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ABSTRACT: Starting with QCD, we derive an effective field theory description for for-
ward scattering and factorization violation as part of the soft-collinear effective field the-
ory (SCET) for high energy scattering. These phenomena are mediated by long distance
Glauber gluon exchanges, which are static in time, localized in the longitudinal distance,
and act as a kernel for forward scattering where |t| < s. In hard scattering, Glauber glu-
ons can induce corrections which invalidate factorization. With SCET, Glauber exchange
graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear,
or ultrasoft gluons. We derive a complete basis of operators which describe the leading
power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity
singularities and subtractions which prevent double counting. Our results include a novel
all orders gauge invariant pure glue soft operator which appears between two collinear ra-
pidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov
vertex, but it also contributes to emissions with > 2 soft gluons. Our Glauber operator
basis is derived using tree level and one-loop matching calculations from full QCD to both
SCETy and SCET;. The one-loop amplitude’s rapidity renormalization involves mixing of
color octet operators and yields gluon Reggeization at the amplitude level. The rapidity
renormalization group equation for the leading soft and collinear functions in the forward
scattering cross section are each given by the BFKL equation. Various properties of Glauber
gluon exchange in the context of both forward scattering and hard scattering factorization
are described. For example, we derive an explicit rule for when eikonalization is valid, and
provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In
hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure
that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely,
certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by
taking them to be in specific directions. We also discuss criteria for factorization violation.
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1 Introduction

Progress in our understanding of interacting four dimensional quantum field theories has
come from various directions. The profoundly rich structure of asymptotically free confin-
ing theories, such as QCD, has been illuminated through the use of various tools which
have been developed over the past 50 years. For certain nonperturbative problems we have
lattice calculations at our disposal, while for heavy particles and hard scattering processes
perturbative QCD has significant predictive power when used in conjunction with factor-
ization theorems or operator expansions. In these cases there are effective field theory
(EFT) tools for various power expansions, for example, in the lattice spacing, in light and
heavy quark masses, and in ratios of kinematic variables, and the field theory formalism
to carry out these expansions has been worked out to subleading orders.

A large number of open questions in QCD arise when considering aspects of near
forward scattering, which dominates the total cross section, and where approximations are
often needed to study the leading power term. If we consider two-to-two scattering then
we can define near forward scattering with Mandelstam variables as |t| < s, where “near”
is quantified by the small ratio |t|/s. This limit is often referred to as the high-energy limit
or the Regge limit. Beyond two to two scattering there are more possibilities and one or
more observables must be chosen to quantify the notion of nearness which take the place of
|t|. It could, for instance, be t-channel momenta defined through various pairs of particles,
or a cut on the rapidity or momentum transverse to the scattering axis. Near forward
scattering can be contrasted with the case of hard scattering where |t| ~ s are both large.

In forward scattering, if ¢ or a suitable generalization is much larger than the scale
of strong coupling, [t| > A(QQCD, then there is a well defined notion of a perturbative
scattering vertex and one may attempt to factorize the long distance physics, with wave-
lengths of order the scale Aqcp, from the relatively short distance physics at the scale
t. In particular we can aim to find observables for which one can factorize rates into a
perturbative scattering kernel and a set of long distance matrix elements like parton dis-
tribution functions, in such a way as to preserve a reasonable amount of predictive power.
At leading power in the forward scattering limit, there are no states with virtuality of
order s contributing to the cross section, and the scale s arises dynamically through a
separation of modes in rapidity space, where the sum of contributions from two sectors
In@Q+ can yield In@Q4+ +In@_- = Ins. The scale s still plays an important role, due to
the existence of parametrically large logs from the hierarchy |t|/s < 1, which can cause
standard perturbation theory to break down. From the relation x ~ |t|/s that appears
in DIS and Drell-Yan, the forward scattering limit is also often referred to as the small-z
limit. Examples of formalisms designed to sum these logarithms and to treat the associated
small-z physics include the classic Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [1, 2],
the dipole approximation [3], the Balitsky-Kovchegov (BK) equation [4, 5], the Balitsky-
Jalilian-Marian-Tancu-McLerran-Weigert-Leonidov-Kovner (BJIMWLK) equation [6, 7], as
well as general calculational tools like the use of Wilson lines [8-10], effective actions [11, 12]
and the multi-Wilson line EFT [4, 13, 14]. The structure of the BJIMWLK evolution of
Wilson lines at higher orders has been analyzed in [15]. These resummations are of phe-
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Figure 1. Tree level gluon exchange for ¢-¢ forward scattering. In a) we show the full QCD
graph with a gluon exchange between a quark carrying n-collinear momenta p3 5 and an antiquark
carrying n-collinear momenta p’fA. In b) we show the two notations we will use for this leading
power forward scattering in the Effective Theory.

nomenological relevance and are also useful tools for checking all orders ansétze which are
often made when trying to form theorems regarding the all orders form of amplitudes, see
e.g. [16-18]. Finally when ¢ becomes of (’)(AZQCD) we are dealing with the non-perturbative
scattering of partons that are most often within a bound proton or nucleus, and there is
no longer a factorization between ¢ and AéCD.

The study of hard scattering processes at hadron colliders is crucial for exploring short
distance physics. Here an important role is played by factorization formulae which allow one
to define universal functions describing different types of perturbative and nonperturbative
physics. The near forward scattering region can play an important role in hard scattering
processes as well, since not all of the partons in a hadron are active, i.e. involved in the
hard scattering. These additional “spectator” partons can interact with each other even
when they are in hadrons traveling in opposite directions, through processes closely akin to
forward scattering. These interactions can spoil factorization for a hard scattering process,
since they couple together partons associated to different hadrons, and hence cannot be
described solely by single hadron matrix elements, like parton distribution functions. The
process through which massless spectators interact is called “Glauber exchange” and prov-
ing that such interactions cancel in various observables has been a subject which, while well
appreciated, has often not received the attention it deserves. Derivations of factorization
theorems for hadron collisions exist in only a few special cases, namely for Drell-Yan-like
process [19-21], for single inclusive hadron production [22, 23], and recently for double-
parton scattering [24] (with arguments for situations with observed jets in [25]), each using
the techniques of CSS [21]. These results are often used to motivate using factorization to
make predictions in other hadron-hadron scattering observables without complete proofs.
In general there are many other important ingredients in factorization proofs, including
hard-collinear factorization, soft-collinear factorization, ultrasoft-collinear factorization,
factorization for the observable, as well as the uniqueness of soft and collinear Wilson lines.
The Soft-Collinear Effective Theory (SCET) [26-30] has allowed this set of questions to be
addressed with Lagrangian and operator based methods, facilitating significant advances in
the range of processes to which we can consider applying factorization formulae. However,
an operator based description of Glauber exchange has not yet been formulated in SCET.

An example of a Glauber exchange is shown in figure 1. These exchanges are re-
sponsible both for leading power forward scattering as well as factorization violation in



hard scattering, and are discussed in more detail in sections 3 and 5. If Glauber exchange
contributions do not spoil factorization, a formalism to treat Glauber exchange can still
provide a useful perturbative tool to facilitate the summation of large logs that appear
from the forward limit, In(s/t) or In(z), where x is an appropriate Bjorken-type variable.
In situations where factorization is violated a formalism to treat Glauber exchange can be
a useful tool for both calculating and characterizing the nature of the violations.

The purpose of this paper is to set up a systematic effective theory with which to
study the near forward scattering region of QCD and factorization violation in hard scat-
tering processes in a single framework. We will work within the framework of SCET. We
construct a complete leading power Lagrangian for Glauber exchange and show that it fits
seamlessly with the current tools used to study hard, collinear, soft, and ultrasoft factor-
ization in hard scattering processes, without inducing double counting. By working in the
framework of an effective field theory, one is able to systematically keep track of terms in
the power expansion, exploit symmetries, and derive when certain approximations (like the
eikonal approximation) are valid and when they break down. Our EFT will also employ
a MS style renormalization for rapidity divergences, making it simple to derive rapidity
renormalization group equations. Through matching calculations we can also directly de-
rive and prove results by calculations in full QCD in the appropriate limit. The formalism
presented here gives a starting point for using a field theoretic method to study the physics
of the near forward region, even beyond leading power. It also provides a direct method
of calculating (possible) factorization violating contributions, and potentially could yield
field theoretic methods for handling underlying event contributions in hadronic collisions.

Before proceeding, we briefly comment on the connections of our work to earlier lit-
erature. First we note that in the CSS formalism [21, 31] that Glauber contributions are
discussed in detail, but are treated as a momentum region and hence are not fully separated
from soft and collinear gluon dynamics. This has advantages for certain steps of a factor-
ization proof, but makes it more difficult to associate unique contributions with Glauber
exchange, and also to see how factorization arises for processes that retain nontrivial soft
functions. The method of regions [32] has been used to study the Glauber region in ref. [33],
but an effective field theory for Glauber exchange has not emerged from this framework.
Although Glauber gluons have been formulated as distinct fields in SCET in refs. [34-38],
this has only been done for cases where they are treated as a background field, such as
heavy-ion collisions. This formalism with background fields is referred to as SCETg, and
we reserve this notation for referring to background Glauber fields. For this case issues with
singularities and double counting are easier to control. For the situation of interest here,
Glauber gluon exchange should be treated with operators yielding a scattering potential
involving soft and collinear fields rather than explicit Glauber fields, as discussed in [39].
A subtraction formalism that avoids double counting for Glauber gluon exchange in loop
diagrams was discussed in refs. [39, 40], but so far only simpler abelian cases have been
addressed. (We also note that Glauber interactions cannot in general be completely eikon-
alized as in ref. [41].) In ref. [42] the importance of Glauber exchange in SCET for Regge
phenomena was emphasized, and in ref. [43] Glauber exchange was analyzed for scalar ¢?
theory, arguing that its absence in the threshold expansion with certain regulators is not



indicative of its absence in a unitary effective field theory. Steps toward deriving an SCET
based operator description of Glauber exchange for the full non-abelian case of QCD were
taken in ref. [44], but a full Lagrangian was not obtained.

Various examples of factorization violation have been studied in the literature. An
important type of factorization violation occurs if we cannot disentangle the physics as-
sociated to the colliding protons into independent parton distribution functions, as in the
CSS analysis [21]. Other examples include processes where the measurement does not fac-
torize in a sufficiently simple manner, such as for the Jade algorithm, see [45], or where
the structure of collinear Wilson lines cannot be uniquely determined for the hard scatter-
ing process such as hadron production H; + Hy — Hs + H4 + X with a measured small
pr(HsHy) [46-49]. There are also examples of factorization violation at the amplitude
level. This includes factorization violation for splitting functions in space-like collinear
limits [50, 51], which are connected to superleading logarithms [52]. Another example is
Regge Factorization violation from terms that go beyond the Regge amplitude formula [53—
55]. These examples of factorization violation are related to Glauber gluon exchange, and
hence can be explored in our formalism.

In the context of small-z physics a multi-Wilson line effective field theory for forward
scattering was constructed by Balitsky in refs. [4, 13, 14]. In this framework rapidity fac-
torization separates the amplitude into coefficient functions and matrix elements of multi-
Wilson line operators, and the effective Lagrangian has an infinite number of terms. In
contrast, in our EFT rapidity factorization separates soft and collinear modes at the level
of a Glauber Lagrangian with a fixed number of terms at leading power, and the soft and
collinear modes themselves still appear on the same footing as modes in the EFT. This lead-
ing Lagrangian can be inserted any number of times when constructing leading power ampli-
tudes. Our Glauber interactions are not a priori eikonal, but become so when it is appropri-
ate. This makes it possible to use our EFT framework for both forward and hard scattering
processes. The soft modes in our Glauber operators have soft Wilson line interactions which
are the most relevant at the leading logarithmic order, as well as terms involving dressed
soft field strengths that are important at higher orders. Our collinear modes effectively
provide an EFT for the Wilson coefficient source terms of ref. [14]. We will elaborate on the
connection between our EFT and the multi-Wilson line framework in sections 9.2 and 9.3.

2 Guide for the reader

This paper is written in a fairly modular fashion so that readers can meet their needs
without necessarily reading the entire manuscript. In section 3 we introduce the EFT
quark and gluon modes for forward and hard scattering, and in section 4 we provide a short
review of SCET and our notation, which covers the material needed for the remainder of the
paper. (Further background information on EFT and SCET can be obtained from the free
online 8. EFTx course [56].) Readers whose primary interest lies in the construction of the
Glauber Exchange EFT should read sections 5, 6, 7, those interested in forward scattering
and resummation should read sections 5, 7, 8, 9, and those who are interested the role of
Glaubers in hard scattering and factorization violation can read sections 5, 10, 11.



As a further guide, we also summarize individual sections in greater detail. In sec-
tion 4.1 we discuss the Lagrangians involving various soft and collinear fields in SCET;
and SCETYy, and give in section 4.2 the standard gauge invariant building blocks for SCET
operators. Section 5.1 gives the key results for the gauge invariant Glauber operators in
SCET} and SCETy. These operators describe offshell Glauber exchanges at leading order
in the power counting and to all orders in ag. Many of the results listed in this section are
derived systematically in later sections. In section 5.2 we describe our method for regulat-
ing rapidity singularities which uses and builds on refs. [57, 58], and discuss the structure
of zero-bin subtractions [59] in the presence of Glauber modes. In section 5.3 we give the
power counting formula for SCET in the presence of Glaubers that is valid to all orders in
a;s and all orders in the power expansion, as well as discuss the completeness of our leading
power Glauber Lagrangian. Observables to which the Glauber Lagrangian contributes are
discussed in section 5.4.

In section 6.1 we derive the structure of collinear and soft Wilson lines in the Glauber
operators by carrying out tree level matching calculations. Because of time-ordered prod-
uct contributions from diagrams with onshell propagators in the EFT these matching
calculations are more non-trivial than the SCET matching done to yield Wilson lines in
refs. [27, 29, 30]. The use of the equations of motion are also crucial to our formulation
of gauge invariant Glauber operators. This use of the equations of motion explains why
the contributions from these operators appear to be so different from those that one would
infer by attempting to use the method of regions to define Glauber interactions in an EFT
setting. In section 6.2 we show that the one-gluon Feynman rule of a particular soft opera-
tor (OAB) reproduces the Lipatov vertex. In sections 6.3 and 6.4 we construct a complete
basis of soft operators and carry out tree level matching calculations with up to two soft
gluons in order to derive the complete soft operator appearing in the Glauber Lagrangian
between n and 7 rapidity sectors from first principles.

In sections 7.1 and 7.3 we carry out one-loop matching calculations for gg forward
scattering in SCETy; and SCET] respectively. This allows us to demonstrate our use of
dimensional regularization and rapidity regulators, showing how the infrared divergences
due to an IR mass or offshellness in the full QCD results are exactly reproduced by a sum of
contributions in the effective theory. Each diagram in the effective theory also probes only
one scale for the invariant mass pu and one scale for the rapidity renormalization parameter
v. We demonstrate that even the full theory one-loop constants are reproduced by the EFT
calculation, and explain the connection of this result to the absence of nontrivial dynamics
at the hard scale in forward scattering. In section 7.2 we consider the renormalization
of the rapidity divergences that appear in the one-loop virtual amplitudes in SCET1y,
demonstrating that the manner in which they renormalize the octet operators precisely
corresponds with gluon Reggeization. This result appears for all operators with octet
quantum numbers (both from two quarks and from two gluons), and operator mixing plays
an important role in yielding the Reggeization.

In section 8 we square, factorize, and renormalize the first non-trivial amplitude for
forward scattering in the presence of Glauber gluon exchange. In particular, we consider
processes involving n-n scattering without phase space restrictions on soft gluons. For these



processes we define novel soft and collinear functions in section 8.1, and determine their
rapidity renormalization group evolution by extending the earlier soft virtual calculations
to include divergences from real soft radiation. We explicitly compute the one-loop rapidity
renormalization group equation for this soft function and show that it is given by the BFKL
equation in section 8.2. Using renormalization group consistency we also show that the
rapidity renormalization group equation (RGE) for each of the collinear functions is given
by a BFKL equation in section 8.3.

In section 9.1 we calculate graphs appearing from iterations of the Glauber operator.
Any crossed diagram carrying Glauber momentum vanishes to all orders in g with our
rapidity regulator. The sum of all pair-wise iteration diagrams yields the classic eikonal
phase, exp [iqﬁg(b J_)], where b is the distance between the particles in transverse impact
parameter space (conjugate to the exchanged transverse momenta ¢;). We also give a
spacetime picture for the rapidity regulator for Glauber potentials. In section 9.2 we discuss
the general structure of iterated Glauber exchange in the presence of radiation and non-
Glauber loops. We show that such instantaneous iterations yield vanishing graphs unless
they can be collapsed to a common longitudinal position. We also derive the conditions
under which source propagators that accompany Glauber exchange eikonalize. Then in
section 9.3 we make the connection between Glauber exchange and the semiclassical picture,
and derive the connection of our EFT framework to the multi-Wilson line EFT framework
and the shock-wave picture.

In section 10 we consider graphs involving Glauber operators in the presence of a hard
scattering vertex. In section 10.1 we demonstrate that for interactions between active lines
there is an overlap between Glauber exchange and a contribution that is naively present
in soft gluon exchange. In particular, the Glauber 0-bin subtraction for soft loop graphs
is exactly equal to the Glauber contribution, implying that the same results are obtained
for this type of hard scattering diagram whether or not Glauber exchange is included. In
section 10.2 we extend this analysis to a single soft gluon emission at one-loop in the ee, ep
and pp channels, showing how Glauber exchange reproduces the im terms in the one-loop
soft current of ref. [60]. Then in section 10.3 we extend our discussion of active lines with
soft and Glauber diagrams and their overlaps to two-loops.

In section 11 we consider the additional complications that arise when including inter-
polating fields for the initial proton states in a collider hard scattering process. This leads
to a classification of Glauber exchange diagrams into spectator-spectator (S-S), active-
spectator (A-S) and active-active (A-A) cases which are treated in sections 11.1, 11.2,
and 11.3, respectively. For the simplest examples in these categories we show that iterated
Glauber exchange yields either phases or contributions that are related to the direction of
soft or collinear Wilson lines in the hard scattering operators (i.e. can be absorbed into
Wilson lines), and hence cancel for an inclusive cross section.

In section 12 we conclude. Several more technical calculations are included in ap-
pendices. This includes a derivation of a general SCET power counting formula in the
presence of Glauber exchange in appendix A. In appendix B we summarize useful formula
for coupling expansions, loop integrals, and a few Feynman rules we use that are not given
in section 5. In appendix C we carry out several iterative Glauber exchange calculations
that produce phases in the presence of a hard scattering.



3 Glauber exchange and modes for forward and hard scattering

The mechanism for near forward scattering is often referred to as “Glauber exchange”!
which applies to the exchange of an off shell gluon(s) or photon(s) whose transverse mo-
mentum (relative to the incoming beams) is hierarchically larger than the longitudinal
components of the momentum four vector, k‘i > kTk~. This is distinct from the limit asso-
ciated to Coulomb exchange, E2>> (k°)2, where m+ kY is the total energy of a heavy source
of mass m. (For the Coulomb case with two heavy sources the power counting is done in the
relative velocity v ~ k°/|k| ~ |k|/m.) A tree level example of Glauber exchange between
a forward scattered ¢q pair is shown in figure 1, where the graph gives rise to a potential

Valqy) = —87T2f,si(”) = 8”“;(“) . (3.1)

Glauber and Coulomb exchange share many of the same properties: both are instanta-
neous in time and lead to poles in scattering amplitudes in the ¢/s — 0 and v — 0 limits
respectively. The Glauber and Coulomb exchanges both generate classical field configu-
rations via summing ladder diagrams (see section 9), and dressing these exchanges with
loop graphs gives rise to large logs of the dimensionless parameters v and t/s respectively.
Differences include the fact that Glauber exchange is instantaneous in longitudinal dis-
tance and hence more singular, and that Glauber sources can undergo collinear splittings
at leading power, unlike heavy particles. The structure of modes in SCET that we describe
below (with Collinear, Soft, Ultrasoft, and Glauber modes) also has both similarities and
differences to the formulation of NonRelativistic QCD (NRQCD) in ref. [62] (involving
potential operators, and simultaneously soft and ultrasoft modes).

The field theory ingredients for our formalism are familiar from hard scattering factor-
ization, namely various soft and collinear fields and their corresponding regions in momen-
tum space. To introduce some of the key concepts consider as an example the factorization
theorem for inclusive Higgs production via gluon fusion,

déa dgb 1ncl ﬁ o ) .
om) = | vy [ e (o) S, (52)

where my is the Higgs mass, Y is the Higgs rapidity, z, = mgeY /Eum, and z, =
mpe™Y |Een. Here f;(€q, 1) is the parton distribution function (PDF), which is a long-
distance matrix element that encodes the probability of finding the parton of type 7 inside
the proton with a light-cone momentum fraction &,. The coefficient function Hii;-“’l de-
scribes the short-distance hard scattering process which at its core involves gluons fusing
with the heavy top-quark loop, and producing the Higgs boson. The renormalization scale
i is a gauge and Lorentz invariant cutoff that separates the short distance dynamics at
scales > pu into Hg-ld, while the long distance dynamics at scales < p appears in f; and f;.
The result in eq. (3.2) is valid to all orders in s, including the dominant nonperturbative
corrections through f; and f;, while corrections to this formula are suppressed by powers
of Aqep/mu < 1.

!To our knowledge, the use of “Glauber” for exchanges with these momenta occurred first in ref. [61].



The physics program at a collider like the LHC employs a much richer spectrum of
observables than the Drell-Yan-like process in eq. (3.2). For these more general observables
there is often belief in the validity of the factorization hypothesis, but no complete proofs.
The differential cross section for observables a1, ao, as, ... is often written as

led;i(;%m = Gijke..(a1,a2, .. ) @ fopi fp/il®@ from @ @ foum @ F}y,  (3.3)
where f; and f; are PDFs, we denote convolution integrals by &, their is an implicit sum
over color channels and flavor indices for the partons, and we may also have fragmentation
functions f,_, g for a parton ¢ converting into hadron H. Here 6;j5¢... encodes corrections
that can be calculated perturbatively using quarks and gluons as the degrees of freedom,
with or without log resummation, so it has an expansion in as(p) < 1, with or without
as(p) In(ay/am) ~ 1. The function F), denotes final state nonperturbative hadronization
corrections for the channel m. These corrections are important for some jet observables,
and for cases where they arise from soft dynamics can be formulated as vacuum transition
matrix elements in quantum field theory [63-69]. For cases with large logarithms between
perturbative scales, there is usually a further factorization of the perturbative calculation
into components describing different momentum regions. For example, for an exclusive jet
cross section with precisely N-jets,

Gx =Y tr HY T Ty Juy X -+ X Juy SN (3.4)
K

where the ks denote parton channel indices, the hard function HY denotes short distance
dynamics at the collision scale that produces N energetic partons, the Z encodes initial state
energetic perturbative radiation, the Js denote final state energetic radiation in the jets,
and SV denotes perturbative soft radiation between the initial and final state partons.
For simplicity we have suppressed convolutions between the various functions shown in
eq. (3.4), and encoded the color matrix structure of H"V and SV in the indices xkp, Kg.
Each of these functions encodes physics at different invariant mass scales and rapidities
appearing in the process, and renormalization group evolution of these functions can be
used to sum large logarithms. (See for example ref. [70] for a factorization formula for the
N-jettiness event shape for pp collisions with invariant mass resummation, or ref. [58, 71]
for a factorization formula for py resummation in Higgs production in a pp collision where
both invariant mass and rapidity renormalization appear.) An even less inclusive example
of the use of factorization as in eq. (3.3) is in parton shower Monte Carlos like PYTHIA [72]
and HERwWIG [73]. Here in principle one can ask for a cross section that is fully differential
in all final state hadronic momenta, but it is well appreciated that only some subset of
more inclusive observables will satisfy the criteria for factorization. In the Monte Carlo
implementation there is also a separation/factorization of the initial state and final state
perturbative showers from the PDFs and final state hadronization, making the structure

somewhat analogous to eq. (3.4).
The key ingredients underlying the idea of factorization is the separation of momen-
tum fluctuations that occur at different scales, much like the standard idea of scale sep-
aration in quantum field theory. For factorization at hadron colliders the key infrared



mode fields p* momentum scaling physical objects

onshell

ng-collinear Enas At (Na - Dy N - DyP1a) ~ Q(A2,1,))  collinear initial state jet a

np-collinear Enys AR, (np - p, My - P, p1p) ~ Q(A%,1,)\)  collinear initial state jet b

n;-collinear n; s Aﬁ‘” (nj - pyfiy-pyprj) ~ QA% 1,0)  collinear final state jet in 7,
A? (>\2, 17 >\)

soft g, AL P~ QAN N)  soft virtual/real radiation
)\3/27 A

ultrasoft s, Al Pt~ Q(A%,\2,\2)  ultrasoft virtual/real radiation

A3, N2
offshell
Glauber — PP ~Q(A NP \) with a +b>2  forward scattering potential
(here {a,b}={2,2},{2,1},{1,2})
hard — p?> 2 @Q?  hard scattering

Table 1. Infrared momentum regions relevant to hard scattering processes at hadron colliders and
the corresponding quark and gluon fields in SCET. Here @ is the scale of the hard interaction, and
A < 1 is a dimensionless power counting parameter. Below the EFT fields we show their power
counting (all collinear cases are analogous). The collinear directions n}" = (1,7;) are different for the
incoming beams 7 = a,b and for each outgoing identified jet where 7n; is the jet direction. Another
standard convention that we will use is the auxiliary vector n; = (1, —#;), so that n; - 7; = 2. For
Glauber exchange between n-collinear, fi-collinear, and soft particles we have the cases {a,b} =
{2,2} (n-n Glauber), {a,b} = {2,1} (s-n Glauber), and {a,b} = {1,2} (s-i Glauber).

momentum regions can be identified either physically, or with analyses that determine the
infrared structure of amplitudes [74], use the Coleman-Norton theorem [75], or exploiting
the method of regions [76]. (For a detailed analysis of the method of regions that includes
the Glauber region see [33].) Some work must still be done to correctly associate these
results with degrees of freedom in an effective theory. For most collider observables this re-
sults in the momentum regions identified in table 1, or a subset of these regions for simpler
processes. Indeed, expansions involving these momentum regions are central to utilizing
both the factorization methods of CSS where they determine the leading infrared regions,
as well as those in SCET where they determine the relevant low energy fields present in
the effective theory. In the SCET literature observables are often divided into two types,
those that measure invariant mass type variables which require ultrasoft modes and the
use of SCETT techniques, and those that measure transverse-momenta, which require soft
modes and the use of SCETy; [77]. SCET]; observables sometimes require the use of ra-
pidity renormalization techniques [57]. For example, measuring the invariant mass of a jet
p?, = p}“p; - 1%2, induces physical contributions at the ultrasoft scale p™ ~ A2, causing
ultrasoft modes to give nontrivial contributions. Measuring a parametrically small trans-
verse momentum, py ~ A, causes soft modes to give nontrivial contributions. A pictorial
representation of the physics described by these various modes, and their correspondence
with functions in eq. (3.4), is given in figure 2. In general soft, collinear, and hard modes
can talk to each other at leading order in the power counting, but the nature of the hard
collision dramatically simplifies these interactions so that they can be put into a factor-
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Figure 2. Contributions from different infrared momenta to a hard scattering process at a hardon
collider.

ized form. Of the steps needed to prove hard scattering factorization, the most difficult is
the cancellation of contributions from the Glauber region which directly couple modes in
different regions together but which cannot be captured entirely by Wilson lines.

We will also see that there is a nontrivial interplay between the standard SCET interac-
tions and Glauber operators. Once Glauber operators are present there are also always soft
fields even in SCET} in addition to the ultrasoft fields.? For example soft fields are respon-
sible for vacuum polarization of the Glauber gluon. The diagrams that cause the Glauber
vacuum polarization are shown in figure 3 in both full QCD and in SCET with Glauber
operators. The vacuum polarization is a clear example showing that Glauber gluons cause
interactions between the soft and collinear fields in SCET, in addition to giving an interac-
tion between n and 7 collinear fields in different directions as discussed above in figure 1.
At leading power Glauber exchange can connect any two modes with different rapidities
but the same transverse momentum, {n,n, s}, as well as simultaneously all three of these.
Interestingly, because we formulate these operators in a gauge invariant fashion there are
no ghosts fields in the Glauber operators. So for example the soft gluon loop in figure 3b
produces the full 11C'4/3 term in the logarithm related to the QCD g function that shows
up due to the running of the a4(u) coupling in the tree level Glauber exchange graph of
figure 1. On the other hand, ultrasoft gluons do not couple to Glauber gluons directly
at leading power (nor to soft gluons). So the only new interactions with ultrasoft gluons
appear due to their coupling to collinear fields that show up in the Glauber operators.

In this paper we develop a set of operator based tools within SCET to address these
questions. We construct a Lagrangian that encodes all Glauber effects and show that it fits
seamlessly with the current tools used to study hard, collinear, and soft factorization in hard
scattering processes, without inducing double counting. We also explicitly demonstrate
the connection of this operator formalism to forward scattering phenomena by showing
that the one-loop rapidity renormalization of our operators yields gluon Reggeization at
the amplitude level, the BFKL equation at the cross section level, and reproduces the
shockwave picture.

2The presence of both soft and ultrasoft fields with Glauber operators in SCETY is akin to NRQCD as
formulated in ref. [62] with soft and ultrasoft modes. In NRQCD the soft modes are not radiated but play
a crucial role in correcting the potentials. In the case of SCET; forward scattering the softs also provide
virtual loop corrections to the Glauber exchange potential.

- 11 -
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Figure 3. a) QCD gluon, quark, and ghost vacuum polarization graphs for forward scattering.
b) Soft gluon and quark loop graphs in SCET with Glauber vertices that contain the vacuum
polarization (as well as other contributions in the gluon loop graph). Due to the gauge invariance
of the soft-collinear Glauber operators inserted at the red ellipse vertices, a soft ghost loop graph
does not appear at this order.

4 Review of SCET and notation

4.1 SCET Lagrangians

For each type of onshell momentum mode in table 1 there are both quark and gluon fields
in SCET. The small power counting parameter \ < 1 sets the typical size for the momen-
tum fluctuations for each mode. An nj-collinear mode describes the infrared structure of
fluctuations close to a collinear direction f1;, where n!! ; = (1,7;), and directions for different
collinear fields are distinct, n; - n; > A2,

All hard offshell modes are integrated out of the effective theory, leading to operators
Op that describe hard scattering processes. These operators get inserted only once for each
amplitude, but more than one operator may contribute for a given physical process. The
Glauber modes in table 1 are also offshell modes since the scaling of their momenta forbids
pTpT = ]5?_, but they are offshell by an amount of order pi ~ A2 rather than ~ \°. These
offshell Glauber modes are still integrated out of the effective theory at the hard scale, much
like potential modes in NRQCD [62], since the simultaneous requirements of gauge invari-
ance and homogeneous order-by-order power counting can otherwise not be satisfied.? Since
the Glauber operators yield a leading order potential there is no power counting restriction
on how many times they may appear in the amplitude or cross section for a given process.

In a general notation the leading power hard scattering operators O for some desired
SCET] process, and the leading power Lagrangian for any SCETT process, can be written as

Clascatier Z Cr ® O ({€nss Ani s Yus, Aus) (4.1)

3In this EFT there is a trade-off between 3 things, 1) having locality at an infrared scale, since the 1/Ef
Glauber potential is non-local, 2) implementing gauge invariance and 3) maintaining a homogeneous power
counting in A. Since for many calculations and analyses we need to treat our operators non-perturbatively
in a5, we choose in favor of maintaining the latter two principals while giving up locality. This is the same
choice made for NRQCD in the vNRQCD [62, 78-82] or pNRQCD [83-85] formalisms. It is also the same
choice made for SCETy1, where the soft Wilson lines are non-local at a scale p+ ~ p1 ~ A (Without
Glauber operators SCETT maintains locality at infrared scales.)

- 12 —



E(S())CETI = |:['5LOS) (qus, Aus) + Z [’1(1(1) (gniu Ani y Mg - Aus):|

+ {ﬁgo) ({&ns An, } s, As) + LY (Ts, AS)} .

Here Ci are hard Wilson coefficients that depend on large momenta 7; - p of collinear gauge
invariant products of collinear fields. (Note that ultrasoft gauge fields can appear in the
leading order hard scattering operator in eq. (4.1) for some SCET] processes. Although this
is usually not the case for collider physics with massless hard scattering producing jets, it is
well known in inclusive B-meson decays where the Heavy Quark Effective Theory b-quark
field is ultrasoft or soft.) The hard scattering operator and two terms in square brackets
in eq. (4.1) are what we refer to as classic SCETy, and are the terms usually considered
in the SCET literature. We will discuss O further in section 4.2. Glauber operators are

(0)

contained in L'IGO which we discuss in section 5.1, and must be included when writing down

the full SCET; Lagrangian. A leading power soft Lagrangian 5(59)

also appears in SCET]
along with Ego) since it is necessary (for example) to reproduce the vacuum polarization
of the Glauber gluon shown in figure 3. Recall that both .Cl(g) (tus, Ays) and Eéo)(’(/Js,As)
are each identical to copies of the standard full QCD Lagrangian (prior to subtractions).
Also recall that dropping the coupling to ultrasoft gluons and subtractions, E7(10) (&ny Ap, 0)
just involves collinear fields in a single sector and is again equivalent to a copy of full QCD
(though it is QCD written in the form that is more familiar from light-cone quantization
which only involves the “large” components of the fermion field &,). The full collinear
Lagrangian is a sum of quark and gluon pieces

£ = £8(€n, Anyn - Aus) + L (Apyn - Aus) | (4.2)

where in general [,%) also contains ghost fields and gauge fixing terms that are gauge

covariant with respect to the ultrasoft covariant derivative in - Dys. The full expression for
ES_Z]) can be found in ref. [29]. The result for the leading power collinear quark Lagrangian is

0 —iw? = . ) 1 7
Here the covariant derivatives are given by
M
iDy, = 0} + g Ay, O =Pt + Zin-0,
m-D=in-0+gn-A,+gn- Ay, (4.4)

and in - D contains both the collinear and ultrasoft gauge fields. P is the so-called “label
operator”, which picks out the large component of a given momentum. The phase e~ is
related to the implementation of the multipole expansion that was carried out for ultrasoft
k1 and 7n - kK momenta traveling through collinear propagators. Using momentum labels
for the large momenta, and position dependence to encode the small momenta, the full

position space field &, (z) has been written as

En(z) = e PN " & (@) = e PE () (4.5)

Pe#0
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where pi = 7 - pyn*/2 4+ p}|. The &,(x) are the fields we use in eq. (4.3). In SCET; we
have O(\?) residual momenta in all components, so the argument (z) on the field is a full
z#. In SCET we only have O(\) L-momenta so the fields do not depend on z, and we
represent the |-momenta as a continuous variable in momentum space.

In the form in eq. (4.3) the collinear fermion field satisfies #&, = 0. If we integrate
back in the “small” components of the collinear fermion field as an auxiliary field, then the
leading power collinear quark Lagrangian in eq. (4.3) becomes

£ = e P gy iBy g, Dh=(@/2n- D+ W /2)n-Dy+ Dy, (46)

where the relation between the quark fields with four and two active components field is
Y = [1+ (1/in-Dy)idp,, ) (7/2)] &, In this form it is even more obvious that, for the case
where we drop the ultrasoft couplings, each collinear Lagrangian E (fn, Ap,0) is just a
copy of full QCD. Due to the eikonal coupling to ultrasoft gluons in n - D, the result in
eq. (4.6) is not the same as full QCD in general.

With the SCET; Lagrangian in eq. (4.1) the assumption of ignoring rescattering effects
between different momentum regions, means dropping EICSO) + Eg)). Since only the fields
in EICSO) couple to those in the classic SCET Lagrangian, it is enough to prove that £IC§0)
interactions do not contribute to a hard scattering observable to prove the decoupling of
Glauber gluon effects. If this decoupling occurs then the standard tools of SCETy can be
used to treat hard-collinear factorization, soft-collinear factorization, factorization of the
observable, and the uniqueness of various operators with Wilson lines, in order to attempt
to derive a factorization formula.

Next we repeat the above discussion for SCETy;. Here there are no ultrasoft fields,
and soft fields contribute even in the classic SCET framework in both real and virtual
diagrams. In a general notation the leading power hard scattering operators O% for some
desired SCETT process, and the leading power Lagrangian for any SCET; process, can be
written as

ﬁhardscatter _ Z C %({fnw Am}’ g, AS) , (4.7)

Here C}% are hard Wilson coefficients that depend on the large momenta 7; - p of collinear
gauge invariant products of collinear fields, and on momenta n; - p of soft gauge invariant
products of soft fields.* We sum over all operators K that are leading order in the power
counting and have distinct color and spin indices. The hard scattering operator and the two
terms in square brackets are what we refer to as classic SCET 1. We will discuss O% further

11(0)

in section 4.2. Glauber operators are contained in £, and must be included when writing

down the full SCETy Lagrangian. In this language the assumption of ignoring Glauber

“The dependence on n; - p can be thought of as arising from integrating out hard-collinear propagators
in a SCET| theory, where the hard-collinear fields have an offshellness of size 7i; - pn; - p [77]. Following this
construction we can generate the final SCET1 theory by the matching sequence QCD— SCET; — SCET;.
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(0)

O 1y eq. (4.7) the soft Lagrangian Ly~ is again

gluons in SCET|; means dropping Eg
just the standard QCD Lagrangian for these fields, and since there are no ultrasoft fields
each collinear Lagrangian LS” is equivalent to a copy of full QCD, as discussed above for
SCETj. In the leading order classic SCETy; Lagrangian there is no coupling between the
soft and collinear sectors. So all the couplings between sectors come either (glgom the hard

interaction operators or £g(0). It is enough to prove that the net effect of [,IGI interactions
vanishes for a hard scattering observable to prove the decoupling of Glauber gluon effects,

and then one can use standard SCET}; to attempt to prove factorization theorems.

Note that when EFT fields are contracted they can lead to loop diagrams that are
referred to as collinear, soft, ultrasoft, or Glauber. The meaning of this language is that
the corresponding loop momentum has this type of scaling as in table 1.

We will discuss the Glauber operators appearing in Eg(o) and EIC(,O) in section 5.1.

4.2 SCET operator building blocks

In this section we discuss gauge invariant operator building blocks for quark and gluon
operators in SCET [27, 28, 30]. At any order in the power counting the most general
building blocks for n-collinear components of SCET operators for QCD (other than the
leading power kinetic term) contain three terms [86]

Xn, By, Ph. (4.8)

The full expressions for x, and B! are given below in eqgs. (4.10) and (4.15) and carry
global fundamental and adjoint color indices (also discussed below), but are gauge invariant
under local collinear gauge transformations due to the presence of collinear Wilson lines.
When expanded these quark and gluon building block fields contain the physical quark
and gluon components, x, = &, + ... and B, = A" — (P} /P)n- A, +.... To reduce
operators down to the three objects in eq. (4.8) we rewrite all .- A,’s as W,, Wilson lines,
and absorb dependence on n - P into Wilson coefficients. We also use the equations of
motion to remove in - 0 Xp, in- 0By, Pn-Bh, in-0n - B,, and use operator identities to
remove [¢D! iD¥ | and [¢D! ,in- D] [86]. Here gn - B, = [ng - Dy W,]. Using the
scaling of the fields deduced from their kinetic terms, the power counting for these collinear
building blocks is x, ~ A, Bﬁj_ ~ A, and PZLJ_ ~ A
We will find it useful to also use the following building blocks for soft fields

o Bdt . (4.9)
Here the n superscript denotes the soft gauge field component n - Ag appearing in the soft
Wilson lines in these operators. For an analysis involving back-to-back n-collinear and
n-collinear sectors we will see that ¢, Y7, BY|, and By, (defined below in egs. (4.10)
and (4.15)) all appear. Using the scaling of the fields deduced from their kinetic terms, the
power counting for these soft building block fields is 7 ~ ¢7 ~ X32 and Bg/| ~ By ~ \.
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The collinear and soft building blocks that have a single quark field at lowest order in
the coupling are

0

Xn = Wi, W, =FT W,[n-A,) =FT Pexp <ig/ds n-An(x + ﬁs)) ,
0

Xa = Wi, Wy =FT Wg[n- Az] =FT Pexp <ig/ds n-An(x + ns)) ,

0
Yo = 5’;21/13, Yl = ,T—lws, Sp, =FT Spn-Ag] =FT Pexp <z’g/d8 n-As(x—i—ns)) ,
(4.10)

where FT is for Fourier transform, and P stands for path ordering. The Fourier transform
is often written out in momentum space which enables making explicit the notation for
the multipole expansion (the lines remain local in the coordinate corresponding to residual
momenta, even though they are extended for the larger momentum associated with the s
coordinate shown here). Under a collinear gauge transformation &, — U,&,, W,, — U, W,
SO X, is invariant, and a similar property holds for the other fields with transformations that
have support in their respective momentum sectors. Although we show only one direction
in eq. (4.10) the integrals could instead extend over [0, co]. Expressions for Wilson lines over
(0,00) and (—00,0) and their Feynman rules are summarized in appendix B.4, and we note
that the difference corresponds to the choice of 7 - k +40 in eikonal propagators. In general
the direction of the Wilson lines in the fields in eq. (4.10) can be discussed in the context of
matching calculations from full QCD. As we will discuss in some detail, in SCET there are
soft and Glauber 0-bin subtractions for collinear Wilson lines which cancel this direction
dependence (which comes from the region n - k — 0). The same thing happens for soft
Wilson lines due to Glauber 0-bin subtractions. Ultrasoft Wilson line directions in SCET
are determined by the physical directions since their diagrams do not have subtractions.
At various points below we will discuss the direction of Wilson lines explicitly.

Note that we follow a convention where the subscript on the collinear field indicates the
type of collinear gluon field that the operator contains, rather than the light-like direction
of the Wilson line. Thus the n subscript on collinear building blocks means something
different than the n superscript on soft building blocks.

We denote fundamental collinear Wilson lines by W,,, where n - A, = n - AﬁTA in
eq. (4.10), and adjoint collinear Wilson lines by W,, where 7 - A, = @ - AAT, ;(‘h- with
(T4 o = —ifABC. Note that

Wiw, =1, WABWEB — 540 (4.11)
and
(- DYW, =0, (- DYW, = 0. (4.12)

We also have the following relationship between Wilson lines in the fundamental and
adjoint representations

WiTAW, = WABTB | W,TAW = wBATE | (4.13)
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Their momentum space expansion with an incoming momentum k for the gluon are

Az AA Agp . AA
gT*n- Al gT n- A7y
17 " Tk, [ [ —— L
W Ak Wa=14+—"37 ’
. pCAB — C i fCAB > c
gif n-A gif n-A
WAB _ §AB | — nk o (WhHAB = 645 _ — nk (4.14)

We have analogous results for the fundamental soft Wilson lines .S, STTL, and adjoint soft
Wilson lines S,, and Sj.

The collinear and soft building blocks that involve a single gluon field at lowest order
in the coupling are

B! = ; (WiiD! W,] = ;nlp t[in - Dy, ,iDY | W,

Bl = ; [WhiDk W] = ; # Wilin - Dy, iDl | |Ws

Byt = ¢ [SIiD4, 5] =+ o5 Shlin- Ds.iD,] 5,

Bl = ; [S1iDk, Sa] = ; L Sk[in - Ds ik, ]S5. (4.15)

where the Wilson lines here are the same as those in the quark building blocks, again with
a direction dependence that as we will discuss is removed by Glauber subtractions, and
hence only becomes fixed if we aim to absorb Glauber contributions. The square brackets
after the first equalities indicate that the covariant derivatives only act inside the brackets.
These gluon operators are in an adjoint representation so we can write BZ = BZfTA etc.
The Wilson lines appearing here can be combined into a single Wilson line in the adjoint
representation, for example we have

1 1
Bl = 5 miG W Bl = 5 miGR Wi, (4.16)

with the adjoint collinear Wilson lines W24 = W5BA[n . A,,] and WEA = WBA[n . A;], and
collinear field strengths igGa’’ T4 = [iDX,iD¥]. A useful relation is

W/liD! W, = Pt + gBl | . (4.17)

To lowest order in the coupling expansion

k#

There are analogous expressions for operators in other sectors, including the soft operators.
The BZ | operator is gauge invariant under n-collinear transformations since z'DZ Wh —
UniDz Wy and WJ, — WQ: U;rl. Again a similar statement holds for the other gluon building
block fields with gauge transformations that have support in each of their respective sectors.

We also will make use of fields that are matrices in the color octet space, which we
denote with a tilde, such as

BnJ_ _ fABCBnJ_ ’ BnAB ifABCBgJC_’ ’ égy AB _ _,L-fABCGgVC ’ (419)
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where the soft field strength igG2**T4A = [iD¥,iD"]. We also have the adjoint relation
WELiD* W, = P! + gB,. . (4.20)

In the hard scattering operators in both SCET; and SCET; we often need to specify
the large momenta for the collinear gauge invariant building blocks, x,, and B, , for which
we use the notation

Xn,w:(s(w_ﬁp))(n, Bnlw—é(w_n lP)B’nJ.’
Xiw = 0(w' =1 P)xa, BY =0 —n-P)BL . (4.21)

In SCET}; we also need to specify one component of the momentum of soft operators, since
dependence on this momentum is induced in the Wilson coefficients C}g by the existence
of collinear components in these operators with large momentum in an opposite light-cone
component. To encode this dependence we can use the notation

Y5y = 0(k —n-i0s)Yy, Bg‘ikzé(k—n-ias)Bg‘i,
Y5 = 0(k —n-ids)y7 B =0k —n-i0s)BY, . (4.22)

In SCETy; the general hard scattering operator appearing in eq. (4.7) has terms
w (ot 3 (k) (4.23)

= (s 08 Xy ot ) (Xony o5 Xy ot ) (B, wlB,i ol ) (naoz ) Rogt ) By ) o

( sm*ﬁs;cb"')(ig,k”%kd” )(B§2i3§2} )( sZkg)@gig)(BZiﬁ)’

where for simplicity we have suppressed color, flavor, and Lorentz indices, and have not
displayed factors of P, or soft derivatives.

For SCET] the hard scattering operators O are analogous to eq. (4.23) but will con-
tain ultrasoft fields without momentum labels in place of the soft building block fields. In
this EFT the ultrasoft-collinear decoupling is obtained from the BPS field redefinition [29]
En — Yo, Al — }/nflﬁiﬁ;r , which allows us to factorize the ultrasoft fields into gauge in-
variant products in the hard scattering operators, such as (YJ Yus), [YTzDﬁ .1 Yn), ete, quite
analogous to the combinations that appear inside the soft building block fields in eq. (4.23).

It is important to understand that when we say that the building blocks are “collinear
gauge invariant” or “soft gauge invariant” we mean up to some transformation at null
infinity where the Wilson lines end, which is sometimes synonymous with a global gauge
transformation. The quark and gluon building blocks carry color indices which trans-
form covariantly under these remaining transformations. These indices are always fully
contracted to give scalar Lagrangians. The inverse derivatives, 1/ PJQ_, correspond to a sep-
aration in the transverse positions. To ensure the same gauge invariant results obtained
here for covariant gauges are also obtained in light-cone gauge, additional transverse Wilson
lines at null infinity will presumably be required. In SCET Wilson lines of this type have
been considered in [87, 88]. Repeating the tree level matching calculations using n- A =0
gauge in QCD it is straightforward to check that for a single Glauber exchange between n
and 7 particles, our same O;‘;ﬁ operator in eq. (5.9) is obtained.
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5 SCET with Glauber operators

In this section we present the SCET operators for Glauber Exchange, which determine
Ego) and Eg(o) in egs. (4.1) and (4.7), and discuss some of their key properties.

5.1 Operators for Glauber exchange in SCET

Let us now discuss the gauge invariant basis of Glauber operators in SCET which mediate
interactions between collinear fields in different sectors and between soft and collinear
fields. The full operators and the lowest order matching are discussed here and the details
of the matching calculations needed to derive these operators are left to later sections,
including the derivation of the structure of Wilson lines which is given in section 6.1, as
well as the derivation of the full structure of the soft mid-rapidity operator which is given
in sections 6.3 and 6.4.

The Glauber operators can be organized by the number of sectors {n,n, s} with differ-
ent rapidities that are involved in each interaction. Operators describing n-n interactions
also involve soft gluons, and hence three rapidity sectors. These are described first in sec-
tion 5.1.1, while those for two rapidity sectors, n-s or n-s, are described in section 5.1.2.
Section 5.1.3 carries out the lowest order matching for all gluon polarizations.

5.1.1 Collinear-collinear forward scattering

At tree level we can match onto the Glauber operators in SCET by considering forward scat-
tering diagrams between collinear particles in any two different collinear sectors n; # n;, or
between a soft sector and any collinear sector. Let us start by consider two collinear sectors
n; and nj. The relevant forward scattering graphs in QCD with t-channel singularities are
shown in figure 4a. Each external momentum can be decomposed in light-cone coordinates
along the two collinear directions, so

" n“ n;‘ "
=t n,;- n; - . 5.1
p 2 p+2/_€ij ip+p (5.1)

For two generic collinear directions n; and n; the vector p/ is defined to be orthogonal to
ni and n¥, and i = (n; -n;)/2 # 1 (and ki; > A? for the two directions to be distinct).

With these coordinates a loop measure can be decomposed as

1 1 P
d'p = 5—d(ni - p)d(n; -p) d’py = — dE; dpj; dp., (5:2)
i )

where we have defined a generalized “energy” and “longitudinal momentum” by

NgPp+n;-p N, *D—MN; P
Ej=——F—"—, py=—p (5.3)
For simplicity we will carry out most of our calculations using the back-to-back choice with
n; =mn, nj =n, and ki; = (n-n)/2 = 1. Here we have
nt _ nt

p“:7n~p+7n-p+p’iv (5.4)
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Figure 4. Tree level matching for the nnnni Glauber operators. In a) we show the four full
QCD graphs with t-channel singularities. In b) we show the corresponding Glauber operators
for the four operators in SCET with two equivalent notations. The notation with the dotted line
emphasizes the factorized nature of the n and 7 sectors in the SCET Glauber operators, which
have a 1/P? between them.

and the variables in eq. (5.3) reduce to the true energy and longitudinal momentum
1
d'p =5 d(n-p)d(n-p)d’py = dp’ dp* d°p, . (5.5)

We will often use the shorthand p™ = n-p and p~ = n-p. All of our calculations, including
our final results, will apply equally well to the more general case in eq. (5.1). For this more
general case factors of x;; must be inserted, but can be inferred by using the invariance
to simultaneous rescaling n; — p;n; and n; — n;/p; for each i, which follows from the
allowed values for these collinear basis vectors in constructing SCET. This symmetry is
called RPI-III invariance [89, 90]. When we refer to the longitudinal momentum, for this
more general case we always mean p7;.

We use a common convention for the collinear momenta of the external lines in the
2-2 scattering graphs in figure 4a, so q(py) +q(p}) — q(p%) + q(p}), where the superscripts
are included to indicate the type of collinear momentum, and we have the same labeling
for the gluon scattering cases. This is illustrated in figure 1. When we need to provide
further labels to an external particle we will use the same subscript as the momenta,
such as for color indices Ai, A, etc, and for vector indices p1, pe, etc. Momentum
conservation implies p;+p2 = p3+p4. The momentum in the exchange ¢-channel propagator
is ¢ = p3 — p2 = p1 — ps. The Glauber gluon does not carry large momenta, so the ~ \°
collinear momenta of the particles on the top and bottom of each diagram are conserved:

n-py=mn-p3, n-pL=mn-ps. (5.6)

These constraints are what ensure the diagrams give forward scattering. To leading power
the large Mandelstam invariant is s =n-py17n - po = n - psn - p3 and we have the hierarchy
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s ~ AV > [t| ~ A2. For simplicity we often work in a frame where

P =—pr =q1/2, Py =Dy =q./2. (5.7)

Thus for these tree level 2—-2 scattering graphs the Mandelstam invariant ¢ = qi = —cj’f < 0.
For this matching calculation there are four relevant QCD tree graphs, shown in fig-
ure 4a. They will result in four different Glauber operators, whose Feynman diagrams for
this matching are represented by figure 4b. For simplicity, here we take _-polarization
for the external gluon fields (leaving the calculation with the full set of polarizations to
section 5.1.3). Expanding in A the results for the top row of diagrams at leading order is

_ . BC _
Un%TBun:| [W] [vnﬁchn}, (5.8)
|2 q7y 2

i . BC _

ifBAgAggjL_WJS 7 - p2:| [W} [@nﬁchn} 5

I 71 2

—8mas(1)6B T 1.
][]

- . —8mavs(p)dBC T 1.
ZfBAgAzgi%B 7 - p2:| |:2—»(2H):| [szA4Algﬁ1M4 n- p1:| .
L 1

.

.

~.

Up

~.

In writing these results we have written out the collinear quark spinors but left off the
collinear gluon polarization vectors ghzA2 (p2) etc, for simplicity. We use color index A; for
the external gluon of momentum p;. We are also using a 3 representation for the antiquark
spinors and color generators.’

We begin our analysis by discussing the SCET; operators whose tree level matrix
elements reproduce the results in eq. (5.8). The four SCET]; operators whose matrix
elements reproduce eq. (5.8) factorize into collinear and soft operators separated by 1/ PJQ_

factors, so we adopt the notation:

1 1 o 1 1 o
Onta = O 7 0 52 O Onin = 01 7 0 52 O
1 1 o 1 1 o
Ontn = OZBP*EOSBCP*EO% ; Onin = O%BP—iOfCP—iO% . (5.9)

On the left-hand side the subscripts indicate that these operators involve three sectors
{n, s,n}, while the first and second superscript determine whether we take a quark or
gluon operator in the n-collinear or f-collinear sectors. Without soft gluons we have OB¢ =
8mragdP 073?_.

The n-collinear quark and gluon terms, which occur in the first square bracket in each
of the four terms in eq. (5.8), are matrix elements of the n-collinear operators

o =x, 0 v o= |Lppersg D oparns| . s

n
2 "

SThe relation between our notation and that of vef. [91] is [0a(4)ETCva(1)]"™ =
— [ﬂﬁ(l)%chﬁ(él)]PeSkm, where T¢ = —(T9)7 and wva(i) = [v5(3)]F**™.  Our notation puts quark
and antiquark spinors on the same footing, absorbing the (—1) from permuting the fields that create and
annihilate the antiquarks into the color structure, as is often done in the spinor-helicity notation [92].
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Each of these operators are bilinears in the quark or gluon building blocks. For the gluon
operator, an extra factor of 1/2 is included to compensate for the symmetry factor from
switching the two B, s when computing the corresponding Feynman rules. The operator
045 is even under this swap because both the color factor and momentum factor 72- (P +7P")
give a change of sign. The n-collinear quark and gluon terms appear as the contributions
in the last square brackets of each of the four terms in eq. (5.8), and are matrix elements
of the operators,

. n
05" = xﬁTB% Xn 05" = fBCDBnm 5 (P+POBIY. (5-11)

Examining egs. (5.10) and (5.11) we see that the n-collinear and n-collinear results are the
same, just with n <> n. These collinear operators are bilinears of the fundamental quark
and gluon gauge invariant building block operators in SCET. Furthermore, both of these
operators are octet combinations of the building blocks. Due to momentum conservation,
and the fact that there are only two building blocks in each collinear sector, each collinear
bilinear has a conserved momentum in its large ~ A° component. This implements the
forward scattering kinematics. The tree level matching that yields the proper Wilson line
structure in the operators in egs. (5.10) and (5.11) is actually non-trivial due to operator
mixing, and is described in detail in section 6.1.

The middle terms in square brackets in eq. (5.8), those involving a, do not have objects
like polarization vectors or spinors that correspond to external lines. Nevertheless, they
are actually matrix elements of a soft operator which involves soft gluon fields as well as
soft Wilson lines. Accounting for the 1/P? factors in eq. (5.9) these operators must reduce
to 87ra55BC77i when all soft fields are turned off. The full soft operator is non-trivial, and
is derived in section 6.2, where we obtain

0BC = 8m8{7>ﬁ3§ SiPry — PrgBi SIS — SLSagBY Pr — 9B SESngBs.
n,n ~ BC
— %Sﬁ z’ng;”Sn} . (5.12)

Here the S, and S; Wilson lines are in the adJ01nt representation as described near

q. (4.13) and the other field objects BSL, BSL, and G are matrices in the adjoint space
as in eq. (4.19). The adjoint soft Wilson lines §,, and Sy are necessary to maintain soft
gauge invariance and are generated from integrating out off-shell lines, with virtuality
p? ~ Q?X > Q%)\?, that arise from the emission of a soft line off of a collinear line. The
operator in eq. (5.12) is gauge invariant under soft gauge transformations that vanish at
infinity. The fact that we have a non-trivial soft operator O is related to the existence of
the soft sector that sits at rapidities between the n-collinear and n-collinear fields. Here we
have been deliberately glib about the multipole expansion for this non-local operator, but
will describe this fully in section section 5.2.2 below. The directions for these soft Wilson
lines are discussed in section 5.2.3.

At lowest order the Feynman diagrams for these operators will be denoted as in fig-

ure 4b. Two notations are used, one with an extended red dashed line which serves to
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Figure 5. Lowest order Feynman rules for the Glauber operators Oifsﬁ for n-n forward scattering.

remind us that the matrix element of OSBC is non-local, giving a potential that scales as
A~2. The alternate notation collapses this red dashed line to an elliptical blob to indicate
that it has no field dependent dynamics. In general the elliptical red Glauber blob indicates
an interaction between either three or two rapidity sectors in this manner,

(5.13)

I
@®------@
o
=
®---0----@

qaq

nen 18 identical to the result

The complete tree level Feynman rule for the quark operator O
used for the matching in eq. (5.8), but this is not the case for the gluon operators since
they have terms from other polarizations (derived below in section 5.1.3). For future use
we record the full set of Feynman rules at lowest order in the coupling expansion in figure 5.

There are additional Feynman rules when the operators emit another gluon. For
example, consider O2!, where ¢; = p1, —p4) and ¢, = p3) —p2 are momentum transfers
stemming from the n and n-collinear quarks respectively (following figure 1), and & is the
incoming momentum of the gluon. Then the Feynman rules with one additional n-collinear
gluon, n-collinear gluon, or soft gluon emitted are shown in figure 6.

The Feynman rule with the soft gluon has contributions from all polarizations and
reproduces the Lipatov vertex [93] used in small-z physics. Our soft operator has terms
beyond the Lipatov vertex from two and more gluon terms which we will discuss and make
use of later on. The two soft gluon Feynman rule is shown in figure 7. The result in
eq. (5.12) has not previously appeared in either the QCD or SCET literature, and gives
a completely gauge invariant factorized operator that reproduces both forward scattering

and the Lipatov vertex.
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Figure 6. One gluon with incoming momentum k emitted from the O%. Glauber operator.

The first two Feynman rules come from Wilson lines in the n-collinear and n-collinear part of the
operator. The last Feynman rule comes from the soft component of the operator, and corresponds
with the Lipatov vertex.

n__,_é___)__'n
. S
‘ L C , _ 8marg
qf g “hna =1 |:un%iTAun:| |:Uﬁ%TBUﬁ:| ( —»;r—»/2>
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2 pi AR pooBE | e W4T HRET) (2 —K{ )R ke —pipke
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n- ]fl n- ]{32 2
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qr n - ko o —q n -k
11 0 42 =)
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Figure 7. Two Soft Gluon Feynman rule for the O2%, operator. The terms in {---} times (8may)

are the universal two soft gluon contribution from OA%.
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The scaling for the component operators in eq. (5.9) are all identical: Ole ~ A2
OB ~ X2 and OAF ~ A2, Thus the overall operators in eq. (5.9) scale as Off;ﬁ ~ A2
As we will see below in section 5.3, for this type of Glauber operator this scaling yields
contributions that are leading order in the power counting for both forward scattering and
for hard scattering processes once the scaling of the measure is included. Therefore the
operators in eq. (5.9) contribute to the leading order Lagrangian in SCET. Due to our
normalization of OPC the tree level Wilson coefficient for all four of these operators are
1, and we will later argue that this is true to all orders. These are the first four terms
appearing in our Glauber Lagrangian. We can summarize our matching result, and extend

it to other pairs of distinct collinear sectors by writing

50( ) _ o—izP Z Z 021772(93 Eogm - (5.14)
n1,12 6,j=4,9 L +

where the ellipses denote additional leading power terms involving rescattering of soft

fields to be discussed below. In this sum n; and ng label distinct collinear sectors. (When

ny -ng # 2 there are factors of (2/n1 - ny) in a couple of places which can be inserted using

the RPI symmetry.)

5.1.2 Soft-collinear forward scattering

An analogous matching calculation can be done for the forward scattering between soft and
n-collinear fields. We show the diagrams for this matching calculation in figure 8 and label
the momenta for this calculation as q(p3) + @(pf) — q(p}) + @(pg). We use an analogous
labeling for the cases with gluons. Here the large O(A°) n-collinear momentum is conserved
as before. Since the soft momenta n-pj4 ~ A > n-pa3 ~ A2 they are also conserved by
the exchanged Glauber gluon, so we again for these diagrams we have forward scattering
with the constraints

n-p1=n-p4, n-pa=mn-ps. (5.15)

Or in other words, the n-ps momentum is conserved on the soft line and the n-p,, momentum
is conserved on the n-collinear line. The |-momenta are the same size here as in the n-n
scattering case, and we follow again the convention that pi = —p; = p?f = —py =qL/2.
Again it is convenient to use L polarizations to carry out the matching. (In section 5.1.3
we will show how all the polarizations can be matched when the on-shell conditions are
used.) Computing the full QCD graphs in figure 8a and expanding in A gives

<.

) B )
L 1

: “ B )
R P e N A e O P | e
[ 2 a7 a7 2

~.

<.

r -1
,L-fBAgAggjt_2lL3 7 - p2:| |:672:| |:8ﬂ,asl-fBA4Algli1#4 n- p1:| )
- 1

Thus despite the differences in the scaling of momenta, the results for the n-s scattering
are essentially the same as for the n-n scattering given above in eq. (5.8). The reason
for this is that the comparison of light-cone momenta in these two cases is the same, the
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Figure 8. Tree level matching for the nnss Glauber operators. In a) we show the four full
QCD graphs with ¢-channel singularities. In b) we show the corresponding Glauber operators in
SCET. The matching between the two is given by reading down each column. Results for nnss are
analogous with n < n.
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Figure 9. Lowest order Feynman rules for the Glauber operators O, for n-s forward scattering.
Results for O, are analogous with n <> 7.

n - p momenta are largest for the n-collinear particles, and the n - p momenta are larger
for the n or soft particles than they are for the n-collinear particles. For the four SCET
operators that are responsible for forward scattering of soft with n-collinear particles we
write operators with n-collinear and soft components separated by a 1/ Pf_ factor

OnP, O = 0P SONP, O = 0P 0P, 0 = 038 0P
PJ_ PJ_ PJ_
(5.17)

The structure of soft Wilson lines in 02"3 and 03"3 is determined by the direction of

the collinear fields, explaining why we add the additional subscript n to the quark and gluon

1
01 = 01 57
P

superscripts: ¢, and g,. The SCET operators which reproduce the result in eq. (5.16) again
involve O4” or 047 from eq. (5.10) for the n-collinear sector terms in the left-most square
brackets, just as was the case for reproducing eq. (5.8). For the soft-collinear scattering
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there does not exist a set of fields that are between these sectors in rapidity, hence here
there is no analog of the soft operator with two adjoint indices in eq. (5.14), and the 1/P?
gives the central terms in square brackets in eq. (5.16). The remaining right most terms in
square brackets are reproduced by the soft quark and gluon operators:

Og"B = 8may (1[)? TB%)E) )
09 B — 8ra, < F5PBeg, Z (P+P! )Bgf“) : (5.18)

Here the soft fields with n superscripts carry S, Wilson lines and were defined in eqgs. (4.10)
and (4.15) above. The appearance of these Wilson lines is necessary to preserve soft
gauge invariance, and we will see in section 6.1 that they arise from integrating out soft
attachments to the n collinear lines. By convention we group the gauge coupling as with
the soft component of the operator. This is convenient since the running of this s occurs
from soft loops. Due to our normalization conventions the total operators in eq. (5.17)
have Wilson coefficients that are 1 at tree level. To derive the scaling of the operators we
note that OF ~ A2, and OF ~ A3, so with the 1/P? ~ A=2 we have the total scaling
O, ~ A3. This is the correct scaling for a mixed n-s Glauber operator that contributes
at leading power in the SCET Lagrangian, once the scaling of the measure is included, as
shown below in section 5.3. The lowest order Feynman rules for n-s forward scattering
from the operators in eq. (5.17) are shown in figure 9.

If there is another collinear sector, such as our 7, then there will be a set of soft-n
scattering operators analogous to eq. (5.17), which we can simply obtain by taking n < n
in the above analysis. Here the forward scattering conditions are that the n-ps; momentum
is conserved on the soft line and the n - p; momentum is conserved on the n-collinear line.
The corresponding operators are

099 — OgB Ogn
PJ_ ) ns PQ
(5.19)

which now involve the f-collinear bilinear operators in eq. (5.11), and the soft operators

(92’13 = 8oy, (1/_)2 TB%Q/)Z> ,

09nB = 87ra5< FPePB, Z (7?+7>T)B”D“> , (5.20)

O%ZZOqu?Oq“ , Oni= OquﬁOg” L o= 088 S 0pP
1

where the fields 7 and BZf“ can be found in egs. (4.10) and (4.15). Once again with
our conventions these operators have tree level Wilson coefficients equal to 1, and we will
later argue that this is true to all orders. The lowest order Feynman rules for n-s forward
scattering from the operators in eq. (5.19) are given by those in figure 9 with n <> 7.

So far the soft-n and soft-n Glauber operators appear to be just like those for n-
n forward scattering, except without an intermediate rapidity sector. However, this is

5The apparent symmetry between soft and collinear fields in these forward scattering operators is broken
by the fact that the two types of fields have different 0-bin subtractions.
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Figure 10. Example of the momentum routing in a T-product of soft-n and soft-n Glauber
operators which produces two soft gluons. The virtual soft gluon is space-like and the two Glauber
operators each still satisfy their forward scattering conditions.

not always the case, due to the fact that the forward scattering constraints in eqgs. (5.6)
and (5.15) only restricts one light-cone momentum of each scattering particle, and the
light-cone soft momenta are much smaller than either the momentum of the n-collinear or
n-collinear particles, n-ks < n-pp and n-ks < n-py,. In particular we can have diagrams that
satisfy the soft forward scattering constraints even though physically they do not appear
to be forward scattering soft particles. For example, consider the time-ordered product of
an O} and O shown in figure 10. Here the two soft gluons are produced in the final
state and have momenta n-k; > 0 and n-k; > 0 for i = 1,2. Nevertheless, the two Glauber
attachments to the soft gluons still satisfy the forward scattering constraints since n - g =
n-k1 > 0and —n-ga = n-ko > 0. This is enabled by the n and 7 collinear particles which can
absorb the O(A\) soft light-cone momenta in one of the two directions. Due to the collinear
power counting constraints the momentum 7 - (k1 + k2) must travel through the Glauber
potential with momentum ¢ into the n-collinear particles, and the momentum n - (k1 + k2)
must travel through the Glauber potential with momentum ¢’ from the 7i-collinear particles.
This type of time ordered product will play an important role in our calculations later on.

Considering all terms which cause scattering between either colllinear or soft fields we
can write the full Glauber Lagrangian for SCETy as

E — —zzPZ Z Onsn —im-?’z Z O;L]s

n,n 4,5=q,9 n 1,j=q¢,9
: 1 1
_ _—ixP iB BC iC —iz-P nB
=c PN N 0} PQO onﬂ +e TPy N OF PQOJ (5.21)
n,n 1,j=q,9 n 4,j=q,9

Thus we see that the Glauber Lagrangian consists of operators connecting 3 rapidity sec-
tors {n,s,n} and operators connecting 2 rapidity sectors {n, s} (and {n,s}). This is the
complete result for the Glauber Lagrangian, since as we will explain below in section 5.3
there are no loop corrections to this form. For future reference we summarize the operators
relevant to forward scattering in table 2.

If we consider the interactions of soft and collinear particles in SCET then none of
the tree level calculations that we have done in SCETy; change, and hence the Glauber
operators are precisely the same as in SCETy;. In this case we are considering SCET| prior
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087 =%, T4 xn OfF = 5fP°PBRL, 5 - (P+PIBY

BC
08¢ = 8ras {73183 SaPLu—PugBi ST Sn—SE SngBe Pt —gBY Sk SngBg, , — "™ sgigag”sn}

OgnB = 8mas 1/3? TB%wg OgnB = 8T, %fBCDBgEH % . (7)+7)T)Bgfu

0P = 8ra, (L TP LT 0978 = 8ra, ( £ fPPBIT, 2 - (P+PHBLH

Table 2. Summary of operators appearing in the leading power Glauber exchange Lagrangian in
eq. (5.21).

to making the BPS field redefinition, so
£ = 2O (5.22)

However due to the appearance of couplings between the collinear and ultrasoft fields in
ES? for SCET], and the differences between how momentum sectors are distinguished (via
subtraction terms), the precise behavior of these operators in loop diagrams will in general
be different. We will see this explicitly when comparing our one-loop matching calculations
in sections 7.1 and 7.3 for SCETy; and SCETT respectively.

We can also consider the form of the Lagrangian £IG(O) after the BPS field redefinition.
This field redefinition only changes the collinear quark and gluon fields, inducing lines Y,
or YV, for n-collinear fields, but leaves the soft fields unchanged. Due to the octet nature of
the Glauber operators in EIG(O) , only the adjoint lines ),, and Vs appear in this Lagrangian.
Additional ultrasoft lines can appear from interpolating fields for collinear initial and final
states. For a situation where SCET] is the relevant theory there are no soft real emissions,
since they are ruled out by restrictions from the observable being measured, and hence the
soft gluons appearing in SCET} due to the presence of Glauber operators can only appear
as virtual soft fluctuations.

5.1.3 Matching for all polarizations

For completeness, we can also repeat the matching calculations involving external gluons
with arbitrary external polarizations. This amounts to not specifying a specific basis for the
physical states, and allows us to see how the scattering with non-transverse polarizations
are matched by the EFT. To carry out this calculation it is important to use the equations
of motion to simplify the gluon matrix elements. For a full theory scattered gluon of
momentum p the equations of motion imply p? = 0 as well as

1 1
0=p'A.lp) = 3np n-A(p) + onp n-A(p) +p1L-AL(p). (5.23)

As an explicit example we consider the two-gluon two-quark matching calculation given

q

by the diagrams shown in figure 11. Since the Glauber operator O2¢

obviously only yields
n - A and A, polarizations, we use eq. (5.23) to eliminate the n-A polarization terms
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Figure 11. Tree level matching for the nnnn Glauber operators, considering all gluon polarizations.
In a) we show the three full QCD graphs that contribute, and in b) we show the Glauber operator
that they match onto.

in the full theory amplitude. We also will use the forward condition on the amplitude,
n-py = n - p3 and the relation ¢ = p3 — p2. Using eq. (5.23) we can set phe,(p2) = 0,
pheu(ps) = 0, and write the objects that are dotted into these € polarization vectors as

Konv  plpY SHRVY .
py " atp nkn'n - (p2 + p3) 1 _
uy_> prv P21 _ 3L V_> vV Zq- _ ’I’LV
g g1 n-po 7 - o 20 - po , Py — (Ph —p51) + 9 (p2 — p3)n”,
1 _
Py = (P —phy) +5n - (ps —p2)n*. (5.24)

With these manipulations, and canceling various terms, the amplitude from the first of the
full theory diagrams in figure 11a is

g2 fABC
2

. @—LZLTCWL} {2 n-pg g —20Mpy, — 2ph nY —n-(p2 +p3)_“ﬁ”} , (5.25)

while the leading power contribution from the sum of the two remaining full theory (Comp-
ton) diagrams in figure 11a is

2 fABC 2
g f 77ﬁ C, - q 14
—Z |:7)n2T vn}{ P }n n". (5.26)

To obtain eq. (5.26) we have dropped the +i0 in the propagators. Keeping the +i0 gives
rise to an additional term proportional to §(7n - p2) which we can set to zero, since the large
momentum 72 - po > 0 for this matching calculation. The 7 - po = 0 contribution is properly
accounted for in Glauber loop graphs, such as those discussed below in section 5.2.1. Adding
the results for the full theory graphs, and using the equations of motion to carry out the
simplification ¢? + 7 - pan - (pa + p3) = —2p21 - p3.1, we find

2ngABC |:

p vnT/LTCvn} {n o g —tpy — Pl Y + Mn“n”} . (5.27)

2 n - p2

This result is precisely identical to the complete Feynman rule for the EFT contribution
shown in figure 11b, so the complete set of polarizations are reproduced by the EFT
operator. (The Feynman rule was given above in figure 5.)

This same calculation also demonstrates that the full set of polarizations are present
in the operator with two soft gluons (the second graph in figure 8b). In a similar manner,
using the equations of motion the full set of polarizations for gluon-gluon soft-collinear and
n-n scattering are reproduced by the EFT Glauber operators.
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Figure 12. One loop iterations of the Glauber potential for n—n forward scattering of a ¢q pair.

5.2 Formalism for multi-Glauber diagrams

Here we discuss additional formalism that is needed for diagrams with multiple insertions
of Glauber operators. In section 5.2.1 we discuss the regulation of Glauber exchange
iterations, then in section 5.2.2 we write the Glauber Lagrangian in transverse momentum
space and fully implement its multipole expansion, and finally in section 5.2.3 we discuss
the rapidity regulator for Glauber operators and the implementation of 0-bin subtractions.

5.2.1 Omne-loop Glauber box and cross-box diagrams

To illustrate the presence of additional singularities that occur in the presence of Glauber
gluons, in this section we will consider the one-loop computation for the iteration of two
Glauber operators. We will see that it is necessary to introduce a rapidity regulator into
Eg(o) in order to yield well defined results for the various possible contractions of two
operators which induce a loop momentum with Glauber scaling.

To see some of the difficulties inherent in having well defined Glauber potentials, we
will start by considering the iteration of two Ol_ potentials to generate a loop graph. We
can contract the n-collinear quarks and the n-collinear quarks to give the “box” and “cross
box” graphs shown in figure 12. To keep the particles onshell in the effective theory the
loop momentum k& must not spoil the power counting for any of the propagators in the
loop. Therefore we must have n -k ~ A2 and 72 - k ~ A2, but can have k| ~ \. We will

refer to this as an n-n Glauber loop momentum. We decompose

dk 1
d%% =

= —dktdka* 2k 2
(2m)d ~ 2 = (5.28)

where d = 4 — 2¢, and recall the forward conditions p;f = pf and p; = p;. The box and
cross-box loop integrals involve two Glauber denominators and two propagators from the
collinear quarks. They are

a2k, dkt dk-
IGbox: . . - o . R . — . R Iy P
2(k2) (kL +QL)2(/*€++P3 —(kL+q1/2)2/p; +ZO) (—k*+p4 —(kL4+q1/2)2%/p +20)
a2k, dkt dk-
IGcbox: N N R + - N . _ g - + . :
2k (ks +30)2 (49 — (B +71/2)2/p5 +i0) (+k=+py — (F1+71/2)2/pf +i0)
(5.29)

These graphs involve log divergent integrals of the type [dk™/(kT + A % 40) and
[ dk~/(k~ + A £40) that are not regulated by dimensional regularization. These sin-

gularities must be dealt with systematically by introducing an additional regulator.
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In the case of the potential for two heavy quarks in NRQCD, the cross-box diagram
would be zero because both poles in the energy contour integral would be on the same side,
and the box diagram would be convergent since both fermion propagators would carry the
loop energy. Indeed, in NRQCD their are no crossed diagrams for potential iterations at
any order in ayg, and the iterated box diagrams yield the Coulomb Greens function. In
our case the Glauber potential is instead static in both time and longitudinal distance, or
equivalently static in the two light-cone times 2™ and 2~. For the diagrams in figure 12 this
implies that we have ] = y;, ] = y;, and 25, = vy, , 4 = y5 in position space, where
the x; and y; coordinates are defined in the figures. Naively this would seem to imply that
only the Glauber box diagram can exist, because in the cross-box diagram the ordering of
the 1 and 2 Glauber potential vertices is different for the n-collinear and 7-collinear lines.
However due to the multipole expansion, which ensures that the collinear propagators are
homogeneous in the power counting in eq. (5.29), the n-collinear propagator only depends
on the n - k ~ A2 Glauber momentum, and not on the 72 - k < 7 - p, component, whereas
we have the opposite situation for the n-collinear propagator. Thus each of the collinear
sectors only sees one of these two times ™ or 2™, and we must consider both the box with
z3 > xf and x; >z, and the cross-box with 23 > x{ and ] > z; where the Glauber
vertices have the opposite ordering on each line.

In the abelian limit we can determine Ighox + Iacbox Without an additional regulator,
by adding the integrands and manipulating them to obtain §(k™)5(k~). We carry out
these computations explicitly in appendix C.1, where we also show that this same trick
works to all orders in the iterations of Glauber potentials, and leads to the expected eikonal
phase result ¢® — 1 for the Greens function obtained from the abelian forward scattering
potential. To obtain this result at the integrand level the crossed box type diagrams play
a role. However in QCD the box and crossbox have different color factors, so this type of
manipulation does not suffice.

To regulate the integrals in eq. (5.29) for the nonabelian case we will use the rapidity
regulator w?|2q*| =" of ref. [58], where w = w(v) is a renormalized coupling used to derive
RG equations, and in the limit n — 0 we set w(rv) = 1. In terms of light-cone momenta
q¢*> = (¢~ — ¢")/2, and results and counterterms are identified by taking  — 0 prior to
expanding for € — 0. The parameter v introduces an extra cutoff parameter that behaves in
a similar way to u of the MS scheme in dimensional regularization. This regulator acts as a
factorization scale that separates modes with equal invariant mass but different rapidity. To
regulate multiple iterations of these Glauber potentials we will have one factor of w|2¢*| ="
for each Glauber potential carrying momentum q. We will refer to this as the n-regulator.”
In the next section we formulate this regulator for Glauber potentials at the level of the
Glauber Lagrangian, and also discuss the regularization of rapidity divergences from soft
and collinear loop graphs. In this section the coupling w(v) will play no role (since as we
will see, the graphs do not have 1/n poles), so we will from the start set w(r) = 1 below.

For the Glauber loop momentum in figure 12, ¢* = k* ~ A2, so we have a factor of
|E#|~"(v/2)" for each of the two potential insertions in these graphs. The presence of the

"Including an 7n-regulator for each Glauber potential is distinct from the definition used in ref. [58],
where it was used for group momenta in soft and collinear Wilson lines.
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|k#|~" factor means that the Glauber exchange is no longer static in longitudinal distance.
We will recover the static nature of the exchange in this direction only when n — 0. With
this regulator the loop integrals become well defined because we are forced to consider the
contour integral in the analytic variable k¥, rather than using any time slice that involves
some amount of £%. With this regulator the Glauber cross-box integral becomes

/ a2k, dkO dkF k7|72 (v)2)2n

IGCbOx - - - - - K -

(k2)(k1+q1L)? <k0— k*+p3 — (kL +L)2/p; +z’0> <k0+ kz+p1—(kL+qj)2/pr+iO)
=0, (5.30)

since the poles are on the same side. For the Glauber box integral we get

, / a2k, TR dk k220 (v)2)2
Gbox —
(Efxlqu)?<k0—kz+p3+—</a+%>2/p2+z‘0) (—ko—k“rm—(EL+%)2/291++Z‘0)
[
(k2)(ky+qL)2(-2k* —2A+i0)

_;Z & v 2n (_ i) ese(2mn) sin (r ; —an

T dn (E@@HW[( /2)" (~2ir) esc(2mm) sin(wn) (i18) =]

(Y [ dTR

_(‘”) / (Ei>(1%;+m2[ +00)] (5.31)

where the k% integral is evaluated in eq. (B.4). Here

kit q1/2)? +<i¥:1+ q/2)? .

2A = = —ps =D (5.32)
pii- 5 4 3

and the 1 dependent term evaluates to (—im) as n — 0 for any value of this A. This extra
(—1) is the factor necessary for the Glauber potential to exponentiate into a phase. The
result in eq. (5.31) for the n-regulated box is exactly the same as the result obtained from
manipulating the integrands in the sum of the box and cross-box in the abelian case in
appendix C.1.

Effectively the n-regulator has decoupled the spacetime constraints so that the box
diagram alone is integrating the two Glauber potentials over z*, while the cross box does
not contribute. This is the same spacetime picture that is obtained by adding the box and
cross-box integrands in the abelian theory to get a §(k™)d(k™) type structure. In the non-
abelian theory it is important as far as the color structure is concerned that it is the box
graph alone that contributes. The non-abelian part of the cross-box topology contributes
only for another momentum region, namely when we have the loop graph with two soft
gluons. In SCET this contribution has the non-abelian color structure and is given by first
graph in figure 3b. (This graph does not correspond solely to vacuum polarization, and en-
codes the cross box contribution from terms involving soft Wilson lines.) These soft graphs
come from contractions of O and O with a soft loop momentum. Since the soft gluon
terms in the operator involve f4BC they explicitly do not have an abelian contribution, so
it is a regulator independent statement that the abelian contribution is entirely carried by
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Figure 13. One loop iterations of the Glauber potential for n-soft forward scattering of a ¢q pair.

the Glauber iterations. Any consistent regulator for the Glauber singularities must have
these properties.

We will see in section 9.1 that the above properties of the n-regulator extend in a
nice way for arbitrary iterations of Glauber potentials with Glauber loop momenta. Any
iteration diagram with crossed Glauber potential lines will give zero in the same manner
as the crossed box above, and the n-regulated iterated boxes alone yield an e’® — 1 Greens
function even in the nonabelian theory. We will also give a more physical picture for the
action of the n-regulator in Glauber loops in section 9.1. In the abelian theory the phase
¢ is one-loop exact. In the nonabelian theory there will be one-loop corrections to the
forward scattering kernel from graphs involving soft and collinear loop momenta, and the
full set of such diagrams will be computed in section 7.1 and section 7.3.

If we consider quark-quark scattering rather than quark-antiquark scattering, then the
same loop integrals in eqs. (5.30) and (5.31) appear, and we get the same result other
than a modified color structure. We can also extend the above analysis to iterations of
Glauber potentials other than Ol?.. If we consider n-n scattering where either or both
of the external collinear lines are |-gluons, then from the form of the Feynman rules in
figure 5 we note that the internal gluon is also L and we have the same momentum integrals
as those analyzed above, again with a n-n Glauber loop momentum. So iterations of these
operators also yield the same loops as in ¢ scattering.

We can also consider Glauber potentials obtained by iterations of the operator 0, or
by iterations of O%js In these cases the loop momentum will be Glauber if we have the
s-n or s-i. Glauber scaling, namely k* ~ (A%, A, \) for O, iterations, or k* ~ (A, A2
for OZ,

= iterations. The graphs for two O iterations are shown in figure 13. At the level

of 4-point functions the Feynman rules for the scattering involving n-s are direct analogs
of those for the n-n scattering. Keeping p‘2‘73 as n-collinear, but letting p', be soft, the
iteration of two Ojls gives the same denominators as in the box and cross-box integrals
shown in eq. (5.29), since the collinear and soft propagator denominators are

n-s box: (k" +p3)p5 — (kL +F31)?+i0] [(pg —k )pf — (kL —P1L)?+i0],  (5.33)
n-s crossbox:  [(k"+p3)pg — (kL +P3L)%+i0] [(py +k )pf — (kL +F11)?+i0] .
Here kT ~ A%, while k= ~ ), but each loop integral scales as A\>/A\7 = A~2 as before. To
regulate these n-s Glauber loops we can use |n-k— fn-k| ™" instead of |2k,|~" in eqgs. (5.30)

and (5.31), where 5 ~ X is a boost factor that ensures that the two terms in the regulator
have the same ~ A2 scaling. However, the results for these integrals are the same as if we
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took 8 = 1 since they are independent of § as long as 5 > 0. To see this simply change
variables to k'~ = Sk, noting that this gives back the regulator |n -k —n - k|77, and
dk=/(k-—A)=dk~ /(K —A/B). The cross-box again vanishes and the box yields the
same A independent result that we found in eq. (5.31) once we expand and drop O(7) terms.

5.2.2 Transverse momentum Glauber Lagrangian and multipole expansion

In the Glauber Lagrangian in eq. (5.21) the L-momenta are all O()\) and hence are
encoded by continuous label momenta on soft and collinear fields, without residual 1-
momenta. The overall [ d?x | integration then just enforces momentum conservation
through [ d?z | exp(—izy, - P.) = (2m)?6%(PL). It is convenient to make this explicit
by writing the Glauber action entirely in transverse momentum space. To do this we insert
the identity in the form

0t = [ a1 [0 o~ )] = [ s Oau), (5.34)

which allows us to write the Lagrangian in terms of the n-collinear bilinear with definite
injected transverse momentum g :

Oil(q1) = [0 6*(q — P1)]. (5.35)

We make similar definitions for the other bilinear operators with definite transverse mo-
menta

0P (—¢)) = [07 (¢, +P1)], O (—qu)=[00" 6%(qr +P))].  (5.36)

Using these definitions for the n- and n-collinear operators, and then moving the overall
momentum conserving 62(P,) so that it acts only on the soft fields, the Glauber action
with d = 4 in transverse momentum space is

drtde™ dq. &4, ‘
/dwg@:gj 3 /26 ””’(27r)Q/ S 01 q1) 028 (g1, 1) O (=d))

n,n i,j=q,g ql qi
detde— .. d? 4 4
Y [t ent [ o) 0 a)
n ij=q.g 2 g
d2q d2q/ ; .
-y ¥ /[dxﬂ/ 191 0id (g, ) O2B(q,, ) 02F(~q))
n,n i,j=q,g qJ— qJ—
dzq i j
Yy /[dxﬂ / - 0iaL) 05 (-a), (5.37)
n 4,5=q,9 L

where all the operators depend on the positions 7 and = and we will make the multi-
pole expansion for these components explicit below. The two color index soft operator in
transverse momentum space that appears in eq. (5.37) is

0P%qL,q)) = 8mas6°(qL — ¢} — PJ_){QJ_ ) SESn — qygBY SESn — ST SagBY L d\,

nyuNy

2

BC
— gBY S\ SagBe, , — ST z‘gGg”Sn} : (5.38)
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For convenience we have defined the short hand notations

nH

“w
[dz¥] = = deTde™ exp(—iz - P)(2n)?, H=n-x - +n-x % : (5.39)

N

The factor of
d-function and hence drop out in the Feynman rules when momentum conservation is taken

2m)? in [dz®] combine together with the overall 1-momentum conserving

—

into account explicitly.

Next we consider the flow of +-momenta and —momenta in the Glauber Lagrangian.
Unlike the L-momenta which were always O()\), from table 1 we see that here there is a
hierarchy between the n-collinear, n-collinear and soft momenta:

EF < kF < kT, kr <k <k, . (5.40)

These expansions are included in our Glauber Lagrangian due to the presence of a multipole
expansion [94] that is implemented using the mixed momentum-space and position-space
label formalism [62], as implemented for SCET in refs. [28, 29].

Before discussing the Lagrangian in greater detail, we consider a practical application
of these expansions for a graph that simultaneously involves soft, n, and 7 fields, namely
the last diagram in figure 6. The momentum space multipole expansion implemented with
labels ensures that the light-cone momenta will only be routed in a way which is consistent
with the power counting and the fields in SCET remaining nearly onshell. Here the soft
gluon with incoming momentum k = ¢ — ¢/ implies that k* ~ X\ momenta must flow
through the dashed Glauber potentials and into the n-collinear and n-collinear fields. To be
consistent with the power counting the 7 - k soft momentum must flow into the n-collinear
fields, since n - kK > n - p; and would knock the n-collinear particles offshell. Similarly,
the n - k soft momentum must flow into the n-collinear fields. Here the Glauber potentials
have momenta scaling as ¢’ ~ (A, A%, \) and ¢ ~ (A2, A\, \) for the (+, —, L) components
respectively. The 1 /Pf_ potentials still correctly describe these exchanges since we still
have ¢ ¢~ < qi and ¢'T¢~ < q’f. The ¢ ~ (A2, \, \) scaling found here also occurred in
the potential exchanges in figure 13. Also note that the k=~ ~ A momentum which flows
into the n-collinear fields is always suppressed relative to the large p, ~ A momenta, and
hence does not appear in the leading power n-collinear propagators or purely n-collinear
interactions (it will show up in power suppressed terms). Likewise the k™ ~ A\ momentum
flowing into the f-collinear fields is suppressed relative to pZ ~ A° momenta. Thus the
presence of these smaller momentum components does not change the homogeneous scaling
of collinear propagators. In our formalism the lines carry the smaller momentum compo-
nents even if they do not show up in the leading power propagators, and we have separate
momentum conservation for the O(A\?), O(\) and O(A\?) components of the momenta.

Next consider how this multipole expansion effects the dependence of various operators
in the Glauber Lagrangian. As already discussed, the large O(A?) momenta carried by
collinear fields is conserved within the collinear bilinear operators, corresponding to the
near forward scattering constraint in eq. (5.6). These momenta are implemented with label
momenta, but since they are not exchanged between sectors in the Glauber operators we
will not bother to make this explicit in our notation. On the other hand, soft momentum
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k% ~ X injected by the soft operators will be carried by the collinear fields, and we will
denote these by momentum labels to distinguish them from the residual collinear momenta
that are O(\?). Residual momenta are encoded in the dependence of all operators on
the spacetime coordinates 2*. The Glauber action from eq. (5.37) with the multipole
expansion made explicit is

d? q d%q
/d4x£11(0) dx L /2J_ nk (CJJ_> O:}E;ki(%-vqi) Oflk+( ql)
n,A 4,j=q,9 k+ k—
dQQL iA Gn A
5~ Oni-(a1) 077 (—q1) - (5.41)
n i,j=q,9

In this form derivatives of the position space coordinates z+ and z~ are ~ A\2. Here kt
and £k~ are O()\) soft momenta, that for the collinear operators appear as subleading label
momenta underneath the large momenta p,; and pi in n-collinear and f-collinear operators
respectively. Since they are subleading, they do not appear in the propagators or leading
power Feynman for collinear fields, but these labels on the collinear operators are important
for conserving momenta. In terms of transverse momentum space fields for example

I ona
Oq (1) /d PL Y Xop-k- (pL+ a2 @ 5 T~ (P, 25 a7) . (5.42)
=

Here the conserved large O(A\Y) label momenta p~ for the y,, fields are not shown for
simplicity.

To understand the form of the original Glauber Lagrangian in eq. (5.21) and the equiv-
alent Glauber action given in eq. (5.41) it is useful to look at mass-dimensions (counted
with @s) and power counting dimensions (counted with As) for the various components.
For eq. (5.21) the collinear operators (’)fLA ~ Q3)\?, (’)%B ~ @Q3)\?, the soft operators
oA o Q3\3, 0AB ~ Q%)% and 1/P? ~ Q@ 2\72. Accounting for the exp(—iz - P) the
largest momenta determine the scaling of the coordinates in d*x, so for the 3-rapidity oper-
ators we have d*x ~ Q~*\72, whereas for the 2-rapidity operators we have d*z ~ Q™A 73.
Therefore [ diz O (1/P2)OAB(1/P2)0IF ~ QON°, and [ d*z OiA(1/P2)0I* ~ QON,
as expected. Next consider the Glauber action in eq. (5.41) where the operators have trans-
verse momentum arguments. Using eqs. (5.35), (5.36), (5.38), we have 0i4(q.) ~ Q)°,
O%B(QL) ~ QN OgnA(qL) ~ @\, and O4B(q,,q)) ~ Q°\°. Again the largest momenta
determine the measure scaling, so [dz™] ~ Q72)\? for the 3-rapidity sector operators and
[dz*] ~ Q2\~! for the 2-rapidity sector operators. Therefore both the 2 and 3-rapidity
sector terms in eq. (5.41) scale as ~ Q°\?, as before.

5.2.3 Rapidity regulator and zero-bin subtractions

When there are soft and collinear modes that live at the same invariant mass scale in
SCET, we in general need an additional regulator in rapidity space to distinguish these
modes and handle divergences [59]. This can be achieved using the rapidity regulator of
ref. [58], which distinguishes modes using a rapidity factorization scale v. In this subsection
we highlight some differences related to the fact that the rapidity regulator must also be
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introduced to distinguish Glauber contributions. We also discuss zero-bin subtractions [59]
from the Glauber region for soft and collinear contributions.
To regulate rapidity divergences in graphs involving Wilson lines we include factors of

-n/2

9

-n

nP , (5.43)

1%

n-P

14

2P

14

-7
w w? , w?

for Wilson lines involving (n- As or n- A) soft gluons, n - Az n-collinear gluons, and 7 - A,
n-collinear gluons respectively [58]. At one-loop rapidity divergences will appear as 1/n
poles with a corresponding logarithmic dependence on the cutoff v. Since v is dimensionful,
it technically is v/p that is associated to the rapidity, but we will still follow the common
practice of referring to v as the rapidity scale. Here w is a book keeping coupling used to
calculate anomalous dimensions through

0
U%uﬂ(u) = —nuwi(v), 7171_% w(v) =1. (5.44)
The powers of n are fixed to ensure that the rapidity divergences cancel when summing over
sectors. That the correct choice has been made can be seen by regulating the corresponding
full theory diagrams and expanding around the soft and collinear limits. Counterterms will
have both 1/n and 1/e poles, and are identified by taking n — 0 prior to expanding for

€ — 0. The regulated expressions for the momentum space Wilson lines are

B —g [w|2P?|~"/? B —g [w|2P?|~"/2 _
Sn—Zexp{n.P[ ey n-Asl ¢, Sﬁ—ZeXp P ey n-As| p,
perms perms
(5.45)

2|5 - 2 _
—g [w?n-P|7"_ —g [w?n-P|"
anz:exp{ﬁ'P[ pym n-An]}, Wn:Zexp{n.P[ pymr n-Anl p.

perms perms

Here the regulator momentum operators P act only on the gluon field in the square brackets,
whereas the inverse momentum operators —g/P act on all fields to the right when the
exponentials are expanded. We separately regulate every soft or collinear gluon from the
Wilson lines in order to maintain consistency with our use of the rapidity regulator for
Glauber loops (rather than introducing the regulator only for the group momentum as in
ref. [58]). We have confirmed that our choice maintains exponentiation for matrix elements
that only involve Wilson lines, since the exponentiation can be derived by permutations
of momenta under which the regulator is symmetric. An additional complication in the
operators we consider is the presence of inverse factors of - P and n-P that appear outside
of the Wilson lines. Since our operators can be written in different equivalent forms, these
factors are required for consistency. Examples where this occurs include 097, 092 098,
and OgﬁB, see for example eq. (4.15). Here, the inverse power to that in eq. (5.43) is used,

so for example - P — 7 - Pﬁ’?ﬁn in the numerator of the n-collinear operator O?LB,

andn-P —n- P%‘@‘H’ﬂ in the numerator of the soft operator onB.
We also regulate Glauber loops with the rapidity regulator, by regulating 1/ qi factors
in the manner discussed in in section 5.2.1. The limit » — 0 is always considered first,

with the rapidity renormalization carried out at finite €, and then the limit € — 0 is taken.
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Graphs without rapidity divergences or sensitivity will give the same answer whether one
sets 7 = 0 before or after the loop integration. We introduce factors of the n-regulator for
each Glauber potential between the forward scattering components of the operators, so the
Glauber action with d = 4 becomes

d?q, d?
/ v L") [da™ QL ql ki (¢1,4)) (5.46)
7 4,j=q,9 k:f, k-
= =17
Oy (a1) w? » 0! (4 i)}

Bk +in-d|

v

d’q)
3 Off}_kr— (qr) w?

n
i A
Oi,k‘r_ (_ql) °

n 4,j=q,9

Here v is the rapidity renormalization scale and the operators in transverse momentum
space are given above in section 5.2.2. In the 3-rapidity sector operator, the factor |in - )
+1in -5|‘77 regulates the n-n Glauber potential, and for graphs where O(\?) momenta
do not flow into the soft sector, one can integrate by parts and it becomes ]22‘52]*77 =
|in - & — in - §|7". Here these derivatives only pick out @(A2) momenta. In the 2-rapidity
sector operator the regulator involves a combination of the n-collinear O(\?) momentum
and the O()\) soft momentum because it is regulating a soft-collinear Glauber potential.
The inclusion of the boost parameter 3,5 > 0 where S,s ~ A here ensures that these
momenta appear together in a homogeneous combination in the rapidity regulator. For
the pure Glauber potential in n-n scattering we have no soft gluons, so can set

0P 1 (q1,4)) = 8mas a4t 6% (g1 — 1) Oyr o0y o (5.47)

and eq. (5.46) gives a factor of [2i0,| """ — |2¢,|~"v" for each potential carrying momen-
tum ¢. This then yields the rapidity regulator factors used in the box and cross-box calcu-
lations in section 5.2.1. For n-s scattering the regulator for each potential is made homoge-
neous by the inclusion of the boost factor 5,s ~ A. As discussed in section 5.2.1, the result
for Glauber loops from O, iterations is independent of f3,s. In section 10.3 we encounter
two-loop examples where both the 1 regulator in the Glauber potentials and in the Wilson
lines are needed simultaneously and justifies the choice of the power of 7 in eq. (5.46).

As a more complicated example of how the rapidity regulators work, we can consider
the H-graph involving two Lipatov vertices, which is shown in figure 14 for two different
momentum routings. In figure 14a we have a soft loop momentum /# ~ X\ and a n-n
Glauber loop momentum k* ~ (A2, A2, \) for its (4, —, L) components. In figure 14b the
same diagram is shown but now using a n-s Glauber loop momentum k}' ~ (A%, A, \) and a
n-s Glauber loop momentum k4 ~ (A, A%, \). The routing of momentum in the two graphs
are related by the changes of variable

n-ky=n-k, n-ki=n-(k+7?), kii =k +4,, (5.48)
n-ka=n-{l-k), n-ke=-n-k, koy = —k, .
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Figure 14. Two different momentum routings for the two loop diagram stemming from the time

ordered product of two Opl. insertions with one soft gluon. The soft momentum ¢# = ki + kb

can only be routed in a way which is consistent with the power counting. In a) the loops are soft
and n-i Glauber with % ~ (A, A\, \) and k* ~ (A2, A2, \) respectively, while in b) the loops are s-n
Glauber and s-in Glauber with k}' ~ (A2, A, \) and k5 ~ (X, A2, \) respectively.

In order that these two momentum routings give the same results, it is important that the
rapidity regulators also are transformed into one another under this change of variable,
and of course also will regulate the singularities in the diagram. Eq. (5.46) with the in -0
and in - 0 factors satisfies both these criteria. In particular for the loop integrals in the two
routings we have

figure 14a /a*dk d€|2K7| 721207 | 7" Na (€, ki, q1) Go(k)Go(ki+£1)Go(ki+€1—q1)Go(ki—q1)
{kﬁ +pf — et l)? +i0] {fk— +py — BBl +i0} [¢2+i0]
1

P3

)

a4t kg |2k +ky —kf — k1 No(kp kb ko, u)
kf-l—p;— (ElLﬁ2L)2 +i0:| |:k2— +p; — (E2Lﬁ1L)2 +i0:| [k;k;—(E1L+E2L)2+iO]
2 1
X Go(k11)Go(ka1)Go(k1L—q1)Go(kar+q1), (5-49)

figure 145 : /[

where for this equation only, Go(ky) = (ig?)/ IZE Here N, and N, are functions that
are each obtained from the contraction of two Lipatov vertices from figure 6. For the two
routings the factors of |2k*| =27 and |k +k; | =7 are each obtained from the |in - O +in -9 "
regulator in eq. (5.46). This regulates the dk™dk™ integrations in the figure 14a routing,
and the dki dk; integrations in the figure 14b routing. The other factors, |2¢%|~" and
ki +ky — ki — k|7, are generated by the regulator in the soft Wilson lines in OZ'5,
and hence only depend on the soft gluons momentum in each case. They regulate eikonal
factors that appear inside N, and N,. Noting that N, — N, under the transformation in
eq. (5.48), it is easy to see that the two results in eq. (5.49) are exactly equivalent under
this transformation.

The SCET graphs also have zero-bin subtractions [59] which are necessary to avoid
double counting between contributions from the various infrared modes. These subtrac-
tions are determined by the SCET propagators appearing in loop diagrams. For SCET;
the overlapping modes are collinear, soft, and Glauber. At leading power collinear gluon
propagators have subtractions from the soft and Glauber regions, and soft gluon propa-
gators have subtractions from the Glauber region. At one-loop, if we consider a soft loop
diagram S with only soft gluon propagators, or a n-collinear loop diagram C),, with only
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collinear gluon propagators, then the structure of the subtractions is

§=5-5€), Cp=C, — ) — L&) 4 09 (5.50)

n n

Here the superscript indicates the momentum region that the subtraction comes from.
The (G) for the soft subtraction can be any one of the three Glauber momentum scalings
(+,—, L) ~ (A2, 22 X) or (A2, X\, \) or (A, M%) )\), while the (G) subtraction for the n-collinear
case only includes scalings of the form (+, —, 1) ~ (A%, A2, ) or (A2, A, \). The result for Cy
is analogously obtained by taking n — n in C,,. If we start with the naive soft loop graph

(@) is obtained from scaling

S with loop momentum k, then the Glauber subtraction S
the S integrand into the region kTk~ < Ef_ and keeping only terms that are the same
order in the A power counting as the original integrand. If we have a naive n-collinear
loop graph C, with loop momentum ¢, then there is a soft subtraction CT(LS) from the
region /# ~ X, and a Glauber subtraction C’,(LG) from the region ¢/~ < Zi, plus a term
C’T(LS)(G) that adds back the soft-Glauber overlap region so that it is not over subtracted.
This overlap term is constructed from the Glauber limit of the CT(LS) integrand. Even at
one-loop, subtractions other than those in eq. (5.50) are possible, since the subtractions
are induced by propagators rather than by the type of loop momentum. For instance,
Glauber loops which contain a soft gluon propagator can also have a Glauber subtraction,
and we will see examples of this in section 10.2. The zero-bin subtractions are formulated
iteratively to all loop orders [59] at the level of the SCET Lagrangian, and a two-loop
example with subtractions can be found in section 10.3. For certain cases at leading power
it is known how to formulate subtractions which appear as Wilson line matrix elements
together with matrix elements involving full QCD fields, which are equivalent to the zero-
bin subtractions, see refs. [95, 96]. It would be interesting to try to extend this to the

SCET subtractions that occur in the presence of Glauber loops, but we will not do so here.

Note that when we consider the scaling limits to construct the 0-bin subtractions we
do not change the form of the rapidity regulator (the original and subtraction integrals
must share the same regulators for the subtraction to properly remove any double counted
contributions). With the rapidity regulator we use here these subtractions often lead to
scaleless integrals that just convert whatever divergences occur from the IR or UV, but for
some diagrams we will consider they do not give scaleless integrals and play an important
role in avoiding double counting. Note that in general, scaleless integrals that are log-
divergent in the UV and IR are not treated as vanishing in the EFT. Without the Glauber
dependent subtractions the results in eq. (5.50) reduce to the standard soft subtraction on
collinear integrands in SCETy;.

For completeness we also discuss here the 0-bin subtractions for the collinear, soft and
Glauber loop graphs in SCET7 at one-loop. Once again the form of these subtractions are
determined by propagators. Here collinear gluon propagators can have soft, ultrasoft, and
Glauber subtractions, soft gluon propagators can have ultrasoft and Glauber subtractions,
and Glauber propagators can have ultrasoft subtractions. If we have loops C,, S, and G
where the gluons that appear are purely n-collinear, soft, or Glauber respectively, then the
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form of the subtractions are

Cp = Cp — CS) — Cl6) _ W) 4 oSG 4 @) 4 ¢EW) _ GO (551
S=3- 50 _ g0 4 g@W)
G=G-aV,

Subtractions for the analogous Cy are the same as those for C, with n < n. Due to
the presence of the lower invariant mass ultrasoft modes there are more subtraction terms
in SCET], and in particular the loops with Glauber exchange propagators also have an
ultrasoft subtraction. In the limit that we neglect soft loops in SCET], so that there
are only ultrasoft gluons (or the soft gluon can be absorbed into the ultrasoft), then the
subtractions in eq. (5.51) agree with those of ref. [40].

In general, the soft and collinear Wilson lines in the operators of the Glauber La-
grangian, eq. (5.21), or in expressions like eq. (5.45), should have their position space
directions (0, 00) or (—o0,0) specified. This corresponds with the appearance of +i0 fac-
tors in the momentum space Feynman rules, see appendix B.4. However, the dependence
on whether the line extends to oo will be canceled by the 0-bin subtractions. Soft lines
generate propagators such as (n - k £ i0) with n -k ~ A, while it is the Glauber region
which properly describes the region of smaller momenta n - k ~ A? which includes the pole
n - k = —i0. The situation is similar for collinear Wilson lines, which have both soft and
Glauber 0-bin subtractions. We will show explicitly the cancellation of Wilson line direction
dependence by 0-bins for soft and collinear loop graphs in one-loop and two-loop calcula-
tions for forward scattering in sections 7.1 and 7.3 and for hard scattering in sections 10.1
and 10.3. In particular, we explain in section 10.3 that the directions of the soft Wilson lines
in the leading power Glauber Lagrangian can be chosen to be either as (0, c0) or as (—oo, 0)
without changing our results. This occurs due to the presence of Glauber region 0-bin sub-
tractions. On the flip side, we will see that Glauber interactions in certain hard scattering
diagrams can be absorbed into the direction of soft and collinear Wilson lines in the hard
scattering operators. In general, the dependence on these directions may then still cancel
out in factorization theorems where infinite Wilson lines are combined into finite lines.

5.3 Power counting theorem and operator completeness

In this section we give the all orders power counting formulae for SCET; and SCETy; that
hold in the presence of loops carrying Glauber momenta, and arbitrary power suppressed
interactions. We then discuss the complete basis for Glauber exchange at leading power,
namely O(A?). The ingredients needed for this analysis are an SCET power counting
theorem valid to any order in A in the presence of Glauber effects, information about the
structure of infrared divergences in gauge theory, gauge symmetry, dimensional analysis,
and the momentum structure of forward scattering operators in the limit s > ¢.

In appendix A we derive a general power counting formula for an arbitrary diagram
with operators at any order in the power counting in both SCET; and SCETy;. As shown
there, the final formula can be applied to both of these theories and says that the graph
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will scale as A9 where
§=6—N"—N"— N™ — N™ 4 2, (5.52)
+ ) (k= 8V + (k—4) (Vi + VI + Vid) + (k=3) (Vi + V) + (k—2)V"™.
k

Note that the scaling includes power counting factors for the external lines in the graph (for
example, each collinear fermion or L collinear gauge boson gives a factor of \). There are
various ingredients in this formula. We count the operators whose fields plus derivatives
give a scaling of A\*, by letting VkQ be the number of such operators of type 2. We use
V,** to count operators that contain only ultrasoft fields, V| for operators with only n-
collinear and ultrasoft fields, V;* for only fi-collinear and ultrasoft fields, and Vks for only
soft and ultrasoft fields. The index ans counts operators with n-collinear and soft fields,
and possibly ultrasoft fields, but no n fields, Vkﬁs for those with both n and soft, and
possibly ultrasoft fields, but no n fields, and V;*" for n and 7 fields, and possibly soft and
ultrasoft fields. Thus operators containing all types of fields are counted by V*™. The
factor +2u in eq. (5.52) is relevant for graphs with only ultrasoft fields where one sets
u = 1, and otherwise one sets u = 0. Since the Vk,Q indices count the number of insertions
of gauge invariant operators, the power counting formula for § is explicitly gauge invariant.

The remaining ingredients in eq. (5.52) are topological in nature. The index N™ counts
the number of disconnected n-collinear subgraphs if field lines of all other types are erased,
N™ does likewise for 7i-collinear subgraphs. Finally N™ is the number of disconnected
subgraphs if just n-collinear fields are erased, and N™° is the number if just n-collinear
fields are erased. Note that at leading order in the power counting, that graphs with a
loop involving one of the Glauber type loop momenta must involve at least one of the
Glauber potential vertices. (This is no longer true at subleading power, for an example see
appendix A.) Further details of the derivation of eq. (5.52) can be found in appendix A,
including how this result reduces to the earlier results given in refs. [97, 98] in special
cases. In appendix A we also show how eq. (5.52) can be used to demonstrate that all time
ordered products scale as a power of A that is at least given by the sum of contributions
from its constituent operators. The correspondence of our method of power counting with
that of CSS [74, 99, 100] is also discussed in ref. [97].

Consider applying eq. (5.52) to the operators in eq. (5.21). Counting up the scaling
of the building block fields O%F ~ OLF ~ X2 and 0AP ~ X2, and counting 1/P? ~ \~2
we see that 07, ~ X2 and contributes to V" for each insertion. Due to the (k — 2)
prefactor in eq. (5.52) the operator O,if;sﬁ contributes to the leading power Lagrangian.
Noting that Og”B ~ \? we find Oﬁfs ~ )\3, and this operator contributes to V3"S which has
the prefactor (k — 3), so again this is a leading power contribution. Due to the local nature
of gauge theories like QCD, we can have at most a quadratic divergence as the difference
of the external momentum of two lines goes to zero. This implies that we have at most
a 1/t power-law singular structure in our Glauber potentials, and hence at most a 1 /Pi
between operators living in two different rapidity sectors. (An amplitude can have a 1/(¢t’)
where t and t' correspond to two different propagtors, but these are reproduced by a time
ordered product of two Glauber operators in the effective theory.) For a Glauber operator
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the scattering is forward, and we must therefore have two building blocks for each sector
which contributes to the lowest order Feynman rule in order to conserve the large forward
momenta and satisfy gauge invariance. For the n or n collinear sectors the lowest order
bilinears are therefore ~ A%2. The quark bilinear operators will be dimension 3. Gluon
bilinear operators start at dimension 2 but must include an extra derivative to become
dimension 3 in order to compensate the —2 dimension of a 1/t insertion in a Glauber
operator (and due to the antisymmetry in color). This derivative is O(A\") for a collinear
sector, but adds an additional power of A for a soft bilinear gluon operator. Therefore
both the soft quark and gluon octet operators Og”B start at ~ A3 in Glauber operators.
The lowest order soft operator that appears between two collinear sectors, OfB , must also
be either bilinear in the O(A) building blocks P/, Bgiﬁ and Bgfu in order to have an
even number of 1 Lorentz indices to contract in the operators, or linear in G# 42 ~ 2.
Therefore OAF must start at O(A?) and be purely gluonic, since a fermionic contribution
with soft quark fields 141 starts at O(A3). Mixed operators with 1, are also at least
(9()\5/ 2). Thus we always have V27 = 0, V<"§q = 0, and there are no Glauber operators
that are lower order in the power_counting than those in eq. (5.21). Obviously there can
be no Glauber operators which contribute to V;*¢, V;*, V", or Vks since these indices do
not contain fields from two of the n, n, or soft sectors.

Thus we are left to consider the possibility of additional operators that contribute to
the indices V)", V3"S , and V{LS , beyond those given above in section 5.1. We assume we
have a single power of 1/t for any particular ¢, and hence for example with a single 1/¢ that
the operator dimensions add to 6 to give a dimension 4 Lagrangian. Since we must use
the minimum number of A’s, but preserve large momentum conservation for the forward
scattering, preserve gauge invariance, and rotational invariance in the transverse plane, only
operators bilinear in the building blocks (or with a single G%”) are possible for each sector.
We will construct the complete basis of operators for 0;43 below in section 6.3. Preserving
fermion number the possible collinear bilinear operators are just xgxﬁ and B;? - PBE in
and their analogs in the 7 and soft sectors. Examining the SU(3) quantum numbers we see
that qq gives 1 © 8, and gg gives 15 © 84 ® 85 @ 104 © 104 © 275. When we combine the
operators in different sectors we must produce an overall color singlet, so it is possible to
form singlets with other color representations. However, from tree level matching only the
operators in eq. (5.21) (with octet quantum numbers for the collinear bilinears, etc.) are
generated by integrating out offshell Glauber exchanges and offshell hard lines. Thus, the
key question is whether any other operators governing Glauber exchange can be generated
by loop-level matching. The answer to this is no.

Essentially our Lagrangian in eq. (5.21) is obtained by simultaneously removing offshell
Glauber propagators that have pi ~ A? (representing them as a potential) as well as offshell
hard propagators with p? > A? which contribute to generating Wilson lines. The loop level
matching for forward scattering operators is done to integrate out physics at the scale s and
represent offshell non-local physics at the scale ¢ as a potential. But there are no hard-loop
diagrams with momenta of order s that have the required overall scaling as o< 1/¢. This can
be seem from the fact that a hard loop can be contracted to a point which would generate
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a higher dimensional operator suppressed by powers of s. Furthermore, in loop graphs the
offshell lines that can have Glauber scaling are instantaneous in time and the n-x —n -z
longitudinal coordinate, and hence are always sequestered in tree level subcomponents of
the graph. These components are tied together by propagators that have onshell scaling
for their momenta, which are represented by the onshell fields in the EFT, and hence
such contributions are represented by time ordered products of tree level induced Glauber
exchange operators in SCET. This is true at any loop order, so eq. (5.21) is the full Glauber
Lagrangian. Thus the form of the Lagrangian is determined at tree-level. In section 7 we
explicitly demonstrate this at one-loop for quark-quark scattering, showing that no other
operators are generated at one-loop and that the coefficients of the operators in eq. (5.21)
receives no one-loop corrections.

5.4 Forward scattering and observables

In the previous sections we setup the Lagrangian for Glauber exchange between collinear
particles traveling in different light-like directions, as well as those involving soft particles,
for situations where there are kinematic variables s > |t|. Here we briefly discuss a few
classes of observables where Glauber exchange between these degrees of freedom can play
a role.

Perhaps the simplest example are situations where we have a hierarchy |t|/s < 1 from
measuring the momentum in an external current, without making direct measurements
on the hadronic final state. The canonical example of this is DIS, where we measure the
electrons momentum in the final state, and consider Bjorken x < 1. Here x = Q2/(2p - q)
where p is the initial state proton momentum and ¢ is the virtual photon momentum. For
DIS the ratio (—t)/s is determined by z, and Q? = —¢*> = —t > AéCD is a perturbative
scale. In this situation the Glauber operators can be used to sum In z factors in the cross
section and/or parton distribution functions. Indeed the BFKL equation for the rapidity
renormalization of the collinear functions in section 8.3, is related to this resummation for
both DIS and Drell Yan. A detailed analysis of these small  resummations in SCET will
be given elsewhere.

Another application of the Glauber operators is to the study of factorization violation
in hard collision processes with initial state hadrons. Examples of how Glauber exchange
operators appear in these processes are discussed in section 11. Of particular concern
is the final state interactions between spectator partons (those not directly participating
in the hard scattering). It is known that final state rescattering effects will cancel out at
leading power for the inclusive Drell-Yan process [21]. However, observables that make mea-
surements of the final state hadronic radiation, such as transverse-thrust [101] and beam
thrust [102], can be more sensitive to Glauber interactions. Indeed, it has been proposed
that the sensitivity of such measurements to the multiple parton interactions (underlying
event) in Monte Carlo programs is related to factorization violation from the Glauber mo-
mentum regime [103]. Recently, the presence of factorization violating contributions from
the Glauber regime has been demonstrated in [104] for a beam thrust spin asymmetry
with scalar quarks. So far these investigations have not fully accounted for the distinc-
tion between perturbative Glauber exchange at the scale of the event shape measurements
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|t] > A(QQCD, that could in principle be treated with forward scattering factorization based
methods order-by-order in the strong coupling, and non-perturbative Glauber exchange
that couples together hadron-hadron matrix elements at the scale A%CD, which can only be
handled with di-hadron matrix elements. Factorization violating observables have also been
associated to those containing rapidity gaps between jets and super-leading logarithms [51,
52, 105]. Our Glauber exchange Lagrangian provides an efficient method for computing
various (potentially) factorization violating contributions, as demonstrated in sections 10
and 11, and can be utilized to address these observables and questions about factorization
more precisely. A related goal would be to build more sophisticated treatments of multi-
parton interactions (underlying event) based on calculations utilizing Glauber exchange.
A final category of observables are those typically associated with forward scattering,
including things like the total hadronic cross section, and diffractive processes. Since
these are dominated by physics from the forward scattering limit they can be described
in part with the Glauber exchange operators. Depending on the precise observable and
how inclusive or exclusive the measurements are, the description with SCET will change,
in much the same way that the same formalism describes factorization for exclusive and
inclusive hard scattering processes in a different manner (such as at the amplitude versus
cross section level). In later sections we will discuss the resummation of large rapidity
logarithms in the operators for forward scattering, both for amplitudes by Reggeization
in section 7 and for scattering cross sections via the BFKL equation in section 8. Note
that Reggeization occurs in SCET due to the rapidity factorization of soft and collinear
virtual diagrams which are not effected by the final state measurement, whereas the BFKL
equation includes also the real emission diagrams. In general this is expected to lead to
modified evolution equations which depend on the precise nature of the measurement.

6 Tree level matching calculations

In this section we present several tree level calculations which are important for deriving the
Glauber EFT presented in section 5 above. In section 6.1 we demonstrate how the W, and
W5 Wilson lines in the Glauber operators are generated through tree level matching from
the full theory, which involves both local and time-ordered product terms in the EFT. In
sections 6.2, 6.3, and 6.4 we construct a complete basis of allowed operators and carry out
one-gluon and two-gluon matching calculations to derive the mid-rapidity operator OZ¢
given in eq. (5.12). Complete one loop calculations for SCETy; and SCET] are carried out
later in section 7.

6.1 Wilson lines W and S from tree level matching

For standard hard scattering operators in SCET the collinear Wilson lines W,, appear in a
manner which ensures n-collinear gauge invariance in the hard-collinear factorization [28].
These Wilson lines are generated by integrating out hard offshell full QCD quark and
gluon propagators, and can be readily derived using the auxiliary Lagrangian formalism
presented in the appendices of refs. [29, 30].
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Figure 15. a) Full theory graphs for the tree level matching of quark-antiquark forward scattering
with one extra n-collinear gluon. b) EFT graphs for the tree level matching for the four quark
operator with one extra n-collinear gluon. Note that the first EFT graph is a time ordered product
of a Glauber operator and a collinear Lagrangian interaction.

The situation is different for the W Wilson lines appearing in the Glauber operators.
In this case we want to integrate out offshell propagators that are either Glauber or hard,
but the relevant matching calculation involves diagrams in the full theory with at least
one onshell propagator (meaning a propagator whose p? is such that it is not offshell from
the point of view of SCET). In fact, part of the sum of these graphs are nonlocal, whereas
another part localizes into a potential. On the EFT side of the calculation there will
be both a non-local term involving a T-product that involves an onshell propagator, and
the localized potential term involving the Wilson line. The sum of these two terms will
reproduce the full theory result.

As a first example, we consider the matching for the ¢-G scattering process with one
additional n-collinear gluon, q(pa2n) + ¢(p1n) — 9(P3n) + @(pan) + g(kn). The relevant full
theory diagrams for this matching calculation are shown in figure 15a, while the diagrams
in the EFT are shown in figure 15b. There are additional full theory diagram that are
not shown, where the k, gluon attaches, via a Lagrangian insertion, to the either of the

quarks on the top-line, but these on-shell contributions are exactly reproduced by gluon

aq

attachments to the n-collinear quarks in an O3

insertion in the EFT (also not shown).
The full theory graphs in figure 15a have a gluon with n-collinear scaling that either
attaches to a triple gluon vertex involving one Glauber propagator and one onshell (n-
collinear) propagator, or attaches to the n-collinear quark leading to a hard offshell quark
propagator plus an exchange gluon with n-collinear scaling. To carry out the matching
calculation, we first use the equations of motion relation in eq. (5.23) to eliminate n- A(ky,)
in terms of A, (k,) and - A(ky,) in the first full theory diagram in figure figure 15a. Then
if we consider the k, external gluon to have 1 -polarization for u, only the first full theory
diagram in figure 15a and the first SCET diagram in figure 15b are nonzero, and these L
contributions exactly match. In contrast the n - A polarization for these two diagrams do
not match. This agreement for the | polarizations is very analogous to the agreement we
saw earlier for the diagrams in figure 11, just with an extra quark line attached to one of
the gluons there, and use of the equations of motion on only one gluon.
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When the k, external gluon has n# polarization all the diagrams in figure 15 contribute.
For this case the analogy with simply adding a quark line to one of the gluons in figure 11
breaks down, since using the equations of motion on only one gluon line no longer suffices
to achieve agreement. In this case, the result for the sum of the full theory graphs in
figure 15a is

figure 15a = 2¢° fABC7# [un?TBun] [vﬁ?chﬁ] [q2 + 2n~kﬁ~k] . (6.1)

¢*(q—k)*n -k
The result for the first graph in SCET is

— 1
figure 1501 = 293.]“43075# |:ranziTBunj| [@nZLchn} W |:2kL : (QL - kL)i| . (62)

Using k2 =n-kn-k + kﬁ =0 and ¢ = g, the difference is
i

figure 15a — figure 15b1 = 2¢° fABCHH [ﬂnzTBun} [TjnVichn} W [qi — 2k, - qJ_}
1

2
= 9g° fABC 1 {unéTBun} [vﬁgf%ﬁ}
= figure 1562, (6.3)

which, as indicated, is precisely the contribution from the W Wilson lines in the second
graph in figure 15b. Thus we validate the presence of both the nonlocal T-product and
local Wilson line contributions in SCET.

The same matching calculation can also be carried out for the gluon-quark n-n scatter-

ing, to validate the appearance of additional 7 - A,, fields in the B, building blocks of the

99
nsn:*

Glauber operator O The necessary full theory diagrams are shown in figure 16a, while
the SCET diagrams are shown in figure 16b. As above we work in Feynman gauge for the
internal gluon propagators, and remove n - A,, polarizations using the equations of motion.
If all three external n-collinear gluons have 1 -polarization, then the first and second graphs
in figure 16a precisely matches with the first graph in figure 16b. To test the Wilson line
contribution we can take two gluons to have 1 -polarization and one to be a i+ A,,. In this
case there are contributions from all four full theory graphs, and both SCET diagrams.
Once again the sum of contributions in the full and effective theories exactly match up after
using the equations of motion to simplify terms. For gluon-gluon n-n scattering, one can
carry out a similar matching calculation to check the structure of W,, Wilson lines in the
Glauber forward scattering operator, and once again the full and effective theories agree.
Due to the symmetry under n <> n, the above analysis also immediately yields the
anticipated result for the 1-gluon part of the W5 Wilson lines in the Glauber operators.
Carrying out these low order matching calculations for the W,, and W; Wilson lines is
important for determining their directions (ie prescription), and general structure. By
power counting we know that only the O(\Y) fields 7 - A,, and n - A; fields can appear
in these Wilson lines, and that they must appear in a manner that makes the Glauber
operators n-collinear gauge invariant and n-collinear gauge invariant. This suffices to fix
the structure of these Wilson lines beyond the one-gluon level in the Glauber operators.
Furthermore, the same matching calculations can also be done for the Glauber op-
erators involving soft-collinear forward scattering, namely O, and O%js As discussed in
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Figure 16. a) Full theory graphs for the tree level matching of gluon-quark forward scattering
with one extra n-collinear gluon. b) EFT graphs for the tree level matching for the gluon-quark
scattering operator with an extra n-collinear gluon.
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Figure 17. One Soft Gluon Matching for the Mid-Rapidity Operator in SCET appearing in quark-
antiquark scattering. a) Full theory graphs. b) EFT Mid-Rapidity Operator graph with one soft
gluon, shown by two equivalent diagrams which exploit a localized or factorized notation.

section 5.1.2, the results here are very analogous to n-n forward scattering, because we still
have the same hierarchy of momenta in each component. For example, for O, the only
difference is that the overall size of the conserved n - ps soft momenta is smaller than the
N - pp, collinear momenta. For this reason the n-n collinear-collinear scattering calculations
discussed above carry over verbatim to the soft-collinear case, and we will not write out
the analysis in detail. We have carried out explicit matching calculations to test the soft
and collinear Wilson lines, confirming that they are correctly included in these operators.
For Of{;, examples of the necessary diagrams can be obtained by replacing Az gluons in
figures 15 and 16 by A, gluons. In this analysis it is the large momentum direction n* of
the remaining A, fields that determines the components of the soft gluons that show up
in the soft S,, Wilson lines.

6.2 Soft operator from tree level matching

In the O, and Oz operators there are two different rapidity sectors present, and the full
structure of the operators is determined by the analysis of sections 5.1 and 6.1, whereas
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Figure 18. One Soft Gluon Matching for the Mid-Rapidity Operator in SCET appearing in gluon-
quark scattering. a) Six full theory graphs. b) EFT graph from Mid-Rapidity Operator with one
soft gluon of momentum k.

for the operator O,sn there are three rapidity sectors, and we can have a non-trivial soft
operator in addition to the n-collinear and n-collinear components. While the structure of
the collinear part of these operators was derived through the analysis of the section 6.1,
the matching corrections considered so far have not probed the soft operator. To do that
we must consider soft gluon emission in the presence of n-n forward scattering, which we
will do in this section.

At the one soft gluon level, this emission is governed by the famous Lipatov vertex.
This vertex is the combined Feynman rule for the emission of a soft gluon in the presence
of the forward scattering of energetic quarks or gluons. For quark-antiquark scattering
the corresponding full theory diagrams are shown in figure 17a, and the contribution from
SCET is in figure 17b. At leading power the full theory diagrams give

figure 17a = i[ﬂn?TAun} [ﬁﬁgTBvﬁ] (6.4)
8ras . apcl u . B R T S
X —5=m5 19f Q4 —nqg5—nqgo— ————
qrqr o 2 2 g n-g

where the 3-gluon vertex graph gives the first four terms, and the soft gluon attachments
to the quark lines give the last two. To obtain this result we have used n -k = —n - ¢’ and
n-k = n-q. These momenta are O()\) whereas n-q ~ n- ¢ ~ 2. Note that we have
not used the gluon equations of motion to simplify the result obtained here. Comparing
eq. (6.4) with the Feynman rule from the O} operator of figure 17b (shown above in
figure 6), we see that the two precisely agree. Thus, the one-gluon Feynman rule from the
soft component of this Glauber operator, which is OfB in eq. (5.12), directly generates the

full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear
quark lines in figure 17 are replaced by collinear gluons. The corresponding graphs for
the matching calculation with the top line replaced by an n-collinear gluon are shown in
figure 18. Taking this n-collinear gluon to have L polarization, the full theory result is
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again the same as the SCET Feynman rule

figure 18a = i[ifA2A1A B . py ] [@nZLTBUn] (6.5)
8mag ABC Nl nt n“q n“(j’f
X J— —_— —_— =
gap ' L ey Ty T Ty
= figure 18b,

where the SCET graph is given by the Feynman rule for OJ?.. Here the graph with the

4-gluon vertex does not contribute at this order in the power expansion (it is suppressed

nsn:*

by O()\)) and hence can be neglected. Once again the same universal soft operator OZ'F is
responsible for the soft gluon Lipatov vertex in this scattering. A key ingredient in deriving
this is the universal nature of the eikonal coupling for soft gluons. The same universal result
also holds when a soft gluon is added to quark-gluon scattering with O?- and gluon-gluon

scattering with OJ7_. Essentially, all that changes between these calculations is the color

nsn-
generators for the collinear lines, which still obey the same algebra.

6.3 The basis of all possible soft components in the 0¥ _ Glauber operator

nsn

In section 5.1 we wrote down the final form of the soft piece which sits between the collinear
sectors of the Glauber operator, and in the last section we showed that it is consistent with
the matching when including an external gluon. In this and the next section we give the
complete derivation of the O(\?) mid-rapidity operator in eq. (5.12). We write the general
expansion of the soft piece of the mid-rapidity operator as

0P =8ra, Y Ci 0P, (6.6)

where OlAB is the full set of operators which are consistent with soft gauge invariance,
have mass dimension 2, and scale as O(A?). To build an operator in the adjoint matrix
space we make use of pairs of adjoint Wilson lines S! S or SI'S,,, the adjoint matrix gluon
building blocks gg‘i and Bng, the soft gluon field strength made invariant with Wilson
lines ST G4 Sy or STGEYS,,, plus P, . Note that soft fermions 1% ~ A3/2 do not contribute
to terms in the operator basis, since these quark fields must come in pairs, and hence soft
fermion terms are at least O(A3).

We can also reduce the list of possible operators in the basis using hermiticity, since

Eg(o) is hermitian. Examining (£ 10 ))T we have
3 / d2q¢d ql OZA(QJ_)OAB(QJ_7(]J_)OJB( ;)r (6.7)
nn g
=22, / d2‘“d L 03P ) [0 ar, )] 0 (-qu)
N 4]
_ Zz/dzmd 7\ 0 (g ){O (qqu)}TAB OIF(_q)).
ni i

where to obtain the last line we swapped n <> 7, ¢1 <> ¢, and A < B. If we write factors
of ¢; and ¢, using the operator P then swapping of these momenta is automatically

~ 51 —



accounted for in the hermitian conjugation, so we see that hermiticity requires that the
soft operators satisfy
of

Noen = Oi- (6.8)
For simplicity we left off the adjoint color labels AB for the operators, and will continue to
do so below with the understanding that they are matrices in this space. Next, note that
each term in the Lagrangian conserves l-momentum, so the total l-momentum is zero
and we can freely let a P operator act in either direction, ij = Pj_” . We use this freedom

to eliminate all Pj_s. Finally, whenever possible we will use the operator identities
[P (817 8a)] = ~gBEL (51 Sa) + (51 Sa)gBg, (6.9)
[P (S5Sn)] = —gBgt (S7.8n) + (S5 Sn)gBg .

to eliminate P, s in terms of gg 1s. Here the P acts only inside the square brackets and
these relations follow immediately from the definition of BY| and BY| in eq. (4.15).

In addition to the above constraints, we will also impose the restriction that at most
one S, Wilson line and one S; Wilson line appear in the soft operators O;. Note that the
non-local products (SI'S;) and (S1'S,) are dimensionless, have power counting \°, and
are soft gauge invariant (up to the global transformation at o). If we did not adopt the
restriction of having only one soft line of each type, then it would be possible to insert
multiple products of these two-line structures, and the set of potential operators would
be substantially larger. The correct picture is that the S,, and S; adjoint Wilson lines
are generated by integrating out offshell lines attaching to the color octet n-collinear and
n-collinear sector operators respectively, at the same time that we remove propagators
associated with Glauber exchange. Therefore the restriction we impose that only one of
each type of soft Wilson line appears is very natural. In standard SCET applications to
hard scattering, the presence of only one soft line for each collinear operator in a given
representation follows immediately from the use of the BPS field redefinition [29] in SCETY,
with subsequent SCET; to SCETy; matching by lowering the p? scale for the collinear
fields to that of the soft fields. This method becomes more complicated in the current
case, because we are simultaneously removing offshell and Glauber propagators, and when
doing the matching we must consider time order product graphs on the SCET side of the
calculation rather than just the localized operator whose Wilson lines we want to determine.
Based on the simple structure of the collinear operators, we do not expect more than one
S, or Sy to appear in the soft operators at any order in the as expansion.

We decompose the basis into operators with zero, one, or two Eg | fields, or one G£”
field, and consider these classes in turn. Without any Bg, fields the minimal basis satisfying
the constraints discussed above is

O1 =P|SESaPLy, Op =PI S;SuPLy- (6.10)

Both of these operators satisfy the hermiticity condition in eq. (6.8) individually. Note
that we do not include the operator P? because it does not contain any soft Wilson lines.®

8Tt turns out that if we did add this P? operator to our basis, that it would actually be ruled out by
the full matching calculation discussed in the next section.
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Also note that we have not included operators with P? acting on soft Wilson lines since
they can be eliminated using the identity

PL(SESa) + (ShSa)PT = [P1(SLSn)] + 2P (S) Sa)P;r (6.11)

plus using eq. (6.9) to eliminate [PJQ_(SZ S,—L)] in terms of operators with at least one By .
In addition, we do not need to include [P (S!Sz)]P) since [PV (SLSn)]P) + h.c. =
P2 (SLSH) + (STSq)P2 — 2Ph (ST Sﬁ)Pj. Direct analogs of these relations are also used
to eliminate operators when the Wilson lines are in the other order, (S1'S,).

Accounting for the fact that the fields gg | and gg | are Hermitian, the minimal basis
with just a single l§5 1 includes four operators,

O3 =P (9851 )(SySa) +(SySa) (9851 )P, 0a=P-(gB%,)(S; Sn)+(S5 8a) (9851 )P,
05 =P, (Sn Sa)(9Bg )+ (9B ) (ST S P Os=P,(SkSa) (9B ) +(9B5 ) (ST Sn) Py
(6.12)
These operators all satisfy the hermiticity requirement in eq. (6.8) because they each have

two terms. To see that they satisfy the restriction of having only one soft Wilson line in
each direction we note that

(STSn) (9B ) = (STSn) [STiD" Sa] = [STiD" Sa], (6.13)
(9B, )(STS) = [ST (i) D¥, S.] (ST Sn) = [ zﬁ?f;s ],

(STSn)(gBE) = (SES) [SEiDY, S,] = [SEiD! 8],

(B2, )(STS,) = [ST(—i) DF 8a](STS,) = [S2 <z>?3 Sa).-

Thus to satisfy the rule of only having a single S,, and Sy in our operators, we must group
Bé, next to an~_Sn and BZ, next to an Sp. For example, this rules out the operator
Pi-(gB%, )+ (gB%, )P (it has two Sys in the first term, and two Sps in the second term).
It also eliminates Pj(Sg Si) (9B ) + (9B )(SE Sﬁ)Pj as an operator in the basis (it has
four irreducible soft Wilson lines). An additional thing to note about eq. (6.12) is that P,
factors are always on the outside. We do not include additional operators with Pﬁ in the
middle since they can always be eliminated in terms of operators in eq. (6.12), plus terms
with two Bgs. For example,

(Sgsﬁ)Pj (g@?’i) = Pj(Sgsﬁ)(gEZ‘j) - [Pj(SgSﬁ)] (9521‘) ) (6.14)

where the last term can be reduced with eq. (6.9). Also combinations with [P/ (S]S)]
are directly removed with eq. (6.9), and combinations with [Pj(gggli)] are removed in
terms of the other operators by integration by parts.

Next we turn to the operator basis with two gg 1 8. The minimal basis here is given by
just two operators

O = (9BY SISy (QBSL,) Og = (95?1)85871(95&“) : (6.15)

These operators each satisfy eq. (6.8) alone. Due to the grouping of soft Wilson lines
next to appropriate Bg s in eq. (6.15), the operators again have only one soft Wilson
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line in each direction once we use eq. (6.13). This restriction eliminates operators such as
gB%, - gB%, (4 lines total) and gB% | - gB% + gB%, - gBL, (two S, lines in the first term,
two Sy, lrililes ir; the sec:nd term).ﬁit als:;) elimin:tes operators like (9B} )(S% Sn) (9B, ,,)
and (9B ) (S Sn)(gBSJ_M) + (984 ) (S5 Sn)(ngJ_u)-

Finally we have the operator with a single soft gluon field strength, of which there are

two
Og = STn,n, (igGH)Sn O10 = SEn,ui, (igG*)S, (6.16)

In principle this operator could be eliminated in terms of B¢, Bgfj_, P, e, and ¢ fields
using the soft gluon equations of motion. However doing so would introduce non-local
factors of 1/in - 95 and 1/in - 95 which we have not allowed in our construction. Therefore
we must keep these two field strength operators.

All together the 10 operators in egs. (6.10), (6.12), (6.15), (6.16) give a complete basis
for the soft operator OfB. Note that the odd and even operators in the basis are related
by Oj+1 = Oi’n(—)fﬂ and that this differs from the hermiticity condition in eq. (6.8). In the
next section we consider the constraints obtained by matching with up to two soft external
gluons in order to fix the corresponding coefficients C; 10 in eq. (6.6).

6.4 All orders soft operator by matching with up to two soft gluons

Here we consider the basis of operators Oq, . 19 determined above in egs. (6.10), (6.12),
(6.15), (6.16),

O, =P'SIS P, Oy =PHSES, PL,, (6.17)
O3 = PL(gB%, )(SESn)+(SESa)(gBE, ) Pr, Os=PL-(gB%, )(SES,)+(SES.)(9B%,) Py,
Os = P (81 8a)(9B5) + (9B (ST Sa) Py O = Py (S1Su) (9B ) +(9B5) (S5 80) P
O7 = (ggg‘i)SfSﬁ(gggl,), Os = (9521)55371(95&“),

Oy = 8I'n,7, (igG"™ ) S, O10 = SEn,u, (igGM) S,

and determine their corresponding Wilson coefficients through matching calculations in-
volving 0, 1, or 2 soft gluons. For this analysis it suffices to consider quarks for the
n-collinear and n-collinear external lines. If one or both of the forward collinear external
lines are taken to be gluons then the same result will obtained. This equality was discussed
for one soft gluon in section 6.2, and is also true for two soft gluons, essentially resulting
from the presence of the eikonal approximation that occurs for soft gluons attached to
collinear lines, and the universality of the soft attachments to the exchanged gluon which
has Glauber momentum scaling.

With zero soft gluons the resulting amplitude was given in eq. (5.8), and requires that
the soft operators ), C;0; reduce to 7335‘43 when no gluons are present. Only O and O-
have this property, so the constraint from the zero soft gluon emission amplitude is

Ci+Cy=1. (6.18)

For the matching with one external soft gluon of incoming momentum k we consider
the five full theory diagrams in figure figure 17a, and consider all possible projections of the
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gluon’s polarization with respect to {n,n, L}, without exploiting the equations of motion,
which gives eq. (6.4). While we have already verified in section 6.2 that the combination of
operators given in eq. (5.12) reproduces this 1 soft gluon result, we have not yet proven that
it is the unique combination which can do so. Using momentum conservation k = ¢—¢’, the
one soft gluon matching generates the structures {q’f7 ntqy-q) /n-q ,n*q In-q' \nPqE/n-
¢',n*"7n - g} which give the following five constraints on the operators O; 10 in our basis,

C3+Cy+Cs5+Cg=—1, (6.19)
Ci1—Cy+0C3—-Cy—C5+C5=0,
—(C3—Cg=+1,
Ci+C5=0,
1
09—1-010:—57

respectively. Eq. (6.19) reproduces the full theory amplitude for one soft gluon without
using the equation of motion, a fact that will come in handy when we consider the two
soft gluon matching below. Other momentum structures with ¢/ or 7# are related to these
by the hermiticity condition in eq. (6.8). Simplifying eq. (6.19) and combining it with
eq. (6.18) gives

1
Ch =1, Cy=0, C3+Cs=-1, Ci+C5=0, 09+C10:—§. (6.20)

Since C; = 1 and Cy = 0, we see that between these two operators, the one with (SS;)
contributes, whereas the one with (S1'S,,) does not. We will see this pattern continue below
for the operators with l?s 18.

To generate the remaining constraints we carry out the matching with two external
soft gluons of incoming momentum kq and ky. Matching with two soft gluons goes beyond
the level of the Lipatov vertex, and indeed unlike the Lipatov vertex, the soft operator in
SCET has Feynman rules with one or two soft | gluons, and any number of soft n - A
and n - Ag gluons. It is in fact necessary to have at least two soft gluons in order for
the operators O7 and Og with two gs | fields to contribute. Since operators with three
gs 1 s cannot appear in the basis for OfB (due to the dimensionality and power counting
constraints), the matching with 3 or more soft gluons is not necessary to determine the
coefficients of the operators in the basis. Feynman rules for three or more soft gluons are
determined by symmetry once those up to two soft gluons are fixed.

For n-n quark-antiquark forward scattering with two soft gluons, there are 28 diagrams
in the full theory, shown in figure 19a. Since we were able to match with one soft gluon
without recourse to the equations of motion, we know that we will automatically reproduce
all the graphs in the first row in figure 19a via the first graph shown in figure 19b, which
is the time ordered product of the one soft gluon OfB operator and a triple gluon vertex.
The remaining 23 full theory diagrams, from rows other than the first one in figure 19a, all
contribute to the matching in a non-trivial fashion. On the SCET side there are contribu-
tions from the second and third time ordered product graphs in figure 19b, which must be
included along with the direct O contribution shown by the fourth graph in figure 19b,
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in order to reproduce the full theory. One would expect that the SCET time ordered
product graphs will reproduce more non-local terms in the full theory, in particular those
involving full soft propagator denominators 1/k2, as opposed to the expected non-locality
of the Glauber potential, 1/ kﬁ_ In fact, after subtracting these SCET T-product graphs
from the 23 full theory diagrams, the result remains non-local. However after using the
equations of motion in the form k2 = 0, k2 = 0, and

ﬁ-kln-e(kl)—I—n-klﬁ-e(kl) - T_L'/fgn'ﬁ(/fg)—l-n'k‘g’ﬁ'e(kz)
> kot €1 (ko) = 5 :

(6.21)
and momentum conservation, ki + ko = ¢ — ¢/, the results all localize into the form of the

ki€ (k) =

Glauber potentials, and can be reproduced by the terms in our basis for 0;43 . Notice that
using eq. (6.21) has the effect of moving some contributions from L-1 to the {n-L, L-n,
n-1, 1-n, n-n, n-n, n-n, n-n} final state polarizations, and some from n-1, l-n, n-1,
and L-n into {n-n, n-n, n-n, n-n}. The constraints on the operator coefficients follow
from matching polarizations, independent kinematic factors, and color structures, of which
there are two fO1AF fC2BE and fCO24F fC1BE pecessitated by Bose symmetry (after using
the Jacobi identity).

The matching of the L-1 final states is only sensitive to O79 and Og 19 and receives
contributions from the first diagram in the second row and the first two diagrams in the
third row of figure 19a. The last three SCET graphs all contribute. For this polarization
choice the T-product graphs with a propagating soft gluon reproduce the graphs with the
3-gluon vertices in the full theory (after using the equations of motion), and the matching
result comes from the four gluon vertex graph, giving

Cr+Cs = —1. (6.22)

The n-L 2-gluon state receives contributions from four of the full theory graphs, as

well as from equation of motion terms from |-1. This gives four constraints, from the

W /
Q{qjlffc’lAEngBE’ Qf2fCIAEfCQBE, qﬁQfCQAEf01BE’

coefficients of the four structures o

qlfz fcz,alEfclBE}7
C3+C5—-C7 =0, (6.23)
Cs+Cs5+Cr=-2,
—Cy—Cg—Cs=0,
—Cy—Ceg+Cs=0.
These same constraints also cause the n-1 polarization choice to agree between the full

theory and SCET, and by symmetry the 1-n and L-n polarizations as well. Simplifying
these results we conclude that

C3+Cs=-1, Cys+Ce =0, Cr=-1, Cs =0, (6.24)
and if we combine these results with those from eq. (6.20) we get
Ci =1, Cy=0, C3+Cs=—-1, Cy=—-Cs =—Cs, (6.25)
Cr=-1,  Gi=-0, Cy+Ci=—y.
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Figure 19. Two Soft Gluon Matching for the Mid-Rapidity Operator. a) Full theory graphs with
scaling for external particles labeled. b) SCET graphs involving the mid-rapidity Operator and
two soft gluons. The first three graphs are T-products while the last is the direct Mid-Rapidity
Operator two gluon term.

Since not all coefficients are fixed we must proceed to compare additional polarization
projections.

The constraints for the n-n polarization choice are little more tricky because there are
11 full theory diagrams that contribute, and we get contributions from using the equations
of motion in the results for 1-1, n-1, and L-n. Also, there are many more kinematic
variables involved and thus many more constraints, and one must pick a minimal basis
of momentum structures after using the momentum conservation and the equations of
motion. We find 14 constraints that need to be satisfied, but 10 of them provide only
redundant information. For our choice of independent structures the four that provide
new information come from the structures ki - ko  fOVAE fO2BE | ko | fO2AE fC1BE.

qf fOLAE $C2BE and qf fORAE fC1BE  oiving respectively
1
Co=—5 (6.26)

C(10:07
1
03+§C7—C9:—1,

1
—Cﬁ-i-iCs-i-Clo:O.
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Combining these results with eq. (6.25) yields a unique solution for all the coefficients,
giving our final answer

Co=Cy=0C5=C=Csg=C1p=0, (6.27)
Ci=-C3=—-C;=+1, Cog=—-.

Thus we see that all operators in the basis involving (SI'S,,) have zero coefficients, while
all operators with (S%'S;;) except Os have nonzero coefficients. As a consistency check, we
have verified that the full theory results for the remaining polarizations {n-n, n-n, n-n}

are also correctly reproduced.
Putting the results in eq. (6.27) back into eq. (6.6) the final result is

OBC = sms{Pﬁsg SiPiy— PrgBi SIS — ST SagBY P — 9B SESngBs.,

n,n ~ B¢
“2 vsk z’gGg‘”Sn} . (6.28)

This is precisely the result for O2'F that we quoted earlier in eq. (5.12).

7 One loop matching calculations

In section 7.1 we do a complete one-loop forward scattering matching calculation between
the full theory and SCETy; theory with Glauber operators. The structure of virtual rapidity
divergences, and their relation to gluon Reggeization is derived in section 7.2. The one-loop
matching calculation is also carried out for SCET], and is presented in section 7.3.

7.1 One loop matching in SCET;

In this section we carry out the one-loop matching for forward scattering, comparing graphs
in the full theory and in SCET. The goals of this analysis are to check the completeness
of our EFT description by checking that all infrared (IR) divergences in the full theory
are correctly reproduced by SCET, to understand the structure of ultraviolet and rapidity
divergences that appear in the SCET diagrams, and to characterize the type of corrections
that can be generated at the hard scale by matching.

To be definite, we will consider quark-antiquark forward scattering. (This is directly
related to quark-quark forward scattering since the extra exchange diagrams for the quark-
quark case go as 1/u rather than 1/¢, and hence are power suppressed.) The external mo-
mentum routing we use is the same as shown labeled on figure 1, which we repeat for conve-
nience on the first graph of figure 20. The large forward momenta are conserved, n-ps = 7i-p3
and n-p; = n-pg, and the large Mandelstam invariant s = n-p1n-ps = n-psn-p1 to leading
power. The exchanged momentum is given by the much smaller Mandelstam invariant
t=¢2 = —q? where ¢ = p3 — pa = p1 — p4, and we take p{ = —py =p3 = —pi = q1 /2.

To regulate IR divergences in the full theory in a manner that can also be implemented
in SCETy;, we include a small gluon mass m. For SCETy; the mass m is included for both
soft and collinear gluons in loops, as well as for the Glauber potential from 1/ Pi terms
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Figure 20. Full theory graphs for the matching calculation of quark-antiquark forward scattering
at one-loop. The results for the graphs are expanded with their external momenta as labeled.
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via 1/k2 — 1/(k2 +m?). Since we take m — 0 whenever possible, this does not cause any
problems with gauge invariance in this one-loop calculation (for example we set m = 0 from
the start for the vacuum polarization graphs). The full theory is UV finite after coupling
renormalization, and we make use of dimensional regularization with d = 4 — 2¢ to regulate
divergences in individual diagrams. For SCET; dimensional regularization with d = 4 — 2¢
will be used with factorization scale p in MS to regulate invariant mass divergences.

We also use a rapidity regulator [58] to regulate additional divergences that are as-
sociated with distinguishing soft and collinear modes [59]. These divergence arise as a
consequence of the fact that the soft and collinear fields have the same virtuality and to
distinguish them we must choose a rapidity factorization scale v. This regulator is imple-
mented in the manner discussed in section 5.2.3, and shows up in both Glauber, soft, and
collinear loops. The limit n — 0 is always considered first, with the rapidity renormaliza-
tion carried out at finite €, and then the limit ¢ — 0 is taken. Graphs without rapidity
divergences or sensitivity will give the same answer whether one sets 1 = 0 before or after
the loop integration. The graphs in SCET have subtractions which ensure there is no dou-
ble counting, and for the calculations here this corresponds to using eq. (5.50). At one-loop
we will see that graphs with rapidity divergences only have scaleless 0-bin subtractions.
However, there are graphs without rapidity divergences for which the 0-bin subtractions
are not scaleless integrals and are crucial for avoiding double counting. In the presence of
Glauber gluons, the appropriate 0-bin subtractions for soft and collinear one-loop graphs
are given in eq. (5.50). In the SCET]; calculations we are considering in this section, there
are no 0-bin subtractions for the Glauber loop graphs.

7.1.1 Full theory graphs

Consider first the full QCD graphs shown in figure 20 which we number from a) to j).
These graphs are computed exactly, and then the results are expanded in the EFT limit
with |¢| < s. There are two additional box-type graphs obtained by rotating figure 20a,b
by 90°, but neither of these graphs contributes at leading power in this limit. The proper
cut structure is obtained with s = s + i0 and ¢t = t 4 {0, where we note that for our
kinematics s > 0 and ¢ < 0. The 0 will be implied in the rest of the paper. The group
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theory and spinor factors come in one of four combinations which we denote

S{m = — I:UnTATBZiUn] [UﬁTATBZUﬁ] y ng = CF [unTAﬁun] I:UﬁTAZUﬁ] y

S = Cy [unTAZiun} [ T/Lvn] : S = Trny [unTAZiun] {vnTAﬁvn] . (7.0

Since the techniques for carrying out one-loop integrals are standard, we will only quote
the result for the QCD graphs at the integrand level, and then the final expanded result
for each graph. For the full theory box graph we have

B [w(ps) TAT M (f + p )" ulp2)] [0(pa) TAT B, (K — p,) v (p1)]
figure 20a = —¢ /d*’k T (e ek p P T ) = m2}4

_ 47,043 nn ;t 2 ;t _12
=— S [21 (t)ln(m2)+ln (m2> 3]+..., (7.2)

where the ellipses indicate terms that are higher order in ¢/s. Similarly for the cross-box

we have

B [a(p3)TAT A" (p, — E)y"u(p2)] [0(pa) TP T4y, (K = p,)vov(p1)]
figure 200 = —g / Tk = 2]k = 22k —pa 2o 7 =]

_420&5 nn - Qnn ;t 2 ;t _7'('72
i (g ) o () (22) ot (22) - 2]+ e

For the two Y-graphs with a single three-gluon vertex the graphs give equal contributions

and we have

9" Ca o [7ay [802) Ty iy u(p2)] [0(p) T4y 0(p1)] Tuwn (@, —k = pa,k + p2)
fi 20¢ + 20d = d%k
gures 20c + e / E2[(k 4+ p2)? — m2][(k + p3)? — m?]

2
L Sém[6+61n('u)—|—81n(m)+4:|+ . (7.4)

Here we have included the factor that implements the MS scheme,
= (4m) e (7.5)

as well as a p*. The triple gluon vertex momentum factor is T, (k1, k2, k3) = gu (k1 —
k2)x+gux(k2—k3),+9xu(ks—k1),. Since there are four external fermions, the wavefunction
renormalization graph shown in figure 20e contributes through 2(Zy;, — 1) multiplying the
tree level t-channel exchange diagram, and we will refer to this contribution as the result
for figure 20e,

(= gCF)W“(k P
k2 —m?|(k + p)*

2 2
—’O‘Ssg”[—4_41n<“ )+2} (7.6)
€ m

The two vertex renormalization graphs give the same contribution, and we find

9* (2Cr—Ca) o ac (74, [@(p3) T4y (k+p,) v (k+p,) 1o w(p2)] [0(pa) T4y v(p1)]
¢ : (62 — m2](k + p2)2(k + ps)?

2 i i 4 2 2 2
- “: <$2 - 753 ) {E +41n (%) — 41n? (%) ~161n <"_it> - 16] . (7.7)

ig? _ d
figure 20e = qu [ﬂ(ps)TA’y”U(pz) @(p4)TAvuv(p1)}2z@ P dk

figures 20f+20g =
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Figure 21. SCETy; graphs for the matching calculation of quark-antiquark forward scattering
at one-loop. The first two graphs involve the Glauber potential. The next three graphs involve
soft gluon or soft quark loops. The second and third rows involve collinear loops with either the
quark-gluon Glauber scattering operators or the quark-quark Glauber scattering operator, plus
wavefunction renormalization.

Finally for the full theory vacuum polarization graphs we have the standard Feynman
gauge results (here we can set m? = 0 from the start),

o2 . [10 10 2\ 62] a2 [ 8 8 2\ 40
ﬁgures20h—|—20i+20j:lczs ni [3€+31n (‘_Lt>+9]+“;‘s Y [—36—3111 (’_‘t)—g] (7.8)

The sum of UV divergences from egs. (7.4)—(7.8) only involves S§™ and S, and is canceled
by the MS coupling counterterm Z, — 1 = —(«a;/87)(11C4/3 — 4Tpny/3), which adds a

contribution )

S nn % nn é
(s 2ism ) o

Adding up all the full theory one-loop graphs plus the coupling counterterm graph we find

1e]
t

Z4 counterterm graph =

Full Theory = figures 20 + Z, c.t.

i al. —t ia? - m? m?
i . - s —t 22 u? 170 272
ESY | —4In | — | In [ — —In|— T 5
RO IR SICIEE S 3
io? | 8 2 40
ESPM | ——In | — ) — —]. 7.10
e gn (%) -5 1

7.1.2 SCETy loop graphs and matching

Next consider the SCET forward scattering graphs shown in figure 21. The first two graphs
involve loops with Glauber loop momenta, the next three with soft loop momenta, and the
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Figure 22. a) Additional collinear graphs with the fermion two-gluon vertex from ﬁﬁ% which
vanish. b) Additional tadpole collinear loops graphs for forward scattering. These graphs do not
contribute to the matching calculation since they vanish due to their soft zero-bin subtractions.

remaining ten with n- or n-collinear loop momenta. We number these graphs from a) to
0). Both notations for the Glauber operators are used (with and without the dashed red
lines, see eq. (5.13)), depending on what is most convenient. Note that we do not draw
wavefunction or vertex renormalization graphs involving a soft gluon attached to a collinear
quark, since these graphs vanish in Feynman gauge where they are proportional to n? = 0.
The two graphs with an iteration of the Glauber operator, figure 21a,b, were discussed
above in section 5.2.1. These graphs require regulation by the rapidity regulator to yield
well defined answers, but their results are independent of n as n — 0. In particular
figure 21b vanishes (with or without the mass IR regulator), and
R
Glauber Loops = o
n . LN

) a dd—2L (—’iﬂ)
(—4g™) ST Igp (—4g") S An /[kf + m?][(kL+q1)? +m?]

;92
= % Spn [sm In (;)] (7.11)
Thus we already see that the iterated Glauber exchange reproduces the full SI'* piece of
eq. (7.10).

Next we consider the SCET graphs contributing to the CrT4 @ T4 color structure,
ie. that have terms involving S§™. This occurs only in the collinear loop graphs in fig-
ures 21i,j,n,0. The loops in these graphs involve only Lagrangian insertions and a single
collinear sector, therefore it is easy to check that they contribute the same result as in
full QCD, which is the sum of egs. (7.6) and (7.7) (this follows immediately from eq. (4.6)
above). Therefore,
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iO[2 = 2 ,U,2 2 m2 m2
S nn 1 X .1
+ 85 [—6—211] <t>+2ln <t>+8n<t>+8] (7.12)

Looking at only the S§™ term, we see that the SCETy graphs reproduce the full SJ” piece
of eq. (7.10). The situation is similar for the nTrT4 @ T4 term, ie. SP™. The only SCET
graph that is proportional to ny is the soft loop graph in figure 21d which gives the same
results as the quark vacuum polarization in the full theory,

PTARTT a2 T8 8. [(u2) 40
N _iasem| 8 8, _ 2 7.13
- Q . ! [ 3¢ 3 n<—t 9 (7.13)

e -

So the full theory 8™ term in eq. (7.10) is also exactly reproduced.

This leaves the final color structure C4TA@ T4, ie. S¥™. Here things are more compli-
cated, many graphs contribute, and there is no one-to-one correspondence between graphs
in the full theory and effective theories. For our SCETy; calculation we have contributions
from figures 21i,n given above in eq. (7.12), as well as from figures 21c,e,f,g,h,k,1,m which
we will consider in turn. We will encounter rapidity divergences in these diagrams. There
are also additional collinear graphs given in figures 22 which we will discuss, but which do
not in the end contribute (those in figure 22a because the integral vanishes, while those in
figure 22b vanish only after accounting for their soft 0-bin subtraction).

First consider the contribution from the T-product of two Glauber operators, O%% with
0L

5o, which is shown in figure 21c. The Feynman rules for these soft-collinear scattering

operators are given in figure 9. Due to the presence of 1/n -k and 1/ - k propagators this
soft loop graph will have rapidity divergences, and we must include the rapidity regulator.
Note that if we collapse our dashed Glauber propagators to blobs that this graph can also
be drawn as

Freboe (7.14)

and for this reason, and to remind the reader that this graph contains more than just
vacuum polarization, we will refer to it as a “soft eye” graph. For this “soft eye” diagram

we find

h—-»——?-—-»—n-

, _ 49" onnc 2 dk |2k:| " V" AwlkL - (kL +qu))? _
%” = S Gt = oknok AT Ameknk

LU S

1
+2(kL +qu)* + 21&}5

il nn 8 5 4 4. (P s W 2 (WP 7
11 11, p? er
2l - =— = =In=— — — | 3. 1
+ ( 3¢ 3 —t 9)} (7.15)

Here inside the integral the denominators in square brackets have a +:0, the factor of
(d—2) = gﬁ”giw and the rapidity divergence comes only from the first term in curly
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brackets. The factor of 1/2 in the first line is a symmetry factor. The function multiplying
the 1/n rapidity divergence for the result in eq. (7.15) is

12

€
gle, 2 /t) = e® <t) cos(me)T'(—e)I'(1 + 2¢) . (7.16)
We have included the bookkeeping parameter w in the first line of eq. (7.15). In this
section, where we are concerned with the matching, we will keep these factors only in
the integrand, then drop them when quoting results. For the result in eq. (7.15), it is
interesting to note that the full 11C4/3e factor needed for the 1-loop S-function for the
strong coupling has been generated from a graph only involving gluons, without a ghost
contribution. This arises due to the form of the soft gauge invariance of the gluon operator
in the EFT. Only the rapidity divergent integral in eq. (7.15) is non-standard, and we carry
it out in appendix B.

The choice of 0 factors in the (n-k=+i0) and (n-k=+i0) denominators of eq. (7.15) does
not change the result for this integral, due to the Glauber 0-bin subtraction that must be
carried out for this soft graph. The easiest way to see this is to carry out the k° integration
by contours. If the eikonal propagators are (7 -k +i0)(n - k +140) or (n -k —i0)(n - k —i0)
then we can close the k° contour to only pick the poles from the propagators [k2 — m? +
i0][(k + q)? — m? 4 40], and doing the integral gives the result quoted in eq. (7.15). In this
case the naive soft integral is the full result, S = S, and the Glauber 0-bin subtraction is
zero, because these propagators become [k2 —m? +i0][(k, 4+ ¢ )? —m?+i0] in the Glauber
limit, and the k° poles in the eikonal propagators are on the same side. The vanishing of
this Glauber 0-bin subtraction occurs for the same reason as the vanishing of the Glauber
cross-box. On the other hand if the eikonal propagators are taken to have opposite sign
i0s, (n-k+1i0)(n-k—10) or (2-k—1i0)(n-k-+1i0), then when we calculate the naive soft loop
S by closing the k9 contour, relative to the above we have to include an additional additive
contribution from an eikonal pole. When we pick this pole, we either set n-k =0orn-k =0
in the other propagators, so the relativistic propagators are exactly reduced to their form
in the Glauber limit. Therefore, in this case this extra contribution in S is exactly canceled

by the fact that the graph now has a nonzero Glauber 0-bin subtraction, S(&),
494 - dck ‘2]€Z‘—77 v 4[/€L~(kL+qL)}2
(@) _ 2 onn e, 2€
S (figure 21c) = Sy /[ki [ + a0 =] ik £i0)(n kT i0) (7.17)

Note that the numerator remained unchanged under the Glauber limit, and that the
terms without eikonal propagators are power suppressed in this limit and hence dropped.
Thus, when we calculate the full soft loop result as S = S — S(&) the extra term from
picking the eikonal pole cancels out, and the result is again the one given in eq. (7.15).
This cancellation is the reason that the choice for the direction of the soft Wilson lines is
not important in the Glauber Lagrangian.

The remaining soft loop graph is figure 21e, which is generated by the self contraction
of the two gluon Feynman rule from the soft operator OAZ shown in figure 7, and which
we refer to as the “soft flower” graph. The integrand for this loop graph involves a gluon
propagator with the IR regulator, 1/(k% —m?), times the part of the OA? Feynman rule in
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{---} that is obtained by setting k; = —ko = k, ¢’ = ¢, and contracting with §“1¢2g,, .

.. 1501C 2 AB 2 2
{ }5 ! 29#1#2 _ g°Cad [_2(d_2)+4(kj_ qJ_) +4:|

(k2 — m?) (k2 — m?) —n-kn-k
4g2C 2048 k2 (j'f

=9 A e - . 7.18

K—m2) | " nkn k n-knk (7.18)

Looking at the terms in the square brackets, the 1 + e term has its scale set by m?, and
hence vanishes as the IR regulator m — 0. The k?/(n - k@ - k) term has a numerator that
cancels the (k2 — m?) denominator, and hence is scaleless in the k| integral and vanishes.
This leaves only the last term which gives a rapidity divergent contribution:

: 49" 2 e ae [ra |2k "
e R /CT " B k) (7.19)

Dot

103 cpn |8 2/ 2 4 4 I 0 p o [ 1° 7w’

where the coefficient of the rapidity divergence involves the function

bleow /) = 72 (£2) 100 (7.20)

m2
The result in eq. (7.15) could have been obtained by just keeping the P/ (SF Sﬁ)Pj term
in OfB , since the other operators only contributed to the terms identified in eq. (7.18)
which vanished. Once again the choice of 4+i0 in the eikonal propagators does not change
the result for this loop diagram due to its Glauber 0-bin subtraction. The mathematics of
this cancellation are exactly the same as discussed above for the soft eye graph.

The sum of the three one-loop graphs with soft loops from eqgs. (7.13), (7.15), (7.19) is

s 2 T8 8 2 2 2
figures 21ec,d, e = _u:;s 3" {nh(e,;ﬂ/mz) + Eg(e,;f/t) +4In (/:2> In <17_1t> +21n? (7{;2)
2 272 11 11, p? 67
o () 4+ o e 2
" (—t)+ 3 " ( 3¢ 3 ¢ 9”
ia? - 8 8 u? 40
sSSP - — —ZIn (=) - =|. 21
T 4{ 3¢ 3“(—75) 9] (7.21)

Note that the 1/€2 and In(u?/v?)/e terms have canceled in this result, leaving only the
1/n rapidity divergences and 1/¢ UV divergences. Since the bare soft operator O2% has
a factor of ab®® = Z, 1% a(n) multiplying the fields, there is a Z, coupling counterterm
contribution in the operator Feynman rule. It gives the contribution

;2

5 22 a8
soft as counterterm = za?s ( - S3" 3¢ + S 36> (7.22)
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This result exactly cancels the 1/e terms in eq. (7.21), so with the counterterm the total
sum of all soft loop graphs is given by

Soft Loops = figures 21c¢,d, e + Z, c.t.
2

105 onm 8 8 t m?
=S {—nh(e,ﬁ/mz)—ng(e,ﬁ/t) 41n<y>1n< )

t 22 2 134 272
—21 - S
? () 5 (5) )

io? [ 8 2 40
sSSP ——In| = ) — —]|. 7.23

Thus in SCETy; the sum of graphs in the soft sector only has rapidity divergences. The
logarithms from these soft loops are minimized for u ~ v ~ y/—t which is consistent
with our power counting. It is interesting to note that the full two-loop cusp anomalous
dimension, which is determined by K = (67/18 — 72/6)Ca — 10n;Tr /9, appears as the
constant term for our one-loop soft exchange result? in eq. (7.23),

(- ) ot o] - e ]
(7.

24)

It would be interesting to investigate in detail the reason for this correspondence.

Finally we consider the remaining collinear diagrams, in figure 21f,g,h k,1,m. The two
V-graphs in figure 21f k give related contributions, and are induced by the Glauber operator
involving n-collinear gluons, mixing back into n-collinear quarks (and likewise for the n-
collinear loop). The OJ?. Glauber operator only produces A, and 7 - A, gluons, so for
the n-collinear V-graph we have

_ —ig* ape|- soth Lpn- k7)) @ (k4 ps)
= =Ly { W T vn} /ddk e T S (7.25)

2k, - (kL+q1)n*n”

X {211;27‘1 “kg” + — —2n* (kY +4¢7) — Qkﬁﬁ”]

1 1 1 1
« ﬂnTBTAﬁ (n,,—l—%_(%J‘—’_pﬂ) +7)§¢7V ) (nu—&—fy_” Par n (%_J-"'pu)% )un
2 n- (k+ps) n-p3 n-ps n-(k+ps)

 —9'Cy AVL dk (pPn - k|Tmm) i att ) 8w’k (ki+qi)n (k+ps)
S [ o }/[k2 m?|[(k + q)* — m?](k + p3)? ot 2{ n-k
o VKL AP, ) B VN by, K v
eamin i) (S ) (e + S )
(ki +d )Fi+p,) n Py (K14 ) N kip,, (%ﬁrlﬁu);ﬁ] "
n - (k+ps) n - ps n - p3 (k+p3) "

— 4n- (k+p3){

Only the first term in curly braces has a rapidity divergence, and we give the result for
this integral in appendix B. All the other loop integrals are standard. The result for the

9We thank Hua-Xing Zhu for discussions about this.
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n-collinear V-graph in figure 21k is the same as the final answer with ps — ps. Combining
the results for these two graphs after doing the integrals we find

2 2 2
) D (= Y () 3 g () e AT
- P3 n - Pp3 —t € —t 3
2 2 2
(Y () 23 g () —e i
n - Py n - Py t € —t 3
i a8 9 4 v? v? u? 6 u? 82
= n 83 {T/g(ﬁ,,u,/t)_eln(8>—4ln<8)11’1(_25)—6—611'1(_2‘:)_12""3}

Here the factors of In(s) appear from adding the two diagrams and using In(7n - p3) + In(n -
pa) =Ins.

For the collinear loop integral in eq. (7.25) we must consider the soft and Glauber 0-bin
subtractions, C = C — C®) — (@) + 0G| but here we will see that the subtractions
give vanishing contributions. In the soft limit k* ~ A, so in eq. (7.25) the denominator

(k+p3)? — (n-kn-p3). Only the rapidity divergent term gives an integral scaling as A",
whereas all the remaining terms in the curly brackets give integrals scaling as O(A) that
are dropped. The contribution for the soft subtraction is therefore

4 (Lep®e|n - k|=m0m) S8w?k, - (ki +q1)

() (fgur —_Y9 gm
O figure 21) = — oy 3" [0 b A T 7 — (k- 0) -k (7.27)

This integral can be performed by contours in k™ = n - k. Since ¢ is purely transverse the
poles in the two relativistic propagators are on the same side for either k= > 0 or k= < 0,
so the full result is obtained from the k= < 0 region by closing about the n -k = —i0 pole.
This leaves a vanishing scaleless integral in k—,

O (k)T e (k)T 11
/dk— /Odk - - =0, (7.28)

oo k— k~
so the soft subtraction C'®)(figure 21f) = 0. The remaining subtractions come from the
Glauber limit, and soft+Glauber limit, and are considered together. Again power counting
implies that only the rapidity divergent term must be considered and we find
Cpn kT aeps 8wk (ki 4qu)

(k1 —m?][(kL + q1)? —m?] n-k
§ { 1 I
npsn-(k+ps)+(ki4+psi)? +i0  7psn-k+i0] "

4
C(G)(ﬁgure 21f) — C(S)(G)(ﬁgure 21f) = _% s [

(7.29)

In the difference we have two poles on the same side in the n - £ contour integral, so the
contributions from the subtractions in eq. (7.29) vanish. Thus, with our regulators all the
0-bin subtractions vanish for the collinear graph and result for the n-collinear V-graph loop
in eq. (7.25) is simply obtained from the naive integral, C' = C. The situation is identical
for the 0-bin subtractions for the 7-collinear V-graph.

Next we consider the collinear Wilson line graphs in figure 21h,i,m,n. Using the Feyn-
man rules from figure 6, we see that the contractions with the incoming or outgoing collinear
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quark give the same contribution. In particular, a sign from the color structure cancels
against a sign from the eikonal propagator from flipping the direction of the gluons momen-
tum, and only the large momenta 7n.-p3 = n-ps and n-p; = n-pys appear in the answer. Due
to the presence of the fABC the color structure simplifies, —i fABCTCTA = (C4/2)T5, s
only the structure S§™ appears. For the collinear Wilson line graphs we find

n n >~ - ~o _-
L - PN - T R N
N 7 ) r = _ _ _

N + UTNETT 4 n‘@g\\@ + n/A’/g\v\n (7.30)
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The result for this loop integral is described in appendix B. Again the In(s) factors here

appear from adding the n-collinear and n-collinear graphs, In(™22) 4+ In(™24) = In(-%). In
precisely the same manner as for the collinear V-graphs, the soft 0-bin and Glauber 0-bin
subtractions all vanish for these collinear Wilson line graphs.

Next we consider the graphs in figure 22. The diagrams in figure 22a arise because
there is a two-quark two-gluon Feynman rule in the E%O) and E,%O) collinear Lagrangians.
This n-collinear loop graph is proportional to a vanishing loop integral

(L6M2€‘ﬁ . k|—7ll/77) n-k B
/ddk (k2 —m2][(k + q)2 —m2] - (k+p3) 0, (7.31)

and the same is true for the n-collinear loop graph. On the other hand, the tadpole diagrams
in figure 22b do not have vanishing collinear integrals. In all these tadpole graphs the three
propagators are ¢2k%(k + ¢)? (with an additional IR regulator —m? when appropriate), so
the large collinear momenta 7-p3 and n-p4 do not appear. Although the vertex in the gluon
loop graphs could introduce an eikonal denominator, for these graphs it is always canceled
since the same eikonal factor appears in the numerator. In all diagrams the collinear
gluon propagator that is outside the loop gives the ¢*> = qi which looks like a Glauber
potential. Indeed, these tadpole graphs are double counting a contribution that has already
been included from the soft diagrams in figure 21c,d. Therefore it is not surprising that
when we consider the soft zero-bin subtractions for each of these diagrams, that we obtain
precisely the same loop integrals and

C(figure 22b) — C)(figure 220) = 0, C@(figure 22b) — C) (D (figure 220) = 0 (7.32)

for each diagram in figure 22b. Thus the collinear loop diagrams in figure 22 do not
contribute.
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The sum of all the collinear graphs from eqs. (7.12), (7.26), (7.30) gives

Collinear Loops = figures 21 f-o
ia? (8 u? 8 u? v? —t 5 [(m? 472
P enm) ol ) o (T () v (%) e )
ia? 5 [ m? m?

Again there are cancellations that have occurred for the sum of graphs, the In(v?/s)/e

terms have canceled, as have all the 1/e terms. (This is also true separately for the n-
collinear graphs and n-collinear graphs.) Thus the collinear graphs also only have rapidity
divergences. The logarithms from these collinear loops are minimized with p ~ v/t and v ~
n-ps ~ n-py ~ +/s. Once again this is as expected, and consistent with the power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from
egs. (7.11), (7.23), (7.33). In the sum of soft and collinear loops the 1/n rapidity diver-
gences cancel, as expected since they arose from defining EFT modes that were sensitive
to a single rapidity scale to avoid having large logs which are ratios of rapidity scales. Note
that the rapidity divergences h(e, u?/m?)/n from the soft and collinear Wilson line graphs
cancel, independent from the rapidity divergences g(e, u?/(—t))/n appearing in the soft
eye-graph and collinear V-graphs, which also cancel. We find

Total SCET = figures 21a-0 + Z, c.t.
L2 ¢ s 2 2 2
i [sm In <2>} + s [ — 41n? <mt> ~121n (mt> - 14]
m — J—
N ia? - s (2 V1w (22 &+ 22, u? N 170 N 272
— —4dln| —|In{— —In—4+— 4+ —
t 3 —t m?2 3 -t 9 3

F 2 2
105 i 8 I 40
—-In|—)——]1. .34

This total SCET result agrees exactly with the full theory one-loop result in eq. (7.10) for all

color structures, all IR divergences, all logs, and all constant terms. Since all IR divergences

w
—t

dependence is proportional to the one-loop beta function, and hence exactly corresponds

are correctly reproduced this provides a non-trivial test of our EFT framework. The In

with the p dependence in the as(p) of the tree level Glauber exchange diagram. This
logarithm shows that the scale u? ~ —t > 0 is the preferred value for this potential. The
various In T—i are infrared in origin. Finally, since s > —t there is one large logarithm,
In %, which is generated by the separation of rapidity singularities in the soft and collinear
diagrams (as opposed to invariant mass singularities). The resummation of these logarithms
leads to gluon Reggeization in the EFT operators, which we discuss in more detail in the
next section.

Notice that although we have used Feynman gauge in this calculation the result does
not depend upon the choice of which generalized covariant gauge we use. The reason for
this is straightforward as the gauge dependent terms are contracted with the light-cone
vector associated with the Wilson line which will cancel an eikonal propagator leading to
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a rapidity finite result. Thus for the gauge dependent pieces the rapidity regulator can be
omitted, and these pieces will then cancel in the standard fashion.

It is natural to consider what the difference would be if we had considered quark-quark
scattering, rather than quark-antiquark scattering. This corresponds to the crossing of two
external lines, p; <> —p4, which takes s — u = —s at leading order in the power expansion
—t < s. In the full theory the only non-trivial change is to the box and cross-box diagrams
which are interchanged under the crossing. The full result for quark-quark scattering is

obtained from eq. (7.10) by the simple replacement S — S{}E, where

nn [ﬂnTATB ?un] [anTATB Zbun] . SI = Cp [anTA?un] [ﬁnTAZLun} ,

1gg — 2qq
=y {anTAzun] [aﬁTA?uﬁ} , = Tpny [anTAzun] [aﬁTAg‘uﬁ} . (7.35)

In the SCET calculation the only changes are to the color structures, and the final result
is again obtained from eq. (7.34) by taking SI'"* — S{ZZ. Thus, once again the total SCET
and full theory results agree.

The fact that the SCET result in eq. (7.34) agrees exactly with the full theory result in
eq. (7.10) implies that there are no hard matching corrections to the Glauber operator at
the scale u? ~ s. (The analogous statement in the threshold expansion is that there are no
contributions to the forward scattering at leading power from hard loop momenta.) It is
easy to see that the pattern observed here at one loop continues to higher orders in «; for
all leading power terms: there are no individual SCET diagrams that can possibly depend
on In(s) since the relevant momenta that form this combination cannot occur in any loop
integral by the power counting. To get a In(s) from a single loop requires a loop that
knows about both scattering particles, but a hard loop of this type will give a 1/s rather
than the leading power 1/t. At leading power the In(s) dependence only arises from the
rapidity divergences which are sensitive to the large p, and pg collinear momenta. This
is a general feature of the EFT for leading power forward scattering, there are no hard
matching corrections. Thus, as we argued in section 5.3, the tree level results for all the
Glauber exchange operators actually include the complete all-order Wilson coefficients.

One can repeat this one loop forward matching calculation in other kinematic scenarios.
In section 7.3 we repeat this matching for SCETT kinematics, where there are now simul-
taneously soft and ultrasoft modes, and the results for the various diagrams above change.
Again we find that the full theory result, which now includes a In?(s), is exactly reproduced
by the SCETT calculation, the IR divergences are properly reproduced, and there is no hard
matching corrections for the Glauber Lagrangians. One can also repeat the matching calcu-
lation for n-soft forward scattering at one-loop in SCET, and although the precise form of
the diagrams change, drawing parallels with the results obtained in this section, it is again
clear that the full theory result will be exactly reproduced by the sum of EFT diagrams.
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7.2 Reggeization from rapidity renormalization

Given that the large logarithm in the one-loop forward scattering amplitude of eq. (7.34)
is generated by adding up modes that are separated in rapidity,
vy 2

+
Sl Py v
In t—lny—f—lny —|—ln7t, (7.36)

one can resum these logarithms by carrying out a separate rapidity renormalization and
resummation of the soft and collinear components of the amplitudes. The anomalous di-
mension in rapidity space is determined by the coefficient of the 1/n poles, and is connected
to the coefficient of the In(?) terms in the soft and collinear amplitudes. From eqs. (7.23)
and (7.33) we see that the coefficient of the In(v?) terms involves the logarithm In(—t/m?),
and hence is IR divergent. Obviously an IR divergent anomalous dimension does not make
sense. This infrared divergence is a reflection of the fact that the separate renormalization
of soft and collinear objects should be done at the level of the squared amplitude including
phase space integrals, where the corresponding soft and collinear functions include both
virtual and real radiation diagrams, and are IR finite. Nevertheless, the contribution to this
renormalization from virtual diagrams can be examined at the amplitude level, and we will
see that it corresponds to the classic result for gluon Reggeization. Therefore for the pur-
pose of this section we put aside the presence of the In(m?) IR divergence, and demonstrate
how the classic IR divergent result emerges in SCET. In the next section we will carry out
the renormalization for the soft function, where the IR divergence is properly resolved.

7.2.1 Notation for virtual counterterms and anomalous dimensions

The rapidity divergent n-collinear loops in figure 21 consist of the V-graphs (figure 21f k)
and the W-Wilson line graphs (figure 21g,h,l,m). In addition the sum of vertex and wave-
function renormalization graphs (figure 21i,j,n,0) contribute a C'4 /€ pole that cancels that
of the V-graphs. From the point of view of the n-collinear sector, the V-graphs involve
a mixing of 04 into 0%, On the other hand the Wilson line, vertex, and wavefunction
graphs take O%A back to OZA. Thus we see that the n-collinear virtual renormalization can
be viewed as involving mixing with a 2 X 2 matrix structure

. L . 146V 5V, . oA
Abare __ . MA _ n n A _ n
o> =Vo, - O (v,n), Vo, ( . ang) , O (o,%f‘ . (7.37)

Here we use the notation “V” rather than a traditional “Z” for the renormalization factors
to remind the reader that these are just the divergent 1 /e and 1/ contributions from virtual
graphs and may still involve the IR regulator m. They are not the complete renormalization
results. The component notation for terms in (’j;? in eq. (7.37) applies to both the bare
and renormalized operators. The terms dV,{? and §V,{? are determined by graphs with
external quark fields, whereas §V;7Y and §V;Y are analogs with external gluon fields (which
therefore cannot be obtained simply from subcomponents of the results in figure 21). We
have built in the fact that the renormalization is diagonal in color space by using the same
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index A for the bare and renormalized operators. The same decomposition applies for the
n-collinear sector with n — 7 for all terms, which we write out just to be definite

5 o5 - 146V 5V¥ - 0P
Bbare __ . @ _ n n _B _ n
07" =Vo, Oz (v,n), Vo, ( N Rl G (7.38)

The structure for the rapidity divergent soft sector is more complicated since we have
operators OZ"A, Og”A, OgﬁA, 02“‘, as well as OB, Phrased in the language of mixing, the

A, will mix with themselves,

single color index operators with .S;, Wilson lines, (’)g”A and OJ"
but not with (’)gﬁA and (’)gﬁA which have S; Wilson lines. This occurs because soft loops
and emissions from a soft operator alone do not generate Wilson lines. Thus for these

single index operators we have

B A - R 146V sy . oA
O;‘lbare — VOS . (/);4 (I/, M) ’ VOS _ n n , Of — , (739)
n n n n 5*‘/:997? 1 + (Y‘égng n Og"A

plus a direct analog for (’)gﬁA and (’)gﬁA obtained with n — 7. For the double index
operator C’)?B we have self renormalization as well as mixing from time-ordered products
(T-products) with the same color structure, such as i [ d*z TO* ()09 2 (0). Since in
(9;43 the index A couples to an n-collinear sector and the index B couples to a n-collinear
sector, we must maintain this same structure on the T-product terms. Since (’)SAB has a
no-gluon Feynman rule, to mix into it one must have the fields in the T-product annihilate
each other. At O(ay) this can only occur through either a soft quark or gluon loop, which
allows only certain products of operators to appear, but at higher orders other terms can
also contribute. The full form of the mixing equation is

O = Vo, - 0P (v.10), (7.40)
1+6V, 0 0 0 0 0AB
v, ™ i [ dts T 0P ()08 (0)
Vo, = [ oV o . O = ifd'a T 08 (2)07 " (0)
T VOsn ® Vo, . N .
Vs % " i [ dia T O (2)095(0)
oV 9 i [ d*x T 07 (2)09"P(0)

Here the lower-right 4 x 4 block in V(gs is determined by the renormalization factor VOSn in
eq. (7.39) and its analog with n — 7, since these terms just involve the renormalization of
individual operators appearing in the T-products. For example, the (2,4) entry of Vos is
SVIISVAI. The 1 x 1 entry of Vo, is the self renormalization of OA5, and the four entries
below it are due to mixing of the T-products into O2*¥. The entries with Os indicate that
the operator (’);43 does not mix into the T-products. At one-loop the nonzero entries are
8V, (from the soft subgraph in figure 21e), §Vi' “ (from the soft part of figure 21d), §Vs' 99
(from the soft part of figure 21c), and the terms in the 4 x 4 submatrix VOsn ® Vosﬁ.

The independence of the bare collinear and bare soft operators to the rapidity renor-
malization scale v and to the invariant mass renormalization scale u, (vd/dv)OP¥¢ = (
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and (pd/dp)OP*e = 0, leads to renormalization group equations in the standard fashion.
Thus we have

9 ANA AV ANA AV Cr—1 9 ¢ ’yg’qj ’yg”g/
V@ Oy (v, ) = Yo, On (v, 1), Yo, = _V(’)n ) V@ Vo, = 99 _gg | (7.41)
TYnv VYnv
0 za - A - 1 0 - Vil Vit
po- On(vop) =46, - On(von), Ao, = Vo, - wo-Vo, = :
O " ' o i

with analogous results for 4% and 44 by taking n — 7i. In particular we have the relation
O oy

V= (7.42)

n—mn

between n-collinear and n-collinear anomalous dimensions. The v-anomalous dimension is
entirely determined by the 1/7 pole in V@n, and the p-anomalous dimension by the 1/e
pole in Vo, .

For the soft operators with one color index we have similar results

y2 OA (v, ) = 4%, - O (v, ) Y = —V5L. V3 Vo, = Yoy Your
gy O = 3., Onoi)s 3., = Vo, v, Vou = 0 |
(7.43)
0 =4 N A N N1 0 - 'Yggu 'Yggu
po- Op (v,p) =96, - O5 (v,1), o, = Vo - ny-Vo,, = ,
8/,L S n S n n 8M ,-y'-sqgu ,-y'-sqgu

and again obtain results for 45, and ﬁgsf by taking n — n. Finally for the soft operators
with two-color indices we have

9 5 - 0 I
vo 08P (i) =46, - OLP (v, ), o 08P (v, ) = 4, - O (v, ), (T.44)
N 0 - ~ 0 ~
2V :_V_l‘ 7V , 2~ 1 :_V_l‘ 7V
’VOS O Vay Os ’YOS Oy /’Lau Os
At 9 0 0 0 00 0 0
,yg/qq ,ysTqu
Cy A— Tygq - Tygq
’Y(VQS = | Vsv o . . ) Yo, = | Vsp ~
Tgg 1O%, @0, Tgq TOU, © VO
Vsv Vsp
T T
~Lag L9

7.2.2 Relations between virtual anomalous dimensions in SCET

Having established notations for the anomalous dimensions, we next consider the con-
straints imposed by the fact that there is no overall v or u dependence for the scattering
of soft and collinear particles or the scattering of n-collinear and 7n-collinear particle, since
there are no v or u dependent Wilson coefficients in these Lagrangians. For simplicity we
will work out these constraints at one-loop order, which is the level needed for our analy-
sis. First consider the scattering between two neighboring rapidity sectors, n-soft scattering
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mediated by one or more 0, operators. Here there is no mixing of multiple insertions of
Eg(o) back into a single insertion. The only such diagram involves the iteration OﬁgOns
with a Glauber loop that has one soft and one collinear propagator, and this loop diagram
is identical to the box calculation in section 5.2.1, and hence is finite. Therefore, at this
order we can look at the O, (defined in eq. (5.17)) alone.

The fact that the tree level matching is exact and that quark and gluon operators have
identical coefficients, places strong constraints on the anomalous dimensions. Imposing the
condition that

Z 0¥, = v (oqA + ogA)P (04 4 OInA) = 0 (7.45)
1

1j=q,9

implies that

(0P 4 O3) = 4, (O34 + 04 (7.46)

v (OB +O8) = 7 (OF + O3, vt

dv
i.e. the sum of the two operators must mix into itself. Furthermore, eqs. (7.41) and (7.44)
imply that these constants of proportionality are given by

Yo = V& + VI =2 + 42, Venv =V, +791, =799, +75,. (7.47)

These results can also be derived starting only with eq. (7.45), differentiating all
terms, and setting to zero the linear combinations of anomalous dimensions multiplying
OiA(1/ Pﬁ)(’)g"A for each choice of i and j. The result in eq. (7.47) constrains the sum of
entries in the columns of 4 to be equal. The fact that only the combination (O%A + O%A)
appears also implies that vy, is the only combination of entries from 47 that we need,
with analogous results for the soft 45 . The root of these results is that the rapidity
renormalization only depends on the pr%sence of the octet color index A, and not on the
choice of fermion or gluon building blocks. Nevertheless we will see that mixing between
fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cutoffs in the neighboring soft and n-
collinear sectors for O as expressed by eq. (7.45), we also have the additional relation

’Ym/ + ng = 7231/ - Vggy ) OT Ynv = —Vspv - (748)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are
equal with opposite signs. For the anomalous dimensions for operators appearing in Of—fs
analogous results to eqs. (7.47) and (7.48) also hold, simply replacing n — 7n. Therefore
we also define

7”” - Vnu + ’Y ’}/77,1/ + fY’er/ ) fysﬁV = ,ygﬁl/ + fySnV ’}/:Sggl/ + ’Y.Snl/ (7’49)

There is also no overall u dependence for the n-soft scattering operator

d . d
1y qA gA
m E 0Oy, Mdﬂ (0% + O —

1j=q,9

p? (O‘W‘ 09 =0, (7.50)
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This relation is ensured by the fact that there is no u dependence for the individual soft
and collinear sectors at this order,

u-L (01 4 0 ) — 0, (7.51)

d
— (0 + 091 =0
p—— (05" +0}7) =0, a

dp

which implies even simpler relations for the p anomalous dimensions,

Yo =V T Vo = Von e =0, V=, 9, =48, +78,=0.  (7.52)

Again we have analogous results with n — n.

Next we consider the consistency equations for the scattering of two rapidity sectors
when there is another rapidity sector in between, namely n-n scattering. In this case
multiple insertions of LH(O) can mix back into a single insertion through the intermediate

o

with one m-collinear and one n-collinear propagator, are again finite. However we also

rapidity sector. At one-loop the graph built from iterations of Glauber potentials, O

nsn~-nsn

have graphs with soft loops of gluons or quarks from the T-product of two operators,
Zk:q gO’k O,]JZ, that mix back into a single O}/
graphs shown in figure 21¢,d. Due to this mixing the consistency equation for n-n scattering

nen- Lhese T-products are precisely the
takes place at the level of demanding that there is no v dependence for the time evolution
operator induced by the Eg(o) Lagrangian, rather than for the Lagrangian itself. At one-
loop we therefore have

y% > < a0+ Y zT/d4 Ok (z)0I (0)) =0. (7.53)

ij=q,9 kk'=q,9

Due to the previous result in eq. (7.45) there is no contribution from the individual op-
erators in the T-product, but when k& = k' the T- product itself can still mix into O}/

nsn
through the anomalous dimensions ’ys,ﬂ The operator O,

ij
Since O,

en can also mix back into itself.
= OIA(1/PHOB(1/P L)O%A, and the anomalous dimensions for the collinear
operators are already constrained by eq. (7.47), this relation will provide a constraint on

the remaining coefficients in the soft anomalous dimension 4% . At one-loop only Adir,

'ysj;,qq, and 'y;frl,gg can possibly be nonzero, so eq. (7.53) gives the relation
dir Tqq Tgg _ _
Vsv = Vsv + Ysv + Ysv'” = T Vv — Vawv - (754)

This result encodes a cancellation of rapidity cutoff dependence between the n-collinear,
n-collinear, and soft sectors.

For the p anomalous dimension we also have

udci S ( 0+ S zT/d4 Ok ()09 (0 )) ~0. (7.55)

1j=q,9 kk'=q,9

Given egs. (7.50) and (7.52) this implies that at one-loop

Vo = Vo + Vapdd + 7580 = 0. (7.56)
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We will see in the next section that if we consider the virtual v-anomalous dimensions
alone, then they depend on a logarithm of the IR regulator, In(m?). This dependence
is canceled when we consider the full anomalous dimensions obtained by the sum of di-
vergences in virtual and real radiation graphs. Because of this cancellation, the relations
derived here in egs. (7.48) and (7.54) also apply for the corresponding real radiation graphs.

7.2.3 One-loop virtual anomalous dimension results

Here we consider the one-loop calculation of the various virtual contributions to anomalous
dimensions discussed in section 7.2.1 with the goal of identifying the non-trivial terms and
cross-checking the various relations discussed in section 7.2.2. With external quarks the
results can be determined from the SCET; diagrams given in section 7.1, while our results
below with external gluons required additional calculations.

First consider the n-collinear sector with the bilinear quark and gluon operators (’)?LA
and 094, For 04 mixing back into O there are W Wilson line graphs and the vertex
graph (plus wavefunction renormalization), all of which can be read off from the results in
section 7.1 by stripping off the appropriate prefactor that is related to the other sectors.
We have

- n Lo n . m
- ~ ~
ﬁ A -~ a _y - + n

n + w.fn. renorm

“n TS~ n 71*\./71
2 he, 12 9
) () 3 e
T n € n-p €

where the spinors are contained in the tree level matrix element 8™ = anTA%un, and
h(e, p? /m?) was defined in eq. (7.20). Here and below we will drop the factors of w which
multiple the pure 1/e poles. To obtain eq. (7.57) we have taken figure 21g,h.i, stripped off a
prefactor of (05T A%Uﬁ)(Sﬂ-as) /t, which includes the factors associated with the tree level
matrix element of the non n-collinear parts of the operator, namely (1/P?)048(1/P?)0Z,
as well as an overall i. Since we are interested in determining anomalous dimensions,
only the divergent terms that are needed to determine the 6V,/? counterterm are shown
in eq. (7.57) and the results below, and we now include factors of the rapidity coupling
w? = w?(v) (which is needed to determine the rapidity anomalous dimension, and then
can be set to 1). Just as discussed in the matching calculation, the collinear tadpole loop
graphs vanish due to their soft zero-bin subtractions

- \* =0, (7.58)
n\./n

There is only one nonzero graph where the operator (’)%A mixes into O%A, namely the V-

graph. This result can be again found from the results in section 7.1, and determines the
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SViJ? counterterm,

2 e,“—z
:an OéSCA ’11}2 g( —t) _ngln <nyp> — 3:| :and‘/;;?q, (759)

47 n € 2

where the function g(e, u?/(—t)) is given in eq. (7.16).

To determine the remaining n-collinear counterterms we need to consider graphs in-
volving external gluons, which require new calculations. Rather than giving a detailed
discussion of these diagrams we simply relegate non-trivial ingredients like the 3-gluon ver-
tex from 057 to appendix B, and quote here the final results for the divergent terms (using
Feynman gauge):

4 n € 6e
s 4
gluon w.fn. = §™ Z—W [356 Ca— 3 nfTF] ; (7.60)

where S™ = fABcngﬁ : pag sg is the tree level matrix element of O%”. Just like in the
quark calculation, the collinear gluon tadpole graphs give zero due to their soft zero-bin
subtraction. There is also a graph with the four-gluon vertex which has a vanishing integral
even before the zero-bin subtraction. Thus we have

asCy| b 5
=8 = ——— | = 7.61
4 [ 3¢ 3e ] ’ ( )
The remaining contributions determine the 6V;/Y counterterm to be
2w2h(6 ”—2) + 2w? (e “—2) 4
g ’ 2 g\& =
V99 = — m Cyqy——nsIlF|. 7.62
" 47 [ n AT 3 F] (7.62)
It is interesting to note that that the C'4/e terms cancel.
Finally, we consider the mixing of O into ©¢. The relevant diagrams are
R — - — — 5T N — e — ST
n \ / n n \ / n T 4
+ o :5”90‘5””[}, (7.63)
n\_/n n\'/n 47 3¢

where we have summed over all possible ny light flavors that can appear in the (Q%A
operator. Again the collinear quark loop tadpole graph is exactly canceled by the soft
zero-bin subtraction,

n
asn Ty 4 4
- :Sngi S, J— :O 764
Y/ \A ir [ 36+3€:| ( )
N\Na/n
[ ]
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Thus, the result in eq. (7.63) yields the counterterm for O%A mixing into (’)?LA,

as | 4

VI = =1 —neTp | . 7.65

" 4 [ 3¢/ F} (7.65)

At one-loop order the n-collinear rapidity anomalous dimension contributions are given

by i, = —(vd/dv)§V,’. Differentiating both the explicit Inv dependence and the v

dependence in the coupling w by using (vd/dv)w? = —nw? (then setting the renormalized
w = 1), and expanding to O(e®), we have

i =~ ane i) + 2] = 2 (10 (7.0
it =~ agte () - 2| = 20 (1),
o8 =~ agle i/ (-0) — 2htespt )| = S 1 (1),
Ty =0
For the p anomalous dimensions at one-loop we have 'yﬁu = —(pd/dp)éV;? . Noting

that as(u)g(e, u2/(—t)) and ag(p)h(e, u2/m?) are both p-independent, and recalling that
(nd/dp)as(p) = —2eas(p) + O(az) we find

= 0 ()] o)

e o n-p 2

gq:_as(:u‘)CA 21 4 §
T 2 a n-p +2 ’

g _ 205(p)npTr

e 3 ’
a _ 20s(u)nFTr
Tnp = 3r '

Note that these results satisfy the necessary condition for the paths in v and u space to be
independent [58], (vd/ dl/)'y,% = (ud/dp)~%,. From these results we can immediately check
that we reproduce the first relation in each of eq. (7.47) and eq. (7.52), Vit +Vor = Yoo +Vrt
and vl + Yo = Vg + v = 0. Thus there is no overall p anomalous dimension for the
relevant combination of operators, (O%A + O,%A), as anticipated. It is interesting to note
that this occurs due to a cancellation of terms between the anomalous dimensions generated

by the two individual operators. We also obtain the relevant rapidity anomalous dimension
for (O + 094 which is
asCy —t
Ty = o In <77@2> . (7.68)

Again mixing plays a key role in obtaining this result. In particular, the graph that

contributes the In(—t) in the anomalous dimension for O is initiated by gluons, and
enters through ~ig.

Next we turn to the soft anomalous dimensions. For the operators (’)g"A and (’)g"A the
contributing diagrams are very similar to our analysis of the n-collinear operators above,
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but there is not a one-to-one correspondence to the diagrams, and the soft calculation also
has contributions related to the running coupling that appears explicitly in OgnA. Due to
the similarities we do not bother to give a detailed discussion of the various diagrams. The
key difference is that for the soft graphs the rapidity regulator appears as |n-k—n-k|~" rather
than |7 - k|, which reverses the sign of the 1/n poles. For this reason, the final rapidity
anomalous dimension for the relevant combination of single color index soft operators,
(OE”A + Og"A) has the opposite sign to the n-collinear case,

o =10+ 180 = 288+ 288 = =258 1 (). (7:69
Together eq. (7.68) and eq. (7.69) satisfy the expected relation in eq. (7.48), that ~,,, =
—nv. Just like for the collinear operators there is no overall p anomalous dimension for
(O o9y,

The final operator to consider is the two index soft operator (9;43 . The results needed
for the renormalization of this operator at one-loop can all be read off of those from
section 7.1. There are two types of contribution, the mixing of 025 back into O48, and
contributions from products of the single index soft operators, O¥»4O*nB mixing into O2B.
Considering 0;43 we have the flower graph and the counterterm from the «y prefactor

2 1 1 2
AR S + Za,-counterterm = —464PCy 2w t {h(e, p?/m?) — = — =In <N >}
n

e € V2

. 25ABO42t 110A . 4TLfTF
s 3e 3e

= 648 (8ra,)t oV, (7.70)
where h(e, u?/m?) was defined in eq. (7.20). To obtain eq. (7.70) we have taken the result
for figure 21c, and stripped off a prefactor of i(anTA%un)(ﬂﬁTB%vﬁ) /t2. This prefactor
includes terms associated with the tree level matrix element of the non soft parts of the
operator, namely O (1/P?) on one side and (1/P?)OZ on the other, as well as an overall
i. From the remaining terms we again show only the divergences in eq. (7.70), since only
the renormalization is being considered here. This result determines

s (i) 5[4 9, o 2 2 [p? as(p) (11C4  4AngTp
=2 - —Z-Cln(5 ) - - (1.1
Vs ym Cyw {nh(e,u /m*) n{ 3 p ” 3 (7.71)

The final contributions come from T-products of two soft operators 0§"A(9§ﬁ3 for k =g,q,

which occurred in our one-loop matching calculation in figure 21c,d.

= 40480 Tr ot ( - 386) = 648 (8ra,)t oVI (7.72)
2 11 2\ 11
= 45ABcAw2a§t{ng(e, u? [(=t)+ 5+ n (’;) - 66} =548 (8ma, ) toV.I99
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giving the results

AT,
svTaa — O‘Z(:) ( - "?J)’e A ) : (7.73)
2
Tog _ _Os() o o fd oy 2 2 ety 1
% - Caw {ng(evﬂ /(=1)) + 2 + B In 2 3¢ [

At one-loop order the soft rapidity anomalous dimension contributions are given by
X = —(vd/dv)sV;X. Differentiating both the explicit In v dependence and the v depen-
dence in the coupling w by using (vd/dv)w? = —nw? (then setting the renormalized w = 1),
and expanding to O(e"), we have

air . @sCa [ 2, 2 4 as(p)Ca N2
- —4h Sl = G EA (B 7.74
o = 250~ ange ) + 2] G, (), (7.74)
Tl =0,
ng:ascA__ 2y 4] _as()Ca —t
r = 20 gte) o) - 2| = -2 (2.

Thus for the relevant soft virtual contribution to the rapidity anomalous dimension, g, =

i T T .
Adir 1y 4 4699 we obtain

= s )Ca (_t> | (7.75)

Utilizing eq. (7.68), and noting that vp, = Vnu, we see that v, = —¥n, — Yau as expected.

For the p anomalous dimensions at one-loop we have 'ygli = —(pd/dp)sV;X. Noting
that the combinations o (p)g(e, u?/(—t)) and as(u)h(e, p?/m?) are p-independent, and
recalling that (ud/dp)os(p) = —2eas(p) + O(a?) we find

r 2
e = Colt) 20,0 <’:2> - 4”§TF} , (7.76)
,Yqu — O‘S(:u) [ - 4nfT‘F:|
St 2 | 3 ’
JToo = W) o0y (MQ) + HCA] .
SH 27 V2 3

Thus for the only relevant combination of p-anomalous dimensions we find vy, = ’yﬁf +

’ysj;?q + ’y?gqg = 0, so there is no p-evolution for the SCET; soft operator as expected.

7.2.4 Solving the virtual rapidity RGE: reggeization

As we have seen in the matching calculation, the result for the one loop scattering amplitude
for collinear particles, involves a logarithm of the ratio s/(—t). To resum these logarithms
to higher orders in perturbation theory we can utilize the rapidity renormalization group
to encode the large logarithms in an evolution factor and ensure that all of the individual
factorized pieces of the amplitude are evaluated at the appropriate rapidity scales v where
they do not have large logarithms. From eq. (7.23) we see that the soft piece of the
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factorized amplitude will not have large logarithms if we choose v = j = \/—t, while from
eq. (7.33) we see that the collinear parts of the factorized amplitude will not have large
logarithms if we choose v = /s. In fixed order perturbation theory the large logarithms
arise because only one of these two choices for v is possible.

Choosing v = u = \/—t, the soft piece of the amplitude does not have large logarithms,
and the large logs reside in the two collinear amplitudes. Therefore we must use the rapid-
ity renormalization group to connect these collinear amplitudes to the rapidity scale where
their logarithms are minimized. Since we are interested in the leading-logarithmic resum-
mation we only need as boundary conditions the matrix elements at tree level, and hence it

suffices to sum the logarithms in O k) (given in eq. (5.9)) with 4, j summed over both quarks

nsn
and gluons. From the first result in eq. (7.46) we have the rapidity evolution equation

d

W(O# + 094) = 7, (024 + 094 (7.77)

where the leading order anomalous dimension 7, = % In(—t/m?) was computed in
eq. (7.68). Since this anomalous dimension is independent of v it is trivial to integrate
eq. (7.77), and thus obtain the relation between the renormalized collinear operators
evaluated at two different rapidity scales v:
A A Y0\ " ga A

(On7+ 00 m) = | - (057 + 057 (v0) - (7.78)
Taking 11 = v/—t and vy = /s we can now connect the collinear operator to the scale
v = /s where logarithms in its amplitude are minimized,

—t

— ny/
(O + O (v = V1) = () "o+ 0w = V). (7.79)

iA - . . : .
For 02" we have the same rapidity anomalous dimension equation with vz, = 7., and
hence the same resummed result, namely

s *’Ym//2
(034 1 084 (v = /T = () (O 1O w=E).  (180)

—t
Putting these results together the leading logs are summed in the operator O;fm by,

Y Ofalv=v-1) (7.81)

4L.J=a9
= (O3 + O (v = V1) 5 OB (v = V=) (047 + O3) (v = V=)
L €
(&) "o orw = VROt = VR O1 + 08w = V).

For the renormalized operators on the right-hand side there are no large logarithms in their
matrix elements, since they are evaluated at the scales v which minimize their respective
rapidity logarithms. (If we had instead started the evolution at v = /s then there would
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be no evolution for the collinear operators, and the soft operator’s evolution would generate
this same result.)

The factor of (%)~ in eq. (7.81) is the standard Reggeized gluon result, where o, =
—~ny 18 the gluon Regge exponent. At the leading logarithmic resummed order we have this
same factor for quarks and gluon channels. At higher order there are distinctions between
the channels, see for example [55], in particular factors of (3)™7™ also appear. Since

(2)77w = () " e'™ e the two factors differ only at next-to-leading logarithmic order.

7.3 One loop matching in SCET]

In this section we repeat the matching calculation carried out in section 7.1, but in the
theory SCET}. Although our focus in the majority of this paper is on SCETr, we mentioned
in section 5.1 that, prior to the BPS field redefinition, the Glauber Lagrangian for SCET}
is identical in form to that for SCETyy, and only differs in the form of its 0-bin subtractions.
This section will serve to check at one-loop that we have the proper form of the Glauber
Lagrangian for SCET}, and highlight some differences between the results in various sectors
between SCETy; and SCET}]. The main distinction for SCET] is the presence of ultrasoft
modes, which live at a scale parametrically smaller than the soft, collinear, and Glauber
modes. Here Glauber exchange graphs also have 0-bin subtractions due to the ultrasoft
region, and there are additional subtractions for soft and collinear loop diagrams. Because
we are studying Glauber dependent processes in SCETT, we must simultaneously consider
soft and ultrasoft diagrams.

Just as in section 7.1 we consider quark-antiquark forward scattering of energetic
particles with the same external momenta. To regulate IR divergences in the full theory
in a manner that is suitable for SCET}], we take the external particles to be offshell'® with

2

pa=pi=-p?<0, pi=pi=-p*<0. (7.82)

For this SCETT matching calculation we no longer have a gluon mass in any diagrams.
The hierarchy of invariant mass scales here is s > —t ~ p? ~ p? > p?p?/s, where the
soft, Glauber, and collinear modes live at the intermediate scale, and only the ultrasoft
modes live at the small p?p?/s “see-saw scale”. When necessary we will also include the
n-regulator to handle rapidity divergences that are not regulated by the combination of
the offshellness and dimensional regularization. In SCET} the 0-bin subtractions for the
collinear, soft and Glauber one loop graphs were given above in eq. (5.51). We will again
make use of the Dirac and color decomposition ST3 5, given in eq. (7.1).

The full theory diagrams for this matching calculation are the same ones shown in
figure 20, but now calculated with the offshellness IR regulator. Here we simply quote the

10Utilizing an off-shell regulator disallows the use of the BPS field redefinition.

~ 82 —



sum of all the diagrams

Full Theory = figures 20 + Z, c.t. (7.83)
ia? o[ —st 9
= TSS{L" [827r In (292252) + 4w }

-2 r 2
105 anm 5 [ —t 5 [ —t —t —t 8

-2 r 2

105 on 9 [ —st o [ —t o =T 22 7 170 9

io? [ 8 2 40
S nn _71 -~ [—
# s - gn () - 5]

Interesting differences from the case of the mass IR regulator in eq. (7.10) include the

presence of In?(s) in the C4T4 ® T4 color structure, as well as a i7 In(s) in the phase term.

For the SCET; calculation the EFT diagrams are shown in figure 23. These are the
same diagrams as we had for SCET, except for the addition of graphs with an ultrasoft
gluon in figure 23p,q,r,s. Some of the diagrams from the SCETy; calculation will take on
different values here, since they are now evaluated with the offshellness regulator and with
different 0-bin subtractions.

We start with the ultrasoft diagrams, shown in the last row of figure 23. Since we
are working in Feynman gauge, graphs where the ultrasoft gluon connects two n-collinear
lines, or two n-collinear lines are zero, and hence are not shown. For the sum of the four
displayed ultrasoft diagrams we have

- n
- Pl
/l

DN

n \\\ e n - ’// n \\ _ ) R
e i’;\,ﬁ + ﬁ///&\‘\ﬁ + & /,k\\\ﬁ + ﬁ///t\\ﬁ (7.84)
_ 4" / 'k 2577 oS
where

D3 =p3/A-ps=ps/f-ps=—p°/A-p3, Pa=pi/n-ps=pi/n-p1=—p/n-psy, (7.85)

and the additional color structure S{iﬁ = —(an%TAT Bun) (@ﬁ%TBTA’Uﬁ), and satisfies
Spt = 8P — 8§ /2. Performing the integrals in eq. (7.84) we find

Ultrasoft Loops = figures 23p, ¢, 7, s (7.86)
- 2 - 2
=8
LAY [ + Sirln (M) " 474
t € DD

;2 B 4 4 2 2
Pl - (0] e (B 5) ).
t € € p°p p7p

Since the ultrasoft gluon is the mode with the lowest invariant mass, it has no 0-bin
subtractions. Note that the logs are minimized at the smallest see-saw scale, u? ~ p?p?/s,
as expected.
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Figure 23. SCET] graphs for the matching calculation of quark-antiquark forward scattering
at one-loop. The first two graphs involve the Glauber potential. The next three graphs involve
soft gluon or soft quark loops. The second and third rows involve collinear loops with either the
quark-gluon Glauber scattering operators or the quark-quark Glauber scattering operator, plus
wavefunction renormalization. The last row shows the ultrasoft diagrams which contribute. Addi-
tional collinear graphs (which vanish) are shown in figure 22.

Next we consider the Glauber loop graphs in figure 23a,b. As usual these graphs require
the rapidity regulator |2k*|~"v" to make them well defined. Just like for our analysis in
SCETy the Glauber cross-box in SCET] (figure 23b) has two poles in £ on the same
side of the contour, and hence vanishes. Thus, once again only the Glauber box graph is
nonzero. It is given by

wT Y
Glauber Loops = i !
—ﬁ<-i——<-—0§—<ﬁ

. =i\ [d9%k, (—im)
— (~4g") 8" Icox = (~4g") s() Jlas
1 V) SR

. 2 B 8. 2
= 1% gnn { 2T Sirln <“>] , (7.87)
t € t

where the Glauber box integral Igpox is the same as in eq. (5.31), and hence the only
difference is the absence of m in the k 1 integral. Examining this integrand, we see that
the 1/€ in eq. (7.87) is an IR divergence from k; — 0 and k, — —¢,. However, in SCET]
we must also subtract the ultrasoft 0-bin subtractions for this Glauber loop to get the full
result, G = G — G(Y). The subtractions occur from the regions k* ~ A2 and k* + g" ~ A2,

giving two equal contributions, whose sum is
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: (7.88)

io? 8w 8im
€uv

=S8 {— —+
This result involves the difference of a UV and IR 1/e pole. Thus when we subtract this
0-bin contribution from the original integrand in eq. (7.87), G — GU) | we find that the
proper interpretation of the 1/e in the result for the SCET} Glauber box graph is as a UV
divergence.

Examining all the diagrams in figure 23 we see that only the ultrasoft and Glauber

loops have contributions with the S color structure. Adding the results for these diagrams
from eqs. (7.86) and (7.87) we have

Ultrasoft + Glauber Loops = figures 23a,p, q, 7, s (7.89)
ia? - ) —st
— n Sl |: —+ 8171' ].n (])2])2> =+ 4772:|

2 B 4 4 2 2
Pl - () e (55) ).
t € € p°p p7p

Note that the UV divergences have canceled out in the sum of the ultrasoft and Glauber
diagrams. ia2S7™/t[8im /e — 8im/e] = 0. Comparing the full S} term here with that of
the full theory in eq. (7.83), we see that the full theory result is exactly reproduced in the
sum of the ultrasoft and Glauber graphs of SCET]. The presence of the In(s) in this term
arises because of the presence of the ultrasoft see-saw scale p*p?/s.

Next we consider the SCET| graphs contributing to the CpT4 ® T4 color structure,
ie. terms involving S§™. This occurs only in the collinear loop graphs in figures 23i,j,n,0.
Just as in SCET1y, the loops in these graphs involve only Lagrangian insertions and a single
collinear sector, and are the same result as in full QCD. With the offshellness regulator we
have

n >~ -
Zm n *\\.:,y/ n " 7 n\\\t/,,/ﬁ
) > ) _ _
_ & = + E,m_,ﬁ_ + E)@_;Q ZLA/// \\\ﬁ\/ (790)
-

iag nn 2 p2 2 pQ p2 ﬁQ 87T2
;2 2 =2 2 =2 2 2
Zas nn 2 p 2 p p P 2 12 471'
—= 21 — 21 — 4In | — 4In{— ) ——-—-2In| — —
e ot (5) e () <o () o (5) 2o (5) + 5]
where the 1/ is UV. Looking at only the S§™ term, we see that the SCET| graphs reproduce

the full SI™ piece of eq. (7.83). The situation is similar for the nfTFTA QT4 term, ie. Sy
The only SCET] graph that is proportional to ny is the soft graph in figure 23d which gives
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the same result as in SCET, and as the quark vacuum polarization in the full theory,

e 2
L7 o g 8 8, (M _40) (7.91)
5 A t 3¢ 3 —t 9

So the full theory 8™ term in eq. (7.83) is also exactly reproduced.

This leaves the final color structure C4T4 ® T4, ie. Sgﬁ. Just as for SCETYy, this
color structure involves the most complicated calculations, and there is no one-to-one cor-

respondence between graphs in the full theory and in SCET].

For this SCET7 calculation we have contributions from figures 23i,n,p,q given above
in egs. (7.89) and (7.90), as well as from figures 23c,e,f,g,h,k,l.m which we will consider
in turn. We will encounter rapidity divergences in these diagrams. Again we should
consider the additional collinear graphs shown in figures 22, but they vanish for the same
reasons discussed above in our SCETY; calculation, since the results discussed there were
independent of the choice of IR regulator.

First consider the contribution from the T-product of two Glauber operators with a
soft gluon loop, O with O, which is shown in figure 23c. For this soft eye diagram in

SCET} we find the same result as in SCET,

ia? | 8 9 4 4 2 2 2
Do ol 2 2 2
11 11, p 67
—21n? Ll T 2l - ———In— — — 7.92
n(_t>+3+< el 9>},( )

where g(e, u?/(—t)) was given above in eq. (7.16). To see why the result for this graph

in SCET] and SCET]; are the same, we can look back at eq. (7.15) and notice that
2

the result was independent of m?. For the SCET] soft eye graph we drop m? from the
start, but this does not change the result. Just as described in detail for SCETy, the
Glauber 0-bin for this SCET; soft loop again ensures that the sign £¢0 in the eikonal
propagators does not effect the result. Finally, we consider the two ultrasoft 0-bins for the
integrand in eq. (7.15) (with m? = 0), first by considering k* ~ A2, and then by switching
variables to k* = k* 4 ¢* and considering k* ~ A2. In both cases one of the relativistic
propagators becomes a ¢?> = t, so the ultrasoft 0-bin integral scales as a power suppressed
term ASA*/[t3A%] ~ A% and hence does not contribute.

The remaining soft loop graph is the flower graph in figure 23e. The naive integrand
for this soft loop graph is the same as that for SCETy; in eq. (7.19) just setting m? = 0.
However, now the soft loop integral also has an ultrasoft 0-bin subtraction, and since there
is no scale in the soft integral, this subtraction integral is identical to the original one.
Once again the choice of £:0 in the eikonal propagators does not change the result for this
loop diagram or for the ultrasoft 0-bin subtraction, due to the Glauber 0-bin subtractions
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S(&) and S@W) . Thus in SCET; the soft flower graph vanishes

S(figure 23¢) = S(figure 23¢) — SV (figure 23e) (7.93)
g nne 26 |k| T / ‘k‘ Tt
55 [/ddk k2](n - k)( 4%k [k2](n - k)(n - k)
=0.

This occurs because the contribution of the soft flower graph is already contained in the
ultrasoft graphs in SCET}. The 1/7 rapidity divergence that occurred in the soft flower
graph for SCETY; is now regulated by the combination of the offshellness and dimensional
regularization in the SCET} ultrasoft graphs. We will see below that the collinear Wilson
line graphs in SCETT also do not depend on the rapidity regulator.

Since the bare soft operator OAZ has a factor of a?*® multiplying the fields, there is
also the Z, coupling counterterm contribution

io? 5 22 5 8
ft tert = S -8 — . .94
soft a;s counterterm ; ( S5 3 + S 3€> (7.94)

The sum of the two nonzero soft loop graphs from egs. (7.91) and (7.92), plus this o
counterterm gives the total soft loop contribution

Soft Loops = figures 23¢,d + Z, c.t.

07 nn 8 2 4 4 w p? >
2 222 ©? 134
om? () T 2 () 4 22
+ n<t> 3+3n<t)+ 9}

io? [ 8 2 40
sSSP — —In| =) - =—]|. 7.95

—t

The logarithms from the soft loops are minimized for y ~ v ~ v/t which is consistent with
the power counting. Note that unlike the situation in SCET1, here the 1/¢? and In(u?/v?) /e
terms do not cancel, so there are both 1/n rapidity divergences and 1/e UV divergences in
the soft contribution. Once again, the one-loop constants that appear in the soft graph are
identical to the the two-loop cusp anomalous dimension, just as in SCETyy in eq. (7.24).

Finally we consider the remaining collinear diagrams, in figure 23f,g,h.k,1 m. The two
V-graphs in figure 23f k give the same result for SCETT as they did in SCETy;. Again this
occurs because the answer in eq. (7.26) is independent of the IR regulator m?. So setting
m? = 0 from the start, the results for these two graphs is once again

(7.96)

a2 (8 4 v? v? w2 6 w2 872
= s 8und = 2ty ——In{— | —4ln(— )In(~)—==6In(— ) —12+— .
Forfpetentinn (7)o () (5) - Foom(5) -2 )

Recall that the factors of In(s) appear from adding the two diagrams and using In(7 - p3) +

In(n-ps) =Ins. The 0-bin subtraction contributions for the result in eq. (7.96) all vanish.
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The soft and Glauber 0-bin subtractions vanish for the same reason as in SCETy;. And
the ultrasoft 0-bin subtractions from the scalings k* ~ A2, k* + ¢* ~ X2, k* + P~ A2 all
lead to power suppressed integrals relative to the leading power ~ A~2 contribution.

Next we consider the SCET] collinear Wilson line graphs in figure 23h,i,m,n. The
result is similar to eq. (7.30) with modifications due to the change of IR regulator. The
resulting SCET} loop integral is the standard one-loop Wilson line integral, which is well
defined without the rapidity regulator, so

[k2](k + pa)?(n - k)
i0f 8 4 w p 2 (1 2 (1
8 2 2 2 2
++41n<“ >+41n( >+167T}. (7.97)
€ p? P2 3

In precisely the same manner as for the V-graphs the soft and Glauber 0-bin subtractions
all vanish for these collinear Wilson line graphs.
The sum of all the collinear graphs from eqs. (7.90), (7.96), (7.97) gives

Collinear Loops = figures 21 f-n (7.98)

2 2
_ZO[S nn 2 pf _ 2 pf pf — —7871-
7 Ss { 41n (—t) 41n ( >—|—61n<_ )+61 (—t) 4 3 }
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Again there are cancellations that have occurred for the sum of graphs, including all the

1/e and single log terms. (This is also true separately for the n-collinear graphs and n-
collinear graphs.) Unlike in SCET]q, the collinear graphs alone do have 1/€% and In(---)/e
divergences. The logarithms from these collinear loops are minimized with v ~ 7 - pg ~
n-ps ~ /s and g ~ /1 (taking the offshellness p?> ~ t ~ p?). Once again this is as
expected, and consistent with the power counting.

Finally, we can add up the ultrasoft, Glauber, soft, and collinear SCET loop graphs
from eqs. (7.89), (7.95), (7.98). In the sum of soft and collinear loops the g(e, u?/(—t))/n
rapidity divergences cancel, as expected. Furthermore, the 1/e2 terms cancel in the sum of
ultrasoft plus soft plus collinear terms. Adding the terms and simplifying we find a large
amount of simplifications to the logarithmic terms, yielding

Total SCET = figures 23a-s + Z, c.t.
2

_ 5?”{+8m1n< ) +dr ] (7.99)
p2p?
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This total SCETy result agrees exactly with the full theory one-loop result in eq. (7.83)

for all color structures, all IR divergences, all logs, and all constant terms. Since all IR
divergences are correctly reproduced this provides a non-trivial test of this SCET; EFT
framework with Glaubers. Again, the In ‘i—i dependence is proportional to the one-loop beta
function, and hence shows that the scale y? ~ —t > 0 is the preferred value for the o (u)
in the tree level potential. Since s > —t ~ p? ~ p? there is one large double logarithm

in the SCET] result, 1n2( 554, which is generated by combining the hierarchy in rapidity
p*p
between the soft and collinear diagrams, and the hierarchy in invariant masses between the

collinear and ultrasoft diagrams in the following manner:
o [ —st o [ —t 5 [ —t s —t o [ 1?
—2In <p2p2> +4In <pQ> +4In (pQ> = [— 41n (—t) In (HZ> —2In (—t)} (7.100)
2 2 2
2 M8 2 (M 2 (M 2 [t 2 (1
+{—2ln (p2ﬁ2>+21n (292)—1—2111 (ﬁ2>—|—2ln <p2)+2ln (;52)}

Here the terms in square brackets come from the sum of the rapidity divergent collinear

V-graphs and soft eye graph, whereas the terms in curly brackets come from the ultrasoft
graphs and collinear Wilson line and vertex graphs. In the sum there is no dependence on
the renormalization scale pu.

Once again the fact that the SCET] result in eq. (7.99) agrees exactly with the full
theory result in eq. (7.83) implies that there are no hard matching corrections to the
Glauber operator at the scale y? ~ s. In the SCET] calculation the In(s) dependence arises
from combining collinear rapidity divergences that involve the large p, and p; collinear
momenta, just like in SCETy;, as well as from the see-saw scale p?p?/s that appears in the
ultrasoft diagram result in eq. (7.86). Once again, this pattern continues at higher orders
in as and there are no hard matching corrections for the Glauber Lagrangian at the scale
u? ~ s. Therefore the tree level matching results given in section 5 yield the complete

Glauber Lagrangian also in SCETT.

8 BFKL and the rapidity renormalization group

8.1 Factorization with the Glauber Lagrangian

In this section we consider how to include the Glauber Lagrangian into a factorized analysis
for situations where the Glauber exchange is important and does not cancel out, such as
in, forward scattering, or to sum logs of z in the small x region. We will use the example
of forward scattering in order to have an explicit context for our calculations, though since
many of the results are valid for operators that appear in other processes, the results
presented here apply equally well there as well.

Since the Glauber Lagrangian couples together soft and collinear modes we can only
factorize the cross section if we expand the Glauber Lagrangian insertions in a Taylor series.
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To organize this factorization we expand the time evolution operator generated by the
Glauber Lagrangian. Written as a path integral the full time evolution operator in SCET is

Ula,b;T) = / [D¢] exp [ / id‘* (LW (@) + o0 (@) ], (8.1)

where L’gnzs =9 4+ E%O) + £9 is the non-Glauber parts of the SCET Lagrangian, a,b
indicate the field boundary conditions at time ¢ = —7T,+7, and [D¢] is a short hand to
indicate the functional integral over all relevant SCET soft and collinear fields. We will
only be interested in the large 7' limit, 7" — oo(1 — 0). All these Lagrangian terms are
leading order in the power counting. Using eq. (5.37) we can expand the Glauber part of
the time evolution operator as

2
T exp i/d4ac Eg(o) (z) = [1 +1 /d4y1 Eg( )(yl) 2'T/d4y1 dYys ﬁg(o) (yl)ﬁg(o) (y2) + .. ]

— 1+TZ Z [H/ / 084 (qLi) + 09 (qus)] (ﬂfz’)}

k=1k'=1
[H Joar [ 08 s + 02 ) o)

Aq1-Ag,B1-+B
Os(}{;,k’k) g k,(QJ_lw"7QLk’)(~fC17...,$k/)

k=1k'=1

where here T is the time-ordering operation. For simplicity we have suppressed the presence
of the rapidity regulator for the Glauber exchanges. In the last equality of eq. (8.2) we have
organized the expansion according to the number of n-collinear operators k, and number of

n-collinear operators k’, rather than according to the number of insertions of the Glauber
Lagrangian. Any symmetry factors like 1/k! are included in the definition of Oi}f‘ﬁ,’“)’Bl"'Bk/,

For example, the first nontrivial term with & = k' = 1 is

Ugp) =i / (o] [da' ] Z dq“““ (094 _(q1) + 0% _(a1)] (@) [025 (¢) + 025 . ()] ()
L

X O 1), (QL7QJ_)($,92 ). (8.3)

Here the soft operator includes both a direct contribution from the two index soft oper-

0)

ator (’);43 from a single insertion of Eg( , as well as a T-product term from the product

Oé”AOf;ﬁB that comes from two insertions of ﬁg(o):

Os(l 1),—k* (ql_vqj_)('%v-i‘/> (84)
! F— 7 SN s i -\ i N
= W(S?(:E—x’) Oﬁéki (QJ_; _qu_)(x) +4¢T Z OST’fk* (QJ_)(.’E) Ozn_BkJr(_q/J_)(x/) .
4,J=4,9
1 5 — 7! iz in A A ’ —i@' P
— (27r)252(m7x)(9§‘f;€i(u, ¢ )(@)+iTe PZ@ (q)(E—7") OZ _k+( ) (0)e P
1,J=4,9
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Here 6%(Z — ') = 26(z™ — ’+)5(x* — 2/7). Note that we have flipped the ¢ sign in
OABki(QJ_, —¢', ) when defining o4 S, 1)(qL,qL)(a: Z') so that both ¢; and ¢/, are outgoing
from the soft operator. For the collinear operators in eq. (8.3) the O(\) soft momenta k*
are residual to the respective large collinear momenta, but show us how these soft momenta
are routed in the collinear operators.

Consider the forward scattering of energetic collinear particles that is mediated by
having a single Uy ;) on each side of the cut. Since here the amplitude is linear in the
number of Glauber exchanges we can refer to this as the linear approximation. We will see
that it is valid to obtain the leading logarithmic resummation from the BFKL equation.
We take color singlet initial states (pp/|, such as proton-proton or quarkonia-quarkonia
scattering, where one hadron is n-collinear and n-collinear. The corresponding non-trivial
transition matrix is

Z (o U]} 1| X)X [U |pp') (8.5)

where the volume factor V4 = (27)%0%(0) must be removed since each of these matrix
elements gives a momentum conserving d-function. Since we are working order by order
in the Glauber Lagrangian these squared matrix elements can be factorized into soft and
collinear components. Below we will analyze these soft and collinear components to pull
out various d-functions and make explicit the flow of momenta. Although this takes some
algebra the answer below in eq. (8.12) is quite intuitive.

To carry out the factorization we must consider the implications of the multipole
expansions of the various momentum scales appearing in (X |U(; 1)|pp’). This is enforced
by the presence of label and residual momenta. First consider the p~-momenta and z
and 2/t dependence. For the n-collinear matrix element we have

iA —tat(pg—Px )2 1 [ —
(Xn|O} - (q0)(@)|p) =0, N L Pr=Pxnr) 6% (gL —px, ) Mn(qL,py 7)),
52 — igtpo _
<X | 9(1 1), ki(ql7QJ_ ‘p ((27'(') )6716*713);'(.6293 PXSVV'MS(quankJﬁyx a) o
~ Lg/t(p'——PZ —
(Xa|O25 (q)@)|p') = e 2 P XA 6% (g — px, )Ma(dLpi 2 ) (8.6)

where the +... for the soft matrix element indicate the T-product term, which has the
same scaling. Here the subscript £ refers to O(A\?) label momenta, the subscript £ refers
to O(A) sublabel momenta, and the subscript 7 refers to O(A\?) residual momenta. After
integrating over 7 and summing on k= we can combine the label and residual momenta
back into a full continuous delta function for the O(A”) momenta of the n-collinear states,
6PZ’P§n25Pe_S’P§neS+P§SeS6(10; - Py, - P);sr) =d(p — P)En) + O(\), where the smaller
minus momenta drop out. For the soft matrix element we have only O(A) and O()\?)
momenta, and hence we can set 7 = 0 in the soft matrix element to neglect these smaller
components in the recombination and can drop the £k~ ~ A sublabel on the n-collinear
operator. Similarly, for the 2/T coordinate that connects the soft and 7i-collinear matrix
elements, it is the O()\) momentum of the soft that dominates over the O(A\?) momentum
of the n-collinear, so we set 2'T = 0 in the fi-collinear matrix element. If we repeat these
considerations for the p™-momenta, and —, '~ dependencies, then we similarly find that
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we can set 2~ = 0 in the soft matrix element, = = 0 in the n-collinear matrix element, and
can drop the kT sublabel on the 7i-collinear operator. For the n-collinear and 7i-collinear
matrix elements this leaves

/dz (X O ﬂ)(w ) p) = 8(p™ —px,)8%(ar —px,)Ma(p ™ q1),

/dw

When we square these collinear matrix elements, two copies of the §-functions with O(\?)

¢ )(;;;"Z) p) = 6" —px, )8 (dL —px, ) Malp*,d\).  (87)

momenta will appear, for example §(p~ — py )0(p~ —px, ) =6(0)6(p~ — px, ). Therefore
one part of the volume factor, V; = 27d(0), will be canceled in the squared of each collinear
matrix element, and we define

0| S forort (g ) (x

7=q,9
= 5AAI252((1J_ — )@t Culqr,p),

ol 5 ) M%ﬂm@w
J=4,9

= 5BB 26%(q, — ¢! qP Cald,p'T)., (8.8)

d:n+(9“4 <£L’+Z> ‘p>

where we’ve introduced the functions C,, and Cy to encode the nontrivial dependencies. By
including the factors of ¢Z and ¢}? on the right-hand-side we are adopting a normalization
where the collinear functions Cj, and Cj include 1/¢? and 1/§}> Glauber exchange poten-
tials. We see that the matrix elements of the collinear operators gives only one combination
of the color indices.

For the soft matrix element (X;|---|0) we are left with the operator
OAB N — (27‘(’)2 d /+d 7OAB / —ﬁ /+E 8.9
s(l,l)(CJJJQL) = 9 Z € xr s(1,1),—k* (quqL) x 2,.’13 9 ( . )
kt
=3 048, (g1, )@ =0)
k:i
n
27r Z/dx”rd:z: T Z (’) < > (’)g"_w( ql)<2$’+>.

1,J=4,9

Note that the soft operators here are unrestricted in their k* momenta labels, which
can be absorbed back into the z= and 2/t coordinate dependence, for example
p OI"A (qL)(z™n/2) = OA(q)(xz7n/2). The squared soft matrix element is then
given by

1 (271—) TA’ B // /// AA'BB’ "

Vo 2 ¢2¢2q]? 0j0 X ’ 0 S ) ’ ’

Vo qquqﬁzqm Xs< ‘ s(1,1) ‘ >< 1 1)(% (IL ‘ > qL (CIL CIL CIL q),
(8.10)
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where V2 = (27)262(0) includes the remaining part of the volume factor, and the prefactor
1/(q? ¢'?) is pulled out for later convenience. The contraction of color indices and L 4-
functions from the collinear sectors in eq. (8.8) allows us to reduce the form of the required
soft function further to

S (QLaQJ_) /dQ " d2 " 5AA’éBB 62((]L QJ_)(SQ((]J_ QT)SAA/BBI(QL,(]J_,(]J_,(]T)

9 45AA’6BB’
_(12 IGiR) Z<0‘OA (00,40 [X)(X[OIT T (ar,d)[0). (8.11)

The 644655 contraction in eq. (8.11) implies that the combined Glauber exchanges on
either side of the cut are in a color singlet state. This linear approximation with one
(Glauber) gluon exchange on each side of the cut is sometimes referred to as the Low-
Nussinov pomeron. In some applications one may be required to consider a color-octet
configuration and/or a L-momentum configuration with ¢, # ¢/ and ¢, # ¢, but we will
not examine a case like this here.

Combining all these results, the squared forward transition matrix at lowest order in
the Glauber exchange is given by

Taa = /dQ(ud2qi Cn(qL,p)SalqL,q))CaldL,p"™), (8.12)

Here Cy,(q1,p~) and Cr (¢ ,p'") are given by the matrix elements in eq. (8.8). Finally, we
note that conjugation relation in eq. (6.8) implies

03?,1)((1@ q.) = Oﬁfn(@li? q1) . (8.13)

n<n

Since we integrate over soft £-momenta to define S¢ (g, ¢/ ) it only has the trivial n-n = 2
dependence on the collinear directions that show up in the soft operator Wilson lines, and
hence its definition implies that it is a symmetric function

Sa(qi,d)) =Sald,q1). (8.14)

Note that here we have not factorized in the scales t and A(QQCD, so the collinear and soft
functions contain both of these scales, with the dependence on ¢ appearing through ¢, or ¢/, .
The factorization in eq. (8.12) for 1(1,1) separates the modes in rapidity, allowing for a re-
summation of In(s/t)’s, but does not include a factorization from expanding in A?QCD Jt < 1.

The result in eq. (8.12) gives a factorized form for the forward scattering process at
lowest order in the Glauber exchange operators, but to all orders in the soft and collinear
Lagrangians, E(é?) and 52%. Therefore the functions Cy(q1 ), Ca(¢) ), and Sg(q.1,¢| ) each
have non-trivial series in «a;. In the next two sections, sections 8.2 and 8.3 we will con-
sider the renormalization of the lowest order transition amplitude 7{; ), which at leading
logarithmic order simply involves the rapidity renormalization of these soft and collinear
functions, and only requires O(a) real and virtual calculations. For the full scattering cor-
rection at this same order in «y, there is also a term with more insertions of the Glauber
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Figure 24. Pictoral representation of the soft-collinear factorization of the lowest order forward
scattering Glauber interaction. This factorization is linear in the Glauber exchange on each side of
the cut and leads to soft and collinear functions whose RGEs are given by the BFKL equation.

operators:

1
Ton +Tap =322 (00 [Uga ) [ XYCX (O], 3y o)+ (o0 | Uy | X ) (XU, [0
X

(8.15)
At this order in as we can either contract both the O} 0! and O%AO%B in Uppy) to
give a Glauber box diagram as in figure 12 or we could attach the two forward collinear
lines in each of OA0"B and O%AO%,B to different partons in the incoming (p,p%| state.
Without additional emissions neither of these contributions has a logarithmic rapidity
divergence, and hence it suffices to consider just 7{; ;) when deriving the leading-logarithmic
renormalization equations.

Introducing the rapidity cutoff v and renormalized collinear and soft functions we have

Ty = /dQQJ_d2Qi CnlqL,p™,v)Sa(qL, d1,v)CaldL, 0" V). (8.16)

The physical picture for this factorization of the forward cross section is given in figure 24.
In the next section we derive the leading-logarithmic evolution equation for the soft function
Sc(qL,q) ,v) and show that it is the BFKL equation. Then in section 8.3 we will derive
the BFKL equations for Cy,(q.,p~,v) and Cy(¢',p'"v) by using renormalization group
consistency.

8.2 BFKL equation for the soft function

In evaluating matrix elements of the forward scattering operator, large logs arise due to the
tension between the collinear modes whose natural rapidity scale is v, ~ v/§ and the soft
mode for which v4 ~ y/—t. Thus the large logs cannot be minimized with a single choice
of the rapidity scale v in the SCET matrix elements. Since the final result is independent
of which v we choose, we will take v = v, so that all the large logs reside in the soft part
of the matrix element. These logs are summed up by running the soft function in rapidity
space from v, to v.. For the calculations in this section we set the IR mass regulator m = 0
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since infrared divergences will cancel in the sum of real and virtual diagrams. We also set
d = 4 since only the rapidity divergences will be relevant for our RGE analysis.

We will be working in the limit where (—t) > A(ZQCD so that we may treat Glauber
exchange perturbatively, but do not attempt to factorize these two infrared scales in the
EFT explicitly. To sum the logarithms at leading logarithmic order (LL) we only need to
consider the k = k' = 1 term in eq. (8.2), and this Glauber operator effectively acts like an
external current. This term yielded the factorization formulae in eq. (8.16).

We label the soft piece of the forward scattering operator in terms of the incoming ¢
and ¢/, such that the lowest order Feynman rule is given by

(0]04F) (a1, 41)]0) = —i8ma(u) 67 7 6*(qL +71). (8.17)

Here Of(]f 1) was defined in eq. (8.9), and this lowest order contribution comes from
O4B(q,, —¢| ) which was defined in eq. (5.38). Thus at the level of the amplitude squared

—

qA' 5 4
: P () _ (2m) 1 AB ABt
(“0 - S¢ (aL.d1) = = m(o\os(m)|0><0\Os(1,1)\0> (8.18)

= (87mas) 2644 (2m)26% (L + q1).

Here the solid vertical line denotes the final state cut. The color factor 644 = N2 — 1 and
the volume factor Vo = (27)26%(0).

To renormalize the Sg(q., ¢ ) matrix element we must consider the O(«;) real and
virtual corrections. The real radiation correction is calculated using the one-soft gluon
Feynman rule of O48(q 1,4, ) (equivalent to the Lipatov vertex) which was given in fig-
ure 6, and implementing the prefactors in the definition in eq. (8.11). We let the outgoing
momentum of the soft gluon be k = —q — ¢/, and note that the multipole expansion for
collinear particles restricts the O(\) momentum flow as discussed in section 5.2.2. This
givesn-q¢ = —n-kand n-qg = —n-k. Summing over polarizations in Feynman gauge, the
square of the one-gluon Feynman rule is

(em)?* 1

AB AB
Ve azar (V0 lak){a(R)|0 [0) (8.19)
8mas)?(dras Sk R pR@? argl?\? L
- _%}MBE’{ABE (qi_q,f*” Oy Tyt ,q;/ —Tq; ) (2m)20% (kL +q1+q1)
a1
8mas)? (dras B . . 472 72 = o
= _%QMV‘A( —n-q'n-q+ (G +q1)° - %) (2m)?6% (kL +qL+qL)
= (sna)? IO 5 o207 (o 41 20)
s (L +q])? 1)

where in the last equality we used the soft gluon equations of motion 0 = k? = (¢ + ¢')? =
n-q¢dn-q—(qL+ cj’i)Z to eliminate all but the last term in the large round brackets, and
to replace the product n - ¢’ 7 - g. Note that this squared matrix element is independent of
the longitudinal gluon momentum. Since the surviving term in eq. (8.19) was generated by
the soft Wilson lines in the operator 0;43 (g1,¢) we must also include appropriate factors
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of the rapidity regulator, giving w?|2k*|~"v". This factor regulates the soft gluons phase
space integral, which is

d—1 _
/ddkC w22k = [ TR gy = [T gz 2oy
2B, E?=k2 o 2k kt=k2/k-
/d-d 2, / dkﬁ_ K)2 — RE[T
2 (2D (= ym .
_ %%ﬁ)y/@“m Rl (8.20)

Here C(k) = 275(k?)0(kP) is the factor from the cut gluon. Putting these pieces together,
and keeping only the 1/n divergent contribution, for the real emission contribution to the
O(a) correction to S¢(q1,q ) we have

s e = Gnaaa,0as (1) [TE rpe i+ v at)
qvi : 1

2
= (87mas)? 40, C 614 w°T <;7> / (frkf (2m)26%(k, + @)

ki —qL)?

Caas o (T])/ d?k (0) /
= w I = —— 557 (kg , 8.21
2 92 (lﬂ —(11)2 G ( 1 QJ_) ( )

where in the second equality we took k L= k | — 1. In the last equality we used d2k, =
d*k, /(27)? and the tree level Sg)) from eq. (8.18).

For the soft virtual corrections we have contributions from the flower and eye
graphs, which we must incorporate at a level where we have not yet performed the k|
loop integration. To obtain results for <O‘O;4(]1371)(q L,qi)‘0> we strip off the factor of

(ﬁnTA%un)( TBVt 7)/(72)? from the soft loop integrands in section 7.1 in egs. (7.15)
and (7.19) and 1nclude a (2m)%6(¢L+q] ). Keeping only the rapidity divergent terms we have

qA:

a*k w?|2k.| 7"V [ Alk (kg )]?
o4 AB 1L (RL 1 2¢/ 1
=2g" Caé E2][(k + )] { o — }(QW) qL+qL) (8.22)
w?D(2)D(52 Eo-(kL+q))? 1 1 ,
P = —i32r%a2C 6" ;3)3/(2 2 )/JQKL[ L_,( J___+qig] [ > —TQ} (277)25(Q’J_+(ﬁ)
q'v: 4 (2ko-qi+a?) Lki+qu)? k?
72 22/412
— 3270’ O 5ABw2F<Q)/J2kJ_ i Ll VL RS E 1T
(ki +qu/2)? (kL — qu/2)?
—2 —
:—i167ra§CA5ABw2F( )/d’k: [‘%— (at)° - }(%)Zd@w‘i).
k2 20ki+qL/2)? (kL—q1/2)

To obtain the third equality we shifted k L= k 1 —¢1 /2 and then simplified the integrand,
and to obtain the last line we partial fractioned the numerator and dropped integrands
that are odd in k| and which vanish in dimensional regularization because they are power
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law divergent. Similarly, for the flower graph we have

. S 2 _

: 442 AB w2k, |7 V1 2erm

4i(4mag)?q? Cud AW T(HI(5D) /ct%
(4m) 21/ P2

1

a2k, §?

= i16ma2 C464Bw T <’2’> / Té‘ﬂ (2m)25(q + q) . (8.23)
1

(2m)?3(q1 +q1)

Combining egs. (8.22) and (8.23) we see that the self contraction of Wilson lines in the soft
flower graph cancels one of the terms in the eye-graph, leaving

g4 :
S qfs S 9 AB, 2 n Cf2]€L (tff)Q ,

. — e "2 i 7 21)25(a) +a’

+ qw: % 13T L A0 "W <2>/(k¢+(ﬁ/2)2 (kL—(ﬁ/Qp( 7)26(7L+q])

) dL2]€J_ ((1'2)2
e = i 8ra? C’A(‘)'ABw2F<n>/_._.l(27T)25((j]_+(fl). (8.24)
av: 2)J R (Fi—d.)? *

The contribution coming from the soft Wilson line and the time ordered product can be
combined to give the full O(ay) virtual correction to Sa(qi,q))

-

q4

gri s : S
2 : e 12 ® (8.25)
Q)

qv:

2(8mag 2015 a?ky (71)? 2o
_ _% C 6Bl <727>/_,2_,L(CI{")2(2W)25(QL+QJ_)
qy kJ_ (kL_QL)

Cyay 9 <17>/ 0 52 (0) /
= — w | = k) —+—— 8 q1,q91),
272 2 LkQ(k‘ 7 )2 G (21, 41)

where in the last line we used d2?k; = d*k, /(27)? and the tree level Sg]) from eq. (8.18).
The factors of 2 next to the graphs appear because we get the same contribution when the
virtual loop appears on either side of the cut.

The results up to O(as) from egs. (8.18), (8.21), (8.25) can be summarized as yielding
the O(as) rapidity divergent correction to the bare soft function,

aC d*k 72
str(and) = 5 an ) + 2250 (1) [P sk - s
1 =4l 1
(8.26)
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The rapidity divergence in the soft function is renormalized by a standard SCET soft
function counterterm Zg,(q,,q’ ) through the convolution

Se(dL,dl,v) = / Py Zs,(au,ky) SE(k L, d)). (8.27)

To cancel the 1/n divergence we require

Lo 2C a5 (p)w?(v) 1 R k', q?
ZSG(QL,/{L) = 52(QL—]€L)— 71_277 (EL_qﬁ‘l)Z —52(ql—kL)/MJ'_J;]1)2 . (828)

The rapidity renormalization group (RRG) equation then follows from the v-independence
of the bare soft function,

d bar d —
0= v S (audl) =v [PhZ5Man k) Solhundiy). (529)

Writing out the derivatives of the two terms and inverting, we find that the renormalized
soft function obeys the RGE equation

d
Vdfysc(ng/b v) = /dzlﬂ Yse (g, k1) Sa(ki,d\,v), (8.30)

where the anomalous dimension is given by

d . _
Vse(q1,q1) = _/d2kJ_ZSG(qJ-7kJ-) v Zgh(ki,d)). (8.31)
Inserting the one-loop result from eq. (8.28) and using (vd/dv)w?(v) = —nw?(v) then
sending w?(v) — 1 this gives
2C 40i5(p) [ 1 L / qt
! 2 / 2 L
Vse(qL,qL) = 5 0 (L —q) [k 8.32
G( L) 2 (QL*QJ/_)2 ( L) 2k}f(ku_—(ﬁ_)2 ( )

Note that this anomalous dimension is not just a function of the difference ¢, — ¢/, but it
is easy to see from eq. (8.32) that it is symmetric,

YSa (QJ_v qj_) = YSq (Qla QJ_) . (833)

The anomalous dimension ~g,, yields an RGE for S¢(q1, ¢ ,v) which is precisely the
leading logarithmic BFKL equation,

2C s (1) /dgh [SG(kL,qLV) 47 Sc(q1,d,v)

d
v Sc(qL,q),v)= (8.34)

d 2

(kL —q1)? QEi(EJ_ —q1)?
The BFKL equation is often [106-108] written in terms of the derivative of a rapidity,
Y = In(v?/p?) ~ Ins. The fact that 9/0Y = (1/2)vd/dv explains our factor of 2 in the
prefactor on the right-hand side of eq. (8.34). Note that in our SCET calculation, the
fact that eq. (8.34) is obtained for the all orders soft function Sg (rather than just the
one-loop soft function) follows immediately from the structure of the effective field theory
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operators and the multiplicative form of the rapidity renormalization in eq. (8.27). In
classic derivations of the BFKL equation, this step is often quite involved.

A derivation of the BFKL equation from an SCET based operator construction
with Glaubers was considered earlier by Fleming in ref. [44]. Although the idea
of carrying out rapidity renormalization of a squared matrix element of soft fields
is common between our two calculations, there are also a few differences, both on
the conceptual and calculation sides. The scattering operator considered in [44] is
O = ()ZﬁS;LTA%SﬁXﬁ)%(XnSJLTa%San), which differs from our OZ?_. In particular,
unlike Of?. | the operator OF" is not soft gauge invariant in SCETyr due to the presence
of the %, which does not allow the soft gauge transformation factors from the two sides
to cancel. This distinction also causes differences for the calculations. In the soft part
of our Regge calculation the ¢-dependence is induced by the time ordered product of two
collinear-soft scattering operators, through the soft eye diagram in figure 21c, whereas
Ol contributes the additional flower diagram. In [44] the soft part of the Regge result
calculated in Feynman gauge comes solely from Op" (the collinear calculations, which
require both quark and gluon operators, were not considered there). For the BFKL
calculation, ref. [44] uses a rapidity renormalization equation analogous to our eq. (8.27),
but with objects depending on the difference of 1-momenta rather than individually on
two L-momenta (the soft operator in our eq. (8.11) was not constructed in [44]). Our final
result for the soft function’s anomalous dimension and the kernel in the BFKL equation,
egs. (8.32) and (8.34), also differ from [44] by a factor of two.

It would be interesting to extend the calculation of the soft functions rapidity anoma-
lous dimension beyond the leading logarithmic level to confirm the expectation that it will
reproduce at the next order the next-to-leading-logarithmic BFKL equation. At next-to-
next-to-leading logarithmic order it is known that the double box diagram [15] breaks the
expected form for the Regge factorization of the virtual amplitude [53, 54]. This contribu-
tion is precisely the 3 Glauber exchange double box graph in our language.

8.3 BFKL equations for the collinear functions via consistency

At leading logarithmic order the v dependence in the soft and collinear functions of the
transition matrix 7(;,1) must cancel, so

d B
v /dqud2ql Cnl(qi,p™,v)Sc(q1.d1,v)Ca(dL, Pt v) = 0. (8.35)

This result suffices to derive the L. RGE equation for C,, and Cj, which will also be given
by BFKL equations. Generically, the form of the SCET matrix elements implies that we
can have

d _ _
VECn(anp 7V):/d27ﬁ Ye(qi, ki) Colki,p,v), (8.36)

d
v Calas, ' v) = /d% vo(qr k) Calko,p't ).

Note that the same anomalous dimension ¢ (g, k) ) appears for both collinear functions.
This follows from the fact that C,, + Cj if we take n +> 7, and that the anomalous
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dimensions cannot involve convolutions in the large conserved collinear momenta, and hence
are independent of n and n. To exploit eq. (8.35) it is useful to write the RGE for the soft
function in a symmetric form. As noted in section 8.2, both Sg and g, are symmetric in
their two arguments, so the BFKL equation for the soft function can be written as

d , . 1.d ) 1 d )
V@ SG(qJ_anJV) - 2de SG(qanL?V) + 2de SG(QJJQJ_)V) (837)
1
=3 /dg/ﬂ [VSG(QL,M)SG(M,QLV) + SG(quL,V)WSG(/ﬁ,QL)] -

Plugging eqgs. (8.36) and (8.37) into eq. (8.35) we then have

0= /d2fud2qlﬂl2h [Cn(k‘bp_,v)vc(ﬂ,k‘L)SG(QL,QLV)Cn(q/mp”@’/) (8.38)

+ Culqr,p,v)Sc(qr,d,v)ve(d kL )Ca(k,p' ™", v)

/+

1 _
+ §Cn(ql7p ) V)VSG (QJ_v kJ_)SG(kJ_a q/La V)Cﬁ(qup ) V)

1 _
+ §Cn(QJ_7p ’ V)SG(QJ_7 kJ_a V)PYSG (kJ_a qg_)cﬁ(QS_va_v V)

Swapping the integration variables k| < ¢ in the third line, and k; <> ¢/, in the fourth
line, we see that this equation can only be satisfied for arbitrary C),, Sg, and Cy functions

if FYC(QJJ kl) = _%75G (kla QJ_) and ’YC(q/Lv kl.) = _%’)/SG (q/Lv kl_)v which 1mphes that Yc is
also symmetric in its two arguments and given by

1
Yolqi,q)) = —5 Vse(au, qy). (8.39)

Therefore the RGE equations for C,, and Cj are also given by a BFKL equation. Writing
this out explicitly we have

d - C Qg Cn k , P,V 72 Cn , P,V
v—-CnlqL,p™,v) :—"‘2/d2kL [ (kL P 2) 4l (17" 2)
m (k1 —4q1) 22 (ky — 1)

8.40
dv ) ( )

and we will also have the same BFKL equation for Cz(q.,p",v). Note that there is a
factor of (—1/2) for these BFKL equations for the collinear functions as compared to the
soft function in eq. (8.34). The sign comes from the fact that the collinear functions run in
the opposite direction in rapidity space, from v ~ p~ = /s down to v ~ v/t, and the 1/2
comes from the fact that two collinear functions must balance against a single soft function.
Again both virtual and real collinear diagrams contribute if we compute the diagrams
needed to directly determine these collinear RGE equations. The direct computation for
the virtual contributions was carried out in section 7.2 and agrees with the factor of (—1/2)
that we determined here by the renormalization group consistency argument.

9 Glauber exponentiation and (non-)eikonalization

Below in section 9.1 we carry out the all order resummation of Glauber boxes in for-
ward scattering, demonstrating that the rapidity regulator yields an eikonal phase. In
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section 9.2 we derive a spacetime picture along with explicit rules for when graphs with
multiple Glauber exchange vanish, and determine general rules for when the eikonal approx-
imation can and cannot be used. A precise connection between the dynamics of Glauber
exchange and the semi-classical and shock wave interpretations of this scattering are made
in section 9.3.

9.1 Glauber exponentiation for boxes with rapidity regulator

In section 5.2.1 we showed how the rapidity regulator leads to a well defined integral for
the one-loop box and cross-box graphs, with the latter vanishing. In this section we will
sum up all the Glauber exchange box diagrams with the rapidity regulator, and show that
the eikonal phase is correctly reproduced. The connection of this sum of diagrams to the
classical coherent state generated by each of the collinear partons is explored further in
section 9.3. In the abelian limit soft contributions vanish and the phase can be reproduced
at the integrand level, as demonstrated explicitly in appendix C.1.

We begin by noting that the argument given in section 5.2.1 for the vanishing of
the one-loop cross box holds for all non-ladder type topologies. Rapidity divergences are
regulated by factors |2kf|~"---|2k%|7", so we can consider the k! integrals to be done
by contours without concern that the remaining integral might be unregulated. For any
diagram with one or more crossed Glauber exchange lines there is one or more k‘? integrals
for which the poles are all on the same side of the real axis (and converge at co). Thus,
all diagrams with crossed Glauber rungs vanish with our rapidity regulator, and we only
need to consider the sum of the ladder graphs.

To show exponentiation we will manipulate an N-Glauber exchange diagram into the
product of single exchanges with a factor of 1/N!. The product form arises when we
transform from ¢, to the impact parameter space b, . In impact parameter space we will
see that the amplitude from iterated Glauber exchange is simply determined by a phase,
given by the Fourier transform of the 1/ qﬁ_ potential between particles 1 and 2:

d_d_qu L€ 2e id L
o0,) =~ o T o) [T (9.1)
i
(=€) ( plbyler=\*
:—TA TA 2 )
1 ® Ty g% () o < 5

The result is a matrix in the color space with T4 and T4 being the color matrix generators
that commute with each other, and act on particle 1 and 2 respectively. This color matrix
notation is by now quite standard, see appendix A of [109] for an introduction to this
notation. Recall that d = 4 — 2¢ and that (© = 2 /(47)¢ is our notation for the factor
that enters with each p?¢ when the coupling is in the MS scheme. The I'(—¢) infrared
divergence will be discussed further at the end of this section.

The exponentiation results derived below hold equally well when iterating Glauber
exchange potentials between quark-quark, quark-antiquark, quark-gluon, and gluon-gluon
channels, and for cases where the scattering particles are n-n, n-s, or n-s. To be definite
we consider quark-antiquark n-n scattering, where

T Ty =TT, (9.2)
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For convenience we define the Fourier transform operation as the application of the inte-
gral:

== = /ddqu_ eidLbe (9.3)

F.T.,
The Fourier transform of one Glauber exchange result is then given in terms of ¢(b ) by

D2 p3
n-—r--e—>-n

. _ _Qng — % A 777;’14 B . nn
qu = Cff |:Un2T Un UngT (%7 FTi lqb(bL)QS ) (94)

N —<o—<—11
2 2

where the spinor factor is

S = [anZun] {aﬁ?vﬁ} , (9.5)

and the 2 in eq. (9.4) comes from n -7 = 2, which is the factor needed to make S RPI-III
invariant. In eq. (9.4) the color matrix inside ¢(b,) operates on this spinor product. In
general we will let

i

(TAr ... TAN) @ (T4 ... TAN) ™ = [@nQTAI . 'TANUn:| [ﬁﬁZTAl c L TANy | = 88@) ,

(9.6)
which is the color structure that appears from N Glauber rungs. We also define the
product rule for the matrix multiplication in ¢~ (b1 ) via (T4 @ TH)NS™ = SZ{;‘). These
same definitions apply equally well for a general choice of scattering particles in different
color representations, using (T{‘ ® T‘;)N times a generic S™".

The loop integrals are carried out by doing the energy integrals by contours, and then
treating the k7 integrals in Fourier space. Therefore we need to transform the 7 regulator to

Fourier space, as well as the k* dependent propagators. To do this we can use the transforms

JFOO . z ’]7 o . z ’)7
/ ak? e |2k7| 71 = g, 3 ||~ / de e K, 3 |1 = 2k (9.7)

oo dk? eiiakz . oA > iak? - oA 1
/_OO kz—i—A—i—iO__Ze(a)e , /_Oodoze (—i)f(a)e = T AL
where
_ sin(mn/2)
kp=2""TT1-n)——5-=1+0(n). (9.8)

(mn/2)

Another integral that will be relevant is the Fourier transform of (N + 1) Glauber rungs,

/d-d—qu Qi1 b1 / d“d‘iku_ e d 2k (LEH25)N+1 09
(ko +qu)" (kar — ki)™ (Bve — Evny) k2L

N N+1 2e
_ d—2 iq, b d—2 d—2 T(—¢) (plrjole®
_/J qLGQL L/[H(I ]{j”_:|‘/|:]‘_[dr ’I"jJ_T JT

i=1 j=1

% e*i(tﬁﬁrlzu_)‘?u_e*i(’zzj_*ku_)‘?u_ . ,e*i(gNJ_*k<N71)L)'?NLe“;NJ_‘F(N+1)L

N+1 I'(—e) I le™ 2¢ .
= [ TL a2 B (M) o2 = 515" = ) o6 v = )
j=1

- [ (il ),
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First consider redoing the box graph considered in section 5.2.1 using this Fourier
approach. After performing the energy integral by contours, defining 2A = p5 + p; —
(ki +p31)%/p; — (ki — pa1)?/ps, and then using eq. (9.7), we have

n_)_ ko P Lo n
. o _ d—2 z z|—n z|—n,,2n 2€, 4e
k1+qf: kgl :—4ig4(TATB®TATB)S""/(I ki dRT ([2k5] 772K 7T
: : ke (ki +q1)? 2(—ki + A +10)

€O —c—O—-
n 1= D4 n

2 0 . 2z Lz
= —2¢"Si} 1'V(q )(nng) / ak; da dy do 0(a)|zy| T PRI AR (2my)

= —2¢'S(5} Im(u)(n 7) / dz dy (y — ) |zy| "1+ AW

=257 %10 (a2) o [14+0)] (9.10)
where we defined i pers
1M(qy) = / b (s )2 . (9.11)
ku_(klj_ +q1)

To get to the third equality in eq. (9.10) we performed the dk7 to get a d-function, and then
did the da integral. For the last equality in eq. (9.10) we note that due to the presence of
the n? in the prefactor, only the ultraviolet 1/n? part of the integrals from z — 0 and iy — 0
contributes at leading order in the 7 expansion, and therefore the result is independent of
A at this order. The integral can be done directly, or we can note that the limit x,y — 0
allows us to symmetrize the theta function as, 0(y—z) — [0(y—x)+0(z—y)]/(2!) = 1/(2!).
Performing the L Fourier transform of the integral in eq. (9.11) using eq. (9.9) we find

n_)_'_k_)lfs 0—>-n
1 . 2 nn
1+qf: —k:lfE g a[zgﬁ(bL)] 28" . (9.12)

"“:'Elf}i"*h
As anticipated, comparing eq. (9.12) to eq. (9.4) we see that this is the second term in the
expansion of an exponential.
Next consider the double box diagram. Again performing the contour integrals over
the energies, and then using eq. (9.7) we find

n_)_ _k_ﬁ;g?d_'_kﬁps _._)_n

: : . dki dks |2k7|77|2k7 — 2k5| 77 |2k5| A
kl+qf: kz-k;lf; —sz. — _8igSsnn (2 / 1 %hg 1 1 2 2

: 19" S(z) 17 (q1) 4(=kF + Ay +140)(—k5 4+ Ag +i0)
_—<—o°— 0——4- - —-

oo 3
= QigGS("g’_)’ I(f)(qL)/ Ak dks dx dy dz doq dag 0(0n)0(az) (Hn;’) |lzyz| =17

ikfm i(k;—kf)ye—ikgz ial(kf+A1) ioa (k3 +A2)

_21968 2)(QJ_) (Hn ) / drdydz0(y — x)0(z — y) lzyz| "1 W2 A1 giz—)A2
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1
= —285 i%g° 1P(q) [1 + O(n)} : (9.13)

where to obtain the third equality we performed the £} and k3 integrals to get d(x —
y + a1)d(y — z + ao) and then performed the a; and ay integrals. Again due to the 73
term in the prefactor only the leading ultraviolet divergent contribution from the dxdydz
integral contributes, which comes from the limit z,y,z — 0 where the A; = A;(k11) and
Ay = Ay(ky, ) dependence drops out. In this limit we can either do the integral directly
to give the 1/3!, or note that we can symmetrize as 6(z >y > x) — [0(z >y > z) + 0(y >
z>x)+0z>x>y)+0x>z>y) +0(x>y>z2)+0y>z>2)]/3!)=1/3.
Everywhere in eq. (9.13) the L integral is contained in

2 2 €,,2¢
2 a4k 1 AT %ky )
)= [0 i (9.14)
(ks +qL)2(kor — k11 )2 k3,
Performing the L Fourier transform of this integral using eq. (9.9) gives
n+ N 33 o kz pi__._,_n
1 3 -
LAY LA = —|ig(b 28™" 9.15

—<o— «——o’——«-—-‘—<—_
k‘l—p1 kz'p’l n
which is the third term in the expansion of the exponential.
This naturally generalizes to the case of the N-loop box graph with (N 4+ 1)-rungs.
Doing the energy integrals by contours and using eq. (9.7) we have

. o—k—lﬂ)s—c———-o—kl;ps—o—ﬁl
1+qf: kz-/flf: :fke\r—ky.l:f-kz\
€O —O——— O —<— O
n kl'p4 k.\"p4 n

LAk |2KF (2K5 —2k3) - - - (2k%,_y —2k%)2k%, | VN
ON(—k% + Ay +i0) - (—k3 + Ay +i0)

; nn dki--
= =2 Sy 1) [T

N+l r4oor N N+1
= 2PN (=) VS 1<N>(qL)<mn’27) / [Hm dov; 0(cv; } { H daj |a;]” 1*"]
- 1=1 N
m=1
n N+1 p4oopN+1
Jj=1 N
X O(xg—x1)0(z3—22) - O(x N1 —2ZN) €Xp [ Z A (Tmg1 — xm)}
m=1
(i 2\N+1 (V) 1
= 2=ig? )N Sl 1 00) gy [+ O]
lip(b, )]V 257, (9.16)

Fr. (N4 1)
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where to take the final Fourier transform we used eq. (9.9) for the integral

I(lN)(qL) :/ ( a2k - d 2k (LENQE)N"Fl 0.17)

Fii+10)% (ko — k)2 (g — kFoven )2 k2

The final result in eq. (9.16) is the (N 4 1)’th term in the expansion of the exponential.
Therefore the sum of Glauber box graphs for 2-to-2 n-n scattering exponentiates to give

/dquJ_ eidLbs > GBox " (qL) = (G(by) —1)28™" (9.18)
N=0

where the position space Glauber function is given by
G(b,) = s (9.19)

and where the the color matrix phase ¢(b ) defined in eq. (9.1) is a Hermitian matrix. For
convenience we also define the momentum space Glauber function

G(q) = /d2bJ_ et bL gid(bL) (9.20)

In SCET the results for the sum of Glauber boxes given by egs. (9.19) and (9.20) are valid
for any color channel, simply taking T4 @ T4 — T ® T4 in ¢(b, ). The same (e??®1) —1)
result is also obtained if we consider the sum of box diagrams for the soft-n two-parton
scattering since the Glauber light cone momenta will still be parametrically smaller then
corresponding soft momentum.

It is interesting to pause to consider physically what the |2I<:]Z-|_’7 factors are doing in
the N-loop box graph in eq. (9.16). At finite 7 this regulator implies that the Glauber
exchanges are not instantaneous in the corresponding longitudinal position. (They are still
instantaneous in time.) Diagrammatic calculations are easy to interpret in position space,
where these regulators were transformed to factors of |z;|~'*. Each of these longitudinal
coordinates x; corresponds to the location of one of the Glauber exchanges. Hence, they
spread out with a string of increasing longitudinal coordinates x1 < z2 < ... < Ty+1,
where the #-functions inducing these inequalities are provided by the collinear propagators
between the Glauber exchanges. However each position space regulator also comes with a
factor of (k,7/2), and hence only the most divergent part of the x;-integrals contributes to
the final result. This divergent contribution comes from the simultaneous limit where all
coordinates x; — 0, restoring the physical picture of the Glauber exchanges being simul-
taneously instantaneous in their longitudinal positions. From the calculation in eq. (9.16)
we see that the ordered nature of the instantaneous limit is important for providing the
correct 1/(N + 1)! factor for (N + 1) Glauber exchanges.

While the phase ¢(b) ) in eq. (9.1) has an infrared divergence, this is simply an overall
phase in the scattering amplitude and hence drops out from the physical forward scattering
cross section. To see this explicitly we switch to using the (slightly simpler) gluon mass IR
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regulator setting d = 4, so with unspecified color channels for the forward scattering states
dLQ L -
60) =T & T () [ 5 Loy el (921)
qL +m

|5l|m67E>

=2T7 @ T4 as(u )ln( 5

Then taking the inverse Fourier transform of eq. (9.18) we get
Z G.Box3%7%(q1) = 28" [G(q1) — (27)%0%(q1)] (9.22)

The momentum space Glauber function corresponds to the sum of Glauber exchange dia-
grams, including the diagram with no-exchange,

G(qy) = (2m)%0%(q1) + /d?bL o—i01b1 (¢9b2) 1) 0.23)
idmé og(p) T(1+ ¢ o () ( 4 >—iéas(y)
¢ [ (1—iéas(p)) \m2etre

= (2r)8(qr) + T8 st

= (2m)%6%(q1) +

where t = qi = —(j’f < 0, and we defined the color operator
¢ =T @ Ty, (9.24)

It is implicit that the (27)20%(g1) term in eq. (9.23) has a unit matrix in the color space.
The momentum space phase appearing in eq. (9.23) is given by the hermitian expression

1)k+1
o(t,as) = —¢as(u) In ( ) +2Z o ff’““ (Eas(u) ™, (9.25)

and is again an operator in the color space. From eq. (9.23) the result for the scattering is
given by the lowest order Glauber exchange potential (tree-level) times a phase. Unlike in
position space, this momentum space phase § is an infinite series in «g. Since the infrared
divergence only appears in ¢, it will drop out of physical predictions for scattering cross
sections (just like the IR divergent Coulomb phase for scattering with a Coulomb potential
drops out of the cross section). For later convenience we also define a notation for the
O(as) contribution to G(q, ) as

G(q.) idmeas(p)  —ig(p) é

= = — , 9.26
Z 7 (9.26)

where we have the relation
/ a2, 5L G0(q,) = ig(b.). (9.27)

Note that the same results for the summation of box graphs is obtained for situations
where the small plus and minus momenta of the collinear lines are not equal, pj # pi
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and p; # p, or where the exchanged l-momentum is not evenly split, 172l #* —pgL and
pf #* —pj. The only place that pi;s and pfA appeared outside of ¢; was in the A;
factors in the collinear propagators, but the result was independent of these factors. When
qt = pgr —py #0and ¢~ = p; —p; # 0 we have both a modification to the A; factors,
and nonzero exchanged momenta ¢* and ¢~. The smaller ¢7¢~ < qf_ do not modify the
Glauber potentials, and again the change to A; does not effect the result. So the only
possible change induced by the nonzero g% is to the rapidity regulator for (say) the first
rung of the ladder graphs. However, as in the case of A;, the dependence on g% is higher
order in 7. This implies that the same results for this summation are obtained even when
the ladder graphs are considered inside of another loop in SCET, as long as that additional
loop does not need a rapidity regulator. To leave the n and 7 collinear propagators nearly
onshell the extra loop can only have Glauber (or ultrasoft) scaling. We will exploit this
property for some of our calculations in section 11 below.

The independence of the A; in eq. (9.16) implies that the collinear lines in these box
diagrams are effectively behaving as if they were eikonal and hence classical. However, we
stress that this is not a general property of collinear propagators in the presence of Glauber
exchange. Examples where it is not true include those in the next section, those for specta-
tor interactions with a hard scattering vertex discussed in section 11, and for mixed graphs
containing a 1/7n from a soft or collinear loop where the O(n) term from the Glauber loop
integral in eq. (9.10) or eq. (9.16) must be considered. The fact that the Glauber box dia-
grams are classical can be understood by noting that the Glauber potential is classical and
that, as long as we consider only two to two scattering the partons effectively act as classical
sources. This will no longer be true when we consider scattering between hadrons where the
open ends of the box are closed off by the interpolating field for the hadrons, since in this
case the transverse momentum dependence in the collinear lines can no longer be ignored.

It is interesting to ask about higher order corrections to ¢(b, ), and in particular about
the form of higher order non-abelian corrections to this phase. Non-abelian corrections at
one-loop can be generated by the soft and collinear loop graphs shown in figure 21. The
Boln(u?/ — t) logarithm associated to the running of the () that appears in the lowest
order ¢(b] ) comes from the soft sector and must exponentiate in the same manner. For n-n
scattering it is actually clear that the full one-loop soft result in eq. (7.23) will exponentiate
when it is iterated as a kernel for Glauber loops, because the Glauber loop momenta
k:li ~ O()\?) are parametrically smaller than the soft momenta, and hence pass through the
soft loops without changing their results. For these graphs the Glauber loop integrals lead
to i /N! just as they did for the Glauber potential box graphs. For the collinear loops,
it turns out that the parts associated to rapidity divergences will also exponentiate in this
same manner, as they must do so to insure the cancellation of the rapidity divergences.
It is not clear whether the full contributions from n-collinear loops will exponentiate since
the collinear and Glauber +-momenta are both O()\?), and hence the fact that Glauber
loop momenta pass through the collinear loop integral could change its result.
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Figure 25. Graphs with multiple Glauber exchanges that occur at distinct light-cone times vanish,
including the virtual graph a) and real emission graph b). Graphs like c), d), and e) with multiple
Glauber exchanges that can be collapsed to the same time and longitudinal position do not vanish.
Graph c) contributes to an effective form factor leaving a factorized eikonal form. Graphs d) and
e) are examples where the Glauber exchange attaches to different particles which exist at the same
light-cone times. The second figure in e) is the same graph, but is time ordered.

9.2 Longitudinal constraints and eikonalization

Let us now consider how collinear and soft corrections, both real and virtual, affect multiple
Glauber exchange contributions. As we will see below, the possible corrections to Glauber
exchanges is restricted by a spacetime constraint, causing many corrections to lead to a
vanishing result. We will also determine the general criteria for when a collinear or soft
propagator within a Glauber loop may be treated as eikonal.

To build up the physical picture, we start by considering the diagrams in figure 25 which
involve n-n forward scattering with additional collinear loops or radiation. In figure 25a we
have a collinear gluon radiated with Glaubers attached both before and after the radiation.
Recall that the Glauber loop momentum scales as (n -k, 7 -k, k1) ~ (A2, A2, \), and hence
does not change the large momenta of the collinear lines. For this real final state emission
we have - py > 0, n-py > 0, and 7 -p3 = n - (p2 — pg) > 0. Therefore there are two
n-collinear quark propagators in the Glauber loop, which has the form

—2n 2
figure 25a = (pre)/d‘dk; — . (Jk=|~27v?7) Num(k,) ]
kf(kl_iL) [n-k;—Al—i-iO] [n-k—A2+iO] [ﬁ.k+A/1_Z'0]
-0 (9.28)

where the prefactor, (pre), includes the couplings and color structure, and the numerator
Num(k, ) and A factors only depend on the k; loop momentum. Here the dk’dk? integra-
tion gives a vanishing result since there are two n - k propagators with the same +:0, as
discussed in detail in appendix B.2.

Next consider a collinear loop which interrupts two Glauber exchanges, as in figure 25b.
If we consider carrying out the collinear n - £ integral by contours, we find that the integral
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is nonzero only for 0 < n-£ < 7+ py, thus ensuring that all collinear quark propagators have
positive large momenta, - po > 0 and - (p2 — ¢) > 0, and that the virtual collinear gluon
has positive light cone energy n - £ > 0 and is traveling forward in light-cone time. Hence
once again we have two n - k dependent n-collinear quark propagators with the same 410,
as in eq. (9.28), and the dk’dk? integration vanishes. The collinear gluon vertex in the loop
interrupts the Glauber loop in the same manner as for the collinear radiation graph. Note
that in either of figure 25a,b, if we had instead attached the rightmost Glauber exchange
to the n-collinear gluon, then the graphs would again vanish for the same reason.

On the other hand the diagram in figure 25c is non-vanishing. Here there is only one
pole in kT and k™ for the Glauber loop, and it gives the same result as for the box diagram
in eq. (9.10). Indeed, one is free to add any number of Glauber exchanges between the
collinear vertices, which simply builds up the higher order terms in the Glauber function
G(q1), so this type of amplitude can be written as

F™(qu)[G(qr) — (2m)%6%(q1)], (9.29)

where F"(q ) is a one-loop abelian form factor for the n-collinear line. In this non-vanishing
result the eikonal approximation arises in the same manner as in section 9.1 for the internal
collinear propagators participating in the Glauber loops. The collinear propagators outside
the Glauber loops are not eikonal. The same form would also be obtained if we iterated
Glauber exchanges solely between the n-collinear gluon and the n-collinear antiquark.

In contrast, non-vanishing diagrams such as figure 25d do not have collinear propaga-
tors that can all be described by the eikonal approximation. Using the momentum routing
shown,

—2 2
figure 25d = (pre)/d’dk; _ ; (k2| =27 v27) Num(k ) )
F2(kL—qu ) [nk+ AL —i0)[n-k— Ay +i0] [k + A} —i0]

_ (pre) oy Num(k, ) 9.30
1 / CR2(EL 7)) (A + A —i0)] (6.30)

where the steps for carrying out the dkdk? here are described in detail in appendix B.2.
Here (pre)= 4¢°ifABCTPTE @ TPTA and Num(k,) depends only on external momenta
and the k; loop momentum. The A factors depend on k; and are given by

(ki +p31—q1)> =, (Ei—p11)?

_n.pg7 AIZ — _n.p37 1:7—77-1)1.
n - Pg n-p3 n-pi
(9.31)

The presence of the (A; + A)) propagator in the remaining k, integral in eq. (9.30),

;o (kl_ﬁgl)Z
11— -

indicates that here the non-eikonal nature of the n-collinear propagators was important.
Since A} does not appear, the fi-collinear propagator can still be treated as eikonal. The
same conclusion that non-eikonal propagators are necessary is also obtained if we consider
the collinear loop graph where the radiated n-collinear gluon in figure 25d is reabsorbed by
the n-collinear quark after its Glauber attachment. Furthermore, this need for non-eikonal
collinear propagators is also true even in an abelian theory, where it occurs for the diagram
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in figure 25e. Both of the diagrams in figure 25d,e involve a k| convolution between the
Glaubers and the collinear source function.

To determine in a simple manner whether or not a graph with multiple Glauber ex-
change does or does not vanish, we use time-ordered perturbation theory (TOPT) to order
the vertices in a diagram. Usually one would utilize light cone ordered perturbation the-
ory (LCPT ) when analysing high energy scattering, as it greatly reduces the number of
relevant diagrams [110]. However, when we factorize in rapidity space we necessarily break
boost invariance via the rapidity regulator. With our regulator in place we can perform
the energy integrals by contours, but not the light cone momentum, leading to a set of
time ordered diagrams. Notice that the advantage gained using LCPT, via the reduction
in the number of diagrams, is maintained in TOPT when working in the EFT because the
propagators are linear in energy for these Glauber loops. The regulated Glauber exchanges
with |k7| ™" also remain instantaneous in time. Next we transform the longitudinal integrals
k7 to position space, and thereby assign a longitudinal position label z; for each Glauber
exchange in a TOPT diagram, as was discussed in the previous section for the example in
eq. (9.16). Since each transformed Glauber exchange comes with a prefactor of (1/2), only
the most divergent part of the z; integrals can contribute. Furthermore, anything that
interrupts these longitudinal integrations, causing them to become less divergent, will lead
to a result that vanishes as n — 0. An interruption of this type occurs if there is a vertex
that unavoidably inserts an additional longitudinal position in the midst of the burst of
Glauber gluons, and therefore stops them from coming together to yield a leading short
distance divergence. The “collapse rule” therefore states that:

Graphs with more than one Glauber exchange will vanish unless the exchanges
can be moved towards each other unimpeded, so that they all occur at the same
longitudinal position zy for both sources.

This ordered collapse corresponds to the instantaneous limit x; — zg for every i. After
taking this limit the Glauber exchanges are now instantaneous in both time and longitudinal

1 or equivalently in T and #~. This reproduces our original physical picture

position,
regarding the instantaneous nature of Glauber exchange. This general rule applies for
diagrams with any number of loops or with additional radiation. If we replace one of the
collinear sectors by soft particles then the same argument holds, or simultaneously have
{n,s,n} particles, then again the same rule regarding Glauber loops also holds true.

For the simple diagrams in figure 25a,b,c,d there is only one non-trivial time ordered
diagram. For the graphs in figure 25a,b the collapse to equal longitudinal position of the
two Glauber exchanges is impeded by the collinear gluon vertex which sets an intermediate
position that stops the Glaubers from coming together, so the graphs vanish. In other
words, the integral over the longitudinal positions vanishes unless all the positions collapse

to zero, but theta functions from the collinear propagators enforce a definite ordering which

"For n-fi scattering the longitudinal position is (n - — @ - x)/2. For the more general case with n; and
n; collinear particles, the “longitudinal position” for this discussion is defined by (n; - — n; - )/2. See

also egs. (5.1) and (5.2).

- 110 —



forbids this collapse. This is worked out explicitly in eq. (B.7) of the appendix B.2 yielding
for the integral appearing in eq. (9.28):
)z —2n,,2n
/d»kod»kz : ’ k | v : _ :
(k* — Ay +140) (kT — Ag +40) (k— + A} —i0)
. 2 +00

= —i </{,7727> /dd_Qk/ dx1dxada H(xl—a)e(a—xg)]xlxgl_Hn [1 + (’)(n)]

=0(n). (9.32)

Here « is the intermediate coordinate that interrupts the collapse, leading to a less divergent
integral. In the graphs in figure 25c¢,d,e the collapse to equal longitudinal positions is
possible and the results for these diagrams do not vanish as n — 0. For figure 25e this
is made clear with the second way of drawing the same diagram, namely that the non-
vanishing contribution occurs when the time ordering is such that the central n-collinear
propagator corresponds to an antiquark.

Note that the collapse rule does not imply that a soft exchange between Glaubers will
lead to a vanishing result. As an example, if we consider the H-diagram in figure 14a,
the light-cone time scale for the soft momenta is short (~ A~!) compared to the Glauber
exchange time scale (~ A72) and thus the longitudinal positions of the Glauber exchanges
can coincide. The ¢ loop momenta only appear in the soft gluon propagator, and thus
effectively the soft gluon has a tadpole like integral in these variables. However, this does
not localize the transverse coordinates corresponding to the soft loop momentum K’i ~ A
and the H-diagram type topology persists for the £, and k| integrals.

It is also straightforward to identify rules for when a collinear or soft propagator inside
a Glauber loop can be treated as eikonal. First let us determine under what conditions
the integrals vanish by considering the momentum space propagator structure. Consider
an arbitrary loop graph, with one Glauber loop momentum £*, then the general structure
of the propagators is

|kz|7277 V2n
/d‘ko dk?
[n-k—A1+i0] -+ [n-k—Ap,, +i0] [n- k+ A —i0] -+ [n-k+A]_—i0]
1
8 [ k—A1+i0] - [0 k—Ap, +i0] [ - k+A]—i0] - [ - k+ AL —i0]

. (9.33)

Here the various As depend on the k| loop momentum, but not on k% or k*. On the
n-collinear side we have n, propagators with a +i0 and n_ propagators with a —¢0, and
similarly on the n-collinear side we have n4 propagators with a 430.

Let us first enumerate all the situations where the one-loop integral in eq. (9.33)
vanishes. If any three of the indices {ny,n_,ny,n_} are zero, so that there are no
propagators of that type, then it obviously vanishes. Next consider cases where two of
these indices are zero. If all the poles are on the same side for the kY contour integral,
namely ny = ny = 0 or n_ = n_ = 0, then the integral vanishes. If all the poles occur
in one of the two collinear sectors, np = n_ = 0 or ny = n_ = 0, then the integral also
vanishes. Here performing the k° integral by contours we either immediately get zero, or
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we get an integrand that other than the regulator is independent of k*, and hence vanishes
since [ dk?|k*|=27 = 0. Finally we could have poles on opposite sides of the k° contour
in the two collinear sectors, ny =n_ =0 or n_ = n4 = 0. In this case the only situation
where we get a nonzero result is when both of the remaining nonzero indices are = 1. If
both of the remaining indices are > 1, such as when ny =n_ =0, n_ > 1, ny > 1, then
after closing the k° contour we are left with an integral in k* that converges at infinity (so
we can drop the regulator), and vanishes by contour integration. Next consider situations
where only one of the indices vanishes. Again in this situation, the other index in that
collinear sector must be = 1 to obtain a non-vanishing result, since after closing the k°
contour in the opposite direction, only this propagator has k* dependence. Thus the
analysis is identical for this case. So the integral will vanish if (ny = 0 and n_ > 1),
(np =0and ny > 1), (ny =0and n_ > 1), or (i =0 and n4 > 1). To summarize, the
non-vanishing cases where either exactly two or one index is zero we have:

e non-vanishing 1-loop Glauber integral with exactly two indices zero (2 cases):
ny =n_=0and (n_ =1and ny =1), (9.34)
n_=n4 =0and (ny =1and n_ =1)

e non-vanishing 1-loop Glauber integral with exactly one index zero (4 cases):
ny=0andn_=1, n_=0and ny =1,

fy=0and n_ =1, n_=0and ny =1.

An example of a non-vanishing Glauber loop integral where one of the indices was zero
was given in eq. (9.30). If all four indices are nonzero then the integral will not vanish.

If the Glauber integral in eq. (9.33) does not vanish, then we may ask the question when
do the propagators that appear in the loop integrand, and depend on k° and k?, behave as
if they are effectively eikonal? We will consider eikonalization in each collinear direction
separately. The rules for eikonalization for propagators associated to these nonzero loops
are quite simple:

ny +n_ > 2, non-eikonal nye +n_ > 2, non-eikonal ,

ny+n_=1, eikonal , ny+n_=1, eikonal . (9.35)

To prove this consider the four cases. If both ny +n_ > 2 and n4y + n_- > 2 then we
write dk%dk* = (dk*dk~)/2 and can set n = 0 and perform the k™ and £~ integrals by
contours, since both integrals are convergent at infinity. The result will depend on both
the A") and A() factors, and hence neither side eikonalizes (since we get two factors of
i this non-eikonal result is imaginary). If n, + n_ = 1 and ny + 7 = 1 then we have
precisely the integrals considered in section 5.2.1, where the |k*|~2" regulator is needed.
Here the k¥ contour integral gives zero if both poles are on the same size. If the poles
are on opposite sides it gives a result that is equivalent to having both the n-collinear and
n-collinear propagators be eikonal at O(n"). Next consider the case where ny +n_ = 1
and ny + n_ > 2. Here the |k*|~27 regulator is required to make the k* integration well
defined, and forces us to consider the k? contour integral. Considering the k° contour
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Figure 26. Two loop example with multiple collinear lines and Glauber exchange.

integral in eq. (9.33), the single n-collinear propagator will have a pole either above or
below the axis, and we choose to close the contour the other way so that we only select
n~-collinear propagator poles. Without loss of generality we take the single n-collinear pole
to be [n -k — A +40], for which this gives

: !kz\ 2”1/2" ix oy
zz/crk A A = [ im0t ]Z (A5, B4,

(9.36)
where f;({A;,A}}) is a function of the various As. Since the result is independent of A4

the single n-collinear propagator is eikonal at O(n"), whereas the n-collinear propagators
are non-eikonal. Obviously for the opposite case, where ny +n_ > 2 and ny +n_ =1,
we will find by the same logic that the n-collinear propagator is effectively eikonal and the
n-collinear propagators are non-eikonal.

Note that for a n—n, a n—s, or a n—s Glauber loop the decomposition in eq. (9.33), the
rules for vanishing cases in eq. (9.34) and the rule for eikonalization in eq. (9.35) all apply
equally well.

When we consider extending eqs. (9.34) and (9.35) for use in multi-Glauber-loop di-
agrams, we must address the issue that now collinear or soft propagators can carry more
than one k‘j or k; loop momentum. The number of propagators through which each loop
momentum flows will also depend on the loop momentum routing, but whether a graph
vanishes or whether a particular propagator can be treated as eikonal will be indepen-
dent of the routing choice. We choose to route each Glauber loop momentum through
the minimum number of collinear propagators, this maximizes the number of cases where
ny+n_ =1orny+n_ = 1. Essentially this means that we route loop momentum to max-
imize the number of obviously identifiable eikonal propagators, and then these propagators
are removed when considering the eikonal propagator count for the next loop momentum
(even if other loop momenta flow through them). Practically this means that if a Glauber
loop momentum comes in through one exchange, then we route the momentum out of the
collinear (or soft) sector on the next available Glauber exchange vertex. When determining
whether a given loop vanishes, terms that are zero due to the energy contour integral kY
are exactly analogous to the analysis at one-loop. However, we must be more careful when
considering the implications of the k7 integrals, since it is not enough to simply consider
the convergence when a single k7 variable gets large, since we must also ensure that the
integral remains regulated when two or more £ variables simultaneously become large. For
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example, if any k* variable appears in a single propagator, then that propagator should be
removed from consideration when considering the convergence for other £ variables.

As a non-trivial example we consider figure 26. Using the physical arguments discussed
above or the collapse rule, we conclude that this contribution should be non-vanishing since
the Glaubers can accumulate at a single longitudinal point without obstruction. With the
loop momentum routing shown this diagram gives

dkd? (|k* + €277 02|77 |k*| " v37) (pre)Num((, )
ﬁgureQGz/_, 55,5 ..o - A
(RL400) 07 (kL —qu) [0t =] [=0F = AL [+ = Do) [0~ =k~ — A [k~ — A
_/ (=1)@* ka0 (|k* + €27 €277 |k*| =" v37) (pre)Num(, )
(L) (R =) [~ Ay — A [~20 =2k — A — Ay — Ag] [<2k* — Ay —A]
(9.37)

where all propagators inside square brackets [-- -] have a +¢0. In the first line the A; and
A dependent propagators are those next to the collinear gluon pair production vertex, and
are not eikonal, as is clear from the (A; + A) denominator in the second line. Performing
the k% and ¢7 integrals gives a nonzero result, eliminating the corresponding propagators
without inducing additional dependence on any As at O(n"). Therefore the three remaining
collinear propagators in figure 26 are eikonal (the three propagators inside the quark-
antiquark n-n scattering box). Note that for fixed ¢%, the k* integral would converge at
infinity with two poles on the same side of the axis, and hence seem to fall into a category
that would vanish by our 1-loop criteria. Nevertheless, we get a finite result due to the
additional divergence structure of the ¢* integral, which does not allow us to drop the
n-regulators, and needs the same [—2¢*—2k* + ...] denominator.

9.3 Semi-classical eikonal phase and the Glauber gluon

We have seen in section 9.1 that the sum of the Glauber boxes for elastic near-forward
scattering, at leading power in t/s < 1, leads to an eikonal amplitude which is dictated by
a phase 0(t). This is the expected behavior for any amplitude which can be approximated
as being a semi-classical process. Moreover, in section 9.2 we have seen that the eikonal
approximation is valid for collinear propagators that are internal to the interactions in a
Glauber burst. In this section we will put these and other results derived from SCET
into the context of known results on forward scattering [106-108, 111]. We will also use
our EFT to derive the picture of multiple Wilson lines crossing a shockwave [3-7]. The
questions that we will address include:

1. Why do Glauber gluons reproduce the semi-classical expression and what is the range
of applicability of this approximation?

2. In the abelian theory, there are no soft corrections other than light quark bubbles,
but in the non-abelian theory soft corrections play an important role. How do these
corrections affect the form of the amplitude? Do the soft corrections simply dress the
Glauber kernel in the absence of collinear radiation?

3. When the semi-classical result breaks down, it is replaced by a picture where one
must follow the trajectories of multiple partons crossing a shockwave. The partons
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are represented as infinite Wilson lines separated in the transverse space, and the
number of lines is not fixed and can evolve. What is the precise criteria for the validity
of this multi-Wilson line approximation, and how does it emerge from our EFT?

4. Once a hard interaction is included, to what extent do we expect the effects of
Glauber exchange to still be governed by a phase?” And under what conditions do
the Glauber exchanges cancel?

In the remainder of this section we will provide answers to questions 1, 2, 3, referring
to results from earlier sections when appropriate. We leave the discussion of point 4 to
sections 10 and 11 below.

Let us begin by exploring how the large s/|t| limit appears semi-classically. In the
semi-classical approximation, we may write the amplitude as

/[ng]eis ~eS (14, (9.38)

where Sy is the action for the classical field configuration and corrections are down by the
appropriate expansion parameter(s). Quite often the starting point of any semi-classical
approximation involves solving the classical field equations without the presences of
sources, such as in the case of instantons or monopoles. However, here we are considering
scattering processes, so a necessary condition is that the external lines behave classically
at leading order in the relevant expansion parameter(s). Furthermore, if we are to
take an approach based upon Feynman diagrams then we must be able to distinguish
between classical and quantum contributions. Thus both the sources and the bulk field
(gauge fields) must behave in a characteristic fashion in the context of a semi-classical
approximation.'? Moreover, if this approximation is valid, then we should be able to find
a power counting parameter which explicitly shows that quantum fluctuations in both the
sources and bulk fields are suppressed.

Consider the elastic scattering process between quarks in the limit |¢|/s < 1. In what
respect do these quarks behave as classical sources? Let us assume that we can follow a
single quark through a series of interactions (perhaps by tagging it by a conserved quantum
number). If we start by ignoring color, then the criteria for classical behavior is that the
quark source currents commute. To see this consider the propagation of the quark source
current with a large light-like momentum p~ > p"™ in an external background whose
Fourier modes £ may or may not have a hierarchy between its components. As seen from
our Lagrangians in sections 4 and 5 for either soft, ultrasoft, or Glauber gluons (the latter
taken in Feynman gauge for the argument being made here), the boosted current will be
dominated by the light-cone component A™, such that

Ly ~ /d4$ J_(I'+,.T_,.’L’J_)A+(.T+,$_,£L'J_). (939)
We may write the part of the transition amplitude involving the quark as
iM;y = <z T exp (i/d4:nJ_(x+,x,mL)A+(x+,$,:UL)> ‘f> . (9.40)

20ur definition of a source for the discussion here is the subset of collinear excitations.
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From the point of view of the quark it propagates in the presence of the gauge fields AT
which can be viewed as a background whose internal dynamics, along with that of other
sources, we can consider at a separate stage. What are the characteristics of the coupling
of these gauge fields which will lead to a convergent semi-classical approximation? Note
that if we set one of the light-cone momenta to zero (say z* = 0 ) in the current then

(EJ_ _gL)z 7é 0 1mphes [Ji(oaxivxl)vJ7(07y77yl)] = 07 (941)

as long as the current is constructed from local operators whose algebra obeys micro-
causality. Moreover, when x; = y; and the commutator is on the light cone, current
algebra dictates that the commutator vanishes when the currents are abelian, highlighting
the distinction with the non-abelian case. Thus if we can set 2™ = 0 in the current it will
behave classically, in the abelian limit. This does not mean that the non-abelian theory
has no classical contribution, only that the non-abelian currents do not have a canonical
classical interpretation. This should not surprise us since non-abelian currents are only
covariantly conserved.

Whether or not it is justified to set 7 = 0 depends upon the relative momenta of the
quark source p and gauge field momentum k. In particular, if

P>k (9.42)

then we can set 7 = 0 as the conjugate momentum &~ has become irrelevant once we drop
power suppressed terms from the propagator. This does not mean that the propagator is
necessarily of eikonal form, since the expansion in eq. (9.42) leaves

1 1
(P+k)?  p(k+ +pt) — (5L +kL)?

T (9.43)

as opposed to the eikonal form 1/(p~ k™). Whether or not the transverse momenta piece
matters will depend on the power counting for the remaining terms, and the convergence
property of the k* integrals. If the low energy AT gluons with k=~ < p~ are close to
their mass shell with ktk~ ~ Ef, then they are either soft (k* ~ ) with p~ kT >
ppt, (P + EJ_)2 or ultrasoft (k* ~ A2?) with p~ (k* +p*) > p, K, Ef In either cases we
are justified in dropping ™+ and can also fix the coordinate x|, so the source propagators
become purely eikonal 1/(k*), and the corresponding quarks does not recoil. This is
identical to the analysis in the standard construction of soft and ultrasoft interactions in
SCET, see [29]. For the soft and ultrasoft cases these approximations are justified without
referring to the nature of other particles that interact with the A% gluons. From the point
of view of the soft or ultrasoft gluons the quark source becomes a Wilson line along a
light-like direction and hence behaves much like a classical source.

In contrast we can consider the case where p~ (kT +pt) ~ (FL+k.1)2 > (pt+k1)k™ so
that transverse momentum terms in eq. (9.43) are retained. This implies that the AT gluons
are offshell with kTk~ < Ef, and hence correspond to the exchange of Glauber gluons.
To determine the outcome here we need to know the dynamics of the other particles to
which the gluon couples. Assuming that it couples to an energetic particle which is just
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the mirror image of the quark source, then the abelian forward scattering is described by
Glauber exchange, as discussed in section 5 and we are led to integrals with log-divergent
k* integrations as in sections 5.2.1 and 9.1. The log divergent nature of these integrals,
together with the action of a proper regulator, make the propagators effectively eikonal for
forward scattering, despite the presence of the |-momentum dependent terms. We saw this
explicitly in our calculations in section 9.1 where the A;(k;) ) terms all dropped out. Thus
once again the quarks (effectively) travel along a straight line and do not fluctuate, and
we can treat the source quark as a classical current which yields a Wilson line. However
this eikonalization does not happen more generally for either the abelian or non-abelian
cases, for the reasons discussed below. We will also see below that in these more general
situations we can still describe the physical situation with what is known as the shock wave
solution, including a variable number of eikonal sources.

We start by reviewing the shock wave solution and its relation to the eikonal sources
generated by Glauber exchange in the abelian case, which is obtained in the limit where
the boost becomes maximal. Here a gauge is chosen such that the gauge field is purely A
and vanishes off the light cone, given by [112]

Ay =0, A* = —%m(uma(gg—). (9.44)

This configuration is related to the one where AT # 0 by a gauge transformation. What
is relevant here is that the field is independent of ™ thus we may set k= = 0, which is
consistent with the expansion in eq. (9.43). Thus there is a very simple picture of the
abelian quantum mechanical case with a frozen background and no radiation. Indeed the
well known semi-classical eikonal solution can be obtained by solving for the wave function
in the field generated by the shock wave solution in eq. (9.44), and then obtaining the
scattering amplitude [112, 113]. This yields the same result we found above in eq. (9.23)
for the Glauber function G(q ) (taking its abelian limit with Cr = 1) by summing the
Glauber gluon ladder graphs.'® This picture is also supported by considering the two point
function for the potential Glauber exchange

R AR 2 2
/ = e o 0(xy)o(x_) In(z] 1) (9.45)
thus the two particles interact at a point in light cone time when their respective shock
waves cross each other.

Thus in the abelian limit the iteration of Glauber gluons reproduces the standard semi-
classical result, and leads to effectively eikonal propagators for the integrals appearing in
forward scattering. However, even for the abelian theory there is no limit in which the
collinear radiation can be treated as subleading. That is, while the propagation in the

13 This resummation in QED was done fifty years ago by Sucher and Levy [114] where the issue of rapidity
divergences was avoided by using the full photon propagator. By doing so the calculation inherently includes
other modes aside from the Glauber, in particular the soft contribution. However, as we have seen in QED
the soft contribution cancels and as such the lack of a homogeneous scaling in the calculation [114] is benign.
In the context of gravity a similar resummation was performed in [115].
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shock wave background leads to classical source propagation, because the Glauber interac-
tions leave the electrons nearly onshell, their fluctuations due to interactions with collinear
photons are not suppressed. In the effective field theory this is obvious since the leading
power collinear action includes these effects. It is interesting to ask how the collinear quan-
tum corrections change the form of the semi-classical result. In particular, one might think
that these corrections could simply dress the eikonal form, decoupling from the Glaubers. If
we consider a collinear loop which interrupts two Glauber exchanges, such as in figure 25b,
the integral vanishes as explained in section 9.2. The analogous graph which has a real
collinear gluon emission between two Glauber exchanges shown in figure 25a also vanishes.
On the other hand the diagram in figure 25c¢ is non-vanishing, the Glauber loop needs to
have its rapidity divergence regulated and there is only one pole in k' for the Glauber
loop. One is free to add any number of Glauber exchanges between the collinear vertices,
which builds up the higher order terms in the Glauber function G(g, ). Accounting for such
corrections on both the n-collinear and 7n-collinear side this amplitude can be written as

M =S8""F"(q)F"(q)[G(q1) — (2m)*6%(q1)], (9.46)

where F™"(q, ) are the abelian quark (electron) form factors for the top and bottom lines.
At one-loop the product F™(q,)F™(q.) is given by the abelian part of our eq. (7.12). On
the other hand, diagrams such as figure 25e modify the result in eq. (9.46) by having a
k| convolution between the Glaubers and the collinear source. This fact should not come
as a surprise as diagrams such as figure 25e involve a time ordering where pair creation is
manifest as shown in the second way we draw the diagram. For QED this conclusion that
only form factors dress the eikonal amplitude if pair creation and annihilation are ignored
was reached long ago in ref. [116].

Thus even in the abelian limit the energetic quarks do not behave solely like single
Wilson lines.!* This becomes even more prevalent when we make the theory non-abelian,
for example figure 25d also cannot be described by a single Wilson line, and indeed requires
non-eikonal propagators for the n-collinear quark and gluon. In QED the same is true of a
diagram where the radiated photon creates another e™e™ pair, and then we simultaneously
consider Glauber attachments to members of this pair as well as the original e~. In the
non-abelian case, current algebra dictates that the light-cone commutator from eq. (9.41)
is nonzero, and thus there is no reason to believe that the semi-classical approximation
should hold universally. Indeed, we found in section 5.1.2 that in the non-abelian case the
interaction with soft gluons is non-vanishing and occurs at leading power, and that there
are also one-loop non-abelian collinear graphs that contain rapidity divergences and are
not simply form factors. In general, we will not have a completely eikonal description for

141¢ is interesting to note that up to the two loop level, single Wilson lines will give the right answer for
two-to-two scattering as long as one appends the correct one loop form factor to the result. This includes
both semi-classical and quantum corrections. The notion that loop corrections are necessarily quantum
corrections fails here, as it does in other cases where there is a contribution from regions where some fields
are behaving like classical sources. In the effective theory each loop may be considered as classical or
quantum, but in the full theory, since integrals do not scale homogeneously in the power counting, the
result can be mixed quantum and classical. For a discussion on this point see [117].
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Figure 27. Correspondence between multiple Glauber exchange, with an example diagram shown
in panel a), and the picture of Wilson lines used to represent partons crossing a shockwave, shown
in panel b). The n-collinear particles see the other side via Glauber exchange only at an instant in
time and longitudinal distance indicated by the location of the shockwave that is drawn as a large
shaded red ellipse. In a mirror manner, the 7n-collinear particles also see a shockwave representing
the Glauber exchanges.

sources coupling to Glauber interactions when we include collinear splitting or collinear
loop diagrams as discussed in section 9.2, or once a hard interaction is involved as
discussed in section 11. On the other hand, both soft and ultrasoft gluons do continue to
have eikonal interactions with collinear particles in these cases.

Despite the breakdown of the simplest Wilson line picture for these more general
situations with Glauber exchange, the eikonal approximation does still play an important
role in the dynamics. For instance, in the non-abelian case we may still sum the Glauber
interactions between pairs of forward scattering partons, as the existence of generators at
the vertices presents no obstruction due to the simple topology of the ladder series. This
sum was carried out explicitly in section 9.1. Indeed, it is known that in the non-abelian case
many of the contributions to the amplitude are still captured by the shock-wave theory, and
can even be calculated in a two-dimensional field theory [118]. In section 9.2 we showed that
the eikonal approximation is valid as long as a single source propagator can be associated to
each Glauber loop momentum, and breaks down if there are two or more such propagators
of the same source. Furthermore, even in the presence of multiple particles which couple via
Glauber exchange, diagrams with multiple Glaubers vanish unless all of these instantaneous
exchanges can be collapsed onto a single longitudinal position. Thus, if we consider an
arbitrary number of Glauber exchanges in a non-abelian theory, they can interact with any
particles that are present at given reference time ty and longitudinal position xg, which is
referred to as the location of the shock-wave seen by these particles. Furthermore, after the
first Glauber interaction on each of these propagators, further Glauber attachments yield
propagators that are described by the eikonal approximation for that source particle. Each
of these sources therefore becomes a Wilson line along the light-cone, located at a different
x) coordinate according to the position of the initial particles crossing the shockwave.
This analysis based on our framework yields precisely the picture of multiple interacting
Wilson lines in [3—7]. An example of the association of the multiple Glauber exchanges with
the shockwave is shown in figure 27. Rather than rely on a single Wilson line to describe
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interactions with the collinear source, one instead considers a picture where multiple Wilson
lines are used to describe the color sources that exist at the instant of the shockwave. This is
the technique utilized as the starting point for the Wilson line EFT [4, 13, 14], as well as for
deriving the BJMWLK equation [6, 7]. In these frameworks the non-eikonal contributions
should only occur in the coefficient functions [14] for multi-Wilson line matrix elements.

To conclude this section, we give answers to the questions raised at the beginning of
this section:

1. Glauber iterations reproduce the semi-classical approximation, but in QCD these dia-
grams are not sufficient by themselves since soft and collinear loops enter at the same
order in the coupling and power expansions. To attempt to make this approximation
valid we could remove the non-abelian diagrams by considering an electron scatter-
ing observable in QED, and then forbidding pair creation by considering scattering
momenta much below the mass of the electron. Here the semi-classical approxima-
tion would dominate the scattering, but in general the form of the amplitude will
be more complicated than in eq. (9.46) for an infrared safe observable which allows
contributions from forward collinear radiation.

2. Some soft corrections to n-n scattering do just dress the Glauber kernel, such as those
in figure 21c,d,e which appear as virtual corrections dressing the Glauber exchange
from non-abelian and quark-antiquark interactions. However other soft corrections
are not simply dressings of the Glauber kernel, such as the H-graph in figure 14.

3. We have seen above and in section 9.2 that the multi-Wilson line shockwave picture
emerges because multiple Glauber exchanges collapse so that they occur at a sin-
gle time and longitudinal position, and because when a graph with a Glauber loop
momentum & has only a single propagator that depends on k™ and k~, then these
propagators eikonalize. For other situations with Glauber loops the propagators do
not eikonalize, and hence occur before or after the shockwave.

4. In the next two sections we take up the issue of Glauber phases produced in the
presence of a hard interaction.

10 Hard matching: the Cheshire Glauber

In this section we consider Glauber gluons in hard scattering processes. In section 10.1 we
consider Glauber gluon exchange at one-loop in the context of a hard vertex that either
annihilates, scatters, or creates two energetic particles. Then in section 10.2 we extend
this analysis to include the emission of an additional soft gluon at one-loop. We show
that Glauber exchange produces all the low energy imaginary (im) terms, and demonstrate
a connection with contributions from soft gluons. In section 10.3 we extend this anal-
ysis to two-loop order with more complicated interactions from the Glauber operators,
demonstrating that the same conclusion remains true.

In carrying out hard matching calculations from full QCD onto SCET at one, two, and
even three loops, it is known that Glauber exchange graphs are not needed to reproduce
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the infrared structure of the full theory result and obtain a Wilson coefficient that is

independent of the infrared regulator. In this section we demonstrate that the hidden

nature of Glauber exchange for these hard scattering calculations is connected to the need

to modify soft diagrams by including 0-bin subtractions S(&) from the Glauber region.

We begin by summarizing our conclusions from two points of view:

)

In SCETp Glauber exchange contributions G are present as interactions between
certain active hard scattering lines. The Glauber subtractions S(&) remove a con-
tribution from the soft diagrams, and in particular are responsible for canceling the
contribution arising from direction dependence of soft Wilson lines (whether they ex-
tend from —oo or to +00), which is related to the sign (n -k 4i0) used in soft Wilson
line induced eikonal propagators. This sign is relevant only in the region where the
O()) soft momentum n -k — 0, or more precisely n - k ~ A\2. This momentum region
is not soft, but is instead correctly accounted for by the Glauber exchange graphs G,

(@) when forming

and hence is removed from the soft diagrams by the subtraction S
the complete soft diagram. At one-loop (see eq. (5.50)) the complete soft diagram is
S =8 — S, Depending on the choice of the direction for the soft Wilson lines, we
may or may not have G = S(©) here. (In contrast, in SCET] the Glauber exchange
contributions G between active lines are scaleless, and are exactly canceled by the

ultrasoft 0-bin subtraction on the Glauber graph, G(V).)

Alternatively, for these hard scattering diagrams we can exploit the correspondence
between the results for the Glauber exchange graph and the Glauber subtraction
for soft graphs in SCETy. With a specific choice of the direction of the soft Wilson

lines we have G = S(©),

The correct choice corresponds to directions that agree
with the physical direction of the collinear particles probed by the long distance
Glauber exchange process. This allows us to consider the alternative but equivalent
interpretation, that the Glauber exchange contributions for these hard scattering
diagrams can be absorbed into the soft Wilson lines. This absorption removes
both the G and S terms by canceling them, and corresponds to the standard
approach that is adopted in typical SCET matching calculations where Glauber
exchange is ignored. This absorption does not work in all possible diagrams in
SCET (see section 11.1), and hence in general we need to consider the soft and
Glauber exchanges as distinct contributions. (In SCET} the 1-momentum of these
Glauber exchanges is at a larger scale than the ultrasoft Wilson lines, and hence is

not related to fixing their direction in the same manner.)

We will refer to the above properties of Glaubers in hard scattering diagrams as the

Cheshire nature of the Glauber exchange.

10.1 One loop hard matching with Glaubers

In this section we discuss the Cheshire nature of the Glauber at one-loop. For SCET|;

the Glauber subtractions S(&) are explicitly nonzero for soft diagrams involving pairs of

soft Wilson lines that are both outgoing or both incoming, and we will see the precise
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Figure 28. One loop soft gluon and Glauber potential exchange with a hard scattering vertex ®
in SCETy1. The solid green lines denote eikonal propagators from soft Wilson lines. Graphs a) and
b) are for 2-particle production, while ¢) and d) involve hard scattering with one incoming and one
outgoing particle. The graph d) is zero.

connection between the subtractions, active-active Glauber graphs, and the direction of
soft Wilson lines. For completeness we also discuss how things change when considering
loop graphs in SCET].

We begin our discussion in SCETyy, considering the one-loop graphs shown in figure 28
with a mass IR regulator m. We take the physical momenta to be p for the n-collinear
quark, and p for the 7n-collinear (anti)quark. The soft diagrams drawn here arise from the
contraction between two gluons taken from the soft Wilson lines that appear in the SCET

hard current
Jr = (EaWn)SIT SR (W) . (10.1)

The usual directions taken for the soft Wilson lines in this current are both (0, c0) for n-n
production as in figure 28a, while we have Sy (—00,0) and SJZ(O, o0) when the 7 quark is
in the initial state, as in figure 28c. For the n-n annihilation case (not shown) we would
have both lines over (—o0,0). (See appendix B.4 for explicit formulas for the Wilson lines
in these cases.) Often in SCET one would draw the soft diagram in figure 28a with the
eikonal lines contracted to a point. However, for clarity we leave these extended as solid
green lines since at higher orders drawing things in this way allows us to make explicit
the ordering of the color matrices in our diagrams, and also corresponds with the standard
directions for the Wilson lines mentioned above.
First consider n-n production in SCETY;, defining the spinor matrix element

Sr = a, vy, (10.2)
where the complex conjugation on vz appears due to our convention for the antiquark
spinors. The naive loop integral with a soft gluon exchange is

(cp2e k|~ 1)
(k2 —m?2][n - k +i0][n - k — 0]

, _(,€,,2€ ke |=1 1 €,,2€ ke |=m yn
:2QQCFSF/dezd{lkL|: _ (Llj’ | Z|_‘ V) + _’(L/J, | Z| V) :|
2(k2+m2)V2(k2 +m?2) (k% +m?2)(2k* —i0)

Cras | [ —2h(e, u?/m?) w? (1 w2 1 1, ,pu?
=S mE (i) S s T
o {[ n +n1/2 e+nm2 +62 2 2 T 12

(o2}

S(figure 28a) = —2ig>CrSr [dk (10.3)
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where d' = d — 2 = 2 — 2¢. In writing down eq. (10.3) we are using the notation where a
tilde over a symbol, such as S, denotes a completely unsubtracted integral, which we will
refer to as the naive or unsubtracted result. To obtain the second line of eq. (10.3) we
evaluated the integrand by contours in k%, obtaining the first term from the pole from the
relativistic propagator k° = —(E 2+ m?)'/2 440, and the second term proportional to (i)
from the pole in the eikonal propagator k' = —k* +i0. The result for these integrals is
shown separately in the third equality, and can be combined by introducing a (—1 — i0)
in the rapidity logarithm, as shown in the final line. If we consider the Glauber zero-bin
subtraction integral for this soft loop, then we have

(ep® k|7 0)
(k2 —m?][n-k+i0][n -k — 0]

5@ (figure 28a) = —2ig*Cr Sp [d%k

, €,,2€ —n.,n
_ 2gQCFSF/cﬂ<:Zcz*ikL (o ke | )
(k% +m?)(2k* — i0)
. CFQS . 1 ,U,2
= 81" o |:(Z7T) <6 +In Tan):| . (104)

Therefore the full result for the soft graph in a theory with Glauber exchange is given by
the result without the (im) contribution

S(figure 28a) = S — 5@ (10.5)
o Cpa, [—2h(e, u?/m?) et w2 1 1, 4u® =2

To this we must then also add the result for the Glauber exchange graph in figure 28b,
which exactly gives the same (im) term

(e )
2 —m2|[n -k — A(ky) +i0][n - k + A (k1) — i0]
= Sr 05: {(m) (1 +1n ”)] : (10.6)

m2

G(figure 28b) = —2ig?Cp Sp/Jdk

where A(k1) = —n-p+ (kL +p5.)2/n-pand A(k,) = —n-p+ (k. —pL)?/n-p. Note
that this is the same integral evaluated in eq. (5.31), so the values of A(k,) and A'(k,)
do not affect the result for this integral, and hence it yields precisely the same value as in
eq. (10.4). From this analysis we see that

5@ =q, S+G=(S-859t+a=35. (10.7)

When we include the Glauber gluon in SCETy; the result for the soft graph is (S — S(©))
and is insensitive to the (im) term that was generated from the choice of directions of the
soft Wilson lines. Physically, the (im) term is generated by the Glauber momentum region
and hence occurs in G.
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Alternatively, when we added up the soft and Glauber graphs in eq. (10.7) the sum
just reproduces the naive soft result S. If we had not considered Glauber gluons as
degrees of freedom in SCETy;, then we would arrive at the same result, since the soft
graph would simply give S. Therefore the Glauber gluon is Cheshire, it is not directly
visible as a distinct degree of freedom in this loop integrand at the level of matching. If
all loop integrands behaved in this manner, then we could simply absorb the Glauber
exchange into our soft degree of freedom. We will see that this pattern persists for hard
scattering graphs (active-active graphs), but is not the case once we consider graphs
with spectator quarks or gluons, where some Glauber exchange can be absorbed into
collinear Wilson lines, while others cannot be absorbed at all. The fact that for partons in
hard scattering the active-active Glauber contributions can be absorbed into soft Wilson
lines is consistent with the contour deformation picture of CSS, where the combined
soft+Glauber loop integral is deformed away from the Glauber region for active-active
diagrams, and then further expanded to leave only contributions from what we call the
naive soft region [21, 31]. Similar logic to that of CSS was used to avoid having Glaubers
in the amplitude level factorization theorem for final state particle production in [119].
Note that with the SCET operators we can still choose to treat the Glauber exchange as
specific non-vanishing contributions which describe amplitude level rescattering phases,
even for ete™ annihilating into just final state strongly interacting particles.

Next consider how the above one-loop SCETy; analysis changes for the case with one
incoming and one outgoing collinear quark, hard scattering from n to n. Repeating the
above calculations for the graphs relevant to this case, we have
(2 [k |~ v7)

. o
S(figure 28¢) = —2ig?CriinTuy [d%k 0% = mnk + 0] 5 0] (10.8)
, _(,€,,2¢€ n 77
=2¢*Cpu,Tus [d k* &%k, (o k[
2(k2 +m2)1/2(F? +m2
_ asCOp [ —2h(e, u?/m?) u? (1 u? 1 1, 5, pu?2 =2
— @,Tus mA (i aem ) L o2 T
”"“"%[ " th\etr ) te T e e T )

AR
(k% —m2][n -k +i0][n - k + 0] ’
(e ) _
k2 —m2][n-k—A(ky) +i0][n-k— A(kyL) +i0]

S (figure 28¢) = —2ig*Cr @nTuy / 'k

G(figure 28d) = —2ig*Cp ﬂn].“uﬁ/ddk

Here both eikonal poles lie on the same side of the k° contour, and hence do not contribute.
This leads to there being no (im) terms in the naive soft graph S, as well as yielding
S(@) = G = 0. Physically, the absence of a Glauber exchange contribution here occurs
because there is no time at which freely propagating n-collinear and n-collinear particles
exist simultaneously. Therefore, here the full soft result is the same as the naive soft result,
S(figure 28¢) = S(figure 28¢). Once again the result is the same whether or not Glauber
exchange is included in the theory. For incoming and outgoing collinear antiquarks, or
collinear gluons we would also find the same results as in this case, S = S and $(¢) = G = 0.
On the other hand, for an incoming collinear quark and antiquark, or two incoming or
outgoing n-n collinear gluons, the situation is the same as in eq. (10.7) with S (©) = @ both

given by a nonzero (i7) term.
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Note that the result S(@) = G for these active-active diagrams, and the fact that
these Glauber exchanges can be absorbed into the soft region, relies on using the physical
directions for the soft Wilson lines S;fl and Sz.'® When considering SCET without Glauber
gluons these directions are often determined by those of their parent collinear particles
and the structure of the product of operators being considered [120, 121]. In the theory
with Glauber gluons, the choice for the direction of the soft Wilson lines is not relevant,
since this dependence is instead captured by contributions from the Glauber region. In the
calculation above we see explicitly that the choice of direction of the soft lines does not

(©). Any change to S, such as picking one incoming

change the one-loop result for § — S
and one outgoing line for n-n production, is compensated by a corresponding change to
S(G) | since the 0-bin in SCET implies that the original integrand and its subtractions are
always defined with Wilson lines in the same directions. Also, there is no choice to be
made for the i0s in the Glauber propagators, since they simply come from the physically
propagating collinear modes.

It is also worth recalling that these (im) terms from SCET play a role in determining
the hard matching coefficients C' for the current in eq. (10.1), which are related to the
ultraviolet parts of time-like and space-like form factors. For SCETYy, in addition to the
soft and Glauber graphs, the matching calculation for the production current involves the
collinear graphs,

-n _n _-n

- x

o+ é/ﬁ + (Ze—1) &«

N, N,

‘\\ — M \\ —
N ’]’_L \/ﬁl *n

asCr [2h(e, ? /m?) v\ (1 u? 3 3 2 9 x?
- RO i D SR VAN QOISR MY a R B O T0)
ot 27 [ n L U ) I v e A N (10-9)

where s = p~p' and the p~ dependence comes from the n-collinear loop, while the p™
dependence comes from the n-collinear loop. We recall from the calculation in section 7.1
that the subtractions for these collinear graphs all vanish, but are not scaleless, at one-
loop with our regulators. Adding eq. (10.9) together with the result for S+ G = S from
eq. (10.3), and simplifying, gives the bare result and MS counterterm

asCp[1 1. u? 3 1. o [P 1. o5/(—s 3, w2 9 b5r?
ETproa =Sr——— |5+ -In—+ —+ -1 — ] -=1 — —ln—+4+->—-——1,
SCETproa = Sr 2m [€2+6n—8+26+2n —s 2 \m2 +2nm2+4 12
a,Cr 1 1 MQ 3
Zc =1 - —=-In———]|. 10.1
¢ T [ 2 e s 2€:| (10.10)

Here the (im) SCET terms which arise from the direction of the soft Wilson lines and/or
Glauber exchange are necessary to yield the In(—s — i¢0) dependence. This result can be
compared to the full theory one-loop vertex and wavefunction graphs with the mass infrared

5More precisely, the 1-loop calculation distinguishes in-in and out-out from in-out lines. A calculation
with an additional soft emission, done below in section 10.2, also distinguishes out-out from in-in.
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regulator, which combine to give

a,Cp 1. 5/(—s 3 -5 7 w2
Full,,0q = — =1 — —In({— | —-——1. 10.11
ullproa = Sr 27T|: 2n<m2>+2n<m2> 1773 (10-11)

Again the full theory has In(—s — ¢0) dependence, and in particular for s > 0 we see that
there is a (im)In(s/m?) term involving an infrared divergence in both SCET and the full
theory, which agree. Subtracting Full,roq—(SCET proa+(Zc — 1)Sr) allows us to compute
the (standard) result for the SCET Wilson coefficient [122, 123]

L) B EY 7k D SN T N
C(s,p) =1+ . [ 21n <s 21n — 4+12. (10.12)

This result for C(s, ) is independent of the choice for the IR regulator, and corresponds
with the infrared finite parts of the time-like form factor as expected. For the spacelike
case with one incoming and one outgoing quark, we use the soft result from eq. (10.8),
the collinear results in eq. (10.9) remain unchanged, while for egs. (10.10), (10.11), (10.12)
the corresponding results are obtained by simply taking (—s) — s. The Wilson coefficient
C = C(—s, 1) obtained for this case corresponds with the spacelike form factor. The total
SCET result in eq. (10.10) agrees with that in [124] where a different rapidity regulator
was used for the soft and collinear components.

Next consider how the analysis of the one-loop n-n hard production and hard scattering
are different for SCETT. In the case of SCET}, with ultrasoft and soft modes, and Glauber
exchange at the scale of the soft modes, several things change in the above picture. Here,
there are no soft Wilson lines in the hard scattering operator, but instead we have ultrasoft
Wilson lines Y,/ and Yy (after the BPS field redefinition)

Jr = (EaWn) Y TYR(Wics) . (10.13)

The ultrasoft Wilson lines are generated from the BPS field redefinition [29]. In the calcula-
tion of S-matrix elements, the direction of the combined ultrasoft lines is determined by the
product of ultrasoft lines generated by Jr and by the interpolating fields for the incoming
and outgoing states (or equivalently those of the external collinear particles) [120, 121]. The
directions for the ultrasoft Wilson lines in the S-matrix elements are then both (0, co) for
n-n production, while we have Y5 (—o00,0) and Y, (0, 00) for the n-n quark scattering. If we
had included both soft and ultrasoft Wilson lines for the current in eq. (10.13), then due to
the kinematics present for SCET| applications, we can (effectively) simply absorb the scale-
less graphs involving these soft Wilson lines into analogous graphs involving the ultrasoft
lines in the hard production current, replacing )‘(nYnT S,ZFS;LY,—LXT—L by the Jr = XHYJ T'Yaxs
shown in eq. (10.13). The appropriate IR regulator now sits at the ultrasoft scale, k* ~ A2,
so we drop the mass m from the soft loop calculation, and the results for the hard scattering
S in egs. (10.3) and (10.8) become scaleless. These scaleless integrals are exactly canceled
by the ultrasoft 0-bin subtractions, and hence here the soft modes can be absorbed into the
ultrasoft modes, and simply act to pull these ultrasoft modes up so that their ultraviolet
divergences occur at the hard scale [125]. So if we did include soft Wilson lines, then the
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subtractions on the soft graphs always yield zero for these diagrams, S — S() = 0 and
S(@) — §(&)WV) = 0, so that the subtractions cancel the soft lines.

Next consider the Glauber loop graph in SCET. For SCET] the (i) terms in the EFT
are actually entirely reproduced by the ultrasoft region, and not by the Glauber region. Let
us reinterpret figure 28 where now the green gluons and eikonal lines represent the ultrasoft
Wilson lines. Here there are no subtractions on the ultrasoft diagram since the Glaubers
have larger |-momenta, but there are ultrasoft subtractions on the Glauber diagrams, see
eq. (5.51). For n-n production in SCET} Glauber loop integrals with k; ~ X also become
scaleless and hence are also exactly canceled by their ultrasoft 0-bin subtraction,

(p k| 10
k2 ]n-k—A(ky) +i0][n-k+ A/(ky) — 0]
=Sr C;(:S [(m) (1 - 6;)] = G (figure 28b),

G- =o. (10.14)

G(figure 28b) = —2ig*>Cr Sr [ Ak

Here the As can also depend on the offshellness regulators. The result in eq. (10.14) agrees
with the SCET] calculation with Glauber contributions in ref. [40]. For the n-n scattering
graph or n-fi annihilation we also have G = G(Y) = 0. Therefore for all cases in SCET} the
Glauber graphs G = G—GW) do not contribute, and hence the result for the one-loop hard
scattering SCET graphs are the same with or without the inclusion of Glauber gluons. In
this situation the (i) factors are carried by the ultrasoft diagrams. Again these factors
are necessary to correctly reproduce the hard scattering Wilson coefficients in eq. (10.12),
which for this current are the same in SCETy as in SCETY;.

10.2 One loop soft real emission for soft-Glauber correspondence

We next show that the correspondence between Glauber contributions and Glauber sub-
tractions for soft graphs discussed in section 10.1, also holds for the situation with two
active quarks participating in a hard interaction plus one soft gluon emission. In this
section we only consider SCETy;. This soft emission case is interesting because there are
three different physical situations, corresponding to an outgoing quark/antiquark pair, an
incoming and then outgoing quark, or an incoming quark/antiquark pair. We will refer to
these as ee, ep and pp respectively, since the underlying hard scattering would be relevant
for each of these three hard collision processes. Since our soft gluon is always outgoing,
these processes involve either 3 outgoing particles, 2 outgoing and 1 incoming particle, or
1 outgoing and 2 incoming particles. The relevant diagrams with soft or Glauber loops are
shown in figures 29, 30, and 31. As usual, these SCET graphs also contain subtraction con-
tributions as in eq. (5.50). In the case being considered here these subtractions ensure that
the soft propagators in the loop are truly soft, and hence do not give contributions from the
region where the propagators momentum becomes Glauber. Based on the physical picture
advocated in earlier sections, we could immediately determine that some of the Glauber ex-
change diagrams are zero. Here we prefer to list all the diagrams and save the discussion of
this physical interpretation for determining the nonzero diagrams to the end of this section.
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Figure 29. Single soft emission graphs for an e™e™ annihilation current with a soft or Glauber
loop. Solid green lines are eikonal propagators from soft Wilson lines, dashed black lines are collinear
propagators, springs are soft gluons, and Glauber exchange is a dotted red line.

Figure 30. Single soft emission graphs for a e”p hard scattering current with a soft or Glauber
loop. Of the Glauber loop graphs displayed here, only Gg’ is nonzero.
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Figure 31. Single soft emission graphs for a pp quark annihilation current with a soft or Glauber
loop. Of the Glauber loop graphs shown here, only G7%, 5 are nonzero.

The contribution of the ith diagram from figures 29-31 can be written as

iAghn = (iw)g;TA (:2 - :;) [ - % a Cynki-k I8 (k) + 08 Op1l” — % cghan CAIf)} :

(10.15)
Here k is the outgoing momentum of the soft gluon which has color A and vector index p,
and the integrals that appear are

d—d—2£ €,,2€ d_d_2€ €,,2€\2
W= [T = [ e )
02 +m (02 +m?) [(£L + k1)? +m?]

to which we can also freely add a suitable IR regulator. For example, with the displayed

gluon mass m the integral Iﬁ)) is not scaleless. The only diagram and channel dependent

chan

<14 where ¢ determines which Glauber

chan pchan
) b@ 9 &

factors in eq. (10.15) are the constants a

or soft diagram is being considered, and chan = ee, ep, or pp.

chan jpchan
9 bz

In table 3 we show the results for the aj chan

, and ¢;"*" coefficients for the Glauber

graphs G; for each of the three processes. We also show results for the terms we wish to
compare them to, namely the results for the Glauber subtractions SZ-(j ) of the soft graphs
S;. As usual, the subtractions (j) are determined by considering all possible n-n, s-n, and
s-n Glauber limits of the soft gluon propagators (see table 1). These subtractions are in
one-to-one correspondence with Glauber limits of the soft eikonal propagators, so we enu-

merate the subtractions by letting the superscript (j) indicate which eikonal propagator(s)
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Table 3. Final results for the coefficients appearing in eq. (10.15) for the Glauber graphs and
subtractions for Soft graphs in figures 29, 30, and 31. Here the * superscript indicates results which
should have n#* — 0 in the prefactor they multiply. These terms are not gauge invariant on their
own, but sum to zero.

are taken to be near mass shell with virtuality of order A\?. For example, S?) is the graph
S with propagator 2’s momentum taken to have scaling of A2. In general both the Glauber
loop graphs G; and soft loop graphs S; will have Glauber subtractions to ensure that soft
propagators are truly soft. Since different Glauber limits for the soft graphs may overlap,
the soft diagrams may also contain double subtractions that remove the overlapping con-
tributions. We use a double superscript to denote these double subtractions. For example,
if we are considering the limit where the 3 propagator is going on-shell S then we must
add back the contribution where 2 also goes on shell since that contribution is part of S(23).
Thus S®)@ corresponds to the contribution that must be added back to ensure that we
are not over-subtracting. Since our discussion here is focused on the subtractions them-
selves, it is convenient to include these double subtractions into the soft single subtraction
results. With this convention the result for the full soft graph in SCET is obtained by the
naive soft graph §Z minus just these single subtractions. The Glauber loop graphs G; do
not have double subtractions and hence are also obtained by removing single subtraction
contributions from the naive contribution éi,

Si=5-Y s, Gi=GCi—> GV, (10.17)
j j

We will detail the double subtraction results contained in each S’i(j ) below. In several cases
the column labels in table 3 indicate a sum of diagrams:

Got3 = G2+ G3, Guy5 = G4+ G5,

S§2,3) _ 552) . S%S), 35%24) _ 3513) n S:(,,QA‘),

SE =88V 188V sl = 5 1+ 8P 4 8P + 8P 4 55V + 5V,

SEH) =S¢V 58 se) =8 + 8% + 88 + 88,

S _ g 4 g (10.18)
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For the Glauber loop graphs G;, only Gg and GG7 have nonzero subtractions. Therefore
the results we obtain for the graphs G ... 5 are simply given in table 3. Note that G4 and
G35 produce the n* and n# structures in eq. (10.15) respectively, while G alone produces
both of these structures. For Gg7 we have

G = G — G, Gy =Gy —GYY
1 1 1 1
ee . g - g Z
a; 1 0+4, 1 0+4,
11
al ; 1=, 0=0+0, (10.19)
11 11
pp I _ [ — =
a; 0= +4, 0 4+4

The bghan and cghan coefficients are all zero for Gg, G, Gég), and G(74).

For the soft subtractions the nonzero double subtractions for S; are given by

S 5@ _ g $® — g _ g
1 1 1 1

ce 2 =0 - - =0 ht

i 1 T 1 T

a;? LR, + 0 0=0 +0

: 4 4 ’ B ’

11 11

al? 0:_14_1’ 0:_1-1-1, (10.20)
I 1 1" 17

ee . - - =

C; 4 4 +0, 1 1 JrO,

ep 177, 1’(1,

(G Z—Z—f‘o, 0=20 +O,

PP 0=0 + 0, 0=0 + 0.

Here the coefficients with a n or 7 superscript only contribute to the n* or n* structures in
eq. (10.15) respectively, while all others give the full (n#/n-k—n*/n-k) combination. The
So and S5 graphs and their subtractions only contribute to n* and n* respectively, and do

not have any afhan contributions. For S, the terms with nonzero double subtractions are

$® g _ gP0 _go® g _ g0 g@e) g _ g _ g0

2
1 1 1 1 1 1
66_?6, = - = = —_— = _ = = ——
b =c¢¢: 0 0+2 5 5 0 5 0 5 T 5
1 1
bP=c¢?: 0=0 + 0 + 0, -5 =3+ 0, 0= 0 + 0,
(10.21)
1 1 1 1 1
P _ P . = _ - = _ - = —— —
Wr=c?: 0=0 + 5 0 =3 5 0 5 T 3
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and except for the ep terms we have the same results for S3,

SO _ 50 _ gOW | gd®) ¢ _ g® _ @) g _ g _ o)

3 3
1 1 1 1 11
ee _ ee . — - _ = S _ I h
bP=d 0=0 + 3 5 ; =0 5 0=—3+ 3.
P =c?: 0=0 + 0 + 0, 0=0 + 0, 0=20+0,
(10.22)
1 1 1 1 11
PP = P . = — - = = - - = = ——= - .
o 0=0 + 5 0 =3 5 0 5 T 3

Together these S 3 results give the anticipated gauge invariant combination, (n*/n -k —
n*/n - k), except in the ep channel (where the full results sum to zero). The Sy and Ss
graphs and their subtractions only give contributions to n* and n* respectively, and due
to their color structure their coefficients afhan and cz‘?ha“ are all zero. The nonzero double
subtractions for S, are

2 (2 =(2)(3 3 &(3 &(3)(2
Si): z(;)—Si)()a Sz(;):SzE)_Sz(;)()
bee. 1_0 _‘_1 0— 1 _*_1
i 2 27 ) 2’
1 1
bfp: §:§+0, 0=0 4+ 0, (10.23)
1 1 1 1
D . _ _ = - - _ -

and again except for the ep terms we have the same nonzero double subtractions for S,

S2) = 5@ _ ge) S = g8 _ 5B
bee - 1—0+1 0——7+1
T 2_ 27 - 27
biP 0=0 +0, 0=0 + 0, (10.24)
11 11
D . — _ - - __ —
beP 0 5T 5 0 51T 3 -

Again, together the Sy 5 results give the anticipated gauge invariant combination, (n#/n -
k —n*/n - k), except in the ep channel (where the full results sum to zero).

Note that when there is a nonzero subtraction term, there is always an SCET diagram
for that same region which the subtraction is ensuring we do not double count. All together
the results detailed in egs. (10.19)—(10.24) contribute to the final results given in table 3.

Recall that the physical picture for the Glauber exchange was that of an instantaneous
interaction in both time and longitudinal position, or equivalently in the light-like time
for each of the forward scattering particles. This picture allows us to immediately predict
which of the entries in table 3 could be nonzero, since the scattering particles must be
allowed to interact through an instantaneous exchange of this type, and hence must both
be present on trajectories that can interact in spacetime. To carry out this analysis we
shrink the green eikonal lines down to the same point as the hard scattering operator. For
the ee diagrams in figure 29 we have exchanges between n-n, n-s, or n-s particles, all of
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which exist on a final state trajectory, and hence all the Glauber exchanges are physically
allowed. In this case all Glauber exchange diagrams have nonzero contributions in table 3
except for G§° and GE°. These two vanish because we are using Feynman gauge for the
soft gluon propagator and the n (or n) polarization from the Wilson line has a vanishing
contraction with the polarizations for the forward scattering soft gluon in the Glauber
exchange operator. For the ep diagrams the graphs G, G3¥', G, Gi¥, and G7* all involve
Glaubers between lines that are in the initial and final states, and hence vanish. Here Gg’
is allowed and nonzero, and G’ is allowed but vanishes for the same reason as in the ee
case. Finally, for pp we have initial-final state interactions for graphs G4, GE, G| and
G which all give vanishing contributions. Here it is particularly obvious that we need to
shrink the soft eikonal line to a point before coming to this conclusion. On the other hand
the graphs GI?, GE, and G are all allowed and are nonzero.

Separately adding the results for the G; and SZ.(j ) in the rows of table 3, we see that
the net contribution obtained from the sum of graphs with Glauber operators is the same
as the sum of the subtraction limits of the soft graphs, as anticipated. Thus once again
G = 5@ and the same result will be obtained for these amplitudes in the theory with or

without Glauber operators. To summarize these results we can define

chan __ § : chan __ § : chan chan __ § : chan __ § : chan
a = CLGZ, = CLS<]~) s b = bGl = bS(]> y
7 1, 7

i)j
chan =y g =y e, (10.25)
. .. 7
? (2%}

where chan= ee, ep, pp and the values in table 3 give

1 1
ee _ beez_, ce — 10.2
a +47 27 C 07 (O 6)
aep:—i-%, bP =0, c? =0,
1 1
a 1 bP 5 c 0.

In ref. [60], the results for the soft graphs without subtractions, S; were calculated
for the processes denoted as ee, ep, and pp in the context of computing the one-loop soft
current. For the non-abelian channel they were found to contain both real contributions and
(im) terms, while the abelian channel obeys the expected soft-theorem.'® In our notation
their results for the (im) terms can be summarized by defining

a%han _ Z a%l:an ’ bcghan _ Z bcg}:an ’ C%han _ Z Ck%l:an7 (1027)
for which the results are
1 1 1 1 1
ee __ - ee _ _ — ep _ - ep _ pp _ _ P _
ag ——1—4, b 50 03 +4, bS 0, ag 1’ bs 5 (10.28)

16T particular, the nonzero results for b3 and bgp in eq. (10.28) correspond to the values needed to
yield the product of the soft one-loop amplitude with no emissions from egs. (10.3) and (10.8)7 times the
O(g) tree level soft emission.
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while chhan = 0 in all cases. These same (i) terms were recently also obtained by ref. [126]
in the context of computing the channel dependence of the two-loop ultrasoft function

involving lines in two collinear directions.!” Comparing eqs. (10.26) and (10.28) we see that

h h h h h h
aC an — an al’l7 bC an — b(é' an’ CC an — CCSv an’ (10‘29)
so the (im) terms from the naive soft diagrams agrees exactly with the soft subtractions.
Therefore, in SCET with Glauber operators, the full soft diagrams, S, = S; — 8@,
are completely free of (im) contributions as anticipated. All (im) terms are correctly

reproduced by the Glauber exchange diagrams in the SCET; calculation.

Let us take as a given that the two correspondences discussed here, that .S (@) = @ and
that the graphs with Glauber exchange give the (im) terms in S, remain true for active
partons to all orders. It is then interesting to note that the simplest method of computing
these (i) terms is by making use of the the G; Glauber diagrams. These diagrams have
loop integrals that are very simple to evaluate since the (i7) contribution is always directly
obtained by the k* integrations.

The physical picture that the (ir) terms that are in the EFT are generated from the
region of momenta described by Glauber loops in SCET1 makes it very plausible that for
hard scattering diagrams this correspondence remains true to all orders.

We could also reconsider this single emission calculation in SCETy. Since there are
phase space restrictions that do not allow soft emissions in this theory, we take the emission

than in SCET1 now exist as purely

to be ultrasoft. Analogs of the purely soft diagrams
ultrasoft diagrams in SCET}. If we include soft Wilson lines in the current, and consider a
soft loop with an ultrasoft emission, then the emission only occurs outside the loop at lead-
ing power, and the loop is canceled by subtractions, consistent with just using eq. (10.13).
Finally, we can consider graphs with a single ultrasoft gluon emission in the presence of
a Glauber exchange. These graphs are either zero or are fully canceled by their ultrasoft
subtraction, reproducing a similar pattern to what we saw for SCET] in section 10.1,

namely that the contributions are all contained in the purely ultrasoft diagrams.

10.3 Hard matching at two-loops and higher orders

Let us consider how the observations of the previous two sections generalize to higher orders
and to hard vertices with additional real emissions. In particular we wish to show that for
higher order active-active graphs in SCETy, diagrams with Glauber operator insertions
continue to go hand-in-hand with the Glauber 0-bin subtractions on soft diagrams. Again,
the same results will be obtained for the sum of these SCET loop graphs whether or not
Glauber operators and the subtractions are included or neglected. Our focus here will
be on two-loop graphs with soft or Glauber loop momenta, which brings in new types of

"The terms with b®® and c"*® were not discussed in ref. [126] because the I(f) integral is scaleless for
the SCET] regulators used there.
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diagrams with Glauber operators, such as those with the Lipatov vertex or soft-collinear
forward scattering.!®

For this analysis we are interested in the equality of Glauber loop graphs with the
Glauber subtractions on soft graphs. Since this can be established at the integrand level
we will not bother to write out explicitly the infrared regulator m? in this section.' It is
important to note that the SCET; Glauber and soft graphs considered below should be
considered to have an infrared scale set by m ~ A, and hence are not scaleless.

10.3.1 Two loop abelian soft-Glauber correspondence

First we consider the SCETy; diagrams for n-n production that have abelian contributions
at two-loops, which are shown in figure 32. Both the soft box and soft cross-box graphs
have abelian contributions with color factor C’%, while the cross-box also contributes to
the non-abelian CrC4 terms to be considered below. A crossed graph with two Glauber
exchanges does exist as discussed in section 5.2.1, but is not shown since it still evaluates
to zero for the reasons discussed there, even within higher order loop graphs. Mixed soft
Glauber graphs can only arise from time ordered products of a Glauber operator and the
hard matching current in eq. (10.1) so the Glauber vertex can only enter outside the soft
interactions. Therefore there are no graphs where a Glauber gluon is nested inside of the
soft loop at leading power, and?"

does not exist.

For the same reason there are no crossed boxes involving mixed Glauber and soft gluon
rungs.

The two-loop soft diagrams have subtractions when the various soft gluon propagators
scale into a Glauber region. As in the one-loop soft emission analysis of the previous section,
an equivalent enumeration of the relevant zero-bin limits can be given with the eikonal
propagators appearing in these soft diagrams. We therefore enumerate the subtractions by
considering cases where eikonal propagators with momentum k* ~ X scale into the Glauber
region with k* ~ A2. For eikonal factors in the S, line one takes k* ~ A2 in order to scale
into the Glauber region, whereas for eikonal factors in the S; line one takes k= ~ 2.
Referring to the propagator numbering in figure 32a, the relevant Glauber limits for the
two-loop diagrams can be enumerated as (14), (23), (13), (24), (1234), where the numbers

18While there is no correspondence between naive Collinear graphs and Glauber subtractions at one-loop
for hard scattering graphs, a correspondence can appear at two-loops. We will discuss this correspondence
for active-spectator graphs in section 11.2, since in this situation it appears already at one-loop.

191t is also well known that care must be taken with a gluon mass infrared regulator at 2-loops, since a
simple gluon mass spoils gauge invariance.

20This can be seen easily by noting that the soft emission could also be written as coming from a Wilson
line at the vertex, often pictured by contracting the eikonal lines to a point. Glauber interactions are not
part of this soft Wilson line.
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Figure 32. Two loop graphs that have abelian contributions and either soft gluons or Glauber
exchange with a hard scattering vertex ® in SCETy;. We refer to these graphs as S1, Sa, SG, and
G, and we number the collinear/eikonal fermion propagators (1), (2), (3), (4) as shown.

refer to which eikonal propagators have a modified scaling for their momentum. Once again
the relevant Glauber subtraction limits occur for cases where there is a corresponding SCET
Glauber diagram, and hence ensure there is no double counting. The results for the graphs
with soft momenta after subtractions are then

S; = sz . [S(G23) . S»(G23)(G14)] . [S(GM) S-(G14)(G23)] . [S~<G13) . S(Gls)(G24)]

K3 K3

o [S(G24) . S(G24)(G13)] S(G1234)

7 )

SG = SG — SG(@2) (10.30)
)

Here, for example, Sl-(Gz’3 denotes the soft graphs integrand with propagators (23) scaled

into the Glauber region. This subtraction itself has its own subtraction S’i(G%)(GM), which

takes the integrand S§G23)

This ensures that in the difference, Si(G%) - Si(G%)(GM), the (14) propagators are truly soft.

(See [59] for further discussion.) The subtraction SZ.(G”S“)

and then subtracts the result where (14) have Glauber scaling.

simultaneously considers both
loop momenta to have Glauber scaling. The SCET graph SG shown in figure 32¢ contains
a soft loop, and hence also has a Glauber subtraction given by SG(G23).

Since the abelian soft graphs have trivial numerators, it suffices to study these overlaps
by listing the denominator propagators for the integrands for the graphs shown in figure 32,
and for their 0-bin subtractions. For the original graphs these are

Si:i [n-k]n: (kitke)][— 7 (ki+k)][— 7 kl][ 2] [%3] (10.31)
=[n-ki][n-R][ -7 ké][—n ] (] (R — )]

Spi [n-ka][n- (kitko)] [ =7 (ki+ko)] [ = ][ ][ 2]
:[n-kl][n-ké][—n'kz][ kl—kz][%][ 7]
=[n- (Ko—kD] [0 ko] [ -7 ko] [ — 7 kD)) [K7] [(krkiﬂ,

SG: [n-ki—A][n-ko][ =7 ko][—7- kAL [K2 ] [K3],

G: [nki—Ar][ne(k1+ko)—Ao] [ — - (k1 +ko) —AS] [ — 7k — AL [R5 ] [£3, ].

where we show the eikonal propagators listed from (1) to (4), and multiple momentum rout-
ings are shown for the purely soft graphs for later convenience. Here and below, all propaga-
tors in square brackets include a 4+:0. The results are all regulated with |k§|~"|k3| ™" (using
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the notation of the first momentum routings) and these regulator factors are not modified
when taking the 0-bin limits, and hence need not be written out explicitly in the analy-
sis below. It should be evident from figure 32 that the SG diagram has the same scaling
structure for propagators as S§G14), while the G diagram has the same structure as S§G1234).

First consider the abelian terms in the (23) limit. Since there are no Glauber graphs
that correspond to this limit we anticipate that the soft box and cross-box diagrams will

cancel. Using eq. (10.31) we find

S k) [ k][ —n- k] [ — 7 k) (R3] [k key — (R —F10)?] (10.32)
SS) s k] [n- k) [ = a- K] [+ 7 k) (R3] [RiF Ry — (Ryy —F10)?]
Therefore in the sum relevant to the abelian contribution, SgGQS) + SéGQS), we get a §(7i-ky),
which causes the two gluon propagators to only depend on transverse momenta. This sum
is therefore identical to the sum of Glauber subtraction terms S§G23)(G14) + SSGQS)(G“) and
there is no contribution from the (23) limit,
§lG) | glGas) _ glGas)(Gra) _ glGs)(Gra) _ (10.33)

The situation is similar for the (13) and (24) limits, where

S k) [n- k][ —n- k] [—n- k) K2 [ — KRy — (R k)%, (10.34)
S5 [n k) [n-k;}[—ﬁ-k’] [+ 7k [K3L) [ — k5T kT — (R —F11)?]
SI7 [k [ k][ n k] [ n k] (RP] [ KRy — (R =R )7

Sy [k [n- k][ —n- k] [ = n- ][R0 [ = Rk — (Ro =)
So S{Glg) - SSGB) gives a §(7 - k1), and S§G24) + SéGM) gives a d(n - k}), making these
combinations equal to the sum of their subtractions

S%Glg) + SéGlS) . SEGls)(Gm) . SéGlB)(GZAL) _

0, (10.35)
S§G24) + S§G24) . S£G24)(G'13) o S§G24)(GIS) —0.

For the abelian graphs this leaves only (14) and (1234). The full Glauber limit of the

(G1234)

soft cross box, S, = 0, because the kY contour integral vanishes (considering the k;-k%

routing). In the (14) limit the cross box gluon propagators depend on only |-momenta,

which is identical to its subtraction. So there is no contribution from the cross box in this
limit

S§G14) _ S§G14)(G23) —0. (10.37)

Thus for abelian contributions, the only important subtractions come from the box topol-
ogy. For the full Glauber limit of the soft box graph in these two limits we have

SO 5 ][ G+ k)] [— A G+ k)] [— e (BL) (2], (10.39)
SO k] ko] [ e ][ ][R [R]
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Since the results for Glauber graphs G and SG with the integrands in eq. (10.31) do not
depend on the A; or A} factors appearing in the propagators, they are equal to the results
for these two subtractions, respectively. The subtractions have the same integrands just
setting all the As to zero. Thus

sl — g, sl 5@, §ie(Ga) = gGlGaa) (10.39)

The third result follows from the second. Just like at one-loop, the choice of soft Wilson line
directions in the hard operator are important for the correspondence in eq. (10.39) to be
true. Furthermore, in this two-loop analysis, the precise relative powers of 77 used in our soft
Wilson line and Glauber potential rapidity regulators are also important in order to obtain
these correspondences. Combining all the above results, we find that the sum of all abelian
diagrams with their subtractions are equal to the abelian part of the naive soft graphs

S1+S+SG+G=285,+5,, (10.40)

as anticipated.

We can also consider this abelian two-loop analysis in SCET}. Here if we included soft
Wilson lines in the current, then there would be contributions from boxes and cross-boxes
with either (soft-soft, soft-ultrasoft, soft-Glauber, ultrasoft-Glauber, or ultrasoft-ultrasoft)
loops. All cases except the ultrasoft-ultrasoft loops either give integrals that are zero, or
that are exactly canceled by their subtractions. Thus there is no impediment to simply us-
ing the current which absorbs the soft Wilson lines, given in eq. (10.13), for this calculation.

10.3.2 Two loop non-abelian soft-Glauber correspondence

Next we consider generalizing the analysis of the previous section to the SCETy; graphs
with the non-abelian CrC4 or Cpny color factors. Using Feynman gauge for the soft
gluons, the nonzero graphs are shown in figure 33. Here S3 denotes the same cross box
graph called Sy above, just now with the non-abelian part of its color factor. It has four
eikonal propagators. Therefore we have S§G1234) = 0 and SéGM) - S§G14)(G23) = 0, and
must only consider the (23), (13), and (24) limits for S3. For Sy the 3-gluon vertex yields
two terms in the numerator that cancel one or the other of the two n-eikonal propagators,
and likewise for S5 with the two n-eikonal propagators. Therefore these graphs each have
two terms, both with two eikonal propagators. It is convenient to consider these pieces

separately so we write
Sq = San + Sur S5 = Ssp, + Ssr (10.41)

where the “h” subscript indicate terms with two eikonal propagators next to the hard vertex
which can have a (23) subtraction limit, whereas the two remaining eikonal propagators
in Sy and Ss, are such that they only have (13) and (24) limits respectively. Finally,
Sg includes both the vertex graph and Wilson line self energy graphs, and only has a
nontrivial (23) limit. The role of the self energy contribution here is to cancel the khk%
vacuum polarization numerator term in the vertex graph.
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Figure 33. Non-abelian two loop graphs with soft gluons and Glauber exchange with a hard scat-
tering vertex ® in SCETy;. Only graphs that are non-vanishing in Feynman gauge are shown. We
will refer to them as S3, Sy, S5, Sg, GS1, GS2, GS3, LSy, LS>, and we number the collinear/eikonal
fermion propagators (1), (2), (3), (4) as shown.

The graphs in the second row of figure 33 involve Glauber operators. Here G.S7 always
has two collinear propagators, and has an internal eye-graph involving terms with both
zero and two eikonal propagators. For the numerator from the eye-graph vertices in G'Sy
(see eq. (7.15)), we write

Alk1y - (k1o + k21))?

(d—2)n-kyf-ki +2(ky + kot )? + 2k, +

n-kin-kp
4lky - (k1 + kg1 )]?
_ {(d —n k- ky 44k — 20k + kot )? — 2k%} J Ak (Rt ko)) , (10.42)
n- ]{71 n- kl
and then split the two-loop G'S; graph into two parts by defining
GS1 = GSip + G5y (10.43)

Here GSip is the result involving the terms in curly brackets in eq. (10.42), while G\S;¢
refers to the term on the second line with the (7-k; n- k1) eikonal propagators. The graphs
with a Lipatov vertex, LS7 and LS, have two collinear propagators and terms with both
two and zero eikonal propagators (depending on whether the Lipatov vertex cancels the
soft eikonal propagator or adds an additional one). Since these terms also need to be
considered separately we divide the graphs up as

LSy = LSy, + LSlf R LSy = LSy, + Lng , (10.44)

where the “f” subscript refers to terms with two eikonal plus two collinear propagators,
and the “r” subscript refers to terms with just the two (black-dashed) collinear propagators
that are explicit in figure 33. To summarize the nontrivial Glauber subtractions for these

contributions we write
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Sy = 5«3 . [S:E)G%) . Sést)(Gm)} _ [S:E)GB) o S?()Gls)(Gm)] . [S?()GM) _ S§G24)(G13)]

)

Sap = Sap — Siff”’) , Sy = S — 4(1513) ) Ssh = Ssn — 55(,523) ; Ssy = S5 — 55(,?24) )
So =386 — S, GSip=G8ip -GS\, GS;=G8; -GS
LSy = E:SHf - LS;?M) , LSy = mzf - LSé?ls) , (10.45)

whereas there are no nontrivial subtractions for GSy5, GSs, LS, or LS5,.

The simplest soft two loop contributions are those that only have eikonal propagators
next to the hard vertex, for (2) and (3). This includes the entire Sg, as well as Sy, and
Ssp, where the momentum factor from the 3-gluon vertex cancels propagators (1) and (4)
respectively. For these terms, (Ga3) is the only nontrivial Glauber subtraction on these
soft graphs, and the equivalence of these subtractions with the SCET Glauber operator
diagrams is directly analogous to what we observed in section 10.1 at one-loop. Carrying
out the calculations we find that

S+ S 4+ S{7) = G + Gy (10.46)

Note that G\S1j has collinear propagators for (2) and (3), while the remaining propagators
for the other loop are relativistic, and hence do not themselves have a nontrivial Glauber
subtraction. The equality in eq. (10.46) once again relies on the independence of the graphs
G Sy and GSy on the A’s that appear in the (2) and (3) collinear propagators.

The remaining part of the Y-graphs in figure 33 include the term Sy, where the 3-gluon
vertex cancels the eikonal (2) and there is only a (G13) subtraction, and a term in S5, where
its 3-gluon vertex cancels the eikonal (3) and there is only a (Ga4) subtraction. These
subtraction terms are exactly equal to LSy, and LS9, where the numerator momentum
factor from the Lipatov vertex cancels the soft eikonal propagator from the hard vertex
Wilson line. Thus,

s = 1.5y, 5L — 1.5, . (10.47)

Once again these are the only relevant subtractions for these terms.

The above considerations account for two loop soft graphs with two eikonal propa-
gators, so the remaining graphs to analyze are those with a total of four eikonal and/or
collinear propagators that come from S3, GS1, GS3, LS, and LS,. Considering first the
(23) subtraction we find the propagators

SV k] [ K] [ — - k) [ ) (R3] KR — (R — RS 1)) (10.48)

To identify the corresponding result in the graphs with Glauber exchange, we partial frac-
tion the G'S1; integrand by writing,

Alky - (k1 + ko) [2m?—k3 ]2 | 2[R —m®|[(ki+her)?—m®] | [(ki+ko1)®—m?]

= 104

n-kin-k ’ﬁ'k‘ln'k}1+ n-kin-k + n-kin-k (O 9)
[k —m?]* | 2[2m®—k3 ][k? —m?] n 2[2m® — k3, ][(k1 + k21 )? —m?]
n-kin-kp n-kin-kp n-kin-k '
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and then dividing by the remaining propagators:
(k3 —m?)[(k1 + kon)? — m?|[k3, — m*P[R - ko — A(kar)][-n - ko — A(ko1)].  (10.50)

The second term in eq. (10.49) gives a vanishing integral, the 3rd, 4th, and 5th terms cancel
against each other, and the 6th term in eq. (10.49) cancels exactly against the flower graph
GG S3. This leaves only the 1st term. After dropping the A and A’ factors which again drop
out for the integrals over n - ko and 7 - k2, the result for this remaining term in GS1y+ G'S3
has the same form as eq. (10.48) for its propagators, and also the same prefactor. The only
possible difference are the directions associated with the soft eikonal factors (n-kj) and (7
k1), which we did not assign for G:S r + G S3. However, since these eikonal factors have soft
scaling, which is ensured by Glauber 0-bin subtractions, the results are identical irrespective
of the signs 410 used for these eikonal propagators in G'S; y+GS3. If both are +i0 this gives

_ qo(G23) 1 . 1 _
GSif+GS3— Sy x Il ] T Tl ] =0. (10.51)

In this case we also have GSﬁM) + GSéGM) — S§G23)(G14) = 0. The same is true if both

are —i0 since the rest of the integrand is symmetric under k; — —k;. If one eikonal is 40
and the other is —i0 (or visa versa) then this gives

GSif+ GSy — 557
1 -1 1 }

~ _ _ 1[ 1 n 1
2 [TL . kl][—ﬁ . kl] [—n . kl][ﬁ . kl] 2 [n . ]ﬁ”ﬁ . k‘l] [—n . ]ﬁ][—ﬁ . kl]
1

— —5(—271'1')25(71 k1)o7 k), (10.52)

which forces the soft k£ momentum into the Glauber region. This contribution is therefore
exactly canceled when the (G14) subtraction from the n-k; ~n-kj ~ A2 region is applied
to these terms. This result can be rearranged to yield a relation between the Glauber
subtractions of the soft graph and the original Glauber graph that applies for any choice
for the eikonal propagators in the Glauber operator vertex,

5l0) _ glom)(@u) _ g, 1 a8, ng;‘w — GS) (10.53)

A similar result will be obtained for the (13) and (24) limits, except now the corre-
spondence is with the LS; and LS5 graphs. Here we have

S k][ k) [—n- k) [k [K2L][ — KTk —(R—Rb )Y (10.54)
= [n-k][=n-g[-n-k][n- [k + )] [€],
S (= k] k) [ 7 k) [ — o K] (K] [ = KRS — (B —Rp,)?)

= [n-fn-K][-n-0[-n-K] k][]

In the first equality we took k1 =k + (n/2)n- £+ ¢, and kb, = k — (n/2)n - £, while in the
second equality we took kj =k — (7/2)n- ¢ and ke = k+ (n/2)n - £+ ¢, . With this change
of variables the (13) limit is simply k& ~ (A%, A%, \) while the momentum ¢ remains soft.
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This change of variables also makes it easier to see that the result for LS;s is the same
as for SéGB). For the (—n - £) propagator in LSy that arises from the Glauber operator
vertex, we have not yet specified whether it is +40. Once again the same result is obtained
with either choice, either LSy — S§G13) =0or LSy — S?EGIB) is proportional to §(7 - £)
which is killed by the terms with a further Glauber 0-bin subtraction on this momentum.
Similarly the result for LSy is the same as S§G24). Here when we subtract, LSof — SéGM)
is zero or proportional to §(n - £). In both cases these §-functions force the f-momentum
in these differences into a Glauber region, making the results equal to their (24) and (13)
subtractions respectively. Rearranging, these results we have

S gGGan) _ g, [5G gl g(GwG) _pg, | [sG0)  (10.55)

Putting all these results together we find that
S 4S54+ S5+ S5+ GS) +GSy + GS3+ LS + LSy = S34 54+ S5+ 5. (10.56)

So the non-abelian two-loop result is again simply given by the sum of the naive soft graph
results. From eqgs. (10.40) and (10.56) we see that, just as in the one loop case, the same
result is obtained for hard production graphs at two-loops in theories with or without the
inclusion of Glauber gluon exchange, as long as the proper subtractions are performed on
the soft graphs.

It is clear that the pattern established above continues to all orders in the abelian
diagrams which involve soft and Glauber rungs that go between an active n-collinear and
active n-collinear line. The nontrivial Glauber regions of the soft diagrams occur when
the momenta of one or more pairs of propagators (one from the n line and one from the n
line) scale into the Glauber region. For the purely abelian graphs, the box and cross-box
subtraction terms continue to cancel unless the soft loops all occur on the internal side
next to the hard vertex, with Glauber loops on the outside. When we consider Glauber
0-bin subtractions on any soft graph, we must do so by considering soft gluons from the
outside-in, otherwise we again have vanishing contributions. These 0-bin subtractions are
then in one-to-one correspondence with a graph where that rung is replaced by a Glauber
gluon from the start. 0-bin contributions from simultaneous Glauber limits of two rungs
again are only nonzero when considered from the outside-in, and correspond precisely with
the replacement of those two rungs by Glauber gluons. The same is true if we consider
the 0-bin subtractions for the simultaneous limit of N-rungs. Given this correspondence
for the once subtracted loop integrals, we can also immediately conclude that there is a
correspondence on additional iterated subtractions that are considered for these integrands
(as in our two-loop example of S(G2)(G1) = SG(G1) above). While the topologies and
subtractions are more complicated for the nonabelian graphs, we can again see from our
two loop analysis that there is a tight connection between the subtraction terms and the
direct Glauber integrands, and thus also anticipate that the correspondence will remain
true at higher orders. The key feature of being able to ignore the dependence on the -
momentum dependent terms A; remains true for these active-active diagrams. Thus the
result at any order for the n-n production graphs should be the same in the theories with
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Figure 34. Two loop graphs with two active n-collinear lines from the hard scattering vertex ®
in SCETYy, dressed by soft gluons and Glauber exchange. Again the inner rung carries k; and the
outer rung carries ko for each case, the green lines are eikonal propagators from the soft Wilson
lines, and the dashed black lines are collinear propagators. The three diagrams where the inner
gluon contracts with the outgoing n quark line give analogous results.

or without the inclusion of Glauber gluon exchange. This implies that from the perspective
of these diagrams, the Glauber could be absorbed into the soft gluon degree of freedom.
This result does not however hold for all graphs in SCET, as previously mentioned. For
example, the results in section 11.1 will depend on the A; terms in the denominators.

One may also consider the extension of the above non-abelian 2-loop analysis to the
case of SCETY. There are now exact analogs of the graphs S; with two soft loops, that have
two ultrasoft loops. Here if we allowed soft Wilson lines in the production current, then
we would still have the diagrams LS; and LSy from figure 33, which involve a contraction
between the current and the Lipatov vertex. However, these graphs become scaleless when
the IR regulator is only at the smaller scale in SCET7, and we have checked that they are
canceled by the additional ultrasoft subtractions, hence validating the use of eq. (10.13).
There are graphs involving one Glauber exchange dressed by an ultrasoft gluon, which are
again exactly canceled by their ultrasoft 0-bin subtractions. Finally, in SCET] there are
also soft loop graphs that do not involve soft Wilson lines from the production current,
GS1, GSo, and GS3 from figure 33, and we expect that they will also be canceled by their
0-bin subtractions.

10.3.3 Two loop soft-Glauber correspondence for more than two active lines

Next we continue our analysis of hard scattering vertices, by considering possible difference
that might occur when we have more collinear lines. To be definite we consider the case
where there are two active n-collinear lines and one active n-collinear line in SCETy;. The
relevant diagrams with Glauber and soft rungs which involve all three collinear lines and
have a relation to the Glauber exchange are shown in figure 34 (the diagrams with the rungs
in the other order work in the same manner). The analysis for these diagrams proceeds in
a very similar manner to that of the graphs in figure 32. The corresponding propagators
and their subtractions are

St [n-(kit+k)][—n-ka][n- k][ —n- ko) [F] k3], (10.57)
S n k[ —n- k] [n- k][ — 0 ko] [KT] K3, ],
G(G261) [n (k1 + k?)] [ —n- kl] [n : k?] [ —-n- kQ] [ki] [kgi] ’
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S k][ —a- k][0 ko) [ =7 ko] [ ] (K3, ]
SG: [n-ka][—n-ki][n-katDo][ —7- kot AG] [K2][K3.],
SG@ : [n- kl][ ki) [ kot Do) [ =7 kot AL] [KTL ] (K3, ],
G [n 2)+A H—n k1+A] Hn-kg-i—AgH -kg—l—A'z] [ki] [k‘%L]

Once again, due to the independence of these loop integrals to A; and A}, we have the
same relations as before S(G2) = S’\é, S§(G2)(G1) = GG and S(G2G1) = G. For these
correspondences to be valid, the choice of outgoing soft Wilson lines for the hard scattering
operator is important. Putting these results together, we once again find

(5 - 5@ — 5260 1 gEAE) 4 (5G - 5GI) +G =S (10.58)

Thus we obtain the same result for this hard scattering calculation in the theory with or
without Glauber gluons.

The key feature of being able to ignore the dependence on the A; remains true when
we have additional active lines in the hard scattering diagram, and hence do not change
the correspondence between subtractions and Glauber exchange contributions.

If we consider the analogous computation with more than two active lines in SCETT,
then the pattern we have seen in previously subsections repeats once again. We have
checked explicitly that graphs with Glauber or soft exchanges are either zero or canceled
by the their subtractions. Therefore the dynamics here are once again described by a hard
current with only ultrasoft Wilson lines.

11 Glauber effects with spectators in hard scattering

In our calculation for near forward scattering in section 9.1 there was no hard interaction.
The collinear lines effectively acted as classical sources with only a small recoil from an
exchanged ¢, and the source propagators were effectively eikonal because of the structure of
the rapidity regulated integrals. In addition, in our analysis of Glauber exchange in purely
active hard scattering diagrams in section 10 eikonalization was manifest as well. However,
in general we know that Glauber exchange does not lead to purely eikonal propagators
for the scattering particles. Examples of non-eikonal situations were discussed above in
section 9.2, and occur when there are two or more n-collinear propagators that are sensitive
to the Glauber loop momentum, with at least one pole on either side of the axis in the
appropriate complex momentum plane (or simply the energy plane). In the presence of
hard interactions we will also see that certain collinear or soft propagators attached to a
Glauber interaction are also not exclusively eikonal. Despite the presence of non-eikonal
propagators, indicating that the associated propagators are not captured in Wilson lines
(i.e. classical sources), we will still see that Glauber iterations can exponentiate.

In this section we will consider effects of Glauber exchanges in the hard scattering
of color singlet bound states that we treat with interpolating fields. We consider a hard
momentum g with |q2\ > A(QQCD to flow into the SCETy; electro-magnetic current Jr in
eq. (10.1), which involves both collinear and soft Wilson lines. A matrix element is then
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taken with one or two hadrons which are interpolated for by collinear quark bilinears that
have (for simplicity) the quantum numbers of a longitudinal vector meson

0a() = (656 ) @), v = (656 ). (L)

In order to have a proxy for the incoming color singlet hadrons that we can handle simply
in perturbation theory, we can couple these interpolating fields to light neutral “hadron”
fields pp(z) and pr(y) that are longitudinal vectors and which annihilate “hadron” states
|hyn) and |hy) via

£¢n¢,n = pn®yn + P Ps, (112)

with
pn(@")|hn(P)) =n € em i pr(@')|ha(P)) =7 € e~ (11.3)

Since the py, 5 fields have no dynamics they have Z = 1 in the LSZ formula. Since they are
light we can take P? = P? = 0 at lowest order. We then study the matrix elements MI]?Y
and MPE'S defined by

§'(P+P—q—px) MP¥ = / d*zdy d*ze* <X’T£pn<pn () Ly, (y) Jr(2)

P2P2 : ’ - D ’ .
e Y bty (X|TL, 0, (00, () I 0o (o)

o (P) i (P))

= lim
P20
P“—=0

0)

= /d4x drydtz e PremiPyeias <X‘T<I)n(x) D (y) Jp(z)‘0> ,

5P~ a = px) MP = [aty atsc* (X|TLp0, () Jr(2)|ha(P))

)

= /d4y d*z e tPvin= <X‘T‘I’,—L(y) Jp(z)‘0> . (11.4)

P? By :
~ lim —,/d4y/eﬂp'y /d4yd4z6“1'2<X‘T£pﬁ(pﬁ(y)Jp(z)p,—L(y’)
P20

Thus after accounting for momentum conservation, for our perturbative calculations the
vertex involving the ®,, and @5 fields will simply give factors of (74/2) and (y#/2) respectively.
Adopting n-collinear scaling for the momentum P and n-collinear scaling for P we can work
out the scaling of MIQY and MIQIS. The outgoing state has the same scaling as a qq pair,
(X| ~ A2, the fields ®,, ~ ®; ~ Jr ~ A2, and the measures d*z ~ d*y ~ A\7%. After
shifting coordinates in the matrix elements to ®,(x — z), ®5(y — z) and Jr(0), and shifting
x — x+zand y — y+ 2, we get momentum conserving d-function from the z-integration.
Therefore it is not surprising that the scaling of the momentum conserving J-functions on
the left-hand side is the same as the [ d*z on the right-hand side. All together we therefore
have the power counting results

MBY A MBS A2 (11.5)

We will see below that in hard scattering diagrams the source propagators in Glauber
loop graphs do not all eikonalize. However, despite this fact, an overall phase will still
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be generated if we sum over Glauber exchange rungs (ignoring here soft and collinear ra-
diation). We will also show under what circumstances the phase cancels. Of course this
cancellation is a necessary but not sufficient condition for the proof of a factorization the-
orem that does not include Glauber exchange. For the full non-abelian case with radiation
and quantum corrections there may be contributions that could break factorization and
which are not simple pure phases. A complete proof of factorization in SCET entails prov-
ing that the Glauber Lagrangian does not contribute to a hard scattering process, and a
demonstration of how complete proofs of factorization can be carried out using our theory
for Glauber exchange will be given elsewhere.

In our perturbative analysis of the diagrams with spectators we will treat only a single
scale t. It could be taken to be at the hadronic scale ¢t ~ A%zcm or rather say u = 2GeV
so that perturbation theory still makes sense. Or it could be taken to be at a perturbative
scale Q* of a final state hadronic measurement, in which case t ~ Q*2 > A(QQCD. (If we
wanted to consider our calculations below for the latter case we would replace our p, 5
couplings by perturbative gluon splitting with invariant mass ~ Q*2, and would also have
to keep P2, P2 # 0. The results in eq. (11.4) are still valid for this case, but appear without
the limits on the r.h.s.) A complete proof of factorization with our formalism must treat
both of these cases. For the sake of the discussion here we consider ourselves to be in one
of the two cases, but we do not treat the mixed situation.

To organize our discussion we divide up the collinear lines in the matrix elements in
eq. (11.4) into spectator and active lines. At lowest order this division is simple. Consid-
ering the base graph in figure 35b, the collinear lines contracted with the hard scattering
operator are active, and those that are contracted with the hadron interpolating fields
which do not directly participate in the hard scattering are spectators. Below in sec-
tion 11.1 we consider Glauber exchange between spectator lines. Then in section 11.2 we
consider Glauber exchange between a spectator line and an active line. In section 11.3
we reconsider Glauber exchange between active lines in the presence of hadronic interpo-
lating fields. The generalization of these results to SCET; is discussed in section 11.4.
Finally, we also propose a definition of spectators and active exchanges valid at any order
in perturbation theory in section 11.5.

11.1 Spectator-spectator

We begin by considering the spectator-spectator (SS) interaction diagrams in figure 35.
Since the hard scattering case with MIDIS has only a single hadron, these SS contributions
only exist for the hard annihilation case with MFDY, where the two participating spectators
are created by ®,, and ®; respectively. In these graphs the hard interaction is indicated
by the ®, and our routing for incoming and outgoing external momentum is shown in
figure 35b. For simplicity we take the limit where the mass of the incoming hadrons is
ignored, so that P? = P2 = 0.2! This is accomplished by taking P* = i - Pn*/2 and

21The generalization to the case with P?, P? # 0 is discussed in eq. (11.14) below.
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Figure 35. Spectator-specator interactions for the hard scattering correlator in eq. (11.4). The
Glauber interaction labeled G indicates the sum of all ladder diagrams including the graph with 0
Glaubers as indicated.

P = n - Pn"/2 respectively. The tree level result for figure 35b is then given by

in-(p1—P) in- (P —ps)
figure 356 = S”7 _
: P-p)? (P p)?

_ s [1 1 } [ﬁ'mﬁ'(P—pl)n'Pzn'(P—Pz)

(11.6)

i DY - P n-P

=STE(pi11,p21),

3

where this defines the function F, and we have defined the spinor factor for the outgoing
quark-antiquark as
ST =ty vy (11.7)

The v} appears here because of our convention for the antiquark spinors, see the discussion
near eq. (5.8). Note that 7-p; > 0, n-(P—p1) > 0, n-pa > 0, and n-(P—pz) > 0. To obtain
the second line of eq. (11.6) we used momentum conservation, and the equation of motion
to remove the small momentum components, n - p; = ﬁﬁ/ﬁ -p1 and 1 - Py = ﬁi/n - Pa.
The final momentum dependence of the result in eq. (11.6) is defined as the “end-function”
E(p11,p21). We suppress the dependence on the light cone momenta in its arguments
since it is the | -momenta that will play the prominent role for our discussion here. The
factor involving light-cone momenta that appears in E will often occur at intermediate
steps, so we define

i-pii-(P—p)n-pan-(P—p)

n-P n-P

R =

(11.8)

In terms of power counting we note that the tree level amplitude scales as E(py 1, pa1) ~ A4
just as expected for the scaling of MIQY.

Next we dress the end E with SS Glauber exchanges as in figure 35c,d. To do this
we may utilize the results from section 9.1 for Glauber exchange in forward scattering di-
agrams. Here the hard scattering end produces a pair of quarks that are then fed into the
forward scattering. In particular, the one-loop hard scattering graph in figure 35c is just
the tree-level forward scattering graph tied off with an extra loop on the end and the two-
loop hard scattering graph in figure 35d is the one-loop box-graph for forward scattering
tied off with an extra loop on the end, etc. Due to the extra loop present in hard scattering,
the incoming quarks are offshell, with O(A?) nonzero 4 loop momenta flowing through the
forward scattering part of the graph, and unrelated 1-momenta for the two incoming lines.
However, as discussed in section 9.1, the presence of these modifications from the additional
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loop do not change the result for the sum of forward scattering ladder graphs. Thus we can
first perform all the forward scattering loop integrals to give 2G/(k ), where G(k_ ) is taken
from eq. (9.23) setting T{ ® T4 = T4 @ T4. This leaves only the loop-integral with mo-
mentum that flows through the end, and corresponds to evaluating figure 35a. The result is

2G (k1) (-1)?
[kt — A1 4i0][— kT — A} +i0][k~ — Ay +40][—k~ — A} +i0]
2(—1)?

_ G(k1)
== 2 87 [qad 2 = _
2 L (AL + A (AL + A

= —871% /ddzkj_ = - G(kj;) i
(kL +p11)? (kL — pa1)?

S / 42k, Glk) Eprs + kopas — kL) (11.9)

figure 350 = 87 /Jdk

To obtain the first line, note that the small k* loop momenta do not appear in the nu-
merator of the collinear propagators, so we can group these factors into the denominators,
for example
n-p1 B 1
A pi(ktanepr) — (kL +pr)? +i0 kT — A1 +i0

Using momentum conservation and n - P = n - P = 0, and the fact that the incoming

(11.10)

hadrons have vanishing |-momenta so (P —p1); = —pj; and (P — p2); = —pay, the
various k| dependent factors in eq. (11.9) include

ki + Py )? P1L)
Alzw—n'pl, All—(J_(—]i;pll))"i_npla (1111)

n-pi n- -
(R — Py )? = (kL =y )?
Ai:w_ﬁ.m? Alzw—l—ﬁ'pg.

n-p2 n- (P—p2)

To obtain the second line of eq. (11.9) we note that there are no rapidity divergences
and hence we simply perform the k™ and k™~ integrals by contours. The final lines simply
follow from the definitions in eq. (11.11) and eq. (11.8). Note that unlike in the forward
scattering loop integrals that the final result here depends on the non-vanishing A + A}
and Ag + A, so the collinear fermions that appear outside of G here are not eikonal.

To exhibit the rescattering phase it is convenient to express eq. (11.9) in Fourier space.
If we hold the photons ¢ = —p1, — po fixed, then we can consider Fourier transforming

in Apy = (p21 —p11)/2, to give
Ass(Ap.,q.) = figure 35b
= —S’Y/d‘d*2kj_ G(kl)E<lﬂ_ —Apj_ — %;APL — kL — q;)
= =57 [T G B (8p1 — Raan)
=-8 /JHM / A2, e G(by) / A2, e~ AP RO VLR Y q))

=87 / A2, e~ BFLEL FI(h) gy ) €00, (11.12)
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In the third line we have defined a related two argument end function E’ which allows us
to keep the expressions more compact. From the final result we see that the iterations of
the spectator-spectator Glauber potentials produce a final state rescattering phase ¢(b, ),
where the distance b is conjugate to the difference of the 1-momenta of the two spectators
undergoing the scattering.

It is interesting to ask: under what conditions does this Glauber induced phase cancel?
Considering the modulus squared of the amplitude, the phase cancels as long as we carry
out the phase space integral over Ap |,

/d“d_QApL ‘ASS(APJ_>QJ_)‘2
_ |Sﬁy|2 /dd—zApl/dd—sz dd—Qb/J_ IAPL-(B —bL) E’(bl,ql)E’T(bi,qU i (bL)—ip(b)
= |SV|2/dd72bL |E,(bL7QL)|2
= |SV|2/d*i*2APL |E/(APL,QL)|27 (11.13)

where the final result is just the integral over the squared tree level result in eq. (11.6).
Thus the Glauber exchange for these SS graphs cancel as long as the limits of integration for
Ap, are taken to infinity in the effective theory. As long as the measurement made on the
final state particles takes place at a perturbative scale Q* with vt ~ Ap, < Q*, then the
measurement does not see the spectator particles at leading power, and the Ap, integration
is unrestricted for the leading power analysis. This need to integrate over Ap | also appears
in the CSS Drell-Yan factorization proof [21, 25]. Although the result in eq. (11.13) does
exhibit the cancellation of final state interactions, taken alone it is far from a proof of factor-
ization, even in the abelian case. What this resummation does do however is to highlight the
importance of the Ap | integration and illuminate the semi-classical nature of the physics.
If on the other hand, we would like to address the case with a single ¢ ~ Q*? > AéCD,
then as mentioned above, we should replace the p, 5 by a perturbative gluon. In this case
pil, Ap | ~ Q* and we have a Glauber loop momentum k; ~ Q*, and the calculations above
need to be redone with P2, P2 # 0 and P, P, # 0. For this case one still obtains eq. (11.9),
with the same k; convolution with a G(k_), but where the E function is now given by

1

E(p11,p21) = , (11.14)

i (ﬁL—ﬁu)Q peL (ﬁL—ﬁu)Z _
Dy (P _pl) Do (P —p2)

and we have a different prefactor S7. Assuming that the measurement restricts the

— P+

Ap| ~ Q*, then these spectator-spectator scattering Glauber exchange diagrams will not
cancel out. In this case the measurement spoils the factorization of the perturbative n- and
n-collinear initial state beam radiation, but only starting at O(a?). To get a nonzero cross
section level result we need one perturbative Glauber exchange from G(k, ) on each side of
the cut, giving an a2, and two splittings (one for each collinear direction) on each side of the
cut, giving another o2. (For the case with a Glauber exchange on only one side of the cut,
the amplitude level contribution is nonzero, but this contribution vanishes upon squaring to
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obtain the cross section because it is purely imaginary.) For event shape observables such as
beam thrust [102, 127, 128], transverse thrust [101, 129], and Ep [130-132] the importance
of this type of diagram for the violation of factorization was first discussed in [103]. This dia-
gram has also been computed numerically for a double spin asymmetry beam thrust observ-
able, demonstrating explicitly that it is nonzero [104]. Using the formalism developed here
it is straightforward to obtain an essentially analytic result for this type of calculation, and
it is clear that it applies to any observable where Ap | is constrained, including for example
beam thrust without the spin asymmetries.?? Note that this O(a?) perturbative effect is
beyond the order considered in beam thrust resummation [68] or other Higgs jet veto re-
summed calculations [133-135], or in transverse thrust resummation [136]. This effect alone

does not spoil the use of perturbative factorization with beam functions to carry out double

4

logarithmic resummation, until one considers resummation where this non-logarithmic o

correction enters, which is at the next-to-next-to-next-to-next-to-leading logarithmic order
(N“LL). This graph alone also does not explain the sensitivity to underlying event observed
for beam thrust or transverse thrust, in agreement with [103]. We leave for the future the
exploration of other Glauber induced factorization violating effects using our formalism.

Notice that for these spectator-spectator interactions, as opposed to the active-active
case previously discussed in section 10.1, that there are no analogous diagrams in SCETy
where the Glauber gluons are replaced by soft gluons. If one of the Glauber gluons here
became soft then it would knock multiple fermion lines in the end loop integral offshell (not
yielding just leading power Wilson lines), and hence such interactions are power suppressed.
There are also no diagrams where a spectator-spectator Glauber exchange is replaced
by and n-collinear or n-collinear gluon, again these are power suppressed. Thus once
we consider matrix elements involving spectators lines the Glauber mode is necessary to
reproduce the full theory SCET result.

11.2 Active-spectator and the collinear overlap

Next we consider Glauber exchange for the lowest order active-spectator type diagrams.
We will show that the Glaubers here can be absorbed into the direction of collinear Wilson
lines, since there is an exact overlap between these Glauber diagrams and the Glauber 0-
bin subtractions of graphs involving collinear Wilson lines from the hard scattering vertex.
This Glauber-collinear Wilson line correspondence is analogous to the Glauber correspon-
dence with soft Wilson lines in the hard scattering diagrams considered in section 10 (and
reconsidered below in section 11.3 as active-active diagrams).

We start by considering hard production with M?Y, that is, two incoming hadrons.
The single Glauber graphs are shown by the diagrams in figure 36a,c. Unlike the single

22The cancellation of Glauber gluons was discussed in the original beam thrust paper [102], and divided
into two categories, those with ¢ ~ A2QCD and those with t ~ Q*? as we do here. The argument there
for the cancellation of leading power t ~ AZQCD Glaubers is correct and agrees with the results here and
from ref. [25], but the discussion of the lack of leading power t ~ Q*? Glaubers was too naive. Although
beam thrust is a SCET; observable, and in this section we are considering calculations in SCETyr, the
results here are still applicable. In particular, with Glauber exchange the SCET; theory consists of SCET1
plus ultrasoft modes, and somewhat different subtractions which, although they change the result for the
Glauber phase (see egs. (7.87) and (7.88)), do not change the conclusions drawn here.

- 150 —



—~ - —<>——— - —< > —~ >
O o~ n IO n o~ n
BN AN n o Y. AR
-V -
a7 _ n o~ gl _ n " %n
¥ n - n 7. n - n
—el———— —— —f————— —— — - —— —— —of— —<— —<—

Figure 36. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear
overlap for the hard annihilation Drell-Yan correlator in eq. (11.4). a) and c) involve Glauber
exchange, while b) and d) are the corresponding graphs with Wilson line interactions involving a
collinear gluon.

Glauber exchange graph with a spectator-spectator interaction, the results here need the
rapidity regulator to be well defined. The active-spectator Glauber exchange graph in
figure 36a is given by

figure 36a = 957"

n-(P—py) GOk )|2kZ|~mm
/ [ (11.15)

P—py)? k= — Ay +i0)[—kt — A} 4+i0] [kt — Ay +40] ’
1

where S7 is given in eq. (11.7) and a single Glauber exchange yields 2G%(k, ), where G° is
given by eq. (9.26), and for the gq channel relevant here is equal to

—ig 2
GOky) = =2 Th e T4, (11.16)
k7 +m?

The other k; dependent factors Ay, A}, A; are given above in eq. (11.11). Performing the
kY integration by contours gives

P : 0k )|2k7 |0
ﬁgure 36a = —21 va /d—kzd—dkL [2kz A/G (_ J_)| ‘ v
4~

n-Pp3 —A14140][—A; — A +10]

_ 1 ynpan-(P—ps) (P—p2) /

S a‘k,
2 pQJ_ Al —I—A/
1Snp2n(P pg)nplanl /d“dk; )
2 n-Ppy, (k1 +pu)
1
557 /d‘dlﬂG (kL)E(@iL +ki,p21), (11.17)

where d' = d — 2. To obtain the second line, the k? integral was performed using eq. (B.4).
The final result here is written in terms of the end function defined in eq. (11.6).

Now consider the collinear loop graph in figure 36b. Here the gluon entering the hard
vertex has momentum k and is generated by the Wilson line W,[n - A,] from the current
in eq. (10.1). We take it to be W, (—00,0) since in this case it is generated in the QCD to
SCET matching calculation from integrating out offshell propagators along the incoming
quark line plus non-abelian graphs. We have

n'(P—pz)/ddk (k(2ngCF) - (k—P+p1)a-(k+p1)|n- k="

(P=p2)? 2=m?+i0) [k~ +i0][(k—P+p1)? + i0][(k+p1)? + i0]
(11.18)

C,, (figure 36b) = S”
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From eq. (5.50) this collinear loop graph potentially has both soft and Glauber subtractions.
For the soft subtraction we find that the soft limit k* ~ X of eq. (11.18) gives

n-(P— 2ig*C —1)|7 - k|~

01 (figure 360) = S (P(—pgp)z) / a°k (k;g —5;1230) [k + i(O][_)|k+ +|i0] kT +i0]’ (11.19)
which scales as ~ A*/\7 = A73 and hence is dropped since it is power suppressed relative to
the leading amplitude E ~ O(A~%) (the overlap subtraction C{@ vanishes for the same
reason). The reason for the vanishing of this soft subtraction is clear once we recall that
the soft gluons cannot couple to collinear lines without knocking them offshell, and hence
are only leading power for the active attachments which generate soft Wilson lines. Thus
there is no leading power soft diagram that is analogous to the active-spectator interaction
in figure 36b.

On the other hand, there is a leading power Glauber subtraction, given by taking the
k* <k limit of eq. (11.18),

@) oo (P Pz)/ GO(kL) |n - k[~"w" 1
C)\7/ (figure 36b) = —25 P—po)? a k[k*+i0][fk+fA’1+i0][k+fA1+iO] . (11.20)
Comparing this integral with the active-spectator Glauber result in eq. (11.15) we see that
the two are the same up to the presence of different rapidity regulators and the absence of
Ai(k1) in eq. (11.20). Decomposing dk = (1/2)dk*dk=d¥ k, , performing the k1 contour
integral, and then using [ dk~|k~|™"/(k~ +140) = —i/2 + O(n) gives

(@) (figure 36b) = ~g7 P21 (P—p> /ddk:
Pp3,

2 Al—l—A/

1
:257/02*%l GOk )E(p1L +ki,p21). (11.21)

This result for the subtraction on the collinear graph is the same as the Glauber graph
result in eq. (11.17), despite the lack of Ay and difference in rapidity regulators,

C&) (figure 36b) = G(figure 36a) . (11.22)

This equality is similar to the result obtained in our analysis of soft and Glauber exchange
for active-active lines in section 10.1. In particular, this type of Glauber exchange can be
absorbed into the collinear Wilson lines, in an analogous manner to the way we discussed
absorbing certain Glauber exchanges into soft Wilson lines in section 10.1. The fact that
these active-spectator Glauber exchanges can be absorbed is consistent with the contour
deformation picture in CSS, where the combined collinear+Glauber loop integral can be
deformed away from the Glauber region for these types of diagrams [21, 31].

In SCET the collinear subtraction result is sensitive to the direction of the Wilson line
W, which is encoded by the sign in the propagator [k~ +i0], and the Glauber subtraction
C’,(LG) precisely removes this dependence. In order for the correspondence in eq. (11.22)
to be true it is important for n-n annihilation that the W, = W, (—o00,0) Wilson line in
the Jr current is taken to extend from (—o0,0) in the Wilson line integration variable
n-x. If instead we had taken this Wilson line to extend from (0, co) then we would replace
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Figure 37. One-loop graphs with Active-Spectator interactions related to the Glauber-Collinear
overlap for the DIS hard scattering correlator in eq. (11.4). a) is the lowest order end, b) involves
Glauber exchange, c¢) is the corresponding graphs with a Wilson line interaction involving a
collinear gluon.

[k~ +40] — [k~ —140] in egs. (11.18) and (11.20). Since [ dk~|k~|7"/(k~—i0) = +i/2+O(n),
this flips the overall sign of the final result for '@ in eq. (11.21). In this case the Glauber
subtraction on the collinear graph would not be equal to the Glauber graph itself, and we
could not simply absorb the Glauber graph into the collinear Wilson line. (The direction

o)

dependence is still canceled in C,, — Cy,”’, and only encoded by G in this case.)

For the graphs in figure 36¢,d the results can be obtained by swapping n < 7, p1 < p2,
n-P—q-P, and T4 ® T4 — T4 ® T4 in the analysis above. Therefore we find

ngG) (figure 36d) = G(figure 36¢) . (11.23)

Here the W,;r = W;[(—oo, 0) Wilson line in the Jr current has to extend from (—o0,0) in
order for the correspondence in eq. (11.23) to be true. For easy reference we record the
Feynman rules for collinear Wilson lines in various directions in appendix B.4. We see that
the correspondence between Glauber subtractions on the collinear graphs, and the Glauber
graphs themselves is sensitive to the direction of each of the W,, and W,—TL Wilson lines in
the hard current Jr. Again, if the Wilson line in the hard scattering current were taken to
extend out to 400, then the two amplitudes in eq. (11.23) would differ by a sign.

Next we consider active-spectator scattering for the MPIS amplitude of eq. (11.4),
which has active quarks in the initial and final states, and only 7-collinear spectators
from the one incoming hadron. The relevant diagrams are shown in figure 36. We let
the incoming momentum of the hadron be P = n - P7i#/2 and label the outgoing quark
momenta as p; and ps as shown. At tree level the correlator is

figure 37a = S7 m _ _ngi n-pan-(P—ps)
(P — p2)? P31 n-pP
= 57 B(pa1), (11.24)

which defines the end factor E(ps) ), and again we suppress the dependence on n - py in its
arguments. We distinguish this function from that in eq. (11.6) by its dependence on only
a single L-variable. Note that F(py) ) ~ A2 just as expected for the scaling of ME.
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In the hard scattering case, for the single Glauber exchange diagram we have

GO(k1)|2k?|~mm
[kt — A1 4i0] [k~ — Ay +i0] [k~ — A} +40]
. GOk )|2k*|~mm
=287 [dk*d7k L S
/ T2k — A — AL +i0][- A — AY]
:'STLPQHPPZ /de Gokl)

figure 366 = 2i S’Y/ddk

2

pu L — Pay)?

=3 L /d‘dkl GO(kL)E(par — k1), (11.25)

where d’ = d — 2. Here using eq. (9.26) for ¢q scattering we have

g2
GOky) = ;TA®TA (11.26)
k2 +m?
The result in eq. (11.25) is similar to the result for the hard annihilation case, just with a
different color factor and the opposite overall sign.

Now consider the collinear loop graph in figure 37c. Here the gluon exiting the hard
vertex has momentum k and is generated by the Wilson line VVﬁT [n- Az] from the current in
eq. (10.1). We take it to be W, (0, 00) since here it is generated in the full theory to SCET
matching calculation from integrating out offshell fluctuations for the outgoing quark line
plus non-abelian graphs. For this n-collinear loop we then have

5 : 2ig°Cr) n - (k=p2)n - (k+P—po)|n - k[~""
Cn(figure 37¢) = —is” @k i .
(figure 37c) = —i / (K2 —m2+i0) [k + i0][(k—p2)? + 0] [(k+P — p)? + i0]
(11.27)
Once again, for this active-spectator loop graph the soft subtraction is zero, since it is

power suppressed. There is a nonzero Glauber subtraction, which can be determined by
taking the k* <k limit of eq. (11.27),

GOk ) |n - k|~mm
[kt +i0][k— — Ay +i0][—k— — A} + 0]

o GOk |n - k[T
=57 [dktd?k S
/ L (bt +i0) (A + A — i0)

_ Snmn (P—po /d‘dk CGOky)
2 pu l—pu)

C,%G) (figure 37¢) = 245" /d“dk:

=25, /ddm GO(k1)E(pas — h1). (11.28)

This result for the subtraction on the collinear graph is the same as the Glauber graph
result in eq. (11.25), despite the lack of A; in the kT propagator, and the difference in
rapidity regulators, so

Cl9 (figure 37c) = G(figure 37b). (11.29)

Once again this equality only works out with the proper direction for the Wilson line in
the Jr current, which here is Wg(O, 00).

- 154 -



If we consider the iteration of active-spectator Glauber exchanges we can also show
that the result yields a phase, similar to our spectator-spectator analysis. A key difference
is that for the active-spectator graphs we required the n-regulator already for the single-
exchange graph. Therefore the ladder sum cannot be carried out independent from the loop
involving the hard scattering vertex. We carry out this calculation in detail in appendix C.2,
finding for the annihilation that the sum of graphs gives

——>e——— > —
nY\: n P>

-\\
G wan
»7

=57 /dd/bieiﬁu'fl L2 B(—by poy). (11.30)

Thus the phase for this sum of active-spectator exchanges is ¢(b)/2, where b, is the
transverse distance between the upper spectator quark and the hard annihilation vertex
(which is at the position 0, ). Similarly for active-spectator exchanges between the anti-
quark entering the hard vertex, and antiquark spectator, we obtain an analogous phase
¢(b1)/2, where b) is now the transverse distance between the lower spectator antiquark
and the hard annihilation vertex.

We can also consider the iteration of active-spectator Glauber exchanges for the DIS-
like hard scattering case. From the calculations done in appendix C.2 we find that the sum
of graphs gives

“Lﬁ’_ n_ o n
>—9>—
=/ .

ns 4 =57 /dd’bLeiﬁu'fl e P2 B(—p). (11.31)

Thus the phase for the active-spectator exchanges here is —¢(b)/2, where b, is the dis-
tance between the hard vertex (at 0, ) and the spectator quark. Due to the factors of 1/2
these active-spectator phases differs from what we found for spectator-spectator scattering.

Although the active-spectator Glauber exchanges may be absorbed into specifying di-
rections for collinear Wilson lines in the hard scattering operators, we may instead wish
to leave them separate and then consider their cancellation. If these Glauber exchanges
do cancel, then it enables the factorization to be insensitive to the directions of collinear
Wilson lines. Just as we did for spectator-spectator scattering, we can consider the mod-
ulus squared of the active-spectator amplitude alone. For the result in eq. (11.30), this
cancellation requires integration over py,

/dtd*zpu |AAS(pu,pu)|2
= |72 / a7 pis / d' by 2, ) B(bypo )BT (B pay) 3190700
= \S”\2/dd_2bj_ ’E(bJ_7P2J_)’2
_ ‘SW‘Q/d—d—QpU_ ’E(pu,puﬂz, (11.32)

where the final result is just the integral over the squared tree level result in eq. (11.6). If
we consider the square of the other type of active-spectator graph (again alone), then we
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would need to integrate over po ;. Again, as long as the measurement made on the final
state particles takes place at a perturbative scale Q* with p1; <« Q* and py; <K Q*, then
the p; 1 phase space integrations will not be constrained at leading power, and one will freely
integrate over these variable. Note that these cancellations require integration over more 1 -
momenta variables than the spectator-spectator scattering. This shows that the directions
of collinear Wilson lines are important when considering pp-factorization, in agreement
with [31]. The directions of our collinear Wilson lines for the Drell-Yan-like and DIS-like
cases, Wil (—00,0) and W] (0, 00) respectively, also agree with those of Collins [31]. It would
be interesting to compare the SCET subtraction formalism with the subtractions utilized
in the CSS approach, such as those in transverse momentum dependent PDFs [31, 137].
For processes where collinear factorization is valid (i.e. only integrated PDFs appear), the
Glauber contributions cancel and the infinite collinear Wilson lines combine to lines of a
finite length which are insensitive to the 400 appearing at intermediate steps.

Again our analysis in this section is merely indicative of the necessary elements for a
proof of factorization, but additional contributions must be considered for a full proof of
factorization using our framework.

11.3 Active-active and the soft overlap

Finally we will consider Glauber interactions between two partons that participate in the
hard scattering, namely active-active terms. In sections 10.1, 10.2, and 10.3 we showed
that in hard scattering graphs without spectators, such Glauber interactions give the same
contributions as the Glauber zero-bin subtractions of soft Wilson line graphs. The Glauber
exchange could therefore be absorbed into these soft graphs as long as the correct directions
for the soft Wilson lines are employed. In this section we will demonstrate that all the
results and conclusions about active-active Glauber interactions from those sections carry
over to the case when we include the interpolating fields for the incoming hadrons.

The general reason for this can be discussed by looking at the example given in fig-
ure 38. In any purely active-active loop graph with spectators present, the hadron inter-
polating fields are always external to the loops. From the n- and n-collinear propagators
that are outside of the loop, we immediately get the same tree-level end factor E(p1y,po.1)
as in eq. (11.6). The only possible changes to the calculations done in sections 10.1, 10.2,
and 10.3 are due to the fact that the active collinear propagators entering the loops are
now offshell. This does not affect any soft propagator from a Wilson line (solid green
in figure 38), since here only the soft gluon loop momentum appears. This is immediate
from the SCET Feynman rules, and is also clear from expanding a full-theory propagator,
since (pn + ps)? = - ppn - ps + ..., where the displayed leading O()) term gives pre-
cisely the eikonal propagator of the soft Wilson line, and the offshellness of the external
collinear propagator only enters at O(A?). Thus, the only possible effect on the active-
active loop graphs could be to modify the collinear propagators appearing in loop integrals
with Glauber or collinear momentum scaling. For Glauber loops like figure 38a the nonzero
offshellness of external lines will change the formula for the A;(k) terms that appear from
collinear propagators with Glauber loop momenta running through them. However, for
active-active Glauber loops these A;(k,)s all drop out when we expand to O(n°). This
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Figure 38. a) Active-Active interaction for the hard scattering correlator in eq. (11.4). b)
Corresponding graph with two Wilson line interactions involving a soft gluon.

fact was a key ingredient in making the correspondence between Glauber contributions and
the Glauber 0-bin subtractions from soft Wilson line graphs. Here it suffices to ensure that
this correspondence remains true even when the external collinear lines are offshell.
As an explicit example, for figure 38a we have

GO(ky) |27 |7
+— Al +i0][k~ — Ay +i0]

GO(ky) |2k* |~
(2k% — Al — A1 +10)

figure 38a = 25" E(p11,p21) /ddk -

= —2iS"E(p11,p21) /de a2k,

= —% STE(p11,p21) /Jd_QkL GO(k1) + O(n)

. X ,
= E(pu,pu)%TA ® Ta, (6 +1n :ﬂ> S, (11.33)

where after using momentum conservation A} and A; are given in eq. (11.11), and the k*
integral was performed using eq. (B.4). We also used the fact that up to the spinor factors
a single Glauber exchange yields 2G%(k ), where for this incoming gq pair we have

GO(ky) = iTA@)TA, (11.34)
k2 +m?

and we have included the mass IR regulator. Since there is no dependence on the A;, the
result in eq. (11.33) is identical to that in eq. (10.6) multiplied by E(pi1,p2.1), and so as
anticipated, the correspondence G = S(©) goes through in the same manner here. The
various correspondences also remain true for active-active graphs where the hard vertex

involves scattering or production, rather than annihilation, and for higher loop orders.
From the second to last line in eq. (11.33) we also see that the contribution of the
active-active Glauber graph corresponds to E(p1i,p21) (—i$(0)/2)S” in the notation of
eq. (9.1), where ¢(0) = ¢(by = 0). If we consider the iteration of active-active Glauber
exchanges, the result again yields a phase. Similar to the active-spectator graphs, the
n-regulator was already required for the single-exchange graph, so the ladder sum cannot
be carried out independent of considering the loop involving the hard scattering vertex. In

appendix C.3 we carry out this calculation, finding

— e ————— U S
n¥e n n A
% =87 E(pry,pay) e 9O/2. (11.35)
_ L7¥H _
B0 o)
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Thus we see that the phase for this sum of active-active exchanges is —¢(0)/2. For hard
n-n scattering with M{?IS the Glauber graphs give zero, so there is no Glauber phase in
this case.

11.4 Spectators in SCET]

In SCET] we consider Glaubers at a 1-momentum scale of O(\) that is much larger than
the corresponding | -momentum (O(A\?) ) of the ultrasoft mode. In this setup the infrared
regulator is also introduced at the O(\?) scale. The addition of the ultrasoft mode, and
its corresponding subtractions, modifies the SCETyy calculations from sections 11.1, 11.2,
and 11.3. The corresponding one-loop SCETj calculation with an offshellness regulator
and scalar propagators was carried out in ref. [40], and the relevant formula enumerating
subtractions at one-loop was given in eq. (5.51). We summarize the changes from our
SCETYy discussion below.

For active-active diagrams the situation is the same as was already described at the end
of section 10.1. The Glauber loop integral becomes scaleless as in eq. (10.14) and is canceled
by its ultrasoft zero-bin subtraction. For the active-active one-loop topology our soft mode
is scaleless and is absorbed into the ultrasoft mode (serving to pull it up to the hard scale).
Here the ultrasoft gluon Wilson lines directions can matter, and there is no direct corre-
spondence with Glauber gluon subtractions (unless we were to add an additional Glauber
gluon at the O(\?) scale, which then would make the theory at the IR scale SCETyy like).

For the active-spectator topology there are now Glauber, ultrasoft, and collinear Wil-
son line diagrams. Just as in section 11.2 the Glauber graph exactly agrees with the
Glauber 0-bin of the collinear Wilson line graph. This was noted in the calculation of
ref. [40], though the important role that the Wilson lines directions play in enabling this
correspondence was not observed there. The ultrasoft-Glauber subtraction (G)(U) of the
collinear diagram gives a scaleless integral which is equal to the ultrasoft subtraction of
the Glauber graph, and hence cancel. The ultrasoft diagram itself is nonzero and plays an
important role when considering how the SCET graphs reproduce the full theory result in
a matching calculation [40].

For the spectator-spectator topology there are both Glauber and ultrasoft diagrams.
Just as in SCET1 neither soft or collinear graphs contribute. The ultrasoft subtraction on
the Glauber diagram is scaleless, proportional to the difference between UV and IR 1/e
poles. Again both the Glauber and the ultrasoft contributions are needed to reproduce the
full theory spectator-spectator result in a matching calculation [40].

11.5 Definition of spectator and active at higher orders

Having considered the differences between the cases of spectator-spectator, active-
spectator, and active-active Glauber exchange at lowest order, we may also envision higher
order extensions. The first thing to decide is whether the active and spectator language
remains useful. The key attribute that differentiates a spectator from an active line for
the calculations in sections 11.1, 11.2, and 11.3 is that n-collinear active particles were
effectively eikonal inside the Glauber loop integral involving the hard vertex, and the same
was separately true for n-collinear active particles. On the other hand, spectator collinear
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particles always involved a pole on each side of the axis in the k™ or k~ variable showing
up in their propagators, and yielded results where the eikonal approximation is invalid.

Therefore to extend the active and spectator language to all orders in perturbation
theory for propagators inside Glauber loops, we adopt the definition that cases where the
propagator outside the Glauber burst may be treated as effectively eikonal are called active,
while those that are not are called spectators. This definition implies that spectator gluons
or quarks may be created by collinear radiation from active lines.

12 Conclusion

In this paper we have constructed an effective field theory of high-energy forward scattering
within the framework of the Soft Collinear Effective Theory (SCET). This provides a
common framework for calculating near forward scattering observables and addressing
the question of factorization violation in hard scattering processes, which occurs from near
forward sub-processes. This framework incorporates the exchange of Glauber gluons in non-
local potential operators that connect collinear and soft fields, that is, connecting modes
which have the same offshellness but live in different rapidity sectors. These operators
mediate forward scattering at leading order in a A ~ \/|t|/s power expansion. They also can
violate factorization since they couple together collinear and soft modes in a leading power
Lagrangian, unlike in canonical SCET without Glauber exchange potentials, where the
leading Lagrangian can be written as a sum of terms, each with fields from a single sector.

The power counting in our EFT is such that each operator scales homogeneously in the
power counting parameter \. Time ordered products often simply scale as the sum of the
scalings of their component operators, but not always. In the presence of loop momenta
with Glauber, collinear, soft, or ultrasoft scalings, we derived a general power counting
formula, given in eq. (5.52), that determines the overall A scaling of an amplitude at any
order in a, and any order in the power expansion (and in both SCET or SCETyy). The
only input needed for this formula are the type and scaling for the inserted operators, and
general connectedness information about the resulting diagram. This formula was used
to show that all time ordered products scale at least as the sum of contributions from its
constituent operators.

To construct the Glauber Lagrangian we matched various QCD amplitudes onto for-
ward scattering operators in SCET with final state particles in various sectors. These
operators were constructed using power counting, gauge symmetry, and calculations at
tree level (see section 5 for an overview and section 6 for the details). Due to the presences
of Wilson lines they encode contributions to all orders in the gauge coupling. There are
two types of operators which are generated in this way: those with two rapidity sectors,
soft and n-collinear, and those with three rapidity sectors n-collinear, n’-collinear and soft
(where n - n/ > A?). Both two and three rapidity sector operators are composed of gauge
invariant building blocks, and can be written as

Eg(o) — e*ix-'P Z Z O:L]sn’ + eiix.P Z Z O;Lljs

n,n’ 1,j=q.,9 n 1,j=¢,9
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n,n' 1,j=q,9 n 4,j=q,9

Although for our explicit calculations we focused almost entirely on the case where n’ = 7,
with n-n = 2, eq. (12.1) and our results apply for the general situation with any two collinear
directions n; and ng, by adding appropriate factors of ny - no. The OB, OBC and oinB
appearing in eq. (12.1) are defined in table 2. The operator Ogc encodes the well known
Lipatov vertex for 1-soft gluon emission, but also contains additional structures that give
vertices with > 2 soft gluons. In section 6.3 the soft operator (’)SBC was decomposed into a
general basis based on symmetry, dimensional analysis, and power counting constraints, to
give a polynomial in |-derivatives and gluon building block operators dressed by Wilson
lines. The coefficients of the operators in this basis were then fixed by carrying out a
tree level matching calculation with zero, one, and two external soft gluons in section 6.4.
Eq. (12.1) is the complete Glauber exchange Lagrangian for SCET7;, and also applies
for SCET] where we call it CICEO). The corrections to this result are power suppressed.
For any given process, traditional hard scattering factorization will be violated unless the
contributions from Cg(o) (or Ego)) can be shown to vanish.

Several technical ingredients play an important role in our construction of the Glauber
exchange EFT: the multipole expansion enables subleading momentum components to flow
through a diagram, even though these momenta may not show up in intermediate propaga-
tors. The use of a rapidity regulator for both the Glauber exchange potential, and soft and
collinear Wilson lines is crucial to obtain well defined and physically meaningful results.
Our implementation of the rapidity renormalization is analogous to the MS renormalization
in dimensional regularization, with 1/7n poles analogous to 1/e poles, and a rapidity cutoff
v analogous to the invariant mass cutoff . Finally, SCET is formulated with a subtraction
formalism that ensures there is no double counting of infrared regions from loop graphs in
the EFT. These technical ingredients are discussed in section 5.2.

A remarkable property of the forward matching procedure used to derive Lg(o) is
that there are no hard matching corrections, making eq. (5.21) the ezact Lagrangian
for Glauber exchange at leading power. The reason for this simplification is that when
there is no hard scattering involved in an S-matrix element, then for any leading power
contribution there are no closed set of hard lines forming loops, and that the offshell
Glauber lines are localized in tree level sub-diagrams. Working to one loop, in both SCETy
and SCETy;, we have explicitly shown in sections 7.1 and 7.3 that our effective theory
exactly reproduces the full theory leading power forward scattering result for all color
structures, logarithms, and constants. The fact that the tree level matching coefficients
are exact imposes strong constraints on the renormalization of the theory. It implies that
the operators in eq. (5.21) have no overall renormalization group anomalous dimensions.
Therefore, beyond the strong coupling, there is no running in p in the leading power
SCET Lagrangian unless there is a hard scattering.

This does not mean that there are no large logs in the forward scattering amplitude,
since the soft and collinear modes still yield loop level amplitudes with logarithms that are
minimized at different rapidity cutoffs, v = \/—t for soft modes and v = /s for collinear
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modes.?? The logarithms that are generated due to this hierarchy are summed with the
rapidity renormalization group. At the amplitude level the structure of the anomalous
dimensions and their explicit one-loop computation can be found in section 7.2. The lack
of matching beyond tree level implies that the sum of quark and gluon operators mixes
back into itself. For example, for the n-collinear operators we have

A A A A
v (057 + OF7) = 1 (057 + O77). (12.2)
Solving this equation at one-loop yields gluon Reggeization from the rapidity renormaliza-
tion group flow of octet operators,

o
o+ o) = (2) o1t + o), (123)
when we take 17 = /s and vy = \/—t, see section 7.2.4. At one loop the anomalous
dimension is the same as the Regge exponent, 7,, = % In(—t/m?). Here m is an IR
regulator which appears because the virtual amplitude alone is not a physical observable.

To perform a more physically relevant resummation we can use the rapidity evolution
to sum logarithms in the inclusive forward scattering cross section. In section 8 we factor-
ized the squared single Glauber exchange amplitude into _L-convolutions of all orders soft
and collinear functions, Cy,(q1,p~,v) ® Sa(q1, ¢, ,v) ® Ca(¢,,p't,v), where each of these
functions is defined by field theory matrix elements of soft and collinear operators. We
then explicitly calculated the rapidity anomalous dimension for the soft function at 1-loop,
obtaining after a very simple calculation the standard BFKL equation,

d 2C qaus Sa(ky,q, v 72 S q) v
v SelaL.div) = AQ(“)/koL[ Glki, 4 2) - q{fﬂ((ﬂ & 2) L (12.4)
v m (k1 —q1) 2k5 (k1L —qL)

The collinear functions C), and Cy also obey BFKL-like equations which ensure that the
physical forward scattering amplitude is v independent. One powerful property of the
formulation of anomalous dimensions in SCET is the ability to systematically derive the
structure of anomalous dimensions at higher orders in a; (often to all orders), which should
facilitate in the future exploring the BFKL-type resummation beyond the next-to-leading
logarithms.

We have utilized the effective theory to explore the eikonalization (or lack thereof)
of propagators in high energy forward scattering. The canonical eikonal scattering phase
or semi-classical phase arises from an infinite ladder sum of Glauber exchanges. This
sum was computed in section 9.1 for an arbitrary color channel, and is obtained from an
ordered collapse of the iterated Glaubers onto exchanges that occurs at equal time and
equal longitudinal distance. This collapse is handled properly by the rapidity regulator.
In section 9.2 we considered the general properties of Glauber loops in the presence of
virtual and real collinear fluctuations, including general rules for when propagators inside

23In SCETY there are also different scales u for the modes, since ultrasoft modes live at a parametrically
smaller invariant mass scale than the collinear and soft modes. This distinction becomes apparent below
the collinear scale.
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Glauber loops do or do not eikonalize. Glauber loops will in general vanish unless all of the
Glauber exchanges can be slid without impediment to an equal longitudinal position when
considering diagrams in time ordered perturbation theory.?* In section 9.3 we consider
the correspondence of our EFT derived results with the semi-classical picture of eikonal
scattering, as well as with the shockwave picture and the multi-Wilson line EFT framework
of [4]. While the exclusive two to two scattering amplitude can be thought of as a semi-
classical process, virtual collinear corrections, even in the purely abelian case, violate this
picture for this exclusive rate. Once splitting and pair production is included the source
terms for Glauber interactions do not in general eikonalize. However in multi-Glauber
exchange diagrams in the non-abelian theory, after the first Glauber attachment to a source,
it does eikonalize for subsequent attachments. The fact that these exchanges occur at the
same time and longitudinal position directly yields the setup where multiple Wilson lines
cross a shockwave. The source propagators outside the shockwave are non-eikonal.
Another significant component of this paper was dedicated to studying the role of
Glauber gluons in hard scattering cross sections, where they will violate factorization unless
their effects cancel out. For a proton-proton collision, non-perturbative Glauber exchanges
(with |t| ~ A(QQCD) couple together the fields in matrix elements that we would like to
factorize into distinct parton distribution functions. Perturbative Glauber exchange (with
t| > A(QQCD) can couple together modes in the matrix elements defining collinear and soft
functions, which are then no longer universal perturbative ingredients that can be used
for resummation (beyond some order). We have also seen in sections 5.2.1 and 9.1 that
our Glauber loop results are imaginary, proportional to exactly the (im) factors that are
commonly associated to amplitude level factorization violation. For a given observable,
it is therefore important to understand whether the Glauber Lagrangian will or will not
contribute. In particular, one would like to go beyond the small number of proton-proton
collision observables where insensitivity to the Glauber region has been demonstrated so
far, in order to perturbatively incorporate Glauber exchange or demonstrate cancellations.
In sections 10 and 11 we have demonstrated that Glauber interactions between two
active partons or between active and spectator partons can be absorbed into soft and
collinear Wilson lines that appear in hard scattering operators. This is done by picking
directions for these soft and collinear Wilson lines that agree with the physical allowed
scattering of nearly onshell particles from the Glauber exchange. This absorption was
derived by showing that the zero bin subtraction of soft or collinear loops involving these
Wilson lines are exactly equal to the contribution from a corresponding set of Glauber
graphs. In particular, in section 10 we showed this for soft loops which dress n-n hard
operators at 1-loop and 2-loop order, and for n-n hard production/annihilation/scattering
with an additional soft emission at 1-loop (see also section 11.3). In section 11.2 we showed
that active-spectator Glauber exchanges are equal to the zero-bin subtraction of a collinear
1-loop graph involving a collinear Wilson line. Establishing the fact that these Glauber
exchanges can be absorbed into Wilson lines gains a measure of control, as it implies that

240Often high-energy scattering is studied in light cone ordered perturbation theory, but our need for ra-
pidity regularization between particles with two different light-cone times, enforced the use of time ordering
instead. Nevetheless, many of the simplifying features of light-cone ordering are retained in our EFT.
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they appear in objects that can still be factorized into independent matrix elements, and
thus do not necessarily invalidate the factorization program. However, spectator-spectator
Glauber exchanges cannot be absorbed into Wilson lines or other properties of soft or
collinear modes, for the reasons discussed in section 11.1.

While in this paper we have not provided full factorization proofs, we have used our
results to determine sufficient criteria for cross section level factorization violation. In
particular, in section 11.1 we showed how iterated spectator-spectator Glauber exchanges
exponentiate into the eikonal phase within the confines of a hard scattering amplitude.
In order for these Glauber phases to cancel in the cross section requires an unconstrained
integration over the relative 1| momentum of the spectators. This cancellation will occur
if the observable of choice operates at a scale * that is much larger than that of the
considered Glauber’s transverse momentum, Q*? > qi, or if the measurement is inclusive
enough that these transverse momenta are not restricted.

In this paper we have accomplished our main goal of setting up an effective theory for
describing forward scattering and factorization violation with a universal Glauber exchange
Lagrangian. We have also enumerated many of its subtleties, features, and properties.
There remain many avenues to explore further in the future.
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A SCET power counting formula including Glaubers

In this appendix we derive a general power counting formula for SCET including Glauber
loops. For simplicity we consider a case with two collinear sectors since the generalization
to N distinct collinear sectors will be obvious. We start with SCETy;. Consider a graph
built from the insertion of an arbitrary number of different operators, which may or may not
involve Glauber potentials, and which may be leading order or power suppressed at some
order. We may consider an infinite number of insertions from operators in the leading order
Lagrangians that yield A\° contributions, but we start with a finite number for simplicity and
only take the infinite limit at the end (when it becomes trivial). We start by enumerating
the number of vertices that appear that involve operators of order A\* as follows, there are:

V. vertices with operators involving only n-collinear fields,
Vi vertices with only n-collinear fields,
Vks vertices with only soft fields,

Vk”S vertices that have both n-collinear and soft fields but do not have n fields,
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Vkﬁs vertices with both n-collinear and soft fields but not n fields,
V"™ vertices with both n and fi-collinear fields (with or without soft fields).

For example, the leading power 3-rapidity sector Glauber Lagrangian contributes to V™7
and the leading power 2-rapidity sector Glauber Lagrangians contribute to Vk’f?) or ng?).
We also introduce variables that count the number of loop integrals and the number of
internal lines of various types:

L™ :  n-collinear loops with k* ~ Q(A\?,1, \) loop momenta,

L™ :  fa-—collinear loops with k* ~ Q(1, A%, \) loop momenta,
L% : soft loops with k* ~ Q(X, A\, A) loop momenta,

L™ . s—n Glauber loops with & ~ Q(M\%, )\, )\) loop momenta,,

L™ . s Glauber loops with k* ~ Q(\, A%, \) loop momenta,

L™ :  n-@ Glauber loops with k* ~ Q(A?, A%, \) loop momenta,,

I™ :  internal n—collinear propagators,
I™ . internal 7—collinear propagators,
IS :  internal soft propagators. (A.1)

Note that the I's only include the propagating (nearly on-shell) particles?® and that the
loop momentum scaling is determined by the maximum allowed value which leaves all
propagating modes near their mass shell.

Then to determine the overall A scaling of the diagram we count up the powers of A for
these operators, add the powers of A from momentum space loop integrals, and subtract the
powers of A generated by turning some of the fields in the operators into propagators. This
gives that a general graph in SCETy; with Glauber operators scales as A% where the power

5=k (Vk” FVRHVE+ VRS 1108 +Vk"ﬁ) (A.2)
k
AL+ AL+ ALS + 5L 4 5L 6L — 4T — 41" — AT,

Note that § is at the operator level. It includes the scaling of fields for all non-contracted
external lines, but it does not account for the scaling associated to external states. The
scaling for the external states in a matrix element can be trivially added as well, as
discussed for example in ref. [97]. While this formula can be used to determine the power
counting, it is more useful to have a formula that only depends on the vertex indices
and on topological properties of the graph. To this end, note that the topological Euler
identity between vertices, loops, and propagators for the overall diagram implies

L= (VP + VI + V2 + VS + V8 + 1) (A.3)
k
—i—Ln—i—Lﬁ—i—LS—i—L"S—i—LﬁS—l—L"ﬁ—["—Iﬁ—IS,

Z5Wilson lines scale as ~ A°, and do not modify the power counting of the operators that contain them.
The eikonal propagators from these Wilson lines are not counted by the I%s.
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which allows us to write eq. (A.2) as

§=4+> (k—4) (Vk” +VEHVE+ VS + VS 4 Vk”ﬁ> + LM+ L 420" (A4)
k

This result is still inconvenient for power counting since we have to determine the number
of Glauber loops, so a few further manipulations are useful. Following ref. [62] we can
exploit individual topological identities for the various sectors to generate a simpler power
counting formula. If we erase all n-collinear propagators then we define N™ as the
number of disconnected subgraphs that appear, if we erase all n-collinear propagators
then N™ is the number of disconnected subgraphs that appear, and if we erase all soft
propagators then N™ is the number of disconnected subgraphs that appear. In this
counting procedure a vertex is not erased unless all types of fields that appear in it are
erased (so two point vertices can appear). For these we have the topological identities

NS =3 (VP + Vi + VS + VIS 4 V) + L0+ L8 + L — 1" — 15

k

NS =N (VP +VE+ VP + VP + Vi) + LM+ LS+ L™ — 1" — 1%,
k

N =N (VP VIS VS V) + L+ LV L =T - 17 (A.5)
k

In addition, if we erase all sectors but one then we count the number of connected
components of that type alone. For the Glauber Lagrangian we do not erase the 3-rapidity
sector vertex even if both n and 7 collinear lines are erased. So the number of connected
soft, n-collinear, and n-collinear components is

NS:Z(VkS+anS+VkﬁS+anﬁ)+LS—IS,

k

Nn — Z (an + anS + anﬁ) 4 L’n _ In7
k

NP =) (VP + VIS + V) + L =17, (A.6)
k

respectively. Note that these indices obey the inequalities
N" 4+ N° > N™9 N" + N* > N™ N + N¥ > N™9 (A7)

The Euler identities in eq. (A.6) can be combined to give results for L™, L™ and L™, and a
further result that follows from combining them with the original Euler identity in eq. (A.3),

L™ = NS LN (VS V) where N = N7 4 NS — N9
k

L™ = NS4 Z (Vkﬁs + Vk"ﬁ) , where NI = N* 4 NS — NS
k

L= —NI gy ynn where N = N 4 N7 — N7
k

1 4 N[nS] 4 N[ﬁS} 4 N[nﬁ] o Nn o Nﬁ o NS — kanﬁ (AS)
k
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Figure 39. Example of a contribution to the process B® — D%7® from ref. [138] that involves
a loop with Glauber scaling without having a Glauber exchange potential operator. The ® is the
W-mediated hard interaction, solid black dots are interpolating field insertions for the mesons,
double lines are soft heavy quarks, single solid lines are light soft quarks, and dashed lines are light
collinear quarks, all in SCETy;. This long distance contribution involves a (non-Glauber exchange)
power suppressed operator (the green square) that causes an interaction between soft and collinear
particles. The left most loop in this diagram involves both soft and collinear quark propagators
and hence has a loop momentum with Glauber scaling, k* ~ Q(A2, A\, \).

Using these results in eq. (A.4) gives the final power counting formula for SCET1;:

= 6-N"—N"—N"5_N"51} " [(k—4) (Vi + V24 V) + (k=3) (Vi + V%) + (k—2) Vk”ﬁ] :
k

(A.9)
In this formula the power counting is obtained entirely from the power counting of the
inserted operators (through the various V’s) plus topological information about how
connected the graph is in different sectors (encoded in the N’s). One does not have to
consider the power counting for loops or propagators, which easily allows the result to be
applied when an infinite number of operators are considered. In the special case that there
are no n fields this result reduces to the power counting formula derived earlier in ref. [98]
which included the n-s Glauber loops because they appear at subleading power (this
earlier result is obtained by setting N = 0, N = N9 N =1, V;? = V¥ = V" = ().
Indeed, even when the Glauber Lagrangian is not included these Glauber loops play an
important role in power suppressed time ordered products, such as in the factorization
formula for long distance corrections to color-suppressed B — D7 decays derived in
ref. [138]. As shown in figure 39, this occurs through a subleading Lagrangian interaction
in SCETy;, which mediates forward scattering of soft and n-collinear particles without
involving a long distance Glauber potential. Replacing the Glauber potential by an
interaction that is localized at a harder scale leads to the power suppression in this case.
To extend the above power counting to SCET; we must add ultrasoft fields. We
otherwise keep the same starting point as above, so in addition to ultrasoft fields we will
have n-collinear, n-collinear, and soft fields (again the generalization to more collinear fields
will be obvious). Since the ultrasoft fields have scaling 1,5 ~ A3, Als ~ A2, which is greater
or equal to all other field components, we only need an additional index V;*** which counts
the number of operators with only ultrasoft fields that have scaling A\*. All other indices
retain their definitions and are now allowed to contain power counting contributions from
ultrasoft fields that appear in their operators. Thus we start by obtaining a formula for
d for a general SCET} diagram by simply adding ., kV;** 4+ 8L"% — 81"% to the SCET
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power counting formula in eq. (A.2). We have to distinguish the special case where a graph
contains only ultrasoft fields, vertices, and loops. After using the overall Euler identity,
1=,V + L"* — I", the final result for this special case is 6 = 8 + >, (k — 8)V*®
In contrast, in the presence of one or more collinear or soft fields we retain the Euler
identity in eq. (A.3) because the graph must remain connected if we erase all ultrasoft
fields. Furthermore the identies in eqgs. (A.5), (A.6), (A.8) are not modified in the presence
of ultrasoft fields (except that we must add +1 to the right-hand side of the last identity
in eq. (A.8) for the special case with graphs that have only ultrasoft fields). There is an
addition an overall Euler identity in the presence of ultrasoft fields which can be obtained
by adding ), V** + L"* — I"® to the right-hand side of eq. (A.3). Together these two Euler
identities imply >, V;** + L"* — I** = 0 for diagrams that have at least some non-ultrasoft
fields. These identities allows us to remove the loop and propagator counting factors for the
ultrasoft loops without changing any other part of the derivation for SCETy; done above.
Thus the final power counting formula for either SCET; or SCETY; is

§=6—-N"—N"— N™ — N™ 4 2, (A.10)
+y [(k — Vi + (k=) (Vi + V@ + Vi) + (k=3) (V'S + VI®) + (k=2)V" | .
k

Here u = 1 for purely ultrasoft graphs where 0 = N” = N = N®¥ = N™ and 0 = Vit =
Vi = Vk = Vk”S Vk"S Vim, and otherwise u = 0. If no ultrasoft fields are present
then V** =0 and u = 0, so eq. (A.10) reduces to eq. (A.9), demonstrating explicitly that
the formula in eq. (A.10) is valid for both SCET and for SCETy;. In the special case for
SCET7 where there are no Glauber loops present and no 7 or soft fields this result reduces
to the power counting formula derived in ref. [97], § = 4+4u+> , (k- 8)V** + (k- 4V
To obtain this result we note that if ©w = 0 then N* = N™¥ =1 and N = N™ = 0, while
if w =1 then N* = N = N* = N*5 = (.

To see how eq. (A.10) works in practice, lets consider several simple examples in SCETy
with v = 0.
. Here N* = N = N™ = N™ = 1 and V;@ = 1, s0 § =
L :30(:\ This agrees with the scaling of four external &/, fields times a 1/ qi

i © potential, X0 = M*A 72 = \2.

- . Here N" = N™ = N™ =1, N =0 and V§* = 1, so § = 3. This
2. & agrees with the scaling of two &, and two g5 external fields times a
/'\\ 1/qi potential, A = AZA\3\"2 = \3.

3. 5 5 5 Here N™ = N™5 = N™ = N™ =1 and V5" = 3, 50 § = 2.

g, (. Here N" = N™ = N"™ = N" = 1 and V{*¥ = V§* = 1, so
% =2
5. 7L 77T Here N'= NS = N = N = 1 and Vy =2, 50 § = 2.

?’Uﬂﬂﬂmﬁ‘.

i s @ L7
o ——Tc——0—<

- 167 —



n>-—>-s>n  Here N" = N"¥ =2, N = N" = 1 and V3" = 2, s0 § = 0.

72—»—,——)——-:——)--' )
6. : . This agrees with the scaling for six &,/ external fields, two 1/¢%s,
ﬁ“‘:‘*ﬁ’:“h and one collinear propagator.
Here N™ =2, N*¥ = N™ = N® = 1 and VJ = 2,50 6§ = 1.
S Note that this is suppressed relative to the graph in example 6 by
nomem—>——1>=n - (O()), even though it involves only the leading power Lagrangian.
7. i This O(A) agrees with the direct counting, where we add a n-
iR TR s Glauber loop measure ~ A\, two Glauber potentials giving

~ A4, a soft propagator ~ A72, and two Lipatov vertices each
giving a momentum factor that is ~ A.
To fully compare results with a different number (or type) of external particles, we start
with § and then add contributions from the scaling of external states, phase space integrals,
and the overal momentum conserving delta-function for each case. Although all of our
examples here are for forward scattering graphs, the formula for § works in an identical
manner for cases including a hard interaction operator.

In general eq. (A.10) gives a simple way to determine the scaling of a given graph, by
simply adding up the powers k associated to the various operators that the graph is built
from. Noting that the sum on k runs over operators with a different power counting, and
the Vs give the total count of all operators of a particular type with power counting \*,
we can rewrite the result for § as a sum over the power counting contribution A; of each
individual operator i,

§ =04 A, (A.11)

where
§OM =6 — N" — N" — N — N™ 4 9 (A.12)

is a factor that depends on the sector-based connectedness of the diagram, and for an
operator ¢ which is of order A* we have

pure ultrasoft operator

pure soft, n-collinear, or n-collinear operator
(A.13)
mixed soft-n or mixed soft-n operator

mixed n-n operator with/without soft fields.
Intuitively, the subtractions in (k; — 8), (ki —4), (ki — 3), and (k; — 2) are just associated
to the largest momentum for each operator O;(x), which determine the scaling of the

corresponding measure d*z. The measure is either purely ultrasoft (A~%), purely collinear
or soft (A\™%), mixed collinear-soft (A=), or mixed n-n collinear (A~2). In general

N
T0:(0)]] /d%i Oi(x;) ~ (A=) (A, (A.14)
i=2
where T denotes the time-ordered product. The spacetime position of one operator has

been fixed since we are not including the overall momentum conserving delta function in
the power counting determined by ¢ in eq. (A.10) or eq. (A.11).
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Eq. (A.11) is particularly simple to use if we are interested in comparing a set of dia-
grams where the connectedness term §°°™" is fixed, since then we simply add up the factors
A; for each operator. In this situation the leading power contributions are just determined
by the leading power Lagrangian, which consists of operators with A; = 0, perhaps supple-
mented by a hard scattering operator that provides a base for the process and only appears
once. However, sometimes the connectedness term can play an important role. This is the
case in NRQCD, where for example, a graph similar to the soft eye graph in figure figure 23c
but with the collinear fermions replaced by heavy non-relativistic fermions, is built from
A; = 0 operators, but is enhanced by a single power of 1/v from the connectedness term.
In that theory the enhancement occurs because the higher energy soft sector mediates a
potential between the lower energy heavy non-relativistic fermions.?® In the NRQCD ac-
tion the heavy fermion kinetic term is ~ v°, but the tree level Coulomb potential operator
is ~ 1/v. The enhancement of the soft eye loop graph in NRQCD makes it the same order
in v as this tree level Coulomb exchange, so that the only difference is an extra power of a.

In SCET, the connectedness term does not yield an analogous enhancement for loop
graphs. To discuss this we can safely set u = 0. To prove that there are no connectedness
enhancements in loop graphs, first consider a graph with i,, initial state n-collinear particles,
and iz initial state n-collinear particles. The simplest contribution is to connect all these
fields with tree level Glauber potentials, which gives N* = N™ =i, and N® = N™ =i,
and the power counting result is § = §°"™ = 6 — 2i,, — 2iz. This provides a baseline
for the scattering operator with these external states, and we can then ask whether any
graphs with the same external fields can have a smaller §°°**. Since for the baseline graph
N = N™ and N® = N™ with N¥ = 0, the bounds in eq. (A.7) imply that the only way
we can decrease 6°°™ is by increasing N” or N7, or by increasing N° with a simultaneous
increase to N™ or N™. Holding the external fields fixed, it is not possible to increase
these indices at tree level, so we must consider adding loops to do so.

The prototype for a loop correction which could decrease 6°°™ is to start with a graph
having a single n-collinear sector, and split it into two sectors by joining lines together with
either a soft loop or n-collinear loop, such as in

LIRS (A.15)

Here all three graphs are built from leading power Lagrangian interactions. The graph
on the left has 0°™ = 4 from N® = N™ =1 and N* = N™ = (, while the graph in

26The reason for this enhancement in NRQCD beyond the powers obtained from the v° interaction
Lagrangian, is that the large O(muv) soft energy carried by the soft gluons or quarks can only run in the
loop. No soft energy can be carried away by the fermions on the external legs. In perturbative NRQCD
this enhancement does not endanger the power counting because the v expansion and coupling expansion
are tied together by the virial relation as ~ v, which implies that the graph in figure 23c is suppressed by
a single a; relative to the leading order Coulomb potential.
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the middle has 6" = 0 (from N® = N™¥ =2 N" = N™ = 1) and the graph on the
far right has §°°"™ = 2 (from N" = 2, N*¥ = 1, N® = 0, and N™ = 1). (Although
we have drawn these graphs with external collinear quarks, the same results are obtained
if they are collinear gluons.) Thus the two graphs on the right seem to be enhanced
by their value of §°°"" relative to what we expect for leading power interactions in the
n-collinear sector. However, all such enhanced graphs, which attempt to use Glauber
interactions to join a disconnected set of n-collinear fields, vanish by RPI-III invariance
symmetry [89]. Both collinear operators Of, that contain the external fields scale as a single
n, and the soft or m-collinear loops cannot yield dependence on any external n-collinear
momentum to compensate this. Since scattering results must be invariant under an RPI-II1
transformation, enhanced contributions of this sort always vanish. This remains true even
if power suppressed Lagrangian interactions are considered in these loops in order to make
them have § = 4 in the presence of the connectedness enhancement. The reason is that in
the end we would have to obtain a result involving a Of, and O}, at leading power (modulated
by logarithms), and we have already argued that no such leading power operator exists.
Effectively since the Glauber operators only involve n-collinear fields in operators with a
specific RPI-III scaling, they cannot be used to generate any loop diagram that leads to an
enhanced contribution. This argument is also consistent with the fact that all scattering
between collinear lines in the same direction is via collinear exchanges and collinear loop
graphs, since this is just a boosted version of QCD. The same RPI-III argument applies if
we consider external soft fields with O and Ol", or with O% with O%, since these products
again have a non-trivial RPI-III scaling. Note that it is possible for the connectedness term
to cause a suppression, as it does for the graph in example 7 discussed above.

B Useful formulae

B.1 Expansion of adjoint Wilson lines and gluon building blocks

In section 6.3 we made use of various coupling expansions of Wilson lines and composite
operators in order to obtain the one and two soft gluon Feynman rules for the operators,
which were used for the calculations in section 6.4. This includes the Feynman rules for
the final operator OéB given in figure 7. Here we give results for some of those expansions
for easy reference.

We start with the expansion of the adjoint Wilson line in momentum space, where for
brevity here we use Ag’;c to denote the soft field AS with incoming momentum k*. This gives

_ — Cp = C.
SAB = §AB 4 jgpABCTL A +g° e o il i LR U +.... (B.1)
" -k n-kyfi(ki+ko)  firkon-(ky+ke) 2! AT

The analogous expansion for S 4% is easily obtained by taking A <+ B and 7 — n. In
constructing the two-gluon Feynman rule from this operator either of the fields Asc;gll or
A

sko
block gluon field we have the expansion

can be contracted with either gluon, which cancels the 2!. For the adjoint building

- 170 -



s AB k' A A
(9B = _igfABC <Affk _ J_ n- Agf) + g2 (fClBEfCQAE _ szBEfClAE) s sk

n-k n-k
C1AE §C2BE C2AE fC1BE 7 p . At . AC2
+92 (kiLJ__'—ng_) f f f f skq sko
n-kyn-(k1+ke)  n-kan-(k1+ke) 2!
kE on- AG - A
_ g2 fCrAE poopE M2l sk skz 4 ..., (B.2)

n'kln-kg

with the analogous result for gl’;’?i‘ obtained by taking n — n. Finally we note that slightly
simpler results are obtained for certain combinations due to cancellations between the
explicit Wilson line and those internal to the adjoint gluon building blocks, such as

ASHn - A

M AB . kﬂ sko
rst) ™ = apne (atr Mg pparmgens ST ALy
C1 Ca
- 92 (ky, +k# ) szAEfClBE + fClAEngBE n- Askl n- Ast + o
L 2L n-kin- (k1+k2) n-kyn- (/4}1—|-]<i2) 2! ’

- " ASH - A
(Sﬁngﬁ)AB _ —ingBC (ASCJ/_A - J_kﬁ . Agg) _ 92fC1AEngBE sJ_ﬂ y ska
_ Ci1 = C.
+ (K KL JORRSEOE | _SEARSOPE A oA,
Wl kyn- (kit+ks)  n-kon- (ki+ko) 2!

B.2 Useful rapidity regulated integrals

In this section we tabulate results for a few integrals that required the rapidity regulator.
We consider both the Glauber type loop integrals, which must be regulated, but do not
introduce logarithmic divergences, as well as collinear and soft loop integrals that do induce
logarithmic divergences.

The rapidity divergent k7 integral that shows up in Glauber loops is

/+00de |2k;z|_277y277 _/ood—kz (kz)—Qn (l//2)277 1 N 1
o (2k*+2A+40) 2 —kZ+A+i0  k*+A+i0

_ ﬁ“’/”% mese(2mn) [(A+0) 21 — (=4 — i0) 1]

— i [(V/2)277 (—2im) csc(2mn) sin(wn) (—iA)_Q”}

_ (4;) [—ir+0Wm)|. (B.4)

Note that the result at leading order in the limit n — 0 is independent of A. This term
is therefore also independent of the exact power in 7, giving the same result whether the
regulator is [2k%| =27 or |2k*|~" for this integral. We also obtain the same result if we swap
k* — —k? in the original integral. We obtain the opposite sign for the O(n?) term if the
original integral appears instead with a —i0, which is the complex conjugate of the result
in eq. (B.4). One common case where this integral appear is in evaluating

2k7|72my2n 1
dKak? | =+-+0(). B.5
/ (k* — A+i0) (k= + A" —i0) Tt om (B:5)
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If we have two k™ dependent propagators with poles on the same side, opposite to the
k~ propagator, then the integral vanishes at O(n°)

Loo1 = / Tk (2|2 _ (B.6)
(kT — Ay +i0) (kT — Ay +1i0) (k= + Af —i0)
|2kz|—2ny277

— 4 z —

_Z/dk (—2k% — Ay — AL +40) (= 2k% — Ay — A} +0) =00

To see this note that after doing the k% contour integral we have two poles on the same side
of a k* integral that is convergent without the regulator. We could also keep the regulator,
and transform the k% dependent integrand in eq. (B.6) to longitudinal position space with
eq. (9.7). To obtain the spacetime picture we separately transform the regulator factor for
each of the two Glauber exchanges contributing to eq. (B.6), obtaining

M@

] 2 +oo -1 . z . z
12001 = (K)ng> /dxldxzdaldag 9(0[1)0(@2)|1’1(E2|71+n6lk e O )

i( 2) dmldxgdozl H(al)ﬂ(xl—arg—al)|$1x2|_1+"em1(Ali’“(ml_“_almﬁ/
=L (m2) [ e e e [ ) + 0(0)
=0(). (B.7)

The presence of a vertex between the two Glauber exchanges at x1 and xo leads to the
extra restricted integral over ay that ranges over the interval between these two Glauber
exchanges. At leading order in the x; — 0 limit it simply gives a factor of (z1 — x2). This
factor reduces the divergences from x; — 0, such that they can no longer overcome the n?
prefactor.

On the other hand if the k™ dependent propagators are on opposite sides, then the
result is nonzero at O(n°),

‘2k2‘72ny27]
(k* — A +140) (k* + A” —i0) (k~ + A’ — 40)

_ —i /sz [2R7 | 1 +O@m).  (BS)
T (A AT —i0) @2+ A+ A —i0)  4A+AT—q0)

Lo = / ak ak?

We can also consider rapidity regulated integrals that lead to 1/n divergences with
corresponding logarithms. This occurs in both soft and collinear loops. The basic rapidity
divergent loop integral that appears in the soft eye graph after reducing the numerator
(and including the Glauber 0-bin subtraction which removes the dependence on whether
we use £i0 in the eikonal propagators), is

(L6 p2€ |2k, |~ L)
/ddk (k2 —m?2][(k + q)* — 2](ﬁok)( k) (B.9)

i [2g(e,p1?/t) > > AR Y AW
— 71 1 m(2) w2 ()4
82t { n + z ¥ 2 R - e 2\ =) T2y
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where g(e, u?/t) is defined in eq. (7.16). The full loop integral for the soft eye graph was
given in eq. (7.15). Similarly, the rapidity divergent loop integral appearing in the soft
flower graph is

(L5 p2€ |2k, |~ L)
/ddk (k2 —m2](n-k)(n-k) (B.10)

i f2h(e,p?/m?) 1 p u2 AV Y A WS
__ L 71 1 1 R NCY (T P
1672 { n €2 V2 "oz ) ez ) e g ) T g

where h(e, u? /m?) is defined in eq. (7.20). The rapidity divergent loop integral that appears

for the collinear V-graph is

vp®)n - k|7 ky (kL +q1) i (k+ps)
/ddk k2 —m?|[(k + q)* — m?|(k + p3)? (R - k)

2 2 2
=— ! gle,n°/t) 1ln _L —In _l/ In (2 —E—§ln Ll
1672 n € n - ps3 n-p3 —t 2 2 —t
+§ln m—Q —g-i-ﬂj
4 —t 8 3 )

In the full result for the loop integral for the V-graph, given in eq. (7.26), the dependence

on In(m?) cancels. Similarly, the rapidity divergent loop integral for the collinear Wilson
line graph is

*|n - k[~ 0 (k4 ps)
/ddk: [ k)g (B.12)

2/, 2 2 2 2
- (e’ﬂ/m)Jrlln ) m (Y m (A —|—1+ln i) DS PRI O
1672 n € n-ps3 n-ps3 m2 m?2 6

B.3 Three gluon Feynman rule for OflA

The three collinear gluon Feynman rule for the (’),%A operator, which was used in sec-
tion 7.2.3, is given in terms of a vertex function V/* “A by

— _gﬁ . kaCEfBDE le,l/)\(k7 &p) _ gﬁ . pfABEfDCE ‘/11/)\;1,(])’ k7£)
—gn- L fAPEFOBEVI (L p k)

A U U . SN
AR N R D o Tl e Ut A T R ey A kL-pL)
n

nl ~ np nkap ! nknl T aknp  nknl T (k)2 \

Here the operator (’)ZA has an incoming Glauber exchange momentum ¢, and p=—k —/¢—
qlL.
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B.4 Wilson line Feynman rules for various directions

For easy reference we record here some notation and Feynman rules for various Wilson lines.
For n-collinear Wilson lines W,, = W,,[n- A,] the lines with various specified directions are:

0
Wy (—00,0) = Pexp (zg/ ds ﬁAn(azg)) , Wn(0,00) = Pexp <—zg ds n-Ap(z ))
(B.14)

0
Wi (—00,0) = Pexp <—@'g/ds nAn(:Efj)> . Wi(0,00) = Pexp < ds n-Ap(

where z& = x#+s(n#/2). Thus the lines have one end at the space-time point z# = (n-z, n-
x,x, ), extend along the n# light-cone, and have the other end at (+o00,7 -z, 2, ). Here, as
the notation implies, we have [W,,(—o0,0)]f = W, (=0, 0) and [W,,(0, 00)]" = W, (0, 00).

For an incoming gluon with momentum £ the 1-gluon Feynman rules for n-collinear
Wilson lines in various directions are

n-line: W (—00,0) W1(0, 00) Wi (—o0,0) Wi (0, 00)
o suTA _ amuTA _amuTA T A

1-gluon: — gn T_ 7gn r : 7gn r : 7gn7T (B.15)
n-k+10 —n - k410 —n -k —10 n-k—10

s-line: Sa(—00,0) 51(0, 00) St (=0, 0) S7(0,00) .

As indicated, the results for the soft Wilson lines Si[n - Ag] are the same as for W, [n - A,]
but just involve the soft gluon field A%Y. The Wilson lines and Feynman rules for the 7n-
collinear Wilson lines Wi [n - A;| are obtained by taking n <> 7 in these results, and those
for Sp[n - As] are the same as those for Wi[n - Az].

C Glauber exponentiation calculations

C.1 Abelian exponentiation of Glaubers at the integrand level

In this section we briefly discuss how the summation of forward scattering Glauber exchange
graphs can be done in an abelian theory, without the need to introduce the n rapidity
regulator. For the abelian theory the box and cross-box Glauber exchange graphs can be
combined at the integrand level to obtain obtain well defined results as long as we impose
that the integrand is regulated in a manner that retains an invariance under using different
possible routings for the loop momenta. The final result for the sum of graphs obtained
here is the same as the abelian limit of eq. (9.18), taking T4 @ T4 — —1 in ¢(b,). For
simplicity we work with the kinematics specified in egs. (5.6) and (5.7).
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First consider the sum of the one-loop box and crossed box graphs symmetrized over
two momentum routings,

0Dy non kit ps n

n k

1 e k-

2!{ keati kpi BTN (k= —k = q) }
,—4—0:——4-—0:—4-, ,—4--'—..—4-—‘:0—4--,
n =Py n n -k-p n

1
(K — A7) (“ky —A7) " (k —A7)(ky — A7)
—2A7 —2AT }
(f — A7) (ki — A7) (ky — A7) (—ky — A7)

4
ni 9 -
=25" I(j)(qg/crkfdkl [ )+ +(k1i—>—k1i)}

e
=25 L 1(q)) / dkf dky [

. 2)2
— 28" (“‘;,) 1M(q,), (C.1)
where 8™ is given in eq. (9.5), IJ(_I) is given in eq. (9.11), and here A7 = (k +P51)%/py —
py —i0 and AT = (E 1L — Ps1)?/pf — py —i0. The two displayed diagrams symmetrize
over attachments to the bottom line while holding the momentum routing through the top
collinear propagator fixed, whereas the k1 — —kj — ¢ analogs symmetrize over attachments
to the top line holding the momentum routing in the bottom propagator fixed. The sum of
propagators falls off quadratically for both k7 — 400 and k] — 400, and hence both of
these can be done by contours, simply giving a (—i)2. The result in eq. (C.1) is the same as
that found with the 7 regulator in the abelian limit for the box graph alone, see eq. (9.10).

For three Glauber exchanges we must symmetrize over 3! choices of momentum routings
through the Glauber lines in order to simultaneously symmetrize over attachments to the
top and bottom collinear lines

1 n$,};ﬂi,l"§,/",‘+n n 'kﬁ/u .1~:+1u n o n ~/v“+l’s., katpy sl N
31 T A T T 0, OV o VAN

7l kepy kepr m T k-pi o kepy m T k-pi kepy m D non

+5 momentum routing permutations swapping {k1 + ¢, k2 — k1, kg}}

i 1 1 1
= —2i8" ¢51P(q,) = /d‘k*cfk‘d‘k*cfk_ { +
OB (kA (ky —AR) (kY —AD) (k) —k3 —A)
+ ! + : + !
(=K kg —AR)(ky —AR) (= +ky —AR) (kT —AY) (k3 —AR) (k) —ky —Af)
1

+ } {same 6-terms with kf’z — k1o, A7 = Af]

(—k3 —A)(—k{ —AY)

(i02)3
= a5 W10, (C2)

where I](\?) is given in eq. (9.14). Again the four k¥ integrals each give a factor of (—i).
To see this note that the sum of six terms depending on kf 5 gives a result that falls off
with the 4’th power as kiz — +00, and with two powers if either kf — 00 or k; — 00
individually. Therefore with these sums of terms the integrals are all well defined and can
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be done by contours. We can do the contour integral without combining denominators as
long as we close the contour the same way for all 6-terms. Closing both contours below,
only the first term contributes. (The same result is of course obtained if we first combine
denominators.) The result in eq. (C.2) matches eq. (9.13) in the abelian limit.

The pattern is clear, so the graphs with N + 1 Glauber rungs are no more difficult,

momentum routin,
H(N+1)!-] permutations g}

n kitps Fxtpy n
1 H P H
(N+1)'{ |:k.«q$§ I [(N+1)!—1] crossed graphs

n ki-py K=y n

nh s 1 _ _
= 28" (—ig?)N 1M (q1) W/dk{rc[kl e dkfdky [

1
(b = A7) (ky —AR)

HOVH) 1] GO B | some terms with KF > k7, AT A7

(i 2\N+1
— 25 B 1 ), (C.3)
(N)

where 1| is given in eq. (9.17). There are (N + 1)! terms in the sum of k; dependent
propagators, and each one has poles only either above or below for each kj or k;” 27 Again
the integrals converge as kzi — 400 once we consider the sum of all terms. Finally, there
is a single term with the poles in all k:fc below so closing the global contour in this manner
simply gives (—4)2V, and thus the result in eq. (C.3). The result in eq. (C.3) matches
eq. (9.16) in the abelian limit. Thus we also obtain the exponentiated results of section 9.1
for the abelian case by adding integrands in this manner.

This analysis demonstrates that in the more general non-abelian context, the n reg-
ulator is properly regulating the Glauber sector of the theory, separating it from the soft
and collinear sectors, as opposed to enforcing a particular result on the sum of Glauber
exchange graphs.

C.2 Exponentiation for active-spectator exchanges

In this appendix we derive the result for iterated Glauber exchange on active-spectator
lines. Unlike for spectator-spectator scattering, this result requires the n-regulator both
for the single exchange integral, and for the ladder iterations, therefore it cannot simply
be inferred from the exponentiation result in section 9.1.

Starting with the Drell-Yan case, we first repeat the single Glauber exchange calcula-
tion in eq. (11.17), but carry out the intermediate regulator dependent integral in Fourier
space following the notation introduced in section 9.1, in order to setup the procedure for
the N-exchange diagram. Writing the final result in the transverse Fourier space we have

2TTo see this for kj' note that there are only two Glauber exchanges that depend on kj', with incoming
ki — k| or incoming k;, , — k;”. Which ever one of these vertices occurs first from the left induces a
dependence on k:r in the collinear propagators which follow this vertex, until the attachment of the other
one, after which the collinear propagators no longer have any dependence on k;'. So the sign for the & poles
that appear in a given propagator term are determined by which of the two vertices attach first, and there
are never simultaneously poles on both sides of the contour for a single term. The proof for k; is the same.
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pan-(P— d?k, GOk oo A it
_ Svn P2 n—(_,g p?)/ ne (/ L) <H7]77>/ dk? de dag(a)|z|71+neza(k +A)—ik*x
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pan-(P—ps) fi-py - (P— d?k GOk oo ;
:S“/np?n_(_’2 Pz)npﬂ”i( pl)/ _ 1G(ky) ("Enn>/ dx@(m)|x\71+"e”A
n-Ppg, n-pP (kL +p1L)? 2) )
/ 1
= S”/d‘dkLGO(l{QE(pu +ki,pa1) (fin;’) {77 + 0(770)]

v ’ 7 T ~ 7 LT — r o~
= %/d%L /dd bre *rPLGO(b,) /dd b e AP LB, pa))
’ . = g 1 ~ ~
sl /dd byePribL {200(@)} E(=bi,pal)- (C.4)

Recall that we use the notation d’ = d—2, and that the Fourier transform G°(b,) = ip(b, )
with ¢(b1) given by eq. (9.1). The end factor E(p11,po1) is defined in eq. (11.6). The
dependence on A = —(A} + A1)/2 drops out at leading order in 7. Next we carry out the
analogous calculation but with N Glauber exchanges between these two lines. Closing all
the kY contours above we have

— >0 >—0— > —

DN K 5 0/7.1\ 0.1 3.1 0/.L 1.1
PN = (22 s e (P /d-dkl o gy GORDGO (ks =) - GO (ko kv )
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o _

L el |27 |~ 7|2k5 —2kF| 7 -+ |2k — 2k |7 N7

X
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t+oo ) ) )
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% (Hnﬁl/n) / dﬁ71 L de 9(¢2—m1)9(w3—‘$2) A e(ﬁ]jn_mel)o(_wN) ei(zzfml)A11/2+..477L1NA1/N
T1 TN

—o0

’ ! 1
=8 [d%:1 - d%kni E(pri ki1, poi )G (k)G (ky —ki) - GO (kN —kn_1) [W + O(’?)]

— ~ N =~
— g /dd by ePiibe % EGO(M)} E(=by,p21)

. . N
— g /dd’bJ_eiﬁlL-bL % {wﬁ(éu)] B(=bi,par). (C.5)

At intermediate steps we defined Ajjp = —(A1 + A} + Ay)/2, etc., but to leading order
in n the answer is independent of these factors. The only such factors which contribute
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are Ay + A}, which contributes to give the E(p1, + k11,pa1) (these As were defined in
eq. (11.11)). At an intermediate step we see that the longitudinal coordinates are ordered
as x1 < 29 < -+ < xpy < 0, that is, they occur before the hard scattering vertex at = = 0.
As n — 0 the O(n°) result comes from the limit where all z; — 0. Summing over the
number of Glauber exchanges in eq. (C.5) from N =0 to N = oo we get

> ————>——
IO e d'y i by id(bl)/2 F
C?\vxv\/\ :SV/d b ePribL gid(bL)/ E(=by,p21). (C.6)

Thus we see that the phase for this sum of active-spectator exchanges is ¢(b,)/2.

For the hard scattering case, we can sum up the ladder graphs for active-spectator scat-
tering in a similar manner. For one exchange we again repeat the calculation of eq. (11.25)
using the regulator in position space, and writing the result in the transverse Fourier space:
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The dependence on A = —(A;+A})/2 drops out at leading order in 1. The function E(ps, )
appearing here is defined in eq. (11.24). Continuing with the corresponding calculation with
N Glauber exchanges between these collinear lines we have
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Here AN =n-p2+ (E]J\'] —ﬁgj_)2/n : (P —pg) and AIN =-—-n-ps+ (zﬁ —;5’2J_)2/n - P2, and
the sum Ay + A’N contributed to E(psy — kn1). At an intermediate step we see that
the longitudinal coordinates are ordered as 0 < xny < zy_1 < --- < x1, that is after the
hard scattering vertex at x = 0. As n — 0 the O(n") result once again comes from the
limit where all z; — 0. Summing over the number of Glauber exchanges in eq. (C.8) from
N =0to N =00 we get

ns =57 /dd'bm"ﬁu'gl e WO F(—by). (C.9)

/ o Do
———=—b <=
n n

Thus the phase for the active-spectator exchanges in this case is —¢(b)/2.

C.3 Exponentiation for active-active exchanges

In this appendix we derive the result for iterated Glauber exchange on active-active lines.
Unlike for spectator-spectator scattering, this result requires the n-regulator both for the
single exchange integral, and for the ladder iterations, therefore it cannot simply be inferred
from the exponentiation result in section 9.1.

Recall that the Glauber loop vanishes for active lines in the hard-scattering case (DIS),
so we only have to consider the annihilation case (Drell-Yan). We repeat the single Glauber
exchange calculation in eq. (11.33), but carry out the intermediate regulator dependent
integral in Fourier space following the notation introduced in section 9.1, in order to setup
the procedure for the N-exchange diagram. Writing the final result in the transverse

Fourier space we have

T T e B( V[ areaty, CORDRE T
: = =4 P1L,P21 i ~ ;
A ‘:/YU&/\/‘ ~ —c0 [ka—A/l—Al +ZO]
oy
=t ————— ——
+m . z . z
— _97 E(pu,pu)/ddkLGO(kl) ("%Z)/ dk? de dae(a”xrlﬂkm(k +A)—ik*z
+o0 )
=97 E(pu_,pgj_)/d”ko_GO(kJ_) <f€77727>/ dz 9(x)|x]71+’76”A
y 1
=-S5 E(plL,pZL)/d—dleo(ki) <'€ng> [77 + 0(770)}
1
=S"E(p11,p21) [2 G'(b, = 0)] (C.10)
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Recall that we use the notation d’ = d — 2, and that the Fourier transform G°(0) = i$(0)
with ¢(0) given by eq. (9.1). The end factor E(p1y,p21) is defined in eq. (11.6). The
dependence on A = —(A} + A1)/2 drops out at leading order in 7.

Next we carry out the analogous calculation but with N Glauber exchanges between
these two lines. Closing all the k:? contours above we have

—.———— —>—
v n
5...!‘*2&,\,\ =2Ng7 E(pu,pu)/tfdkl - d %y GO(k)GO (ky —ki) -+ GOk — k1)
R 4
A _
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’ !/ N

= ()N E(pu,pm/ddm o d ¥y GG (kg —Ki) - GOk — k) <Kung;ﬂ>

oo 0 ... 0 ) . ) .
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KoV *1 TN 21 x|l

— 00

X
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1 (-1~ N
=S"E(pi1L,p21 )~ | =G (b =0)

N!'| 2
. N
:st(pu,pu)]H_Zﬁ(O)} . (C.11)

At intermediate steps we defined A1 = — (A1 + A1)/2, etc., but to leading order in 7 the
answer is independent of these factors. Summing eq. (C.11) over the number of Glauber
exchanges from N =0 to N = oo we get

—_—————— —— —
n*"\” " i6(0)/2
G BN = ST E(p11,p21) e 90/2, (C.12)
_ L¥h _
B0 o)

Thus we see that the phase for this sum of active-active exchanges is —¢(0)/2.
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