultrasoft graphs in SCETI. The 1/η rapidity divergence that occurred in the soft flower

graph for SCETII is now regulated by the combination of the offshellness and dimensional

regularization in the SCETI ultrasoft graphs. We will see below that the collinear Wilson

line graphs in SCETI also do not depend on the rapidity regulator.

Since the bare soft operator OABs has a factor of αbare
s multiplying the fields, there is

also the Zα coupling counterterm contribution

soft αs counterterm =
iα2
s

t

(
− Snn̄3

22

3ε
+ Snn̄4

8

3ε

)
. (7.94)

The sum of the two nonzero soft loop graphs from eqs. (7.91) and (7.92), plus this αs
counterterm gives the total soft loop contribution

Soft Loops = figures 23c, d+ Zα c.t.

=
iα2
s

t
Snn̄3

{
− 8

η
g(ε, µ2/(−t))− 4

ε2
− 4

ε
ln

(
µ2

ν2

)
− 4 ln

(
µ2

ν2

)
ln

(
µ2

−t

)
+ 2 ln2

(
µ2

−t

)
− π2

3
+

22

3
ln

(
µ2

−t

)
+

134

9

}
+
iα2
s

t
Snn̄4

[
− 8

3
ln

(
µ2

−t

)
− 40

9

]
. (7.95)

The logarithms from the soft loops are minimized for µ ∼ ν ∼
√
t which is consistent with

the power counting. Note that unlike the situation in SCETII, here the 1/ε2 and ln(µ2/ν2)/ε

terms do not cancel, so there are both 1/η rapidity divergences and 1/ε UV divergences in

the soft contribution. Once again, the one-loop constants that appear in the soft graph are

identical to the the two-loop cusp anomalous dimension, just as in SCETII in eq. (7.24).

Finally we consider the remaining collinear diagrams, in figure 23f,g,h,k,l,m. The two

V-graphs in figure 23f,k give the same result for SCETI as they did in SCETII. Again this

occurs because the answer in eq. (7.26) is independent of the IR regulator m2. So setting

m2 = 0 from the start, the results for these two graphs is once again

n

n

n

n

nn +

n

n

n

n

nn (7.96)

=
iα2
s

t
Snn̄3

{
8

η
g(ε, µ2/t)− 4

ε
ln

(
ν2

s

)
− 4 ln

(
ν2

s

)
ln

(
µ2

−t

)
− 6

ε
− 6 ln

(
µ2

−t

)
− 12 +

8π2

3

}
.

Recall that the factors of ln(s) appear from adding the two diagrams and using ln(n̄ · p3) +

ln(n · p4) = ln s. The 0-bin subtraction contributions for the result in eq. (7.96) all vanish.
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The soft and Glauber 0-bin subtractions vanish for the same reason as in SCETII. And

the ultrasoft 0-bin subtractions from the scalings kµ ∼ λ2, kµ + qµ ∼ λ2, kµ + pµ3 ∼ λ2 all

lead to power suppressed integrals relative to the leading power ∼ λ−2 contribution.

Next we consider the SCETI collinear Wilson line graphs in figure 23h,i,m,n. The

result is similar to eq. (7.30) with modifications due to the change of IR regulator. The

resulting SCETI loop integral is the standard one-loop Wilson line integral, which is well

defined without the rapidity regulator, so

n

n

n

n

n

+
n

n

n

n

n

+
n

n

n

n
n

+
n

n

n

n
n

= iSnn̄3

2g4

t

[ ∫
d−dk

(ιεµ2ε) n̄ · (k + p3)

[k2](k + p3)2(n̄ · k)
+

∫
d−dk

(ιεµ2ε) n · (k + p4)

[k2](k + p4)2(n · k)

]
=
iα2
s

t
Snn̄3

{
8

ε2
+

4

ε
ln

(
µ2

p2

)
+

4

ε
ln

(
µ2

p̄2

)
+ 2 ln2

(
µ2

p2

)
+ 2 ln2

(
µ2

p̄2

)
+

8

ε
+ 4 ln

(
µ2

p2

)
+ 4 ln

(
µ2

p̄2

)
+ 16− 2π2

3

}
. (7.97)

In precisely the same manner as for the V-graphs the soft and Glauber 0-bin subtractions

all vanish for these collinear Wilson line graphs.

The sum of all the collinear graphs from eqs. (7.90), (7.96), (7.97) gives

Collinear Loops = figures 21f -n (7.98)

=
iα2
s

t
Snn̄2

[
− 4 ln2

(
p2

−t

)
− 4 ln2

(
p̄2

−t

)
+ 6 ln

(
p2

−t

)
+ 6 ln

(
p̄2

−t

)
− 4− 8π2

3

]
+
iα2
s

t
Snn̄3

[
8

η
g(ε, µ2/(−t))− 4

ε
ln

(
ν2

s

)
− 4 ln

(
ν2

s

)
ln

(
µ2

−t

)
+

8

ε2
+

4

ε
ln

(
µ2

p2

)
+

4

ε
ln

(
µ2

p̄2

)
+ 2 ln2

(
p2

−t

)
+ 2 ln2

(
p̄2

−t

)
+ 2 ln2

(
µ2

p2

)
+ 2 ln2

(
µ2

p̄2

)
+

10π2

3
+ 4

]
.

Again there are cancellations that have occurred for the sum of graphs, including all the

1/ε and single log terms. (This is also true separately for the n-collinear graphs and n̄-

collinear graphs.) Unlike in SCETII, the collinear graphs alone do have 1/ε2 and ln(· · · )/ε
divergences. The logarithms from these collinear loops are minimized with ν ∼ n̄ · p3 ∼
n · p4 ∼

√
s and µ ∼

√
t (taking the offshellness p2 ∼ t ∼ p̄2). Once again this is as

expected, and consistent with the power counting.

Finally, we can add up the ultrasoft, Glauber, soft, and collinear SCET loop graphs

from eqs. (7.89), (7.95), (7.98). In the sum of soft and collinear loops the g(ε, µ2/(−t))/η
rapidity divergences cancel, as expected. Furthermore, the 1/ε2 terms cancel in the sum of

ultrasoft plus soft plus collinear terms. Adding the terms and simplifying we find a large

amount of simplifications to the logarithmic terms, yielding

Total SCETI = figures 23a-s+ Zα c.t.

=
iα2
s

t
Snn̄1

[
+ 8iπ ln

( −st
p2p̄2

)
+ 4π2

]
(7.99)

+
iα2
s

t
Snn̄2

[
− 4 ln2

(
p2

−t

)
− 4 ln2

(
p̄2

−t

)
+ 6 ln

(
p2

−t

)
+ 6 ln

(
p̄2

−t

)
− 4− 8π2

3

]
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+
iα2
s

t
Snn̄3

[
− 2 ln2

( −st
p2p̄2

)
+ 4 ln2

(−t
p2

)
+ 4 ln2

(−t
p̄2

)
+

22

3
ln

(
µ2

−t

)
+

170

9
+ 2π2

]
+
iα2
s

t
Snn̄4

[
− 8

3
ln

(
µ2

−t

)
− 40

9

]
.

This total SCETI result agrees exactly with the full theory one-loop result in eq. (7.83)

for all color structures, all IR divergences, all logs, and all constant terms. Since all IR

divergences are correctly reproduced this provides a non-trivial test of this SCETI EFT

framework with Glaubers. Again, the ln µ2

−t dependence is proportional to the one-loop beta

function, and hence shows that the scale µ2 ' −t > 0 is the preferred value for the αs(µ)

in the tree level potential. Since s � −t ∼ p2 ∼ p̄2 there is one large double logarithm

in the SCETI result, ln2( −st
p2p̄2 ), which is generated by combining the hierarchy in rapidity

between the soft and collinear diagrams, and the hierarchy in invariant masses between the

collinear and ultrasoft diagrams in the following manner:

− 2 ln2

( −st
p2p̄2

)
+ 4 ln2

(−t
p2

)
+ 4 ln2

(−t
p̄2

)
=

[
− 4 ln

(
s

−t

)
ln

(−t
µ2

)
− 2 ln2

(
µ2

−t

)]
(7.100)

+

{
− 2 ln2

(
µ2s

p2p̄2

)
+ 2 ln2

(
µ2

p2

)
+ 2 ln2

(
µ2

p̄2

)
+ 2 ln2

(−t
p2

)
+ 2 ln2

(−t
p̄2

)}
.

Here the terms in square brackets come from the sum of the rapidity divergent collinear

V-graphs and soft eye graph, whereas the terms in curly brackets come from the ultrasoft

graphs and collinear Wilson line and vertex graphs. In the sum there is no dependence on

the renormalization scale µ.

Once again the fact that the SCETI result in eq. (7.99) agrees exactly with the full

theory result in eq. (7.83) implies that there are no hard matching corrections to the

Glauber operator at the scale µ2 ∼ s. In the SCETI calculation the ln(s) dependence arises

from combining collinear rapidity divergences that involve the large p−n and p+
n̄ collinear

momenta, just like in SCETII, as well as from the see-saw scale p2p̄2/s that appears in the

ultrasoft diagram result in eq. (7.86). Once again, this pattern continues at higher orders

in αs and there are no hard matching corrections for the Glauber Lagrangian at the scale

µ2 ' s. Therefore the tree level matching results given in section 5 yield the complete

Glauber Lagrangian also in SCETI.

8 BFKL and the rapidity renormalization group

8.1 Factorization with the Glauber Lagrangian

In this section we consider how to include the Glauber Lagrangian into a factorized analysis

for situations where the Glauber exchange is important and does not cancel out, such as

in, forward scattering, or to sum logs of x in the small x region. We will use the example

of forward scattering in order to have an explicit context for our calculations, though since

many of the results are valid for operators that appear in other processes, the results

presented here apply equally well there as well.

Since the Glauber Lagrangian couples together soft and collinear modes we can only

factorize the cross section if we expand the Glauber Lagrangian insertions in a Taylor series.
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To organize this factorization we expand the time evolution operator generated by the

Glauber Lagrangian. Written as a path integral the full time evolution operator in SCET is

U(a, b;T ) =

∫ [
Dφ
]

exp

[
i

∫ T

−T
d4x

(
L(0)
nn̄s(x) + LII(0)

G (x)
)]
, (8.1)

where L(0)
nn̄s = L(0)

n + L(0)
n̄ + L(0)

s is the non-Glauber parts of the SCET Lagrangian, a, b

indicate the field boundary conditions at time t = −T,+T , and [Dφ] is a short hand to

indicate the functional integral over all relevant SCET soft and collinear fields. We will

only be interested in the large T limit, T → ∞(1 − i0). All these Lagrangian terms are

leading order in the power counting. Using eq. (5.37) we can expand the Glauber part of

the time evolution operator as

T exp i

∫
d4xLII(0)

G (x) =

[
1 + i

∫
d4y1 LII(0)

G (y1) +
i2

2!
T

∫
d4y1 d

4y2 LII(0)
G (y1)LII(0)

G (y2) + . . .

]
= 1 + T

∞∑
k=1

∞∑
k′=1

[ k∏
i=1

∫
[dx±i ]

∫
d2q⊥i
q2
⊥i

[
OqAin (q⊥i) +OgAin (q⊥i)

]
(xi)

]

×
[ k′∏
i′=1

∫
[dx±i′ ]

∫
d2q⊥i′

q2
⊥i′

[
OqBi′n̄ (q⊥i′) +OgBi′n̄ (q⊥i′)

]
(xi′)

]
×OA1·Ak,B1···Bk′

s(k,k′) (q⊥1, . . . , q⊥k′)(x1, . . . , xk′)

≡ 1 +

∞∑
k=1

∞∑
k′=1

U(k,k′) , (8.2)

where here T is the time-ordering operation. For simplicity we have suppressed the presence

of the rapidity regulator for the Glauber exchanges. In the last equality of eq. (8.2) we have

organized the expansion according to the number of n-collinear operators k, and number of

n̄-collinear operators k′, rather than according to the number of insertions of the Glauber

Lagrangian. Any symmetry factors like 1/k! are included in the definition of O
A1·Ak,B1···Bk′
s(k,k′) .

For example, the first nontrivial term with k = k′ = 1 is

U(1,1) = i

∫
[dx±][dx′±]

∑
k±

∫
d2q⊥
q2
⊥

d2q′⊥
q′2⊥

[
OqAn,k−(q⊥) +OgAn,k−(q⊥)

]
(x̃)
[
OqBn̄,k+(q′⊥) +OgBn̄,k+(q′⊥)

]
(x̃′)

×OABs(1,1),−k±(q⊥, q
′
⊥)(x̃, x̃′) . (8.3)

Here the soft operator includes both a direct contribution from the two index soft oper-

ator OABs from a single insertion of LII(0)
G , as well as a T-product term from the product

OinAs Ojn̄Bs that comes from two insertions of LII(0)
G :

OABs(1,1),−k±(q⊥, q
′
⊥)(x̃, x̃′) (8.4)

=
1

(2π)2
δ2(x̃−x̃′)OABs,−k±(q⊥,−q′⊥)(x̃) + i T

∑
i,j=q,g

OinAs,−k−(q⊥)(x̃) Ojn̄Bs,−k+(−q′⊥)(x̃′) .

=
1

(2π)2
δ2(x̃−x̃′)OABs,−k±(q⊥,−q′⊥)(x̃) + i T eix̃

′·P̂ ∑
i,j=q,g

OinAs,−k−(q⊥)(x̃−x̃′) Ojn̄Bs,−k+(−q′⊥)(0)e−ix̃
′·P̂ .
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Here δ2(x̃ − x̃′) = 2δ(x+ − x′+)δ(x− − x′−). Note that we have flipped the q′⊥ sign in

OABs,−k±(q⊥,−q′⊥) when defining OABs(1,1)(q⊥, q
′
⊥)(x̃, x̃′) so that both q⊥ and q′⊥ are outgoing

from the soft operator. For the collinear operators in eq. (8.3) the O(λ) soft momenta k±

are residual to the respective large collinear momenta, but show us how these soft momenta

are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by

having a single U(1,1) on each side of the cut. Since here the amplitude is linear in the

number of Glauber exchanges we can refer to this as the linear approximation. We will see

that it is valid to obtain the leading logarithmic resummation from the BFKL equation.

We take color singlet initial states 〈pp′|, such as proton-proton or quarkonia-quarkonia

scattering, where one hadron is n-collinear and n̄-collinear. The corresponding non-trivial

transition matrix is

T(1,1) =
1

V4

∑
X

〈
pp′
∣∣U †(1,1)

∣∣X〉〈X∣∣U(1,1)

∣∣pp′〉 , (8.5)

where the volume factor V4 = (2π)4δ4(0) must be removed since each of these matrix

elements gives a momentum conserving δ-function. Since we are working order by order

in the Glauber Lagrangian these squared matrix elements can be factorized into soft and

collinear components. Below we will analyze these soft and collinear components to pull

out various δ-functions and make explicit the flow of momenta. Although this takes some

algebra the answer below in eq. (8.12) is quite intuitive.

To carry out the factorization we must consider the implications of the multipole

expansions of the various momentum scales appearing in 〈X|U(1,1)|pp′〉. This is enforced

by the presence of label and residual momenta. First consider the p−-momenta and x+

and x′+ dependence. For the n-collinear matrix element we have〈
Xn
∣∣OiAn,k−(q⊥)(x̃)

∣∣p〉 = δ
p−
`
,P−
Xn`

δ
p−
`s
,P−
Xn`s

−k−e
− i

2
x+(p−r −P

−
Xnr

)δ2(q⊥−p⊥Xn)Mn(q⊥, p
−
` , x

−),

〈
Xs
∣∣OABs(1,1),−k±(q⊥, q

′
⊥)(x̃, x̃′)

∣∣p′〉 =
δ2(x̃− x̃′)

(2π)2
δ−k−,P−

Xs`s

e
i
2
x+P−

XsrMs(q⊥, q
′
⊥, k

+, x−, . . .) + . . . ,〈
Xn̄
∣∣OjB

n̄,k+(q′⊥)(x̃′)
∣∣p′〉 = e

− i
2
x′+(p′−−P−

Xn̄
)
δ2(q′⊥ − p⊥Xn̄)Mn̄(q′⊥, p

′+
` , x

′−, . . .) , (8.6)

where the + . . . for the soft matrix element indicate the T-product term, which has the

same scaling. Here the subscript ` refers to O(λ0) label momenta, the subscript `s refers

to O(λ) sublabel momenta, and the subscript r refers to O(λ2) residual momenta. After

integrating over x+ and summing on k− we can combine the label and residual momenta

back into a full continuous delta function for the O(λ0) momenta of the n-collinear states,

δp−` ,P
−
Xn`

δp−`s ,P
−
Xn`s

+P−Xs`s
δ(p−r − P−Xnr − P−Xsr) = δ(p− − P−Xn) + O(λ), where the smaller

minus momenta drop out. For the soft matrix element we have only O(λ) and O(λ2)

momenta, and hence we can set x+ = 0 in the soft matrix element to neglect these smaller

components in the recombination and can drop the k− ∼ λ sublabel on the n-collinear

operator. Similarly, for the x′+ coordinate that connects the soft and n̄-collinear matrix

elements, it is the O(λ) momentum of the soft that dominates over the O(λ2) momentum

of the n̄-collinear, so we set x′+ = 0 in the n̄-collinear matrix element. If we repeat these

considerations for the p+-momenta, and x−, x′− dependencies, then we similarly find that

– 91 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
5

we can set x′− = 0 in the soft matrix element, x− = 0 in the n-collinear matrix element, and

can drop the k+ sublabel on the n̄-collinear operator. For the n-collinear and n̄-collinear

matrix elements this leaves∫
dx+

2

〈
Xn

∣∣OiAn (q⊥)

(
x+ n̄

2

)∣∣p〉 = δ(p− − p−Xn)δ2(q⊥ − p⊥Xn)Mn(p−, q⊥) ,∫
dx′−

2

〈
Xn̄

∣∣OjBn̄ (q′⊥)

(
x′−

n

2

)∣∣p′〉 = δ(p+ − p+
Xn̄

)δ2(q′⊥ − p⊥Xn̄)Mn̄(p+, q′⊥) . (8.7)

When we square these collinear matrix elements, two copies of the δ-functions with O(λ0)

momenta will appear, for example δ(p− − p−Xn)δ(p− − p−Xn) = δ(0)δ(p− − p−Xn). Therefore

one part of the volume factor, V1 = 2πδ(0), will be canceled in the squared of each collinear

matrix element, and we define

1

V1

∑
Xn

〈
p
∣∣∣ ∑
j=q,g

∫
dx′′+OjA′

n,k′−(q′′⊥)

(
x′′+

n̄

2

)∣∣∣Xn

〉〈
Xn

∣∣∣ ∑
i=q,g

∫
dx+OiAn,k−(q⊥)

(
x+ n̄

2

)∣∣∣p〉
= δAA

′
2 δ2(q⊥ − q′′⊥) ~q 2

⊥Cn(q⊥, p
−) ,

1

V1

∑
Xn̄

〈
p′
∣∣∣ ∑
j=q,g

∫
dx′′′−OjB′

n̄,k′+(q′′′⊥)

(
x′′′−

n

2

)∣∣∣Xn̄

〉〈
Xn̄

∣∣∣ ∑
i=q,g

∫
dx′−OiBn̄,k+(q′⊥)

(
x′−

n

2

)∣∣∣p′〉
= δBB

′
2 δ2(q′⊥ − q′′′⊥) ~q ′2⊥ Cn̄(q′⊥, p

′+) , (8.8)

where we’ve introduced the functions Cn and Cn̄ to encode the nontrivial dependencies. By

including the factors of ~q 2
⊥ and ~q ′2⊥ on the right-hand-side we are adopting a normalization

where the collinear functions Cn and Cn̄ include 1/~q 2
⊥ and 1/~q ′2⊥ Glauber exchange poten-

tials. We see that the matrix elements of the collinear operators gives only one combination

of the color indices.

For the soft matrix element 〈Xs| · · · |0〉 we are left with the operator

OABs(1,1)(q⊥, q
′
⊥) ≡ (2π)2

2

∑
k±

∫
dx′+dx−OABs(1,1),−k±(q⊥, q

′
⊥)

(
x−

n

2
, x′+

n̄

2

)
(8.9)

=
∑
k±

OABs,−k±(q⊥,−q′⊥)(x̃ = 0)

+
i

2
(2π)2

∑
k±

∫
dx′+dx− T

∑
i,j=q,g

OinA
s,−k−(q⊥)

(
n

2
x−
)
Ojn̄B
s,−k+(−q′⊥)

(
n̄

2
x′+
)
.

Note that the soft operators here are unrestricted in their k± momenta labels, which

can be absorbed back into the x− and x′+ coordinate dependence, for example∑
k− OinAs,−k−(q⊥)(x−n/2) = OinAs (q⊥)(x−n/2). The squared soft matrix element is then

given by

1

V2

(2π)4

q2
⊥q
′2
⊥q
′′2
⊥ q
′′′2
⊥

∑
Xs

〈
0
∣∣O†A′B′s(1,1) (q′′⊥, q

′′′
⊥ )
∣∣Xs

〉〈
Xs

∣∣OABs(1,1)(q⊥, q
′
⊥)
∣∣0〉≡ 1

q2
⊥q
′2
⊥
SAA

′BB′
G (q⊥, q

′
⊥, q

′′
⊥, q

′′′
⊥ ) ,

(8.10)
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where V2 = (2π)2δ2(0) includes the remaining part of the volume factor, and the prefactor

1/(q2
⊥q
′2
⊥) is pulled out for later convenience. The contraction of color indices and ⊥ δ-

functions from the collinear sectors in eq. (8.8) allows us to reduce the form of the required

soft function further to

SG(q⊥, q
′
⊥) =

∫
d2q′′⊥d

2q′′′⊥ δ
AA′δBB

′
δ2(q⊥−q′′⊥)δ2(q′⊥−q′′′⊥)SAA

′BB′
G (q⊥, q

′
⊥, q

′′
⊥, q

′′′
⊥)

=
(2π)4

V2

δAA
′
δBB

′

(~q 2
⊥ ~q
′ 2
⊥ )

∑
X

〈
0
∣∣OABs(1,1)(q⊥, q

′
⊥)
∣∣X〉〈X∣∣O†A′B′s(1,1) (q⊥, q

′
⊥)
∣∣0〉 . (8.11)

The δAA
′
δBB

′
contraction in eq. (8.11) implies that the combined Glauber exchanges on

either side of the cut are in a color singlet state. This linear approximation with one

(Glauber) gluon exchange on each side of the cut is sometimes referred to as the Low-

Nussinov pomeron. In some applications one may be required to consider a color-octet

configuration and/or a ⊥-momentum configuration with q⊥ 6= q′′⊥ and q′⊥ 6= q′′′⊥ , but we will

not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in

the Glauber exchange is given by

T(1,1) =

∫
d2q⊥d

2q′⊥ Cn(q⊥, p
−)SG(q⊥, q

′
⊥)Cn̄(q′⊥, p

′+) , (8.12)

Here Cn(q⊥, p
−) and Cn̄(q′⊥, p

′+) are given by the matrix elements in eq. (8.8). Finally, we

note that conjugation relation in eq. (6.8) implies

OABs(1,1)(q⊥, q
′
⊥) = OBAs(1,1)(q

′
⊥, q⊥)

∣∣∣
n↔n̄

. (8.13)

Since we integrate over soft ±-momenta to define SG(q⊥, q
′
⊥) it only has the trivial n · n̄ = 2

dependence on the collinear directions that show up in the soft operator Wilson lines, and

hence its definition implies that it is a symmetric function

SG(q⊥, q
′
⊥) = SG(q′⊥, q⊥) . (8.14)

Note that here we have not factorized in the scales t and Λ2
QCD, so the collinear and soft

functions contain both of these scales, with the dependence on t appearing through q⊥ or q′⊥.

The factorization in eq. (8.12) for T(1,1) separates the modes in rapidity, allowing for a re-

summation of ln(s/t)’s, but does not include a factorization from expanding in Λ2
QCD/t� 1.

The result in eq. (8.12) gives a factorized form for the forward scattering process at

lowest order in the Glauber exchange operators, but to all orders in the soft and collinear

Lagrangians, L(0)
S and L(0)

n,n̄. Therefore the functions Cn(q⊥), Cn̄(q′⊥), and SG(q⊥, q
′
⊥) each

have non-trivial series in αs. In the next two sections, sections 8.2 and 8.3 we will con-

sider the renormalization of the lowest order transition amplitude T(1,1), which at leading

logarithmic order simply involves the rapidity renormalization of these soft and collinear

functions, and only requires O(αs) real and virtual calculations. For the full scattering cor-

rection at this same order in αs, there is also a term with more insertions of the Glauber
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Figure 24. Pictoral representation of the soft-collinear factorization of the lowest order forward

scattering Glauber interaction. This factorization is linear in the Glauber exchange on each side of

the cut and leads to soft and collinear functions whose RGEs are given by the BFKL equation.

operators:

T(2,1) + T(1,2) =
1

V4

∑
X

[〈
pp′
∣∣U(2,2)

∣∣X〉〈X∣∣U †(1,1)

∣∣pp′〉+
〈
pp′
∣∣U(1,1)

∣∣X〉〈X∣∣U †(2,2)

∣∣pp′〉] .
(8.15)

At this order in αs we can either contract both the OiAn O
iB
n and OjAn̄ OjBn̄ in U(2,2) to

give a Glauber box diagram as in figure 12 or we could attach the two forward collinear

lines in each of OiAn O
i′B
n and OjAn̄ Oj

′B
n̄ to different partons in the incoming 〈pnp′n̄| state.

Without additional emissions neither of these contributions has a logarithmic rapidity

divergence, and hence it suffices to consider just T(1,1) when deriving the leading-logarithmic

renormalization equations.

Introducing the rapidity cutoff ν and renormalized collinear and soft functions we have

T(1,1) =

∫
d2q⊥d

2q′⊥ Cn(q⊥, p
−, ν)SG(q⊥, q

′
⊥, ν)Cn̄(q′⊥, p

′+, ν) . (8.16)

The physical picture for this factorization of the forward cross section is given in figure 24.

In the next section we derive the leading-logarithmic evolution equation for the soft function

SG(q⊥, q
′
⊥, ν) and show that it is the BFKL equation. Then in section 8.3 we will derive

the BFKL equations for Cn(q⊥, p
−, ν) and Cn̄(q′⊥, p

′+ν) by using renormalization group

consistency.

8.2 BFKL equation for the soft function

In evaluating matrix elements of the forward scattering operator, large logs arise due to the

tension between the collinear modes whose natural rapidity scale is νc ∼
√
ŝ and the soft

mode for which νs ∼
√−t. Thus the large logs cannot be minimized with a single choice

of the rapidity scale ν in the SCET matrix elements. Since the final result is independent

of which ν we choose, we will take ν = νc so that all the large logs reside in the soft part

of the matrix element. These logs are summed up by running the soft function in rapidity

space from νs to νc. For the calculations in this section we set the IR mass regulator m = 0
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since infrared divergences will cancel in the sum of real and virtual diagrams. We also set

d = 4 since only the rapidity divergences will be relevant for our RGE analysis.

We will be working in the limit where (−t) � Λ2
QCD so that we may treat Glauber

exchange perturbatively, but do not attempt to factorize these two infrared scales in the

EFT explicitly. To sum the logarithms at leading logarithmic order (LL) we only need to

consider the k = k′ = 1 term in eq. (8.2), and this Glauber operator effectively acts like an

external current. This term yielded the factorization formulae in eq. (8.16).

We label the soft piece of the forward scattering operator in terms of the incoming q⊥
and q′⊥ such that the lowest order Feynman rule is given by〈

0
∣∣OABs(1,1)(q⊥, q

′
⊥)
∣∣0〉 = −i 8παs(µ) δAB ~q 2

⊥ δ2(~q⊥ + ~q ′⊥) . (8.17)

Here OABs(1,1) was defined in eq. (8.9), and this lowest order contribution comes from

OABs (q⊥,−q′⊥) which was defined in eq. (5.38). Thus at the level of the amplitude squared

q

q'

= S
(0)
G (q⊥, q

′
⊥) ≡ (2π)4

V2

1

(~q 2
⊥ ~q
′ 2
⊥ )

〈
0
∣∣OABs(1,1)

∣∣0〉〈0∣∣OAB†s(1,1)

∣∣0〉 (8.18)

= (8παs)
2δAA (2π)2δ2(~q⊥+ ~q ′⊥).

Here the solid vertical line denotes the final state cut. The color factor δAA = N2
c − 1 and

the volume factor V2 = (2π)2δ2(0).

To renormalize the SG(q⊥, q
′
⊥) matrix element we must consider the O(αs) real and

virtual corrections. The real radiation correction is calculated using the one-soft gluon

Feynman rule of OABs (q⊥, q
′
⊥) (equivalent to the Lipatov vertex) which was given in fig-

ure 6, and implementing the prefactors in the definition in eq. (8.11). We let the outgoing

momentum of the soft gluon be k = −q − q′, and note that the multipole expansion for

collinear particles restricts the O(λ) momentum flow as discussed in section 5.2.2. This

gives n · q′ = −n · k and n̄ · q = −n̄ · k. Summing over polarizations in Feynman gauge, the

square of the one-gluon Feynman rule is

(2π)4

V2

1

(~q 2
⊥ ~q
′ 2
⊥ )

〈
0
∣∣OABs(1,1)

∣∣g(k)
〉〈
g(k)

∣∣OAB†s(1,1)

∣∣0〉 (8.19)

= − (8παs)
2(4παs)

(~q 2
⊥ ~q
′ 2
⊥ )

fABEfABE
(
qµ⊥−q

′µ
⊥ +n · q′ n̄

µ

2
−n̄ · q n

µ

2
+
nµ~q 2

⊥
n · q′ −

n̄µ~q ′ 2⊥
n̄ · q

)2

(2π)2δ2(~k⊥+~q⊥+~q ′⊥)

= − (8παs)
2(4παs)

(~q 2
⊥ ~q
′ 2
⊥ )

CAδ
AA

(
− n · q′ n̄ · q + (~q⊥ + ~q ′⊥)2 − 4~q ′ 2⊥ ~q 2

⊥
n · q′ n̄ · q

)
(2π)2δ2(~k⊥+~q⊥+~q ′⊥)

= (8παs)
2 (16παs)

(~q⊥ + ~q ′⊥)2
CAδ

AA(2π)2δ2(~k⊥+~q⊥+~q ′⊥) ,

where in the last equality we used the soft gluon equations of motion 0 = k2 = (q + q′)2 =

n · q′ n̄ · q − (~q⊥ + ~q ′⊥)2 to eliminate all but the last term in the large round brackets, and

to replace the product n · q′ n̄ · q. Note that this squared matrix element is independent of

the longitudinal gluon momentum. Since the surviving term in eq. (8.19) was generated by

the soft Wilson lines in the operator OABs (q⊥, q
′
⊥) we must also include appropriate factors
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of the rapidity regulator, giving w2|2kz|−ηνη. This factor regulates the soft gluons phase

space integral, which is∫
d−dk C(k) w2|2kz|−ηνη =

∫
d−d−1k

2Ek
w2|2kz|−ηνη

∣∣∣∣
E2
k

=~k 2

=

∫ ∞
0

d−k−

2k−
d−d−2k⊥ w

2|2kz|−ηνη
∣∣∣∣
k+=~k 2

⊥/k
−

=
w2

4π

∫
d−d−2k⊥

∫ ∞
0

dk−

(k−)1−η

∣∣(k−)2 − ~k 2
⊥
∣∣−ηνη

=
w2

4π

Γ( η
2
)Γ( 1−η

2
)νη

2η
√
π

∫
d−d−2k⊥ |~k⊥|−η . (8.20)

Here C(k) = 2πδ(k2)θ(k0) is the factor from the cut gluon. Putting these pieces together,

and keeping only the 1/η divergent contribution, for the real emission contribution to the

O(αs) correction to SG(q⊥, q
′
⊥) we have

q

q'

SS = (8παs)
24αsCAδ

AAw2Γ

(
η

2

)∫
d−

2
k⊥
~k 2
⊥

(2π)2δ2(~k⊥ + ~q⊥ + ~q ′⊥)

= (8παs)
24αsCAδ

AAw2Γ

(
η

2

)∫
d−

2
k⊥

(~k⊥ − ~q⊥)2
(2π)2δ2(~k⊥ + ~q ′⊥)

=
CAαs
π2

w2Γ

(
η

2

)∫
d2k⊥

(~k⊥ − ~q⊥)2
S

(0)
G (k⊥, q

′
⊥) , (8.21)

where in the second equality we took ~k⊥ → ~k⊥ − ~q⊥. In the last equality we used d−2k⊥ =

d2k⊥/(2π)2 and the tree level S
(0)
G from eq. (8.18).

For the soft virtual corrections we have contributions from the flower and eye

graphs, which we must incorporate at a level where we have not yet performed the k⊥
loop integration. To obtain results for

〈
0
∣∣OABs(1,1)(q⊥, q

′
⊥)
∣∣0〉 we strip off the factor of

(ūnT
A /̄n

2un)(v̄n̄T̄
B /n

2 vn̄)/(~q 2
⊥)2 from the soft loop integrands in section 7.1 in eqs. (7.15)

and (7.19) and include a (2π)2δ(~q⊥+~q ′⊥). Keeping only the rapidity divergent terms we have

S

q

q'

= 2g4 CA δ
AB

∫
d−4k w2|2kz|−η νη

[k2][(k + q)2]

{
4[k⊥ · (k⊥ + q⊥)]2

n̄ · k n · k

}
(2π)2δ(~q⊥+~q ′⊥) (8.22)

= −i 32π2α2
sCAδ

AB w
2Γ( η

2
)Γ( 1−η

2
)

2ηπ3/2

∫
d−2k⊥

[~k⊥ ·(~k⊥+~q⊥)]2

(2~k⊥ ·~q⊥+~q 2
⊥)

[
1

(~k⊥+~q⊥)2
− 1

~k 2
⊥

]
(2π)2δ(~q⊥+~q ′⊥)

= −i 32πα2
s CA δ

ABw2Γ

(
η

2

)∫
d−2k⊥

−[~k 2
⊥ − ~q 2

⊥/4]2

(~k⊥ + ~q⊥/2)2 (~k⊥ − ~q⊥/2)2
(2π)2δ(~q⊥+~q ′⊥)

= −i 16πα2
sCAδ

ABw2Γ

(
η

2

)∫
d−2k⊥

[
~q 2
⊥
~k 2
⊥

− (~q 2
⊥)2

2(~k⊥+~q⊥/2)2 (~k⊥−~q⊥/2)2

]
(2π)2δ(~q⊥+~q ′⊥).

To obtain the third equality we shifted ~k⊥ → ~k⊥− ~q⊥/2 and then simplified the integrand,

and to obtain the last line we partial fractioned the numerator and dropped integrands

that are odd in ~k⊥ and which vanish in dimensional regularization because they are power
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law divergent. Similarly, for the flower graph we have

Sq

q'

= −4g4~q 2
⊥ CAδ

AB

∫
d−4k

w2|2kz|−η νη
[k2](n · k)(n̄ · k)

(2π)2δ(~q⊥ + ~q ′⊥)

=
4i(4παs)

2~q 2
⊥

(4π)
CAδ

ABw
2Γ(η2 )Γ(1−η

2 )

2η
√
π

∫
d−2k⊥
~k 2
⊥

(2π)2δ(~q⊥ + ~q ′⊥)

= i 16πα2
s CAδ

ABw2Γ

(
η

2

)∫
d−2k⊥ ~q

2
⊥

~k 2
⊥

(2π)2δ(~q⊥ + ~q ′⊥) . (8.23)

Combining eqs. (8.22) and (8.23) we see that the self contraction of Wilson lines in the soft

flower graph cancels one of the terms in the eye-graph, leaving

S

q

q'

+

Sq

q'

= i 8πα2
sCAδ

ABw2Γ

(
η

2

)∫
d−2k⊥ (~q 2

⊥)2

(~k⊥+~q⊥/2)2 (~k⊥−~q⊥/2)2
(2π)2δ(~q⊥+~q ′⊥)

= i 8πα2
s CAδ

ABw2Γ

(
η

2

)∫
d−2k⊥ (~q 2

⊥)2

~k 2
⊥ (~k⊥−~q⊥)2

(2π)2δ(~q⊥+~q ′⊥). (8.24)

The contribution coming from the soft Wilson line and the time ordered product can be

combined to give the full O(αs) virtual correction to SG(q⊥, q
′
⊥)

2
Sq

q'

+ 2
S

q

q'

(8.25)

= −2(8παs)
2αs

~q 2
⊥

CAδ
ABw2Γ

(
η

2

)∫
d−2k⊥ (~q 2

⊥)2

~k 2
⊥ (~k⊥−~q⊥)2

(2π)2δ(~q⊥+~q ′⊥)

= −CAαs
2π2

w2Γ

(
η

2

)∫
d2k⊥

~q 2
⊥

~k 2
⊥(~k⊥ − ~q⊥)2

S
(0)
G (q⊥, q

′
⊥) ,

where in the last line we used d−2k⊥ = d2k⊥/(2π)2 and the tree level S
(0)
G from eq. (8.18).

The factors of 2 next to the graphs appear because we get the same contribution when the

virtual loop appears on either side of the cut.

The results up to O(αs) from eqs. (8.18), (8.21), (8.25) can be summarized as yielding

the O(αs) rapidity divergent correction to the bare soft function,

Sbare
G (q⊥, q

′
⊥) = S

(0)
G (q⊥, q

′
⊥) +

αsCA
π2

w2Γ

(
η

2

)∫
d2k⊥

(~k⊥ − ~q⊥)2

[
S

(0)
G (k⊥, q

′
⊥)− ~q 2

⊥
2~k 2
⊥
S

(0)
G (q⊥, q

′
⊥)

]
.

(8.26)
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The rapidity divergence in the soft function is renormalized by a standard SCET soft

function counterterm ZSG(q⊥, q
′
⊥) through the convolution

SG(~q⊥, ~q
′
⊥, ν) =

∫
d2k⊥ ZSG(q⊥, k⊥) Sbare

G (k⊥, q
′
⊥) . (8.27)

To cancel the 1/η divergence we require

ZSG(q⊥, k⊥) = δ2(~q⊥−~k⊥)− 2CAαs(µ)w2(ν)

π2 η

[
1

(~k⊥− ~q⊥)2
−δ2(~q⊥−~k⊥)

∫
d2k′⊥ ~q

2
⊥

2~k ′2⊥ (~k ′⊥− ~q⊥)2

]
. (8.28)

The rapidity renormalization group (RRG) equation then follows from the ν-independence

of the bare soft function,

0 = ν
d

dν
Sbare
G (q⊥, q

′
⊥) = ν

d

dν

∫
d2k⊥ Z

−1
SG

(q⊥, k⊥)SG(k⊥, q
′
⊥, ν) . (8.29)

Writing out the derivatives of the two terms and inverting, we find that the renormalized

soft function obeys the RGE equation

ν
d

dν
SG(q⊥, q

′
⊥, ν) =

∫
d2k⊥ γSG(q⊥, k⊥) SG(k⊥, q

′
⊥, ν) , (8.30)

where the anomalous dimension is given by

γSG(q⊥, q
′
⊥) = −

∫
d2k⊥ZSG(q⊥, k⊥) ν

d

dν
Z−1
SG

(k⊥, q
′
⊥) . (8.31)

Inserting the one-loop result from eq. (8.28) and using (νd/dν)w2(ν) = −η w2(ν) then

sending w2(ν)→ 1 this gives

γSG(q⊥, q
′
⊥) =

2CAαs(µ)

π2

[
1

(~q⊥ − ~q ′⊥)2
− δ2(~q⊥ − ~q ′⊥)

∫
d2k⊥

~q 2
⊥

2~k 2
⊥(~k⊥ − ~q⊥)2

]
. (8.32)

Note that this anomalous dimension is not just a function of the difference q⊥ − q′⊥, but it

is easy to see from eq. (8.32) that it is symmetric,

γSG(q⊥, q
′
⊥) = γSG(q′⊥, q⊥) . (8.33)

The anomalous dimension γSG yields an RGE for SG(q⊥, q
′
⊥, ν) which is precisely the

leading logarithmic BFKL equation,

ν
d

dν
SG(q⊥, q

′
⊥, ν) =

2CAαs(µ)

π2

∫
d2k⊥

[
SG(k⊥, q

′
⊥, ν)

(~k⊥ − ~q⊥)2
− ~q 2

⊥ SG(q⊥, q
′
⊥, ν)

2~k2
⊥(~k⊥ − ~q⊥)2

]
. (8.34)

The BFKL equation is often [106–108] written in terms of the derivative of a rapidity,

Y = ln(ν2/µ2) ∼ ln s. The fact that ∂/∂Y = (1/2)νd/dν explains our factor of 2 in the

prefactor on the right-hand side of eq. (8.34). Note that in our SCET calculation, the

fact that eq. (8.34) is obtained for the all orders soft function SG (rather than just the

one-loop soft function) follows immediately from the structure of the effective field theory
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operators and the multiplicative form of the rapidity renormalization in eq. (8.27). In

classic derivations of the BFKL equation, this step is often quite involved.

A derivation of the BFKL equation from an SCET based operator construction

with Glaubers was considered earlier by Fleming in ref. [44]. Although the idea

of carrying out rapidity renormalization of a squared matrix element of soft fields

is common between our two calculations, there are also a few differences, both on

the conceptual and calculation sides. The scattering operator considered in [44] is

Onn̄G = (χ̄n̄S
†
n̄T

A /n
2Sn̄χn̄) 1

P2
⊥

(χ̄nS
†
nT a

/̄n
2Snχn), which differs from our Oqqnsn̄. In particular,

unlike Oqqnsn̄, the operator Onn̄G is not soft gauge invariant in SCETII due to the presence

of the 1
P2
⊥

, which does not allow the soft gauge transformation factors from the two sides

to cancel. This distinction also causes differences for the calculations. In the soft part

of our Regge calculation the t-dependence is induced by the time ordered product of two

collinear-soft scattering operators, through the soft eye diagram in figure 21c, whereas

Oqqnsn̄ contributes the additional flower diagram. In [44] the soft part of the Regge result

calculated in Feynman gauge comes solely from Onn̄G (the collinear calculations, which

require both quark and gluon operators, were not considered there). For the BFKL

calculation, ref. [44] uses a rapidity renormalization equation analogous to our eq. (8.27),

but with objects depending on the difference of ⊥-momenta rather than individually on

two ⊥-momenta (the soft operator in our eq. (8.11) was not constructed in [44]). Our final

result for the soft function’s anomalous dimension and the kernel in the BFKL equation,

eqs. (8.32) and (8.34), also differ from [44] by a factor of two.

It would be interesting to extend the calculation of the soft functions rapidity anoma-

lous dimension beyond the leading logarithmic level to confirm the expectation that it will

reproduce at the next order the next-to-leading-logarithmic BFKL equation. At next-to-

next-to-leading logarithmic order it is known that the double box diagram [15] breaks the

expected form for the Regge factorization of the virtual amplitude [53, 54]. This contribu-

tion is precisely the 3 Glauber exchange double box graph in our language.

8.3 BFKL equations for the collinear functions via consistency

At leading logarithmic order the ν dependence in the soft and collinear functions of the

transition matrix T(1,1) must cancel, so

ν
d

dν

∫
d2q⊥d

2q′⊥ Cn(q⊥, p
−, ν)SG(q⊥, q

′
⊥, ν)Cn̄(q′⊥, p

′+, ν) = 0 . (8.35)

This result suffices to derive the LL RGE equation for Cn and Cn̄, which will also be given

by BFKL equations. Generically, the form of the SCET matrix elements implies that we

can have

ν
d

dν
Cn(q⊥, p

−, ν) =

∫
d2k⊥ γC(q⊥, k⊥) Cn(k⊥, p

−, ν) , (8.36)

ν
d

dν
Cn̄(q⊥, p

′+, ν) =

∫
d2k⊥ γC(q⊥, k⊥) Cn̄(k⊥, p

′+, ν) .

Note that the same anomalous dimension γC(q⊥, k⊥) appears for both collinear functions.

This follows from the fact that Cn ↔ Cn̄ if we take n ↔ n̄, and that the anomalous
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dimensions cannot involve convolutions in the large conserved collinear momenta, and hence

are independent of n and n̄. To exploit eq. (8.35) it is useful to write the RGE for the soft

function in a symmetric form. As noted in section 8.2, both SG and γSG are symmetric in

their two arguments, so the BFKL equation for the soft function can be written as

ν
d

dν
SG(q⊥, q

′
⊥, ν) =

1

2
ν
d

dν
SG(q⊥, q

′
⊥, ν) +

1

2
ν
d

dν
SG(q′⊥, q⊥, ν) (8.37)

=
1

2

∫
d2k⊥

[
γSG(q⊥, k⊥)SG(k⊥, q

′
⊥, ν) + SG(q⊥, k⊥, ν)γSG(k⊥, q

′
⊥)
]
.

Plugging eqs. (8.36) and (8.37) into eq. (8.35) we then have

0 =

∫
d2q⊥d

2q′⊥d
2k⊥

[
Cn(k⊥, p

−, ν)γC(q⊥, k⊥)SG(q⊥, q
′
⊥, ν)Cn̄(q′⊥, p

′+, ν) (8.38)

+ Cn(q⊥, p
−, ν)SG(q⊥, q

′
⊥, ν)γC(q′⊥, k⊥)Cn̄(k⊥, p

′+, ν)

+
1

2
Cn(q⊥, p

−, ν)γSG(q⊥, k⊥)SG(k⊥, q
′
⊥, ν)Cn̄(q′⊥, p

′+, ν)

+
1

2
Cn(q⊥, p

−, ν)SG(q⊥, k⊥, ν)γSG(k⊥, q
′
⊥)Cn̄(q′⊥, p

′+, ν)

]
.

Swapping the integration variables k⊥ ↔ q⊥ in the third line, and k⊥ ↔ q′⊥ in the fourth

line, we see that this equation can only be satisfied for arbitrary Cn, SG, and Cn̄ functions

if γC(q⊥, k⊥) = −1
2γSG(k⊥, q⊥) and γC(q′⊥, k⊥) = −1

2γSG(q′⊥, k⊥), which implies that γC is

also symmetric in its two arguments and given by

γC(q⊥, q
′
⊥) = −1

2
γSG(q⊥, q

′
⊥) . (8.39)

Therefore the RGE equations for Cn and Cn̄ are also given by a BFKL equation. Writing

this out explicitly we have

ν
d

dν
Cn(q⊥, p

−, ν) = −CAαs
π2

∫
d2k⊥

[
Cn(k⊥, p

−, ν)

(~k⊥ − ~q⊥)2
− ~q 2

⊥ Cn(q⊥, p
−, ν)

2~k2
⊥(~k⊥ − ~q⊥)2

]
, (8.40)

and we will also have the same BFKL equation for Cn̄(q⊥, p
′+, ν). Note that there is a

factor of (−1/2) for these BFKL equations for the collinear functions as compared to the

soft function in eq. (8.34). The sign comes from the fact that the collinear functions run in

the opposite direction in rapidity space, from ν ' p− =
√
s down to ν '

√
t, and the 1/2

comes from the fact that two collinear functions must balance against a single soft function.

Again both virtual and real collinear diagrams contribute if we compute the diagrams

needed to directly determine these collinear RGE equations. The direct computation for

the virtual contributions was carried out in section 7.2 and agrees with the factor of (−1/2)

that we determined here by the renormalization group consistency argument.

9 Glauber exponentiation and (non-)eikonalization

Below in section 9.1 we carry out the all order resummation of Glauber boxes in for-

ward scattering, demonstrating that the rapidity regulator yields an eikonal phase. In
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section 9.2 we derive a spacetime picture along with explicit rules for when graphs with

multiple Glauber exchange vanish, and determine general rules for when the eikonal approx-

imation can and cannot be used. A precise connection between the dynamics of Glauber

exchange and the semi-classical and shock wave interpretations of this scattering are made

in section 9.3.

9.1 Glauber exponentiation for boxes with rapidity regulator

In section 5.2.1 we showed how the rapidity regulator leads to a well defined integral for

the one-loop box and cross-box graphs, with the latter vanishing. In this section we will

sum up all the Glauber exchange box diagrams with the rapidity regulator, and show that

the eikonal phase is correctly reproduced. The connection of this sum of diagrams to the

classical coherent state generated by each of the collinear partons is explored further in

section 9.3. In the abelian limit soft contributions vanish and the phase can be reproduced

at the integrand level, as demonstrated explicitly in appendix C.1.

We begin by noting that the argument given in section 5.2.1 for the vanishing of

the one-loop cross box holds for all non-ladder type topologies. Rapidity divergences are

regulated by factors |2kz1|−η · · · |2kzN |−η, so we can consider the k0
i integrals to be done

by contours without concern that the remaining integral might be unregulated. For any

diagram with one or more crossed Glauber exchange lines there is one or more k0
i integrals

for which the poles are all on the same side of the real axis (and converge at ∞). Thus,

all diagrams with crossed Glauber rungs vanish with our rapidity regulator, and we only

need to consider the sum of the ladder graphs.

To show exponentiation we will manipulate an N -Glauber exchange diagram into the

product of single exchanges with a factor of 1/N !. The product form arises when we

transform from q⊥ to the impact parameter space b⊥. In impact parameter space we will

see that the amplitude from iterated Glauber exchange is simply determined by a phase,

given by the Fourier transform of the 1/q2
⊥ potential between particles 1 and 2:

φ(b⊥) = −TA
1 ⊗TA

2 g
2(µ)

∫
d−d−2q⊥ (ιεµ2ε)

~q 2
⊥

ei~q⊥·
~b⊥ (9.1)

= −TA
1 ⊗TA

2 g
2(µ)

Γ(−ε)
4π

(
µ|~b⊥|eγE

2

)2ε

.

The result is a matrix in the color space with TA
1 and TA

2 being the color matrix generators

that commute with each other, and act on particle 1 and 2 respectively. This color matrix

notation is by now quite standard, see appendix A of [109] for an introduction to this

notation. Recall that d = 4 − 2ε and that ιε = eεγE/(4π)ε is our notation for the factor

that enters with each µ2ε when the coupling is in the MS scheme. The Γ(−ε) infrared

divergence will be discussed further at the end of this section.

The exponentiation results derived below hold equally well when iterating Glauber

exchange potentials between quark-quark, quark-antiquark, quark-gluon, and gluon-gluon

channels, and for cases where the scattering particles are n-n̄, n-s, or n̄-s. To be definite

we consider quark-antiquark n-n̄ scattering, where

TA
1 ⊗TA

2 = TA ⊗ T̄A . (9.2)
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For convenience we define the Fourier transform operation as the application of the inte-

gral:

=⇒
F.T.⊥

=

∫
d−d−2q⊥ e

i~q⊥·~b⊥ . (9.3)

The Fourier transform of one Glauber exchange result is then given in terms of φ(b⊥) by

n

n

n

n

q

p

p

p

p

=
−2ig2

~q 2
⊥

[
ūn
/̄n

2
TAun

][
v̄n̄
/n

2
T̄Avn̄

]
=⇒

F.T.⊥
i φ(b⊥) 2Snn̄ , (9.4)

where the spinor factor is

Snn̄ =

[
ūn
/̄n

2
un

][
v̄n̄
/n

2
vn̄

]
, (9.5)

and the 2 in eq. (9.4) comes from n · n̄ = 2, which is the factor needed to make Snn̄ RPI-III

invariant. In eq. (9.4) the color matrix inside φ(b⊥) operates on this spinor product. In

general we will let

(TA1 · · ·TAN )⊗ (T̄A1 · · · T̄AN )Snn̄ =

[
ūn
/̄n

2
TA1 · · ·TANun

][
v̄n̄
/n

2
T̄A1 · · · T̄AN vn̄

]
≡ Snn̄(N) ,

(9.6)

which is the color structure that appears from N Glauber rungs. We also define the

product rule for the matrix multiplication in φN (b⊥) via (TA ⊗ T̄A)NSnn̄ = Snn̄(N). These

same definitions apply equally well for a general choice of scattering particles in different

color representations, using (TA
1 ⊗TA

2 )N times a generic Snn̄.

The loop integrals are carried out by doing the energy integrals by contours, and then

treating the kz integrals in Fourier space. Therefore we need to transform the η regulator to

Fourier space, as well as the kz dependent propagators. To do this we can use the transforms∫ +∞

−∞
d−kz eixk

z |2kz|−η = κη
η

2
|x|−1+η ,

∫ ∞
−∞
dx e−ixk

z
κη

η

2
|x|−1+η = |2kz|−η , (9.7)∫ +∞

−∞

d−kz e−iαk
z

kz + ∆ + i0
= −i θ(α)eiα∆ ,

∫ ∞
−∞
dα eiαk

z
(−i)θ(α)eiα∆ =

1

kz + ∆ + i0
,

where

κη = 2−η Γ(1− η)
sin(πη/2)

(πη/2)
= 1 +O(η) . (9.8)

Another integral that will be relevant is the Fourier transform of (N + 1) Glauber rungs,∫
d−d−2q⊥ e

i~q⊥·~b⊥
∫

d−d−2k1⊥ · · · d−d−2kN⊥
(
ιεµ2ε

)N+1(
~k1⊥ + ~q⊥

)2(~k2⊥ − ~k1⊥
)2 · · · (~kN⊥ − ~k(N−1)⊥

)2 ~k 2
N⊥

(9.9)

=

∫
d−d−2q⊥ e

i~q⊥·~b⊥
∫ [ N∏

i=1

d−d−2ki⊥

]∫ [N+1∏
j=1

d−d−2rj⊥
Γ(−ε)

4π

(
µ|rj⊥|eγE

2

)2ε]
× e−i(~q⊥+~k1⊥)·~r1⊥e−i(

~k2⊥−k1⊥)·~r2⊥ · · · e−i(~kN⊥−k(N−1)⊥)·~rN⊥ei
~kN⊥·~r(N+1)⊥

=

∫ [N+1∏
j=1

d−d−2rj⊥
Γ(−ε)

4π

(
µ|rj⊥|eγE

2

)2ε]
δd−2(~r1⊥ −~b⊥

)
δd−2(~r2⊥ − ~r1⊥

)
· · · δd−2(~r(N+1)⊥ − ~rN⊥

)
=

[
Γ(−ε)

4π

(
µ|~b⊥|eγE

2

)2ε]N+1

.
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First consider redoing the box graph considered in section 5.2.1 using this Fourier

approach. After performing the energy integral by contours, defining 2∆ = p+
3 + p−4 −

(~k⊥ + ~p3⊥)2/p−3 − (~k⊥ − ~p4⊥)2/p+
4 , and then using eq. (9.7), we have

n

n

n

n

qk

pk 

pk 

k = −4ig4(TATB ⊗ T̄AT̄B)Snn̄ ∫ d−d−2k1⊥ d
−kz1 (|2kz1 |−η|2kz1 |−ην2ηι2εµ4ε)

~k 2
1⊥(~k1⊥ + ~q⊥)2 2(−kz1 + ∆ + i0)

= −2g4Snn̄(2) I
(1)
⊥ (q⊥)

(
κη
η

2

)2∫ ∞
−∞
d−kz1 dx dy dα θ(α)|xy|−1+η eiα(kz1+∆)+ikz1(x−y)

= −2g4Snn̄(2) I
(1)
⊥ (q⊥)

(
κη
η

2

)2∫ ∞
−∞
dx dy θ(y − x) |xy|−1+η ei∆(y−x)

= 2Snn̄(2) i
2g4I

(1)
⊥ (q⊥)

1

2!

[
1 +O(η)

]
, (9.10)

where we defined

I
(1)
⊥ (q⊥) =

∫
d−d−2k1⊥ (ιεµ2ε)2

~k2
1⊥(~k1⊥ + ~q⊥)2

. (9.11)

To get to the third equality in eq. (9.10) we performed the dkz1 to get a δ-function, and then

did the dα integral. For the last equality in eq. (9.10) we note that due to the presence of

the η2 in the prefactor, only the ultraviolet 1/η2 part of the integrals from x→ 0 and y → 0

contributes at leading order in the η expansion, and therefore the result is independent of

∆ at this order. The integral can be done directly, or we can note that the limit x, y → 0

allows us to symmetrize the theta function as, θ(y−x)→ [θ(y−x)+θ(x−y)]/(2!) = 1/(2!).

Performing the ⊥ Fourier transform of the integral in eq. (9.11) using eq. (9.9) we find

n

n

n

n

qk

pk 

pk 

k =⇒
F.T.⊥

1

2!

[
iφ(b⊥)

]2
2Snn̄ . (9.12)

As anticipated, comparing eq. (9.12) to eq. (9.4) we see that this is the second term in the

expansion of an exponential.

Next consider the double box diagram. Again performing the contour integrals over

the energies, and then using eq. (9.7) we find

n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k = −8ig6Snn̄(3) I
(2)(q⊥)

∫
d−kz1 d

−kz2 |2kz1 |−η |2kz1 − 2kz2 |−η |2kz2 |−ην3η

4(−kz1 + ∆1 + i0)(−kz2 + ∆2 + i0)

= 2ig6Snn̄(3) I
(2)
⊥ (q⊥)

∫ ∞
−∞
d−kz1 d

−kz2 dx dy dz dα1 dα2 θ(α1)θ(α2)

(
κη
η

2

)3

|xyz|−1+η

× eikz1xei(kz2−kz1)ye−ik
z
2zeiα1(kz1+∆1)eiα2(kz2+∆2)

= 2ig6Snn̄(3) I
(2)
⊥ (q⊥)

(
κη
η

2

)3∫ ∞
−∞
dx dy dz θ(y − x)θ(z − y) |xyz|−1+η ei(y−x)∆1ei(z−y)∆2
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= −2Snn̄(3) i
3g6 I

(2)
⊥ (q⊥)

1

3!

[
1 +O(η)

]
, (9.13)

where to obtain the third equality we performed the kz1 and kz2 integrals to get δ(x −
y + α1)δ(y − z + α2) and then performed the α1 and α2 integrals. Again due to the η3

term in the prefactor only the leading ultraviolet divergent contribution from the dxdydz

integral contributes, which comes from the limit x, y, z → 0 where the ∆1 = ∆1(k1⊥) and

∆2 = ∆2(k2⊥) dependence drops out. In this limit we can either do the integral directly

to give the 1/3!, or note that we can symmetrize as θ(z > y > x)→ [θ(z > y > x) + θ(y >

z > x) + θ(z > x > y) + θ(x > z > y) + θ(x > y > z) + θ(y > x > z)]/(3!) = 1/(3!).

Everywhere in eq. (9.13) the ⊥ integral is contained in

I
(2)
⊥ (q⊥) =

∫
d−d−2k1⊥d

−d−2k2⊥ (ιεµ2ε)3

(~k1⊥ + ~q⊥)2(~k2⊥ − ~k1⊥)2 ~k 2
2⊥

. (9.14)

Performing the ⊥ Fourier transform of this integral using eq. (9.9) gives

n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k =⇒
F.T.⊥

1

3!

[
iφ(b⊥)

]3
2Snn̄ , (9.15)

which is the third term in the expansion of the exponential.

This naturally generalizes to the case of the N -loop box graph with (N + 1)-rungs.

Doing the energy integrals by contours and using eq. (9.7) we have

n

n

n

n

q+

pk +

pk -







k - k kN

pk - N

pk + N

k -k -N kN-

= −i(2g2)N+1Snn̄(N+1) I
(N)(q⊥)

∫
d−kz1 · · · d−kzN

∣∣2kz1(2kz1−2kz2) · · · (2kzN−1−2kzN )2kzN
∣∣−ηνNη

2N (−kz1 + ∆1 + i0) · · · (−kzN + ∆N + i0)

= −2i(g2)N+1(−i)NSnn̄(N+1) I
(N)(q⊥)

(
κη
η

2

)N+1∫ +∞

−∞

[ N∏
i=1

d−kzi dαi θ(αi)

][N+1∏
j=1

dxj |xj |−1+η

]
× eikz1x1+i(kz2−kz1)x2+...+i(kzN−kzN−1)xN−ikzNxN+1 exp

[ N∑
m=1

iαm(kzm + ∆m)

]

= 2(−ig2)N+1Snn̄(N+1) I
(N)(q⊥)

(
κη
η

2

)N+1∫ +∞

−∞

[N+1∏
j=1

dxj |xj |−1+η

]
× θ(x2−x1)θ(x3−x2) · · · θ(xN+1−xN ) exp

[ N∑
m=1

i∆m(xm+1 − xm)

]
= 2(−ig2)N+1Snn̄(N+1)I

(N)
⊥ (q⊥)

1

(N + 1)!

[
1 +O(η)

]
=⇒

F.T.⊥

1

(N + 1)!

[
iφ(b⊥)

]N+1
2Snn̄ , (9.16)
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where to take the final Fourier transform we used eq. (9.9) for the integral

I
(N)
⊥ (q⊥) =

∫
d−d−2k1⊥ · · · d−d−2kN⊥ (ιεµ2ε)N+1

(~k1⊥ + ~q⊥)2(~k2⊥ − ~k1⊥)2 · · · (~kN⊥ − ~k(N−1)⊥)2 ~k 2
N⊥

. (9.17)

The final result in eq. (9.16) is the (N + 1)’th term in the expansion of the exponential.

Therefore the sum of Glauber box graphs for 2-to-2 n-n̄ scattering exponentiates to give

∫
d−d−2q⊥ e

i~q⊥·~b⊥
∞∑
N=0

G.Box 2→2
N (q⊥) =

(
G̃(b⊥)− 1

)
2Snn̄ (9.18)

where the position space Glauber function is given by

G̃(b⊥) = eiφ(b⊥) , (9.19)

and where the the color matrix phase φ(b⊥) defined in eq. (9.1) is a Hermitian matrix. For

convenience we also define the momentum space Glauber function

G(q⊥) =

∫
d2b⊥ e

−i~q⊥·~b⊥ eiφ(b⊥) . (9.20)

In SCET the results for the sum of Glauber boxes given by eqs. (9.19) and (9.20) are valid

for any color channel, simply taking TA⊗ T̄A → TA
1 ⊗TA

2 in φ(b⊥). The same (eiφ(b⊥)−1)

result is also obtained if we consider the sum of box diagrams for the soft-n two-parton

scattering since the Glauber light cone momenta will still be parametrically smaller then

corresponding soft momentum.

It is interesting to pause to consider physically what the |2kzj |−η factors are doing in

the N -loop box graph in eq. (9.16). At finite η this regulator implies that the Glauber

exchanges are not instantaneous in the corresponding longitudinal position. (They are still

instantaneous in time.) Diagrammatic calculations are easy to interpret in position space,

where these regulators were transformed to factors of |xj |−1+η. Each of these longitudinal

coordinates xj corresponds to the location of one of the Glauber exchanges. Hence, they

spread out with a string of increasing longitudinal coordinates x1 < x2 < . . . < xN+1,

where the θ-functions inducing these inequalities are provided by the collinear propagators

between the Glauber exchanges. However each position space regulator also comes with a

factor of (κηη/2), and hence only the most divergent part of the xj-integrals contributes to

the final result. This divergent contribution comes from the simultaneous limit where all

coordinates xj → 0, restoring the physical picture of the Glauber exchanges being simul-

taneously instantaneous in their longitudinal positions. From the calculation in eq. (9.16)

we see that the ordered nature of the instantaneous limit is important for providing the

correct 1/(N + 1)! factor for (N + 1) Glauber exchanges.

While the phase φ(b⊥) in eq. (9.1) has an infrared divergence, this is simply an overall

phase in the scattering amplitude and hence drops out from the physical forward scattering

cross section. To see this explicitly we switch to using the (slightly simpler) gluon mass IR
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regulator setting d = 4, so with unspecified color channels for the forward scattering states

φ(b⊥) = −TA
1 ⊗TA

2 g
2(µ)

∫
d−2q⊥

~q 2
⊥ +m2

ei~q⊥·
~b⊥ (9.21)

= 2TA
1 ⊗TA

2 αs(µ) ln

( |~b⊥|meγE
2

)
.

Then taking the inverse Fourier transform of eq. (9.18) we get

∞∑
N=0

G.Box 2→2
N (q⊥) = 2Snn̄

[
G(q⊥)− (2π)2δ2(q⊥)

]
, (9.22)

The momentum space Glauber function corresponds to the sum of Glauber exchange dia-

grams, including the diagram with no-exchange,

G(q⊥) = (2π)2δ2(q⊥) +

∫
d2b⊥ e

−i~q⊥·~b⊥
(
eiφ(b⊥) − 1

)
(9.23)

= (2π)2δ2(q⊥) +
i4πĉ αs(µ)

t

Γ
(
1 + iĉ αs(µ)

)
Γ
(
1− iĉ αs(µ)

)( −t
m2e2γE

)−i ĉ αs(µ)

= (2π)2δ2(q⊥) +
i4πĉ αs(µ)

t
eiδ(t,αs) ,

where t = q2
⊥ = −~q 2

⊥ < 0, and we defined the color operator

ĉ = TA
1 ⊗TA

2 . (9.24)

It is implicit that the (2π)2δ2(q⊥) term in eq. (9.23) has a unit matrix in the color space.

The momentum space phase appearing in eq. (9.23) is given by the hermitian expression

δ(t, αs) = −ĉ αs(µ) ln

(−t
m2

)
+ 2

∞∑
k=1

(−1)k+1ζ2k+1

2k + 1

(
ĉ αs(µ)

)2k+1
, (9.25)

and is again an operator in the color space. From eq. (9.23) the result for the scattering is

given by the lowest order Glauber exchange potential (tree-level) times a phase. Unlike in

position space, this momentum space phase δ is an infinite series in αs. Since the infrared

divergence only appears in δ, it will drop out of physical predictions for scattering cross

sections (just like the IR divergent Coulomb phase for scattering with a Coulomb potential

drops out of the cross section). For later convenience we also define a notation for the

O(αs) contribution to G(q⊥) as

G0(q⊥) ≡ i4πĉ αs(µ)

q2
⊥

=
−ig2(µ) ĉ

~q 2
⊥

, (9.26)

where we have the relation ∫
d−d−2q⊥ e

i~q⊥·~b⊥G0(q⊥) = iφ(b⊥) . (9.27)

Note that the same results for the summation of box graphs is obtained for situations

where the small plus and minus momenta of the collinear lines are not equal, p+
2 6= p+

3
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and p−1 6= p−4 or where the exchanged ⊥-momentum is not evenly split, p⊥2 6= −p⊥3 and

p⊥1 6= −p⊥4 . The only place that p⊥2,3 and p⊥1,4 appeared outside of q⊥ was in the ∆i

factors in the collinear propagators, but the result was independent of these factors. When

q+ = p+
3 − p+

2 6= 0 and q− = p−1 − p−4 6= 0 we have both a modification to the ∆i factors,

and nonzero exchanged momenta q+ and q−. The smaller q+q− � q2
⊥ do not modify the

Glauber potentials, and again the change to ∆i does not effect the result. So the only

possible change induced by the nonzero q± is to the rapidity regulator for (say) the first

rung of the ladder graphs. However, as in the case of ∆i, the dependence on q± is higher

order in η. This implies that the same results for this summation are obtained even when

the ladder graphs are considered inside of another loop in SCET, as long as that additional

loop does not need a rapidity regulator. To leave the n and n̄ collinear propagators nearly

onshell the extra loop can only have Glauber (or ultrasoft) scaling. We will exploit this

property for some of our calculations in section 11 below.

The independence of the ∆i in eq. (9.16) implies that the collinear lines in these box

diagrams are effectively behaving as if they were eikonal and hence classical. However, we

stress that this is not a general property of collinear propagators in the presence of Glauber

exchange. Examples where it is not true include those in the next section, those for specta-

tor interactions with a hard scattering vertex discussed in section 11, and for mixed graphs

containing a 1/η from a soft or collinear loop where the O(η) term from the Glauber loop

integral in eq. (9.10) or eq. (9.16) must be considered. The fact that the Glauber box dia-

grams are classical can be understood by noting that the Glauber potential is classical and

that, as long as we consider only two to two scattering the partons effectively act as classical

sources. This will no longer be true when we consider scattering between hadrons where the

open ends of the box are closed off by the interpolating field for the hadrons, since in this

case the transverse momentum dependence in the collinear lines can no longer be ignored.

It is interesting to ask about higher order corrections to φ(b⊥), and in particular about

the form of higher order non-abelian corrections to this phase. Non-abelian corrections at

one-loop can be generated by the soft and collinear loop graphs shown in figure 21. The

β0 ln(µ2/− t) logarithm associated to the running of the αs(µ) that appears in the lowest

order φ(b⊥) comes from the soft sector and must exponentiate in the same manner. For n-n̄

scattering it is actually clear that the full one-loop soft result in eq. (7.23) will exponentiate

when it is iterated as a kernel for Glauber loops, because the Glauber loop momenta

k±i ∼ O(λ2) are parametrically smaller than the soft momenta, and hence pass through the

soft loops without changing their results. For these graphs the Glauber loop integrals lead

to iN/N ! just as they did for the Glauber potential box graphs. For the collinear loops,

it turns out that the parts associated to rapidity divergences will also exponentiate in this

same manner, as they must do so to insure the cancellation of the rapidity divergences.

It is not clear whether the full contributions from n-collinear loops will exponentiate since

the collinear and Glauber +-momenta are both O(λ2), and hence the fact that Glauber

loop momenta pass through the collinear loop integral could change its result.
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Figure 25. Graphs with multiple Glauber exchanges that occur at distinct light-cone times vanish,

including the virtual graph a) and real emission graph b). Graphs like c), d), and e) with multiple

Glauber exchanges that can be collapsed to the same time and longitudinal position do not vanish.

Graph c) contributes to an effective form factor leaving a factorized eikonal form. Graphs d) and

e) are examples where the Glauber exchange attaches to different particles which exist at the same

light-cone times. The second figure in e) is the same graph, but is time ordered.

9.2 Longitudinal constraints and eikonalization

Let us now consider how collinear and soft corrections, both real and virtual, affect multiple

Glauber exchange contributions. As we will see below, the possible corrections to Glauber

exchanges is restricted by a spacetime constraint, causing many corrections to lead to a

vanishing result. We will also determine the general criteria for when a collinear or soft

propagator within a Glauber loop may be treated as eikonal.

To build up the physical picture, we start by considering the diagrams in figure 25 which

involve n-n̄ forward scattering with additional collinear loops or radiation. In figure 25a we

have a collinear gluon radiated with Glaubers attached both before and after the radiation.

Recall that the Glauber loop momentum scales as (n · k, n̄ · k, k⊥) ∼ (λ2, λ2, λ), and hence

does not change the large momenta of the collinear lines. For this real final state emission

we have n̄ · p2 > 0, n̄ · pg > 0, and n̄ · p3 = n̄ · (p2 − pg) > 0. Therefore there are two

n-collinear quark propagators in the Glauber loop, which has the form

figure 25a = (pre)

∫
d−dk

(|kz|−2η ν2η) Num(k⊥)

~k 2
⊥
(
~k⊥−~q⊥

)2[
n · k−∆1+i0

][
n · k−∆2+i0

][
n̄ · k+∆̄′1−i0

]
= 0 , (9.28)

where the prefactor, (pre), includes the couplings and color structure, and the numerator

Num(k⊥) and ∆ factors only depend on the k⊥ loop momentum. Here the dk0dkz integra-

tion gives a vanishing result since there are two n · k propagators with the same +i0, as

discussed in detail in appendix B.2.

Next consider a collinear loop which interrupts two Glauber exchanges, as in figure 25b.

If we consider carrying out the collinear n · ` integral by contours, we find that the integral
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is nonzero only for 0 < n̄ ·` < n̄ ·p2, thus ensuring that all collinear quark propagators have

positive large momenta, n̄ · p2 > 0 and n̄ · (p2− `) > 0, and that the virtual collinear gluon

has positive light cone energy n̄ · ` > 0 and is traveling forward in light-cone time. Hence

once again we have two n · k dependent n-collinear quark propagators with the same +i0,

as in eq. (9.28), and the dk0dkz integration vanishes. The collinear gluon vertex in the loop

interrupts the Glauber loop in the same manner as for the collinear radiation graph. Note

that in either of figure 25a,b, if we had instead attached the rightmost Glauber exchange

to the n-collinear gluon, then the graphs would again vanish for the same reason.

On the other hand the diagram in figure 25c is non-vanishing. Here there is only one

pole in k+ and k− for the Glauber loop, and it gives the same result as for the box diagram

in eq. (9.10). Indeed, one is free to add any number of Glauber exchanges between the

collinear vertices, which simply builds up the higher order terms in the Glauber function

G(q⊥), so this type of amplitude can be written as

Fn(q⊥)
[
G(q⊥)− (2π)2δ2(q⊥)

]
, (9.29)

where Fn(q⊥) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing

result the eikonal approximation arises in the same manner as in section 9.1 for the internal

collinear propagators participating in the Glauber loops. The collinear propagators outside

the Glauber loops are not eikonal. The same form would also be obtained if we iterated

Glauber exchanges solely between the n-collinear gluon and the n̄-collinear antiquark.

In contrast, non-vanishing diagrams such as figure 25d do not have collinear propaga-

tors that can all be described by the eikonal approximation. Using the momentum routing

shown,

figure 25d = (pre)

∫
d−dk

(|kz|−2η ν2η) Num(k⊥)

~k 2
⊥
(
~k⊥−~q⊥

)2[
n · k + ∆′1 − i0

][
n · k −∆1 + i0

][
n̄ · k + ∆̄′1 − i0

]
=

(pre)

4

∫
d−d−2k⊥

Num(k⊥)

~k 2
⊥
(
~k⊥−~q⊥

)2(
∆1 + ∆′1 − i0

) , (9.30)

where the steps for carrying out the dk0dkz here are described in detail in appendix B.2.

Here (pre)= 4g5ifABCTDTB ⊗ T̄DT̄A and Num(k⊥) depends only on external momenta

and the k⊥ loop momentum. The ∆ factors depend on k⊥ and are given by

∆′1 =
(~k⊥−~pg⊥)2

n̄ · pg
− n · pg , ∆1 =

(~k⊥+~p3⊥−~q⊥)2

n̄ · p3
− n · p3 , ∆̄′1 =

(~k⊥−~p1⊥)2

n · p1
− n̄ · p1 .

(9.31)

The presence of the (∆1 + ∆′1) propagator in the remaining k⊥ integral in eq. (9.30),

indicates that here the non-eikonal nature of the n-collinear propagators was important.

Since ∆̄′1 does not appear, the n̄-collinear propagator can still be treated as eikonal. The

same conclusion that non-eikonal propagators are necessary is also obtained if we consider

the collinear loop graph where the radiated n-collinear gluon in figure 25d is reabsorbed by

the n-collinear quark after its Glauber attachment. Furthermore, this need for non-eikonal

collinear propagators is also true even in an abelian theory, where it occurs for the diagram
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in figure 25e. Both of the diagrams in figure 25d,e involve a k⊥ convolution between the

Glaubers and the collinear source function.

To determine in a simple manner whether or not a graph with multiple Glauber ex-

change does or does not vanish, we use time-ordered perturbation theory (TOPT) to order

the vertices in a diagram. Usually one would utilize light cone ordered perturbation the-

ory (LCPT ) when analysing high energy scattering, as it greatly reduces the number of

relevant diagrams [110]. However, when we factorize in rapidity space we necessarily break

boost invariance via the rapidity regulator. With our regulator in place we can perform

the energy integrals by contours, but not the light cone momentum, leading to a set of

time ordered diagrams. Notice that the advantage gained using LCPT, via the reduction

in the number of diagrams, is maintained in TOPT when working in the EFT because the

propagators are linear in energy for these Glauber loops. The regulated Glauber exchanges

with |kzi |−η also remain instantaneous in time. Next we transform the longitudinal integrals

kzi to position space, and thereby assign a longitudinal position label xi for each Glauber

exchange in a TOPT diagram, as was discussed in the previous section for the example in

eq. (9.16). Since each transformed Glauber exchange comes with a prefactor of (η/2), only

the most divergent part of the xi integrals can contribute. Furthermore, anything that

interrupts these longitudinal integrations, causing them to become less divergent, will lead

to a result that vanishes as η → 0. An interruption of this type occurs if there is a vertex

that unavoidably inserts an additional longitudinal position in the midst of the burst of

Glauber gluons, and therefore stops them from coming together to yield a leading short

distance divergence. The “collapse rule” therefore states that:

Graphs with more than one Glauber exchange will vanish unless the exchanges

can be moved towards each other unimpeded, so that they all occur at the same

longitudinal position x0 for both sources.

This ordered collapse corresponds to the instantaneous limit xi → x0 for every i. After

taking this limit the Glauber exchanges are now instantaneous in both time and longitudinal

position,11 or equivalently in x+ and x−. This reproduces our original physical picture

regarding the instantaneous nature of Glauber exchange. This general rule applies for

diagrams with any number of loops or with additional radiation. If we replace one of the

collinear sectors by soft particles then the same argument holds, or simultaneously have

{n, s, n̄} particles, then again the same rule regarding Glauber loops also holds true.

For the simple diagrams in figure 25a,b,c,d there is only one non-trivial time ordered

diagram. For the graphs in figure 25a,b the collapse to equal longitudinal position of the

two Glauber exchanges is impeded by the collinear gluon vertex which sets an intermediate

position that stops the Glaubers from coming together, so the graphs vanish. In other

words, the integral over the longitudinal positions vanishes unless all the positions collapse

to zero, but theta functions from the collinear propagators enforce a definite ordering which

11For n-n̄ scattering the longitudinal position is (n · x− n̄ · x)/2. For the more general case with ni and

nj collinear particles, the “longitudinal position” for this discussion is defined by (ni · x − nj · x)/2. See

also eqs. (5.1) and (5.2).
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forbids this collapse. This is worked out explicitly in eq. (B.7) of the appendix B.2 yielding

for the integral appearing in eq. (9.28):∫
d−k0d−kz

|2kz|−2ην2η(
k+ −∆1 + i0

)(
k+ −∆2 + i0

)(
k− + ∆̄′1 − i0

)
= − i

4

(
κη
η

2

)2∫
d−d−2k

∫ +∞

−∞
dx1dx2dα θ(x1−α)θ(α−x2)|x1x2|−1+η

[
1 +O(η)

]
= O(η) . (9.32)

Here α is the intermediate coordinate that interrupts the collapse, leading to a less divergent

integral. In the graphs in figure 25c,d,e the collapse to equal longitudinal positions is

possible and the results for these diagrams do not vanish as η → 0. For figure 25e this

is made clear with the second way of drawing the same diagram, namely that the non-

vanishing contribution occurs when the time ordering is such that the central n-collinear

propagator corresponds to an antiquark.

Note that the collapse rule does not imply that a soft exchange between Glaubers will

lead to a vanishing result. As an example, if we consider the H-diagram in figure 14a,

the light-cone time scale for the soft momenta is short (∼ λ−1) compared to the Glauber

exchange time scale (∼ λ−2) and thus the longitudinal positions of the Glauber exchanges

can coincide. The `± loop momenta only appear in the soft gluon propagator, and thus

effectively the soft gluon has a tadpole like integral in these variables. However, this does

not localize the transverse coordinates corresponding to the soft loop momentum `µ⊥ ∼ λ

and the H-diagram type topology persists for the `⊥ and k⊥ integrals.

It is also straightforward to identify rules for when a collinear or soft propagator inside

a Glauber loop can be treated as eikonal. First let us determine under what conditions

the integrals vanish by considering the momentum space propagator structure. Consider

an arbitrary loop graph, with one Glauber loop momentum kµ, then the general structure

of the propagators is∫
d−k0 d−kz

|kz|−2η ν2η[
n · k−∆1+i0

]
· · ·
[
n · k−∆n+ +i0

][
n · k+∆′1−i0

]
· · ·
[
n · k+∆′n−−i0

]
× 1[

n̄ · k−∆̄1+i0
]
· · ·
[
n̄ · k−∆̄n̄+ +i0

][
n̄ · k+∆̄′1−i0

]
· · ·
[
n̄ · k+∆̄′n̄−−i0

] . (9.33)

Here the various ∆s depend on the k⊥ loop momentum, but not on k0 or kz. On the

n-collinear side we have n+ propagators with a +i0 and n− propagators with a −i0, and

similarly on the n̄-collinear side we have n̄± propagators with a ±i0.

Let us first enumerate all the situations where the one-loop integral in eq. (9.33)

vanishes. If any three of the indices {n+, n−, n̄+, n̄−} are zero, so that there are no

propagators of that type, then it obviously vanishes. Next consider cases where two of

these indices are zero. If all the poles are on the same side for the k0 contour integral,

namely n+ = n̄+ = 0 or n− = n̄− = 0, then the integral vanishes. If all the poles occur

in one of the two collinear sectors, n+ = n− = 0 or n̄+ = n̄− = 0, then the integral also

vanishes. Here performing the k0 integral by contours we either immediately get zero, or
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we get an integrand that other than the regulator is independent of kz, and hence vanishes

since
∫
dkz|kz|−2η = 0. Finally we could have poles on opposite sides of the k0 contour

in the two collinear sectors, n+ = n̄− = 0 or n− = n̄+ = 0. In this case the only situation

where we get a nonzero result is when both of the remaining nonzero indices are = 1. If

both of the remaining indices are > 1, such as when n+ = n̄− = 0, n− > 1, n̄+ > 1, then

after closing the k0 contour we are left with an integral in kz that converges at infinity (so

we can drop the regulator), and vanishes by contour integration. Next consider situations

where only one of the indices vanishes. Again in this situation, the other index in that

collinear sector must be = 1 to obtain a non-vanishing result, since after closing the k0

contour in the opposite direction, only this propagator has kz dependence. Thus the

analysis is identical for this case. So the integral will vanish if (n+ = 0 and n− > 1),

(n0 = 0 and n+ > 1), (n̄+ = 0 and n̄− > 1), or (n̄− = 0 and n̄+ > 1). To summarize, the

non-vanishing cases where either exactly two or one index is zero we have:

• non-vanishing 1-loop Glauber integral with exactly two indices zero (2 cases):

n+ = n̄− = 0 and (n− = 1 and n̄+ = 1) , (9.34)

n− = n̄+ = 0 and (n+ = 1 and n̄− = 1)

• non-vanishing 1-loop Glauber integral with exactly one index zero (4 cases):

n+ = 0 and n− = 1 , n− = 0 and n+ = 1 ,

n̄+ = 0 and n̄− = 1 , n̄− = 0 and n̄+ = 1 .

An example of a non-vanishing Glauber loop integral where one of the indices was zero

was given in eq. (9.30). If all four indices are nonzero then the integral will not vanish.

If the Glauber integral in eq. (9.33) does not vanish, then we may ask the question when

do the propagators that appear in the loop integrand, and depend on k0 and kz, behave as

if they are effectively eikonal? We will consider eikonalization in each collinear direction

separately. The rules for eikonalization for propagators associated to these nonzero loops

are quite simple:

n+ + n− ≥ 2 , non-eikonal , n̄+ + n̄− ≥ 2 , non-eikonal ,

n+ + n− = 1 , eikonal , n̄+ + n̄− = 1 , eikonal . (9.35)

To prove this consider the four cases. If both n+ + n− ≥ 2 and n̄+ + n̄− ≥ 2 then we

write dk0dkz = (dk+dk−)/2 and can set η = 0 and perform the k+ and k− integrals by

contours, since both integrals are convergent at infinity. The result will depend on both

the ∆(′) and ∆̄(′) factors, and hence neither side eikonalizes (since we get two factors of

i this non-eikonal result is imaginary). If n+ + n− = 1 and n̄+ + n̄− = 1 then we have

precisely the integrals considered in section 5.2.1, where the |kz|−2η regulator is needed.

Here the k0 contour integral gives zero if both poles are on the same size. If the poles

are on opposite sides it gives a result that is equivalent to having both the n-collinear and

n̄-collinear propagators be eikonal at O(η0). Next consider the case where n+ + n− = 1

and n̄+ + n̄− ≥ 2. Here the |kz|−2η regulator is required to make the k+ integration well

defined, and forces us to consider the k0 contour integral. Considering the k0 contour
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Figure 26. Two loop example with multiple collinear lines and Glauber exchange.

integral in eq. (9.33), the single n-collinear propagator will have a pole either above or

below the axis, and we choose to close the contour the other way so that we only select

n̄-collinear propagator poles. Without loss of generality we take the single n-collinear pole

to be [n · k −∆1 + i0], for which this gives

i

n̄−∑
i=1

∫
d−kz

|kz|−2η ν2η[
−2kz−∆̄′i−∆1+i0

] fi({∆̄j , ∆̄
′
k}) =

i

4π

[
− iπ +O(η)

] n̄−∑
i=1

fi({∆̄j , ∆̄
′
k}) ,

(9.36)

where fi({∆̄j , ∆̄
′
k}) is a function of the various ∆̄s. Since the result is independent of ∆1

the single n-collinear propagator is eikonal at O(η0), whereas the n̄-collinear propagators

are non-eikonal. Obviously for the opposite case, where n+ + n− ≥ 2 and n̄+ + n̄− = 1,

we will find by the same logic that the n̄-collinear propagator is effectively eikonal and the

n-collinear propagators are non-eikonal.

Note that for a n–n̄, a n–s, or a n̄–s Glauber loop the decomposition in eq. (9.33), the

rules for vanishing cases in eq. (9.34) and the rule for eikonalization in eq. (9.35) all apply

equally well.

When we consider extending eqs. (9.34) and (9.35) for use in multi-Glauber-loop di-

agrams, we must address the issue that now collinear or soft propagators can carry more

than one k+
i or k−i loop momentum. The number of propagators through which each loop

momentum flows will also depend on the loop momentum routing, but whether a graph

vanishes or whether a particular propagator can be treated as eikonal will be indepen-

dent of the routing choice. We choose to route each Glauber loop momentum through

the minimum number of collinear propagators, this maximizes the number of cases where

n+ +n− = 1 or n̄+ + n̄− = 1. Essentially this means that we route loop momentum to max-

imize the number of obviously identifiable eikonal propagators, and then these propagators

are removed when considering the eikonal propagator count for the next loop momentum

(even if other loop momenta flow through them). Practically this means that if a Glauber

loop momentum comes in through one exchange, then we route the momentum out of the

collinear (or soft) sector on the next available Glauber exchange vertex. When determining

whether a given loop vanishes, terms that are zero due to the energy contour integral k0
i

are exactly analogous to the analysis at one-loop. However, we must be more careful when

considering the implications of the kzi integrals, since it is not enough to simply consider

the convergence when a single kzi variable gets large, since we must also ensure that the

integral remains regulated when two or more kzi variables simultaneously become large. For
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example, if any kz variable appears in a single propagator, then that propagator should be

removed from consideration when considering the convergence for other kzi variables.

As a non-trivial example we consider figure 26. Using the physical arguments discussed

above or the collapse rule, we conclude that this contribution should be non-vanishing since

the Glaubers can accumulate at a single longitudinal point without obstruction. With the

loop momentum routing shown this diagram gives

figure 26 =

∫
d−dk d−d`

(
|kz + `z|−η |`z|−η |kz|−η ν3η

)
(pre)Num(`⊥)(

~k⊥+~̀⊥
)2~̀2
⊥
(
~k⊥−~q⊥

)2[
`+−∆1

][
−`+−∆′1

][
k+−∆2

][
−`−−k−−∆̄′1

][
−k−−∆̄′2

]
=

∫
(−1)d−d−1k d−d−1`

(
|kz + `z|−η |`z|−η |kz|−η ν3η

)
(pre)Num(`⊥)(

~k⊥+~̀⊥
)2~̀2
⊥
(
~k⊥−~q⊥

)2[−∆1−∆′1
][
−2`z−2kz−∆̄′1−∆1−∆2

][
−2kz−∆̄′2−∆2

] ,
(9.37)

where all propagators inside square brackets [· · · ] have a +i0. In the first line the ∆1 and

∆′1 dependent propagators are those next to the collinear gluon pair production vertex, and

are not eikonal, as is clear from the (∆1 + ∆′1) denominator in the second line. Performing

the kz and `z integrals gives a nonzero result, eliminating the corresponding propagators

without inducing additional dependence on any ∆s at O(η0). Therefore the three remaining

collinear propagators in figure 26 are eikonal (the three propagators inside the quark-

antiquark n-n̄ scattering box). Note that for fixed `z, the kz integral would converge at

infinity with two poles on the same side of the axis, and hence seem to fall into a category

that would vanish by our 1-loop criteria. Nevertheless, we get a finite result due to the

additional divergence structure of the `z integral, which does not allow us to drop the

η-regulators, and needs the same [−2`z−2kz + . . .] denominator.

9.3 Semi-classical eikonal phase and the Glauber gluon

We have seen in section 9.1 that the sum of the Glauber boxes for elastic near-forward

scattering, at leading power in t/s� 1, leads to an eikonal amplitude which is dictated by

a phase δ(t). This is the expected behavior for any amplitude which can be approximated

as being a semi-classical process. Moreover, in section 9.2 we have seen that the eikonal

approximation is valid for collinear propagators that are internal to the interactions in a

Glauber burst. In this section we will put these and other results derived from SCET

into the context of known results on forward scattering [106–108, 111]. We will also use

our EFT to derive the picture of multiple Wilson lines crossing a shockwave [3–7]. The

questions that we will address include:

1. Why do Glauber gluons reproduce the semi-classical expression and what is the range

of applicability of this approximation?

2. In the abelian theory, there are no soft corrections other than light quark bubbles,

but in the non-abelian theory soft corrections play an important role. How do these

corrections affect the form of the amplitude? Do the soft corrections simply dress the

Glauber kernel in the absence of collinear radiation?

3. When the semi-classical result breaks down, it is replaced by a picture where one

must follow the trajectories of multiple partons crossing a shockwave. The partons
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are represented as infinite Wilson lines separated in the transverse space, and the

number of lines is not fixed and can evolve. What is the precise criteria for the validity

of this multi-Wilson line approximation, and how does it emerge from our EFT?

4. Once a hard interaction is included, to what extent do we expect the effects of

Glauber exchange to still be governed by a phase? And under what conditions do

the Glauber exchanges cancel?

In the remainder of this section we will provide answers to questions 1, 2, 3, referring

to results from earlier sections when appropriate. We leave the discussion of point 4 to

sections 10 and 11 below.

Let us begin by exploring how the large s/|t| limit appears semi-classically. In the

semi-classical approximation, we may write the amplitude as∫
[Dφ]eiS ∼ eiS0(1 + . . . .) , (9.38)

where S0 is the action for the classical field configuration and corrections are down by the

appropriate expansion parameter(s). Quite often the starting point of any semi-classical

approximation involves solving the classical field equations without the presences of

sources, such as in the case of instantons or monopoles. However, here we are considering

scattering processes, so a necessary condition is that the external lines behave classically

at leading order in the relevant expansion parameter(s). Furthermore, if we are to

take an approach based upon Feynman diagrams then we must be able to distinguish

between classical and quantum contributions. Thus both the sources and the bulk field

(gauge fields) must behave in a characteristic fashion in the context of a semi-classical

approximation.12 Moreover, if this approximation is valid, then we should be able to find

a power counting parameter which explicitly shows that quantum fluctuations in both the

sources and bulk fields are suppressed.

Consider the elastic scattering process between quarks in the limit |t|/s� 1. In what

respect do these quarks behave as classical sources? Let us assume that we can follow a

single quark through a series of interactions (perhaps by tagging it by a conserved quantum

number). If we start by ignoring color, then the criteria for classical behavior is that the

quark source currents commute. To see this consider the propagation of the quark source

current with a large light-like momentum p− � p+ in an external background whose

Fourier modes k may or may not have a hierarchy between its components. As seen from

our Lagrangians in sections 4 and 5 for either soft, ultrasoft, or Glauber gluons (the latter

taken in Feynman gauge for the argument being made here), the boosted current will be

dominated by the light-cone component A+, such that

Lint ≈
∫
d4x J−(x+, x−, x⊥)A+(x+, x−, x⊥) . (9.39)

We may write the part of the transition amplitude involving the quark as

iMif =

〈
i

∣∣∣∣T exp

(
i

∫
d4xJ−(x+, x−, x⊥)A+(x+, x−, x⊥)

)∣∣∣∣f〉 . (9.40)

12Our definition of a source for the discussion here is the subset of collinear excitations.
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From the point of view of the quark it propagates in the presence of the gauge fields A+

which can be viewed as a background whose internal dynamics, along with that of other

sources, we can consider at a separate stage. What are the characteristics of the coupling

of these gauge fields which will lead to a convergent semi-classical approximation? Note

that if we set one of the light-cone momenta to zero (say x+ = 0 ) in the current then

(~x⊥ − ~y⊥)2 6= 0 implies [J−(0, x−, x⊥), J−(0, y−, y⊥)] = 0 , (9.41)

as long as the current is constructed from local operators whose algebra obeys micro-

causality. Moreover, when x⊥ = y⊥ and the commutator is on the light cone, current

algebra dictates that the commutator vanishes when the currents are abelian, highlighting

the distinction with the non-abelian case. Thus if we can set x+ = 0 in the current it will

behave classically, in the abelian limit. This does not mean that the non-abelian theory

has no classical contribution, only that the non-abelian currents do not have a canonical

classical interpretation. This should not surprise us since non-abelian currents are only

covariantly conserved.

Whether or not it is justified to set x+ = 0 depends upon the relative momenta of the

quark source p and gauge field momentum k. In particular, if

p− � k− (9.42)

then we can set x+ = 0 as the conjugate momentum k− has become irrelevant once we drop

power suppressed terms from the propagator. This does not mean that the propagator is

necessarily of eikonal form, since the expansion in eq. (9.42) leaves

1

(p+ k)2
=

1

p−(k+ + p+)− (~p⊥ + ~k⊥)2
+ . . . , (9.43)

as opposed to the eikonal form 1/(p−k+). Whether or not the transverse momenta piece

matters will depend on the power counting for the remaining terms, and the convergence

property of the k+ integrals. If the low energy A+ gluons with k− � p− are close to

their mass shell with k+k− ∼ ~k 2
⊥, then they are either soft (kµ ∼ λ) with p−k+ �

p−p+, (~p⊥+~k⊥)2 or ultrasoft (kµ ∼ λ2) with p−(k+ +p+)� ~p⊥ ·~k⊥,~k 2
⊥. In either cases we

are justified in dropping x+ and can also fix the coordinate x⊥, so the source propagators

become purely eikonal 1/(k+), and the corresponding quarks does not recoil. This is

identical to the analysis in the standard construction of soft and ultrasoft interactions in

SCET, see [29]. For the soft and ultrasoft cases these approximations are justified without

referring to the nature of other particles that interact with the A+ gluons. From the point

of view of the soft or ultrasoft gluons the quark source becomes a Wilson line along a

light-like direction and hence behaves much like a classical source.

In contrast we can consider the case where p−(k++p+) ∼ (~p⊥+~k⊥)2 � (p++k+)k− so

that transverse momentum terms in eq. (9.43) are retained. This implies that the A+ gluons

are offshell with k+k− � ~k 2
⊥, and hence correspond to the exchange of Glauber gluons.

To determine the outcome here we need to know the dynamics of the other particles to

which the gluon couples. Assuming that it couples to an energetic particle which is just
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the mirror image of the quark source, then the abelian forward scattering is described by

Glauber exchange, as discussed in section 5 and we are led to integrals with log-divergent

k± integrations as in sections 5.2.1 and 9.1. The log divergent nature of these integrals,

together with the action of a proper regulator, make the propagators effectively eikonal for

forward scattering, despite the presence of the ⊥-momentum dependent terms. We saw this

explicitly in our calculations in section 9.1 where the ∆i(ki⊥) terms all dropped out. Thus

once again the quarks (effectively) travel along a straight line and do not fluctuate, and

we can treat the source quark as a classical current which yields a Wilson line. However

this eikonalization does not happen more generally for either the abelian or non-abelian

cases, for the reasons discussed below. We will also see below that in these more general

situations we can still describe the physical situation with what is known as the shock wave

solution, including a variable number of eikonal sources.

We start by reviewing the shock wave solution and its relation to the eikonal sources

generated by Glauber exchange in the abelian case, which is obtained in the limit where

the boost becomes maximal. Here a gauge is chosen such that the gauge field is purely A⊥
and vanishes off the light cone, given by [112]

A± = 0, Aµ⊥ = − e

2π
ln(µx⊥)δ(x−). (9.44)

This configuration is related to the one where A+ 6= 0 by a gauge transformation. What

is relevant here is that the field is independent of x+ thus we may set k− = 0, which is

consistent with the expansion in eq. (9.43). Thus there is a very simple picture of the

abelian quantum mechanical case with a frozen background and no radiation. Indeed the

well known semi-classical eikonal solution can be obtained by solving for the wave function

in the field generated by the shock wave solution in eq. (9.44), and then obtaining the

scattering amplitude [112, 113]. This yields the same result we found above in eq. (9.23)

for the Glauber function G(q⊥) (taking its abelian limit with CF = 1) by summing the

Glauber gluon ladder graphs.13 This picture is also supported by considering the two point

function for the potential Glauber exchange∫
dd−2k⊥
k2
⊥

eik·x ∝ δ(x+)δ(x−) ln(x2
⊥µ

2) (9.45)

thus the two particles interact at a point in light cone time when their respective shock

waves cross each other.

Thus in the abelian limit the iteration of Glauber gluons reproduces the standard semi-

classical result, and leads to effectively eikonal propagators for the integrals appearing in

forward scattering. However, even for the abelian theory there is no limit in which the

collinear radiation can be treated as subleading. That is, while the propagation in the

13This resummation in QED was done fifty years ago by Sucher and Levy [114] where the issue of rapidity

divergences was avoided by using the full photon propagator. By doing so the calculation inherently includes

other modes aside from the Glauber, in particular the soft contribution. However, as we have seen in QED

the soft contribution cancels and as such the lack of a homogeneous scaling in the calculation [114] is benign.

In the context of gravity a similar resummation was performed in [115].
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shock wave background leads to classical source propagation, because the Glauber interac-

tions leave the electrons nearly onshell, their fluctuations due to interactions with collinear

photons are not suppressed. In the effective field theory this is obvious since the leading

power collinear action includes these effects. It is interesting to ask how the collinear quan-

tum corrections change the form of the semi-classical result. In particular, one might think

that these corrections could simply dress the eikonal form, decoupling from the Glaubers. If

we consider a collinear loop which interrupts two Glauber exchanges, such as in figure 25b,

the integral vanishes as explained in section 9.2. The analogous graph which has a real

collinear gluon emission between two Glauber exchanges shown in figure 25a also vanishes.

On the other hand the diagram in figure 25c is non-vanishing, the Glauber loop needs to

have its rapidity divergence regulated and there is only one pole in k+ for the Glauber

loop. One is free to add any number of Glauber exchanges between the collinear vertices,

which builds up the higher order terms in the Glauber function G(q⊥). Accounting for such

corrections on both the n-collinear and n̄-collinear side this amplitude can be written as

M = Snn̄Fn(q⊥)F n̄(q⊥)
[
G(q⊥)− (2π)2δ2(q⊥)

]
, (9.46)

where Fn,n̄(q⊥) are the abelian quark (electron) form factors for the top and bottom lines.

At one-loop the product Fn(q⊥)F n̄(q⊥) is given by the abelian part of our eq. (7.12). On

the other hand, diagrams such as figure 25e modify the result in eq. (9.46) by having a

k⊥ convolution between the Glaubers and the collinear source. This fact should not come

as a surprise as diagrams such as figure 25e involve a time ordering where pair creation is

manifest as shown in the second way we draw the diagram. For QED this conclusion that

only form factors dress the eikonal amplitude if pair creation and annihilation are ignored

was reached long ago in ref. [116].

Thus even in the abelian limit the energetic quarks do not behave solely like single

Wilson lines.14 This becomes even more prevalent when we make the theory non-abelian,

for example figure 25d also cannot be described by a single Wilson line, and indeed requires

non-eikonal propagators for the n-collinear quark and gluon. In QED the same is true of a

diagram where the radiated photon creates another e+e− pair, and then we simultaneously

consider Glauber attachments to members of this pair as well as the original e−. In the

non-abelian case, current algebra dictates that the light-cone commutator from eq. (9.41)

is nonzero, and thus there is no reason to believe that the semi-classical approximation

should hold universally. Indeed, we found in section 5.1.2 that in the non-abelian case the

interaction with soft gluons is non-vanishing and occurs at leading power, and that there

are also one-loop non-abelian collinear graphs that contain rapidity divergences and are

not simply form factors. In general, we will not have a completely eikonal description for

14It is interesting to note that up to the two loop level, single Wilson lines will give the right answer for

two-to-two scattering as long as one appends the correct one loop form factor to the result. This includes

both semi-classical and quantum corrections. The notion that loop corrections are necessarily quantum

corrections fails here, as it does in other cases where there is a contribution from regions where some fields

are behaving like classical sources. In the effective theory each loop may be considered as classical or

quantum, but in the full theory, since integrals do not scale homogeneously in the power counting, the

result can be mixed quantum and classical. For a discussion on this point see [117].
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Figure 27. Correspondence between multiple Glauber exchange, with an example diagram shown

in panel a), and the picture of Wilson lines used to represent partons crossing a shockwave, shown

in panel b). The n-collinear particles see the other side via Glauber exchange only at an instant in

time and longitudinal distance indicated by the location of the shockwave that is drawn as a large

shaded red ellipse. In a mirror manner, the n̄-collinear particles also see a shockwave representing

the Glauber exchanges.

sources coupling to Glauber interactions when we include collinear splitting or collinear

loop diagrams as discussed in section 9.2, or once a hard interaction is involved as

discussed in section 11. On the other hand, both soft and ultrasoft gluons do continue to

have eikonal interactions with collinear particles in these cases.

Despite the breakdown of the simplest Wilson line picture for these more general

situations with Glauber exchange, the eikonal approximation does still play an important

role in the dynamics. For instance, in the non-abelian case we may still sum the Glauber

interactions between pairs of forward scattering partons, as the existence of generators at

the vertices presents no obstruction due to the simple topology of the ladder series. This

sum was carried out explicitly in section 9.1. Indeed, it is known that in the non-abelian case

many of the contributions to the amplitude are still captured by the shock-wave theory, and

can even be calculated in a two-dimensional field theory [118]. In section 9.2 we showed that

the eikonal approximation is valid as long as a single source propagator can be associated to

each Glauber loop momentum, and breaks down if there are two or more such propagators

of the same source. Furthermore, even in the presence of multiple particles which couple via

Glauber exchange, diagrams with multiple Glaubers vanish unless all of these instantaneous

exchanges can be collapsed onto a single longitudinal position. Thus, if we consider an

arbitrary number of Glauber exchanges in a non-abelian theory, they can interact with any

particles that are present at given reference time t0 and longitudinal position x0, which is

referred to as the location of the shock-wave seen by these particles. Furthermore, after the

first Glauber interaction on each of these propagators, further Glauber attachments yield

propagators that are described by the eikonal approximation for that source particle. Each

of these sources therefore becomes a Wilson line along the light-cone, located at a different

x⊥ coordinate according to the position of the initial particles crossing the shockwave.

This analysis based on our framework yields precisely the picture of multiple interacting

Wilson lines in [3–7]. An example of the association of the multiple Glauber exchanges with

the shockwave is shown in figure 27. Rather than rely on a single Wilson line to describe
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interactions with the collinear source, one instead considers a picture where multiple Wilson

lines are used to describe the color sources that exist at the instant of the shockwave. This is

the technique utilized as the starting point for the Wilson line EFT [4, 13, 14], as well as for

deriving the BJMWLK equation [6, 7]. In these frameworks the non-eikonal contributions

should only occur in the coefficient functions [14] for multi-Wilson line matrix elements.

To conclude this section, we give answers to the questions raised at the beginning of

this section:

1. Glauber iterations reproduce the semi-classical approximation, but in QCD these dia-

grams are not sufficient by themselves since soft and collinear loops enter at the same

order in the coupling and power expansions. To attempt to make this approximation

valid we could remove the non-abelian diagrams by considering an electron scatter-

ing observable in QED, and then forbidding pair creation by considering scattering

momenta much below the mass of the electron. Here the semi-classical approxima-

tion would dominate the scattering, but in general the form of the amplitude will

be more complicated than in eq. (9.46) for an infrared safe observable which allows

contributions from forward collinear radiation.

2. Some soft corrections to n-n̄ scattering do just dress the Glauber kernel, such as those

in figure 21c,d,e which appear as virtual corrections dressing the Glauber exchange

from non-abelian and quark-antiquark interactions. However other soft corrections

are not simply dressings of the Glauber kernel, such as the H-graph in figure 14.

3. We have seen above and in section 9.2 that the multi-Wilson line shockwave picture

emerges because multiple Glauber exchanges collapse so that they occur at a sin-

gle time and longitudinal position, and because when a graph with a Glauber loop

momentum k has only a single propagator that depends on k+ and k−, then these

propagators eikonalize. For other situations with Glauber loops the propagators do

not eikonalize, and hence occur before or after the shockwave.

4. In the next two sections we take up the issue of Glauber phases produced in the

presence of a hard interaction.

10 Hard matching: the Cheshire Glauber

In this section we consider Glauber gluons in hard scattering processes. In section 10.1 we

consider Glauber gluon exchange at one-loop in the context of a hard vertex that either

annihilates, scatters, or creates two energetic particles. Then in section 10.2 we extend

this analysis to include the emission of an additional soft gluon at one-loop. We show

that Glauber exchange produces all the low energy imaginary (iπ) terms, and demonstrate

a connection with contributions from soft gluons. In section 10.3 we extend this anal-

ysis to two-loop order with more complicated interactions from the Glauber operators,

demonstrating that the same conclusion remains true.

In carrying out hard matching calculations from full QCD onto SCET at one, two, and

even three loops, it is known that Glauber exchange graphs are not needed to reproduce
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the infrared structure of the full theory result and obtain a Wilson coefficient that is

independent of the infrared regulator. In this section we demonstrate that the hidden

nature of Glauber exchange for these hard scattering calculations is connected to the need

to modify soft diagrams by including 0-bin subtractions S(G) from the Glauber region.

We begin by summarizing our conclusions from two points of view:

1) In SCETII Glauber exchange contributions G are present as interactions between

certain active hard scattering lines. The Glauber subtractions S(G) remove a con-

tribution from the soft diagrams, and in particular are responsible for canceling the

contribution arising from direction dependence of soft Wilson lines (whether they ex-

tend from −∞ or to +∞), which is related to the sign (n ·k± i0) used in soft Wilson

line induced eikonal propagators. This sign is relevant only in the region where the

O(λ) soft momentum n · k → 0, or more precisely n · k ∼ λ2. This momentum region

is not soft, but is instead correctly accounted for by the Glauber exchange graphs G,

and hence is removed from the soft diagrams by the subtraction S(G) when forming

the complete soft diagram. At one-loop (see eq. (5.50)) the complete soft diagram is

S = S̃ − S(G). Depending on the choice of the direction for the soft Wilson lines, we

may or may not have G = S(G) here. (In contrast, in SCETI the Glauber exchange

contributions G between active lines are scaleless, and are exactly canceled by the

ultrasoft 0-bin subtraction on the Glauber graph, G(U).)

2) Alternatively, for these hard scattering diagrams we can exploit the correspondence

between the results for the Glauber exchange graph and the Glauber subtraction

for soft graphs in SCETII. With a specific choice of the direction of the soft Wilson

lines we have G = S(G). The correct choice corresponds to directions that agree

with the physical direction of the collinear particles probed by the long distance

Glauber exchange process. This allows us to consider the alternative but equivalent

interpretation, that the Glauber exchange contributions for these hard scattering

diagrams can be absorbed into the soft Wilson lines. This absorption removes

both the G and S(G) terms by canceling them, and corresponds to the standard

approach that is adopted in typical SCET matching calculations where Glauber

exchange is ignored. This absorption does not work in all possible diagrams in

SCET (see section 11.1), and hence in general we need to consider the soft and

Glauber exchanges as distinct contributions. (In SCETI the ⊥-momentum of these

Glauber exchanges is at a larger scale than the ultrasoft Wilson lines, and hence is

not related to fixing their direction in the same manner.)

We will refer to the above properties of Glaubers in hard scattering diagrams as the

Cheshire nature of the Glauber exchange.

10.1 One loop hard matching with Glaubers

In this section we discuss the Cheshire nature of the Glauber at one-loop. For SCETII

the Glauber subtractions S(G) are explicitly nonzero for soft diagrams involving pairs of

soft Wilson lines that are both outgoing or both incoming, and we will see the precise
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Figure 28. One loop soft gluon and Glauber potential exchange with a hard scattering vertex ⊗
in SCETII. The solid green lines denote eikonal propagators from soft Wilson lines. Graphs a) and

b) are for 2-particle production, while c) and d) involve hard scattering with one incoming and one

outgoing particle. The graph d) is zero.

connection between the subtractions, active-active Glauber graphs, and the direction of

soft Wilson lines. For completeness we also discuss how things change when considering

loop graphs in SCETI.

We begin our discussion in SCETII, considering the one-loop graphs shown in figure 28

with a mass IR regulator m. We take the physical momenta to be p for the n-collinear

quark, and p̄ for the n̄-collinear (anti)quark. The soft diagrams drawn here arise from the

contraction between two gluons taken from the soft Wilson lines that appear in the SCET

hard current

JΓ = (ξ̄nWn)S†nΓSn̄(W †n̄ξn̄) . (10.1)

The usual directions taken for the soft Wilson lines in this current are both (0,∞) for n-n̄

production as in figure 28a, while we have Sn̄(−∞, 0) and S†n(0,∞) when the n̄ quark is

in the initial state, as in figure 28c. For the n-n̄ annihilation case (not shown) we would

have both lines over (−∞, 0). (See appendix B.4 for explicit formulas for the Wilson lines

in these cases.) Often in SCET one would draw the soft diagram in figure 28a with the

eikonal lines contracted to a point. However, for clarity we leave these extended as solid

green lines since at higher orders drawing things in this way allows us to make explicit

the ordering of the color matrices in our diagrams, and also corresponds with the standard

directions for the Wilson lines mentioned above.

First consider n-n̄ production in SCETII, defining the spinor matrix element

SΓ = ūnΓv∗n̄ , (10.2)

where the complex conjugation on vn̄ appears due to our convention for the antiquark

spinors. The naive loop integral with a soft gluon exchange is

S̃(figure 28a) = −2ig2CFSΓ

∫
d−dk

(ιεµ2ε |kz|−η νη)

[k2 −m2][n · k + i0][n̄ · k − i0]
(10.3)

= 2g2CFSΓ

∫
d−kz d−d

′
k⊥

[ −(ιεµ2ε |kz|−η νη)

2(~k 2 +m2)1/2(~k 2
⊥ +m2)

+
(ιεµ2ε |kz|−η νη)

(~k 2
⊥ +m2)(2kz − i0)

]

= SΓ
CFαs

2π

{[−2h(ε, µ2/m2)

η
+ ln

µ2

ν2

(
1

ε
+ ln

µ2

m2

)
+

1

ε2
− 1

2
ln2 µ2

m2
− π2

12

]

+

[
(iπ)

(
1

ε
+ ln

µ2

m2

)]}

– 122 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
5

= SΓ
CFαs

2π

[−2h(ε, µ2/m2)

η
+ln

µ2

−ν2−i0

(
1

ε
+ln

µ2

m2

)
+

1

ε2
− 1

2
ln2 µ2

m2
− π

2

12

]
,

where d′ = d − 2 = 2 − 2ε. In writing down eq. (10.3) we are using the notation where a

tilde over a symbol, such as S̃, denotes a completely unsubtracted integral, which we will

refer to as the naive or unsubtracted result. To obtain the second line of eq. (10.3) we

evaluated the integrand by contours in k0, obtaining the first term from the pole from the

relativistic propagator k0 = −(~k 2 +m2)1/2 + i0, and the second term proportional to (iπ)

from the pole in the eikonal propagator k0 = −kz + i0. The result for these integrals is

shown separately in the third equality, and can be combined by introducing a (−1 − i0)

in the rapidity logarithm, as shown in the final line. If we consider the Glauber zero-bin

subtraction integral for this soft loop, then we have

S(G)(figure 28a) = −2ig2CF SΓ

∫
d−dk

(ιεµ2ε |kz|−η νη)
[k2
⊥ −m2][n · k + i0][n̄ · k − i0]

= 2g2CFSΓ

∫
d−kz d−d

′
k⊥

(ιεµ2ε |kz|−η νη)
(~k 2
⊥ +m2)(2kz − i0)

= SΓ
CFαs

2π

[
(iπ)

(
1

ε
+ ln

µ2

m2

)]
. (10.4)

Therefore the full result for the soft graph in a theory with Glauber exchange is given by

the result without the (iπ) contribution

S(figure 28a) = S̃ − S(G) (10.5)

= SΓ
CFαs

2π

[−2h(ε, µ2/m2)

η
+ ln

µ2

ν2

(
1

ε
+ ln

µ2

m2

)
+

1

ε2
− 1

2
ln2 µ2

m2
− π2

12

]
.

To this we must then also add the result for the Glauber exchange graph in figure 28b,

which exactly gives the same (iπ) term

G(figure 28b) = −2ig2CF SΓ

∫
d−dk

(ιεµ2ε |kz|−η νη)

[k2
⊥ −m2][n · k −∆(k⊥) + i0][n̄ · k + ∆̄′(k⊥)− i0]

= SΓ
CFαs

2π

[
(iπ)

(
1

ε
+ ln

µ2

m2

)]
, (10.6)

where ∆(k⊥) = −n · p + (~k⊥ + ~p⊥)2/n̄ · p and ∆̄′(k⊥) = −n̄ · p̄ + (~k⊥ − ~p⊥)2/n · p̄. Note

that this is the same integral evaluated in eq. (5.31), so the values of ∆(k⊥) and ∆̄′(k⊥)

do not affect the result for this integral, and hence it yields precisely the same value as in

eq. (10.4). From this analysis we see that

S(G) = G , S +G = (S̃ − S(G)) +G = S̃ . (10.7)

When we include the Glauber gluon in SCETII the result for the soft graph is (S̃ − S(G))

and is insensitive to the (iπ) term that was generated from the choice of directions of the

soft Wilson lines. Physically, the (iπ) term is generated by the Glauber momentum region

and hence occurs in G.
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Alternatively, when we added up the soft and Glauber graphs in eq. (10.7) the sum

just reproduces the naive soft result S̃. If we had not considered Glauber gluons as

degrees of freedom in SCETII, then we would arrive at the same result, since the soft

graph would simply give S̃. Therefore the Glauber gluon is Cheshire, it is not directly

visible as a distinct degree of freedom in this loop integrand at the level of matching. If

all loop integrands behaved in this manner, then we could simply absorb the Glauber

exchange into our soft degree of freedom. We will see that this pattern persists for hard

scattering graphs (active-active graphs), but is not the case once we consider graphs

with spectator quarks or gluons, where some Glauber exchange can be absorbed into

collinear Wilson lines, while others cannot be absorbed at all. The fact that for partons in

hard scattering the active-active Glauber contributions can be absorbed into soft Wilson

lines is consistent with the contour deformation picture of CSS, where the combined

soft+Glauber loop integral is deformed away from the Glauber region for active-active

diagrams, and then further expanded to leave only contributions from what we call the

naive soft region [21, 31]. Similar logic to that of CSS was used to avoid having Glaubers

in the amplitude level factorization theorem for final state particle production in [119].

Note that with the SCET operators we can still choose to treat the Glauber exchange as

specific non-vanishing contributions which describe amplitude level rescattering phases,

even for e+e− annihilating into just final state strongly interacting particles.

Next consider how the above one-loop SCETII analysis changes for the case with one

incoming and one outgoing collinear quark, hard scattering from n to n̄. Repeating the

above calculations for the graphs relevant to this case, we have

S̃(figure 28c) = −2ig2CF ūnΓun̄

∫
d−dk

(ιεµ2ε |kz|−η νη)

[k2 −m2][n · k + i0][n̄ · k + i0]
(10.8)

= 2g2CF ūnΓun̄

∫
d−kz d−d

′
k⊥

[ −(ιεµ2ε |kz|−η νη)

2(~k 2 +m2)1/2(~k 2
⊥ +m2)

]
= ūnΓun̄

αsCF
2π

[−2h(ε, µ2/m2)

η
+ ln

µ2

ν2

(
1

ε
+ ln

µ2

m2

)
+

1

ε2
− 1

2
ln2 µ2

m2
− π2

12

]
,

S(G)(figure 28c) = −2ig2CF ūnΓun̄

∫
d−dk

(ιεµ2ε |kz|−η νη)

[k2
⊥ −m2][n · k + i0][n̄ · k + i0]

= 0 ,

G(figure 28d) = −2ig2CF ūnΓun̄

∫
d−dk

(ιεµ2ε |kz|−η νη)

[k2
⊥ −m2][n · k −∆(k⊥) + i0][n̄ · k − ∆̄(k⊥) + i0]

= 0 .

Here both eikonal poles lie on the same side of the k0 contour, and hence do not contribute.

This leads to there being no (iπ) terms in the naive soft graph S̃, as well as yielding

S(G) = G = 0. Physically, the absence of a Glauber exchange contribution here occurs

because there is no time at which freely propagating n-collinear and n̄-collinear particles

exist simultaneously. Therefore, here the full soft result is the same as the naive soft result,

S(figure 28c) = S̃(figure 28c). Once again the result is the same whether or not Glauber

exchange is included in the theory. For incoming and outgoing collinear antiquarks, or

collinear gluons we would also find the same results as in this case, S = S̃ and S(G) = G = 0.

On the other hand, for an incoming collinear quark and antiquark, or two incoming or

outgoing n-n̄ collinear gluons, the situation is the same as in eq. (10.7) with S(G) = G both

given by a nonzero (iπ) term.
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Note that the result S(G) = G for these active-active diagrams, and the fact that

these Glauber exchanges can be absorbed into the soft region, relies on using the physical

directions for the soft Wilson lines S†n and Sn̄.15 When considering SCET without Glauber

gluons these directions are often determined by those of their parent collinear particles

and the structure of the product of operators being considered [120, 121]. In the theory

with Glauber gluons, the choice for the direction of the soft Wilson lines is not relevant,

since this dependence is instead captured by contributions from the Glauber region. In the

calculation above we see explicitly that the choice of direction of the soft lines does not

change the one-loop result for S̃ − S(G). Any change to S̃, such as picking one incoming

and one outgoing line for n-n̄ production, is compensated by a corresponding change to

S(G), since the 0-bin in SCET implies that the original integrand and its subtractions are

always defined with Wilson lines in the same directions. Also, there is no choice to be

made for the i0s in the Glauber propagators, since they simply come from the physically

propagating collinear modes.

It is also worth recalling that these (iπ) terms from SCET play a role in determining

the hard matching coefficients C for the current in eq. (10.1), which are related to the

ultraviolet parts of time-like and space-like form factors. For SCETII, in addition to the

soft and Glauber graphs, the matching calculation for the production current involves the

collinear graphs,

n

n

n

n +

n

nn

n
+ (Zξ − 1)

n

n

= SΓ
αsCF

2π

[
2h(ε, µ2/m2)

η
+ ln

(
ν2

s

){
1

ε
+ ln

µ2

m2

}
+

3

2ε
+

3

2
ln
µ2

m2
+

9

4
− π2

3

]
, (10.9)

where s = p−p̄+ and the p− dependence comes from the n-collinear loop, while the p̄+

dependence comes from the n̄-collinear loop. We recall from the calculation in section 7.1

that the subtractions for these collinear graphs all vanish, but are not scaleless, at one-

loop with our regulators. Adding eq. (10.9) together with the result for S + G = S̃ from

eq. (10.3), and simplifying, gives the bare result and MS counterterm

SCETprod = SΓ
αsCF

2π

[
1

ε2
+

1

ε
ln
µ2

−s +
3

2ε
+

1

2
ln2

(
µ2

−s

)
− 1

2
ln2

(−s
m2

)
+

3

2
ln
µ2

m2
+

9

4
− 5π2

12

]
,

ZC = 1 +
αsCF

2π

[
− 1

ε2
− 1

ε
ln
µ2

−s −
3

2ε

]
. (10.10)

Here the (iπ) SCET terms which arise from the direction of the soft Wilson lines and/or

Glauber exchange are necessary to yield the ln(−s − i0) dependence. This result can be

compared to the full theory one-loop vertex and wavefunction graphs with the mass infrared

15More precisely, the 1-loop calculation distinguishes in-in and out-out from in-out lines. A calculation

with an additional soft emission, done below in section 10.2, also distinguishes out-out from in-in.
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regulator, which combine to give

Fullprod = SΓ
αsCF

2π

[
− 1

2
ln2

(−s
m2

)
+

3

2
ln

(−s
m2

)
− 7

4
− π2

3

]
. (10.11)

Again the full theory has ln(−s− i0) dependence, and in particular for s > 0 we see that

there is a (iπ) ln(s/m2) term involving an infrared divergence in both SCET and the full

theory, which agree. Subtracting Fullprod−(SCETprod+(ZC − 1)SΓ) allows us to compute

the (standard) result for the SCET Wilson coefficient [122, 123]

C(s, µ) = 1 +
αsCF

2π

[
− 1

2
ln2

(
µ2

−s

)
− 3

2
ln

(
µ2

−s

)
− 4 +

π2

12

]
. (10.12)

This result for C(s, µ) is independent of the choice for the IR regulator, and corresponds

with the infrared finite parts of the time-like form factor as expected. For the spacelike

case with one incoming and one outgoing quark, we use the soft result from eq. (10.8),

the collinear results in eq. (10.9) remain unchanged, while for eqs. (10.10), (10.11), (10.12)

the corresponding results are obtained by simply taking (−s)→ s. The Wilson coefficient

C = C(−s, µ) obtained for this case corresponds with the spacelike form factor. The total

SCET result in eq. (10.10) agrees with that in [124] where a different rapidity regulator

was used for the soft and collinear components.

Next consider how the analysis of the one-loop n-n̄ hard production and hard scattering

are different for SCETI. In the case of SCETI, with ultrasoft and soft modes, and Glauber

exchange at the scale of the soft modes, several things change in the above picture. Here,

there are no soft Wilson lines in the hard scattering operator, but instead we have ultrasoft

Wilson lines Y †n and Yn̄ (after the BPS field redefinition)

JΓ = (ξ̄nWn)Y †nΓYn̄(W †n̄ξn̄) . (10.13)

The ultrasoft Wilson lines are generated from the BPS field redefinition [29]. In the calcula-

tion of S-matrix elements, the direction of the combined ultrasoft lines is determined by the

product of ultrasoft lines generated by JΓ and by the interpolating fields for the incoming

and outgoing states (or equivalently those of the external collinear particles) [120, 121]. The

directions for the ultrasoft Wilson lines in the S-matrix elements are then both (0,∞) for

n-n̄ production, while we have Yn̄(−∞, 0) and Y †n (0,∞) for the n-n̄ quark scattering. If we

had included both soft and ultrasoft Wilson lines for the current in eq. (10.13), then due to

the kinematics present for SCETI applications, we can (effectively) simply absorb the scale-

less graphs involving these soft Wilson lines into analogous graphs involving the ultrasoft

lines in the hard production current, replacing χ̄nY
†
nS
†
nΓSn̄Yn̄χn̄ by the JΓ = χ̄nY

†
nΓYn̄χn̄

shown in eq. (10.13). The appropriate IR regulator now sits at the ultrasoft scale, kµ ∼ λ2,

so we drop the mass m from the soft loop calculation, and the results for the hard scattering

S̃ in eqs. (10.3) and (10.8) become scaleless. These scaleless integrals are exactly canceled

by the ultrasoft 0-bin subtractions, and hence here the soft modes can be absorbed into the

ultrasoft modes, and simply act to pull these ultrasoft modes up so that their ultraviolet

divergences occur at the hard scale [125]. So if we did include soft Wilson lines, then the
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subtractions on the soft graphs always yield zero for these diagrams, S − S(U) = 0 and

S(G) − S(G)(U) = 0, so that the subtractions cancel the soft lines.

Next consider the Glauber loop graph in SCETI. For SCETI the (iπ) terms in the EFT

are actually entirely reproduced by the ultrasoft region, and not by the Glauber region. Let

us reinterpret figure 28 where now the green gluons and eikonal lines represent the ultrasoft

Wilson lines. Here there are no subtractions on the ultrasoft diagram since the Glaubers

have larger ⊥-momenta, but there are ultrasoft subtractions on the Glauber diagrams, see

eq. (5.51). For n-n̄ production in SCETI Glauber loop integrals with k⊥ ∼ λ also become

scaleless and hence are also exactly canceled by their ultrasoft 0-bin subtraction,

G̃(figure 28b) = −2ig2CF SΓ

∫
d−dk

(ιεµ2ε |kz|−η νη)
[k2
⊥][n · k −∆(k⊥) + i0][n̄ · k + ∆̄′(k⊥)− i0]

= SΓ
CFαs

2π

[
(iπ)

(
1

ε
− 1

εIR

)]
= G(U)(figure 28b) ,

G̃−G(U) = 0 . (10.14)

Here the ∆s can also depend on the offshellness regulators. The result in eq. (10.14) agrees

with the SCETI calculation with Glauber contributions in ref. [40]. For the n-n̄ scattering

graph or n-n̄ annihilation we also have G = G(U) = 0. Therefore for all cases in SCETI the

Glauber graphs G = G̃−G(U) do not contribute, and hence the result for the one-loop hard

scattering SCET graphs are the same with or without the inclusion of Glauber gluons. In

this situation the (iπ) factors are carried by the ultrasoft diagrams. Again these factors

are necessary to correctly reproduce the hard scattering Wilson coefficients in eq. (10.12),

which for this current are the same in SCETI as in SCETII.

10.2 One loop soft real emission for soft-Glauber correspondence

We next show that the correspondence between Glauber contributions and Glauber sub-

tractions for soft graphs discussed in section 10.1, also holds for the situation with two

active quarks participating in a hard interaction plus one soft gluon emission. In this

section we only consider SCETII. This soft emission case is interesting because there are

three different physical situations, corresponding to an outgoing quark/antiquark pair, an

incoming and then outgoing quark, or an incoming quark/antiquark pair. We will refer to

these as ee, ep and pp respectively, since the underlying hard scattering would be relevant

for each of these three hard collision processes. Since our soft gluon is always outgoing,

these processes involve either 3 outgoing particles, 2 outgoing and 1 incoming particle, or

1 outgoing and 2 incoming particles. The relevant diagrams with soft or Glauber loops are

shown in figures 29, 30, and 31. As usual, these SCET graphs also contain subtraction con-

tributions as in eq. (5.50). In the case being considered here these subtractions ensure that

the soft propagators in the loop are truly soft, and hence do not give contributions from the

region where the propagators momentum becomes Glauber. Based on the physical picture

advocated in earlier sections, we could immediately determine that some of the Glauber ex-

change diagrams are zero. Here we prefer to list all the diagrams and save the discussion of

this physical interpretation for determining the nonzero diagrams to the end of this section.
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Figure 29. Single soft emission graphs for an e+e− annihilation current with a soft or Glauber

loop. Solid green lines are eikonal propagators from soft Wilson lines, dashed black lines are collinear

propagators, springs are soft gluons, and Glauber exchange is a dotted red line.
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Figure 30. Single soft emission graphs for a e−p hard scattering current with a soft or Glauber

loop. Of the Glauber loop graphs displayed here, only Gep6 is nonzero.
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Figure 31. Single soft emission graphs for a pp quark annihilation current with a soft or Glauber

loop. Of the Glauber loop graphs shown here, only Gpp1,2,3 are nonzero.

The contribution of the ith diagram from figures 29–31 can be written as

iAchan
i = (iπ)

g3

π
TA
(
nµ

n·k −
n̄ν

n̄·k

)[
− 1

2
achan
i CA n·k n̄·k I(1)

⊥ (k⊥) + bchan
i CF I

(0)
⊥ −

1

2
cchan
i CAI

(0)
⊥

]
.

(10.15)

Here k is the outgoing momentum of the soft gluon which has color A and vector index µ,

and the integrals that appear are

I
(0)
⊥ =

∫
d−d−2`⊥ (ιεµ2ε)

~̀2
⊥ +m2

, I
(1)
⊥ (k⊥) =

∫
d−d−2`⊥ (ιεµ2ε)2

(~̀2
⊥ +m2)

[
(~̀⊥ + ~k⊥)2 +m2

] , (10.16)

to which we can also freely add a suitable IR regulator. For example, with the displayed

gluon mass m the integral I
(0)
⊥ is not scaleless. The only diagram and channel dependent

factors in eq. (10.15) are the constants achan
i , bchan

i , cchan
i , where i determines which Glauber

or soft diagram is being considered, and chan = ee, ep, or pp.

In table 3 we show the results for the achan
i , bchan

i , and cchan
i coefficients for the Glauber

graphs Gi for each of the three processes. We also show results for the terms we wish to

compare them to, namely the results for the Glauber subtractions S
(j)
i of the soft graphs

Si. As usual, the subtractions (j) are determined by considering all possible n-n̄, s-n, and

s-n̄ Glauber limits of the soft gluon propagators (see table 1). These subtractions are in

one-to-one correspondence with Glauber limits of the soft eikonal propagators, so we enu-

merate the subtractions by letting the superscript (j) indicate which eikonal propagator(s)
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G1 G2+3 G4+5 G6 G7 S
(2,3)
1 S

(23)
1 S

(13,24)
2+3 S

(23)
2+3 S

(1,...,4)
2+3 S

(23)
4+5 S

(2,3)
4+5 S

(1,4)
6+7

CAI
(1)
⊥ : aeei − 1

4 0 0 + 1
4 + 1

4 + 1
2 − 1

4 0 0 0 0 0 0

aepi 0 0 0 + 1
4 0 + 1

4 0 0 0 0 0 0 0

appi − 1
4 0 0 0 0 0 − 1

4 0 0 0 0 0 0

CF I
(0)
⊥ : beei 0 − 1

2 0 0 0 0 0 − 1
2 + 1

2 − 1
2 − 1

2 + 1
2 0

bepi 0 0 0 0 0 0 0 0 0 − 1
2
∗ 0 + 1

2
∗ 0

bppi 0 − 1
2 0 0 0 0 0 − 1

2 + 1
2 0 − 1

2 0 0

CAI
(0)
⊥ : ceei + 1

2 − 1
2 0 0 0 + 1

4 0 − 1
2 + 1

2 − 1
2 0 0 + 1

4

cepi 0 0 0 0 0 + 1
4
∗ 0 0 0 − 1

2
∗ 0 0 + 1

4
∗

cppi + 1
2 − 1

2 0 0 0 0 0 − 1
2 + 1

2 0 0 0 0

Table 3. Final results for the coefficients appearing in eq. (10.15) for the Glauber graphs and

subtractions for Soft graphs in figures 29, 30, and 31. Here the ∗ superscript indicates results which

should have n̄µ → 0 in the prefactor they multiply. These terms are not gauge invariant on their

own, but sum to zero.

are taken to be near mass shell with virtuality of order λ2. For example, S
(2)
1 is the graph

S1 with propagator 2’s momentum taken to have scaling of λ2. In general both the Glauber

loop graphs Gi and soft loop graphs Si will have Glauber subtractions to ensure that soft

propagators are truly soft. Since different Glauber limits for the soft graphs may overlap,

the soft diagrams may also contain double subtractions that remove the overlapping con-

tributions. We use a double superscript to denote these double subtractions. For example,

if we are considering the limit where the 3 propagator is going on-shell S(3) then we must

add back the contribution where 2 also goes on shell since that contribution is part of S(23).

Thus S(3)(2) corresponds to the contribution that must be added back to ensure that we

are not over-subtracting. Since our discussion here is focused on the subtractions them-

selves, it is convenient to include these double subtractions into the soft single subtraction

results. With this convention the result for the full soft graph in SCET is obtained by the

naive soft graph S̃i minus just these single subtractions. The Glauber loop graphs Gi do

not have double subtractions and hence are also obtained by removing single subtraction

contributions from the naive contribution G̃i,

Si = S̃i −
∑
j

S
(j)
i , Gi = G̃i −

∑
j

G
(j)
i . (10.17)

We will detail the double subtraction results contained in each S
(j)
i below. In several cases

the column labels in table 3 indicate a sum of diagrams:

G2+3 = G2 +G3 , G4+5 = G4 +G5 ,

S
(2,3)
1 = S

(2)
1 + S

(3)
1 , S

(13,24)
2+3 = S

(13)
2 + S

(24)
3 ,

S
(23)
2+3 = S

(23)
2 + S

(23)
3 , S

(1,2,3,4)
2+3 = S

(1)
2 + S

(2)
2 + S

(3)
2 + S

(2)
3 + S

(3)
3 + S

(4)
3 ,

S
(23)
4+5 = S

(23)
4 + S

(23)
5 , S

(2,3)
4+5 = S

(2)
4 + S

(3)
4 + S

(2)
5 + S

(3)
5 ,

S
(1,4)
6+7 = S

(1)
6 + S

(4)
7 . (10.18)
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For the Glauber loop graphs Gi, only G6 and G7 have nonzero subtractions. Therefore

the results we obtain for the graphs G1,··· ,5 are simply given in table 3. Note that G2,4 and

G3,5 produce the nµ and n̄µ structures in eq. (10.15) respectively, while G1 alone produces

both of these structures. For G6,7 we have

G6 = G̃6 −G(3)
6 , G7 = G̃7 −G(4)

7

aeei :
1

4
= 0 +

1

4
,

1

4
= 0 +

1

4
,

aepi :
1

4
=

1

4
+ 0 , 0 = 0 + 0 , (10.19)

appi : 0 = −1

4
+

1

4
, 0 = −1

4
+

1

4
.

The bchan
i and cchan

i coefficients are all zero for G̃6, G̃7, G
(3)
6 , and G

(4)
7 .

For the soft subtractions the nonzero double subtractions for S1 are given by

S
(2)
1 = S̃

(2)
1 − S̃(2)(3)

1 , S
(3)
1 = S̃

(3)
1 − S̃(3)(2)

1

aeei :
1

4
= 0 +

1

4
,

1

4
= 0 +

1

4
,

aepi :
1

4
=

1

4
+ 0 , 0 = 0 + 0 ,

appi : 0 = −1

4
+

1

4
, 0 = −1

4
+

1

4
, (10.20)

ceei :
1n

4
=

1n

4
+ 0 ,

1n̄

4
=

1n̄

4
+ 0 ,

cepi :
1n

4
=

1n

4
+ 0 , 0 = 0 + 0 ,

cppi : 0 = 0 + 0 , 0 = 0 + 0 .

Here the coefficients with a n or n̄ superscript only contribute to the nµ or n̄µ structures in

eq. (10.15) respectively, while all others give the full (nµ/n ·k− n̄µ/n̄ ·k) combination. The

S2 and S3 graphs and their subtractions only contribute to nµ and n̄µ respectively, and do

not have any achan
i contributions. For S2, the terms with nonzero double subtractions are

S
(3)
2 = S̃

(3)
2 − S̃(3)(1)

2 − S̃(3)(2)
2 , S

(2)
2 = S̃

(2)
2 − S̃(2)(3)

2 , S
(1)
2 = S̃

(1)
2 − S̃(1)(3)

2

beei = ceei : 0 = 0 +
1

2
− 1

2
, −1

2
= 0 − 1

2
, 0 = −1

2
+

1

2
,

bepi = cepi : 0 = 0 + 0 + 0 , −1

2
= −1

2
+ 0 , 0 = 0 + 0 ,

(10.21)

bppi = cepi : 0 = 0 +
1

2
− 1

2
, 0 =

1

2
− 1

2
, 0 = −1

2
+

1

2
,
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and except for the ep terms we have the same results for S3,

S
(2)
3 = S̃

(2)
3 − S̃(2)(4)

3 − S̃(2)(3)
3 , S

(3)
3 = S̃

(3)
3 − S̃(3)(2)

3 , S
(4)
3 = S̃

(4)
3 − S̃(4)(2)

3

beei = ceei : 0 = 0 +
1

2
− 1

2
, −1

2
= 0 − 1

2
, 0 = −1

2
+

1

2
,

bepi = cepi : 0 = 0 + 0 + 0 , 0 = 0 + 0 , 0 = 0 + 0 ,

(10.22)

bppi = cepi : 0 = 0 +
1

2
− 1

2
, 0 =

1

2
− 1

2
, 0 = −1

2
+

1

2
.

Together these S2,3 results give the anticipated gauge invariant combination, (nµ/n · k −
n̄µ/n̄ · k), except in the ep channel (where the full results sum to zero). The S4 and S5

graphs and their subtractions only give contributions to nµ and n̄µ respectively, and due

to their color structure their coefficients achan
i and cchan

i are all zero. The nonzero double

subtractions for S4 are

S
(2)
4 = S̃

(2)
4 − S̃(2)(3)

4 , S
(3)
4 = S̃

(3)
4 − S̃(3)(2)

4

beei :
1

2
= 0 +

1

2
, 0 = −1

2
+

1

2
,

bepi :
1

2
=

1

2
+ 0 , 0 = 0 + 0 , (10.23)

bppi : 0 = −1

2
+

1

2
, 0 = −1

2
+

1

2
,

and again except for the ep terms we have the same nonzero double subtractions for S5,

S
(2)
5 = S̃

(2)
5 − S̃(2)(3)

5 , S
(3)
5 = S̃

(3)
5 − S̃(3)(2)

5

beei :
1

2
= 0 +

1

2
, 0 = −1

2
+

1

2
,

bepi : 0 = 0 + 0 , 0 = 0 + 0 , (10.24)

bppi : 0 = −1

2
+

1

2
, 0 = −1

2
+

1

2
.

Again, together the S4,5 results give the anticipated gauge invariant combination, (nµ/n ·
k − n̄µ/n̄ · k), except in the ep channel (where the full results sum to zero).

Note that when there is a nonzero subtraction term, there is always an SCET diagram

for that same region which the subtraction is ensuring we do not double count. All together

the results detailed in eqs. (10.19)–(10.24) contribute to the final results given in table 3.

Recall that the physical picture for the Glauber exchange was that of an instantaneous

interaction in both time and longitudinal position, or equivalently in the light-like time

for each of the forward scattering particles. This picture allows us to immediately predict

which of the entries in table 3 could be nonzero, since the scattering particles must be

allowed to interact through an instantaneous exchange of this type, and hence must both

be present on trajectories that can interact in spacetime. To carry out this analysis we

shrink the green eikonal lines down to the same point as the hard scattering operator. For

the ee diagrams in figure 29 we have exchanges between n-n̄, n-s, or n̄-s particles, all of
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which exist on a final state trajectory, and hence all the Glauber exchanges are physically

allowed. In this case all Glauber exchange diagrams have nonzero contributions in table 3

except for Gee4 and Gee5 . These two vanish because we are using Feynman gauge for the

soft gluon propagator and the n (or n̄) polarization from the Wilson line has a vanishing

contraction with the polarizations for the forward scattering soft gluon in the Glauber

exchange operator. For the ep diagrams the graphs Gep1 , Gep2 , Gep3 , Gep5 , and Gep7 all involve

Glaubers between lines that are in the initial and final states, and hence vanish. Here Gep6
is allowed and nonzero, and Gep4 is allowed but vanishes for the same reason as in the ee

case. Finally, for pp we have initial-final state interactions for graphs Gpp4 , Gpp5 , Gpp6 , and

Gpp7 which all give vanishing contributions. Here it is particularly obvious that we need to

shrink the soft eikonal line to a point before coming to this conclusion. On the other hand

the graphs Gpp1 , Gpp2 , and Gpp3 are all allowed and are nonzero.

Separately adding the results for the Gi and S
(j)
i in the rows of table 3, we see that

the net contribution obtained from the sum of graphs with Glauber operators is the same

as the sum of the subtraction limits of the soft graphs, as anticipated. Thus once again

G = S(G) and the same result will be obtained for these amplitudes in the theory with or

without Glauber operators. To summarize these results we can define

achan ≡
∑
i

achan
Gi =

∑
i,j

achan

S
(j)
i

, bchan ≡
∑
i

bchan
Gi =

∑
i,j

bchan

S
(j)
i

,

cchan ≡
∑
i

cchan
Gi =

∑
i,j

cchan

S
(j)
i

, (10.25)

where chan= ee, ep, pp and the values in table 3 give

aee = +
1

4
, bee = −1

2
, cee = 0 , (10.26)

aep = +
1

4
, bep = 0 , cep = 0 ,

app = −1

4
, bpp = −1

2
, cpp = 0 .

In ref. [60], the results for the soft graphs without subtractions, S̃i were calculated

for the processes denoted as ee, ep, and pp in the context of computing the one-loop soft

current. For the non-abelian channel they were found to contain both real contributions and

(iπ) terms, while the abelian channel obeys the expected soft-theorem.16 In our notation

their results for the (iπ) terms can be summarized by defining

achan
S̃

=
∑
i

achan
S̃i

, bchan
S̃

=
∑
i

bchan
S̃i

, cchan
S̃

=
∑
i

cchan
S̃i

, (10.27)

for which the results are

aee
S̃

= +
1

4
, bee

S̃
= −1

2
, aep

S̃
= +

1

4
, bep

S̃
= 0 , app

S̃
= −1

4
, bpp

S̃
= −1

2
, (10.28)

16In particular, the nonzero results for bee
S̃

and bpp
S̃

in eq. (10.28) correspond to the values needed to

yield the product of the soft one-loop amplitude with no emissions from eqs. (10.3) and (10.8), times the

O(g) tree level soft emission.
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while cchan
S̃

= 0 in all cases. These same (iπ) terms were recently also obtained by ref. [126]

in the context of computing the channel dependence of the two-loop ultrasoft function

involving lines in two collinear directions.17 Comparing eqs. (10.26) and (10.28) we see that

achan = achan
S̃

, bchan = bchan
S̃

, cchan = cchan
S̃

, (10.29)

so the (iπ) terms from the naive soft diagrams agrees exactly with the soft subtractions.

Therefore, in SCET with Glauber operators, the full soft diagrams, Si = S̃i − S(G),

are completely free of (iπ) contributions as anticipated. All (iπ) terms are correctly

reproduced by the Glauber exchange diagrams in the SCETII calculation.

Let us take as a given that the two correspondences discussed here, that S(G) = G and

that the graphs with Glauber exchange give the (iπ) terms in S̃, remain true for active

partons to all orders. It is then interesting to note that the simplest method of computing

these (iπ) terms is by making use of the the Gi Glauber diagrams. These diagrams have

loop integrals that are very simple to evaluate since the (iπ) contribution is always directly

obtained by the k± integrations.

The physical picture that the (iπ) terms that are in the EFT are generated from the

region of momenta described by Glauber loops in SCETII makes it very plausible that for

hard scattering diagrams this correspondence remains true to all orders.

We could also reconsider this single emission calculation in SCETI. Since there are

phase space restrictions that do not allow soft emissions in this theory, we take the emission

to be ultrasoft. Analogs of the purely soft diagrams Schan
i in SCETII now exist as purely

ultrasoft diagrams in SCETI. If we include soft Wilson lines in the current, and consider a

soft loop with an ultrasoft emission, then the emission only occurs outside the loop at lead-

ing power, and the loop is canceled by subtractions, consistent with just using eq. (10.13).

Finally, we can consider graphs with a single ultrasoft gluon emission in the presence of

a Glauber exchange. These graphs are either zero or are fully canceled by their ultrasoft

subtraction, reproducing a similar pattern to what we saw for SCETI in section 10.1,

namely that the contributions are all contained in the purely ultrasoft diagrams.

10.3 Hard matching at two-loops and higher orders

Let us consider how the observations of the previous two sections generalize to higher orders

and to hard vertices with additional real emissions. In particular we wish to show that for

higher order active-active graphs in SCETII, diagrams with Glauber operator insertions

continue to go hand-in-hand with the Glauber 0-bin subtractions on soft diagrams. Again,

the same results will be obtained for the sum of these SCET loop graphs whether or not

Glauber operators and the subtractions are included or neglected. Our focus here will

be on two-loop graphs with soft or Glauber loop momenta, which brings in new types of

17The terms with bchan and cchan were not discussed in ref. [126] because the I
(0)
⊥ integral is scaleless for

the SCETI regulators used there.
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diagrams with Glauber operators, such as those with the Lipatov vertex or soft-collinear

forward scattering.18

For this analysis we are interested in the equality of Glauber loop graphs with the

Glauber subtractions on soft graphs. Since this can be established at the integrand level

we will not bother to write out explicitly the infrared regulator m2 in this section.19 It is

important to note that the SCETII Glauber and soft graphs considered below should be

considered to have an infrared scale set by m ∼ λ, and hence are not scaleless.

10.3.1 Two loop abelian soft-Glauber correspondence

First we consider the SCETII diagrams for n-n̄ production that have abelian contributions

at two-loops, which are shown in figure 32. Both the soft box and soft cross-box graphs

have abelian contributions with color factor C2
F , while the cross-box also contributes to

the non-abelian CFCA terms to be considered below. A crossed graph with two Glauber

exchanges does exist as discussed in section 5.2.1, but is not shown since it still evaluates

to zero for the reasons discussed there, even within higher order loop graphs. Mixed soft

Glauber graphs can only arise from time ordered products of a Glauber operator and the

hard matching current in eq. (10.1) so the Glauber vertex can only enter outside the soft

interactions. Therefore there are no graphs where a Glauber gluon is nested inside of the

soft loop at leading power, and20

n

n

SG
does not exist.

For the same reason there are no crossed boxes involving mixed Glauber and soft gluon

rungs.

The two-loop soft diagrams have subtractions when the various soft gluon propagators

scale into a Glauber region. As in the one-loop soft emission analysis of the previous section,

an equivalent enumeration of the relevant zero-bin limits can be given with the eikonal

propagators appearing in these soft diagrams. We therefore enumerate the subtractions by

considering cases where eikonal propagators with momentum k± ∼ λ scale into the Glauber

region with k± ∼ λ2. For eikonal factors in the Sn line one takes k+ ∼ λ2 in order to scale

into the Glauber region, whereas for eikonal factors in the Sn̄ line one takes k− ∼ λ2.

Referring to the propagator numbering in figure 32a, the relevant Glauber limits for the

two-loop diagrams can be enumerated as (14), (23), (13), (24), (1234), where the numbers

18While there is no correspondence between naive Collinear graphs and Glauber subtractions at one-loop

for hard scattering graphs, a correspondence can appear at two-loops. We will discuss this correspondence

for active-spectator graphs in section 11.2, since in this situation it appears already at one-loop.
19It is also well known that care must be taken with a gluon mass infrared regulator at 2-loops, since a

simple gluon mass spoils gauge invariance.
20This can be seen easily by noting that the soft emission could also be written as coming from a Wilson

line at the vertex, often pictured by contracting the eikonal lines to a point. Glauber interactions are not

part of this soft Wilson line.
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Figure 32. Two loop graphs that have abelian contributions and either soft gluons or Glauber

exchange with a hard scattering vertex ⊗ in SCETII. We refer to these graphs as S1, S2, SG, and

G, and we number the collinear/eikonal fermion propagators (1), (2), (3), (4) as shown.

refer to which eikonal propagators have a modified scaling for their momentum. Once again

the relevant Glauber subtraction limits occur for cases where there is a corresponding SCET

Glauber diagram, and hence ensure there is no double counting. The results for the graphs

with soft momenta after subtractions are then

Si = S̃i −
[
S

(G23)
i − S(G23)(G14)

i

]
−
[
S

(G14)
i − S(G14)(G23)

i

]
−
[
S

(G13)
i − S(G13)(G24)

i

]
−
[
S

(G24)
i − S(G24)(G13)

i

]
− S(G1234)

i ,

SG = S̃G− SG(G23) . (10.30)

Here, for example, S
(G23)
i denotes the soft graphs integrand with propagators (23) scaled

into the Glauber region. This subtraction itself has its own subtraction S
(G23)(G14)
i , which

takes the integrand S
(G23)
i and then subtracts the result where (14) have Glauber scaling.

This ensures that in the difference, S
(G23)
i −S(G23)(G14)

i , the (14) propagators are truly soft.

(See [59] for further discussion.) The subtraction S
(G1234)
i simultaneously considers both

loop momenta to have Glauber scaling. The SCET graph SG shown in figure 32c contains

a soft loop, and hence also has a Glauber subtraction given by SG(G23).

Since the abelian soft graphs have trivial numerators, it suffices to study these overlaps

by listing the denominator propagators for the integrands for the graphs shown in figure 32,

and for their 0-bin subtractions. For the original graphs these are

S̃1 :
[
n · k1

][
n · (k1+k2)

][
− n̄ · (k1+k2)

][
− n̄ · k1

][
k2

1

][
k2

2

]
(10.31)

=
[
n · k1

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k1

][
k2

1

][
(k′2−k1)2

]
,

S̃2 :
[
n · k1

][
n · (k1+k2)

][
− n̄ · (k1+k2)

][
− n̄ · k2

][
k2

1

][
k2

2

]
=
[
n · k1

][
n · k′2

][
− n̄ · k′2

][
n̄ · (k1−k′2)

][
k2

1

][
(k′2−k1)2

]
=
[
n · (k′2−k′1)

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k′1)

][
k′21
][

(k′2−k′1)2
]
,

S̃G :
[
n · k1−∆1

][
n · k2

][
− n̄ · k2

][
− n̄ · k1−∆′1

][
k2

1⊥
][
k2

2

]
,

G :
[
n·k1−∆1

][
n·(k1+k2)−∆2

][
− n̄·(k1+k2)−∆′2

][
− n̄·k1−∆′1

][
k2

1⊥
][
k2

2⊥
]
.

where we show the eikonal propagators listed from (1) to (4), and multiple momentum rout-

ings are shown for the purely soft graphs for later convenience. Here and below, all propaga-

tors in square brackets include a +i0. The results are all regulated with |kz1|−η|kz2|−η (using
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the notation of the first momentum routings) and these regulator factors are not modified

when taking the 0-bin limits, and hence need not be written out explicitly in the analy-

sis below. It should be evident from figure 32 that the S̃G diagram has the same scaling

structure for propagators as S
(G14)
1 , while the G diagram has the same structure as S

(G1234)
1 .

First consider the abelian terms in the (23) limit. Since there are no Glauber graphs

that correspond to this limit we anticipate that the soft box and cross-box diagrams will

cancel. Using eq. (10.31) we find

S
(G23)
1 :

[
n · k1

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k1

][
k2

1

][
k+

1 k
−
1 −(~k′2⊥−~k1⊥)2

]
, (10.32)

S
(G23)
2 :

[
n · k1

][
n · k′2

][
− n̄ · k′2

][
+ n̄ · k1

][
k2

1

][
k+

1 k
−
1 −(~k′2⊥−~k1⊥)2

]
.

Therefore in the sum relevant to the abelian contribution, S
(G23)
1 +S

(G23)
2 , we get a δ(n̄ ·k1),

which causes the two gluon propagators to only depend on transverse momenta. This sum

is therefore identical to the sum of Glauber subtraction terms S
(G23)(G14)
1 +S

(G23)(G14)
2 and

there is no contribution from the (23) limit,

S
(G23)
1 + S

(G23)
2 − S(G23)(G14)

1 − S(G23)(G14)
2 = 0 . (10.33)

The situation is similar for the (13) and (24) limits, where

S
(G13)
1 :

[
n · k1

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k1

][
k2

1⊥
][
− k′+2 k−1 −(~k′2⊥−~k1⊥)2

]
, (10.34)

S
(G13)
2 :

[
n · k1

][
n · k′2

][
− n̄ · k′2

][
+ n̄ · k1

][
k2

1⊥
][
− k′+2 k−1 −(~k′2⊥−~k1⊥)2

]
,

S
(G24)
1 :

[
+ n · k′1

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k′1

][
k′21⊥
][
− k′+1 k′−2 −(~k′2⊥−~k′1⊥)2

]
,

S
(G24)
2 :

[
− n · k′1

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k′1

][
k2

1⊥
][
− k′+1 k′−2 −(~k′2⊥−~k′1⊥)2

]
.

So S
(G13)
1 + S

(G13)
2 gives a δ(n̄ · k1), and S

(G24)
1 + S

(G24)
2 gives a δ(n · k′1), making these

combinations equal to the sum of their subtractions

S
(G13)
1 + S

(G13)
2 − S(G13)(G24)

1 − S(G13)(G24)
2 = 0 , (10.35)

S
(G24)
1 + S

(G24)
2 − S(G24)(G13)

1 − S(G24)(G13)
2 = 0 .

For the abelian graphs this leaves only (14) and (1234). The full Glauber limit of the

soft cross box, S
(G1234)
2 = 0, because the k0

1 contour integral vanishes (considering the k1-k′2
routing). In the (14) limit the cross box gluon propagators depend on only ⊥-momenta,

S
(G14)
2 :

[
n · k1

][
n · k2

][
− n̄ · k1

][
− n̄ · k2

][
k2

1⊥
][
k2

2⊥
]
, (10.36)

which is identical to its subtraction. So there is no contribution from the cross box in this

limit

S
(G14)
2 − S(G14)(G23)

2 = 0 . (10.37)

Thus for abelian contributions, the only important subtractions come from the box topol-

ogy. For the full Glauber limit of the soft box graph in these two limits we have

S
(G1234)
1 :

[
n · k1

][
n · (k1 + k2)

][
− n̄ · (k1 + k2)

][
− n̄ · k1

][
k2

1⊥
][
k2

2⊥
]
, (10.38)

S
(G14)
1 :

[
n · k1

][
n · k2

][
− n̄ · k2

][
− n̄ · k1

][
k2

1⊥
][
k2

2

]
.
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Since the results for Glauber graphs G and S̃G with the integrands in eq. (10.31) do not

depend on the ∆i or ∆′i factors appearing in the propagators, they are equal to the results

for these two subtractions, respectively. The subtractions have the same integrands just

setting all the ∆s to zero. Thus

S
(G1234)
1 = G , S

(G14)
1 = S̃G , S

(G14)(G23)
1 = SG(G23) . (10.39)

The third result follows from the second. Just like at one-loop, the choice of soft Wilson line

directions in the hard operator are important for the correspondence in eq. (10.39) to be

true. Furthermore, in this two-loop analysis, the precise relative powers of η used in our soft

Wilson line and Glauber potential rapidity regulators are also important in order to obtain

these correspondences. Combining all the above results, we find that the sum of all abelian

diagrams with their subtractions are equal to the abelian part of the naive soft graphs

S1 + S2 + SG+G = S̃1 + S̃2 , (10.40)

as anticipated.

We can also consider this abelian two-loop analysis in SCETI. Here if we included soft

Wilson lines in the current, then there would be contributions from boxes and cross-boxes

with either (soft-soft, soft-ultrasoft, soft-Glauber, ultrasoft-Glauber, or ultrasoft-ultrasoft)

loops. All cases except the ultrasoft-ultrasoft loops either give integrals that are zero, or

that are exactly canceled by their subtractions. Thus there is no impediment to simply us-

ing the current which absorbs the soft Wilson lines, given in eq. (10.13), for this calculation.

10.3.2 Two loop non-abelian soft-Glauber correspondence

Next we consider generalizing the analysis of the previous section to the SCETII graphs

with the non-abelian CFCA or CFnf color factors. Using Feynman gauge for the soft

gluons, the nonzero graphs are shown in figure 33. Here S3 denotes the same cross box

graph called S2 above, just now with the non-abelian part of its color factor. It has four

eikonal propagators. Therefore we have S
(G1234)
3 = 0 and S

(G14)
3 − S

(G14)(G23)
3 = 0, and

must only consider the (23), (13), and (24) limits for S3. For S4 the 3-gluon vertex yields

two terms in the numerator that cancel one or the other of the two n-eikonal propagators,

and likewise for S5 with the two n̄-eikonal propagators. Therefore these graphs each have

two terms, both with two eikonal propagators. It is convenient to consider these pieces

separately so we write

S4 = S4h + S4r , S5 = S5h + S5r , (10.41)

where the “h” subscript indicate terms with two eikonal propagators next to the hard vertex

which can have a (23) subtraction limit, whereas the two remaining eikonal propagators

in S4r and S5r are such that they only have (13) and (24) limits respectively. Finally,

S6 includes both the vertex graph and Wilson line self energy graphs, and only has a

nontrivial (23) limit. The role of the self energy contribution here is to cancel the kµ2 k
ν
2

vacuum polarization numerator term in the vertex graph.
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Figure 33. Non-abelian two loop graphs with soft gluons and Glauber exchange with a hard scat-

tering vertex ⊗ in SCETII. Only graphs that are non-vanishing in Feynman gauge are shown. We

will refer to them as S3, S4, S5, S6, GS1, GS2, GS3, LS1, LS2, and we number the collinear/eikonal

fermion propagators (1), (2), (3), (4) as shown.

The graphs in the second row of figure 33 involve Glauber operators. Here GS1 always

has two collinear propagators, and has an internal eye-graph involving terms with both

zero and two eikonal propagators. For the numerator from the eye-graph vertices in GS1

(see eq. (7.15)), we write

(d− 2)n · k1 n̄ · k1 + 2(k1⊥ + k2⊥)2 + 2k2
1⊥ +

4[k1⊥ · (k1⊥ + k2⊥)]2

n̄ · k1 n · k1

=
{

(d− 2)n · k1 n̄ · k1 + 4k2
2⊥ − 2(k1 + k2⊥)2 − 2k2

1

}
+

4[k1 · (k1 + k2⊥)]2

n̄ · k1 n · k1
, (10.42)

and then split the two-loop GS1 graph into two parts by defining

GS1 = GS1h +GS1f . (10.43)

Here GS1h is the result involving the terms in curly brackets in eq. (10.42), while GS1f

refers to the term on the second line with the (n̄ ·k1 n ·k1) eikonal propagators. The graphs

with a Lipatov vertex, LS1 and LS2, have two collinear propagators and terms with both

two and zero eikonal propagators (depending on whether the Lipatov vertex cancels the

soft eikonal propagator or adds an additional one). Since these terms also need to be

considered separately we divide the graphs up as

LS1 = LS1r + LS1f , LS2 = LS2r + LS2f , (10.44)

where the “f” subscript refers to terms with two eikonal plus two collinear propagators,

and the “r” subscript refers to terms with just the two (black-dashed) collinear propagators

that are explicit in figure 33. To summarize the nontrivial Glauber subtractions for these

contributions we write
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S3 = S̃3 −
[
S

(G23)
3 − S(G23)(G14)

3

]
−
[
S

(G13)
3 − S(G13)(G24)

3

]
−
[
S

(G24)
3 − S(G24)(G13)

3

]
,

S4h = S̃4h − S(G23)
4h , S4r = S̃4r − S(G13)

4r , S5h = S̃5h − S(G23)
5h , S5r = S̃5r − S(G24)

5r ,

S6 = S̃6 − S(G23)
6 , GS1f = G̃S1f −GS(G14)

1f , GS3 = G̃S3 −GS(G14)
3 ,

LS1f = L̃S1f − LS(G24)
1f , LS2f = L̃S2f − LS(G13)

2f , (10.45)

whereas there are no nontrivial subtractions for GS1h, GS2, LS1r, or LS2r.

The simplest soft two loop contributions are those that only have eikonal propagators

next to the hard vertex, for (2) and (3). This includes the entire S6, as well as S4h and

S5h where the momentum factor from the 3-gluon vertex cancels propagators (1) and (4)

respectively. For these terms, (G23) is the only nontrivial Glauber subtraction on these

soft graphs, and the equivalence of these subtractions with the SCET Glauber operator

diagrams is directly analogous to what we observed in section 10.1 at one-loop. Carrying

out the calculations we find that

S
(G23)
4h + S

(G23)
5h + S

(G23)
6 = GS1h +GS2 . (10.46)

Note that GS1h has collinear propagators for (2) and (3), while the remaining propagators

for the other loop are relativistic, and hence do not themselves have a nontrivial Glauber

subtraction. The equality in eq. (10.46) once again relies on the independence of the graphs

GS1h and GS2 on the ∆’s that appear in the (2) and (3) collinear propagators.

The remaining part of the Y-graphs in figure 33 include the term S4r where the 3-gluon

vertex cancels the eikonal (2) and there is only a (G13) subtraction, and a term in S5r where

its 3-gluon vertex cancels the eikonal (3) and there is only a (G24) subtraction. These

subtraction terms are exactly equal to LS1r and LS2r where the numerator momentum

factor from the Lipatov vertex cancels the soft eikonal propagator from the hard vertex

Wilson line. Thus,

S
(G13)
4r = LS1r , S

(G24)
5r = LS2r . (10.47)

Once again these are the only relevant subtractions for these terms.

The above considerations account for two loop soft graphs with two eikonal propa-

gators, so the remaining graphs to analyze are those with a total of four eikonal and/or

collinear propagators that come from S3, GS1, GS3, LS1, and LS2. Considering first the

(23) subtraction we find the propagators

S
(G23)
3 :

[
n · k1

][
n · k′2

][
− n̄ · k′2

][
n̄ · k1

][
k2

1

][
k+

1 k
−
1 −(~k1⊥−~k′2⊥)2

]
. (10.48)

To identify the corresponding result in the graphs with Glauber exchange, we partial frac-

tion the GS1f integrand by writing,

4[k1 · (k1 + k2⊥)]2

n̄ · k1 n · k1
=

[2m2−k2
2⊥]2

n̄ · k1 n · k1
+

2[k2
1−m2][(k1+k2⊥)2−m2]

n̄ · k1 n · k1
+

[(k1+k2⊥)2−m2]2

n̄ · k1 n · k1
(10.49)

+
[k2

1−m2]2

n̄ · k1 n · k1
+

2[2m2−k2
2⊥][k2

1−m2]

n̄ · k1 n · k1
+

2[2m2−k2
2⊥][(k1 + k2⊥)2−m2]

n̄ · k1 n · k1
.
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and then dividing by the remaining propagators:

[k2
1 −m2][(k1 + k2⊥)2 −m2][k2

2⊥ −m2]2[n̄ · k2 −∆(k2⊥)][−n · k2 − ∆̄′(k2⊥)] . (10.50)

The second term in eq. (10.49) gives a vanishing integral, the 3rd, 4th, and 5th terms cancel

against each other, and the 6th term in eq. (10.49) cancels exactly against the flower graph

GS3. This leaves only the 1st term. After dropping the ∆ and ∆′ factors which again drop

out for the integrals over n ·k2 and n̄ ·k2, the result for this remaining term in GS1f +GS3

has the same form as eq. (10.48) for its propagators, and also the same prefactor. The only

possible difference are the directions associated with the soft eikonal factors (n ·k1) and (n̄ ·
k1), which we did not assign for GS1f +GS3. However, since these eikonal factors have soft

scaling, which is ensured by Glauber 0-bin subtractions, the results are identical irrespective

of the signs ±i0 used for these eikonal propagators in GS1f+GS3. If both are +i0 this gives

GS1f +GS3 − S(G23)
3 ∝ 1

[n · k1][n̄ · k1]
− 1

[n · k1][n̄ · k1]
= 0 . (10.51)

In this case we also have GS
(G14)
1f + GS

(G14)
3 − S(G23)(G14)

3 = 0. The same is true if both

are −i0 since the rest of the integrand is symmetric under k1 → −k1. If one eikonal is +i0

and the other is −i0 (or visa versa) then this gives

GS1f +GS3 − S(G23)
3

∝ 1

2

[ −1

[n · k1][−n̄ · k1]
− 1

[−n · k1][n̄ · k1]

]
− 1

2

[
1

[n · k1][n̄ · k1]
+

1

[−n · k1][−n̄ · k1]

]
= −1

2
(−2πi)2 δ(n · k1)δ(n̄ · k1) , (10.52)

which forces the soft k1 momentum into the Glauber region. This contribution is therefore

exactly canceled when the (G14) subtraction from the n · k1 ∼ n̄ · k1 ∼ λ2 region is applied

to these terms. This result can be rearranged to yield a relation between the Glauber

subtractions of the soft graph and the original Glauber graph that applies for any choice

for the eikonal propagators in the Glauber operator vertex,

S
(G23)
3 − S(G23)(G14)

3 = GS1f +GS3 −GS(G14)
1f −GS(G14)

3 . (10.53)

A similar result will be obtained for the (13) and (24) limits, except now the corre-

spondence is with the LS1 and LS2 graphs. Here we have

S
(G13)
3 :

[
n · k1

][
n · k′2

][
− n̄ · k′2

][
n̄ · k1

][
k2

1⊥
][
− k′+2 k−1 −(~k1⊥−~k′2⊥)2

]
(10.54)

=
[
n · k

][
− n · `

][
− n̄ · k

][
n̄ · `

][
(k⊥ + `⊥)2

][
`2
]
,

S
(G24)
3 :

[
− n · k′1

][
n · k′2

][
− n̄ · k′2

][
− n̄ · k′1

][
k′21⊥
][
− k′+1 k′−2 −(~k1⊥−~k′2⊥)2

]
=
[
n · `

][
n · k

][
− n̄ · `

][
− n̄ · k

][
k2
⊥
][
`2
]
.

In the first equality we took k1 = k + (n/2)n̄ · `+ `⊥ and k′2 = k − (n̄/2)n · `, while in the

second equality we took k′1 = k− (n̄/2)n · ` and k2 = k+ (n/2)n̄ · `+ `⊥. With this change

of variables the (13) limit is simply k ∼ (λ2, λ2, λ) while the momentum ` remains soft.
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This change of variables also makes it easier to see that the result for LS1f is the same

as for S
(G13)
3 . For the (−n̄ · `) propagator in LS1f that arises from the Glauber operator

vertex, we have not yet specified whether it is ±i0. Once again the same result is obtained

with either choice, either LS1f − S(G13)
3 = 0 or LS1f − S(G13)

3 is proportional to δ(n̄ · `)
which is killed by the terms with a further Glauber 0-bin subtraction on this momentum.

Similarly the result for LS2f is the same as S
(G24)
3 . Here when we subtract, LS2f − S(G24)

3

is zero or proportional to δ(n · `). In both cases these δ-functions force the `-momentum

in these differences into a Glauber region, making the results equal to their (24) and (13)

subtractions respectively. Rearranging, these results we have

S
(G13)
3 − S(G13)(G24)

3 = LS1f − LS(G24)
1f , S

(G24)
3 − S(G24)(G13)

3 = LS2f − LS(G13)
2f . (10.55)

Putting all these results together we find that

S3 + S4 + S5 + S6 +GS1 +GS2 +GS3 + LS1 + LS2 = S̃3 + S̃4 + S̃5 + S̃6 . (10.56)

So the non-abelian two-loop result is again simply given by the sum of the naive soft graph

results. From eqs. (10.40) and (10.56) we see that, just as in the one loop case, the same

result is obtained for hard production graphs at two-loops in theories with or without the

inclusion of Glauber gluon exchange, as long as the proper subtractions are performed on

the soft graphs.

It is clear that the pattern established above continues to all orders in the abelian

diagrams which involve soft and Glauber rungs that go between an active n-collinear and

active n̄-collinear line. The nontrivial Glauber regions of the soft diagrams occur when

the momenta of one or more pairs of propagators (one from the n line and one from the n̄

line) scale into the Glauber region. For the purely abelian graphs, the box and cross-box

subtraction terms continue to cancel unless the soft loops all occur on the internal side

next to the hard vertex, with Glauber loops on the outside. When we consider Glauber

0-bin subtractions on any soft graph, we must do so by considering soft gluons from the

outside-in, otherwise we again have vanishing contributions. These 0-bin subtractions are

then in one-to-one correspondence with a graph where that rung is replaced by a Glauber

gluon from the start. 0-bin contributions from simultaneous Glauber limits of two rungs

again are only nonzero when considered from the outside-in, and correspond precisely with

the replacement of those two rungs by Glauber gluons. The same is true if we consider

the 0-bin subtractions for the simultaneous limit of N -rungs. Given this correspondence

for the once subtracted loop integrals, we can also immediately conclude that there is a

correspondence on additional iterated subtractions that are considered for these integrands

(as in our two-loop example of S(G2)(G1) = SG(G1) above). While the topologies and

subtractions are more complicated for the nonabelian graphs, we can again see from our

two loop analysis that there is a tight connection between the subtraction terms and the

direct Glauber integrands, and thus also anticipate that the correspondence will remain

true at higher orders. The key feature of being able to ignore the dependence on the ⊥-

momentum dependent terms ∆i remains true for these active-active diagrams. Thus the

result at any order for the n-n̄ production graphs should be the same in the theories with
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Figure 34. Two loop graphs with two active n̄-collinear lines from the hard scattering vertex ⊗
in SCETII, dressed by soft gluons and Glauber exchange. Again the inner rung carries k1 and the

outer rung carries k2 for each case, the green lines are eikonal propagators from the soft Wilson

lines, and the dashed black lines are collinear propagators. The three diagrams where the inner

gluon contracts with the outgoing n̄ quark line give analogous results.

or without the inclusion of Glauber gluon exchange. This implies that from the perspective

of these diagrams, the Glauber could be absorbed into the soft gluon degree of freedom.

This result does not however hold for all graphs in SCETII, as previously mentioned. For

example, the results in section 11.1 will depend on the ∆i terms in the denominators.

One may also consider the extension of the above non-abelian 2-loop analysis to the

case of SCETI. There are now exact analogs of the graphs Si with two soft loops, that have

two ultrasoft loops. Here if we allowed soft Wilson lines in the production current, then

we would still have the diagrams LS1 and LS2 from figure 33, which involve a contraction

between the current and the Lipatov vertex. However, these graphs become scaleless when

the IR regulator is only at the smaller scale in SCETI, and we have checked that they are

canceled by the additional ultrasoft subtractions, hence validating the use of eq. (10.13).

There are graphs involving one Glauber exchange dressed by an ultrasoft gluon, which are

again exactly canceled by their ultrasoft 0-bin subtractions. Finally, in SCETI there are

also soft loop graphs that do not involve soft Wilson lines from the production current,

GS1, GS2, and GS3 from figure 33, and we expect that they will also be canceled by their

0-bin subtractions.

10.3.3 Two loop soft-Glauber correspondence for more than two active lines

Next we continue our analysis of hard scattering vertices, by considering possible difference

that might occur when we have more collinear lines. To be definite we consider the case

where there are two active n̄-collinear lines and one active n-collinear line in SCETII. The

relevant diagrams with Glauber and soft rungs which involve all three collinear lines and

have a relation to the Glauber exchange are shown in figure 34 (the diagrams with the rungs

in the other order work in the same manner). The analysis for these diagrams proceeds in

a very similar manner to that of the graphs in figure 32. The corresponding propagators

and their subtractions are

S̃ :
[
n · (k1+k2)

][
− n̄ · k1

][
n · k2

][
− n̄ · k2

][
k2

1

][
k2

2

]
, (10.57)

S(G2) :
[
n · k1

][
− n̄ · k1

][
n · k2

][
− n̄ · k2

][
k2

1

][
k2

2⊥
]
,

S(G2G1) :
[
n · (k1 + k2)

][
− n̄ · k1

][
n · k2

][
− n̄ · k2

][
k2

1⊥
][
k2

2⊥
]
,
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S(G2)(G1) :
[
n · k1

][
− n̄ · k1

][
n · k2

][
− n̄ · k2

][
k2

1⊥
][
k2

2⊥
]
,

S̃G :
[
n · k1

][
− n̄ · k1

][
n · k2+∆2

][
− n̄ · k2+∆′2

][
k2

1

][
k2

2⊥
]
,

SG(G1) :
[
n · k1

][
− n̄ · k1

][
n · k2+∆2

][
− n̄ · k2+∆′2

][
k2

1⊥
][
k2

2⊥
]
,

G :
[
n·(k1+k2)+∆1

][
− n̄·k1+∆′1

][
n·k2+∆2

][
− n̄·k2+∆′2

][
k2

1⊥
][
k2

2⊥
]
.

Once again, due to the independence of these loop integrals to ∆i and ∆′i, we have the

same relations as before S(G2) = S̃G, S(G2)(G1) = SG(G1), and S(G2G1) = G. For these

correspondences to be valid, the choice of outgoing soft Wilson lines for the hard scattering

operator is important. Putting these results together, we once again find(
S̃ − S(G2) − S(G2G1) + S(G2)(G1)

)
+
(
S̃G− SG(G1)

)
+G = S̃ . (10.58)

Thus we obtain the same result for this hard scattering calculation in the theory with or

without Glauber gluons.

The key feature of being able to ignore the dependence on the ∆i remains true when

we have additional active lines in the hard scattering diagram, and hence do not change

the correspondence between subtractions and Glauber exchange contributions.

If we consider the analogous computation with more than two active lines in SCETI,

then the pattern we have seen in previously subsections repeats once again. We have

checked explicitly that graphs with Glauber or soft exchanges are either zero or canceled

by the their subtractions. Therefore the dynamics here are once again described by a hard

current with only ultrasoft Wilson lines.

11 Glauber effects with spectators in hard scattering

In our calculation for near forward scattering in section 9.1 there was no hard interaction.

The collinear lines effectively acted as classical sources with only a small recoil from an

exchanged q⊥ and the source propagators were effectively eikonal because of the structure of

the rapidity regulated integrals. In addition, in our analysis of Glauber exchange in purely

active hard scattering diagrams in section 10 eikonalization was manifest as well. However,

in general we know that Glauber exchange does not lead to purely eikonal propagators

for the scattering particles. Examples of non-eikonal situations were discussed above in

section 9.2, and occur when there are two or more n-collinear propagators that are sensitive

to the Glauber loop momentum, with at least one pole on either side of the axis in the

appropriate complex momentum plane (or simply the energy plane). In the presence of

hard interactions we will also see that certain collinear or soft propagators attached to a

Glauber interaction are also not exclusively eikonal. Despite the presence of non-eikonal

propagators, indicating that the associated propagators are not captured in Wilson lines

(i.e. classical sources), we will still see that Glauber iterations can exponentiate.

In this section we will consider effects of Glauber exchanges in the hard scattering

of color singlet bound states that we treat with interpolating fields. We consider a hard

momentum q with |q2| � Λ2
QCD to flow into the SCETII electro-magnetic current JΓ in

eq. (10.1), which involves both collinear and soft Wilson lines. A matrix element is then
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taken with one or two hadrons which are interpolated for by collinear quark bilinears that

have (for simplicity) the quantum numbers of a longitudinal vector meson

Φn(x) =

(
ξ̄n
/̄n

2
ξn

)
(x) , Φn̄(y) =

(
ξ̄n̄
/n

2
ξn̄

)
(y) . (11.1)

In order to have a proxy for the incoming color singlet hadrons that we can handle simply

in perturbation theory, we can couple these interpolating fields to light neutral “hadron”

fields ρn(x) and ρn̄(y) that are longitudinal vectors and which annihilate “hadron” states

|hn〉 and |hn̄〉 via

LφnΦn = ρnΦn + ρn̄Φn̄, (11.2)

with

ρn(x′)
∣∣hn(P )

〉
= n · ε e−iP ·x′ , ρn̄(x′)

∣∣hn̄(P̄ )
〉

= n̄ · ε e−iP̄ ·x′ . (11.3)

Since the ρn,n̄ fields have no dynamics they have Z = 1 in the LSZ formula. Since they are

light we can take P 2 = P̄ 2 = 0 at lowest order. We then study the matrix elements MDY
Γ

and MDIS
Γ defined by

δ4(P + P̄ − q − pX)MDY
Γ ≡

∫
d4x d4y d4z eiq·z

〈
X
∣∣∣TLρnΦn(x)Lρn̄Φn̄(y) JΓ(z)

∣∣∣hn(P )hn̄(P̄ )
〉

= lim
P 2→0
P̄ 2→0

P 2P̄ 2

i2

∫
d4x′d4y′e−iP ·x

′
e−iP̄ ·y

′
∫
d4xd4yd4zeiq·z

〈
X
∣∣∣TLρnΦn(x)Lρn̄Φn̄(y)JΓ(z)ρn(x′)ρn̄(y′)

∣∣∣0〉
=

∫
d4x d4y d4z e−iP ·xe−iP̄ ·yeiq·z

〈
X
∣∣∣TΦn(x) Φn̄(y) JΓ(z)

∣∣∣0〉 ,
δ4(P̄ − q − pX)MDIS

Γ ≡
∫
d4y d4z eiq·z

〈
X
∣∣∣TLρn̄Φn̄(y) JΓ(z)

∣∣∣hn̄(P̄ )
〉

= lim
P 2→0

P̄ 2

i

∫
d4y′e−iP̄ ·y

′
∫
d4y d4z eiq·z

〈
X
∣∣∣TLρn̄Φn̄(y)JΓ(z)ρn̄(y′)

∣∣∣0〉
=

∫
d4y d4z e−iP̄ ·yeiq·z

〈
X
∣∣∣TΦn̄(y) JΓ(z)

∣∣∣0〉 . (11.4)

Thus after accounting for momentum conservation, for our perturbative calculations the

vertex involving the Φn and Φn̄ fields will simply give factors of (/̄n/2) and (/n/2) respectively.

Adopting n-collinear scaling for the momentum P and n̄-collinear scaling for P̄ we can work

out the scaling of MDY
Γ and MDIS

Γ . The outgoing state has the same scaling as a qq̄ pair,

〈X| ∼ λ−2, the fields Φn ∼ Φn̄ ∼ JΓ ∼ λ2, and the measures d4x ∼ d4y ∼ λ−4. After

shifting coordinates in the matrix elements to Φn(x− z), Φn̄(y− z) and JΓ(0), and shifting

x→ x+ z and y → y+ z, we get momentum conserving δ-function from the z-integration.

Therefore it is not surprising that the scaling of the momentum conserving δ-functions on

the left-hand side is the same as the
∫
d4z on the right-hand side. All together we therefore

have the power counting results

MDY
Γ ∼ λ−4 , MDIS

Γ ∼ λ−2 . (11.5)

We will see below that in hard scattering diagrams the source propagators in Glauber

loop graphs do not all eikonalize. However, despite this fact, an overall phase will still
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be generated if we sum over Glauber exchange rungs (ignoring here soft and collinear ra-

diation). We will also show under what circumstances the phase cancels. Of course this

cancellation is a necessary but not sufficient condition for the proof of a factorization the-

orem that does not include Glauber exchange. For the full non-abelian case with radiation

and quantum corrections there may be contributions that could break factorization and

which are not simple pure phases. A complete proof of factorization in SCET entails prov-

ing that the Glauber Lagrangian does not contribute to a hard scattering process, and a

demonstration of how complete proofs of factorization can be carried out using our theory

for Glauber exchange will be given elsewhere.

In our perturbative analysis of the diagrams with spectators we will treat only a single

scale t. It could be taken to be at the hadronic scale t ∼ Λ2
QCD, or rather say µ = 2 GeV

so that perturbation theory still makes sense. Or it could be taken to be at a perturbative

scale Q∗ of a final state hadronic measurement, in which case t ∼ Q∗2 � Λ2
QCD. (If we

wanted to consider our calculations below for the latter case we would replace our ρn,n̄
couplings by perturbative gluon splitting with invariant mass ∼ Q∗2, and would also have

to keep P 2, P̄ 2 6= 0. The results in eq. (11.4) are still valid for this case, but appear without

the limits on the r.h.s.) A complete proof of factorization with our formalism must treat

both of these cases. For the sake of the discussion here we consider ourselves to be in one

of the two cases, but we do not treat the mixed situation.

To organize our discussion we divide up the collinear lines in the matrix elements in

eq. (11.4) into spectator and active lines. At lowest order this division is simple. Consid-

ering the base graph in figure 35b, the collinear lines contracted with the hard scattering

operator are active, and those that are contracted with the hadron interpolating fields

which do not directly participate in the hard scattering are spectators. Below in sec-

tion 11.1 we consider Glauber exchange between spectator lines. Then in section 11.2 we

consider Glauber exchange between a spectator line and an active line. In section 11.3

we reconsider Glauber exchange between active lines in the presence of hadronic interpo-

lating fields. The generalization of these results to SCETI is discussed in section 11.4.

Finally, we also propose a definition of spectators and active exchanges valid at any order

in perturbation theory in section 11.5.

11.1 Spectator-spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in figure 35.

Since the hard scattering case with MDIS
Γ has only a single hadron, these SS contributions

only exist for the hard annihilation case withMDY
Γ , where the two participating spectators

are created by Φn and Φn̄ respectively. In these graphs the hard interaction is indicated

by the ⊗, and our routing for incoming and outgoing external momentum is shown in

figure 35b. For simplicity we take the limit where the mass of the incoming hadrons is

ignored, so that P 2 = P̄ 2 = 0.21 This is accomplished by taking Pµ = n̄ · P nµ/2 and

21The generalization to the case with P 2, P̄ 2 6= 0 is discussed in eq. (11.14) below.
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Figure 35. Spectator-specator interactions for the hard scattering correlator in eq. (11.4). The

Glauber interaction labeled G indicates the sum of all ladder diagrams including the graph with 0

Glaubers as indicated.

P̄ = n · P̄ n̄µ/2 respectively. The tree level result for figure 35b is then given by

figure 35b = Sγ i n̄ · (p1−P )

(P − p1)2

i n · (P̄ − p2)

(P̄ − p2)2
(11.6)

= Sγ
[

1

~p 2
1⊥

1

~p 2
2⊥

] [
n̄ · p1 n̄ · (P−p1)

n̄ · P
n · p2 n · (P̄−p2)

n · P̄

]
≡ Sγ E(p1⊥, p2⊥),

where this defines the function E, and we have defined the spinor factor for the outgoing

quark-antiquark as

Sγ = ūnγ
µ
⊥v
∗
n̄ . (11.7)

The v∗n̄ appears here because of our convention for the antiquark spinors, see the discussion

near eq. (5.8). Note that n̄·p1 > 0, n̄·(P−p1) > 0, n·p2 > 0, and n·(P̄−p2) > 0. To obtain

the second line of eq. (11.6) we used momentum conservation, and the equation of motion

to remove the small momentum components, n · p1 = ~p 2
1⊥/n̄ · p1 and n̄ · p2 = ~p 2

2⊥/n · p2.

The final momentum dependence of the result in eq. (11.6) is defined as the “end-function”

E(p1⊥, p2⊥). We suppress the dependence on the light cone momenta in its arguments

since it is the ⊥-momenta that will play the prominent role for our discussion here. The

factor involving light-cone momenta that appears in E will often occur at intermediate

steps, so we define

κ ≡
[
n̄ · p1 n̄ · (P − p1)

n̄ · P
n · p2 n · (P̄ − p2)

n · P̄

]
. (11.8)

In terms of power counting we note that the tree level amplitude scales as E(p1⊥, p2⊥) ∼ λ−4

just as expected for the scaling of MDY
Γ .

Next we dress the end E with SS Glauber exchanges as in figure 35c,d. To do this

we may utilize the results from section 9.1 for Glauber exchange in forward scattering di-

agrams. Here the hard scattering end produces a pair of quarks that are then fed into the

forward scattering. In particular, the one-loop hard scattering graph in figure 35c is just

the tree-level forward scattering graph tied off with an extra loop on the end and the two-

loop hard scattering graph in figure 35d is the one-loop box-graph for forward scattering

tied off with an extra loop on the end, etc. Due to the extra loop present in hard scattering,

the incoming quarks are offshell, with O(λ2) nonzero ± loop momenta flowing through the

forward scattering part of the graph, and unrelated ⊥-momenta for the two incoming lines.

However, as discussed in section 9.1, the presence of these modifications from the additional
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loop do not change the result for the sum of forward scattering ladder graphs. Thus we can

first perform all the forward scattering loop integrals to give 2G(k⊥), where G(k⊥) is taken

from eq. (9.23) setting TA
1 ⊗TA

2 = TA ⊗ T̄A. This leaves only the loop-integral with mo-

mentum that flows through the end, and corresponds to evaluating figure 35a. The result is

figure 35a = Sγi4
∫
d−dk

2G(k⊥) (−1)2

[k+−∆1+i0][−k+−∆′1+i0][k−−∆̄1+i0][−k−−∆̄′1+i0]

=
2(−i)2

2
Sγ
∫
d−d−2k⊥

G(k⊥)

(∆1 + ∆′1)(∆̄1 + ∆̄′1)

= −Sγκ
∫
d−d−2k⊥

G(k⊥)

(~k⊥ + ~p1⊥)2 (~k⊥ − ~p2⊥)2

= −Sγ
∫
d−d−2k⊥ G(k⊥) E(p1⊥ + k⊥, p2⊥ − k⊥) . (11.9)

To obtain the first line, note that the small k± loop momenta do not appear in the nu-

merator of the collinear propagators, so we can group these factors into the denominators,

for example
n̄ · p1

n̄ · p1(k++n · p1)− (~k⊥+~p1⊥)2 + i0
=

1

k+ −∆1 + i0
. (11.10)

Using momentum conservation and n · P = n̄ · P̄ = 0, and the fact that the incoming

hadrons have vanishing ⊥-momenta so (P − p1)⊥ = −p1⊥ and (P − p2)⊥ = −p2⊥, the

various k⊥ dependent factors in eq. (11.9) include

∆1 =
(~k⊥ + ~p1⊥)2

n̄ · p1
− n · p1 , ∆′1 =

(~k⊥ + ~p1⊥)2

n̄ · (P−p1)
+ n · p1 , (11.11)

∆̄′1 =
(~k⊥ − ~p2⊥)2

n · p2
− n̄ · p2 , ∆̄1 =

(~k⊥ − ~p2⊥)2

n · (P̄−p2)
+ n̄ · p2 .

To obtain the second line of eq. (11.9) we note that there are no rapidity divergences

and hence we simply perform the k+ and k− integrals by contours. The final lines simply

follow from the definitions in eq. (11.11) and eq. (11.8). Note that unlike in the forward

scattering loop integrals that the final result here depends on the non-vanishing ∆1 + ∆′1
and ∆2 + ∆′2, so the collinear fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express eq. (11.9) in Fourier space.

If we hold the photons q⊥ = −p1⊥ − p2⊥ fixed, then we can consider Fourier transforming

in ∆p⊥ = (p2⊥ − p1⊥)/2, to give

ASS(∆p⊥, q⊥) = figure 35b

= −Sγ
∫
d−d−2k⊥ G(k⊥) E

(
k⊥ −∆p⊥ −

q⊥
2
,∆p⊥ − k⊥ −

q⊥
2

)
≡ −Sγ

∫
d−d−2k⊥ G(k⊥) E′(∆p⊥ − k⊥, q⊥)

= −Sγ
∫
d−d−2k⊥

∫
dd−2b⊥ e

−i~k⊥·~b⊥ G̃(b⊥)

∫
dd−2b′⊥ e

−i(∆~p⊥−~k⊥)·~b′⊥Ẽ′(b′⊥, q⊥)

= −Sγ
∫
dd−2b⊥ e

−i∆~p⊥·~b⊥ Ẽ′(b⊥, q⊥) eiφ(b⊥). (11.12)
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In the third line we have defined a related two argument end function E′ which allows us

to keep the expressions more compact. From the final result we see that the iterations of

the spectator-spectator Glauber potentials produce a final state rescattering phase φ(b⊥),

where the distance b⊥ is conjugate to the difference of the ⊥-momenta of the two spectators

undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?

Considering the modulus squared of the amplitude, the phase cancels as long as we carry

out the phase space integral over ∆p⊥,∫
d−d−2∆p⊥

∣∣ASS(∆p⊥, q⊥)
∣∣2

= |Sγ |2
∫
d−d−2∆p⊥

∫
dd−2b⊥ d

d−2b′⊥ e
i∆~p⊥·(~b′⊥−~b⊥) Ẽ′(b⊥, q⊥)Ẽ′†(b′⊥, q⊥) eiφ(b⊥)−iφ(b′⊥)

= |Sγ |2
∫
dd−2b⊥

∣∣Ẽ′(b⊥, q⊥)
∣∣2

= |Sγ |2
∫
d−d−2∆p⊥

∣∣E′(∆p⊥, q⊥)
∣∣2 , (11.13)

where the final result is just the integral over the squared tree level result in eq. (11.6).

Thus the Glauber exchange for these SS graphs cancel as long as the limits of integration for

∆p⊥ are taken to infinity in the effective theory. As long as the measurement made on the

final state particles takes place at a perturbative scale Q∗ with
√
t ∼ ∆p⊥ � Q∗, then the

measurement does not see the spectator particles at leading power, and the ∆p⊥ integration

is unrestricted for the leading power analysis. This need to integrate over ∆p⊥ also appears

in the CSS Drell-Yan factorization proof [21, 25]. Although the result in eq. (11.13) does

exhibit the cancellation of final state interactions, taken alone it is far from a proof of factor-

ization, even in the abelian case. What this resummation does do however is to highlight the

importance of the ∆p⊥ integration and illuminate the semi-classical nature of the physics.

If on the other hand, we would like to address the case with a single t ∼ Q∗2 � Λ2
QCD,

then as mentioned above, we should replace the ρn,n̄ by a perturbative gluon. In this case

pi⊥,∆p⊥ ∼ Q∗ and we have a Glauber loop momentum k⊥ ∼ Q∗, and the calculations above

need to be redone with P 2, P̄ 2 6= 0 and P⊥, P̄⊥ 6= 0. For this case one still obtains eq. (11.9),

with the same k⊥ convolution with a G(k⊥), but where the E function is now given by

E(p1⊥, p2⊥) =
1[

~p 2
1⊥
p−1

+

(
~P⊥ − ~p1⊥

)2(
P− − p−1

) − P+

][
~p 2

2⊥
p+

2

+

( ~̄P⊥ − ~p2⊥
)2(

P̄+ − p+
2

) − P̄−] , (11.14)

and we have a different prefactor Sγ . Assuming that the measurement restricts the

∆p⊥ ∼ Q∗, then these spectator-spectator scattering Glauber exchange diagrams will not

cancel out. In this case the measurement spoils the factorization of the perturbative n- and

n̄-collinear initial state beam radiation, but only starting at O(α4
s). To get a nonzero cross

section level result we need one perturbative Glauber exchange from G(k⊥) on each side of

the cut, giving an α2
s, and two splittings (one for each collinear direction) on each side of the

cut, giving another α2
s. (For the case with a Glauber exchange on only one side of the cut,

the amplitude level contribution is nonzero, but this contribution vanishes upon squaring to
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obtain the cross section because it is purely imaginary.) For event shape observables such as

beam thrust [102, 127, 128], transverse thrust [101, 129], and ET [130–132] the importance

of this type of diagram for the violation of factorization was first discussed in [103]. This dia-

gram has also been computed numerically for a double spin asymmetry beam thrust observ-

able, demonstrating explicitly that it is nonzero [104]. Using the formalism developed here

it is straightforward to obtain an essentially analytic result for this type of calculation, and

it is clear that it applies to any observable where ∆p⊥ is constrained, including for example

beam thrust without the spin asymmetries.22 Note that this O(α4
s) perturbative effect is

beyond the order considered in beam thrust resummation [68] or other Higgs jet veto re-

summed calculations [133–135], or in transverse thrust resummation [136]. This effect alone

does not spoil the use of perturbative factorization with beam functions to carry out double

logarithmic resummation, until one considers resummation where this non-logarithmic α4
s

correction enters, which is at the next-to-next-to-next-to-next-to-leading logarithmic order

(N4LL). This graph alone also does not explain the sensitivity to underlying event observed

for beam thrust or transverse thrust, in agreement with [103]. We leave for the future the

exploration of other Glauber induced factorization violating effects using our formalism.

Notice that for these spectator-spectator interactions, as opposed to the active-active

case previously discussed in section 10.1, that there are no analogous diagrams in SCETII

where the Glauber gluons are replaced by soft gluons. If one of the Glauber gluons here

became soft then it would knock multiple fermion lines in the end loop integral offshell (not

yielding just leading power Wilson lines), and hence such interactions are power suppressed.

There are also no diagrams where a spectator-spectator Glauber exchange is replaced

by and n-collinear or n̄-collinear gluon, again these are power suppressed. Thus once

we consider matrix elements involving spectators lines the Glauber mode is necessary to

reproduce the full theory SCETII result.

11.2 Active-spectator and the collinear overlap

Next we consider Glauber exchange for the lowest order active-spectator type diagrams.

We will show that the Glaubers here can be absorbed into the direction of collinear Wilson

lines, since there is an exact overlap between these Glauber diagrams and the Glauber 0-

bin subtractions of graphs involving collinear Wilson lines from the hard scattering vertex.

This Glauber-collinear Wilson line correspondence is analogous to the Glauber correspon-

dence with soft Wilson lines in the hard scattering diagrams considered in section 10 (and

reconsidered below in section 11.3 as active-active diagrams).

We start by considering hard production with MDY
Γ , that is, two incoming hadrons.

The single Glauber graphs are shown by the diagrams in figure 36a,c. Unlike the single

22The cancellation of Glauber gluons was discussed in the original beam thrust paper [102], and divided

into two categories, those with t ∼ Λ2
QCD and those with t ∼ Q∗2 as we do here. The argument there

for the cancellation of leading power t ∼ Λ2
QCD Glaubers is correct and agrees with the results here and

from ref. [25], but the discussion of the lack of leading power t ∼ Q∗2 Glaubers was too naive. Although

beam thrust is a SCETI observable, and in this section we are considering calculations in SCETII, the

results here are still applicable. In particular, with Glauber exchange the SCETI theory consists of SCETII

plus ultrasoft modes, and somewhat different subtractions which, although they change the result for the

Glauber phase (see eqs. (7.87) and (7.88)), do not change the conclusions drawn here.
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Figure 36. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear

overlap for the hard annihilation Drell-Yan correlator in eq. (11.4). a) and c) involve Glauber

exchange, while b) and d) are the corresponding graphs with Wilson line interactions involving a

collinear gluon.

Glauber exchange graph with a spectator-spectator interaction, the results here need the

rapidity regulator to be well defined. The active-spectator Glauber exchange graph in

figure 36a is given by

figure 36a = −2Sγ
n·(P̄−p2)

(P̄−p2)2

∫
d−dk

G0(k⊥)|2kz|−ηνη
[k−−∆̄1+i0][−k+−∆′1+i0][k+−∆1+i0]

, (11.15)

where Sγ is given in eq. (11.7) and a single Glauber exchange yields 2G0(k⊥), where G0 is

given by eq. (9.26), and for the qq channel relevant here is equal to

G0(k⊥) =
−ig2

~k 2
⊥ +m2

TA ⊗ TA . (11.16)

The other k⊥ dependent factors ∆1, ∆′1, ∆̄1 are given above in eq. (11.11). Performing the

k0 integration by contours gives

figure 36a = −2i Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−kzd−d

′
k⊥

G0(k⊥)|2kz|−ηνη
[2kz−∆′1−∆̄1+i0][−∆1−∆′1+i0]

=
1

2
Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d
′
k⊥

G0(k⊥)

∆1 + ∆′1

=
1

2
Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

n̄·p1 n̄·(P−p1)

n̄·P

∫
d−d
′
k⊥

G0(k⊥)

(~k⊥ + ~p1⊥)2

=
1

2
Sγ
∫
d−d
′
k⊥ G

0(k⊥)E(p1⊥ + k⊥, p2⊥) , (11.17)

where d′ = d− 2. To obtain the second line, the kz integral was performed using eq. (B.4).

The final result here is written in terms of the end function defined in eq. (11.6).

Now consider the collinear loop graph in figure 36b. Here the gluon entering the hard

vertex has momentum k and is generated by the Wilson line Wn[n̄ · An] from the current

in eq. (10.1). We take it to be Wn(−∞, 0) since in this case it is generated in the QCD to

SCETII matching calculation from integrating out offshell propagators along the incoming

quark line plus non-abelian graphs. We have

C̃n(figure 36b) = Sγ
n·(P̄−p2)

(P̄−p2)2

∫
d−dk

(2ig2CF )

(k2−m2+i0)

n̄ · (k−P+p1) n̄ · (k+p1) |n̄ · k|−ηνη
[k− + i0][(k−P+p1)2 + i0][(k+p1)2 + i0]

.

(11.18)
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From eq. (5.50) this collinear loop graph potentially has both soft and Glauber subtractions.

For the soft subtraction we find that the soft limit kµ ∼ λ of eq. (11.18) gives

C(S)
n (figure 36b) = Sγ

n·(P̄−p2)

(P̄−p2)2

∫
d−dk

(2ig2CF )

(k2−m2+i0)

(−1)|n̄ · k|−ηνη
[k− + i0][−k+ + i0][k+ + i0]

, (11.19)

which scales as ∼ λ4/λ7 = λ−3 and hence is dropped since it is power suppressed relative to

the leading amplitude E ∼ O(λ−4) (the overlap subtraction C
(S)(G)
n vanishes for the same

reason). The reason for the vanishing of this soft subtraction is clear once we recall that

the soft gluons cannot couple to collinear lines without knocking them offshell, and hence

are only leading power for the active attachments which generate soft Wilson lines. Thus

there is no leading power soft diagram that is analogous to the active-spectator interaction

in figure 36b.

On the other hand, there is a leading power Glauber subtraction, given by taking the

k± � ~k⊥ limit of eq. (11.18),

C(G)
n (figure 36b) = −2Sγ

n·(P̄−p2)

(P̄−p2)2

∫
d−dk

G0(k⊥) |n̄ · k|−ηνη
[k− + i0][−k+ −∆′1 + i0][k+ −∆1 + i0]

. (11.20)

Comparing this integral with the active-spectator Glauber result in eq. (11.15) we see that

the two are the same up to the presence of different rapidity regulators and the absence of

∆̄1(k⊥) in eq. (11.20). Decomposing ddk = (1/2)dk+dk−dd
′
k⊥, performing the k+ contour

integral, and then using
∫
dk−|k−|−η/(k− + i0) = −i/2 +O(η) gives

C(G)
n (figure 36b) =

1

2
Sγ

n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d
′
k⊥

G0(k⊥)

∆1 + ∆′1

=
1

2
Sγ
∫
d−d
′
k⊥ G

0(k⊥)E(p1⊥ + k⊥, p2⊥) . (11.21)

This result for the subtraction on the collinear graph is the same as the Glauber graph

result in eq. (11.17), despite the lack of ∆2 and difference in rapidity regulators,

C(G)
n (figure 36b) = G(figure 36a) . (11.22)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange

for active-active lines in section 10.1. In particular, this type of Glauber exchange can be

absorbed into the collinear Wilson lines, in an analogous manner to the way we discussed

absorbing certain Glauber exchanges into soft Wilson lines in section 10.1. The fact that

these active-spectator Glauber exchanges can be absorbed is consistent with the contour

deformation picture in CSS, where the combined collinear+Glauber loop integral can be

deformed away from the Glauber region for these types of diagrams [21, 31].

In SCET the collinear subtraction result is sensitive to the direction of the Wilson line

Wn which is encoded by the sign in the propagator [k−+ i0], and the Glauber subtraction

C
(G)
n precisely removes this dependence. In order for the correspondence in eq. (11.22)

to be true it is important for n-n̄ annihilation that the Wn = Wn(−∞, 0) Wilson line in

the JΓ current is taken to extend from (−∞, 0) in the Wilson line integration variable

n ·x. If instead we had taken this Wilson line to extend from (0,∞) then we would replace
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Figure 37. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear

overlap for the DIS hard scattering correlator in eq. (11.4). a) is the lowest order end, b) involves

Glauber exchange, c) is the corresponding graphs with a Wilson line interaction involving a

collinear gluon.

[k−+i0]→ [k−−i0] in eqs. (11.18) and (11.20). Since
∫
dk−|k−|−η/(k−−i0) = +i/2+O(η),

this flips the overall sign of the final result for C
(G)
n in eq. (11.21). In this case the Glauber

subtraction on the collinear graph would not be equal to the Glauber graph itself, and we

could not simply absorb the Glauber graph into the collinear Wilson line. (The direction

dependence is still canceled in Cn − C(G)
n , and only encoded by G in this case.)

For the graphs in figure 36c,d the results can be obtained by swapping n↔ n̄, p1 ↔ p2,

n · P̄ → n̄ · P , and TA ⊗ TA → T̄A ⊗ T̄A in the analysis above. Therefore we find

C
(G)
n̄ (figure 36d) = G(figure 36c) . (11.23)

Here the W †n̄ = W †n̄(−∞, 0) Wilson line in the JΓ current has to extend from (−∞, 0) in

order for the correspondence in eq. (11.23) to be true. For easy reference we record the

Feynman rules for collinear Wilson lines in various directions in appendix B.4. We see that

the correspondence between Glauber subtractions on the collinear graphs, and the Glauber

graphs themselves is sensitive to the direction of each of the Wn and W †n̄ Wilson lines in

the hard current JΓ. Again, if the Wilson line in the hard scattering current were taken to

extend out to +∞, then the two amplitudes in eq. (11.23) would differ by a sign.

Next we consider active-spectator scattering for the MDIS
Γ amplitude of eq. (11.4),

which has active quarks in the initial and final states, and only n̄-collinear spectators

from the one incoming hadron. The relevant diagrams are shown in figure 36. We let

the incoming momentum of the hadron be P̄ = n · P̄ n̄µ/2 and label the outgoing quark

momenta as p1 and p2 as shown. At tree level the correlator is

figure 37a = Sγ i n · (P̄ − p2)

(P̄ − p2)2
= −iSγ 1

~p 2
2⊥

n · p2 n · (P̄−p2)

n · P̄
≡ Sγ E(p2⊥), (11.24)

which defines the end factor E(p2⊥), and again we suppress the dependence on n · p2 in its

arguments. We distinguish this function from that in eq. (11.6) by its dependence on only

a single ⊥-variable. Note that E(p2⊥) ∼ λ−2 just as expected for the scaling of MDIS
Γ .
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In the hard scattering case, for the single Glauber exchange diagram we have

figure 36b = 2i Sγ
∫
d−dk

G0(k⊥)|2kz|−ηνη
[k+−∆1+i0][k−−∆̄1+i0][−k−−∆̄′1+i0]

= 2Sγ
∫
d−kzd−d

′
k⊥

G0(k⊥)|2kz|−ηνη
[−2kz−∆1−∆̄′1+i0][−∆̄1−∆̄′1]

=
i

2
Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d
′
k⊥

G0(k⊥)

(~k⊥ − ~p2⊥)2

= −1

2
Sγ
∫
d−d
′
k⊥ G

0(k⊥)E(p2⊥ − k⊥) , (11.25)

where d′ = d− 2. Here using eq. (9.26) for qq̄ scattering we have

G0(k⊥) =
−ig2

~k 2
⊥ +m2

TA ⊗ T̄A . (11.26)

The result in eq. (11.25) is similar to the result for the hard annihilation case, just with a

different color factor and the opposite overall sign.

Now consider the collinear loop graph in figure 37c. Here the gluon exiting the hard

vertex has momentum k and is generated by the Wilson line W †n̄[n ·An̄] from the current in

eq. (10.1). We take it to be W †n̄(0,∞) since here it is generated in the full theory to SCETII

matching calculation from integrating out offshell fluctuations for the outgoing quark line

plus non-abelian graphs. For this n̄-collinear loop we then have

C̃n̄(figure 37c) = −iSγ
∫
d−dk

(2ig2CF )

(k2−m2+i0)

n · (k−p2)n · (k+P̄−p2) |n · k|−ηνη
[k+ + i0][(k−p2)2 + i0][(k+P̄ − p2)2 + i0]

.

(11.27)

Once again, for this active-spectator loop graph the soft subtraction is zero, since it is

power suppressed. There is a nonzero Glauber subtraction, which can be determined by

taking the k± � ~k⊥ limit of eq. (11.27),

C
(G)
n̄ (figure 37c) = 2iSγ

∫
d−dk

G0(k⊥) |n · k|−ηνη
[k+ + i0][k− − ∆̄1 + i0][−k− − ∆̄′1 + i0]

= −Sγ
∫
d−k+d−d

′
k⊥

G0(k⊥) |n · k|−ηνη
(k++i0)(∆̄1+∆̄′1 − i0)

=
i

2
Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d
′
k⊥

G0(k⊥)

(~k⊥ − ~p2⊥)2

= −1

2
Sγ

∫
d−d
′
k⊥ G

0(k⊥)E(p2⊥ − k⊥) . (11.28)

This result for the subtraction on the collinear graph is the same as the Glauber graph

result in eq. (11.25), despite the lack of ∆1 in the k+ propagator, and the difference in

rapidity regulators, so

C
(G)
n̄ (figure 37c) = G(figure 37b) . (11.29)

Once again this equality only works out with the proper direction for the Wilson line in

the JΓ current, which here is W †n̄(0,∞).
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If we consider the iteration of active-spectator Glauber exchanges we can also show

that the result yields a phase, similar to our spectator-spectator analysis. A key difference

is that for the active-spectator graphs we required the η-regulator already for the single-

exchange graph. Therefore the ladder sum cannot be carried out independent from the loop

involving the hard scattering vertex. We carry out this calculation in detail in appendix C.2,

finding for the annihilation that the sum of graphs gives

n

n

n

n
G

p
= Sγ

∫
dd
′
b⊥e

i~p1⊥·~b⊥ eiφ(b⊥)/2 Ẽ(−b⊥, p2⊥) . (11.30)

Thus the phase for this sum of active-spectator exchanges is φ(b⊥)/2, where b⊥ is the

transverse distance between the upper spectator quark and the hard annihilation vertex

(which is at the position 0⊥). Similarly for active-spectator exchanges between the anti-

quark entering the hard vertex, and antiquark spectator, we obtain an analogous phase

φ(b⊥)/2, where b⊥ is now the transverse distance between the lower spectator antiquark

and the hard annihilation vertex.

We can also consider the iteration of active-spectator Glauber exchanges for the DIS-

like hard scattering case. From the calculations done in appendix C.2 we find that the sum

of graphs gives

n

n

n

n

n

G
p

= Sγ
∫
dd
′
b⊥e

i~p2⊥·~b⊥ e−iφ(b⊥)/2 Ẽ(−b⊥) . (11.31)

Thus the phase for the active-spectator exchanges here is −φ(b⊥)/2, where b⊥ is the dis-

tance between the hard vertex (at 0⊥) and the spectator quark. Due to the factors of 1/2

these active-spectator phases differs from what we found for spectator-spectator scattering.

Although the active-spectator Glauber exchanges may be absorbed into specifying di-

rections for collinear Wilson lines in the hard scattering operators, we may instead wish

to leave them separate and then consider their cancellation. If these Glauber exchanges

do cancel, then it enables the factorization to be insensitive to the directions of collinear

Wilson lines. Just as we did for spectator-spectator scattering, we can consider the mod-

ulus squared of the active-spectator amplitude alone. For the result in eq. (11.30), this

cancellation requires integration over p1⊥,∫
d−d−2p1⊥

∣∣AAS(p1⊥, p2⊥)
∣∣2

= |Sγ |2
∫
d−d−2p1⊥

∫
dd−2b⊥ d

d−2b′⊥ e
i~p1⊥·(~b⊥−~b′⊥) Ẽ(b⊥, p2⊥)Ẽ′†(b′⊥, p2⊥) e

i
2 [φ(b⊥)−φ(b′⊥)]

= |Sγ |2
∫
dd−2b⊥

∣∣Ẽ(b⊥, p2⊥)
∣∣2

= |Sγ |2
∫
d−d−2p1⊥

∣∣E(p1⊥, p2⊥)
∣∣2 , (11.32)

where the final result is just the integral over the squared tree level result in eq. (11.6). If

we consider the square of the other type of active-spectator graph (again alone), then we
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would need to integrate over p2⊥. Again, as long as the measurement made on the final

state particles takes place at a perturbative scale Q∗ with p1⊥ � Q∗ and p2⊥ � Q∗, then

the pi⊥ phase space integrations will not be constrained at leading power, and one will freely

integrate over these variable. Note that these cancellations require integration over more ⊥-

momenta variables than the spectator-spectator scattering. This shows that the directions

of collinear Wilson lines are important when considering pT -factorization, in agreement

with [31]. The directions of our collinear Wilson lines for the Drell-Yan-like and DIS-like

cases, W †n̄(−∞, 0) and W †n̄(0,∞) respectively, also agree with those of Collins [31]. It would

be interesting to compare the SCET subtraction formalism with the subtractions utilized

in the CSS approach, such as those in transverse momentum dependent PDFs [31, 137].

For processes where collinear factorization is valid (i.e. only integrated PDFs appear), the

Glauber contributions cancel and the infinite collinear Wilson lines combine to lines of a

finite length which are insensitive to the ±∞ appearing at intermediate steps.

Again our analysis in this section is merely indicative of the necessary elements for a

proof of factorization, but additional contributions must be considered for a full proof of

factorization using our framework.

11.3 Active-active and the soft overlap

Finally we will consider Glauber interactions between two partons that participate in the

hard scattering, namely active-active terms. In sections 10.1, 10.2, and 10.3 we showed

that in hard scattering graphs without spectators, such Glauber interactions give the same

contributions as the Glauber zero-bin subtractions of soft Wilson line graphs. The Glauber

exchange could therefore be absorbed into these soft graphs as long as the correct directions

for the soft Wilson lines are employed. In this section we will demonstrate that all the

results and conclusions about active-active Glauber interactions from those sections carry

over to the case when we include the interpolating fields for the incoming hadrons.

The general reason for this can be discussed by looking at the example given in fig-

ure 38. In any purely active-active loop graph with spectators present, the hadron inter-

polating fields are always external to the loops. From the n- and n̄-collinear propagators

that are outside of the loop, we immediately get the same tree-level end factor E(p1⊥, p2⊥)

as in eq. (11.6). The only possible changes to the calculations done in sections 10.1, 10.2,

and 10.3 are due to the fact that the active collinear propagators entering the loops are

now offshell. This does not affect any soft propagator from a Wilson line (solid green

in figure 38), since here only the soft gluon loop momentum appears. This is immediate

from the SCET Feynman rules, and is also clear from expanding a full-theory propagator,

since (pn + ps)
2 = n̄ · pn n · ps + . . ., where the displayed leading O(λ) term gives pre-

cisely the eikonal propagator of the soft Wilson line, and the offshellness of the external

collinear propagator only enters at O(λ2). Thus, the only possible effect on the active-

active loop graphs could be to modify the collinear propagators appearing in loop integrals

with Glauber or collinear momentum scaling. For Glauber loops like figure 38a the nonzero

offshellness of external lines will change the formula for the ∆i(k⊥) terms that appear from

collinear propagators with Glauber loop momenta running through them. However, for

active-active Glauber loops these ∆i(k⊥)s all drop out when we expand to O(η0). This
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a) b)

Figure 38. a) Active-Active interaction for the hard scattering correlator in eq. (11.4). b)

Corresponding graph with two Wilson line interactions involving a soft gluon.

fact was a key ingredient in making the correspondence between Glauber contributions and

the Glauber 0-bin subtractions from soft Wilson line graphs. Here it suffices to ensure that

this correspondence remains true even when the external collinear lines are offshell.

As an explicit example, for figure 38a we have

figure 38a = 2SγE(p1⊥, p2⊥)

∫
d−dk

G0(k⊥) |2kz|−ηνη
[−k+−∆′1+i0][k−−∆̄1+i0]

= −2i SγE(p1⊥, p2⊥)

∫
dkz d−d−2k⊥

G0(k⊥) |2kz|−ηνη
(2kz−∆′1−∆̄1+i0)

= −1

2
SγE(p1⊥, p2⊥)

∫
d−d−2k⊥ G

0(k⊥) +O(η)

= E(p1⊥, p2⊥)
i

2
T̄A ⊗ TAαs

(
1

ε
+ ln

µ2

m2

)
Sγ , (11.33)

where after using momentum conservation ∆′1 and ∆̄1 are given in eq. (11.11), and the kz

integral was performed using eq. (B.4). We also used the fact that up to the spinor factors

a single Glauber exchange yields 2G0(k⊥), where for this incoming q̄q pair we have

G0(k⊥) =
−ig2

~k 2
⊥ +m2

T̄A ⊗ TA , (11.34)

and we have included the mass IR regulator. Since there is no dependence on the ∆i, the

result in eq. (11.33) is identical to that in eq. (10.6) multiplied by E(p1⊥, p2⊥), and so as

anticipated, the correspondence G = S(G) goes through in the same manner here. The

various correspondences also remain true for active-active graphs where the hard vertex

involves scattering or production, rather than annihilation, and for higher loop orders.

From the second to last line in eq. (11.33) we also see that the contribution of the

active-active Glauber graph corresponds to E(p1⊥, p2⊥)
(
−iφ(0)/2

)
Sγ in the notation of

eq. (9.1), where φ(0) = φ(b⊥ = 0). If we consider the iteration of active-active Glauber

exchanges, the result again yields a phase. Similar to the active-spectator graphs, the

η-regulator was already required for the single-exchange graph, so the ladder sum cannot

be carried out independent of considering the loop involving the hard scattering vertex. In

appendix C.3 we carry out this calculation, finding

n

n

n

n
G

n

n
= Sγ E(p1⊥, p2⊥) e−iφ(0)/2 . (11.35)
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Thus we see that the phase for this sum of active-active exchanges is −φ(0)/2. For hard

n-n̄ scattering with MDIS
Γ the Glauber graphs give zero, so there is no Glauber phase in

this case.

11.4 Spectators in SCETI

In SCETI we consider Glaubers at a ⊥-momentum scale of O(λ) that is much larger than

the corresponding ⊥-momentum (O(λ2) ) of the ultrasoft mode. In this setup the infrared

regulator is also introduced at the O(λ2) scale. The addition of the ultrasoft mode, and

its corresponding subtractions, modifies the SCETII calculations from sections 11.1, 11.2,

and 11.3. The corresponding one-loop SCETI calculation with an offshellness regulator

and scalar propagators was carried out in ref. [40], and the relevant formula enumerating

subtractions at one-loop was given in eq. (5.51). We summarize the changes from our

SCETII discussion below.

For active-active diagrams the situation is the same as was already described at the end

of section 10.1. The Glauber loop integral becomes scaleless as in eq. (10.14) and is canceled

by its ultrasoft zero-bin subtraction. For the active-active one-loop topology our soft mode

is scaleless and is absorbed into the ultrasoft mode (serving to pull it up to the hard scale).

Here the ultrasoft gluon Wilson lines directions can matter, and there is no direct corre-

spondence with Glauber gluon subtractions (unless we were to add an additional Glauber

gluon at the O(λ2) scale, which then would make the theory at the IR scale SCETII like).

For the active-spectator topology there are now Glauber, ultrasoft, and collinear Wil-

son line diagrams. Just as in section 11.2 the Glauber graph exactly agrees with the

Glauber 0-bin of the collinear Wilson line graph. This was noted in the calculation of

ref. [40], though the important role that the Wilson lines directions play in enabling this

correspondence was not observed there. The ultrasoft-Glauber subtraction (G)(U) of the

collinear diagram gives a scaleless integral which is equal to the ultrasoft subtraction of

the Glauber graph, and hence cancel. The ultrasoft diagram itself is nonzero and plays an

important role when considering how the SCET graphs reproduce the full theory result in

a matching calculation [40].

For the spectator-spectator topology there are both Glauber and ultrasoft diagrams.

Just as in SCETII neither soft or collinear graphs contribute. The ultrasoft subtraction on

the Glauber diagram is scaleless, proportional to the difference between UV and IR 1/ε

poles. Again both the Glauber and the ultrasoft contributions are needed to reproduce the

full theory spectator-spectator result in a matching calculation [40].

11.5 Definition of spectator and active at higher orders

Having considered the differences between the cases of spectator-spectator, active-

spectator, and active-active Glauber exchange at lowest order, we may also envision higher

order extensions. The first thing to decide is whether the active and spectator language

remains useful. The key attribute that differentiates a spectator from an active line for

the calculations in sections 11.1, 11.2, and 11.3 is that n-collinear active particles were

effectively eikonal inside the Glauber loop integral involving the hard vertex, and the same

was separately true for n̄-collinear active particles. On the other hand, spectator collinear
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particles always involved a pole on each side of the axis in the k+ or k− variable showing

up in their propagators, and yielded results where the eikonal approximation is invalid.

Therefore to extend the active and spectator language to all orders in perturbation

theory for propagators inside Glauber loops, we adopt the definition that cases where the

propagator outside the Glauber burst may be treated as effectively eikonal are called active,

while those that are not are called spectators. This definition implies that spectator gluons

or quarks may be created by collinear radiation from active lines.

12 Conclusion

In this paper we have constructed an effective field theory of high-energy forward scattering

within the framework of the Soft Collinear Effective Theory (SCET). This provides a

common framework for calculating near forward scattering observables and addressing

the question of factorization violation in hard scattering processes, which occurs from near

forward sub-processes. This framework incorporates the exchange of Glauber gluons in non-

local potential operators that connect collinear and soft fields, that is, connecting modes

which have the same offshellness but live in different rapidity sectors. These operators

mediate forward scattering at leading order in a λ ∼
√
|t|/s power expansion. They also can

violate factorization since they couple together collinear and soft modes in a leading power

Lagrangian, unlike in canonical SCET without Glauber exchange potentials, where the

leading Lagrangian can be written as a sum of terms, each with fields from a single sector.

The power counting in our EFT is such that each operator scales homogeneously in the

power counting parameter λ. Time ordered products often simply scale as the sum of the

scalings of their component operators, but not always. In the presence of loop momenta

with Glauber, collinear, soft, or ultrasoft scalings, we derived a general power counting

formula, given in eq. (5.52), that determines the overall λ scaling of an amplitude at any

order in αs and any order in the power expansion (and in both SCETI or SCETII). The

only input needed for this formula are the type and scaling for the inserted operators, and

general connectedness information about the resulting diagram. This formula was used

to show that all time ordered products scale at least as the sum of contributions from its

constituent operators.

To construct the Glauber Lagrangian we matched various QCD amplitudes onto for-

ward scattering operators in SCET with final state particles in various sectors. These

operators were constructed using power counting, gauge symmetry, and calculations at

tree level (see section 5 for an overview and section 6 for the details). Due to the presences

of Wilson lines they encode contributions to all orders in the gauge coupling. There are

two types of operators which are generated in this way: those with two rapidity sectors,

soft and n-collinear, and those with three rapidity sectors n-collinear, n′-collinear and soft

(where n · n′ � λ2). Both two and three rapidity sector operators are composed of gauge

invariant building blocks, and can be written as

LII(0)
G = e−ix·P

∑
n,n′

∑
i,j=q,g

Oijnsn′ + e−ix·P
∑
n

∑
i,j=q,g

Oijns
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≡ e−ix·P
∑
n,n′

∑
i,j=q,g

OiBn
1

P2
⊥
OBCs

1

P2
⊥
OjCn′ + e−ix·P

∑
n

∑
i,j=q,g

OiBn
1

P2
⊥
OjnBs . (12.1)

Although for our explicit calculations we focused almost entirely on the case where n′ = n̄,

with n̄·n = 2, eq. (12.1) and our results apply for the general situation with any two collinear

directions n1 and n2, by adding appropriate factors of n1 · n2. The OiBn , OBCs and OjnBs

appearing in eq. (12.1) are defined in table 2. The operator OBCS encodes the well known

Lipatov vertex for 1-soft gluon emission, but also contains additional structures that give

vertices with ≥ 2 soft gluons. In section 6.3 the soft operator OBCs was decomposed into a

general basis based on symmetry, dimensional analysis, and power counting constraints, to

give a polynomial in ⊥-derivatives and gluon building block operators dressed by Wilson

lines. The coefficients of the operators in this basis were then fixed by carrying out a

tree level matching calculation with zero, one, and two external soft gluons in section 6.4.

Eq. (12.1) is the complete Glauber exchange Lagrangian for SCETII, and also applies

for SCETI where we call it LI(0)
G . The corrections to this result are power suppressed.

For any given process, traditional hard scattering factorization will be violated unless the

contributions from LII(0)
G (or LI(0)

G ) can be shown to vanish.

Several technical ingredients play an important role in our construction of the Glauber

exchange EFT: the multipole expansion enables subleading momentum components to flow

through a diagram, even though these momenta may not show up in intermediate propaga-

tors. The use of a rapidity regulator for both the Glauber exchange potential, and soft and

collinear Wilson lines is crucial to obtain well defined and physically meaningful results.

Our implementation of the rapidity renormalization is analogous to the MS renormalization

in dimensional regularization, with 1/η poles analogous to 1/ε poles, and a rapidity cutoff

ν analogous to the invariant mass cutoff µ. Finally, SCET is formulated with a subtraction

formalism that ensures there is no double counting of infrared regions from loop graphs in

the EFT. These technical ingredients are discussed in section 5.2.

A remarkable property of the forward matching procedure used to derive LII(0)
G is

that there are no hard matching corrections, making eq. (5.21) the exact Lagrangian

for Glauber exchange at leading power. The reason for this simplification is that when

there is no hard scattering involved in an S-matrix element, then for any leading power

contribution there are no closed set of hard lines forming loops, and that the offshell

Glauber lines are localized in tree level sub-diagrams. Working to one loop, in both SCETI

and SCETII, we have explicitly shown in sections 7.1 and 7.3 that our effective theory

exactly reproduces the full theory leading power forward scattering result for all color

structures, logarithms, and constants. The fact that the tree level matching coefficients

are exact imposes strong constraints on the renormalization of the theory. It implies that

the operators in eq. (5.21) have no overall renormalization group anomalous dimensions.

Therefore, beyond the strong coupling, there is no running in µ in the leading power

SCET Lagrangian unless there is a hard scattering.

This does not mean that there are no large logs in the forward scattering amplitude,

since the soft and collinear modes still yield loop level amplitudes with logarithms that are

minimized at different rapidity cutoffs, ν =
√−t for soft modes and ν =

√
s for collinear
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modes.23 The logarithms that are generated due to this hierarchy are summed with the

rapidity renormalization group. At the amplitude level the structure of the anomalous

dimensions and their explicit one-loop computation can be found in section 7.2. The lack

of matching beyond tree level implies that the sum of quark and gluon operators mixes

back into itself. For example, for the n-collinear operators we have

ν
d

dν
(OqAn +OgAn ) = γnν(OqAn +OgAn ) . (12.2)

Solving this equation at one-loop yields gluon Reggeization from the rapidity renormaliza-

tion group flow of octet operators,

(OqAn +OgAn )(ν1) =

(
ν0

ν1

)−γnν
(OqAn +OgAn )(ν0) , (12.3)

when we take ν1 =
√
s and ν2 =

√−t, see section 7.2.4. At one loop the anomalous

dimension is the same as the Regge exponent, γnν = αs(µ)CA
2π ln(−t/m2). Here m is an IR

regulator which appears because the virtual amplitude alone is not a physical observable.

To perform a more physically relevant resummation we can use the rapidity evolution

to sum logarithms in the inclusive forward scattering cross section. In section 8 we factor-

ized the squared single Glauber exchange amplitude into ⊥-convolutions of all orders soft

and collinear functions, Cn(q⊥, p
−, ν)⊗ SG(q⊥, q

′
⊥, ν)⊗Cn̄(q′⊥, p

′+, ν), where each of these

functions is defined by field theory matrix elements of soft and collinear operators. We

then explicitly calculated the rapidity anomalous dimension for the soft function at 1-loop,

obtaining after a very simple calculation the standard BFKL equation,

ν
d

dν
SG(q⊥, q

′
⊥, ν) =

2CAαs(µ)

π2

∫
d2k⊥

[
SG(k⊥, q

′
⊥, ν)

(~k⊥ − ~q⊥)2
− ~q 2

⊥ SG(q⊥, q
′
⊥, ν)

2~k2
⊥(~k⊥ − ~q⊥)2

]
. (12.4)

The collinear functions Cn and Cn̄ also obey BFKL-like equations which ensure that the

physical forward scattering amplitude is ν independent. One powerful property of the

formulation of anomalous dimensions in SCET is the ability to systematically derive the

structure of anomalous dimensions at higher orders in αs (often to all orders), which should

facilitate in the future exploring the BFKL-type resummation beyond the next-to-leading

logarithms.

We have utilized the effective theory to explore the eikonalization (or lack thereof)

of propagators in high energy forward scattering. The canonical eikonal scattering phase

or semi-classical phase arises from an infinite ladder sum of Glauber exchanges. This

sum was computed in section 9.1 for an arbitrary color channel, and is obtained from an

ordered collapse of the iterated Glaubers onto exchanges that occurs at equal time and

equal longitudinal distance. This collapse is handled properly by the rapidity regulator.

In section 9.2 we considered the general properties of Glauber loops in the presence of

virtual and real collinear fluctuations, including general rules for when propagators inside

23In SCETI there are also different scales µ for the modes, since ultrasoft modes live at a parametrically

smaller invariant mass scale than the collinear and soft modes. This distinction becomes apparent below

the collinear scale.
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Glauber loops do or do not eikonalize. Glauber loops will in general vanish unless all of the

Glauber exchanges can be slid without impediment to an equal longitudinal position when

considering diagrams in time ordered perturbation theory.24 In section 9.3 we consider

the correspondence of our EFT derived results with the semi-classical picture of eikonal

scattering, as well as with the shockwave picture and the multi-Wilson line EFT framework

of [4]. While the exclusive two to two scattering amplitude can be thought of as a semi-

classical process, virtual collinear corrections, even in the purely abelian case, violate this

picture for this exclusive rate. Once splitting and pair production is included the source

terms for Glauber interactions do not in general eikonalize. However in multi-Glauber

exchange diagrams in the non-abelian theory, after the first Glauber attachment to a source,

it does eikonalize for subsequent attachments. The fact that these exchanges occur at the

same time and longitudinal position directly yields the setup where multiple Wilson lines

cross a shockwave. The source propagators outside the shockwave are non-eikonal.

Another significant component of this paper was dedicated to studying the role of

Glauber gluons in hard scattering cross sections, where they will violate factorization unless

their effects cancel out. For a proton-proton collision, non-perturbative Glauber exchanges

(with |t| ∼ Λ2
QCD) couple together the fields in matrix elements that we would like to

factorize into distinct parton distribution functions. Perturbative Glauber exchange (with

|t| � Λ2
QCD) can couple together modes in the matrix elements defining collinear and soft

functions, which are then no longer universal perturbative ingredients that can be used

for resummation (beyond some order). We have also seen in sections 5.2.1 and 9.1 that

our Glauber loop results are imaginary, proportional to exactly the (iπ) factors that are

commonly associated to amplitude level factorization violation. For a given observable,

it is therefore important to understand whether the Glauber Lagrangian will or will not

contribute. In particular, one would like to go beyond the small number of proton-proton

collision observables where insensitivity to the Glauber region has been demonstrated so

far, in order to perturbatively incorporate Glauber exchange or demonstrate cancellations.

In sections 10 and 11 we have demonstrated that Glauber interactions between two

active partons or between active and spectator partons can be absorbed into soft and

collinear Wilson lines that appear in hard scattering operators. This is done by picking

directions for these soft and collinear Wilson lines that agree with the physical allowed

scattering of nearly onshell particles from the Glauber exchange. This absorption was

derived by showing that the zero bin subtraction of soft or collinear loops involving these

Wilson lines are exactly equal to the contribution from a corresponding set of Glauber

graphs. In particular, in section 10 we showed this for soft loops which dress n-n̄ hard

operators at 1-loop and 2-loop order, and for n-n̄ hard production/annihilation/scattering

with an additional soft emission at 1-loop (see also section 11.3). In section 11.2 we showed

that active-spectator Glauber exchanges are equal to the zero-bin subtraction of a collinear

1-loop graph involving a collinear Wilson line. Establishing the fact that these Glauber

exchanges can be absorbed into Wilson lines gains a measure of control, as it implies that

24Often high-energy scattering is studied in light cone ordered perturbation theory, but our need for ra-

pidity regularization between particles with two different light-cone times, enforced the use of time ordering

instead. Nevetheless, many of the simplifying features of light-cone ordering are retained in our EFT.
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they appear in objects that can still be factorized into independent matrix elements, and

thus do not necessarily invalidate the factorization program. However, spectator-spectator

Glauber exchanges cannot be absorbed into Wilson lines or other properties of soft or

collinear modes, for the reasons discussed in section 11.1.

While in this paper we have not provided full factorization proofs, we have used our

results to determine sufficient criteria for cross section level factorization violation. In

particular, in section 11.1 we showed how iterated spectator-spectator Glauber exchanges

exponentiate into the eikonal phase within the confines of a hard scattering amplitude.

In order for these Glauber phases to cancel in the cross section requires an unconstrained

integration over the relative ⊥ momentum of the spectators. This cancellation will occur

if the observable of choice operates at a scale Q∗ that is much larger than that of the

considered Glauber’s transverse momentum, Q∗2 � q2
⊥, or if the measurement is inclusive

enough that these transverse momenta are not restricted.

In this paper we have accomplished our main goal of setting up an effective theory for

describing forward scattering and factorization violation with a universal Glauber exchange

Lagrangian. We have also enumerated many of its subtleties, features, and properties.

There remain many avenues to explore further in the future.
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A SCET power counting formula including Glaubers

In this appendix we derive a general power counting formula for SCET including Glauber

loops. For simplicity we consider a case with two collinear sectors since the generalization

to N distinct collinear sectors will be obvious. We start with SCETII. Consider a graph

built from the insertion of an arbitrary number of different operators, which may or may not

involve Glauber potentials, and which may be leading order or power suppressed at some

order. We may consider an infinite number of insertions from operators in the leading order

Lagrangians that yield λ0 contributions, but we start with a finite number for simplicity and

only take the infinite limit at the end (when it becomes trivial). We start by enumerating

the number of vertices that appear that involve operators of order λk as follows, there are:

V n
k vertices with operators involving only n-collinear fields,

V n̄
k vertices with only n̄-collinear fields,

V S
k vertices with only soft fields,

V nS
k vertices that have both n-collinear and soft fields but do not have n̄ fields,
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V n̄S
k vertices with both n̄-collinear and soft fields but not n fields,

V nn̄
k vertices with both n and n̄-collinear fields (with or without soft fields).

For example, the leading power 3-rapidity sector Glauber Lagrangian contributes to V nn̄
k=2

and the leading power 2-rapidity sector Glauber Lagrangians contribute to V nS
k=3 or V n̄S

k=3.

We also introduce variables that count the number of loop integrals and the number of

internal lines of various types:

Ln : n–collinear loops with kµ ∼ Q(λ2, 1, λ) loop momenta,

Ln̄ : n̄–collinear loops with kµ ∼ Q(1, λ2, λ) loop momenta,

LS : soft loops with kµ ∼ Q(λ, λ, λ) loop momenta,

LnS : s–n Glauber loops with kµ ∼ Q(λ2, λ, λ) loop momenta ,

Ln̄S : s–n̄ Glauber loops with kµ ∼ Q(λ, λ2, λ) loop momenta ,

Lnn̄ : n–n̄ Glauber loops with kµ ∼ Q(λ2, λ2, λ) loop momenta ,

In : internal n–collinear propagators,

I n̄ : internal n̄–collinear propagators,

IS : internal soft propagators. (A.1)

Note that the I’s only include the propagating (nearly on-shell) particles25 and that the

loop momentum scaling is determined by the maximum allowed value which leaves all

propagating modes near their mass shell.

Then to determine the overall λ scaling of the diagram we count up the powers of λ for

these operators, add the powers of λ from momentum space loop integrals, and subtract the

powers of λ generated by turning some of the fields in the operators into propagators. This

gives that a general graph in SCETII with Glauber operators scales as λδ where the power

δ =
∑
k

k
(
V n
k +V n̄

k +V S
k +V nS

k +V n̄S
k +V nn̄

k

)
(A.2)

+4Ln+4Ln̄+4LS+5LnS+5Ln̄S+6Lnn̄−4In−4I n̄−4IS .

Note that δ is at the operator level. It includes the scaling of fields for all non-contracted

external lines, but it does not account for the scaling associated to external states. The

scaling for the external states in a matrix element can be trivially added as well, as

discussed for example in ref. [97]. While this formula can be used to determine the power

counting, it is more useful to have a formula that only depends on the vertex indices

and on topological properties of the graph. To this end, note that the topological Euler

identity between vertices, loops, and propagators for the overall diagram implies

1 =
∑
k

(
V n
k + V n̄

k + V S
k + V nS

k + V n̄S
k + V nn̄

k

)
(A.3)

+ Ln + Ln̄ + LS + LnS + Ln̄S + Lnn̄ − In − I n̄ − IS ,
25Wilson lines scale as ∼ λ0, and do not modify the power counting of the operators that contain them.

The eikonal propagators from these Wilson lines are not counted by the Ixs.
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which allows us to write eq. (A.2) as

δ = 4 +
∑
k

(k − 4)
(
V n
k + V n̄

k + V S
k + V nS

k + V n̄S
k + V nn̄

k

)
+ LnS + Ln̄S + 2Lnn̄ . (A.4)

This result is still inconvenient for power counting since we have to determine the number

of Glauber loops, so a few further manipulations are useful. Following ref. [62] we can

exploit individual topological identities for the various sectors to generate a simpler power

counting formula. If we erase all n-collinear propagators then we define N n̄S as the

number of disconnected subgraphs that appear, if we erase all n̄-collinear propagators

then NnS is the number of disconnected subgraphs that appear, and if we erase all soft

propagators then Nnn̄ is the number of disconnected subgraphs that appear. In this

counting procedure a vertex is not erased unless all types of fields that appear in it are

erased (so two point vertices can appear). For these we have the topological identities

NnS =
∑
k

(
V n
k + V S

k + V nS
k + V n̄S

k + V nn̄
k

)
+ Ln + LS + LnS − In − IS ,

N n̄S =
∑
k

(
V n̄
k + V S

k + V nS
k + V n̄S

k + V nn̄
k

)
+ Ln̄ + LS + Ln̄S − I n̄ − IS ,

Nnn̄ =
∑
k

(
V n
k + V n̄

k + V nS
k + V n̄S

k + V nn̄
k

)
+ Ln + Ln̄ + Lnn̄ − In − I n̄ . (A.5)

In addition, if we erase all sectors but one then we count the number of connected

components of that type alone. For the Glauber Lagrangian we do not erase the 3-rapidity

sector vertex even if both n and n̄ collinear lines are erased. So the number of connected

soft, n-collinear, and n̄-collinear components is

NS =
∑
k

(
V S
k + V nS

k + V n̄S
k + V nn̄

k

)
+ LS − IS ,

Nn =
∑
k

(
V n
k + V nS

k + V nn̄
k

)
+ Ln − In ,

N n̄ =
∑
k

(
V n̄
k + V n̄S

k + V nn̄
k

)
+ Ln̄ − I n̄ , (A.6)

respectively. Note that these indices obey the inequalities

Nn +NS ≥ NnS , Nn +N n̄ ≥ Nnn̄ , N n̄ +NS ≥ N n̄S . (A.7)

The Euler identities in eq. (A.6) can be combined to give results for LnS , Ln̄S and Lnn̄, and a

further result that follows from combining them with the original Euler identity in eq. (A.3),

LnS = −N [nS] +
∑
k

(
V nS
k + V nn̄

k

)
, where N [nS] ≡ Nn +NS −NnS ,

Ln̄S = −N [n̄S] +
∑
k

(
V n̄S
k + V nn̄

k

)
, where N [n̄S] ≡ N n̄ +NS −N n̄S ,

Lnn̄ = −N [nn̄] +
∑
k

V nn̄
k , where N [nn̄] ≡ Nn +N n̄ −Nnn̄ ,

1 +N [nS] +N [n̄S] +N [nn̄] −Nn −N n̄ −NS =
∑
k

V nn̄
k . (A.8)
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Figure 39. Example of a contribution to the process B̄0 → D0π0 from ref. [138] that involves

a loop with Glauber scaling without having a Glauber exchange potential operator. The ⊗ is the

W -mediated hard interaction, solid black dots are interpolating field insertions for the mesons,

double lines are soft heavy quarks, single solid lines are light soft quarks, and dashed lines are light

collinear quarks, all in SCETII. This long distance contribution involves a (non-Glauber exchange)

power suppressed operator (the green square) that causes an interaction between soft and collinear

particles. The left most loop in this diagram involves both soft and collinear quark propagators

and hence has a loop momentum with Glauber scaling, kµ ∼ Q(λ2, λ, λ).

Using these results in eq. (A.4) gives the final power counting formula for SCETII:

δ = 6−Nn−N n̄−NnS−N n̄S+
∑
k

[
(k−4)

(
V n
k +V n̄

k +V S
k

)
+(k−3)

(
V nS
k +V n̄S

k

)
+(k−2)V nn̄

k

]
.

(A.9)

In this formula the power counting is obtained entirely from the power counting of the

inserted operators (through the various V ’s) plus topological information about how

connected the graph is in different sectors (encoded in the N ’s). One does not have to

consider the power counting for loops or propagators, which easily allows the result to be

applied when an infinite number of operators are considered. In the special case that there

are no n̄ fields this result reduces to the power counting formula derived earlier in ref. [98]

which included the n-s Glauber loops because they appear at subleading power (this

earlier result is obtained by setting N n̄ = 0, N n̄S = NS , NnS = 1, V n̄
k = V n̄S

k = V nn̄
k = 0).

Indeed, even when the Glauber Lagrangian is not included these Glauber loops play an

important role in power suppressed time ordered products, such as in the factorization

formula for long distance corrections to color-suppressed B → Dπ decays derived in

ref. [138]. As shown in figure 39, this occurs through a subleading Lagrangian interaction

in SCETII, which mediates forward scattering of soft and n-collinear particles without

involving a long distance Glauber potential. Replacing the Glauber potential by an

interaction that is localized at a harder scale leads to the power suppression in this case.

To extend the above power counting to SCETI we must add ultrasoft fields. We

otherwise keep the same starting point as above, so in addition to ultrasoft fields we will

have n-collinear, n̄-collinear, and soft fields (again the generalization to more collinear fields

will be obvious). Since the ultrasoft fields have scaling ψus ∼ λ3, Aµus ∼ λ2, which is greater

or equal to all other field components, we only need an additional index V us
k which counts

the number of operators with only ultrasoft fields that have scaling λk. All other indices

retain their definitions and are now allowed to contain power counting contributions from

ultrasoft fields that appear in their operators. Thus we start by obtaining a formula for

δ for a general SCETI diagram by simply adding
∑

k kV
us
k + 8Lus − 8Ius to the SCETII
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power counting formula in eq. (A.2). We have to distinguish the special case where a graph

contains only ultrasoft fields, vertices, and loops. After using the overall Euler identity,

1 =
∑

k V
us
k + Lus − Ius, the final result for this special case is δ = 8 +

∑
k(k − 8)V us

k .

In contrast, in the presence of one or more collinear or soft fields we retain the Euler

identity in eq. (A.3) because the graph must remain connected if we erase all ultrasoft

fields. Furthermore the identies in eqs. (A.5), (A.6), (A.8) are not modified in the presence

of ultrasoft fields (except that we must add +1 to the right-hand side of the last identity

in eq. (A.8) for the special case with graphs that have only ultrasoft fields). There is an

addition an overall Euler identity in the presence of ultrasoft fields which can be obtained

by adding
∑

k V
us
k +Lus−Ius to the right-hand side of eq. (A.3). Together these two Euler

identities imply
∑

k V
us
k +Lus− Ius = 0 for diagrams that have at least some non-ultrasoft

fields. These identities allows us to remove the loop and propagator counting factors for the

ultrasoft loops without changing any other part of the derivation for SCETII done above.

Thus the final power counting formula for either SCETI or SCETII is

δ = 6−Nn −N n̄ −NnS −N n̄S + 2u , (A.10)

+
∑
k

[
(k − 8)V us

k + (k−4)
(
V n
k + V n̄

k + V S
k

)
+ (k−3)

(
V nS
k + V n̄S

k

)
+ (k−2)V nn̄

k

]
.

Here u = 1 for purely ultrasoft graphs where 0 = Nn = N n̄ = NnS = N n̄S and 0 = V n
k =

V n̄
k = V S

k = V nS
k = V n̄S

k = V nn̄
k , and otherwise u = 0. If no ultrasoft fields are present

then V us
k = 0 and u = 0, so eq. (A.10) reduces to eq. (A.9), demonstrating explicitly that

the formula in eq. (A.10) is valid for both SCETI and for SCETII. In the special case for

SCETI where there are no Glauber loops present and no n̄ or soft fields this result reduces

to the power counting formula derived in ref. [97], δ = 4 + 4u+
∑

k(k− 8)V us
k + (k− 4)V n

k .

To obtain this result we note that if u = 0 then Nn = NnS = 1 and N n̄ = N n̄S = 0, while

if u = 1 then Nn = NnS = N n̄ = N n̄S = 0.

To see how eq. (A.10) works in practice, lets consider several simple examples in SCETII

with u = 0.

1.
n

n

n

n

Here Nn = N n̄ = NnS = N n̄S = 1 and V nn̄
2 = 1, so δ = 2.

This agrees with the scaling of four external ξ′n fields times a 1/q2
⊥

potential, λδ = λ4λ−2 = λ2.

2.
n

s

n

s

Here Nn = NnS = N n̄S = 1, N n̄ = 0 and V nS
3 = 1, so δ = 3. This

agrees with the scaling of two ξn and two qs external fields times a

1/q2
⊥ potential, λδ = λ2λ3λ−2 = λ3.

3.
n

n

n nn

n nn

Here Nn = NnS = N n̄S = N n̄ = 1 and V nn̄
2 = 3, so δ = 2.

4.

n

n

n

n

S
Here Nn = NnS = N n̄S = N n̄ = 1 and V nS

3 = V n̄S
3 = 1, so

δ = 2.

5.
n

n

n

n

S

n

n

Here Nn = NnS = N n̄S = N n̄ = 1 and V nn̄
2 = 2, so δ = 2.
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6.
n

n

n

n

n
n

n

Here Nn = NnS = 2, N n̄S = N n̄ = 1 and V nn̄
2 = 2, so δ = 0.

This agrees with the scaling for six ξn′ external fields, two 1/q2
⊥s,

and one collinear propagator.

7.

n

n

n

n

n
n

n

S

Here Nn = 2, NnS = N n̄S = N n̄ = 1 and V nn̄
2 = 2, so δ = 1.

Note that this is suppressed relative to the graph in example 6 by

O(λ), even though it involves only the leading power Lagrangian.

This O(λ) agrees with the direct counting, where we add a n-

s Glauber loop measure ∼ λ5, two Glauber potentials giving

∼ λ−4, a soft propagator ∼ λ−2, and two Lipatov vertices each

giving a momentum factor that is ∼ λ.

To fully compare results with a different number (or type) of external particles, we start

with δ and then add contributions from the scaling of external states, phase space integrals,

and the overal momentum conserving delta-function for each case. Although all of our

examples here are for forward scattering graphs, the formula for δ works in an identical

manner for cases including a hard interaction operator.

In general eq. (A.10) gives a simple way to determine the scaling of a given graph, by

simply adding up the powers k associated to the various operators that the graph is built

from. Noting that the sum on k runs over operators with a different power counting, and

the Vks give the total count of all operators of a particular type with power counting λk,

we can rewrite the result for δ as a sum over the power counting contribution ∆i of each

individual operator i,

δ = δconn +
∑
i

∆i , (A.11)

where

δconn = 6−Nn −N n̄ −NnS −N n̄S + 2u (A.12)

is a factor that depends on the sector-based connectedness of the diagram, and for an

operator i which is of order λki we have

∆i =


(ki − 8) pure ultrasoft operator

(ki − 4) pure soft, n-collinear, or n̄-collinear operator

(ki − 3) mixed soft-n or mixed soft-n̄ operator

(ki − 2) mixed n-n̄ operator with/without soft fields.

(A.13)

Intuitively, the subtractions in (ki − 8), (ki − 4), (ki − 3), and (ki − 2) are just associated

to the largest momentum for each operator Oi(x), which determine the scaling of the

corresponding measure d4x. The measure is either purely ultrasoft (λ−8), purely collinear

or soft (λ−4), mixed collinear-soft (λ−3), or mixed n–n̄ collinear (λ−2). In general

T O1(0)

N∏
i=2

∫
d4xi Oi(xi) ∼

(
λ
∑
i ∆i
) (
λδ

conn)
, (A.14)

where T denotes the time-ordered product. The spacetime position of one operator has

been fixed since we are not including the overall momentum conserving delta function in

the power counting determined by δ in eq. (A.10) or eq. (A.11).
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Eq. (A.11) is particularly simple to use if we are interested in comparing a set of dia-

grams where the connectedness term δconn is fixed, since then we simply add up the factors

∆i for each operator. In this situation the leading power contributions are just determined

by the leading power Lagrangian, which consists of operators with ∆i = 0, perhaps supple-

mented by a hard scattering operator that provides a base for the process and only appears

once. However, sometimes the connectedness term can play an important role. This is the

case in NRQCD, where for example, a graph similar to the soft eye graph in figure figure 23c

but with the collinear fermions replaced by heavy non-relativistic fermions, is built from

∆i = 0 operators, but is enhanced by a single power of 1/v from the connectedness term.

In that theory the enhancement occurs because the higher energy soft sector mediates a

potential between the lower energy heavy non-relativistic fermions.26 In the NRQCD ac-

tion the heavy fermion kinetic term is ∼ v0, but the tree level Coulomb potential operator

is ∼ 1/v. The enhancement of the soft eye loop graph in NRQCD makes it the same order

in v as this tree level Coulomb exchange, so that the only difference is an extra power of αs.

In SCET, the connectedness term does not yield an analogous enhancement for loop

graphs. To discuss this we can safely set u = 0. To prove that there are no connectedness

enhancements in loop graphs, first consider a graph with in initial state n-collinear particles,

and in̄ initial state n̄-collinear particles. The simplest contribution is to connect all these

fields with tree level Glauber potentials, which gives Nn = NnS = in and N n̄ = N n̄S = in̄,

and the power counting result is δ = δconn = 6 − 2in − 2in̄. This provides a baseline

for the scattering operator with these external states, and we can then ask whether any

graphs with the same external fields can have a smaller δconn. Since for the baseline graph

Nn = NnS and N n̄ = N n̄S with NS = 0, the bounds in eq. (A.7) imply that the only way

we can decrease δconn is by increasing Nn or N n̄, or by increasing NS with a simultaneous

increase to NnS or N n̄S . Holding the external fields fixed, it is not possible to increase

these indices at tree level, so we must consider adding loops to do so.

The prototype for a loop correction which could decrease δconn is to start with a graph

having a single n-collinear sector, and split it into two sectors by joining lines together with

either a soft loop or n̄-collinear loop, such as in

n n
n

n n
=⇒

n

n

n

n

nn ,

n

n

n

n

S .

(A.15)

Here all three graphs are built from leading power Lagrangian interactions. The graph

on the left has δconn = 4 from Nn = NnS = 1 and N n̄ = N n̄S = 0, while the graph in

26The reason for this enhancement in NRQCD beyond the powers obtained from the v0 interaction

Lagrangian, is that the large O(mv) soft energy carried by the soft gluons or quarks can only run in the

loop. No soft energy can be carried away by the fermions on the external legs. In perturbative NRQCD

this enhancement does not endanger the power counting because the v expansion and coupling expansion

are tied together by the virial relation αs ∼ v, which implies that the graph in figure 23c is suppressed by

a single αs relative to the leading order Coulomb potential.

– 169 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
5

the middle has δconn = 0 (from Nn = NnS = 2, N n̄ = N n̄S = 1) and the graph on the

far right has δconn = 2 (from Nn = 2, NnS = 1, N n̄ = 0, and N n̄S = 1). (Although

we have drawn these graphs with external collinear quarks, the same results are obtained

if they are collinear gluons.) Thus the two graphs on the right seem to be enhanced

by their value of δconn relative to what we expect for leading power interactions in the

n-collinear sector. However, all such enhanced graphs, which attempt to use Glauber

interactions to join a disconnected set of n-collinear fields, vanish by RPI-III invariance

symmetry [89]. Both collinear operators Oin that contain the external fields scale as a single

n̄, and the soft or n̄-collinear loops cannot yield dependence on any external n-collinear

momentum to compensate this. Since scattering results must be invariant under an RPI-III

transformation, enhanced contributions of this sort always vanish. This remains true even

if power suppressed Lagrangian interactions are considered in these loops in order to make

them have δ = 4 in the presence of the connectedness enhancement. The reason is that in

the end we would have to obtain a result involving a Oin andOjn at leading power (modulated

by logarithms), and we have already argued that no such leading power operator exists.

Effectively since the Glauber operators only involve n-collinear fields in operators with a

specific RPI-III scaling, they cannot be used to generate any loop diagram that leads to an

enhanced contribution. This argument is also consistent with the fact that all scattering

between collinear lines in the same direction is via collinear exchanges and collinear loop

graphs, since this is just a boosted version of QCD. The same RPI-III argument applies if

we consider external soft fields with Oins and Ojns , or with Oin̄ with Ojn̄, since these products

again have a non-trivial RPI-III scaling. Note that it is possible for the connectedness term

to cause a suppression, as it does for the graph in example 7 discussed above.

B Useful formulae

B.1 Expansion of adjoint Wilson lines and gluon building blocks

In section 6.3 we made use of various coupling expansions of Wilson lines and composite

operators in order to obtain the one and two soft gluon Feynman rules for the operators,

which were used for the calculations in section 6.4. This includes the Feynman rules for

the final operator OABS given in figure 7. Here we give results for some of those expansions

for easy reference.

We start with the expansion of the adjoint Wilson line in momentum space, where for

brevity here we use ACsk to denote the soft field ACs with incoming momentum kµ. This gives

SABn̄ = δAB+igfABC
n̄ ·ACsk
n̄ · k +g2

[
fC1AEfC2BE

n̄·k1 n̄·(k1+k2)
+

fC2AEfC1BE

n̄·k2 n̄·(k1+k2)

]
n̄ ·AC1

sk1
n̄ ·AC2

sk2

2!
+. . . . (B.1)

The analogous expansion for ST ABn is easily obtained by taking A ↔ B and n̄ → n. In

constructing the two-gluon Feynman rule from this operator either of the fields AC1
sk1

or

AC2
sk2

can be contracted with either gluon, which cancels the 2!. For the adjoint building

block gluon field we have the expansion
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(
gB̃nµs⊥

)AB
= −igfABC

(
ACµs⊥k −

kµ⊥
n · k n ·A

C
sk

)
+ g2

(
fC1BEfC2AE − fC2BEfC1AE

)AC1µ
s⊥ n ·AC2

sk

n · k

+ g2
(
kµ1⊥+kµ2⊥

)[ fC1AEfC2BE

n·k1 n·(k1+k2)
+

fC2AEfC1BE

n·k2 n·(k1+k2)

]
n ·AC1

sk1
n ·AC2

sk2

2!

− g2fC1AEfC2BE
kµ2⊥ n ·AC1

sk1
n ·AC2

sk2

n · k1 n · k2
+ . . . , (B.2)

with the analogous result for gB̃n̄µs⊥ obtained by taking n→ n̄. Finally we note that slightly

simpler results are obtained for certain combinations due to cancellations between the

explicit Wilson line and those internal to the adjoint gluon building blocks, such as

(
gB̃nµs⊥STn

)AB
= −igfABC

(
ACµs⊥ −

kµ⊥
n · kn ·A

C
sk

)
+ g2fC1BEfC2AE

AC1µ
s⊥ n ·AC2

sk2

n · k2
(B.3)

− g2
(
kµ1⊥+kµ2⊥

)[ fC2AEfC1BE

n · k1 n · (k1+k2)
+

fC1AEfC2BE

n · k2 n · (k1+k2)

]
n ·AC1

sk1
n ·AC2

sk2

2!
+ . . . ,

(
Sn̄gB̃n̄µs⊥

)AB
= −igfABC

(
ACµs⊥ −

kµ⊥
n̄ · k n̄ ·A

C
sk

)
− g2fC1AEfC2BE

AC1µ
s⊥ n̄ ·AC2

sk2

n̄ · k2

+ g2
(
kµ1⊥+kµ2⊥

)[ fC1AEfC2BE

n̄ · k1 n̄ · (k1+k2)
+

fC2AEfC1BE

n̄ · k2 n̄ · (k1+k2)

]
n̄ ·AC1

sk1
n̄ ·AC2

sk2

2!
+ . . . .

B.2 Useful rapidity regulated integrals

In this section we tabulate results for a few integrals that required the rapidity regulator.

We consider both the Glauber type loop integrals, which must be regulated, but do not

introduce logarithmic divergences, as well as collinear and soft loop integrals that do induce

logarithmic divergences.

The rapidity divergent kz integral that shows up in Glauber loops is∫ +∞

−∞
d−kz

|2kz|−2η ν2η

(−2kz+2A+i0)
=

∫ ∞
0

d−kz (kz)−2η (ν/2)2η

2

[
1

−kz+A+i0
+

1

kz+A+i0

]
=

1

4π
(ν/2)2η π csc(2πη)

[
(A+ i0)−2η − (−A− i0)−2η

]
=

1

4π

[
(ν/2)2η (−2iπ) csc(2πη) sin(πη) (−iA)−2η

]
=

(
1

4π

) [
− iπ +O(η)

]
. (B.4)

Note that the result at leading order in the limit η → 0 is independent of A. This term

is therefore also independent of the exact power in η, giving the same result whether the

regulator is |2kz|−2η or |2kz|−η for this integral. We also obtain the same result if we swap

kz → −kz in the original integral. We obtain the opposite sign for the O(η0) term if the

original integral appears instead with a −i0, which is the complex conjugate of the result

in eq. (B.4). One common case where this integral appear is in evaluating∫
d−k0d−kz

|2kz|−2ην2η(
k+ −∆ + i0

)(
k− + ∆′ − i0

) = +
1

4
+O(η) . (B.5)
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If we have two k+ dependent propagators with poles on the same side, opposite to the

k− propagator, then the integral vanishes at O(η0)

I2001 =

∫
d−k0d−kz

|2kz|−2ην2η(
k+ −∆1 + i0

)(
k+ −∆2 + i0

)(
k− + ∆̄′1 − i0

) (B.6)

= i

∫
d−kz

|2kz|−2ην2η(
− 2kz −∆1 − ∆̄′1 + i0

)(
− 2kz −∆2 − ∆̄′1 + i0

) = O(η) .

To see this note that after doing the k0 contour integral we have two poles on the same side

of a kz integral that is convergent without the regulator. We could also keep the regulator,

and transform the kz dependent integrand in eq. (B.6) to longitudinal position space with

eq. (9.7). To obtain the spacetime picture we separately transform the regulator factor for

each of the two Glauber exchanges contributing to eq. (B.6), obtaining

I2001 = − i
4

(
κη
η

2

)2∫ +∞

−∞
dx1dx2dα1dα2 θ(α1)θ(α2)|x1x2|−1+ηeik

z(x1−x2)−iα1(kz−∆11̄′ )−iα2(kz−∆21̄′ )

= − i
4

(
κη
η

2

)2∫ +∞

−∞
dx1dx2dα1 θ(α1)θ(x1−x2−α1)|x1x2|−1+ηeiα1(∆11̄′+i(x1−x2−α1)∆21̄′

= − i
4

(
κη
η

2

)2∫ +∞

−∞
dx1dx2 θ(x1−x2)|x1x2|−1+ηei(x1−x2)∆21̄′

[
(x1−x2) +O(η)

]
= O(η) . (B.7)

The presence of a vertex between the two Glauber exchanges at x1 and x2 leads to the

extra restricted integral over α1 that ranges over the interval between these two Glauber

exchanges. At leading order in the xj → 0 limit it simply gives a factor of (x1 − x2). This

factor reduces the divergences from xj → 0, such that they can no longer overcome the η2

prefactor.

On the other hand if the k+ dependent propagators are on opposite sides, then the

result is nonzero at O(η0),

I1101 =

∫
d−k0d−kz

|2kz|−2ην2η(
k+ −∆ + i0

)(
k+ + ∆′′ − i0

)(
k− + ∆′ − i0

)
=

−i(
∆ + ∆′′ − i0

) ∫ d−kz |2kz|−2ην2η(
2kz + ∆ + ∆′ − i0

) =
1

4
(
∆ + ∆′′ − i0

) +O(η) . (B.8)

We can also consider rapidity regulated integrals that lead to 1/η divergences with

corresponding logarithms. This occurs in both soft and collinear loops. The basic rapidity

divergent loop integral that appears in the soft eye graph after reducing the numerator

(and including the Glauber 0-bin subtraction which removes the dependence on whether

we use ±i0 in the eikonal propagators), is∫
d−dk

(ιεµ2ε|2kz|−η νη)
[k2 −m2][(k + q)2 −m2](n̄ · k)(n · k)

(B.9)

= − i

8π2t

{
2 g(ε, µ2/t)

η
+

1

ε2
+

1

ε
ln

(
µ2

ν2

)
+ ln

(
µ2

ν2

)
ln

(
µ2

−t

)
− 1

2
ln2

(
µ2

−t

)
+
π2

12

}
,
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where g(ε, µ2/t) is defined in eq. (7.16). The full loop integral for the soft eye graph was

given in eq. (7.15). Similarly, the rapidity divergent loop integral appearing in the soft

flower graph is∫
d−dk

(ιεµ2ε|2kz|−η νη)
[k2 −m2](n · k)(n̄ · k)

(B.10)

= − i

16π2

{
2h(ε, µ2/m2)

η
− 1

ε2
− 1

ε
ln

(
µ2

ν2

)
− ln

(
µ2

ν2

)
ln

(
µ2

m2

)
+

1

2
ln2

(
µ2

m2

)
+
π2

12

}
,

where h(ε, µ2/m2) is defined in eq. (7.20). The rapidity divergent loop integral that appears

for the collinear V-graph is∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη) k⊥ ·(k⊥+q⊥) n̄·(k+p3)

[k2 −m2][(k + q)2 −m2](k + p3)2 (n̄ · k)
(B.11)

= − i

16π2

{
g(ε, µ2/t)

η
− 1

ε
ln

(
ν

n̄ · p3

)
− ln

(
ν

n̄ · p3

)
ln

(
µ2

−t

)
− 3

2ε
− 3

2
ln

(
µ2

−t

)
+

3

4
ln

(
m2

−t

)
− 15

8
+
π2

3

}
.

In the full result for the loop integral for the V-graph, given in eq. (7.26), the dependence

on ln(m2) cancels. Similarly, the rapidity divergent loop integral for the collinear Wilson

line graph is∫
d−dk

(ιεµ2ε|n̄ · k|−ηνη) n̄ · (k + p3)

[k2 −m2](k + p3)2 (n̄ · k)
(B.12)

=
i

16π2

{
h(ε, µ2/m2)

η
+

1

ε
ln

(
ν

n̄ · p3

)
+ln

(
ν

n̄ · p3

)
ln

(
µ2

m2

)
+

1

ε
+ln

(
µ2

m2

)
+1−π

2

6

}
.

B.3 Three gluon Feynman rule for OgA
n

The three collinear gluon Feynman rule for the OgAn operator, which was used in sec-

tion 7.2.3, is given in terms of a vertex function V µνλ
1 by

n

n

nμ,C ν,B

λ,D

k p

A

= −g n̄ · k fACEfBDE V µνλ1 (k, `, p)− g n̄ · p fABEfDCE V νλµ1 (p, k, `)

−g n̄ · ` fADEfCBE V λµν1 (`, p, k)

V µνλ1 (k, `, p)=
gµν⊥ n̄λ

n̄·` −
gµλ⊥ n̄ν

n̄·p −
`µ⊥n̄

ν n̄λ

n̄·k n̄·p +
pµ⊥n̄

ν n̄λ

n̄·k n̄·` +
kλ⊥n̄

µn̄ν

n̄·k n̄·p −
kν⊥n̄

µn̄λ

n̄·k n̄·` +
n̄µn̄ν n̄λ

(n̄·k)2

(
k⊥·`⊥
n̄·p −

k⊥·p⊥
n̄·`
)
.

(B.13)

Here the operator OgAn has an incoming Glauber exchange momentum q⊥ and p=−k− `−
q⊥.
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B.4 Wilson line Feynman rules for various directions

For easy reference we record here some notation and Feynman rules for various Wilson lines.

For n-collinear Wilson lines Wn = Wn[n̄ ·An] the lines with various specified directions are:

Wn(−∞, 0) = P exp

(
ig

∫ 0

−∞
ds n̄·An(xµs )

)
, Wn(0,∞) = P exp

(
−ig
∫ ∞

0
ds n̄·An(xµs )

)
,

(B.14)

W †n(−∞, 0) = P exp

(
−ig
∫ 0

−∞
ds n̄·An(xµs )

)
, W †n(0,∞) = P exp

(
ig

∫ ∞
0
ds n̄·An(xµs )

)
,

where xµs = xµ+s(n̄µ/2). Thus the lines have one end at the space-time point xµ = (n·x, n̄·
x, x⊥), extend along the n̄µ light-cone, and have the other end at (±∞, n̄ · x, x⊥). Here, as

the notation implies, we have [Wn(−∞, 0)]† = W †n(−∞, 0) and [Wn(0,∞)]† = W †n(0,∞).

For an incoming gluon with momentum k the 1-gluon Feynman rules for n-collinear

Wilson lines in various directions are

n-line: Wn(−∞, 0) W †n(0,∞) W †n(−∞, 0) Wn(0,∞)

1-gluon:
−g n̄µTA
n̄ · k + i0

−g n̄µTA
−n̄ · k + i0

−g n̄µTA
−n̄ · k − i0

−g n̄µTA
n̄ · k − i0 (B.15)

s-line: Sn̄(−∞, 0) S†n̄(0,∞) S†n̄(−∞, 0) Sn̄(0,∞) .

As indicated, the results for the soft Wilson lines Sn̄[n̄ ·As] are the same as for Wn[n̄ ·An]

but just involve the soft gluon field Aµs . The Wilson lines and Feynman rules for the n̄-

collinear Wilson lines Wn̄[n ·An̄] are obtained by taking n↔ n̄ in these results, and those

for Sn[n ·As] are the same as those for Wn̄[n ·An̄].

C Glauber exponentiation calculations

C.1 Abelian exponentiation of Glaubers at the integrand level

In this section we briefly discuss how the summation of forward scattering Glauber exchange

graphs can be done in an abelian theory, without the need to introduce the η rapidity

regulator. For the abelian theory the box and cross-box Glauber exchange graphs can be

combined at the integrand level to obtain obtain well defined results as long as we impose

that the integrand is regulated in a manner that retains an invariance under using different

possible routings for the loop momenta. The final result for the sum of graphs obtained

here is the same as the abelian limit of eq. (9.18), taking TA ⊗ T̄A → −1 in φ(b⊥). For

simplicity we work with the kinematics specified in eqs. (5.6) and (5.7).
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First consider the sum of the one-loop box and crossed box graphs symmetrized over

two momentum routings,

1

2!

{ n

n

n

n

qk

pk 

pk 

k +

n

n

n

n

qk

pk 

pk 

k +(k1 → −k1 − q)
}

= 2Snn̄ g
4

2!
I

(1)
⊥ (q⊥)

∫
d−k+

1 d
−k−1

[
1

(k+
1 −∆n

1 )(−k−1 −∆n̄
1 )

+
1

(k+
1 −∆n

1 )(k−1 −∆n̄
1 )

+(k±1 →−k±1 )

]
= 2Snn̄ g

4

2!
I

(1)
⊥ (q⊥)

∫
d−k+

1 d
−k−1

[ −2∆n
1

(k+
1 −∆n

1 )(−k+
1 −∆n

1 )

−2∆n̄
1

(k−1 −∆n̄
1 )(−k−1 −∆n̄

1 )

]
= 2Snn̄ (ig2)2

2!
I

(1)
⊥ (q⊥) , (C.1)

where Snn̄ is given in eq. (9.5), I
(1)
⊥ is given in eq. (9.11), and here ∆n

1 = (~k⊥+ ~p3⊥)2/p−2 −
p+

3 − i0 and ∆n̄
1 = (~k⊥ − ~p4⊥)2/p+

1 − p−4 − i0. The two displayed diagrams symmetrize

over attachments to the bottom line while holding the momentum routing through the top

collinear propagator fixed, whereas the k1 → −k1−q analogs symmetrize over attachments

to the top line holding the momentum routing in the bottom propagator fixed. The sum of

propagators falls off quadratically for both k+
1 → ±∞ and k−1 → ±∞, and hence both of

these can be done by contours, simply giving a (−i)2. The result in eq. (C.1) is the same as

that found with the η regulator in the abelian limit for the box graph alone, see eq. (9.10).

For three Glauber exchanges we must symmetrize over 3! choices of momentum routings

through the Glauber lines in order to simultaneously symmetrize over attachments to the

top and bottom collinear lines

1

3!

{
n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k +
n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k +
n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k +
n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k +
n

n

n

n

q+

pk +

pk -







k - k k

pk - 

pk + 

-k +
n

n

n

n

q+

pk +

pk -







k - k
k

pk - 

pk + 

-k

+5 momentum routing permutations swapping {k1 + q, k2 − k1,−k2}
}

= −2iSnn̄ g6I
(2)
⊥ (q⊥)

1

3!

∫
d−k+

1 d
−k−1 d

−k+
2 d
−k−2

[
1

(k+
1 −∆n

1 )(k+
2 −∆n

2 )
+

1

(k+
1 −∆n

1 )(k+
1 −k+

2 −∆n
12)

+
1

(−k+
1 +k+

2 −∆n
12)(k+

2 −∆n
2 )

+
1

(−k+
1 +k+

2 −∆n
12)(−k+

1 −∆n
1 )

+
1

(k+
2 −∆n

2 )(k+
1 −k+

2 −∆n
12)

+
1

(−k+
2 −∆n

2 )(−k+
1 −∆n

1 )

][
same 6-terms with k+

1,2 → k−1,2, ∆n
i → ∆n̄

i

]

= 2Snn̄ (ig2)3

3!
I

(2)
⊥ (q⊥) , (C.2)

where I
(2)
N is given in eq. (9.14). Again the four k±i integrals each give a factor of (−i).

To see this note that the sum of six terms depending on k+
1,2 gives a result that falls off

with the 4’th power as k+
1,2 → ±∞, and with two powers if either k+

1 → ∞ or k+
2 → ∞

individually. Therefore with these sums of terms the integrals are all well defined and can
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be done by contours. We can do the contour integral without combining denominators as

long as we close the contour the same way for all 6-terms. Closing both contours below,

only the first term contributes. (The same result is of course obtained if we first combine

denominators.) The result in eq. (C.2) matches eq. (9.13) in the abelian limit.

The pattern is clear, so the graphs with N + 1 Glauber rungs are no more difficult,

1

(N+1)!

{[ n

n

n

n

q+

pk +

pk -







k - k kN

pk - N

pk + N

k -k -N kN- + [(N+1)!−1] crossed graphs

]
+[(N+1)!−1] momentum routing

permutations

}

= −2Snn̄ (−ig2)N+1I
(N)
⊥ (q⊥)

1

(N+1)!

∫
d−k+

1 d
−k−1 · · · d

−k+
Nd
−k−N

[
1

(k+
1 −∆n

1 ) · · · (k+
N−∆n

N )

+[(N+1)!−1] crossed graph
propagator terms

][
same terms with k+

i → k−i , ∆n
i → ∆n̄

i

]

= 2Snn̄ (ig2)N+1

(N+1)!
I

(N)
⊥ (q⊥) , (C.3)

where I
(N)
⊥ is given in eq. (9.17). There are (N + 1)! terms in the sum of k+

i dependent

propagators, and each one has poles only either above or below for each k+
i or k−i .27 Again

the integrals converge as k±i → ±∞ once we consider the sum of all terms. Finally, there

is a single term with the poles in all k±i below so closing the global contour in this manner

simply gives (−i)2N , and thus the result in eq. (C.3). The result in eq. (C.3) matches

eq. (9.16) in the abelian limit. Thus we also obtain the exponentiated results of section 9.1

for the abelian case by adding integrands in this manner.

This analysis demonstrates that in the more general non-abelian context, the η reg-

ulator is properly regulating the Glauber sector of the theory, separating it from the soft

and collinear sectors, as opposed to enforcing a particular result on the sum of Glauber

exchange graphs.

C.2 Exponentiation for active-spectator exchanges

In this appendix we derive the result for iterated Glauber exchange on active-spectator

lines. Unlike for spectator-spectator scattering, this result requires the η-regulator both

for the single exchange integral, and for the ladder iterations, therefore it cannot simply

be inferred from the exponentiation result in section 9.1.

Starting with the Drell-Yan case, we first repeat the single Glauber exchange calcula-

tion in eq. (11.17), but carry out the intermediate regulator dependent integral in Fourier

space following the notation introduced in section 9.1, in order to setup the procedure for

the N -exchange diagram. Writing the final result in the transverse Fourier space we have

27To see this for k+
i note that there are only two Glauber exchanges that depend on k+

i , with incoming

k+
i − k

+
i−1 or incoming k+

i+1 − k
+
i . Which ever one of these vertices occurs first from the left induces a

dependence on k+
i in the collinear propagators which follow this vertex, until the attachment of the other

one, after which the collinear propagators no longer have any dependence on k+
i . So the sign for the k+

i poles

that appear in a given propagator term are determined by which of the two vertices attach first, and there

are never simultaneously poles on both sides of the contour for a single term. The proof for k−i is the same.
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n

n

n

n

= −2i Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫ +∞

−∞
d−kzd−d

′
k⊥

G0(k⊥)|2kz|−ηνη
[2kz−∆′1−∆̄1+i0][−∆1−∆′1+i0]

= Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d
′
k⊥G0(k⊥)
∆1+∆′1

(
κη
η

2

)∫ +∞

−∞
d−kz dx dα θ(α)|x|−1+ηeiα(kz+∆)−ikzx

= Sγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

n̄·p1 n̄·(P−p1)

n̄·P

∫
d−d
′
k⊥G0(k⊥)

(~k⊥+~p1⊥)2

(
κη
η

2

)∫ +∞

−∞
dx θ(x)|x|−1+ηeix∆

= Sγ
∫
d−d
′
k⊥G

0(k⊥)E(p1⊥ + k⊥, p2⊥)

(
κη
η

2

)[
1

η
+O(η0)

]
=
Sγ

2

∫
d−d
′
k⊥

∫
dd
′
b⊥e
−i~k⊥·~b⊥G̃0(b⊥)

∫
dd
′
b′⊥e
−i(~k⊥+~p1⊥)·~b′⊥Ẽ(b′⊥, p2⊥)

= Sγ
∫
dd
′
b⊥e

i~p1⊥·~b⊥
[

1

2
G̃0(b⊥)

]
Ẽ(−b⊥, p2⊥) . (C.4)

Recall that we use the notation d′ = d−2, and that the Fourier transform G̃0(b⊥) = iφ(b⊥)

with φ(b⊥) given by eq. (9.1). The end factor E(p1⊥, p2⊥) is defined in eq. (11.6). The

dependence on ∆ = −(∆′1 + ∆̄1)/2 drops out at leading order in η. Next we carry out the

analogous calculation but with N Glauber exchanges between these two lines. Closing all

the k0
i contours above we have

n

n

n

n

... = (i22)NSγ
n·p2n·(P̄−p2)

n·P̄ (−~p 2
2⊥)

∫
d−dk1 · · · d−dkN

G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

[k−1 −∆̄1+i0] · · · [k−N−∆̄N+i0]

×
|2kz1 |−η|2kz2−2kz1 |−η · · · |2kzN−2kzN−1|−η νNη

[−k+
N−∆′1+i0][k+

N−∆1+i0][k+
N−k

+
1 −∆2+i0] · · · [k+

N−k
+
N−1−∆N+i0]

= −(2i)NSγ
n·p2n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d−1k1 · · · d−d−1kN

G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

[−∆1−∆′1]

×
|2kz1 |−η|2kz2−2kz1 |−η · · · |2kzN−2kzN−1|−η νNη

[2kz1 +2∆1̄1′2+i0] · · · [2kzN+2∆1′N̄+i0]

= Sγ
∫
d−d
′
k1⊥ · · · d−d

′
kN⊥E(p1⊥+k1⊥, p2⊥)G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

(
κη
η

2
νη
)N

×
∫ +∞

−∞
d−kz1 · · · d−kzNdx1 · · · dxN dα1 · · · dαN

θ(α1) · · · θ(αN )

|x1 · · ·xN |1−η
ei(α1+x1−x2)kz1+...+i(αN+xN )kzN eiα1∆1̄1′2+...

= Sγ
∫
d−d
′
k1⊥ · · · d−d

′
kN⊥E(p1⊥+k1⊥, p2⊥)G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

×
(
κη
η

2
νη
)N∫ +∞

−∞
dx1 · · · dxN

θ(x2−x1)θ(x3−x2) · · · θ(xN−xN−1)θ(−xN )

|x1 · · ·xN |1−η
ei(x2−x1)∆1̄1′2+...−ixN∆1′N̄

= Sγ
∫
d−d
′
k1⊥ · · · d−d

′
kN⊥E(p1⊥+k1⊥, p2⊥)G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

[
1

N ! 2N
+O(η)

]
= Sγ

∫
dd
′
b⊥e

i~p1⊥·~b⊥ 1

N !

[
1

2
G̃0(b⊥)

]N
Ẽ(−b⊥, p2⊥)

= Sγ
∫
dd
′
b⊥e

i~p1⊥·~b⊥ 1

N !

[
iφ(b⊥)

2

]N
Ẽ(−b⊥, p2⊥) . (C.5)

At intermediate steps we defined ∆1̄1′2 = −(∆̄1 + ∆′1 + ∆2)/2, etc., but to leading order

in η the answer is independent of these factors. The only such factors which contribute
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are ∆1 + ∆′1, which contributes to give the E(p1⊥ + k1⊥, p2⊥) (these ∆s were defined in

eq. (11.11)). At an intermediate step we see that the longitudinal coordinates are ordered

as x1 < x2 < · · · < xN < 0, that is, they occur before the hard scattering vertex at x = 0.

As η → 0 the O(η0) result comes from the limit where all xj → 0. Summing over the

number of Glauber exchanges in eq. (C.5) from N = 0 to N =∞ we get

n

n

n

n
G

p
= Sγ

∫
dd
′
b⊥e

i~p1⊥·~b⊥ eiφ(b⊥)/2 Ẽ(−b⊥, p2⊥) . (C.6)

Thus we see that the phase for this sum of active-spectator exchanges is φ(b⊥)/2.

For the hard scattering case, we can sum up the ladder graphs for active-spectator scat-

tering in a similar manner. For one exchange we again repeat the calculation of eq. (11.25)

using the regulator in position space, and writing the result in the transverse Fourier space:

n

n

n

n

n
= 2Sγ

∫
d−kzd−d

′
k⊥

G0(k⊥)|2kz|−ηνη
[−2kz−∆1−∆̄′1+i0][−∆̄1−∆̄′1]

= iSγ
n·p2 n·(P̄−p2)

n·P̄ ~p 2
2⊥

∫
d−d
′
k⊥

G0(k⊥)

(~k⊥ − ~p2⊥)2

(
κη
η

2

)∫ +∞

−∞
d−kzdx dα θ(α) |x|−1+η eiα(−kz+∆)+ikzx

= −Sγ
∫
d−d
′
k⊥G

0(k⊥)E(p2⊥ − k⊥)

(
κη
η

2

)∫ +∞

−∞
dx θ(x) |x|−1+η eiα∆

= −S
γ

2

∫
d−d
′
k⊥

∫
dd
′
b⊥e
−i~k⊥·~b⊥G̃0(b⊥)

∫
dd
′
b′⊥e
−i(~p2⊥−~k⊥)·~b′⊥Ẽ(b′⊥)

= Sγ
∫
dd
′
b⊥ e

i~p2⊥·~b⊥
[−1

2
G̃0(b⊥)

]
Ẽ(−b⊥) . (C.7)

The dependence on ∆ = −(∆1+∆̄′1)/2 drops out at leading order in η. The function E(p2⊥)

appearing here is defined in eq. (11.24). Continuing with the corresponding calculation with

N Glauber exchanges between these collinear lines we have

n

n

n

n

n
...

n

n
= i2N+1(−2)NSγ

∫
d−dk1 · · · d−dkN

G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

[k+
1 −∆1+i0] · · · [k+

N−∆N+i0]

× |2kz1 |−η|2kz2−2kz1 |−η · · · |2kzN−2kzN−1|−η νNη
[−k−1 −∆̄′1+i0] · · · [−k−N−∆̄′N+i0][k−N−∆̄N+i0]

= i 2N (−i)NSγ
∫
d−d−1k1 · · · d−d−1kN

G0(k⊥1 ) · · ·G0(k⊥N−k⊥N−1) |2kz1 |−η · · · |2kzN−2kzN−1|−η νNη
[−∆̄N−∆̄′N ][−2kz1 +2∆11′+i0] · · · [−2kzN+2∆NN ′+i0]

= (−1)NSγ
∫
d−d
′
k1⊥ · · · d−d

′
kN⊥G

0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)E(p2⊥−kN⊥)

(
κη
η

2
νη
)N

×
∫ +∞

−∞
d−kz1 · · · d−kzNdx1 · · · dxN dα1 · · · dαN

θ(α1) · · · θ(αN )

|x1 · · ·xN |1−η
ei(x1−x2−α1)kz1+...+i(−αN+xN )kzN eiα1∆11′+...

= (−1)NSγ
∫
d−d
′
k1⊥ · · · d−d

′
kN⊥G

0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)E(p2⊥−kN⊥)

×
(
κη
η

2
νη
)N∫ +∞

−∞
dx1 · · · dxN

θ(x1−x2)θ(x2−x3) · · · θ(xN−1−xN )θ(xN )

|x1 · · ·xN |1−η
ei(x1−x2)∆11′+...+ixN∆NN′
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= Sγ
∫
d−d
′
k1⊥ · · · d−d

′
kN⊥G

0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)E(p2⊥−kN⊥)

[
(−1)N

N ! 2N
+O(η)

]
= Sγ

∫
dd
′
b⊥e

i~p2⊥·~b⊥ 1

N !

[−1

2
G̃0(b⊥)

]N
Ẽ(−b⊥)

= Sγ
∫
dd
′
b⊥e

i~p2⊥·~b⊥ 1

N !

[−iφ(b⊥)

2

]N
Ẽ(−b⊥) . (C.8)

Here ∆̄N = n̄ · p2 + (~k⊥N − ~p2⊥)2/n · (P̄ − p2) and ∆̄′N = −n̄ · p2 + (~k⊥N − ~p2⊥)2/n · p2, and

the sum ∆̄N + ∆̄′N contributed to E(p2⊥ − kN⊥). At an intermediate step we see that

the longitudinal coordinates are ordered as 0 < xN < xN−1 < · · · < x1, that is after the

hard scattering vertex at x = 0. As η → 0 the O(η0) result once again comes from the

limit where all xj → 0. Summing over the number of Glauber exchanges in eq. (C.8) from

N = 0 to N =∞ we get

n

n

n

n

n

G
p

= Sγ
∫
dd
′
b⊥e

i~p2⊥·~b⊥ e−iφ(b⊥)/2 Ẽ(−b⊥) . (C.9)

Thus the phase for the active-spectator exchanges in this case is −φ(b⊥)/2.

C.3 Exponentiation for active-active exchanges

In this appendix we derive the result for iterated Glauber exchange on active-active lines.

Unlike for spectator-spectator scattering, this result requires the η-regulator both for the

single exchange integral, and for the ladder iterations, therefore it cannot simply be inferred

from the exponentiation result in section 9.1.

Recall that the Glauber loop vanishes for active lines in the hard-scattering case (DIS),

so we only have to consider the annihilation case (Drell-Yan). We repeat the single Glauber

exchange calculation in eq. (11.33), but carry out the intermediate regulator dependent

integral in Fourier space following the notation introduced in section 9.1, in order to setup

the procedure for the N -exchange diagram. Writing the final result in the transverse

Fourier space we have

n

n

n

n

= −2i Sγ E(p1⊥, p2⊥)

∫ +∞

−∞
d−kzd−d

′
k⊥

G0(k⊥)|2kz|−ηνη
[2kz−∆′1−∆̄1+i0]

= −Sγ E(p1⊥, p2⊥)

∫
d−d
′
k⊥G

0(k⊥)

(
κη
η

2

)∫ +∞

−∞
d−kz dx dα θ(α)|x|−1+ηeiα(kz+∆)−ikzx

= −Sγ E(p1⊥, p2⊥)

∫
d−d
′
k⊥G

0(k⊥)

(
κη
η

2

)∫ +∞

−∞
dx θ(x)|x|−1+ηeix∆

= −Sγ E(p1⊥, p2⊥)

∫
d−d
′
k⊥G

0(k⊥)

(
κη
η

2

)[
1

η
+O(η0)

]
= Sγ E(p1⊥, p2⊥)

[−1

2
G̃0(b⊥ = 0)

]
. (C.10)
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Recall that we use the notation d′ = d− 2, and that the Fourier transform G̃0(0) = iφ(0)

with φ(0) given by eq. (9.1). The end factor E(p1⊥, p2⊥) is defined in eq. (11.6). The

dependence on ∆ = −(∆′1 + ∆̄1)/2 drops out at leading order in η.

Next we carry out the analogous calculation but with N Glauber exchanges between

these two lines. Closing all the k0
i contours above we have

n

n

n

n
... = 2NSγ E(p1⊥, p2⊥)

∫
d−dk1 · · · d−dkN G0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

× |2kz1 |−η|2kz2−2kz1 |−η · · · |2kzN−2kzN−1|−η νNη
[k−1 −∆̄1+i0] · · · [k−N−∆̄N+i0][−k+

1 −∆1+i0] · · · [−k+
N−∆N+i0]

= (−2i)NSγE(p1⊥, p2⊥)

∫
d−d−1k1 · · · d−d−1kN

G0(k⊥1 ) · · ·G0(k⊥N−k⊥N−1) |2kz1 |−η · · · |2kzN−2kzN−1|−η
[2kz1 +2∆11̄+i0] · · · [2kzN+2∆NN̄+i0] ν−Nη

= (−1)NSγ E(p1⊥, p2⊥)

∫
d−d
′
k1⊥ · · · d−d

′
kN⊥G

0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

(
κη
η

2
νη
)N

×
∫ +∞

−∞
d−kz1 · · · d−kzNdx1 · · · dxN dα1 · · · dαN

θ(α1) · · · θ(αN )

|x1 · · ·xN |1−η
ei(x1−x2+α1)kz1+...+i(αN+xN )kzN eiα1∆11̄+...

= (−1)NSγ E(p1⊥, p2⊥)

∫
d−d
′
k1⊥ · · · d−d

′
kN⊥G

0(k⊥1 )G0(k⊥2 −k⊥1 ) · · ·G0(k⊥N−k⊥N−1)

×
(
κη
η

2
νη
)N∫ +∞

−∞
dx1 · · · dxN

θ(x2−x1)θ(x3−x2) · · · θ(xN−xN−1)θ(−xN )

|x1 · · ·xN |1−η
ei(x2−x1)∆11̄+...−ixN∆NN̄

= Sγ E(p1⊥, p2⊥)

[ ∫
d−d
′
k⊥G

0(k⊥)

]N[
(−1)N

N ! 2N
+O(η)

]
= Sγ E(p1⊥, p2⊥)

1

N !

[−1

2
G̃0(b⊥ = 0)

]N
= Sγ E(p1⊥, p2⊥)

1

N !

[−iφ(0)

2

]N
. (C.11)

At intermediate steps we defined ∆11̄ = −(∆1 + ∆̄1)/2, etc., but to leading order in η the

answer is independent of these factors. Summing eq. (C.11) over the number of Glauber

exchanges from N = 0 to N =∞ we get

n

n

n

n
G

n

n
= Sγ E(p1⊥, p2⊥) e−iφ(0)/2 . (C.12)

Thus we see that the phase for this sum of active-active exchanges is −φ(0)/2.
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