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1 Introduction

Higher spin theories of gravity provide toy models where one can examine ideas of stringy

geometry in a controlled setting. In addition to the usual spin-2 graviton, such theories

contain other, higher spin degrees of freedom that mix nontrivially with the graviton under

a large set of gauge redundancies. In three dimensions one can consider theories with only

a finite number of higher spin fields, including all spins starting from 2 up to a fixed

highest spin N : the relevant bulk description is given by Chern-Simons theory with gauge

group SL(N,R) × SL(N,R), generalizing the usual presentation of AdS3 gravity as an

SL(2,R)× SL(2,R) Chern-Simons theory.

There has been extensive study of black hole solutions in such theories, starting from

the work of [1]. Much of the subsequent literature deals with static properties and ther-

modynamics, and so can largely be thought of as studies of the black hole in its Euclidean

section. In this work we study instead the Lorentzian structure of eternal higher spin black

holes. In particular, as we review below, it is well-understood in AdS/CFT that an eternal

black hole is dual to the thermo-field state in a doubled tensor product of the dual field

theory Hilbert space. In what follows, we will discuss the interpretation of eternal higher

spin black holes from this point of view.

In particular, the standard identification of the two-sided black hole with the ther-

mofield state is tied to the causal structure of an eternal black hole. The fact that the

two copies of the CFT are decoupled but entangled is roughly dual to the fact that the

two boundaries of the eternal black hole are connected — but not causally so — by an

Einstein-Rosen bridge. To fully flesh out this interpretation in the higher spin case, it

would be helpful to give an operational meaning to the “causal structure” of an eternal

higher spin black hole. This is a nontrivial endeavour: in higher spin theories, conventional

notions of geometry are not even gauge-invariant, and we will require different tools to

organize our thinking.

These theories do not admit a conventional geometric understanding; however they do

admit interesting higher-spin-invariant probes. In this paper we will consider the Wilson

line operator constructed in [2, 3]. As we review below, this object should be thought of

as the higher-spin-invariant generalization of the worldline of a massive particle moving in

the bulk, carrying well-defined charges under the higher-spin symmetries. In the simplest

case, when it is charged only under the spin−2 field — and thus has a mass but no other

charges — its action in the bulk may thus be thought of as the higher-spin analogue of

a bulk proper distance. Furthermore, if the endpoints of this Wilson line are taken to

intersect the AdS boundary, it computes both the boundary two-point function of a CFT

operator with the specified charges, or (by appropriate choices of these charges) a CFT

entanglement entropy [4].

These Wilson lines then provide us with a sensitive probe of bulk higher spin ge-

ometries. Interestingly, we find that the study of Wilson lines on the eternal black hole

background requires a refined understanding of regularity properties on the bulk gauge

connections. One of our main results is the description of a particular bulk gauge choice

— which we call Kruskal gauge — that is in many ways the Chern-Simons analogue of

the Kruskal choice of coordinates that permit passage through the event horizon to the
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full maximally extended spacetime. This gauge choice simply amounts to demanding that

the connections be smooth when evaluated at the Euclidean origin: while this may sound

like a very benign condition, it involves an interplay between the bulk radial coordinate

and Euclidean time, and so is novel from the point of view of Chern-Simons theory. In

particular, it is stronger than the familiar “holonomy conditions” of Euclidean regularity

that are normally used to define black hole connections: however, given a black hole that

satisfies the holonomy condition, there is an algorithm that can be followed to place it into

Kruskal gauge. Some recent work that also implements this stronger notion of regularity

is in [5].

With an understanding of this bulk gauge choice we then proceed to study the prop-

erties of eternal higher spin black holes. We present computations in several gauges to

illustrate potential pitfalls, and verify that in Kruskal gauge, all correlators behave as ex-

pected for a thermofield state. We also study some of the resulting physics: in particular,

we demonstrate that the interior of a two-sided eternal black hole “grows” with time (as

measured by the action of a bulk Wilson line). We also highlight some interesting features

of purely one-sided correlators, studying in particular the behavior of the extremal limit

and providing evidence for the emergence of an infrared AdS2.

Some other recent work involving bulk U(1) Wilson lines that connect the two sides

of an eternal black hole includes [6–8]. Our viewpoint here is somewhat different from

that taken in those works, where a distinction is drawn between the Wilson line operator

(which is constructed from the bulk U(1) gauge fields) and the existence of dynamical

charged matter in the bulk. However, when 3d gravity is studied in the Chern-Simons

formulation, it appears to be impossible to make such a distinction, precisely because

there is no simple way to couple Chern-Simons gravity to propagating matter. Our Wilson

line should be thought of as providing a geometric optics approximation to the correlation

functions of (putative) matter in the bulk, and the interplay of such a Wilson line with

actual dynamical matter is an important topic for future exploration.

The organization of this paper is as follows. We begin in section 2 with a review of the

usual definition of Euclidean black holes in Chern-Simons theory. In section 3 we motivate

the more refined notion of regularity adequate for Lorentzian eternal black holes, defining

two forms of the Kruskal gauge mentioned above and explaining their relation. In section 4

we apply this formalism to the familiar BTZ black hole and discuss the maximally extended

spacetime in the Chern-Simons formalism. In section 5 we turn finally to the higher spin

black hole, where we present computations in several gauges that have appeared in the

literature previously as well as in Kruskal gauge. In section 6 we discuss some simple

applications, including a determination of the entanglement velocity chracterizing the speed

of entanglement growth for the higher-spin black hole. We conclude in section 7 with a

brief discussion and some directions for future research.

2 Euclidean higher spin black holes: a review

In this section we first review the properties of black holes in AdS3 as currently understood

in the Chern-Simons formulation of gravity. For a complete discussion and list of references

see [1, 9–13].
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The black holes that we will study are classical solutions to Chern-Simons theory with

a given gauge group. More concretely, the Chern-Simons action is

ICS =
ikcs
4π

∫
M

Tr
[
CS(A)− CS(Ā)

]
, (2.1)

where A and Ā are valued in the same algebra, and

CS(A) = A ∧ dA+
2

3
A ∧A ∧A . (2.2)

Our general arguments and results will not be very sensitive to the choice of gauge group,

but for the sake of simplicity our explicit computations will involve connections valued in

either the Lie algebra sl(2) (in which case we are discussing standard spin-2 gravity on

AdS3) or sl(3) (in which case we are discussing the simplest theory of higher spin gravity,

including a single spin-3 field). Gauge transformations ΛL,R(x) ∈ sl(N) act as

A→ ΛL(A+ d)Λ−1
L Ā→ Λ−1

R (Ā+ d)ΛR (2.3)

In conventional sl(2) gravity, Lorentz transformations form the subgroup with ΛL = Λ−1
R ,

which rotate the vielbein but leave the metric invariant.

The equations of motion following from (2.1) simply force both A and Ā to be flat.

The standard way to parametrize these flat connections is by gauging away the radial

dependence, i.e.

A = b(r)−1
(
a(x+, x−) + d

)
b(r) , Ā = b(r)

(
ā(x+, x−) + d

)
b(r)−1 . (2.4)

Here r is the holographic radial direction, and x± = t ± φ are the boundary coordinates.

In Lorentzian signature we will consider solutions with R × D2 topology; the compact

direction on D2 is described by φ ∼ φ + 2π. In Euclidean signature we will analytically

continue x± to complex coordinates (z, z̄) via t = iτ , and the topology of the bulk is now

a solid torus with z ∼ z + 2π ∼ z + iβ. Here β is the inverse temperature.1 b(r) is a

radial function that is normally taken to be erL0 : while its precise role in the interior of

the geometry is somewhat obscure, its form as r → ∞ is important for the connections

to satisfy asymptotically AdS boundary conditions. This will play an important role in

what follows.

The connections a(x+, x−) and ā(x+, x−) contain the information that characterizes

the state in the dual CFT. In the absence of sources there is systematic procedure to label

them: a suitable set of boundary conditions on the connections results in W-algebras as

asymptotic symmetries [14–18]. These are commonly known as Drinfeld-Sokolov boundary

conditions. To be concrete, for sl(N)× sl(N) the connections take the form

az = L1 +
N∑
s=2

J(s)(z)W
(s)
−s+1 , āz̄ = L−1 +

N∑
s=2

J̄(s)(z̄)W
(s)
s−1 , (2.5)

1Throughout this work we will only consider static (non-rotating) solutions, which makes the complex

structure of the torus purely imaginary.
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r

τ

Figure 1. Topology of the Euclidean higher spin black hole for a static solution, where the compact

direction is Euclidean time t = iτ . The red curve depicts the cycle along which the smoothness

condition (2.6) is imposed, and it is independent of the radial position. In Euclidean signature, the

geometry ends at a finite value of r: in a metric-like formulation of gravity this end point would be

the horizon.

while az̄ = āz = 0. Here {L0, L±1} are the generators of the sl(2,R) subalgebra in sl(N),

and W
(s)
j are the spin-s generators with j = −(s − 1), . . . (s − 1). J(s)(z) are dimension-s

currents whose algebra is WN , and same for the barred sector.

We are interested in stationary black hole solutions, hence (a, ā) are constant flat

connections that contain both charges and sources. More importantly, the feature that

distinguishes black holes from other solutions is a smoothness condition. In a metric for-

mulation of gravity, the Euclidean section of a black hole has the property that the compact

Euclidean time direction smoothly shrinks to zero size at the horizon of the black hole, re-

sulting in a smooth cigar-like geometry as in figure 1. In the Chern-Simons formulation of

gravity, this property is normally thought to generalize to the idea that a black hole is a

flat gauge connection defined on a solid torus, where the holonomy along the thermal cycle

of the torus belongs to the center of the group, i.e.

P exp

(∮
CE
a

)
∼= eβaτ ∼= e2πiL0 , (2.6)

and similarly in the barred sector; here L0 denotes the Cartan element of sl(2),2 and CE is

the thermal cycle z ∼ z + iβ which is contractible in the bulk.

In addition to the smoothness condition, one needs to specify how charges and sources

are incorporated in the connections (a, ā). From the CFT perspective, it is natural to

capture the currents in az and the sources in az̄, and vice-versa for ā [1]. From the gravita-

tional perspective, the canonical prescription is to encode in (aφ, āφ) the currents [21–24].

These two choices, az versus aφ, amount for different partition functions as shown in [13]:

2Depending on the gauge group, the choice of center in the r.h.s. of (2.6) is not unique [19]. The choice

used here has the feature that it is smoothly connected to the BTZ solution. The interpretations of other

choices are discussed in [4, 20].
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the az prescription, denoted holomorphic black hole, corresponds to a Lagrangian defor-

mation of the theory; the aφ prescription, denoted canonical black hole, corresponds to a

Hamiltonian deformation. It is important to make a distinction between these two, since

the Legendre transformation that connects these two prescriptions is non-trivial.

To illustrate these two choices, let us consider black holes in SL(3) × SL(3) Chern-

Simons theory. In this case we define:3

a+ = L1 −
2πL
k
L−1 −

πW
2k

W−2 ,

a− = µ

(
W2 +

4πW
k

L−1 +

(
2πL
k

)2

W−2 −
4πL
k
W0

)
,

ā− = −
(
L−1 −

2πL
k
L1 +

πW
2k

W2

)
, (2.7)

ā+ = µ

(
W−2 −

4πW
k

L1 +

(
2πL
k

)2

W2 −
4πL
k
W0

)
.

For simplicity we have turned off rotation, i.e. L = L̄ and W = −W̄. The interpretation of

these connections as thermal states depends on the boundary conditions used to define the

classical phase space. The holomorphic black hole is given by the following connections

ah = a+dx
+ + a−dx

− , āh = ā+dx
+ + ā−dx

− , (2.8)

In this notation the components (a+, ā−) contain the information of the charges of the

system: (L,W) are the zero modes of the stress tensor and dimension-3 current of the W3

asymptotic symmetry group that organizes the states in this theory. (β, µ) are their respec-

tive sources which are fixed by the smoothness condition (2.6). The second prescription,

i.e. the canonical black hole, is given by

ac = a+dφ+ (a+ + a−)dt, āc = −ā−dφ+ (ā+ + ā−)dt . (2.9)

For this prescription, again (L,W) are the zero modes of the currents in W3. The quanti-

tative difference between the holomorphic and canonical definitions lies in the spatial com-

ponents of the connection; both ac and ah have the same time component. The smothness

condition (2.6) enforces relations between the parameters L, W, µ, and β. Following [1, 9],

these constraints can be solved in terms of dimensionless parameter C ≥ 3:

W =
4(C − 1)L
C3/2

√
2πL
k

, µ =
3
√
C

4(2C − 3)

√
k

2πL
,

µ

β
=

3

4π

(C − 3)
√

4C − 3

(3− 2C)2
.

(2.10)

The limit C → ∞ makes the higher spin charges vanish, and we recover the BTZ case;

C = 3 and µ fixed corresponds to a zero temperature solution which defines an extremal

higher spin black hole [1, 25]. Imposing (2.10), the eigenvalues of at are λt = 2πL0/β, for

3Note that the equations of motion, flatness condition, simply imposes that [a+, a−] = 0 = [ā−, ā+] as

can be checked explicit for (2.7).
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both holomorphic and canonical. In the following sections we will measure L and W in

units of k; the explicit k dependence will be restored when needed.

The smoothness condition (2.6) is a robust and successful definition of Euclidean black

holes. It reproduces in an elegant manner many properties that we expect from a thermal

state in the dual CFT2. This definition has also unveiled novel properties of systems in the

grand canonical ensemble of WN , such as microscopic features of the entropy [23, 26, 27],

ensemble properties [11, 13] and novel phase diagrams [28], and it inspires new observables

related to entanglement entropy [2, 3, 20].

It is important to emphasize at this point that the smoothness conditions, the resulting

black hole thermodynamics, and the derivation of Ward identities (which identify currents

and sources) are independent of b(r): this could be attributed to the topological nature of

the Chern-Simons theory. As a consequence, these observables are insensitive to the radial

dependence and there is a priori no justification to the choice of radial function for A and

Ā in (2.4).

3 Eternal black holes

In general relativity, a Lorentzian eternal black hole can be maximally extended to pos-

sess two asymptotic regions that are connected through an Einstein-Rosen bridge. In the

context of (ordinary, spin-2) AdS/CFT this is well-understood [29, 30]: the two asymp-

totic regions correspond to two copies of the dual field theory, and the black hole defines a

thermofield state in the doubled field theory:

|ψ〉 =
1√
Z

∑
n

e−
β
2

(En+µQn)|Un〉L ⊗ |n〉R . (3.1)

We included in the definition of |ψ〉 a chemical potential µ that couples to a conserved

charge Q that commutes with H. Here |n〉 runs over a full basis of energy eigenstates of

the CFT, En and Qn labels their energies and charges, and U is the anti-unitary operator

that implements CPT. The full Hilbert space is composed by two copies of the original

CFT Hilbert space: H = HL ⊗HR.

We briefly review a Euclidean path integral “explanation” of this fact [30]. Consider

performing the field theory Euclidean path integral on a manifold that is the product of

the spatial direction(s) and an interval of Euclidean time with length β
2 . It is necessary to

specify field-theoretical boundary data on the two endpoints of the interval; the dependence

of the path integral on the boundary data defines a state in the doubled copy of the field

theory. This state is precisely (3.1). The suppression by exp
(
−βH

2

)
arises from the

evolution through β
2 of Euclidean time.

Now consider implementing this procedure holographically. The path-integral over a

full cycle of Euclidean time β with periodic boundary conditions corresponds to studying

the usual Euclidean black hole described above. We may however cut open this path

integral after evolution through Euclidean time β
2 and analytically continue to Lorentzian

time. The resulting Lorentzian manifold is the eternal maximally extended black hole,

– 7 –
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and the arguments above indicate that the resulting field-theory state is the thermofield

state (3.1).

Thus we expect that regular Euclidean gauge connections should (upon analytic con-

tinuation) map in a straightforward manner to the dual field theory in a thermofield state.

This has consequences: as we review in appendix B, 2-point functions on this state satisfy

very specific periodicity conditions. Consider a charged scalar operator O, and we denote

OL as an operator acting on HL and similarly for OR. Two point functions that involve

OL,R satisfy

〈ψ|OR(tf )OR(ti)|ψ〉 = 〈ψ|OR(tf )OR(ti − iβ)|ψ〉
= 〈ψ|OL(−tf )OL(−ti)|ψ〉
= 〈ψ|OL(−tf − iβ/2)OR(ti)|ψ〉
= 〈ψ|OR(tf )OL(−ti − iβ/2)|ψ〉 . (3.2)

In a mild notational abuse, we will refer to these all as Kubo-Martin-Schwinger or KMS

conditions (even though technically only the first is “the” KMS condition).

We may now ask whether relations such as (3.2) are satisfied for eternal black holes

in higher spin gravity. One immediate technical obstruction is that it is difficult to couple

matter to these theories: a procedure as simple as probing the bulk with, for example,

a scalar operator is cumbersome. This was one reason why in [31] the question of the

thermofield state was phrased in Vasiliev’s higher spin gravity which includes a massive

scalar field.

However, this is an obstruction that we can now overcome. The recent developments

in [2–4, 32] show that a Wilson line operator is precisely the probe we need: it is a bulk

observable that computes correlation functions of light operators in the dual CFT. More

concretely, we will consider

WR(yi, yj) = 〈Ui|P exp

(∫
Cij

A

)
P exp

(∫
Cij

Ā

)
|Uf 〉 , (3.3)

where Cij is a curve with bulk endpoints (yi, yj) and R is an infinite dimensional represen-

tation of the gauge group. U(y) is a probe field which lives on the wordline Cij : its quantum

numbers are governed by R and it satisfies suitable boundary conditions at the endpoints

(which we discuss in appendix D). The key property is that as we take the endpoints to

the boundary, the Wilson line gives [4]

WR(yi, yj) =
r→∞

〈Ψ|O(xi)O(xj)|Ψ〉 . (3.4)

Here (xi, xj) are boundary positions. O(xi) is an operator with scaling dimension ∆O that

is fixed as the central charge c goes to infinity:4 this is what we define as a ‘light’ operator.

The state |Ψ〉 is ‘heavy’, ∆/c is fixed as c → ∞, and it corresponds to the background

state created in the bulk by (A, Ā).

4Or equivalently, in gravity we would say that it is a particle with a small mass in Planck units. In

a rather crude way, we can identify O with the probe field U . In this language, the Casimir’s of the

representation R control the quantum numbers of the dual operator.

– 8 –
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R
L

tL

tR

r

Figure 2. Topology of the eternal black hole, which contains at least two boundaries: the right (R)

boundary at r →∞ and left (L) boundary at r → −∞. At this stage the interior is undetermined

(and hence the question mark). The different lines correspond to various Wilsons lines we will

study: blue lines correspond to WR(ti|R, tf |R) or WR(ti|L, tf |L), and red to WR(ti|R, tf |L).

We will often be interested in the particular case when |Ψ〉 is the thermofield state (3.1):

in that case we access operators in the left or the right tensor factor of the Hilbert space by

taking the bulk points yi to the appropriate boundary. We will omit explicit mention of a

radial coordinate and use a subscript notation to indicate on which side the corresponding

boundary coordinate is located. For example, for a correlator between the right and left

boundary we have

WR(xi|R, xf |L) = 〈ψ|OR(xi)OL(xf )|ψ〉 , (3.5)

with |ψ〉 the thermofield state. A schematic depiction of the configutations we will study

are shown in figure 2.

As we review in appendix D, the objects that controls the Wilson line are traces of the

following matrix

M(yi, yf ) = R(yi)L(yi)L
−1(yf )R−1(yf ) , (3.6)

which assumes that the connections are flat, i.e.

A = LdL−1 , Ā = R−1dR . (3.7)

While the Wilson line does in general transform under gauge transformations (2.3) with

support at its endpoints, it is invariant under the Lorentz subgroup of such transformations.

The Wilson line gives us a fairly sensitive probe of higher spin geometry, allowing us

to directly evaluate correlation functions such as those appearing in (3.2). As we will see,

establishing the validity of relations such as (3.2) in a two-sided black hole in the Chern-

Simons formulation of gravity will require a more careful definition of Euclidean regularity

than the holonomy condition (2.6).

– 9 –
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3.1 Refined notions of Euclidean regularity

Here we describe the conditions required for a thermofield interpretation. Consider first

choosing a radial coordinate r so that we can form the Cartesian complex coordinates

w = r exp

(
2πiτ

β

)
, w̄ = r exp

(
−2πiτ

β

)
. (3.8)

We now claim that entirely regular physics on the Lorentzian section of a Euclidean black

hole background — i.e. the interpretation of in terms of a thermofield state — requires that

the spacetime-dependent gauge parameters L(y), R(y) be smooth functions of w, w̄ near the

Euclidean origin. In particular, we will allow only non-negative integer powers of w, w̄ in

a Taylor expansion about the origin:

L,R(w, w̄ → 0) ∼
∑

m,n∈Z+

cmnw
mw̄n . (3.9)

This is just the usual condition for smoothness of a scalar function at the origin of a

disc D2: nevertheless, interpreted from the Chern-Simons point of view, it is a stronger

constraint on the bulk gauge connections than those normally considered in the literature.

In particular, it is stronger than the holonomy condition (2.6) in that it involves radial

dependence as well as the Euclidean time direction. This same important observation was

made recently in [5]. The difference in the following will be the implementation of this more

refined notion of regularity: the authors in [5] considered directly the metric-like fields and

our implementation uses solely the Chern-Simons connections.

We will say that a connection satisfying (3.9) is in strong Kruksal gauge: as we explain,

it is the gauge-theoretical analog of the Kruskal coordinate system that permits passage

through the horizon. Note that in this gauge we have

Aτ (r = 0) = L∂τL
−1
∣∣
r=0

= r

(
2πi

β
L
(
e

2πiτ
β ∂w − e−

2πiτ
β ∂w̄

)
L−1

) ∣∣∣∣
r=0

= 0 , (3.10)

where the the smoothness condition (3.9) ensures that the derivatives are regular at the

origin, establishing the last equality. The time components of all gauge fields are zero at

the horizon. This is a very natural condition for gauge fields propagating on black hole

background (and indeed is extensively used in the usual understanding of the thermody-

namics of charged black holes –see e.g. [33, 34]). It is thus interesting to note that the

BTZ black hole written in the usual choice of gauge –despite (2.4) being widely accepted

as being “regular”– actually does not satisfy it.

There is, however a weaker gauge condition that one can impose. We see from (3.6)

that the Wilson lines studied in this paper depend only on the combination R(y)L(y).

Thus if we only care about such Wilson lines we might demand only that the composite

field R(y)L(y) be smooth as a function of w, w̄, and not the individual functions R(y) and

L(y) themselves. We will call this weak Kruskal gauge. In weak Kruskal gauge we find only

that Aτ − Āτ = 0 at the horizon, and the usual BTZ black hole turns out to already be in

weak Kruskal gauge. We note that while the Wilson lines discussed in this paper cannot

– 10 –
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Figure 3. Four quadrants covered by the coordinates (u, v) on R1,1. In quadrant I: u > 0, v < 0;

in quadrant IV: v > 0, u < 0.

tell the difference between strong and weak Kruskal gauges, other probes that couple less

symmetrically to the left and right connections — such as e.g. a particle with spin5 — will

be sensitive to the difference, and we expect such probes to display regular behavior only

in strong Kruskal gauge. Importantly, the higher spin black hole as written in (2.7) is not

in either Kruskal gauge.

The need for such conditions is most easily understood with a toy model of a flat

U(1) gauge field B in two dimensions. As a proxy for the near-horizon region, consider

Euclidean R2:

ds2 = dr2 + r2dτ2 = dwdw̄ , (3.11)

with w = reiτ as usual. As B is flat, it can be written in terms of a group element

g(w, w̄) ∈ U(1):

B = g−1dg , (3.12)

This is the U(1) analog of (3.7). The U(1) analog of the holonomy condition (2.6) merely

states that g should be single-valued around the τ circle, i.e

g(r, τ + 2π) = g(r, τ) . (3.13)

Importantly, it makes no reference to the radial direction. In particular, consider e.g.

g0(r, τ) = eiτ =

√
w

w̄
, (3.14)

which respects this holonomy condition. Consider now a particle with U(1) charge q moving

on this Euclidean background: its action contains a term iq
∫
C B integrated along its

worldline C, and there are no obvious pathologies associated with it.

Now we analytically continue Euclidean R2 to Rindler space R1,1 in the usual way via

w = −v w̄ = u. (3.15)

5See [35, 36] for work towards constructing a Wilson line to describe such a particle.
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The Lorentzian metric is simply ds2 = −dudv and is well defined for all u, v in all quadrants

in figure 3. However we now find that the analytic continuation of the U(1) group element is

g0(u, v) =

√
−u
v
. (3.16)

This has a branch cut along the horizons uv = 0: in other words, without specifying more

information, the phase acquired by a charged particle moving on the Lorentzian section is

ill-defined as we cross the quadrants in figure (3). Thus the innocuous-seeming Euclidean

group element (3.14) does not result in well-defined Lorentzian physics. The SL(N,R)

analog of this pathology will manifest itself later on when we attempt to compute two-

sided correlators in the eternal black hole and demonstrate consistency with the properties

of the thermofield state.

Precisely to avoid such ambiguities when performing the analytic continuation (3.15),

the Kruskal gauge condition demands that g(x) — or rather its SL(N,R) analogs L(y) and

R(y) — be smooth functions of w, w̄, and thus also of u, v after analytic continuation.

We now show that the relations (3.2) follow from weak Kruskal gauge. As described

in (3.6), boundary theory correlation functions are controlled through the Wilson line by

the object

M(yi, yf ) = R(yi)L(yi)L
−1(yf )R−1(yf ) , (3.17)

where the points are at one of the two boundaries. We need to understand how to go from

Euclidean to Lorentzian time: as is conventional, the mapping is

w = f(r)e
2πi
β
τ → −v , w̄ = f(r)e

− 2πi
β
τ → u , (3.18)

where f(r) is an odd function that vanishes linearly at the black hole horizon and diverges

at the AdS boundary. In quadrant I we have u > 0 and v < 0, which we parametrize in

terms of a Lorentzian time coordinate tR as

u = f(r)e
2π
β
tR , v = −f(r)e

− 2π
β
tR . (3.19)

In quadrant IV we have u < 0 and v > 0, which we parametrize as

u = −f(r)e
− 2π
β
tL , v = f(r)e

2π
β
tL . (3.20)

This identification uniquely fixes M in the entire maximally extended spacetime. We may

now verify the validity of the relations (3.2), which require that the two-point function

〈ψ|OR(tf )OR(ti)|ψ〉 is equal to all of the following:

1. 〈ψ|OR(tf )OR(ti − iβ)|ψ〉. A shift in τ by a full period β has no action on u, v,

u → e2πiu, and M is single-valued as a function of u, v. This property (and only

this property) actually follows from the holonomy condition (2.6) alone and does not

require a Kruskal gauge.
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2. 〈ψ|OL(−tf − iβ/2)OR(ti)|ψ〉. From the global coordinates (3.20) and (3.19) we see

that the point labeled by (r = rΛ, tR = tf ) in the right quadrant is the same as the

point labeled by
(
r = rΛ, tL = −tf ± iβ2

)
in the left quadrant. Taking rΛ →∞ now

relates M to the appropriate correlation function. The equality with 〈ψ|OL(−tf −
iβ/2)OR(ti)|ψ〉 follows in the same way.

3. 〈ψ|OL(−tf )OL(−ti)|ψ〉. This equality is most easily understood by moving each

point from the right quadrant to the left using the manipulation above, and then

translating both arguments in Euclidean time by iβ
2 .

These relations may seem like kinematic trivialities: however it is important to note that

if we do not pick the bulk gauge connections to satisfy (3.9), then branch cuts in the u, v

plane mean that the relations above do not hold — for example the second relation was

not satisfied by the scalar field correlators computed in [31]. We believe that (3.9) are,

however, crucial for a complete interpretation of the black hole as a thermofield state.

3.2 Parametrizing black hole connections in Kruskal gauge

Having established the desirable properties of these gauges, we now turn to their explicit

construction. As it turns out, any black hole can be placed in (either strong or weak)

Kruskal gauge. Recall from (2.4) that the standard parametrization of black hole solutions

to Chern-Simons gravity involves two constant flat connections a, a that point only in the

field theory directions, in terms of which (3.7) becomes

L(y) = b(r)−1 exp

(
−
∫ x

0
dxiai

)
, R(y) = exp

(∫ x

0
dxiāi

)
b̄(r)−1 , (3.21)

where we have generalized slightly by allowing for a different radial function for the barred

and unbarred coordinates; xi runs only over field theory coordinates.

From here we find that Aτ (r) = b−1(r)aτ b(r) and thus is never zero for any value of

r. This presentation of the black hole is then not in strong Kruskal gauge. To put it into

strong Kruksal gauge, we will need to “unwrap” the effect of moving in τ . Note that (2.6)

tells us that aτ and aτ are conjugate to L0

aτ = V

(
2πiL0

β

)
V −1 , aτ = V̄

(
2πiL0

β

)
V̄ −1 . (3.22)

Consider now the following gauge transformation:

L(K) = ΛLL , R(K) = RΛR , ΛL = Λ−1
R = exp

(
2πiL0

β
τ

)
G . (3.23)

Here G is a constant (arbitrary) element of the group. The gauge transformed connections

can be written

A(K) = B(r, τ)−1
(
a(φ) + d

)
B(r, τ) , Ā(K) = B(r, τ)

(
a(φ) + d

)
B
−1

(r, τ) . (3.24)
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Here the notation indicates that a(φ) is a connection whose φ component is equal to that

of the original a but whose τ component is zero. We have

B(r, τ) = eaτ τ b(r)G−1e
−iL0

2πτ
β , B(r, τ) = e

iL0
2πτ
β Gb̄(r)e−aτ τ . (3.25)

The gauge transformation (3.23) is far from unique. There are two crucial features of our

choice. First, it is important that it winds once around SL(2,R) as we traverse the time

cycle. Second, it is a Lorentz transformation: this assures that the gauge transformation

does not affect (3.6) which evaluates CFT correlators.

In the gauge (3.24) we can now impose the strong Kruskal gauge condition (3.9).

Focusing for now on the unbarred connection, we see that this new parametrization treats

r and τ together in the new object B(r, τ). It is convenient to use (3.22) to rewrite

B(r, τ) = V e
2πiτ
β
L0V −1b(r)G−1e

−i 2πτ
β
L0 . (3.26)

The full τ dependence now enters in the conjugation of V −1b(r)G−1 by e
i 2πτ
β
L0 . The

smoothness condition (3.9) tells us that in the expansion of B around the origin we can

only have terms of the form rne
± 2πinτ

β with n integer, thus tying together the r and τ

dependence. This is a constraint on b(r): given a choice of a, we can now explicitly solve

for b(r). Typically we demand that b(r) approach the standard choice at infinity so that our

connections satisfy asymptotically AdS boundary conditions.6 We note that there is still

considerable freedom in the choice of b(r): its behavior at infinity and at the horizon is fixed,

but the topological nature of the theory means that it is essentially utterly unconstrained

in the interior. In appendix E we demonstrate an algorithm to find a suitable b(r) explicitly

for the higher spin black hole.

We turn now to weak Kruskal gauge. Here there is no need for an “unwrapping”

procedure: instead, we may start from the original (3.21) and using the explicit diagonal-

ization (3.22) we find

R(y)L(y) = V̄ exp

(
2πiL0τ

β

)
V̄ −1

(
b̄(r)−1b(r)−1

)
V exp

(
−2πiL0τ

β

)
V −1 , (3.27)

where we have omitted the φ dependence. We see that it is now the object

V̄ −1
(
b̄(r)−1b(r)−1

)
V that is conjugated by e

i 2πτ
β
L0 : thus the analyticity condition applied

to R(y)L(y) can be viewed as a weaker condition on the product b(r)b̄(r).

To summarize: to put a black hole into weak Kruskal gauge we only need to judi-

ciously choose the product bb̄. To put it into strong Kruskal gauge we must unwrap the τ

dependence via a Lorentz transformation and then judiciously choose b(r), b̄(r).

Finally, though we focus on the non-rotating case here, the definition of Kruskal gauge

will carry over straightforwardly to the rotating case. One difference is that the compact

Euclidean time coordinate along which we integrate to determine the horizon holonomy is

now conjugate to the Killing vector with vanishing norm at the horizon, i.e. ∂τ + iΩ∂φ,

with Ω the angular velocity. Note that in the rotating case we now expect to generically

6It is very important that b(r) and b̄(r) asymptote erL0 as r →∞. Relations such as (3.4) rely on this

profile at infinity, and we do not want to tamper with it.
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have an inner horizon: although the inner horizon plays no direct role in our analysis, it

is an interesting question to ask whether observables in the Chern-Simons formulation are

sensitive to its existence, and we comment on this further in the discussion section.

4 Eternal BTZ in Chern-Simons formulation

In this section we warm up by studying the familiar BTZ black hole in the Chern-Simons

formulation of SL(2,R) gravity. We will demonstrate that the definitions above permit

access to all regions of the maximally extended spacetime. The results here can be com-

pared with those obtained from the usual metric description of the BTZ black hole; see

e.g. [30, 37, 38]

The metric of the non-rotating BTZ black hole can be written

ds2 = −e−2ρ
(
e2ρ − 2πL

)2
dt2 + e−2ρ

(
e2ρ + 2πL

)2
dφ2 + dρ2 . (4.1)

The corresponding connections can be written in the notation introduced in (2.4):

A = b(r)−1
(
a(x+, x−) + d

)
b(r) , Ā = b̄(r)

(
ā(x+, x−) + d

)
b̄(r)−1 . (4.2)

where we have

a = (L1 − 2πLL−1) dx+ , ā = − (L−1 − 2πLL1) dx− . (4.3)

The black hole temperature can be determined by imposing the holonomy condition (2.6)

and is β =
√

π
2L . In the literature there is a standard choice for the radial functions b(r),

b̄(r): in this section we will instead derive them by demanding Euclidean regularity in the

sense described in the previous section. The gauge connections (4.3) can be diagonalized as

in (3.22). The definition of the similarity matrices V, V̄ leaves unfixed the normalizations

of each of the eigenvectors. By adjusting these normalizations V, V̄ can be made to have

unit determinant and also satisfy the following relations:

V (L1 − L−1)V −1 = −2L0 , V̄ (L1 − L−1)V̄ −1 = −2L0 , (4.4)

as well as be related to each other via

V V̄ −1 = exp(2ρ0L0) , ρ0 ≡
1

2
log (2πL) . (4.5)

The relations among V and V̄ — which are unique to sl(2) and do not have a simple analog

in the higher spin case — permit simple computations to be performed in the BTZ case.

ρ0 has been presciently named, but at this moment has no geometric significance.

4.1 Strong Kruskal gauge

We would first like to put the connections (4.3) in strong Kruskal gauge. We perform a

time-dependent Lorentz transformation of the form described in (3.23):

ΛL = Λ−1
R = exp

(
2πiL0

β
τ

)
V −1eρ0L0 . (4.6)
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With the benefit of hindsight, we have chosen G = V −1eρ0L0 . Using (4.5) this is equiva-

lent to

ΛL = Λ−1
R = exp

(
2πiL0

β
τ

)
V̄ −1e−ρ0L0 . (4.7)

We now find that the gauge-transformed connection in the unbarred sector takes the

form (3.24) with

B−1(r, τ) = e
2πiL0
β

τ
V −1eρ0L0b−1(r)V e

− 2πiL0
β

τ
V −1, (4.8)

Consider now the Euclidean coordinates:

w ≡ tanh
(r

2

)
e

2πi
β
τ
, w̄ = tanh

(r
2

)
e
− 2πi

β
τ
. (4.9)

Here (again with the benefit of hindsight) we have picked a specific radial function tanh
(
r
2

)
of r: in order for this change of coordinates to be well-defined this function must be odd

and have a smooth Taylor expansion in odd powers of r (starting with the linear term

in r) near r = 0. We now demand that B(r, τ) be a smooth function of w, w̄. This is

conveniently viewed as a constraint on the function V −1eρ0L0b−1(r)V .

We briefly digress from this specific example to discuss the general case: consider

expanding

V −1eρ0L0b−1(r)V = exp

(∑
a

Fa(r)T
a

)
, (4.10)

with the Fa(r) a set of mode functions and the T a running over the generators of the

algebra. The conjugation by e
2πiL0
β

τ
attaches a power of e

− 2πiha
β

τ
to each term in the

sum, where h(a) is the weight of the generator T a under L0. The analyticity condition

then requires that Fa(r → 0) ∼ r|h(a)|, so that the full radial and time dependence can be

expressed as a product of integer powers of w and w̄. In the higher spin case this system

of constraints must be systematically solved, as explained in appendix E.

However for the purposes of the BTZ black hole it is sufficient to make a rather simple

and consistent choice for Fa; we can take

V −1eρ0L0b−1(r)V = exp

(
r

2
(L1 − L−1)

)
. (4.11)

This choice satisfies the condition above, as L±1 have weight ±1. Using (4.4) we then find

b(r) = exp
(
(r + ρ0)L0

)
. (4.12)

We can follow precisely the same procedure for the barred sector (using now the form

of the gauge transformation in (4.7)) to derive an expression for b̄(r) and conclude that

b̄(r) = b(r).

Finally, to put this into a more familiar form we can define a new coordinate ρ ≡ r+ρ0,

in terms of which we have

b(ρ) = b̄(ρ) = eρL0 (4.13)
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This is of course the usual choice of radial gauge function for the SL(2,R) gravity, which

we have now derived. Note that the horizon — which has physical significance as the fixed

point of translations in Euclidean time, and the place where the time components of the

Kruskal connections vanish — is at r = 0, which maps to the usual ρ = ρ0. In this approach

ρ0 appeared purely algebraically from the original relation (4.5).

4.2 Maximally extended connections

From above we can now explicitly compute the spacetime-dependent gauge parameters L(y)

and R(y) on the Euclidean section in the strong Kruskal gauge that we have constructed:

in terms of w, w̄ in (4.9) we find

L(y) =
1√

2πβ(1− ww̄)

 e
−πφ

β

(
e

2πφ
β − w

)
β e

−πφ
β

(
w + e

2πφ
β

)
π

e
−πφ

β

(
w̄e

2πφ
β − 1

)
β e
−πφ

β

(
e

2πφ
β w̄ + 1

)
π

 ,

R(y) =
1√

2πβ(1− ww̄)

 e
−πφ

β

(
e

2πφ
β − w̄

)
β e
−πφ

β

(
e

2πφ
β w − 1

)
β

e
−πφ

β

(
w̄ + e

2πφ
β

)
π e
−πφ

β

(
e

2πφ
β w + 1

)
π

 . (4.14)

They are analytic and smooth functions of w, w̄ near the origin. There is a singularity at

ww̄ = 1: from (4.9) we see that this is the AdS boundary.

We can now analytically continue to the real-time coordinates u and v via (3.18) to

obtain gauge parameters that are well defined on the entire maximally extended space-

time. Though we do not need it, we may also compute the metric following from

these connections:

ds2 = − 4

(1 + uv)2
dudv +

(
2π

β

)2(uv − 1

uv + 1

)2

dφ2 . (4.15)

This is the usual BTZ metric in Kruskal coordinates, and the associated Penrose diagram

is depicted in figure 4. It is important to note that this is nothing but the coordinate trans-

formation of the original BTZ metric (4.1): the gauge transformation that we performed

on the gauge connections to put it into strong Kruskal gauge is in the Lorentz subgroup of

SL(2,R)× SL(2,R), and so does not affect the metric.

From the form of L(y) and R(y) written above it is now straightforward to compute

the Wilson line. Using (3.6) we compute between the trace of M between any two points

(ui, vi) and (uf , vf ) (we set the spatial separation to 0); this gives

Tr(M(yi, yf )) =
2

(1 + ufvf )(1 + uivi)
((1− uivi)(1− ufvf ) + 2(ufvi + uivf )) . (4.16)

The Wilson line between two points is related to this object via

logWR = −2h cosh−1

(
1

2
Tr(M)

)
. (4.17)

Now by taking these points to the appropriate boundaries we may compute boundary

correlators. It is instructive to map back to boundary time using the appropriate version
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Figure 4. Penrose diagram for static BTZ solution.

of (3.19) and (3.20): on quadrant I with u > 0 and v < 0 we have

u = tanh
(r

2

)
e

2πtR
β , v = − tanh

(r
2

)
e
− 2πtR

β , (4.18)

and on quadrant IV we have u < 0 and v > 0, leading to

u = − tanh
(r

2

)
e
− 2πtL

β , v = tanh
(r

2

)
e

2πtL
β . (4.19)

Note that the globally defined Killing vector corresponding to time translations is u∂u−v∂v,
which is ∂tR on the right side and −∂tL on the left side.

Computing now the correlator between two points at the R boundary and keeping

track only of the universal information, we find

logWR(ti|R, tf |R) = −2h log

(
− 1

ε2
sinh2

(
π

β
(tf − ti)

))
, (4.20)

where we have introduced a UV cutoff ε that vanishes at r → ∞. On the other hand, we

may also compute a correlator between an initial point on the right boundary and a final

point on the left boundary. We then find

logWR(ti|R, tf |L) = −2h log

(
1

ε2
cosh2

(
π

β
(tf + ti)

))
. (4.21)

These are of course just the usual results for geodesic distance on the BTZ black hole

background. Note in particular that the two-sided correlator is related to the one-sided

correlator by the KMS relation (3.2).

5 Eternal higher spin black holes

In this section we study the Lorentzian properties of higher spin black holes solutions.

In particular, we will consider three different gauges which differ only by the radial

parametrization of the connection:
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Wormhole gauge: This corresponds to the choice of radial parametrization as b(r) =

b̄(r) = erL0 . The metric and connections are smooth for the entire range of r, with

no horizon: hence it is a ‘wormhole’. This gauge does not satisfy neither the weak

or strong Kruskal condition. However, it does asymptote to AdS in the conven-

tional sense at the R boundary, i.e. r → ∞ in figure 2, and hence reproduces CFT

correlators.

Horizon gauge: This gauge is designed to give a horizon in the metric of the higher spin

black hole. An explicit constructions is given in [9]: this solution does satisfy the

weak Kruskal condition, however it does not asymptote to AdS on either side of

figure 2.

Strong Kruskal gauge: An explicit construction of connections that satisfies (3.9) and

reproduces correctly the dual CFT correlators.

In higher spin gravity we lack the hindsight of BTZ due to the alternative metric

formulation in the spin-2 case. Our way to probe and test our definitions will be to use

the Wilson line (3.3) on the three Lorentzian backgrounds listed above. As mentioned

around (3.4), WR(Cij) captures boundary (CFT) correlators which allows us to test the

KMS relations (3.2) for arbitrary probes. More importantly, WR(Cij) is the object that

describes the dynamics of massive (charged or not) particles in Chern-Simons theory: this

gives a robust definition of causality and connectedness of the geometry which we can easily

implement and exploit.

For concreteness, we will focus on higher spin black holes in sl(3)×sl(3) Chern-Simons

theory. For this theory we have

− logWR(Cij) = Tr(log(M)P0) , P0 =
h

2
L0 +

w3

2
W0 , (5.1)

where P0 governs the two quantum numbers of the representation R: h which is the mass

(or conformal dimension) and w3 corresponding to the spin-3 charge of the probe. More

details can be found in appendix D. For h 6= 0 and w3 = 0, equation (5.1) is the most

natural definition of ‘geodesic’ in higher spin gravity; in particular, we will use the sign of

logWR(Cij) to signal if endpoints are either spacelike, timelike or null separated. This is

the key to associating a Penrose diagram to a given solution, and justify why our definition

of Kruskal gauge actually gives rise to the desired definition of eternal black hole.

5.1 Failures and successes of the wormhole gauge

The wormhole gauge corresponds to black hole connections of the form (2.4) with boundary

components given by (2.7)–(2.9) and radial functions b(r) = b̄(r) = erL0 . This is the most

commonly used parametrization of the connections in the literature.

To probe the geometry we will evaluate WR(yi, yf ) for the configurations shown in

figure 2. To start, we consider a Wilson line with no time separation ∆t = 0, and with

both endpoints in the asymptotic region R: for both holomorphic (2.8) and canonical (2.9)
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solutions, the result is

− logWR(xi|R, xf |R) = h log

β sinh
(
π∆φ
β

)
πε

4

(5.2)

+
12hµ2

β2

[
32π2

9

(
σπ∆φ

β

)
coth

(
π∆φ

β

)
− 20π2

9

−4π2

3
cosech2

(
π∆φ

β

){(
σπ∆φ

β
coth

(
π∆φ

β

)
− 1

)2

+

(
σπ∆φ

β

)2
}]

+O(µ4) ,

where we used (D.8) with w3 = 0 and expanded around µ → 0. Recall that in this

notation xi|R denotes that the endpoint is placed at r → ∞ (while xi|L used below will

refer to r → −∞). The symbol σ has been introduced to differentiate between the two

types of black holes

σ = 2 : holomorphic black hole ,

σ = 1 : canonical black hole . (5.3)

These are the results originally reported in [2, 3].

The Wilson line has different features depending on whether the holomorphic and

canonical solution is used. When expanded to first order in µ, the Wilson line (5.2) for the

canonical black hole matches a perturbative CFT result found in [39] when h = c/12(n−1):

this corresponds to the dimension of the twist field that evaluates entanglement entropy as

n→ 1. When interpreted as entanglement entropy, strong subadditivity inequalities imply

that the Wilson line must be nondecreasing and concave down as a function of ∆φ [40].

Direct examination of the function above shows that this is true for the canonical black

hole [41, 42], but is not true for the holomorphic black hole [2, 3].

Another key requirement for the entanglement entropy is that when evaluated for large

intervals in a mixed state, it should saturate to a linearly growing result SEE(∆φ) ∼ s∆φ

where s is the ordinary thermal entropy density associated to the mixed state. For most

values of C this is true for both kinds of black hole, but for the holomorphic black hole

there is an eigenvalue crossing at C0 = 3(9+
√

33)/8 ' 5.53, and for C < C0 the asymptotic

limit of the holomorphic black hole entanglement entropy is then not consistent with its

own thermal entropy density. While we present computations in both kind of black hole for

completeness, we will restrict attention to the better-behaved canonical black hole when

discussing the physical implications of our results.

The above result is only probing physics at the R boundary in figure 2, but we can

easily explore the properties of the geometry by moving the endpoints of the Wilson line.

To start we set ∆φ = 0 and explore the dependence on the (r, t) plane. The Wilson lines

for various configurations in figure 2 reads

− logWR(ti|R, tf |R) = h log

C2 sinh2
(
π∆t
β

)(
4(C − 3) sinh2

(
π∆t
β

)
− 9
)

4π2L2(C − 3)2(4C − 3)ε4

 , (5.4)
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− logWR(ti|L, tf |L) = h log

 4π2L2 sinh2
(
π∆t
β

)
C2(C − 3)2(4C − 3)ε4

 (5.5)

+h log

[
(4(C − 3)((C − 6)C + 4)2 sinh2

(
π∆t

β

)
− (5(C − 4)C + 12)2

]
,

− logWR(ti|R, tf |L) = h log

4(C − 3)((C − 6)C + 4) cosh4
(
π∆t
β

)
(C − 3)2(4C − 3)ε4

(5.6)

+
(C(9C − 38) + 24) cosh2

(
π∆t
β

)
+ 4C − 3

(C − 3)2(4C − 3)ε4

 ,
where C is given in (2.10), and we used (D.9). When both endpoints are at the R (or L)

boundary we have ∆t = ti − tf ; when the endpoints are at different boundaries we have

instead ∆t = ti + tf . We should note that this reversal of the time coordinate on the

left side may seem artificial, as in this gauge there is no notion of the bulk degeneration

of the Killing direction; we perform it here largely for consistency with later sections,

where it follows naturally. These expressions are valid for finite (µ, β) (or alternative finite

charges (L,W)).

From (5.4)–(5.6) we can draw many conclusions about the causal properties of the

wormhole gauge. First, the solution is not symmetric with respect to the two boundaries

R and L:7 WR(ti|R, tf |R) 6= WR(−ti|L,−tf |L). This already violates one of the equalities

listed in (3.2). Second, it is evident as well that WR(ti|R, tf |R) 6= WR(−ti|R − iβ/2, tf |L):

the wormhole gauge does not satisfy the last equality in (3.2). This solution cannot be

interpreted as thermofield state.

Related to the two above properties, a third feature is as follows: the argument in the

logarithm of (5.6) has a zero at

cosh2

(
π∆t

β

)
=
−24 + C

(
38− 9C −

√
C(17C − 60) + 36

)
8(C − 3)((C − 6)C + 4)

, (5.7)

which has a real solution for ∆t when
√

5 + 3 > C > 3. This illustrates that a two-sided

correlator will change sign depending on the time separation for this range of C; see figure 5.

If we interpret (5.6) as a geodesic distance between the two boundaries, it means that the

separation between L and R can be either timelike, null or spacelike depending on ∆t.

Hence we can send timelike signals between the two sides in the wormwhole gauge, which

obviously does not fit the causal properties we would attribute to an eternal black hole.

It is instructive to compare our analysis with the one performed in [31]. There they

evaluated two-sided correlators in a first order expansion about µ → 0 for the scalar field

in Vasiliev theory. This field has a non-zero spin-3 charge: we may mimic their analysis by

7This asymmetry is not an artefact of the position of the boundaries: the answers cannot be made

symmetric by a rescaling of the cutoff ε at each boundary.
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Figure 5. Plot for the universal part of W−1R (ti|R, tf |L) in the wormhole gauge (left), and horizon

gauge (right). We set h = L = 1 and the cutoffs are set to one (i.e. only the universal piece is

plotted). The different curves correspond to different values of C: C = 3.3 (blue), C = 4 (yellow),

C = 5 (green), and C = 7.5 (red). We see that for the wormhole gauge the correlator can change

sign, while for the horizon gauge it is always positive.

considering a Wilson line with non-vanishing w3 to find

WR(xi|R, xf |R) =
4w3πµ

3β

−3 sinh
(

2π(∆φ+∆t)
β

)
+ 2σπ∆φ

β

(
cosh

(
2π(∆φ+∆t)

β

)
+ 2
)

sinh2
(
π(∆φ+∆t)

β

)
+ (∆t↔ −∆t) + . . . , (5.8)

WR(xi|R, xf |L) =
4w3πµ

3β

sinh
(

2π(∆φ+∆t)
β

)
+ 2σπ∆φ

β

(
cosh

(
2π(∆φ+∆t)

β

)
− 2
)

cosh2
(
π(∆φ+∆t)

β

)
+ (∆t↔ −∆t) + . . . , (5.9)

where we are only displaying the linear term in µ-expansion of the Wilson line. The

result above is in perfect agreement with the expression in [31, 43]. The first order cor-

rection (5.9) does not have a singularity, and this suggests that the two boundaries are

causally disconnected as argued in [31]. However, as illustrated by (5.7), this apparent

regularity is an artifact of the µ expansion: over a finite range of C the correlator allows

for timelike geodesics.

Based on this analysis, we would attribute to the wormhole gauge a Penrose diagram

with a rectangular shape where signals can cross from one boundary to another. Even

though this solution has no thermofield double interpretation, we should keep in mind that

the result for the R side correlators are compatible with CFT computations. This agree-

ment with the dual theory is an important feature to preserve as we build the connections

associated with the thermofield state.

5.2 Failures and successes of the horizon gauge

We could attribute the failure of the wormwhole gauge to the lack of a preferred point in

the geometry that we can associate with a horizon. The first attempt to fix this feature

was discussed in [9]. They considered connections for which the radial function in (2.4) is
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modified as follows

A(r) = b(r)−1(a+ d) b(r) , b(r) = e(r+ρ0)L0g(r) , (5.10)

Ā(r) = b̄(r) (ā+ d)b̄(r)−1 , b̄(r) = g(r)e(r+ρ0)L0 .

At this stage ρ0 is a free parameter, which in [9] is set to be equal to the BTZ value (4.5).

The group element g(r) is fixed by demanding that the connections satisfy

At(−r) = h−1(r)Āt(r)h(r) , (5.11)

Aφ(−r) = −h−1(r)Āφ(r)h(r) , (5.12)

with h(r) ∈ SL(3, R) and arbitrary modulo the condition h(0) = 1. In [9], one explicit

combination of h(r) and g(r) is found that fulfils the above conditions. These results are

reviewed in the appendix C. This construction provides a smooth horizon for the static

holomorphic and canonical black hole. The motivation is quite natural: it is a generalization

of the condition that the time component of the generalized vielbein At(r)− Āt(r) vanishes

at a point. Their construction assures smoothness of the metric and spin-3 field around

the horizon at r = 0, and for this reason we denote this construction as horizon gauge.

The horizon gauge is compatible with weak Kruskal gauge defined in section 3.1. Both

conditions imply the vanishing of At(r)−Āt(r) at the origin, and moreover we have verified

that the combination R(y)L(y) is a smooth function at the origin of the Euclidean disc.

The real difference lies not at the horizon but at infinity: essentially the relations imposed

above between A and Ā at all values of r seem to fix the behavior of b(r), b̄(r) everywhere.

In particular, they do not approach the usual asymptotically AdS choice b(r) ∼ erL0 at

infinity: this means that the CFT interpretation of this gauge choice is obscure, and has

implications for correlation functions as computed using the Wilson line.

As in the wormhole case, we would like to analyze the features of the Wilson line for

the horizon gauge. We consider first the case ∆φ = 0, and we compute the leading order

of the Wilson line in the cutoff, which is denoted by ε in this case. Using the results of

appendix C and D, we obtain

− logWR(ti|R, tf |R) = − logWR(ti|L, tf |L)

= h log

3β sinh
(
π∆t
β

)
8πµε

4

−
16hπ2µ2

(
31 + csch2

(
π∆t
β

))
9β2

+O(µ4) ,

(5.13)

− logWR(ti|R, tf |L) = h log

3β cosh
(
π∆t
β

)
8πµε

4

−
16hπ2µ2

(
31− sech2

(
π∆t
β

))
9β2

+O(µ4) .

(5.14)

The full expression for the time correlators in the black hole gauge is less gentle to the

eye than for the wormhole, and for this reason we only show the two first terms in the

expansion around µ → 0. We see from (5.13)–(5.14) that at leading order in µ the KMS
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conditions in (3.2) hold; this persists at all orders in the µ-expansion. Therefore, the

correlation functions of the blackhole gauge do have the features of a thermofield double

state.

To analyze if the two sides are connected or disconnected, analogously as we did in 5.1,

we should consider all terms in the µ-expansion of WR(ti|R, tf |L). Since the expression is

more cumbersome for finite µ, we plotted WR(ti|R, tf |L) for a wide range of values C, and

found that it is always positive (see figure 5). This is in complete agreement that the

horizon gauge has two causally disconnected sides, as it should.

However, there are some problems when we compare these answers with the results

from wormhole gauge (which itself agrees with the CFT, as described earlier). For instance,

if we expand the wormhole solution (5.4) around µ→ 0 the result is

− logWR(ti|R, tf |R) = h log

β4 sinh4
(
π∆t
β

)
π4ε4

− 16hµ2π2
(

3 csch2
(
π∆t
β

)
+ 5
)

3β2
+O(µ4) .

(5.15)

It is evident that (5.13) is not equal to (5.15) even if we try to adjust the cutoff ε and ε.

A similar problem occurs if we consider spatial separations. Thus the horizon gauge does

not reproduce the known results of two point functions for spin-3 operators in a CFT with

W3 symmetry.

5.3 A successful gauge

In this last portion we report on the values of the Wilson line for the strong Kruskal gauge.

As discussed in section 3, this gauge is defined by demanding that L(y) and R(y) are smooth

functions near the Euclidean origin. This imposes restrictions on the radial functions

b(r) and b̄(r); in appendix E we demonstrate how to build a solution to these regularity

conditions while preserving the asymptotic behavior. Note that once we know that a

solution exists, we do not actually need to use its explicit form to calculate correlators:

since we are imposing AdS asymptotics at the R boundary, one-sided correlators will agree

with those computed from the wormhole gauge above. Furthermore by design of the strong

Kruskal gauge, the Wilson line that interpolates between L and R is related to the single-

sided correlator via the expected half-shift in β.

Thus for equal space separation the values of WR(Cij) are

logWR(ti|R, tf |R) = logWR(ti|L, tf |L)

= −h log
C2 sinh2

(
π∆t
β

)(
4(C − 3) sinh2

(
π∆t
β

)
− 9
)

4π2L2(C − 3)2(4C − 3)ε4
, (5.16)

logWR(ti|R, tf |L) = −h log
C2 cosh2

(
π∆t
β

)(
4(C − 3) cosh2

(
π∆t
β

)
+ 9
)

4π2L2(C − 3)2(4C − 3)ε4
. (5.17)

Recall that these expressions hold for both holomorphic and canonical black holes since the

time component of (A, Ā) is the same. Since C ≥ 3, the argument of logarithm of (5.17)

is always positive: at zero spatial separation the two sides are causally disconnected for all
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ranges of ∆t. This gauge is so far compatible with the expected properties of an eternal

higher spin black hole, and it reproduces correctly the known results in the CFT (which

involve setting ∆t = 0 and a fix charge configuration without chemical potentials).

It is also useful to record the values of the Wilson lines for ∆t = 0. If the probe is not

charged, i.e. w3 = 0, we have

logWR(xi|R, xf |R) = −h log


(

1 + 3√
4C−3

)
eλ1∆φ − 2 eλ2∆φ +

(
1− 3√

4C−3

)
eλ3∆φ

8πL(C − 3)C−1ε2

×

(
1 + 3√

4C−3

)
e−λ1∆φ − 2 e−λ2∆φ +

(
1− 3√

4C−3

)
e−λ3∆φ

8πL(C − 3)C−1ε2

 ,
logWR(xi|R, xf |L) = −h log


(

1 + 3√
4C−3

)
eλ1∆φ + 2 eλ2∆φ +

(
1− 3√

4C−3

)
eλ3∆φ

8πL(C − 3)C−1ε2

×

(
1 + 3√

4C−3

)
e−λ1∆φ + 2 e−λ2∆φ +

(
1− 3√

4C−3

)
e−λ3∆φ

8πL(C − 3)C−1ε2

 .

(5.18)

These functions are plotted in figure 6. Here λi are the eigenvalues of aφ component of the

connection which read

(λ1, λ2, λ3) =

√
2πL
C

(
−σ +

√
4C − 3

2C + 3(σ − 2)

2C − 3
, 2σ, −σ −

√
4C − 3

2C + 3(σ − 2)

2C − 3

)
(5.19)

and σ controls if the solution is holomorphic or canonical as defined in (5.3).

It is also interesting to evaluate the Wilson line with h = 0 and w3 6= 0: this would

correspond to a probe that only carries higher spin charge. In figure 7 we plot the behavior

of such a Wilson line between two spatially separated points on the two boundaries. It

is interesting that there is a reflection symmetry associated with flipping the sign of the

spatial direction together with the higher spin charge of the probe: WR(xi|R, xf |L)
∣∣
w3

=

WR(−xi|R,−xf |L)
∣∣
−w3

. The behavior shown here may be interpreted as a potential well

felt by the charged probe arising from its coupling to the background spin-3 field. It would

be interesting to explore further the implications of such non-monotonic behavior.

6 Applications

In this section we explore various properties of the thermofield state in higher spin gravity

as accessed by the two-sided black hole in Kruksal gauge. We perform our computations

in the canonical black hole: for the most part, the results for the holomorphic black hole

are very similar, except where the complications in the holomorphic black hole discussed

around (5.3) manifest themselves.
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Figure 6. Plot of the universal part of W−1R (xi|R, xf |L) when h = 2, w3 = 0 for canonical (left),

and holomorphic black hole (right). Here L = 1 and we removed the cutoff. The different curves

correspond to different values of C: C = 3.3 (blue), C = 4 (yellow), C = 5 (green), and C = 7.5

(red). We see that for both black holes the correlator is always positive.
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Figure 7. Plot of − logWR(xi|R, xf |L) when h = 0, w3 = 1 for in the canonical (left), and

holomorphic black hole (right). The different curves correspond to different values of C: C = 3.3

(blue), C = 4 (yellow), C = 5 (green), and C = 7.5 (red).

6.1 Higher spin black hole interiors and entanglement velocities

It is well-known that the interior of a ordinary (spin-2) eternal black hole grows as one

moves “upwards” in time (i.e. in the time direction ∂tL + ∂tR that is orthogonal to the

Killing direction). It was demonstrated in [44] that this growth can be given a simple

field-theoretical interpretation in terms of the time-dependence of entanglement entropy.8

We briefly review the setup: recall from (3.1) that the thermofield state is given by

|ψ〉 =
1√
Z

∑
n

e−
β
2
H |Un〉L ⊗ |n〉R , H|n〉 = (En + µQn)|n〉 , (6.1)

where we have included the deformation by the chemical potential in the Hamiltonian.

One can now define a one-parameter family of states by acting on this state with the sum

of the left and right Hamiltonians:

|ψ(t?)〉 ≡ ei(HL+HR)t? |ψ〉 . (6.2)

8See also [45] for a generalization to include U(1) charge and angular momentum, and [46] for an

interesting generalization including arbitrary action of Virasoro generators on either side of the black hole;

it would be particularly interesting to understand the higher-spin analogue of the latter.
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This action moves us “upwards” in time (note that the orthogonal action of HL−HR leaves

|ψ〉 invariant, and corresponds in the bulk to the Killing direction). Consider now the

entanglement entropy in the state |ψ(t?)〉 of a region given by the union of two intervals,

one in the left CFT and one in the right, both of length ∆φ. This may be computed

holographically by considering the geometry shown in figure 8, where the endpoints on

each side are separated by a distance ∆φ and are located at tL = tR = t?, where t?
increases as we move upwards.

In our setup, there are two configurations of Wilson lines that contribute: one set

of Wilson lines joins each endpoint of an interval with its partner in the other CFT by

crossing through the black hole interior. Its contribution can be found from (5.16) with

∆t = tL + tR = 2t? to be

Sconn = −2 logWR(ti|R, tf |L) ∼ 2h log
C2e

8πt?
β

16π2L2(C − 3)(4C − 3)ε4

=
16hπt?
β

+ Sdiv , (6.3)

where we have specialized to times t? � β and where

Sdiv ≡ 2h log

[
C2

16π2L2(C − 3)(4C − 3)ε4

]
. (6.4)

The second configuration contains two Wilson lines that each remain outside the black hole

horizon. In this case, the result will be given by twice the one-sided Wilson line in (5.18)

with ∆t = 0. We will consider the limit ∆φ � β: extracting the dominant long-distance

contribution we find

Sdisc = −2 logWR(xi|R, xf |R) ∼ 2h log
C2e(λ1−λ3)∆φ

16π2L2(C − 3)(4C − 3)ε4

= 4h

√
2πL(4C − 3)

C
∆φ+ Sdiv . (6.5)

Up till now we have focused on Wilson lines as computing two-point functions of light

operators. However, as was argued in [2, 3], these Wilson lines also compute entanglement

entropy if one evaluates them at the precise dimension h → c
12 . It is convenient to write

the above results in terms of the entropy density in units of the inverse temperature:

s =
c

6

(
π

β

2C − 3

C − 3

)
. (6.6)

We now normalize the results with this entropy density to find:

Sconn = 4svt? + Sdiv , Sdisc = 2s∆φ+ Sdiv , (6.7)

where for the time-dependent configuration we have defined an entanglement velocity

v ≡ C − 3

C − 3
2

, (6.8)
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Figure 8. Configurations for time evolution of entanglement entropy in the thermofield state.

From the bulk perspective it is a competition between the connected configuration (red lines),

which gives (6.3), and the disconnected contribution (blue lines) in (6.4).

which interpolates from v → 1 at zero higher spin charge to v → 0 as we approach the

extremal higher spin black hole. We see that at small times the answer is dominated by the

connected configuration; however as time goes on the inside of the black hole grows linearly

in size, and the connected configuration becomes energetically more and more expensive.

Eventually there is a phase transition to the disconnected configuration at t? = ∆φ
2v , after

which the entanglement entropy saturates at its thermal value.

The interpretation of these results is standard [44, 47]. The time evolution of entan-

glement entropy in 1 + 1 dimensional systems may be viewed in terms of a quasi-particle

picture: if the initial state is excited but has essentially only short-range entanglement,

then upon time evolution the entanglement entropy grows as entangled pairs of particles

stream across the endpoints of the interval, entangling the interior with the outside. The

two-sided time evolution in (6.2) fits into this picture with the slight modification that we

now consider entanglement across the two CFTs [44]. The entanglement velocity v defined

above then quantifies how quickly these quasiparticles move: apparently as we approach ex-

tremality the entangling particles slow down to zero speed, perhaps due to scattering off of

the large density of higher spin charge present. A similar result for the entangling velocity

as a function of chemical potential has been derived in the context of Reissner-Nordstrom

black holes in higher dimensions [48, 49]. It would be interesting to further understand

the dependence of the velocity on the background charge density from a field-theoretical

point of view. We note that general properties of thermalization in theories with higher

spin charges have been studied in [50].

To summarize: as probed by the entanglement entropy, the interior of a two-sided

higher spin black hole grows with time, as expected from basic field theoretical notions of

the time evolution of entanglement entropy. There are other time dependent observables

worth understanding on Lorentzian higher spin backgrounds, in particular those recently

reported in [51–54].

We could also probe the two-sided higher spin black hole with the “spin-3 entanglement

entropy” S(3) of [20]. In this context this corresponds to a probe with h = 0, and w3 6= 0
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in (5.1), and taking again the arrangement of intervals in figure (8). Interestingly, however,

now the configuration that interpolates between the two boundaries is trivial: S
(3)
conn = 0.

As explained in appendix D, this is a simple consequence of the algebraic properties of the

Wilson line for ∆φ = 0. More generally, there is no exponential in time behavior of two

point functions of this class of higher spin correlators.

In the limit ∆φ� β the contribution of the blue Wilson lines in figure (8) is

S
(3)
disc = − 2 logWR(xi|R, xf |R) ∼ 2w3 log

(√
4C − 3 + 3

)
e(λ1+λ3)∆φ

√
4C − 3− 3

= − 4w3

√
2πL
C

∆φ+ S
(3)
div . (6.9)

and we define

S
(3)
div ≡ 2w3 log

√
4C − 3 + 3√
4C − 3− 3

. (6.10)

where there is no short range “entanglement”: S(3) has no UV divergent pieces. Note that

in the regime of interest ∆φ � β this one-sided contribution might be expected to never

dominate the answer, as the two-sided contribution does not grow with time as it did in

the conventional entanglement calculation above. It would be interesting to have a better

interpretation of these higher-spin correlation functions on the thermofield state.

6.2 Extremal black holes and an emergent AdS2

We now turn to the zero temperature limit of the higher spin black hole. It is well-known

that charged black holes in higher dimensions generally develop an AdS2 factor when

cooled down to zero temperature. The AdS2 indicates an emergent conformal symmetry

at low energies that acts only on the time coordinate: this manifests itself in field-theory

correlation functions, which now exhibit power-law correlations in time but have a finite

correlation length in space [55–57].

It is not clear whether an AdS2 factor appears in the extremal limit for higher spin

gravity. However, it is rather straightforward to take the zero-temperature limit of the

correlation functions computed above. From (2.10) we take β
µ → ∞, while holding µ

fixed, by sending C → 3 and holding L fixed. Thus from (5.4) we may simply reduce

sinh
(

∆t
β

)
→ ∆t

β to find:

WR(ti|R, tf |R) ∼
(

∆t

µ

)−2h

, (6.11)

up to a overall constant. This implies an emergent scale-invariance in the time direction,

where the IR scaling dimension is equal to the UV dimension (i.e. h). Actually this power

law behavior is guaranteed from the definition of extremality in [25]: in a nutshell, an

extremal black hole is characterized by aφ being non-diagonalizable. Using the fact that at
and aφ commute and that at is of the form (3.22) even in the extremal limit, it is straight-

forward to show that at extremality at is actually a nilpotent matrix. This means that

that the exponentials of the form eat∆t appearing in M (as defined in (3.6)) truncate after
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only a few terms, and thus that the correlators have only polynomial (and not exponential)

dependence on ∆t.

On the other hand, the spatial correlation function remains non-trivial as the temper-

ature vanishes; at large spatial separations we find

WR(xi|R, xf |R) ∼ exp

(
−h
√

3

2

∆φ

µ

)
, (6.12)

indicating a nonzero spatial correlation length scaling with µ. This is precisely the behavior

mentioned above: interpreted geometrically, it suggests an AdS2 × R factorization of the

higher spin geometry [55]. We also note that the two-sided correlation function across the

two sides (5.17) vanishes as
(
β
µ

)−2h
we take the β

µ → ∞ limit, as one would expect from

the infinite “geodesic” distance down an AdS2 throat.

It would be very interesting to understand if there is indeed an emergent SL(2,R)

acting on the bulk gauge connections in the extremal limit, perhaps following the alge-

braic approach of [25]. For this one would need a notion of ‘near horizon geometry’ in

Chern-Simons theory, and within this region to argue that there is an enhancement of the

symmetries of the extremal solution.

7 Discussion

In this work we motivated and implemented a definition of eternal black holes in the Chern-

Simons formulation of higher spin gravity. Our definition introduces the concept of strong

(weak) Kruskal gauge as explained in section 3. A key ingredient to test our definition

was the evaluation of the Wilson line defined in [2, 3]. This object was used as a probe

of causality of a given Lorentzian background: it is the natural replacement of geodesic

distances in higher spin gravity. The basic configurations we considered are presented in

figure 2.

Our proposal was tested in a variety of ways with the two most salient points being

1. In the Chern-Simons formulation of SL(2,R) gravity, we showed how our prescription

permits access to the entire maximally extended spacetime for static (non-rotating)

configurations. This illustrates explicitly that our refined definition of regularity

agrees with the Lorentzian definitions in metric like formulation of gravity.

2. On general grounds, it is expected that an eternal black hole behaves in the dual

theory as the thermofield state. Two point functions on this state satisfy KMS

conditions (3.2). Our definition exactly reproduces these conditions.

Using this definition we built explicitly the strong Kruskal gauge for a higher spin black hole

in sl(3) gravity. The tentative Penrose diagram that we would attribute to this solution

is shown in figure 9. What our analysis clearly establishes are the existence of regions I

and IV in the Penrose diagram. However there are some further properties of this diagram

that remain puzzling. In particular, some concepts that are not addressed here include
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IIV

II

III

R
L

Figure 9. Penrose Diagram for an sl(3) black hole. The green line correspond to the past and future

outer horizon. The dotted and dashed line would tentatively be the locations of inner horizons and

singularities.

1. Singularity: due to the topological nature of the three dimensional gravitational

theories we are studying, there are no curvature singularities. The line denoted

“singularity” in the Penrose diagram for BTZ (see figure 4) refers to a pathology of

the quotient: after the dotted line there are closed timelike curves [37]. It is not clear

to us what is the description of this singularity in Chern-Simons formulation, and

hence its generalization to higher spin gravity remains an open question.

2. Inner horizons: the sl(3) black hole we studied here has two free parameters: its

mass L and spin-3 charge W. Hence it is natural to speculate that its global prop-

erties should mimic those of a Reissner-Nordstrom solution in four dimensions. In

particular, since the sl(3) black hole has a non-trivial extremal limit, there should be

a notion of inner horizon and the extremal case would correspond to the confluence

of these horizons. However, this is another definition that is not clear how to capture

in Chern-Simons theory. One reason this is puzzling is the following: what is the

size of the inner horizon of a black hole in Chern-Simons theory? There is no need

to consider higher spin gravity, since this question can be phrased for the rotating

BTZ black hole. By design, the holonomy of the connections along φ encode the

data of the outer horizon (a Wilson loop along φ evaluates the entropy of the outer

horizon), and it is unclear how to modify that computation to give the “size” of an

inner horizon since Wilson loops are independent of the radial position. This would

be a very interesting puzzle to solve!

3. Interior points and distances: the astute reader perhaps noticed that we only con-

sidered Wilson lines that start and end at the asymptotic boundaries, as depicted

in figure 2. It is natural to ask why we never considered a Wilson line that termi-

nates at some point in the interior. The answer is due to boundary conditions: the

operator (3.3) is sensitive to the choice of initial and final state 〈Ui|. We only have
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an understanding of this choice once the endpoints reach the boundary, since there

we can either explicitly test against the dual CFT (or at least motivate that certain

symmetries should be preserved). The very recent developments in [58, 59] will be a

useful first step in understanding more quantitatively the role of boundary conditions

in WR(Cij).

In addition, there are many other interesting future directions to explore which we

discussed in section 6.
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A Conventions

In general, we denote the 3 generators of sl(2,R) as {L0, L1, L−1}. The algebra is given by

[Ja, Jb] = εabcJ
c , Jc = δcdJd , (A.1)

where εabc is a completely antisymmetric tensor and ε0+− = 1; and δ00 = 1
2 , δ+− = δ−+ =

−1. In the fundamental representation, we use

L0 =

(
1/2 0

0 −1/2

)
, L1 =

(
0 0

−1 0

)
, L−1 =

(
0 1

0 0

)
. (A.2)

We label the sl(3,R) generators as Ta = {Li,Wm} with i = −1, 0, 1 and m = −2, . . . , 2.

The algebra reads

[Li, Lj ] = (i− j)Li+j ,

[Li,Wm] = (2i−m)Wi+m ,

[Wm,Wn] = −1

3
(m− n)(2m2 + 2n2 −mn− 8)Lm+n . (A.3)

We work with the following matrices in the fundamental representation

L1 =

 0 0 0

1 0 0

0 1 0

 , L0 =

 1 0 0

0 0 0

0 0 −1

 , L−1 =

 0 −2 0

0 0 −2

0 0 0

 ,
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W2 = 2

 0 0 0

0 0 0

1 0 0

 , W1 =

 0 0 0

1 0 0

0 −1 0

 , W0 =
2

3

 1 0 0

0 −2 0

0 0 1

 ,

W−1 =

 0 −2 0

0 0 2

0 0 0

 , W−2 = 2

 0 0 4

0 0 0

0 0 0

 . (A.4)

The quadratic traces are

trf (L0L0) = 2 , trf (L1L−1) = − 4 ,

trf (W0W0) =
8

3
, trf (W1W−1) = − 4 , trf (W2W−2) = 16 . (A.5)

The transition to the metric formulation of the theory is made via:

e =
1

2

(
A− Ā

)
, gµν =

1

Tr(L0L0)
Tr(eµeν) . (A.6)

The Wick rotation from Euclidean to Lorentzian time is

w = f(r)e
2πi
β
τ → −v , w̄ = f(r)e

− 2πi
β
τ → u (A.7)

where f(r) is an odd function that vanishes linearly at the black hole horizon and diverges

at the AdS boundary. Following figure 3, in quadrant I we have u > 0 and v < 0, which

we parametrize in terms of a Lorentzian time coordinate tR as

u = f(r)e
2π
β
tR , v = −f(r)e

− 2π
β
tR . (A.8)

In quadrant IV we have u < 0 and v > 0, which we parametrize as

u = −f(r)e
− 2π
β
tL , v = f(r)e

2π
β
tL . (A.9)

B Thermofield states and KMS conditions

In this appendix we review the definition thermofield state, and properties of thermal

correlations functions. We will denote the relations discussed below as “KMS conditions”

(even though only one of them is strictly speaking the KMS condition).

Consider a system with a Hamiltonian H, and time-evolve operators in the Heisenberg

picture:

O(t) = eiHtO(0)e−iHt . (B.1)

It is very easy to show that for two operators O1 and O2, we have

Tr
(
e−βHO1(t− iβ)O2(0)

)
= Tr

(
e−βHO2(0)O1(t)

)
. (B.2)

This is what one normally calls the KMS condition.
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Let us now try this for a different density matrix ρ = e−βH−βµQ with Q another

conserved charge of the system; for example, it could be a U(1) charge, or Q = W0 where

W0 is the zero mode of the W3 algebra. In this case we find

Tr
(
e−βH−βµQO2(0)O1(t)

)
= Tr

(
e−βH−βµQO2(0)e−βH−βµQe+βH+βµQO1(t)

)
= Tr

(
O2(0)e−βH−βµQ

[
eβµQO1(t− iβ)e−βµQ

])
= Tr

(
e−βH−βµQO1(t− iβ)O2(0)

)
e−βµq1 , (B.3)

where in the last equality we have assumed that O1 is an operator with definite charge q1.

Note that if O1 was not a charge eigenstate we could stop at the line above and still get a

useful (but more complicated) KMS relation. Thus the charged KMS relation is

Tr
(
e−βH−βµQO1(t− iβ)O2(0)

)
= Tr

(
e−βH−βµQO2(0)O1(t)

)
e+βµq1 . (B.4)

The extra factor involving the charge on the right-hand side appeared because of the mis-

match between the Hamiltonian used to evolve the system (i.e. just H) and the Hamiltonian

used to construct the density matrix (i.e. H + µQ). If we evolve the system using H + µQ

then there will be no extra factor involving the charge, and the correlator will be strictly

periodic, as in (B.2).

The thermofield double state is defined as follows. Let H = HL ⊗HR denote the full

Hilbert space which is composed by two copies of the original CFT Hilbert space. The

thermofield state is defined by the following wave function on H

|ψ〉 =
1√
Z

∑
n

e−
β
2

(En+µQn)|Un〉L ⊗ |n〉R . (B.5)

Here we included a chemical potential, and the sum is over all energy eigenstates of the

system which carry as well Q charge; Z is a suitable normalization. U is the anti-unitary

operator that implements CPT; this is important since if one constructs the thermofield

state by cutting open a path-integral then this CPT operator must be there (see e.g. [60,

61]). Anti-unitary implies that

U−1 = U† 〈Uψ|Uφ〉 = 〈φ|ψ〉 , (B.6)

and the fact that U implements CPT means

U−1 (iH)U = −iH U−1OU ≡ OCPT . (B.7)

Note that U actually commutes with H, but anticommutes with i. We denote the CPT

conjugate of an operator with a superscript. For sake of simplicity, in the following we will

consider scalar operators and in this case OCPT = O†.
Now let us carefully compute

〈ψ|O1,L(tL)O2,R(tR)|ψ〉

=
1

Z

∑
m,n

〈Un|eiĤtLO1e
−iĤtL |Um〉〈n|eiĤtRO2e

−iĤtR |m〉e−
β
2 (Ên+Êm) , (B.8)
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where Ên = En + µQn. Note that we are evolving the system with Ĥ ≡ H + µQ, which is

the natural choice from the gravitational side. Looking at the first term, we find

〈Un|eiĤtLO1e
−iĤtL |Um〉 = 〈Un|Ue−iĤtLOCPT1 eiĤtLm〉

= 〈e−iĤtLOCPT1 eiĤtLm|n〉

= 〈m|e−iĤtL(OCPT1 )†eiĤtL |n〉

= 〈m|e−iĤtLO1e
iĤtL |n〉 . (B.9)

The first equality uses (B.7) and the second uses (B.6), the third equality follows from the

definition of the adjoint, and in the last line we used that the operator is scalar. Thus

we find

〈ψ|O1,L(tL)O2,R(tR)|ψ〉 =
∑
m,n

e−
β
2 (Ên+Êm)+itL(Ên−Êm)+itR(Ên−Êm)〈m|O1|n〉〈n|O2|m〉

=
∑
m,n

〈m|e−
β
2 (Ĥ−iĤ(tL+tR))O1e

−β
2 (Ĥ+iĤ(tL+tR))|n〉〈n|O2|m〉

= Tr

(
e−β(H+µQ)O1

(
−tL −

iβ

2

)
O2(tR)

)
. (B.10)

These manipulations shows how 〈ψ|O1,L(tL)O2,R(tR)|ψ〉 is related to the thermal correla-

tion function. With some slight abuse of language, and in analogy to (B.2), we will refer to

this relation as a KMS condition. Note that the sign of tL is flipped: this relation explains

what it means for “time to run backwards on the other side”.

If instead we used H to evolve the system, instead of Ĥ,

〈ψ|O1,L(tL)O2,R(tR)|ψ〉 = Tr

(
e−βH−µQO1

(
−tL −

iβ

2

)
O2(tR)

)
e−

βµq1
2 , (B.11)

where we assumed that O1 is a scalar operator with a definite charge q1. For operators

with more complicated CPT conjugations or that are not charge eigenstates, we would find

more complicated versions of (B.10).

From the above KMS conditions, we can derive further relation. Define the RR corre-

lator as a ‘one-sided’ correlator in the thermofield state which involves only operators on

HR. For O1 = O2 ≡ O, we find

〈ψ|OR(tf )OR(ti)|ψ〉 = Tr
(
e−βĤO(tf )O(ti)

)
, (B.12)

where we have suppressed the indexes R in the right hand side of the equation since they

are redundant. Analogously, the LL correlator is

〈ψ|OL(tf )OL(ti)|ψ〉 = Tr
(
e−βĤO(−tf )O(−ti)

)
. (B.13)

For an LR correlator we have

〈ψ|OL(tf )OR(ti)|ψ〉 = Tr
(
e−βĤO(−tf − iβ/2)O(ti)

)
, (B.14)
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and obviously, the RL correlator is given by

〈ψ|OR(tf )OL(ti)|ψ〉 = Tr
(
e−βĤO(tf )O(−ti − iβ/2)

)
. (B.15)

These previous identities imply that the correlators should be related as

〈ψ|OR(tf )OR(ti)|ψ〉 = 〈ψ|OR(tf )OR(ti − iβ)|ψ〉
= 〈ψ|OL(−tf )OL(−ti)|ψ〉
= 〈ψ|OL(−tf − iβ/2)OR(ti)|ψ〉
= 〈ψ|OR(tf )OL(−ti − iβ/2)|ψ〉 , (B.16)

The relations between the one-sided (RR and LL) and two-sided correlators (RL and LR)

we denote as “KMS conditions”.

C Horizon gauge for W3 black hole

In this appendix we present the solution to the horizon condition constructed in [9]. This

solution is valid for the non-rotating holomorphic black hole (2.8), however it is straight

forward to check that it is also applicable for the non-rotating canonical black hole (2.9).

The ansatz used there is

A = g(r)−1b(r)−1(ah + d) b(r)g(r) , (C.1)

Ā = g(r)b(r) (āh + d)b(r)−1g(r)−1 ,

where b(r) = e(r+r0)L0 with er0 =
√

2πL/k, and they take

g(r) = eF (r)(W1−W−1)+G(r)L0 , (C.2)

h(r) = eH(r)(W1+W−1) ,

with F (r) = F (−r), G(r) = G(−r), and H(−r) = −H(−r); this implies that g(r) = g(−r),
h(r) = h−1(−r) and h(0) = 1. Using (C.2), a solution to (5.11)–(5.12) is

Y 2 = 1 + C cosh2(r) , (C.3)

X =

√
C − 1 + Y

C − 1− Y
, (C.4)

G = − 1

Y
log(X) (C.5)

F

G
=

√
C

2
cosh(r) , (C.6)

tanH = − sinh(r)√
C − 2− cosh2(r)

. (C.7)

In this new radial parametrization, the asymptotic boundary is now located at r = r∗
which is given by

cosh2(r∗) = C − 2 ←→ Y (r∗) = C − 1 . (C.8)
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In the BTZ limit, C → ∞, we recover r = r∗ → ∞. From equations (C.3)–(C.6), we

observe that the parameter X diverges when r = r∗, and Y , G, and F have an finite value.

At the boundary, we consider X−1 as the cutoff ε, and we can express Y , G, and F in

terms of C. With these considerations, we diagonalize g(r∗), and find as eigenvalues:

λg(r∗) =
(
ε−1 , 1 , ε

)
= e− log(ε)L0 , (C.9)

The eigenvectors of g(r∗) are finite, i.e., they do not depend in ε.

D Wilson line operator in AdS3 higher spin gravity

This appendix is a brief summary of the results in [2, 42] with emphasize on how to evaluate

the Wilson line. To recap, the operator is defined as

WR(yi, yj) = 〈Ui|P exp

(∫
Cij

A

)
P exp

(∫
Cij

Ā

)
|Uf 〉 . (D.1)

R is an infinite dimensional representation of the gauge group, and Cij is a curve with bulk

endpoints (yi, yj). U(y) is a probe field that lives in the worldline Cij , and which quantum

numbers are governed by R. Its boundary values are chosen such that Ui = Uf = 1:

this choice ensures that the Wilson line induces a conical deficit in the background and

the answer is Lorentz invariant. In a saddle point approximation, the value of the Wilson

line is

− logWR(C) = Tr(log(M)P0) , (D.2)

where P0 is the conjugated momentum of the probe field U . More importantly P0 carries

the data related to the Casimir’s of the representation R: for example in sl(N)× sl(N) a

highest weight representation labelled by quantum numbers (h,ws) = (h̄, w̄s) we would have

P0 =
h

2
L0 +

N∑
s=3

ws
2
W

(s)
0 . (D.3)

Here W
(s)
0 are the Cartan elements of sl(N,R); h is the conformal dimension of the probe

U and ws corresponds to a higher spin charge. The matrix M in (D.2) contains the

information about the background connections (A, Ā):

M ≡ R(yi)L(yi)L
−1(yf )R−1(yf ) , (D.4)

with R(y) and L(y) defined according to (3.21). This expression makes evident that the

Wilson line is only sensitive to the endpoints of Cij .

We will restrict now the discussion to Wilson lines in sl(3) × sl(3). As we send the

endpoints of the Wilson line to one of the two boundaries, located at r → ±∞, we only

need to consider the asymptotic behavior of the eigenvalues of M to evaluate (D.2). If

asymptotically we have

b(r) = b̄(r) →
r→∞

erL0 , (D.5)
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the eigenvalues of M will asymptote to

λM ∼
(
m1 ε

−4 ,
m2

m1
,

ε4

m2

)
, (D.6)

where ε = e−ρ is the cutoff, and m1 and m2 are related to the coefficients of the character-

istic polynomial as:

c1 = Trf (M) = m1 ε
−4 + . . . , c2 =

1

2

(
Trf (M)2 − Trf (M2)

)
= m2 ε

−4 + . . . . (D.7)

Note that m1 = m1(yi, yf ) and m2 = m2(yi, yf ) depend on the endpoints and the back-

ground charges carried by the connections. The asymptotic behaviour of the Wilson line

close to the boundary is given by

− logWR(yi, yf ) =
h

2
log

(
m1m2(yi, yf )

ε8

)
+ w3 log

(
m1(yi, yf )

m2(yi, yf )

)
. (D.8)

where we kept only universal terms as ε→ 0.

It is interesting to note that for ∆φ = 0, the solutions depends only at and āt, which

are elements of SL(2,R) due to the holonomy condition (2.6). Therefore, M belongs as

well to SL(2,R) which implies that m1 = m2 and

− logWR(ti, tf ) = h log

(
m1(ti, tf )

ε4

)
. (D.9)

In general we only need that at infinity

b(r), b̄(r) ∼= e− log(ε)L0 , (D.10)

where ∼= means equal up to conjugation, and ε controls the UV cutoff as we approach the

asymptotic boundaries. If the conjugation matrices do not depend on ε, the formulas (D.6)–

(D.9) hold with the substitution ε by ε. This is the case of the black hole gauge, detailed

in section C.

E Computation of Kruskal gauge for higher spin black hole

Here we provide details of the computation of the radial functions b(ρ) and b̄(ρ) that are

required to put the higher spin black hole in Kruskal gauge. The basic constraint on these

functions arises from the demand that the Euclidean objects defined as

B(r, τ) = eaτ τ b(r)e
−iL0

2πτ
β B(r, τ) = e

iL0
2πτ
β b̄(ρ)e−aτ τ (E.1)

be smooth functions of the complex coordinates

w = re
2πiτ
β w̄ = re

− 2πiτ
β (E.2)

near the Euclidean origin. By smooth, we mean that the expansion of B(w, w̄) contains

only positive integer powers of w, w̄. As described in the bulk text, this analyticity property
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guarantees that the gauge connections can be analytically continued to a Lorentzian section

that describes a two-sided black hole with a smooth horizon.

On the other hand, to have a clean CFT interpretation of the bulk connections, we need

to also demand that as it approaches the boundary b(r) blow up as b(r) ∼ exp(g(r)L0)

with g(r) some function that tends to infinity at the boundary. Here we describe the

construction of the functions b, b̄ that satisfy these two requirements.

E.1 Setup

First, we use coordinates where the horizon is at r = 0, and which further match onto the

more conventional ρ coordinate at large r as ρ = er. In other words the function g(r) = er.

Now consider diagonalizing a and a: the holonomy condition tells us that aτ and aτ are

conjugate to L0, so we have

aτ = V

(
2πiL0

β

)
V −1 aτ = V̄

(
2πiL0

β

)
V̄ −1 . (E.3)

Inserting these expansions into (E.1) we find

B(r, τ) = V e
2πiτ
β
L0V −1b(r)e

−i 2πτ
β
L0 , (E.4)

and a similar expression for B. We will focus for now on B. We expand

V −1b(r) = exp

(∑
a

Fa(r)T
a

)
(E.5)

where a runs over the generators of the algebra, Fa(r) is a set of mode functions to be defined

shortly, and the T a are the generators. Note that the demand that B depend smoothly

on w, w̄ as defined in (E.2) ties together the time and radial dependence. In this basis the

time-dependence is simply a conjugation by L0, multiplying each generator by a factor of

e
− 2πih(a)τ

β , where h(a) is the weight under L0 of the generator T a, i.e. [L0, T
a] = −h(a)T a.

Thus the analyticity condition requires that near the origin we have:

Fa(r → 0) ∼ r|h(a)| . (E.6)

as well as a parity condition on r (i.e. Fa(r) should be either even or odd).

We also require that at infinity we approach b(r →∞) ∼ exp (erL0). It is convenient

to define a basis of functions fma (r) such that

fma (r → 0) ∼ r|h(a)| fma (r →∞) ∼ e−mr . (E.7)

Such a basis is presented explicitly below and is easy to find as the functions are otherwise

unconstrained. We now further expand

Fa =
∑

m=−1,0,···
cma f

m
a (r) (E.8)

By adjusting the coefficients cma we may reproduce any function at infinity to a prescribed

order in an expansion in inverse powers in e−r. We will calculate only the terms m = −1, 0

as this is sufficient to calculate any correlator in SL(3) higher spin gravity: for SL(N) we

require N − 1 terms.
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E.2 Diagonalization

We now explicitly calculate the matrix logarithm of

Q ≡ V −1 exp(ρL0) (E.9)

to the first two orders in inverse powers of ρ ≡ er to find the expansion coefficients cma .

It is easiest to diagonalize Q and take the logarithm of the eigenvalues. To diagonalize

Q in the asymptotic limit we follow an algorithm somewhat similar to that normally used

in quantum mechanical perturbation theory, with some modifications arising from the fact

that Q is not Hermitian. Define x ≡ eρ. Denoting the i-th eigenvalue and eigenvector as

λ(i) and v(i) respectively, we expand everything in powers of x to find:(
Q1x+Q0+Q−1x

−1 · · ·
) (
v

(i)
0 + v

(i)
−1x

−1 + · · ·
)

= (λ
(i)
1 x+λ

(i)
0 + · · · )

(
v(i)+ v

(i)
−1x

−1 + · · ·
)
,

(E.10)

The Qα may be found explicitly and directly diagonalized without much difficulty. The

challenge is to extract from the Qα the behavior of the v(i). We assume the expansion in

powers of the eigenvectors starts at O(x0): this can always be arranged by rescaling the

individual eigenvectors. We will determine each v(i) only to leading order, i.e. v
(i)
0 .

We first need to first determine the scaling behavior of the eigenvalues. Note first that

if we define Qn ≡ Tr(Qn), then the characteristic polynomial of Q is given by

PQ(λ) = −λ3 +Q1λ
2 − 1

2
(Q2

1 −Q2)λ+ 1, (E.11)

where we have used the fact that product of the eigenvalues is 1 as Q ∈ SL(3). From direct

computation we now find that as x → ∞, Q1 ∼ q1x + O(1), 1
2(Q2

1 − Q2) ∼ q2x + O(1),

where q1 and q2 are presented explicitly below. Now by balancing terms in the characteristic

polynomial we find that the eigenvalues scale as

λ(i)(x→∞) ∼
(
q1x,

q2

q1
,

1

q2x

)
, (E.12)

Thus we see that the order of the starting term in λ
(i)
α depends on which eigenvalue we are

studying, e.g. λ
(1)
1 = q1 but λ

(2)
1 = 0.

We turn now to the eigenvectors. We begin with the largest eigenvalue, λ(1). The

O(x1) equation is

Q1v
(1)
0 = λ

(1)
1 v

(1)
0 (E.13)

In other words, v
(1)
0 is an eigenvector of Q1 itself with eigenvalue λ

(1)
1 = q1. If we now

examine the eigenvectors of Q1 we see that it has two eigenvectors with zero eigenvalue,

Dim(Ker(Q1)) = 2, as well as a single nonzero eigenvector with eigenvalue q1: thus v
(1)
0 is

fixed to be this eigenvector.

We turn now to λ(2). The O(x1) equation is now

Q1v
(2)
0 = 0 (E.14)
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and thus we find only that v
(2)
0 belongs to the two-dimensional kernel of Q1 discussed above.

To narrow it down within this subspace, we study the O(x0) equation, which is

Q1v
(2)
−1 +

(
Q0 − λ(2)

0 1
)
v

(2)
0 = 0 (E.15)

Thus
(
Q0 − λ(2)

0 1
)
v

(2)
0 lies within the image of Q1: but this means that it is proportional

to the only eigenvector of Q1 with nonzero eigenvalue, and so is proportional to v
(1)
0 found

above. So we see that

v
(2)
0 =

(
Q0 − λ(2)

0 1
)−1

v
(1)
0 (E.16)

fixing it up to rescaling. We turn finally to the eigenvector corresponding to λ(3). While

presumably the above procedure can be systematized to arbitrarily higher order, as λ(3) is

the last eigenvalue, we may use a trick: the O(x1) and O(x0) equations are

Q1v
(3)
0 = 0 Q2v

(3)
0 = 0 . (E.17)

and thus v
(3)
0 lies in the intersection of the kernel of Q1 and the kernel of Q2; we may

explicitly check that this intersection is a one-dimensional subspace, fixing v
(3)
0 .

Thus we have determined the eigenvalues and eigenvectors. We write now

Q(x→∞) ∼W exp(D)W−1 = exp(WDW−1) (E.18)

where W is the matrix whose columns are the v(i) and D is the following diagonal matrix:

D = log(diag(λ(i))) = L0(log x) + Λ Λ ≡ diag

(
log q1, log

(
q2

q1

)
,− log(q2)

)
(E.19)

We now equate WDW−1 with
∑

a Fa(r)T
a defined in (E.5), multiply by T b, and take a

trace to find ∑
a

∑
m=−1,0

δabcma f
m
a (r →∞) = Tr(WDW−1T b) (E.20)

where we have defined the Killing metric on the Lie algebra as δab ≡ Tr(T aT b) and its

inverse by δab. Now from the explicit form of the W ’s and of the mode functions fma we

can find the expansion coefficients cma . Note that due to the judicious choice of the mode

functions, the term m = −1 corresponds directly to the L0(log x) term in (E.19) and the

m = 0 term to the second (constant in x) term.

c−1
a = δab Tr(WL0W

−1T b) c0
a = δab Tr(WΛW−1T b) (E.21)

From (E.5) this fixes b(r) as

b(r) = V exp

∑
a

∑
m=−1,0

cma f
m
a (r)

 (E.22)

For the barred connection we follow precisely the same procedure to find instead

b̄(r) = exp

∑
a

∑
m=−1,0

c̄ma f
m
a (r)

 V̄ −1 . (E.23)
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E.3 Details

Here we present (some of) the results from implementing the algorithm above. The mode

functions that we use are

f1
L0

= f1
W0

= 2 cosh(r) f1
L±1 = f1

W±1
= 2 sinh(r)

f1
W±2

= 4

(
sinh2

(r
2

)
+

1

2
tanh2

(r
2

))
(E.24)

Note that each f1
a (r →∞) ∼ er +O(e−r). We have also

f0
L0

= f0
W0

= 1 f0
L±1 = f0

W±1
= tanh(r) f0

W±2
= tanh2(r), (E.25)

so that f0
a (r →∞) ∼ 1 +O(e−2r).

The equations that follow are lengthy and rather unenlightening. Note that V , V̄ are

only defined up to rescaling of their individual columns (subject to the constraint that they

each have unit determinant). Some attempts were made to use this freedom to reduce the

complexity of the ensuing algebra. It is likely that a solution with less complexity exists,

but we did not make a serious attempt to find it.

E.3.1 Unbarred sector

We take V to be:

V =


(C+

√
4C−3−1)

√
L
√

2π
3√C−3

√
C 6√4C−3

√
2(C−2)

√
L
√
π

3√C−3
√
C 6√4C−3

(C−
√

4C−3−1)
√
L
√

2π
3√C−3

√
C 6√4C−3

−
√

4C−3−1
2 3√C−3 6√4C−3

− 1
3√C−3 6√4C−3

√
4C−3−1

2 3√C−3 6√4C−3
√
C

2 3√C−3 6√4C−3
√
L
√

2π
−

√
C

2 3√C−3 6√4C−3
√
L
√

2π

√
C

2 3√C−3 6√4C−3
√
L
√

2π

 (E.26)

Now in computing V −1 exp(ρL0) we find

q1 =

√
C
(√

2
√

4C − 3− 3
√

2
)

8
√
π(C − 3)2/3 3

√
4C − 3

√
L

q2 =

√
C

2
√

2π 3
√
C − 3 6

√
4C − 3

√
L

(E.27)

The matrix W of eigenvectors is then found to be:
0 0

√
4C−3−3√
4C−3+3

0 (4C−3)5/6−C 3√4C−3
3√C−3(C−1)

1
1
2

+ 3
2
√
4C−3

1 (4C−3)5/6−C 3√4C−3
3√C−3(C−1)

1

 (E.28)

E.3.2 Barred sector

We take V̄ to be:

C5/2((C−6)C+4)
√
L

3

√
(C−3)C3√4C−3

C−2 (C+
√

4C−3−1) 6√2π

C

(C−2)
3

√
(C−3)C3√4C−3

C−2
L(2π)2/3

− C 3√π

22/3
3

√
(C−3)C3√4C−3

C−2 (π
√

4C−3L−CπL+πL)

C2(−
√

4C−3C+3C+2
√

4C−3−2)L 3√π

22/3
3

√
(C−3)C3√4C−3

C−2

√
C

6√2(C−2)
3

√
(C−3)C3√4C−3

C−2

√
L 6√π

√
C(C(

√
4C−3+3)−2(

√
4C−3+1))

2
3

√
(C−3)C3√4C−3

C−2
((C−6)C+4)

√
L 6√2π

C3/2((C−6)C+4)L3/2π5/6

6√2
3

√
(C−3)C3√4C−3

C−2

−
3√π

22/3
3

√
(C−3)C3√4C−3

C−2

3√π

22/3
3

√
(C−3)C3√4C−3

C−2


(E.29)
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In computing exp(ρL0)V̄ we find

q̄1 =
3
√
C − 2C3/2

(
C −

√
4C − 3− 1

)√
L

6
√

2π 3
√
C − 3 6

√
4C − 3

q̄2 =
C
(√

4C − 3C − C − 4
√

4C − 3
)

2 3
√

2π(C − 3)2/3 3
√
C − 2 3

√
4C − 3

(E.30)

The matrix of eigenvectors is

W̄ =


√

4C−3C+C−4
√

4C−3
2(C−2)C3/2

√
4C−3((C−6)C+4)L3/2

√
2π

−
√
C 6√4C−3(

√
4C−3−3)

√
L 6√π

25/6(C−3
C−2)

2/3 1

−1
2 3√C−3(C−2)5/3C2 6√4C−3(−C+

√
4C−3+1)

2L2(2π)2/3

C(
√

4C−3−1)−4
√

4C−3
0

C
(

1√
4C−3

−1
)

+4

4−2C 0 0


(E.31)

From here it is straightforward to use (E.21) (and a computer) to find the expansion

coefficients cma , c̄
m
a . The results are, however, too lengthy to write down.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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