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Abstract: Jets are an important probe to identify the hard interaction of interest at the

LHC. They are routinely used in Standard Model precision measurements as well as in

searches for new heavy particles, including jet substructure methods. In processes with

several jets, one typically encounters hierarchies in the jet transverse momenta and/or

dijet invariant masses. Large logarithms of the ratios of these kinematic jet scales in the

cross section are at present primarily described by parton showers. We present a general

factorization framework called SCET+, which is an extension of Soft-Collinear Effective

Theory (SCET) and allows for a systematic higher-order resummation of such kinematic

logarithms for generic jet hierarchies. In SCET+ additional intermediate soft/collinear

modes are used to resolve jets arising from additional soft and/or collinear QCD emissions.

The resulting factorized cross sections utilize collinear splitting amplitudes and soft gluon

currents and fully capture spin and color correlations. We discuss how to systematically

combine the different kinematic regimes to obtain a complete description of the jet phase

space. To present its application in a simple context, we use the case of e+e− → 3 jets. We

then discuss in detail the application to N -jet processes at hadron colliders, considering

representative classes of hierarchies from which the general case can be built. This includes

in particular multiple hierarchies that are either strongly ordered in angle or energy or not.
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1 Introduction

A thorough understanding of the production of hadronic jets is crucial to take full advantage

of the data from high-energy colliders. Jet processes typically involve hierarchies between

the short-distance scale of the hard scattering (e.g. the jet energies or invariant masses

between jets) and the scale at which the individual jets are resolved (e.g. the mass or

angular size of a jet), leading to logarithms of the ratio of these scales in the perturbative

expansion of the cross section. An accurate description of these effects is obtained by

resumming the dominant logarithmic corrections to all orders in perturbation theory.

In multijet events one generically encounters additional hierarchies in the hard kine-

matics of the jets, namely among the jet energies and/or among the angles between jets.

At the LHC, an important class of examples are jet substructure methods to reconstruct

boosted heavy objects, which essentially rely on identifying soft or collinear (sub)jets. An-

other example is cascade decays of heavy new (colored) particles leading to experimental

signatures with jets of widely different pT . There are also cases where additional jets pro-

duced by QCD are used to tag or categorize the signal events, a prominent example being

the current Higgs measurements. Whenever such kinematic hierarchies arise among QCD-

induced jets, in particular in the corresponding background processes, the enhancement of

soft and collinear emissions in QCD leads to additional logarithms of the jet kinematics in

the cross section. So far, a complete and general factorization framework for multijet pro-

cesses that allows for a systematic resummation of such kinematic logarithms for generic

jet hierarchies has been missing. Current predictions therefore rely on Monte Carlo parton

showers and are thus mostly limited to leading logarithmic accuracy.

In this paper we develop such a factorization and resummation framework for generic

jet hierarchies in hard-scattering processes with large momentum transfer by considering an

extension of Soft-Collinear Effective Theory (SCET) [1–6] referred to as SCET+. Compared

to the usual soft and collinear modes in SCET, SCET+ contains additional intermediate

modes that behave as soft modes (with eikonal coupling) with respect to the standard

collinear modes but at the same time behave as collinear modes with respect to the overall

soft modes. Their precise scaling, which is now simultaneously soft and collinear, depends

on the considered measurement or observable (in analogy to how the scaling of the modes

in SCET is determined by the considered observable).

In SCET individual hard QCD emissions are resolved as jets, while the effects of soft

and collinear emissions on observables are each resolved at a single scale. The intermediate
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modes in SCET+ are required to further resolve the additional scales induced by measure-

ments or hierarchies which are not separated in SCET.1 The case we discuss in detail in

this paper is the explicit measurement of soft or collinear (sub)jets. Here, also individual

soft or collinear emissions are explicitly resolved, and SCET+ allows us to capture their

effects on observables.

Generically, there are two types of intermediate SCET+ modes that appear which can

be distinguished by their origin as follows

• Collinear-soft (csoft) modes arise as soft offspring from a collinear sector of a pa-

rent SCET.

• Soft-collinear modes arise as collinear offspring from a soft sector of a parent SCET.

This distinction is helpful, as it automatically determines the correct Wilson-line structure

and interactions of the modes with respect to the other modes present in the final SCET+.

Both types of modes can be present at different scales and in different directions. There

can also be cases where the two types become degenerate.

SCET+ first appeared in ref. [7], where its purely collinear regime described by csoft

modes was constructed and used to describe the situation of two energetic jets collinear

to each other. In ref. [8], SCET+ was used to describe the situation where two resolution

variables are measured simultaneously, requiring csoft modes separated from the collinear

modes in either virtuality or rapidity depending on the measurements. The purely soft

regime of SCET+ involving soft-collinear modes was first considered in ref. [9]. There it

was shown that this regime is essential for the resummation of nonglobal logarithms by

explicitly resolving additional soft subjets (see also ref. [10]). In ref. [11], the soft and

collinear regimes were used to factorize and resum a two-prong jet substructure variable

(defined in terms of energy-correlation functions [12]). They also discussed a way to treat

the overlap between the two regimes by removing the double counting at the level of

the factorized cross section. More recently, a SCET+ setup was applied in refs. [13, 14]

for the factorization of both global and nonglobal logarithms appearing in jet rates (see

e.g. refs. [15–20]).

In this paper, we give a general description of SCET+ for generic jet hierarchies. We

first focus on the case of a single hierarchy. We review the purely collinear regime, following

ref. [7], which we will label as c+. Furthermore, we present in detail the purely soft regime

(labeled s+) as well as the overlap between the collinear and soft regimes (labeled cs+),

involving both csoft and soft-collinear modes. The corresponding kinematic hierarchies for

e+e− → 3 jets are illustrated in figure 1. Standard SCET applies to case (a) where the

jets are parametrically equally hard and well separated, sij ∼ Q2, where sij are the dijet

invariant masses and Q the total center-of-mass energy. The collinear regime is shown

1We stress that this does not imply that SCET describes such effects incorrectly. It does correctly

contain these effects at each fixed order but it is not sufficient for resumming the associated additional

logarithms. In fact, we will match onto SCET in the limit where the additional hierarchies disappear and

the corresponding logarithms are not enhanced. This is precisely analogous to the relation between SCET

and fixed-order QCD for the logarithms resummed by SCET.
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(a) m2
J � s12 ∼ s13 ∼ s23 ∼ Q2

3

2

1

(b) m2
J � s12 � s13 ∼ s23 ∼ Q2

3 2

1

(c) m2
J � s12 ∼ s13 � s23 ∼ Q2

3
2

1

(d) m2
J � s12 � s13 � s23 ∼ Q2

Figure 1. Different hierarchies for three-jet events in e+e− collisions.

in case (b), where two jets (labelled 1 and 2) are close to each other. It is characterized

by the hierarchy s12 � s13 ∼ s23 ∼ Q2. The soft regime is shown in case (c), where

one jet (labelled 1) is less energetic than the others. It is characterized by the hierarchy

s12 ∼ s13 � s23 ∼ Q2. Finally, in the soft/collinear overlap regime, shown in case (d), one

jet is softer than the others and at the same time closer to one of the hard jets, leading to

the hierarchy s12 � s13 � s23 ∼ Q2.

In general, SCET+ can have multiple soft and collinear regimes (along with the cor-

responding overlap regimes), which is necessary to describe multiple hierarchies between

several jets. We discuss in detail the application of the SCET+ formalism for a generic

N -jet process at hadron colliders and for a number of different hierarchies. The cases we

explicitly consider include

• One soft jet.

• Two jets collinear to each other, with or without a hierarchy in their energies.

• Two jets collinear to each other plus an additional soft jet.

• Two soft jets with or without a hierarchy in their energies.

• Two soft jets collinear to each other.

• Three jets collinear to each other with or without a hierarchy in the angles be-

tween them.

These cases contain the nontrivial features and essential building blocks that are needed

to describe arbitrary hierarchies. In particular, we show how spin and color correlations

are captured in the associated factorization theorems.

Each regime requires a different mode setup in SCET+, so technically corresponds to

a different effective field theory. We explain how they are appropriately combined and
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matched to the corresponding SCET in the nonhierarchical limit. This yields a complete

description of the jet phase space that accounts for all possible kinematic hierarchies.

We will consider an exclusive N -jet cross section and require that the N jets can

always be distinguished from each other by imposing the parametric relation m2
J � sij .

We assume that the corresponding jet resolution variable(s) that enforce this constraint do

not exhibit any hierarchies among themselves, such that there are no parametrically large

nonglobal logarithms from soft emissions. For definiteness and simplicity, we consider N -

jettiness [21] as our overall N -jet resolution variable. In refs. [22, 23], it was shown that

N -jettiness can be promoted into an exclusive cone jet algorithm, and with a suitable

choice of N -jettiness measure the resulting jets are practically identical to anti-kT jets.

We stress though that the general setup for the treatment of kinematic hierarchies is

largely independent of the specific choice of jet resolution variable and jet algorithm. In

the application to jet substructure the setup can get more complicated when subjets get

sensitive to the jet boundary [9, 11]. For earlier analytic work on jet hierarchies in e+e− →
jets see ref. [24].

The remainder of this paper is organized as follows: in section 2 we describe the basic

SCET+ regimes (c+, s+, and cs+) and the structure of the resulting factorization theorems

for e+e− → N jets that resum the corresponding kinematic logarithms. In section 3, we

present a detailed discussion with explicit perturbative results for the case of e+e− → 3

jets, which is simple enough that the single hierarchies shown in figure 1 are sufficient

to exhaust all kinematic limits. We subsequently discuss step-by-step the generalizations

required to treat a generic LHC process pp → N jets plus additional nonhadronic final

states. Specifically, collinear initial-state radiation, spin and color correlations for a single

kinematic hierarchy are addressed in section 4. In section 5 we discuss the various cases

with multiple hierarchies outlined above. We conclude in section 6.

2 Overview of the effective field theory setup

In this section, we discuss the general factorization framework for each regime of SCET+,

considering for simplicity e+e− → N jets. We start in section 2.1 with reviewing the stan-

dard case without additional hierarchies, which also serves to establish our notation. The

purely collinear, purely soft, and soft/collinear regimes are discussed in sections 2.2, 2.3,

and 2.4. For now we only consider kinematic configurations with one hierarchy. The gen-

eral case will be discussed in section 5 in the context of pp → N jets. In section 2.5 we

show how to combine the resulting factorization theorems from the different kinematic

regions. We first explicitly consider a SCETI jet resolution observable, and we outline the

modifications required for a SCETII measurement in section 2.6.

2.1 Standard SCET: equally separated and energetic jets

We first discuss the hard kinematics for processes with jets. The total momentum Pµi of

the ith jet is given by

Pµi = qµi + kµi , qµi = ωi
nµi
2
, nµi = (1, n̂i) . (2.1)
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Here, the massless reference (label) momentum qµi contains the large component of the jet

momentum. That is, ωi/2 = P 0
i +O(P 2

i /P
0
i ) corresponds to the jet energy and we take the

unit vector n̂i = ~Pi/|~Pi| to point along the direction of the jet. The residual momentum

kµi = Pµi − q
µ
i then only has small components of O(P 2

i /P
0
i ).

To describe the degrees of freedom of the effective field theory, it is convenient to use

lightcone coordinates,

pµ = n̄i ·p
nµi
2

+ ni ·p
n̄µi
2

+ pµ⊥i ≡ (ni ·p, n̄i ·p, ~p⊥i) ≡ (p+, p−, ~p⊥)i , (2.2)

where n̄µi = (1,−n̂i), and pµ⊥i contains the components perpendicular to nµi and n̄µi . The

subscript i will be dropped if it is obvious which lightcone coordinates we are referring to.

For definiteness, we consider N -jettiness [21] as the SCETI jet resolution observable,

defined as

TN =
∑
k

min
i

{2qi ·pk
Qi

}
=
∑
k

min
i

{ni ·pk
ρi

}
=
∑
i

T (i)
N . (2.3)

We use a geometric measure with Qi = ρiωi, where the parameter ρi controls the size

of the ith jet region and can in principle depend on the hard jet kinematics. It roughly

corresponds to the typical jet radius ρi ∼ R2
i and we consider it as ρi ∼ 1. The minimization

assigns particles to the jet they are closest to, and we denote the contribution to TN from

the ith jet region by T (i)
N . Note that QiT (i)

N is equal to the jet invariant mass P 2
i up to

power corrections.

The SCET description applies in the exclusive N -jet limit where all jets are sufficiently

narrow and there are no additional jets from additional hard emissions. This limit corre-

sponds to taking TN � Q. Formally, we work at leading order in the power expansion in

λ2 ≡ TN/Q ∼ m2
J/Q

2, where we use mJ to denote the typical (average) jet mass. Due to

the singular structure of QCD, jets typically have masses much smaller than their energy.

Hence, in practice most of the events naturally have mJ � Q.

We stress that our discussion of the kinematic jet hierachies largely decouples from

the precise choice of TN , and in principle any jet resolution observable which constrains

mJ (more precisely, any SCETI-type variable) can be utilized. Furthermore, the precise

jet algorithm that is used to find the actual jet momenta Pi, which then determine the

qi, is also not relevant to our discussion. One option is to promote eq. (2.3) itself to a

jet algorithm by further minimizing the value of TN over all possible jet directions ni [21].

This is the basis of the recently introduced XCone jet algorithm [22, 23]. Any other jet

algorithm that yields the same jet directions ni up to power corrections can be used, which

includes the usual kT -type clustering algorithms.

We denote the large pairwise invariant mass between two jets with

sij = 2qi · qj = ωiωj
ni · nj

2
. (2.4)

We order the jets such that

t ≡ s12 = min
i 6=j
{sij} , ω1 < ω2 , (2.5)
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mode pµ = (+,−,⊥) p2

collinear (n1, . . . , nN )
(
TN , Q,

√TNQ
)

TNQ ∼ m2
J

ultrasoft
(
TN , TN , TN

)
T 2
N ∼ m4

J/Q
2

Table 1. Scaling of the modes in standard SCET for N equally separated and energetic jets.

and we define

u = max
k

s1k , Q2 = (q1 + · · ·+ qN )2 . (2.6)

So, t is the smallest dijet invariant mass, and u measures the softness of jet 1. For e+e− → 3

jets, u = s13 is just the intermediate dijet invariant mass.

The situation where all jets are equally energetic and well separated corresponds to

ωi ∼ Q and ni ·nj ∼ 1 and therefore t ∼ u ∼ sij ∼ Q2. It is described by the usual SCET

framework, since all dijet invariant masses are of the same order so there are no additional

hierarchies between physical scales. In contrast, the SCET+ regimes illustrated in figure 1

and discussed in the following subsections are characterized by t � u ∼ Q2 (c+ regime),

t ∼ u� Q2 (s+ regime), and t� u� Q2 (cs+ regime).

The degrees of freedom in SCETI consist of collinear modes for every jet direction and

ultrasoft (usoft) modes interacting with these. The parametric scaling of these modes is

summarized in table 1. The collinear modes for the different jet directions cannot interact

with each other in the effective theory, while the interactions with the usoft modes decouple

at leading power in TN/Q ∼ m2
J/Q

2 via the BPS field redefinition [4]. This leads to the

following SCET Lagrangian for N -jet production

LSCET =
N∑
i=1

Lni + Lus + Lhard
SCET . (2.7)

The Lagrangians Lni and Lus describe the dynamics of the ni-collinear and usoft sectors,

respectively, and only contain interactions among the fields within each sector. Their

explicit expressions can be found in refs. [2–4]. The hard-scattering Lagrangian Lhard
SCET

consists of leading-power SCET operators, built from collinear fields and usoft Wilson lines,

and their Wilson coefficients. It arises from matching the hard-scattering processes in QCD

onto SCET, where fluctuations with a virtuality above the scale µ ∼ Q are integrated out.

The factorization theorem for the differential cross section following from eq. (2.7) has

the following structure [17, 21, 25, 26]

dσSCET ∼ ~C†N ×
[ N∏
i=1

Ji ⊗ ŜN
]
× ~CN = tr

[
ĤN ×

N∏
i=1

Ji ⊗ ŜN
]
. (2.8)

The Wilson coefficients ~CN arise from Lhard
SCET and encode the short-distance physics of

the hard-scattering process. They determine the hard function ĤN = ~CN ~C
†
N . The jet

functions Ji incorporate the dynamics of the collinear radiation that leads to the formation

of jets, which takes place at the scale µ ∼ mJ . Finally, the cross talk between the jets via

usoft radiation is described by the soft function ŜN at the scale µ ∼ m2
J/Q. Here, ~CN is

– 6 –
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a vector and ŜN and Ĥ are matrices in the color space of the N external hard partons.

The jet functions Ji are scalars in color space, i.e. color diagonal, and can therefore be

pulled outside the color trace. The precise form of the jet and soft functions and the

structure of the convolution between them is determined by the N -jet resolution variable.

Since each function in the cross section eq. (2.8) only involves a single scale, the logarithms

of TN/Q ∼ m2
J/Q

2 can be systematically resummed by evaluating each function at its

natural scale and evolving them to a common scale using their renormalization group

evolution (RGE).

2.2 c+ regime: two collinear jets

We now consider the kinematic situation where the first two jets come close to each other,

but remain energetic, i.e.,

n1 ·n2 � 1 , ni ·nj ∼ 1 , ωi ∼ Q ⇒ t� u ∼ Q2 . (2.9)

Thus, all of the dijet invariant masses remain equally large except for t = s12 � Q2. This

additional hierarchy introduces large logarithms of t/Q2 ∼ n1 ·n2 in the hard and soft

functions in eq. (2.8). The SCET+ theory that resums these logarithms (which we now

regard as the c+ regime of SCET+) was introduced in ref. [7].2 We briefly recall it here

and refer to ref. [7] for a detailed derivation. It was applied in refs. [11, 29] in the context

of jet substructure.

The relevant modes in the c+ regime are given in table 2. Due to the measurement

of t there are additional collinear-soft (csoft) modes. Compared to the usoft modes, they

have a higher angular resolution allowing them to resolve the two nearby jets separated by

the angle of order |~p⊥|/p− ∼
√
t/Q. Hence, they interact with the usoft modes as collinear

modes with lightcone direction nt. At the same time, they interact with the two nearby

jets 1 and 2 (the n1-collinear and n2-collinear sectors) as soft modes. In particular, at their

own collinearity scale the directions n1 and n2 belong to the same equivalence class as

nt. The requirement that their plus component is constrained by the SCETI jet resolution

measurement implies p+ ∼ TN ∼ m2
J/Q which then fully determines their scaling as given

in table 2.

To disentangle all physical scales, we perform the two-step matching shown in figure 2.

We first match QCD onto standard SCET with N − 1 collinear sectors nt, n3, . . . , nN with

corresponding invariant mass fluctuations ∼
√
t and an associated usoft sector at the scale

t/Q. At this point, the two nearby jets are not separately resolved yet and contained in the

nt-collinear sector. After decoupling the collinear and usoft modes, this theory is matched

onto SCET+. For the collinear sectors of jets 3 to N as well as for the usoft sector only

the virtuality scale is lowered to mJ and m2
J/Q, respectively. The nt-collinear sector of the

parent SCET with scaling pµnt ∼ (t/Q,Q,
√
t) is matched onto the two collinear sectors for

jets 1 and 2 and the csoft mode. This step involves nontrivial matching coefficients, related

to the collinear splitting amplitudes. They appear when matching the hard-scattering

Lagrangian of the parent SCET onto the final Lhard
c+ of SCET+. As shown in ref. [7], the

2The refactorization of the hard sector was already discussed earlier in refs. [27, 28].
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mode pµ = (+,−,⊥) p2

collinear (n1, . . . , nN )
(
TN , Q,

√TNQ
)

TNQ ∼ m2
J

collinear-soft (nt)
(
TN , TN Q2/t, TN Q/

√
t
)
T 2
N Q

2/t ∼ m4
J/t

ultrasoft
(
TN , TN , TN

)
T 2
N ∼ m4

J/Q
2

Table 2. Scaling of the relevant modes in the c+ regime of SCET+. For the collinear-soft mode,

n1 and n2 belong to the same equivalence class as nt.

Q

scale

m2
J

Figure 2. Illustration of the multistage matching procedure for the c+ regime of SCET+ with

t� u ∼ Q2. The modes and their virtuality scale are indicated.

interactions between the two collinear modes and the csoft modes can be decoupled via

a further BPS field redefinition. This leads to the leading-power Lagrangian, which has

again no interactions between different sectors,

Lc+ =

N∑
i=1

Lni + Lnt + Lus + Lhard
c+ . (2.10)

Here, Lnt is the Lagrangian for the csoft modes and is identical to the Lagrangian for

collinear modes Lni , except for the different scaling of the label momenta and associated

scaling of the csoft gauge fields. It is important that the csoft fields are defined with

a zero-bin subtraction [30] to avoid double counting with the usoft fields in analogy to

the collinear fields. In addition, the n1 and n2-collinear modes are now defined with an

appropriate zero-bin subtraction with respect to both csoft and usoft modes.

The factorization theorem for the differential cross section following from eq. (2.10)

has the structure [7]

dσc+ ∼ ~C†N−1C
∗
c ×

[ N∏
i=1

Ji ⊗ Sc ⊗ ŜN−1

]
× Cc ~CN−1

= tr

[
ĤN−1 ×Hc ×

N∏
i=1

Ji ⊗ Sc ⊗ ŜN−1

]
. (2.11)
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Compared to eq. (2.8), the hard coefficient ~CN got factorized into ~CN−1 for N − 1 hard

external partons at the scale µ ∼ Q (arising from the first matching step in figure 2) and a

collinear splitting coefficient Cc describing the splitting of the nt-collinear sector into the

n1- and n2-collinear sectors at the scale µ ∼
√
t (arising from the second matching step

in figure 2). The corresponding hard functions are ĤN−1 = ~CN−1
~C†N−1 and Hc = |Cc|2.

The soft function ŜN got factorized into a usoft function ŜN−1 at the scale µ ∼ m2
J/Q

that only resolves the N − 1 well-separated jets, and a csoft function Sc that describes the

csoft radiation between the two nearby jets at the scale µ ∼ m2
J/
√
t. Note that Hc and Sc

have a trivial color structure, since they are related to a 1 → 2 collinear splitting for which

the relevant color space is one dimensional. In other words, in the collinear limit the full

N -parton color space separates into the subspace for N − 1 partons and the subspace for

the collinear 1→ 2 splitting.

2.3 s+ regime: one soft jet

Next, we consider the kinematic situation that the first jet becomes less energetic, while

all jets remain well separated from each other, i.e.,

ω1 � Q , ωi≥2 ∼ Q , ni ·nj ∼ 1 ⇒ t ∼ u� Q2 . (2.12)

In this case, all dijet invariant masses involving the first soft jet are all of the same order

s1i ∼ u � Q2. This additional hierarchy leads to large logarithms of u/Q2 in eq. (2.8),

appearing this time only in the hard function. There are no large logarithms in the soft

function as it only depends on the angles between the jet directions, which do not exhibit

any hierarchy. Hence, the appropriate EFT setup, which we identify with the s+ regime

of SCET+, only refactorizes the hard function. This type of setup was also considered

in refs. [9, 11] to calculate energy-correlation functions describing jet substructure. Note

however, that their conjectured factorization theorem for the general N -jet case does not

correctly account for color correlations.

The relevant modes in the s+ regime are given in table 3. In addition to the usual

collinear modes for the energetic jet sectors 2, . . . , N and the overall usoft modes, we have

a soft-collinear mode with momentum scaling pµ1 ∼ ω1(λ2, 1, λ) that is responsible for the

collinear dynamics of the soft jet. Its overall scaling is fixed by the kinematic constraint

s1i ∼ ω1Q ∼ u and the constraint imposed by the measurement of the jet resolution variable

requiring that p+
1 = ω1λ

2 ∼ TN ∼ m2
J/Q.3 Since we still have TN � u/Q ∼ ω1, this soft-

collinear mode cannot couple to any of the other well-separated collinear modes. Hence, it

is just a collinear mode with a smaller energy and consequently a smaller invariant mass,

m2
1 ∼ m2

J u/Q
2 � m2

J .

To match onto the s+ regime, we perform the two-step matching shown in figure 3.

We first match QCD onto standard SCET with N − 1 collinear sectors n2, . . . , nN at the

scale
√
u and a corresponding usoft sector at the scale u/Q. At this point, the soft jet is

still unresolved and contained in the usoft sector. After decoupling the collinear and usoft

3Here it is important that we are using a SCETI jet resolution variable like N -jettiness, which fixes the

size of small lightcone component p+
1 .
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mode pµ = (+,−,⊥) p2

collinear (n2, . . . , nN )
(
TN , Q,

√TNQ
)

TNQ ∼ m2
J

soft-collinear (n1)
(
TN , u/Q,

√
TNu/Q

)
TN u/Q ∼ m2

J u/Q
2

ultrasoft
(
TN , TN , TN

)
T 2
N ∼ m4

J/Q
2

Table 3. Scaling of the relevant modes in the s+ regime of SCET+.

scale
Q

m2
J

Figure 3. Illustration of the multistage matching procedure for the s+ regime of SCET+ with

t ∼ u� Q2. The modes and their virtuality scale are indicated.

modes, we match this theory onto SCET+. The virtuality of the collinear sectors is simply

lowered to mJ . The decoupled usoft sector with momentum scaling pµ ∼ u/Q(1, 1, 1) is

matched onto the soft-collinear mode for the now resolved jet 1 and the usoft sector at the

lower scale m2
J/Q. This involves nontrivial matching coefficients related to the soft gluon

current, which appear when matching the hard-scattering Lagrangian from the parent

SCET onto the Lhard
s+ of SCET+. The soft-collinear and usoft sectors can be decoupled via

a second BPS field redefinition in the soft-collinear sector. Since the parent usoft sector is

equivalent to full QCD at a lower scale, this decoupling proceeds completely analogous to

the usual matching from QCD to SCET. The final leading-power Lagrangian has again all

sectors completely decoupled,

Ls+ = Ln1 +

N∑
i=2

Lni + Lus + Lhard
s+ . (2.13)

The Lagrangian Ln1 for the soft-collinear mode is given by the usual collinear Lagrangian,

but with a different power counting for the label momenta.

The factorization theorem following from eq. (2.13) has the structure

dσs+ ∼ ~C†N−1 Ĉ
†
s ×

[ N∏
i=1

Ji ⊗ ŜN
]
× Ĉs ~CN−1 = tr

[
Ĉs ĤN−1 Ĉ

†
s

N∏
i=1

Ji ⊗ ŜN
]
. (2.14)
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Compared to eq. (2.8), the hard coefficient ~CN got factorized into ~CN−1 for N − 1 hard

external partons at the scale µ ∼ Q (arising from the first matching step in figure 3) and

a soft splitting coefficient Ĉs describing the splitting of the parent usoft sector in SCET

into the n1-soft-collinear and the usoft sector in SCET+ at the scale µ ∼ t/Q (arising from

the second matching step in figure 3). The Ĉs is a matrix in color space that promotes

the hard coefficient ~CN−1 from the (N − 1)-parton color space to the full N -parton color

space in which the soft function ŜN acts. Note that at leading power in u/Q2 the soft jet

is initiated by a gluon, J1 = Jg, since only gluon emissions are enhanced in the soft limit,

and the natural scale for its jet function is µ ∼ mJ ×
√
u/Q.

2.4 cs+ regime: one soft jet collinear to another jet

We now consider the kinematic situation where the first two jets come close to each other

and at the same time the first jet becomes soft. The remaining jets stay equally separated

and energetic, i.e.,

n1 ·n2 � 1 , ω1 � Q , ni ·nj ∼ 1 , ωi≥2 ∼ Q ⇒ t� u� Q2 . (2.15)

Hence, this case is characterized by the combination of the collinear and soft hierarchies

in the dijet invariant masses, t = s12 � u ∼ s1i≥3 � Q2, while all remaining sjk ∼ Q2.

Treating this case in either the s+ or c+ regimes with the corresponding generic scales

would leave large logarithms of either u/Q2 or t/u in the hard and/or soft functions. The

resummation of both types of large logarithms is achieved in the cs+ regime of SCET+,

which has not been discussed in the literature before. This EFT setup combines the

expansion in the softness of jet 1 and the angle between jets 1 and 2, and is the theory

connecting the c+ and s+ regimes. As we will see below, this kinematic situation can

effectively be described within the c+ regime by an appropriate choice of resummation

scales in the hard sector that takes into account the softness of jet 1. This has been

exploited in ref. [11]. It is nevertheless important to explicitly consider the cs+ regime in

order to fully separate all scales and to show that all logarithms are resummed correctly

in this way. This also shows that this kinematic situation cannot be described within the

s+ regime, which lacks the required refactorization of the soft sector. The cs+ regime is

also useful to account for the overlap between the s+ and c+ regimes, see section 2.5, and

to be able to handle more complicated overlapping hierarchies.

The relevant modes in the cs+ regime are summarized in table 4. Besides the usual

collinear modes with the labels n2, . . . , nN and the usoft modes, we have a soft-collinear

mode in the n1 direction that describes the collinear dynamics of the soft jet, and a csoft

mode that is responsible for the cross talk between the two nearby jets 1 and 2. As

for the soft case, the scaling of the soft-collinear mode is determined by u ∼ Qω1 and

p+
1 ∼ TN ∼ m2

J/Q. And as for the collinear case, to be able to resolve the two nearby jets

1 and 2, the csoft mode is boosted in the lightcone direction nt with angular resolution

scale |~pt⊥|/p−t ∼
√
n1 ·n2 ∼

√
t/u. The constraint from the jet resolution measurement,

p+
1 ∼ m2

J/Q, then fixes its scaling.

We now perform the three-step matching procedure shown in figure 4. We first match

QCD onto SCET with N − 1 collinear modes nt, n3, . . . , nN and usoft modes with virtu-
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mode pµ = (+,−,⊥) p2

collinear (n2, . . . , nN )
(
TN , Q,

√TNQ
)

TNQ ∼ m2
J

soft-collinear (n1)
(
TN , u/Q,

√
TNu/Q

)
TN u/Q ∼ m2

J u/Q
2

collinear-soft (nt)
(
TN , TN u/t, TN

√
u/t
)
T 2
N u/t ∼ m4

J u/(Q
2t)

ultrasoft
(
TN , TN , TN

)
T 2
N ∼ m4

J/Q
2

Table 4. Scaling of the relevant modes in the cs+ regime of SCET+.

Q

sc(n1)

cs(nt)

scale

u

Figure 4. Illustration of the multistage matching procedure for the cs+ regime of SCET+ with

t � u � Q2. The parent SCET is matched onto an intermediate SCET+ with a single soft-

collinear sector. In the final matching step, this is further matched onto separate soft-collinear and

csoft modes.

ality scales
√
u and u/Q, respectively. Next, we match onto an intermediate SCET+ with

standard collinear and usoft modes at the lower virtuality scales
√
t and t/Q, respectively,

and a soft-collinear sector in the nt direction at the lower scale
√
tu/Q with momentum

scaling pµ ∼ (t/Q, u/Q,
√
tu/Q), which can resolve the angular size of the nt-collinear sec-

tor. As before, the collinear, soft-collinear, and usoft sectors are decoupled by appropriate

BPS field redefinitions. At this point, the soft jet is not yet resolved and still contained in

the soft-collinear sector. This means that there is no nontrivial hard matching coefficient

in this step, and as we will see in section 3, the matching of the operators in the hard-

scattering Lagrangian happens entirely at the level of soft Wilson lines. This also means

that one could in principle directly construct this SCET+ and match onto it from QCD

(see e.g. refs. [7, 8]).

In the last step in figure 4, we match the intermediate SCET+ with N − 1 collinear

sectors onto the final cs+ theory. Here, the virtualities of the collinear and usoft modes are

simply lowered, with the nt-collinear mode now being refined to the final n2-collinear mode.

The parent decoupled soft-collinear sector is matched onto the final n1-soft-collinear mode

for the now resolved jet 1, and the final csoft mode in the nt direction. (Hence, taking into
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account its full ancestry, the final csoft mode here could be referred to as a soft-collinear-

soft mode.) The corresponding matching coefficients are now related to the soft limit of the

collinear splitting amplitudes or equivalently the collinear limit of the soft gluon current.

Analogous to the c+ regime, the csoft and soft-collinear modes are decoupled by a BPS field

redefinition. Note that the consistency of figure 4 can be verified by taking the limit t→ u

or u→ Q2 for which it reduces to the matching for the s+ and c+ regimes, respectively.

The final fully decoupled leading-power Lagrangian is given by

Lcs+ = Ln1 +

N∑
i=2

Lni + Lnt + Lus + Lhard
cs+ , (2.16)

where both Ln1 and Lnt are collinear Lagrangians with the appropriate scaling of their

label momenta.

The factorization theorem resulting from eq. (2.16) has the structure

dσcs+ ∼ ~C†N−1C
∗
cs ×

[ N∏
i=1

Ji ⊗ Sc ⊗ ŜN−1

]
× Ccs ~CN−1

= tr

[
ĤN−1 ×Hcs ×

N∏
i=1

Ji ⊗ Sc ⊗ ŜN−1

]
. (2.17)

As in eqs. (2.11) and (2.14), the hard coefficient ~CN−1 describes the production of N−1 hard

partons at the scale µ ∼ Q. The coefficient Ccs now describes the soft-collinear splitting

at the scale µ ∼
√
tu/Q. Compared to the c+ regime in eq. (2.11), Ccs corresponds

to the soft limit of the collinear splitting coefficient Cc, whose scale got lowered from√
t →

√
t × √u/Q. Similarly, the scale of the csoft function Sc is now lowered to µ ∼

m2
J/
√
t × √u/Q. Compared to s+ regime in eq. (2.14), Ccs corresponds to taking the

collinear limit of the soft splitting coefficient Ĉs, lowering its scale from u/Q→ u/Q×
√
t/u

and making it color diagonal. In addition, the soft sector got refactorized as in the c+

regime leading to Sc at the scale µ ∼ m2
J/Q×

√
u/t. As in the s+ regime, the soft jet 1 is

always initiated by a gluon with the natural scale for its jet function being µ ∼ mJ×
√
u/Q.

2.5 Combining all regimes

We now discuss how to combine the factorization theorems for the different SCET+ regimes

as well as the nonhierarchical SCET limit to obtain a complete description for any t, u,Q2 �
m2
J . This will be generalized to the full N -jet phase space with arbitrary hierarchies among

the sij � m2
J in section 4. The goal is to be able to resum all logarithms of any ratios of

sij and at the same time to reproduce the correct fixed-order result whenever there are no

longer large hierarchies.

Each of the factorization theorems in eqs. (2.8), (2.11), (2.14), and (2.17) has been

power expanded in the ratio of scales whose logarithms are being resummed. They thus

receive power corrections in the corresponding scale ratio, which become O(1) in the non-

hierarchical limit where that scale ratio is no longer small. To obtain a smooth and com-

plete description, we basically need to add to the resummed result in a given kinematic
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SCETc+

SCET

QCD

SCETcs+ SCETs+

Figure 5. Schematic overview of the fixed-order content of the different theories discussed here.

Approaching the cs+ regime in the center, more and more logarithms get large and are resummed,

at the expense of additional expansions. The missing fixed-order corrections from these expansions

can be incorporated by adding back the relevant nonlogarithmic fixed-order differences between

the theories.

region the relevant missing nonlogarithmic (“nonsingular”) corrections at fixed order, such

that we reproduce the full fixed-order result everywhere. In addition, to ensure a smooth

transition across different kinematic regions it is also important to smoothly turn off the

resummation in any nonhierarchical limit. This can be achieved through a suitable choice

of resummation profile scales [31, 32].

A Venn diagram of the fixed-order content of the different theories is shown in figure 5,

from which the nonsingular corrections can be directly read off. The basic idea is to start

from the inner most hierarchical (most expanded) case and go outwards step by step

matching to the fixed-order content of the next less hierarchical (less expanded) case until

we reach the outermost full QCD result. For e+e− → 3 jets this procedure will be discussed

in some detail in section 3.5.

We start from the cs+ result which resums all kinematic logarithms in the t� u� Q2

limit and add nonsingular corrections to match it to the c+ and s+ results, which yields

the combined SCET+ cross section,

dσ+ = dσcs+ + dσnons
c+ + dσnons

s+ ,

dσnons
c+ = dσc+ −

[
dσcs+

]
FO(u�Q2)

,

dσnons
s+ = dσs+ −

[
dσcs+

]
FO(t�u)

. (2.18)

The FO(. . .) notation indicates that the hierarchy specified in brackets is not resummed but

taken at fixed order. For example, for [dσcs+]FO(u�Q2) the logarithms of t/u are resummed,

while the logarithms of u/Q2 are not resummed, and are instead expanded to the same

fixed order as they are present in dσc+. Hence, in dσnons
c+ the logarithms of t/Q2 are still

resummed, while the fixed-order corrections that are singular in u/Q2 cancel between the

two terms, such that dσnons
c+ is a power correction in u/Q2.

Having obtained dσ+, we can further add the nonsingular corrections from SCET in

the limit t ∼ u ∼ Q2 and eventually the nonsingular corrections from full QCD relevant in
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the limit mJ ∼ Q,

dσ = dσ+ + dσnons
SCET + dσnons

QCD ,

dσnons
SCET = dσSCET −

[
dσ+

]
FO(t�u�Q2)

= dσSCET −
[
dσc+ + dσs+ − dσcs+

]
FO(t�u�Q2)

,

dσnons
QCD = dσQCD −

[
dσSCET

]
FO(mJ�Q)

. (2.19)

Note that in our approach, the overlap between the c+ and s+ regimes is automatically

taken care off via the separate cs+ regime. In ref. [11] this overlap is removed manually

by subtracting it at the level of the factorized cross section, which yields technically the

same result.

2.6 SCETII observables

Here we briefly discuss SCET+ for SCETII-type jet resolution variables, which constrain

the transverse momenta within the jets rather than their invariant mass or small lightcone

momenta. A simple example is N -jettiness with the broadening measure,

T ⊥N =
∑
k

min
i

{2|~qi × ~pk|
Qi

}
=
∑
k

min
i

{ |~pk⊥i |
ρi

}
, (2.20)

where ⊥i denotes the component perpendicular to the direction ni of the ith jet. Other

examples are the XCone measures with angular exponent β = 1 [22]. Measures of this

type have been utilized for jet substructure studies using N -subjettiness [33, 34]. These

observables are in principle sensitive to the precise definition of the jet axes ni due to the

fact that the recoil from soft emissions cannot be neglected. To keep the factorization

theorem simple, one can employ the recoil-insensitive broadening axes [35].

The distinct feature of SCETII-type observables is that all modes in the effective theory,

i.e. collinear, soft, csoft and soft-collinear, have the same virtuality. This directly follows

from the fact that the measurement of T ⊥N constraints their p⊥ components, which sets

the scale of their virtuality p2 ∼ p2
⊥. The scaling of the relevant modes in the different

regimes is summarized in tables 5, 6, 7, and 8. The different modes are now parametrically

separated in rapidity ∼ p−/p+ rather than virtuality, and the corresponding logarithms

can be summed by using the rapidity renormalization group evolution [36, 37].

In the c+ regime, there are again csoft modes mediating between the two nearby jets 1

and 2. As before, their scaling is determined by the requirement that they have a resolution

angle |~p⊥|/p− ∼
√
t/Q and the measurement constraint p⊥ ∼ T ⊥N . In the s+ regime, the

scaling of the soft-collinear modes pµ1 ∼ ω1(λ2, 1, λ) is fixed by the facts that ω1Q ∼ u and

ω1λ ∼ p⊥. Finally, the cs+ regime again combines the features of the c+ and s+ regimes.

The structure of the corresponding factorization theorems is analogous to those in

eqs. (2.8), (2.11), (2.14), and (2.17). The essential difference is that the convolutions

between soft and jet functions are now in transverse momentum variables, and involve

the resummation of rapidity logarithms. Since the matching steps are insensitive to the

details of the jet measurement, all the arising Wilson coefficients ~CN , ~CN−1, Cc, Ĉs, and
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mode pµ = (+,−,⊥)

collinear (n1, . . . , nN )
(
p2
⊥/Q,Q, p⊥

)
soft

(
p⊥, p⊥, p⊥

)
Table 5. Scaling of the modes in SCETII for the standard case with N equally separated and

energetic jets. The virtuality of all modes is p2 ∼ p2
⊥ and therefore not displayed.

mode pµ = (+,−,⊥)

collinear (n1, . . . , nN )
(
p2
⊥/Q,Q, p⊥

)
collinear-csoft (nt)

(
p⊥
√
t/Q, p⊥Q/

√
t, p⊥

)
soft

(
p⊥, p⊥, p⊥

)
Table 6. Scaling of the relevant modes in the c+ regime of SCET+ for a SCETII observable.

mode pµ = (+,−,⊥)

collinear (n2, . . . , nN )
(
p2
⊥/Q,Q, p⊥

)
soft-collinear (n1)

(
p2
⊥Q/u, u/Q, p⊥

)
soft

(
p⊥, p⊥, p⊥

)
Table 7. Scaling of the relevant modes in the s+ regime of SCET+ for a SCETII observable.

mode pµ = (+,−,⊥)

collinear (n2, . . . , nN )
(
p2
⊥/Q,Q, p⊥

)
soft-collinear (n1)

(
p2
⊥Q/u, u/Q, p⊥

)
collinear-csoft (nt)

(
p⊥
√
t/u, p⊥

√
u/t, p⊥

)
soft

(
p⊥, p⊥, p⊥

)
Table 8. Scaling of the relevant modes in the cs+ regime of SCET+ for a SCETII observable.

Ccs are the same as for a SCETI-type observable. The factorized cross sections for the

different regimes can be combined to describe the complete phase space by accounting for

the nonsingular corrections as discussed in section 2.5.

3 e+e− → 3 jets

In this section, we discuss in detail all kinematic regimes for e+e− → 3 jets, considering

each hierarchy in turn. The jets are again ordered according to the kinematics such that

t ≡ s12 < u ≡ s13 < s ≡ s23 ∼ Q2 , Q2 = s+ t+ u . (3.1)

As jet resolution variable we use 3-jettiness as defined in eq. (2.3). For simplicity, in this

section we use the geometric measure with ρi = 1 so Qi = ωi and

T3 =
∑
k

min
{
n1 ·pk, n2 ·pk, n3 ·pk

}
=
∑
i

T (i)
3 . (3.2)
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In the exclusive 3-jet limit (or more precisely at leading order in the power expansion in

T3/Q), we can uniquely associate each jet with one of the partons in the underlying hard

partonic scattering process, denoted as

e+e− → κ1(q1)κ2(q2)κ3(q3) , κ = {κ1, κ2, κ3} . (3.3)

Since we label the jets by their kinematic ordering rather than their flavor, we use κ to

denote the partonic channel, which in the present case can be any permutation of {g, q, q̄}
where q stands for any quark flavor.

By evaluating all functions in the factorization theorems below at their natural scales

and RG evolving them to the common arbitrary scale µ, all kinematic logarithms of t/Q2,

u/Q2, and t/u in their respective regimes as well as the logarithms of T3/Q are resummed.

The perturbative ingredients required for the resummation to NNLL are fully known. We

give the one-loop results for the additional SCET+ ingredients below. The required com-

mon RGE solutions and anomalous dimensions can be found for example in the appendices

of refs. [7, 31, 38, 39], and are not reproduced here.

3.1 Standard SCET regime: t ∼ u ∼ Q2

We first review the notation and conventions for SCET helicity operators and the matching

from QCD. We then discuss the factorization theorem for the standard SCET case where

all three jets are equally energetic and well separated.

3.1.1 Helicity operators and matching to SCET

We start by briefly discussing SCET helicity operators [40–42], which are convenient for

carrying out the matching from QCD onto SCET. In particular, they make it straightfor-

ward to construct the complete operator basis in SCET with multiple collinear sectors.

We summarize the necessary definitions and some basic properties here, and refer for de-

tails to ref. [41]. A summary of the common SCET notation and conventions is given in

appendix A.

Collinear quark and gluon jet fields in the ni-collinear sector with specified helicity are

defined as

χαi± ≡
1± γ5

2
χαni,−ωi , Bai± ≡ −ε∓µ(ni, n̄i)Baµni,ωi⊥ , (3.4)

which involve the polarization vectors and spinors for massless on-shell momenta

εµ±(p, k) = ±〈p±|γ
µ|k±〉√

2〈k∓|p±〉
, |p±〉 =

1± γ5

2
u(p) . (3.5)

Since fermions always come in pairs, we can use currents with fixed helicity as basic building

blocks of helicity operators,

J ᾱβij± = ±
√

2εµ∓(ni, nj)√
ωi ωj

χ̄ᾱi±γµχ
β
j±

〈ni∓|nj±〉
. (3.6)

– 17 –



J
H
E
P
0
8
(
2
0
1
6
)
0
0
2

The leptonic vector current is defined analogously but does not contain any QCD Wilson

lines. The normalization of the fermion currents and gluon fields are chosen such that the

tree-level Feynman rules for the corresponding final state give delta functions of the label

momenta p̃µi = ωin
µ
i /2,

〈ga1
± (p1)|Bb11±|0〉 = δa1b1 δ̃(p̃1 − p1) ,

〈qα2
± (p2)q̄ᾱ3

∓ (p3)|J β̄2β3
23± |0〉 = δα2β̄2 δβ3ᾱ3 δ̃(p̃2 − p2) δ̃(p̃3 − p3) , (3.7)

and zero otherwise. The delta function and integral of label momenta are denoted by

δ̃(p̃i − p) ≡ δ{ni},p δ(ωi − n̄i ·p) ,
∫

dp̃i ≡
∑
{ni}

∫
dωi , (3.8)

with δ{ni},p = 1 if ni ·p = O(λ2) and zero otherwise.

We now match the QCD currents onto the corresponding SCET operators, resulting

in the hard-scattering Lagrangian

Lhard
SCET =

∑
λg ,λq ,λ`

∫ 3∏
i=1

dp̃iO
a ᾱβ
λg(λq ;λ`)

({p̃i}, µ)Caαβ̄λg(λq ;λ`)
({p̃i}, µ) . (3.9)

Here, the helicity labels λg, λq, λ` = ± are summed. For e+e− → 3 jets, the complete (and

minimal) operator basis is given in terms of the gluon fields Ba1λg and the quark and lepton

currents, J ᾱβ23λq
and J45λ` , as

Oa ᾱβ+(+;±) = Ba1+ J
ᾱβ
23+ J45± , Oa ᾱβ−(−;±) = Ba1− J ᾱβ23− J45± ,

Oa ᾱβ+(−;±) = Ba1+ J
ᾱβ
23− J45± , Oa ᾱβ−(+;±) = Ba1− J ᾱβ23+ J45± . (3.10)

The operators and Wilson coefficients in eq. (3.9) are written as general vectors in the

color space of the external partons. For e+e− → qq̄g, the color decomposition is trivial

because there is only one allowed color structure, T a
αβ̄

, so the relevant color-conserving sub-

space is one dimensional. However, in anticipation of the more complicated color structure

for N -jet production, we employ the general notation

Caαβ̄λg(λq ;λ`)
= T̄ aαβ̄ · ~Cλg(λq ;λ`) = T aαβ̄ Cλg(λq ;λ`) , (3.11)

where

T̄ aαβ̄ =
(
T aαβ̄

)
, ~Cλg(λq ;λ`) =

(
Cλg(λq ;λ`)

)
(3.12)

are one-dimensional row and column vectors, respectively. We define the corresponding

conjugate vector for the Wilson coefficient by

~C†λg(λq ;λ`)
= C∗ aαβ̄λg(λq ;λ`)

T̄ aαβ̄ = ~C∗Tλg(λq ;λ`)
· T̂g qq̄ =

(
C∗λg(λq ;λ`)

NcCF
)
, (3.13)

where the color sum matrix is given by

T̂g qq̄ = (T̄ a1 α2ᾱ3)†T̄ a1 α2ᾱ3 =
(
T a1
α3ᾱ2

T a1
α2ᾱ3

)
=
(
NcCF

)
= NcCF1 . (3.14)
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It explicitly appears in eq. (3.13), because the color basis in T̄ aαβ̄ is not normalized.

(In the N -jet case, the color basis will typically also not be orthogonal, so T̂ will be a

nontrivial matrix.)

The matching coefficients are given in terms of the IR-finite part of the UV-renormali-

zed QCD amplitudes. For example, for a specific helicity configuration, the QCD amplitude

is written as

A(0→ g+
1 q

+
2 q̄
−
3 `
±
4

¯̀∓
5 ) = iT a1

α2ᾱ3
A(1+; 2+

q , 3
−
q̄ ; 4±` , 5

∓
¯̀ ) . (3.15)

Using dimensional regularization as UV and IR regulator, the corresponding UV-renorma-

lized amplitude in SCET is given to all orders in αs by

ASCET ≡
〈
ga1

+ (q1)qα2
+ (q2)q̄ᾱ3

− (q3)
∣∣iLhard

SCET

∣∣¯̀∓(−q4)`±(−q5)
〉

=

∫ 5∏
i=1

dp̃i
〈
ga1

+ (q1)qα2
+ (q2)q̄ᾱ3

− (q3)
∣∣Oa ᾱβ+(+;±)({p̃i})

∣∣¯̀∓(−q4)`±(−q5)
〉

iCa ᾱβ+(+;±)({p̃i})

= iT a1
α2ᾱ3

1

Zg qq̄({qi})
C+(+;±)({qi}) . (3.16)

Here we used the SCET counterterm Zg qq̄ defined by4

[
Oa ᾱβ+(+;±)

]bare
({p̃i}) = Oa ᾱβ+(+;±)({p̃i})

ZOg qq̄({p̃i})
Zξ
√
ZA

≡ Oa ᾱβ+(+;±)({p̃i})Zg qq̄({p̃i}) , (3.17)

together with the fact that the matrix element of the bare operator is given by the tree-

level result, since all loop graphs in the effective field theory are scaleless and vanish in

pure dimensional regularization. Note that we use an outgoing convention, which is why

the momentum, spin, and particle type for the incoming leptons in eq. (3.16) are reversed.

Requiring the QCD and SCET amplitudes to be equal, the IR divergences cancel between

them, implying that to all orders in αs we have

C+(+;±)({qi}) = lim
ε→0

[
Zg qq̄({qi})A(1+; 2+

q , 3
−
q̄ ; 4±` , 5

∓
¯̀ )
]
. (3.18)

3.1.2 Factorization theorem

The factorization theorem in SCET for 3-jettiness is given by [21]

dσSCET

dt du
∏3
i=1 dT (i)

3

=
∑
κ

[ 3∏
i=1

∫
dsi Ji(si, µ)

]
tr

[
Ĥκ(t, u,Q2, µ) Ŝκ

({
T (i)

3 −
si
ωi

}
, {ni ·nj}, µ

)]
×
[
1 +O

(
m2
J

Q2

)]
. (3.19)

The partonic channel κ = {κ1, κ2, κ3} is summed over all six permutations of {g, q, q̄} and

also over the desired quark flavors. Label momentum conservation

(Q,~0) = qµ1 + qµ2 + qµ3 = ω1
nµ1
2

+ ω2
nµ2
2

+ ω3
nµ3
2

(3.20)

4In general, Ẑκ is a matrix in color space defined by [ ~O†]bare = ~O†ẐOZ
−nq/2

ξ Z
−ng/2

A ≡ ~O†Ẑκ.
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fixes the energies of the jets, yielding

ω1 = Q− s

Q
=
t+ u

Q
, ω2 = Q− u

Q
, ω3 = Q− t

Q
. (3.21)

Since there is only one color structure for this process, the hard and soft functions in

eq. (3.19) are simply one-dimensional matrices and the trace is over this trivial color space,

Ĥκ =
(
Hκ

)
, Ŝκ =

(
Sκ
)
, tr

[
Ĥκ Ŝκ

]
= HκSκ . (3.22)

We employ the matrix notation to make the generalization to the N -jet case straightfor-

ward. We drop the hats whenever we refer to the matrix components.

The hard function Ĥκ describes the physics at the hard-interaction scale µH ∼ Q. It

is given in terms of the Wilson coefficients as

Ĥ{g,q,q̄}(t, u,Q
2, µ) =

1

4Q4(4π)3

1

4

∑
λ`

∑
λg ,λq

〈
~Cλg(λq ;λ`)({q1, q2, q3,−q¯̀,−q`}, µ)

× ~C†λg(λq ;λ`)
({q1, q2, q3,−q¯̀,−q`}, µ)

〉
`¯̀

=
1

4Q4(4π)3

1

4

∑
λ`

∑
λg ,λq

〈∣∣Cλg(λq ;λ`)({qi}, µ)
∣∣2〉

`¯̀
NcCF1 , (3.23)

where we included the flux factor 1/(2Q2), averaged over the spins of the incoming leptons,

and included the prefactor of the 3-body phase space∫
dΦ3 =

1

2Q2(4π)3

∫
dt du . (3.24)

Since we do not keep track of any angular dependence between the beam directions and

final-state jet axes, we have averaged over the directions of the incoming leptons indi-

cated by 〈. . . 〉`¯̀. The results for the other partonic channels can easily be obtained via

crossing symmetry,

Ĥ{g,q̄,q}(t, u,Q
2, µ) = Ĥ{g,q,q̄}(t, u,Q

2, µ) ,

Ĥ{q,g,q̄}(t, u,Q
2, µ) = Ĥ{q̄,g,q}(t, u,Q

2, µ) = Ĥ{g,q,q̄}(t, Q
2 − t− u,Q2, µ) ,

Ĥ{q,q̄,g}(t, u,Q
2, µ) = Ĥ{q̄,q,g}(t, u,Q

2, µ) = Ĥ{g,q,q̄}(Q
2 − t− u, u,Q2, µ) . (3.25)

The tree-level hard function is given by

H
(0)
{g,q,q̄}(t, u,Q

2, µ) = σ0,q
αs(µ)CF

2π

(Q2 − t)2 + (Q2 − u)2

Q4 t u
, (3.26)

where we have pulled out the tree-level cross section for e+e− → qq̄,

σ0,q =
4πα2

emNc

3Q2

[
Q2
` Q

2
q +

(v2
q + a2

q)(v
2
` + a2

` )− 2Q`Qq vqv`(1−m2
Z/Q

2)

(1−m2
Z/Q

2)2 +m2
ZΓ2

Z/Q
4

]
. (3.27)

Here, αem is the electromagnetic coupling, Q`,q are the lepton and quark charges, v`,q and

a`,q are the vector and axial couplings of the leptons and quarks to the Z boson, and
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mZ and ΓZ are the mass and width of the Z boson. The one-loop hard function can be

extracted from the one-loop virtual corrections for |A(gqq̄)|2 in ref. [43], or directly from

the one-loop helicity matching coefficients given e.g. in ref. [41].

The Ji ≡ Jκi in eq. (3.19) are the inclusive quark and gluon jet functions in SCET,

which are known to O(α2
s) [44–48]. They determine the contribution to the measurement

from collinear radiation at the scale µJ ∼
√
QT3. At tree level, J

(0)
i (si, µ) = δ(si).

The soft function Ŝκ in eq. (3.19) determines the contribution to the measurement

from usoft radiation at the scale µS ∼ T3. It is a matrix element containing three usoft

Wilson lines in the directions n1, n2, and n3 in the appropriate color representation. For

example, for the {g, q, q̄} channel

Ŝ{g,q,q̄}({`i}, {ni ·nj}, µ) = T̂−1
g qq̄ (T̄ a1 α2ᾱ3)† Sa1α2ᾱ3 b1β̄2β3

{g,q,q̄} ({`i}, {ni ·nj}, µ) T̄ b1 β2β̄3

=
1

NcCF

∑
Xs

tr
[〈

0
∣∣T̄ [Y †n3

Yn1T
aY †n1

Yn2

]∣∣Xs

〉
×
〈
Xs

∣∣T [Y †n2
Yn1T

aY †n1
Yn3

]∣∣0〉] 3∏
i=1

δ
(
`i − ni ·k(i)

s

)
, (3.28)

where k
(i)
s denotes the momentum of the soft state Xs in the ith jet region. At tree level,

the soft function is given by S
(0)
{g,q,q̄} = δ(`1)δ(`2)δ(`3). In ref. [49], the N -jettiness soft

function for general N was calculated at one loop and the all-order form of its anomalous

dimension was derived. A procedure to extend this calculation to two loops has been

described in ref. [50].

3.2 c+ regime: t� u ∼ Q2

We now discuss the case where jets 1 and 2 come close together, which was already discussed

in ref. [7]. As discussed in section 2.2, we first match QCD onto SCET with two collinear

sectors with label directions nt and n̄t ≡ n3 and virtuality ∼
√
t. At this scale, the

two nearby jets are not yet resolved. The relevant operators in this theory are those for

e+e− → qq̄,

Oᾱβ(+;±) = J ᾱβt3+ J45± , Oᾱβ(−;±) = J ᾱβt3− J45± . (3.29)

This process also has a unique color structure,

Cαβ̄(λq ;λ`)
= T̄αβ̄ · ~C(λq ;λ`) = δαβ̄ C(λq ;λ`) , T̄αβ̄ =

(
δαβ̄
)
, ~C(λq ;λ`) =

(
C(λq ;λ`)

)
, (3.30)

with the corresponding color sum matrix given by

T̂qq̄ = (T̄α1ᾱ2)†T̄α1ᾱ2 =
(
δᾱ1α2δα1ᾱ2

)
=
(
Nc

)
≡ Nc 1 . (3.31)

The matching coefficients are directly related to the IR-finite part of the e+e− → qq̄

amplitudes, in analogy to eq. (3.16).

After decoupling the usoft degrees of freedom in the parent SCET, the two nearby jets

are resolved in one of the collinear sectors at the scale µ ∼
√
t. If the gluon jet is close
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to the quark jet, this corresponds to matching the nt-collinear sector of the parent SCET

onto the n1-collinear, n2-collinear, and nt-csoft sectors of the c+ regime of SCET+,

χ̄ᾱtλq = (ξ̄tλqWnt)
ᾱ =

∑
λg

∫
dp̃1 dp̃2C

a βγ̄
c,λqλg

(n̄t, p̃1, p̃2, µ) (Xn1B1λg)
a(χ̄2λqX

†
n2

)β̄V γᾱ
nt , (3.32)

and similarly for the case of the gluon jet being close to the antiquark jet. Note that this

matching preserves the helicity of the (anti)quark field. Equation (3.32) leads to matching

the SCET qq̄ operators in eq. (3.29) onto SCET+ gqq̄ operators, which have the same

helicity structure as in eq. (3.10), but are dressed with additional csoft Wilson lines. The

csoft Wilson lines Xn2 and Xn1 sum the emissions of csoft gluons Ant from χ̄n2 and Bn1 .

They arise from the field redefinition of the n1,2-collinear fields decoupling them from the

csoft modes. The Vnt Wilson line sums the csoft emissions from the remaining collinear

sector(s). It can be interpreted as the csoft remnant of the collinear Wnt in the parent

nt-collinear sector. The csoft Wilson lines are defined as

Vnt = P exp

[
−ig

∫ ∞
0

ds n̄t ·Ant(sn̄µt )

]
=

[ ∑
perms

exp
( −g
n̄t ·Pnt

n̄t ·Ant
)]
,

Xn2 = P exp

[
−ig

∫ ∞
0

ds n2 ·Ant(snµ2 )

]
, (3.33)

with an analogous expression for Xn1 in the adjoint representation. The label momentum

operator Pnt in the first line acts only inside the square brackets.

Performing the color decomposition using the same color basis as in eq. (3.12), we can

write the matching coefficient as5

Ca βγ̄c,λqλg
(n̄t, p̃1, p̃2, µ) = T̄ a βγ̄ · ~Cc,λqλg

(
2p̃1 ·p̃2,

n̄t ·p̃1

n̄t ·(p̃1 + p̃2)
, µ
)
. (3.34)

We also used that reparametrization invariance [52] implies that to all orders ~Cc can only

depend on t = 2p̃1 · p̃2 and the lightcone momentum fraction z = n̄t · p̃1/n̄t ·(p̃1 + p̃2) [7].

Since it only depends on a single dimensionful scale, all large logarithms of t must appear

as ln(t/µ2), which can thus be minimized by choosing the natural scale µHc ∼
√
t.

5The fact that the collinear matching coefficient Ca βγ̄c only depends on the color space of the 1 → 2

splitting is a direct consequence of the usoft-collinear factorization in SCET, which implies that the matching

in eq. (3.32) only involves a single collinear usoft-decoupled sector. As discused in detail in ref. [7], this also

holds for the general N -jet case and is equivalent to the factorization of QCD amplitudes in the collinear

limit in terms of universal splitting amplitudes. The results of ref. [51], which are based on a partial 3-loop

calculation supplemented by consistency arguments in the high-energy limit, indicate that this collinear

factorization of amplitudes might be violated. If this result confirmed by the complete 3-loop calculation, it

would require a more general matching condition than in eq. (3.32) involving all recoiling collinear sectors

and Cc would then become a general matrix from N − 1 to N -parton color space. This would require the

explicit non-cancellation of Glauber effects in a hard-scattering calculation at 3 loops in order to connect

the different collinear sectors in the parent SCET, which would be quite unexpected.

Note added. After initial submission of our paper a revised version of ref. [51] appeared, which now

confirms collinear factorization at three loops, as expected from and consistent with the SCET+ matching

in eq. (3.32).
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The two nearby jets originate from collinear emissions in the nt-collinear sector of the

parent SCET. The total momentum pµt = Qnµt /2 + kµ of the nt-collinear sector includes

a residual momentum component kµ ∼ O(t/Q), which is responsible for generating the

small dijet invariant mass t. For a single collinear emission at tree level, momentum

conservation reads

pµt = (Q+ k−)
nµt
2

+ k+ n̄
µ
t

2
= pµ1 + pµ2 ,

pµ1 = z(Q+ k−)
nµt
2

+ (1− z)k+ n̄
µ
t

2
+ kµ⊥ ,

pµ2 = (1− z)(Q+ k−)
nµt
2

+ zk+ n̄
µ
t

2
− kµ⊥ , (3.35)

where k2
⊥ = −z(1 − z)(Q + k−)k+ such that p2

1 = p2
2 = 0. From the point of view

of SCET+, this corresponds to the hard splitting process that determines the large jet

momenta corresponding to the SCET+ label momenta. However, since SCET already

contains a power expansion in t/Q2, the observed jet momenta and dijet invariant masses

can only be computed up to relative O(t/Q2) corrections. Choosing ~n1 = ~p1/|~p1| and

~n2 = ~p2/|~p2|, we thus have

pµ1 = zQ
[
1 +O

( t

Q2

)] nµ1
2
, pµ2 = (1− z)Q

[
1 +O

( t

Q2

)]nµ2
2
,

t = Qk+
[
1 +O

( t

Q2

)]
= z(1− z)Q2 n1 ·n2

2

[
1 +O

( t

Q2

)]
. (3.36)

Once we take the final matrix element in SCET+ the measurement identifies p̃µ1 ≡ qµ1 and

p̃µ2 ≡ qµ2 and the SCET+ label momentum conservation reads

pµt = qµ1 + qµ2 = ω1
nµ1
2

+ ω2
nµ2
2
, ω1 = zQ , ω2 = (1− z)Q , (3.37)

where the O(t/Q2) corrections in eq. (3.36) can be absorbed into the residual components

of pµt .

A similar discussion applies to the n̄t-collinear sector,

pµ
t̄

= Q
n̄µt
2

+ kµ = pµ3 = Q
[
1 +O

( t

Q2

)]nµ3
2
,

u = 2p1 · p3 = zQ2
[
1 +O

( t

Q2

)]
, (3.38)

where we chose ~n3 = ~p3/|~p3| in the first line. The SCET+ label momentum conservation

simply becomes

pµ
t̄

= qµ3 = ω3
nµ3
2
, ω3 = Q . (3.39)

Even though this appears trivial, it is important to remember that upon matching from

SCET onto SCET+, the label momentum gets refined from O(t/Q) to O(T3). In particular,

the parent n̄t direction corresponds to a wider equivalence class of collinear directions

than the final n3 direction in SCET+, and we identified n̄t ≡ n3 from the start only

for convenience.
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Since q3 is unaffected by the details of the nearby jets 1 and 2, we could carry out the

matching in eq. (3.32) independent of the third jet. In other words, while the residual mo-

mentum conservation in the splitting of the nt-collinear sector is important for determining

the n1 and n2 directions, there is no residual momentum conservation between the nt and

n̄t = n3 collinear sectors and thus also no recoil because of the power expansion in SCET.

As expected, the above label momenta correspond to the t� u ∼ Q2 limit of eq. (3.21).

As shown in ref. [7], the intrinsic O(t/Q2) ambiguity in the qi also allows one to implement

the full kinematic dependence in eqs. (3.20) and (3.21) in SCET+. This effectively incor-

porates some kinematic O(t/Q2) nonsingular corrections from the well-separated SCET

regime. However, to maintain the exact consistency of the factorization theorem, one has

to be careful to incorporate the corresponding recoil effect also in the parent SCET. The

above discussion shows explicitly that the power corrections of O(t/Q) in the label mo-

menta can be consistently dropped in the derivation of the factorization theorem, which

we therefore do here.

The remaining steps are mainly related to the factorization of the measurement and

are discussed in ref. [7]. The resulting factorization theorem for the c+ regime is given by

dσc+

dt du
∏3
i=1 dT (i)

3

=
∑
κc

tr

[
Ĥc,κc

(
t,
u

Q2
, µ
)∫

dk1 dk2 Ŝc,κc
(k1, k2, µ)

][ 3∏
i=1

∫
dsi Ji(si, µ)

]
× tr

[
Ĥqq̄(Q

2, µ)Ŝqq̄

(
T (1)

3 − s1

ω1
−
√
ŝt k1, T (2)

3 − s2

ω2
−
√
ŝt k2, T (3)

3 − s3

ω3
, µ
)]

×
[
1 +O

( t
u
,
m2
J

t

)]
, (3.40)

where we have used

ŝt =
n1 ·n2

2
=

t

ω1ω2
=

t

z(1− z)Q2
, z =

u

Q2
, (3.41)

and the kinematic ordering of the jets implies z < 1/2. The partonic channel is now

separated as
e+e− →κt(qt)κ3(q3) , κ2 = {κt, κ3} ,

κt(qt)→ κ1(q1)κ2(q2) , κc = {κt;κ1, κ2} ,
(3.42)

where κ2 is either {q, q̄} or {q̄, q}. The sum over κc runs over {qt; g, q}, {qt; q, g}, {q̄t; g, q̄},
{q̄t; q̄, g} for all desired quark flavors, which already includes the two cases for κ2. The jet

functions Ji(si) are the same as before in eq. (3.19), all of them having the same natural

jet scale µJ ∼
√
QT3. The two color traces in eq. (3.40) are over different color spaces,

which are both still trivial here. The one-loop results for the hard and soft functions have

been computed in ref. [7], and for completeness we reproduce them here. For an explicit

derivation of their RGEs, anomalous dimensions, and consistency we refer to ref. [7].

The dijet hard function Ĥqq̄(Q
2, µ) has the natural hard scale µH ∼ Q. It is related

to the matching coefficients ~C(λq ;λ`) via

Ĥqq̄(Q
2, µ)=

1

16πQ2

1

4

∑
λ`

∑
λq

〈
~C(λq ;λ`)({q1, q2,−q¯̀,−q`}, µ) ~C†(λq ;λ`)({q1, q2,−q¯̀,−q`}, µ)

〉̀
¯̀

=
1

16πQ2

1

4

∑
λ`

∑
λq

〈∣∣C(λq ;λ`)({q1, q2,−q¯̀,−q`}, µ)
∣∣2〉̀

¯̀
Nc 1 , (3.43)
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where we included the flux factor 1/(2Q2), averaged over the spins and relative directions

of the incoming leptons, and included 1/(8π) from the two-body phase space. Up to one

loop it is given by [53, 54]

Hqq̄(Q
2, µ) = σ0,q

{
1 +

αs(µ)CF
2π

[
− ln2

(Q2

µ2

)
+ 3 ln

(Q2

µ2

)
− 8 +

7π2

6

]
+O(α2

s)

}
, (3.44)

where the tree-level result σ0,q is given in eq. (3.27).

The functions Ĥc,κc contain the collinear splitting and their natural scale is µHc ∼
√
t.

They are related to the matching coefficients ~Cc,λqλg in eq. (3.34) via

Ĥc,{q;g,q}(t, z, µ) =
1

(4π)2Q2Nc

∑
λg

~Cc,λqλg(t, z, µ) ~C†c,λqλg(t, z, µ)

=
1

(4π)2Q2Nc

∑
λg

∣∣Cc,λqλg(t, z, µ)
∣∣2NcCF 1 , (3.45)

where we averaged over the color of the initiating quark (but not its spin which is fixed)

and included the prefactor from the two-body collinear phase space∫
dΦc =

1

(4π)2Q2

∫
dt du . (3.46)

Since the virtual corrections in SCET+ are scaleless and vanish in pure dimensional reg-

ularization, the ~Cc are equivalent (up to overall normalization) to the IR-finite parts of

the universal collinear splitting amplitudes [55–61]. This is completely analogous to the

discussion for the full amplitudes leading to eq. (3.18). For the same reason, the ~Cc can

also be computed directly from the collinear matrix elements in SCET, see appendix C.1

and eq. (C.1) for the explicit prescription. The NLO result is given by

Hc,{q;g,q}(t, z, µ) =
αs(µ)CF

2π

1+(1−z)2

z Q2t

{
1+

αs(µ)

2π

[
−CA

2

(
ln2
( t z
µ2

)
+2 Li2(1−z)− 7π2

6

)
+
(CA

2
−CF

)(
2 ln
( t

µ2

)
ln(1−z)+ln2(1−z)+2 Li2(z)

)
+ (CA−CF )

z

1+(1−z)2

]
+O(α2

s)

}
, (3.47)

which can be obtained from the NLO splitting amplitudes given e.g. in refs. [57, 60, 61],

or alternatively from the collinear limit of the hard function for three well-separated jets,

H{g,q,q̄}(t, u,Q
2, µ)

∣∣∣
t�u∼Q2

= Hqq̄(Q
2, µ)Hc,{q;g,q}

(
t,
u

Q2
, µ
)[

1 +O
( t
u

)]
. (3.48)

The results for the other quark-initiated channels are related via

Ĥc,{q̄;g,q̄}(t, z, µ) = Ĥc,{q;q,g}(t, 1− z, µ) = Ĥc,{q̄;q̄,g}(t, 1− z, µ) = Ĥc,{q;g,q}(t, z, µ) . (3.49)

Since the collinear quark splitting amplitudes are independent of λq, all spin correlations

between the hard interaction at the scale µ ∼ Q and the splitting process q → qg or
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q̄ → q̄g at the scale µ ∼
√
t drop out in eq. (3.40), and this is why we could sum over λq

in eq. (3.43). For collinear gluon splittings g → gg and g → qq̄, ~Cc does depend on the

helicity of the initiating gluon, so that spin correlations between the hard sectors need to

be taken into account (see section 4.3). These would be relevant here if we were to also

consider e+e− → gg.

The csoft function for the splitting channels κc = {q; g, q} and {q̄; g, q̄} is defined as

Ŝc,{q;g,q}(k1, k2, µ) = T̂−1
g qq̄ (T̄ a1 α2ᾱt)†Sa1α2ᾱt b1β̄2βt

c,{q;g,q} (k1, k2, µ)T̄ b1 β2β̄t

=
1

NcCF

∑
Xcs

tr
[〈

0
∣∣T̄ [V †ntXn1T

aX†n1
Xn2

]∣∣Xcs

〉
(3.50)

×
〈
Xcs

∣∣T [X†n2
Xn1T

aX†n1
Vnt
]∣∣0〉]δ(k1 −

n1 ·k(1)
cs√
ŝt

)
δ

(
k2 −

n2 ·k(2)
cs√
ŝt

)
,

which we decomposed in the color basis of eq. (3.34). The k
(i)
cs denote the momentum of

the csoft state Xcs in the ith jet region. The csoft function in general depends on the

directions n1, n2 (through the measurement and the Xni) and n̄t (through Vnt). Using

reparametrization invariance one can show [7] that the only parametric scale the csoft

function can depend on is ki = ni ·k(i)
cs /
√
ŝt.

6 Its natural scale is thus µSc ∼ ki ∼ T3/
√
ŝt ∼

T3Q/
√
t. The one-loop result is

Sc,{q;g,q}(k1, k2, µ) = Sc,{q̄;g,q̄}(k1, k2, µ) (3.51)

= δ(k1)δ(k2)+
αs(µ)

4π

{
CA

[
−8

µ
L1

(k1

µ

)
+
π2

6
δ(k1)

]
δ(k2)

+ 4CF

[
1

µ
L1

(k1

µ

)
δ(k2)−δ(k1)

1

µ
L1

(k2

µ

)
+
π2

6
δ(k1)δ(k2)

]}
+O(α2

s) ,

where the plus distributions are defined as usual,

Ln(x) =
[θ(x) lnn(x)

x

]
+
. (3.52)

The results for the splitting channels κc = {q; q, g} and {q̄; q̄, g} are obtained by interchang-

ing k1 ↔ k2. The csoft function is universal and only depends on the color representation

of the partons involved in the splitting. The result for general color structures is given in

ref. [7].

Finally, the ultrasoft function involves two soft Wilson lines with directions nt and n̄t,

and is given by

Ŝqq̄(`1, `2, `3, µ) = T̂−1
qq̄ (T̄α1ᾱ2)† Sα1ᾱ2 β̄1β2

qq̄ (`1, `2, `3, µ) T̄ β1β̄2

=
1

Nc

∑
Xs

tr
[〈

0
∣∣T̄ [Y †n̄tYnt]∣∣Xs

〉〈
Xs

∣∣T [Y †ntYn̄t]∣∣0〉]
× δ
(
`1 − nt ·k(1)

s

)
δ
(
`2 − nt ·k(2)

s

)
δ
(
`3 − n̄t ·k(3)

s

)
. (3.53)

6Compared to ref. [7], we have rescaled the argument ki of Sc by
√
ŝt, such that the explicit dependence

on ŝt drops out in Ŝc, as reparametrization invariance implies, and instead appears in the factorization

theorem in eq. (3.40) through the convolution argument of the usoft function.
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In contrast to the usual hemisphere soft function, it measures the momentum k
(i)
s of the

soft state Xs in all 3 jet regions. However, since the usoft modes cannot resolve the nearby

jets 1 and 2, it has no information on the angle between them (or equivalently ŝt), and

the separation into the contributions k
(1)
s and k

(2)
s essentially happens by splitting the nt-

hemisphere in half. Reparametrization invariance then implies that Ŝqq̄ is independent of

ŝt to all orders in αs, so its natural scale is as usual µS ∼ T3. Up to one loop it is given by

Sqq̄(`1, `2, `3, µ) = δ(`1)δ(`2)δ(`3) +
αs(µ)CF

4π

[
π2

3
δ(`1)δ(`2)δ(`3)− 4

µ
L1

(`1
µ

)
δ(`2)δ(`3)

− 4 δ(`1)
1

µ
L1

(`2
µ

)
δ(`3)− 8 δ(`1)δ(`2)

1

µ
L1

(`3
µ

)]
+O(α2

s) . (3.54)

3.3 s+ regime: t ∼ u� Q2

We now discuss the case where the first jet becomes soft, following the two-step matching

described in section 2.3. Since the soft jet is not resolved at large invariant mass fluctua-

tions, the first matching takes place from full QCD onto SCET with two collinear sectors

with label directions nt ≡ n2 and n̄t ≡ n3 and virtuality ∼ √u. This step is the same as

for the c+ case, leading to the dijet hard function Ĥqq̄(Q
2, µ) in eq. (3.44).

After decoupling the collinear and usoft sectors in the parent SCET, the third jet is

resolved in the usoft sector at the scale u/Q. This corresponds to matching the usoft sector

of the parent SCET onto the n1-soft-collinear and usoft sectors of SCET+,

(Y †n2
)αβ̄(Yn3)γδ̄ =

∑
λg

∫
dp̃1C

aβ′β̄γγ̄′
s (n2, n3, p̃1, µ) (Yn1B1λg)

a(Y †n2
)αβ̄

′
(Yn3)γ

′δ̄ . (3.55)

The Yn on the left-hand are the usoft Wilson lines arising in the hard scattering operator

in eq. (3.29) from the decoupling [see eq. (A.4)]. The color indices α and δ̄ are contracted

with the collinear fields, while β̄ and γ are contracted with the matching coefficient Cβγ̄(λq ;λ`)

from eq. (3.30). The virtuality of the usoft fields in the Wilson lines is lowered to T3 on the

right-hand side. Here Yn1 is an adjoint usoft Wilson along the n1 direction. Equation (3.55)

leads to matching the SCET qq̄ operators in eq. (3.29) onto the gqq̄ operators in eq. (3.10).

Due to parity invariance, the matching is independent of the gluon helicity λg (up to an

irrelevant phase).

Inserting the color bases for the hard Wilson coefficient and reducing the arguments

of Cs with reparametrization invariance, we have

Caβ
′β̄γγ̄′

s (n2, n3, p̃1, µ) T̄ βγ̄ = T̄ aβ
′̄γ′ · Ĉs

(2n2 ·p̃1 n3 ·p̃1

n2 ·n3
, µ
)
. (3.56)

Thus, Ĉs is a matrix from the qq̄ color space to the gqq̄ color space (which is still one

dimensional in this case).

The matching onto the SCET+ n2-collinear and n3-collinear sectors is equivalent to

that for the n3-collinear sector in the c+ regime in eq. (3.38), except that the power

expansion in the parent SCET is now in u/Q2. The first jet now originates from soft
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emissions. For a single soft emission at tree level, the jet momenta and dijet invariant

masses in the parent SCET are

pµ1 = pµs = k−
nµt
2

+ k+ n̄µt
2

+ kµ⊥ ,

pµ2 = pµt = Q
nµt
2

+ kµ2 , pµ3 = pµ
t̄

= Q
n̄µt
2

+ kµ3 ,

t = 2p1 · p2 = k+Q
[
1 +O

( u

Q2

)]
, u = 2p1 · p3 = k−Q

[
1 +O

( u

Q2

)]
,

s = 2p2 · p3 = Q2
[
1 +O

( u

Q2

)]
. (3.57)

Choosing ~ni = ~pi/|~pi|, the SCET+ label momentum conservation is thus given by

pµs = qµ1 = ω1
nµ1
2
, ω1 = k− + k+ =

t+ u

Q
,

pµt = qµ2 = ω2
nµ2
2
, ω2 = Q , pµ

t̄
= qµ3 = ω3

nµ3
2
, ω3 = Q . (3.58)

Note that this reproduces the t ∼ u� Q2 limit of eq. (3.21), as it should.

After this two-step hard matching, the derivation of the factorization theorem is iden-

tical to that in section 3.1, since the remaining low-energy interactions communicating via

residual momenta are the same. We obtain

dσs+

dt du
∏3
i=1 dT (i)

3

=
2

(4π)2Q2

∑
q

∫
ds1 ds2 ds3 Jg(s1, µ) Jq(s2, µ) Jq̄(s3, µ)

× tr

[
Ĉs

( t u
Q2

, µ
)
Ĥqq̄(Q

2, µ) Ĉ†s

( t u
Q2

, µ
)

× Ŝ{g,q,q̄}
({
T (i)

3 −
si
ωi

}
, {ni ·nj}, µ

)][
1 +O

( u

Q2
,
m2
J

u

)]
. (3.59)

The overall factor of 2 comes from summing over the two partonic channels {g, q, q̄} and

{g, q̄, q} that are nonvanishing in the soft limit, and which give identical contributions. The

sum over q runs over the desired quark flavors. We have explicitly included the factor from

the soft emission phase space ∫
dΦs =

1

(4π)2Q2

∫
dt du . (3.60)

In eq. (3.59), Ĉs describes the soft large-angle splitting and is evaluated at

2n2 ·q1 n3 ·q1

n2 ·n3
=

2q2 ·q1 q3 ·q1

q2 ·q3
=
t u

Q2
. (3.61)

Since this is the only scale it depends on, it contains no large logarithms when evaluated at

its natural scale µHs ∼
√
tu/Q. Because Ĥqq̄ has a trivial color structure, we can combine

Ĉs and Ĉ†s into a single hard function

Ĥs

( t u
Q2

, µ
)

=
1

(4π)2Q2
Ĉs

( t u
Q2

, µ
)
Ĉ†s

( t u
Q2

, µ
)

=
1

(4π)2Q2
Ĉs

( t u
Q2

, µ
)
T̂−1
qq̄ Ĉ∗Ts

( t u
Q2

, µ
)
T̂g qq̄ .

(3.62)
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The matching coefficients Ĉs can be calculated directly from soft matrix elements in SCET

since the virtual corrections in SCET+ are scaleless and vanish in pure dimensional regu-

larization, see eq. (C.2) for the explicit prescription. They are also equivalent (up to overall

normalization) to the soft gluon current [56, 60, 62, 63]. The result for Hs up to one loop

reads (see appendix C.2)

Hs

( tu
Q2

, µ
)

=
αs(µ)CF

π

1

t u

{
1− αs(µ)CA

4π

[
ln2
( t u

Q2µ2

)
− 5π2

6

]
+O(α2

s)

}
. (3.63)

We provide the two-loop expression in eq. (C.15) obtained from the corresponding compu-

tations of the soft gluon current in refs. [64, 65]. Alternatively, Hs can be obtained from

the soft limit of the hard coefficient for three well-separated jets,

H{g,q,q̄}(t, u,Q
2, µ)

∣∣∣
t∼u�Q2

= Hqq̄(Q
2, µ)Hs

( t u
Q2

, µ
)[

1 +O
( u

Q2

)]
. (3.64)

The remaining ingredients of the factorization theorem are the same as for the case

of three well-separated jets in eq. (3.19), except that the invariant mass of the soft gluon

jet is smaller than for the quark jets, and the corresponding natural scale for the gluon jet

function is now µJ1 ∼
√
T3u/Q ∼ mJ

√
u/Q� mJ .

Based on the µ-independence of the factorization theorems in eqs. (3.19) and (3.59),

we can derive the all-order form for the anomalous dimension of Ĉs(µ). Since the soft and

jet functions are identical in both cases, it is sufficient to require consistency in the hard

sector, namely

d

d lnµ
Cgqq̄(t, u,Q

2, µ)
∣∣∣
t∼u�Q2

=
d

d lnµ

[
Cs

( t u
Q2

, µ
)
Cqq̄(Q

2, µ)

]
. (3.65)

Defining the anomalous dimensions for each of the coefficients as

d

d lnµ
Cx(. . . , µ) = γCx(. . . , µ)Cx(. . . , µ) , (3.66)

eq. (3.65) requires that

γCs

( t u
Q2

, µ
)

= γCgqq̄(t, u,Q
2, µ)

∣∣∣
t∼u�Q2

− γCqq̄(Q2, µ) . (3.67)

The all-order structure of the anomalous dimensions for Cgqq̄ and Cqq̄ (without assuming

Casimir scaling) reads [53, 66, 67]

γCgqq̄(t, u,Q
2, µ) =

Γgcusp[αs(µ)]

2
ln
[(t+i0)(u+i0)

µ2(−s−i0)

]
+Γqcusp[αs(µ)] ln

(−s−i0

µ2

)
+γgqq̄C [αs(µ)] ,

γCqq̄(Q
2, µ) = Γqcusp[αs(µ)] ln

(−Q2−i0

µ2

)
+2γqC [αs(µ)] , (3.68)

where Γicusp(αs) are the quark and gluon cusp anomalous dimensions [68], and γiC(αs)

are the noncusp anomalous dimensions and are defined by eq. (3.68). Hence, using s =
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Q2[1 +O(u/Q2)], we have

γCs

( t u
Q2

, µ
)

=
Γgcusp[αs(µ)]

2
ln
(−t u/Q2 − i0

µ2

)
+ γgqq̄C [αs(µ)]− 2γqC [αs(µ)]

=
Γgcusp[αs(µ)]

2
ln
(−t u/Q2 − i0

µ2

)
+ γgC [αs(µ)] +O(α3

s) . (3.69)

In the second line we used that γgqq̄C (αs) = 2γqC(αs) + γgC(αs), which is known to hold at

least up to two loops [69], where 2γgC(αs) is the noncusp anomalous dimension of the gluon

form factor. We also explicitly verified eq. (3.69) to O(α2
s) for the perturbative results

in eqs. (3.63) and (C.15), using the explicit 2-loop expressions for Γicusp and γiC given in

appendix B.

3.4 cs+ regime: t� u� Q2

Finally, we discuss the case where the first jet becomes soft and also close to the second

jet, such that all kinematic scales are separated. This follows the multistage matching

procedure described in section 2.4. In the first step, we match full QCD onto SCET with

two collinear sectors of virtuality ∼ √u and label directions nt ≡ n2 and n̄t ≡ n3. This step

is the same as in the s+ regime. In the next step, the parent usoft sector splits into usoft

modes with lower virtuality t/Q and scaling pµus ∼ (u/Q)×(t/u, t/u, t/u), and soft-collinear

modes with virtuality
√
t u/Q and scaling pµsc ∼ (u/Q)× (t/u, 1,

√
t/u) that will eventually

produce the soft gluon jet. If the gluon jet is close to the quark jet, the matching onto this

intermediate SCET+ reads

χ̄ᾱtλq(Y
†
nt)

αβ̄(Yn3)γδ̄ = χ̄ᾱtλq(X
†
ntVnt)

αᾱ′(Y †nt)
α′β̄(Yn3)γδ̄ . (3.70)

The Xnt and Vnt Wilson lines are defined as in eq. (3.33). They sum up nt-soft-collinear

gluon emissions along the nt and n̄t directions, respectively, as required by gauge invariance.

The matching in this step is purely in terms of Wilson lines and does not introduce a hard

matching coefficient: although the soft-collinear modes are being separated from the usoft

modes, the soft jet is not yet resolved and thus no scale setting measurement is performed.7

At the scale
√
t u/Q the final soft jet 1 gets resolved. This corresponds to matching the

nt-soft-collinear sector of the parent SCET+ onto the final n1-soft-collinear and nt-csoft

sectors of the cs+ regime,

(X†ntVnt)
αδ̄ =

∑
λg

∫
dp̃1C

aβ′γ̄′
cs (n2, n̄t, p̃1, µ)(Xn1B1λg)

a(X†n2
)αβ̄

′
(Vnt)

γ′δ̄ . (3.71)

This is the soft Wilson-line version of the c+ matching in eq. (3.32). It is also identical

to the soft splitting in eq. (3.55) with the replacements Yn2 → Xn2 , Yn3 → Vn2 and the

simplification that the indices β̄ and γ therein are contracted.

7The precise identification of this intermediate mode as either soft-collinear or csoft is not as unique

as in the c+ and s+ cases, as it shares aspects of both. Due to its momentum scaling we interpret it as

collinear offspring arising from the parent usoft sector and refer to it as soft-collinear. However, the Wilson

line structure in eq. (3.70) is reminiscent of the csoft modes and can also be obtained by directly matching

from QCD onto this intermediate SCET+, where the interactions between the collinear, soft-collinear, and

usoft modes can be decoupled by consecutive BPS field redefinitions, as shown in ref. [7].
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The discussion for the label momenta proceeds in the same way as in the c+ and s+

regimes. The final label momenta are given by

ω1 =
u

Q
, ω2 = ω3 = Q , (3.72)

corresponding to the t� u� Q2 limit of eq. (3.21).

The operators that result from these matching steps are the same as for the c+ case

with the only difference being the different scaling for the label momenta. Thus one obtains

essentially the same factorization theorem
dσcs+

dt du
∏3
i=1 dT (i)

3

= 2
∑
q

tr

[
Ĥcs

( t u
Q2

, µ
)∫

dk1 dk2 Ŝcs(k1, k2, µ)

]
×
∫

ds1 ds2 ds3 Jg(s1, µ) Jq(s2, µ) Jq̄(s3, µ)

× tr

[
Ĥqq̄(Q

2, µ)Ŝqq̄

(
T (1)

3 − s1

ω1
−
√
ŝt k1, T (2)

3 − s2

ω2
−
√
ŝt k2, T (3)

3 − s3

ω3
, µ
)]

×
[
1 +O

( u

Q2
,
t

u
,
m2
J

t

)]
. (3.73)

Summing the two nonvanishing channels {g, q, q̄} and {g, q̄, q} gives rise to the overall factor

of 2, as in the s+ case in eq. (3.59).

The hard function Ĥcs incorporates the collinear-soft splitting at the natural scale

µHcs ∼
√
t u/Q and is related to the matching coefficient ~Ccs in eq. (3.71). Here, ~Ccs can

be obtained from soft-collinear matrix elements in SCET+ (see eq. (C.3) for the explicit

prescription), which are equivalent to the collinear limit of the soft splitting amplitudes

or the soft limit of the collinear splitting amplitudes for q → qg. The similarity between

eq. (3.71) and eq. (3.55) implies

Hcs

( t u
Q2

, µ
)

= Hs

( t u
Q2

, µ
)
. (3.74)

We stress however that this identity is special to the case of e+e− → 3 jets and does not

hold when the color space is nontrivial, as we will see in section 4.5.

All of the remaining components in eq. (3.73) have already been discussed in section 3.2.

We have denoted the csoft function by Ŝcs = Ŝc,{g,q,q̄}, whose natural scale is µScs ∼
T3

√
u/t. Furthermore, the natural scale of the gluon jet function is now µJ1 ∼

√
T3u/Q.

We now discuss the relationship between the factorization theorems in the cs+, c+,

and s+ regimes. First, the difference with respect to eq. (3.40) only concerns the hard

sector. Expanding the c+ hard function Ĥc,κc in the soft limit gives

Hc,κc

(
t,
u

Q2
, µ
)∣∣∣
u�Q2

= δκ1gHcs

( t u
Q2

, µ
)[

1 +O
( u

Q2

)]
. (3.75)

This can be checked explicitly at one loop using eqs. (3.47) and (3.63). Second, we observe

that the factorization theorems in s+ and cs+ regimes differ only in the usoft sector. The

corresponding relation that needs to hold for consistency reads

S{g,q,q̄}(`1, `2, `3, µ)
∣∣
t�u =

∫
dk1 dk2 Sqq̄

(
`1 −

√
ŝt k1, `2 −

√
ŝt k2, `3, µ

)
× Sc,{g,q,q̄}(k1, k2, µ)

[
1 +O

( t
u

)]
. (3.76)
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(In the general case, when the color space for Ŝqq̄ and Ŝc,{g,q,q̄} are nontrivial, this relation

would involve a tensor product in these color spaces.) The full 3-jettiness soft function

appearing in σs+ can be calculated fully analytically in the collinear limit, which yields the

result [7]

S{g,q,q̄}(`1, `2, `3, µ)
∣∣
t�u

= δ(`1) δ(`2) δ(`3) +
αs(µ)

4π

{
CA

[
π2

6
δ(`1) δ(`2) δ(`3)− 8√

ŝt µ
L1

( `1√
ŝt µ

)
δ(`2) δ(`3)

]
+ CF

[
π2δ(`1)δ(`2)δ(`3) +

4√
ŝt µ
L1

( `1√
ŝt µ

)
δ(`2)δ(`3)− 4√

ŝt µ
L1

( `2√
ŝt µ

)
δ(`1)δ(`3)

− 4

µ
L1

(`1
µ

)
δ(`2)δ(`3)− 4

µ
L1

(`2
µ

)
δ(`1)δ(`3)− 8

µ
L1

(`3
µ

)
δ(`1)δ(`2)

]}
. (3.77)

Using eqs. (3.51), (3.54) and (3.77), the consistency relation in eq. (3.76) can be explicitly

verified at one loop (see also ref. [7]).

3.5 Combining all regimes

As outlined in section 2.5, to obtain a complete description across the full 3-jet phase space,

we need to combine the resummed results obtained in the different regimes.

We start from the cs+ regime, where we have the maximal amount of hierarchies

between the dijet invariant mass scales that can arise for e+e− → 3 jets, and which allows

us to resum large logarithms in the kinematic ratios u/Q, t/u, and jet resolution variables

T (i)
3 . We then systematically add the nonsingular power corrections to take into account

the correct fixed-order contributions in the less hierarchical situations where one or more

scales are parametrically the same. The cross section for arbitrary t, u,Q2 � m2
J is thus

written as

dσ ≡ dσ

dt du
∏3
i=1 dT (i)

3

= dσcs+ + dσnons
c+ + dσnons

s+ + dσnons
SCET + dσnons

QCD , (3.78)

where the denominator is suppressed for convenience.

As shown in eqs. (2.18) and (2.19), the nonsingular corrections for a given scale hier-

archy are given by the difference of the corresponding full and resummed cross sections,

where the latter has the logarithms of the scale hierarchy expanded to the same fixed or-

der in perturbation theory as they are present in the full cross section. By including the

fixed-order terms in the relevant hard, beam, jet, and soft functions to the same required

order, corresponding to the often utilized NkLL′ order counting, the fixed-order expan-

sion to NkLO can be conveniently obtained simply by turning off the resummation in the

relevant scale hierarchy.

The nonsingular correction to connect dσcs+ in eq. (3.73) to dσc+ in eq. (3.40) is

given by

dσnons
c+ = dσc+ − dσcs+

∣∣
µ(cs)=µ(c) . (3.79)

Here, the natural scales in dσcs+ are set equal to the ones used in σc+, i.e. µHcs = µHc ,

µ
(cs)
J1

= µJ and µ
(cs)
Sc

= µ
(c)
Sc

. This turns off the additional resummation in u/Q2 in the cs+
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regime with respect to the c+ regime, and instead includes the corresponding logarithms

in u/Q2 at fixed order.

Similarly, the nonsingular correction connecting dσcs+ to dσs+ in eq. (3.59) is

dσnons
s+ = dσs+ − dσcs+

∣∣
µ(cs)=µ(s) , (3.80)

where the natural scales in dσcs+ are now set equal to the ones used in dσs+, i.e. µHcs = µHs ,

µ
(cs)
J1

= µ
(s)
J1

and µ
(cs)
Sc

= µS , which turns off the additional resummation in t/u in dσcs+.

The nonsingular correction between SCET and SCET+ is given in terms of the cross

sections in eqs. (3.19), (3.40), (3.59), and (3.73) as

dσnons
SCET = dσSCET −

[
dσc+ + dσs+ − dσcs+

]
µ+=µSCET

, (3.81)

where all the additional scales in the SCET+ cross sections are set to the corresponding

ones in SCET, i.e. µHc = µHs = µHcs = µH , µJ1 = µJ , and µSc = µS , which turns off

all additional resummation in t/Q2 in dσc+ and
√
tu/Q2 in dσs+. The term dσcs+ arises

with an opposite sign [see eq. (2.19)] and removes the double counting between the c+ and

s+ regimes.

Finally, the nonsingular correction between SCET and full QCD is given by

dσnons
QCD = dσQCD − dσSCET|µSCET=µFO , (3.82)

where all the resummation scales in SCET are set to a common fixed order scale, i.e. µH =

µJ = µS = µFO ∼ Q, so that the resummation in T3/Q is turned off.

4 pp→ N jets

In this section, we extend the discussion of section 3 to the general case of pp → N

jets. We address in particular collinear initial-state splittings and additional complications

related to color, spin, and kinematics. We consider adding one kinematic hierarchy to the

standard SCET case of equally energetic and well-separated jets, and discuss the SCET+

factorization for the cases of a jet close to a beam, a soft jet, and a soft jet close to another

jet, corresponding to the simplest c+, s+, and cs+ regimes. The N -jet phase space implies

a proliferation of hard kinematic scales allowing for the possibility of multiple hierarchies

between the jets, which may be independent, strongly ordered or correlated. These are

discussed in section 5.

4.1 N-jet kinematics

We start by discussing the kinematics for pp→ N jets. The initial-state partons that enter

the hard interaction are labeled with a and b, such that the hard scattering process is

κa(qa)κb(qb)→ κ1(q1)κ2(q2) · · ·κN (qN ) + L(qL) , κ = {κa, κb;κ1, . . . , κN} . (4.1)

In cases where a parton’s helicity becomes relevant we will include a helicity label such

as κλii . The large label momenta qi for the final-state jets are defined as discussed in
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section 2.1. We also allow for an additional color-singlet final state L with total momentum

qµL, which is suppressed in κ. It does not affect the factorization setup for the QCD final

state, apart from contributing to the overall label momentum conservation

qµa + qµb = qµ1 + · · ·+ qµN + qµL . (4.2)

The label momenta for the initial partons are defined as

qµa,b =
1

2
xa,bEcm(1,±n̂) =

1

2
ωa,b(1,±n̂) . (4.3)

They are given in terms of the hadronic center of mass energy Ecm, the momentum fractions

xa, xb and the unit vector n̂ pointing along the beam axis. Alternatively, they may be

written in terms of ωa,b = Qe±Y , where Q is the invariant mass and Y the total rapidity

of the hard partonic system which are determined from eq. (4.2).

To keep the notation concise, we collectively denote by ΦN the full dependence on

the kinematics, helicities, and partonic channel of the hard process. In particular, we

abbreviate the hard Wilson coefficients as

~C(ΦN ) ≡ ~Cλa···λN ({qi,ΦL}, µ) . (4.4)

Correspondingly, the fully-differential Born phase space measure is denoted by dΦN and

given by∫
dΦN ≡

1

2E2
cm

∫
dxa
xa

dxb
xb

∫
dq2
L

2π
dΦN+1(qa + qb; q1, . . . , qN , qL) dΦL(qL)

∑
κ

∑
{λi}

, (4.5)

where dΦN+1(qa + qb; q1, . . .) and dΦL(qL) denote the standard Lorentz-invariant phase

space for N+1 final-state momenta and for the nonhadronic final state. We also included

the flux factor 1/(2E2
cm), the integral over momentum fractions, the sum over partonic

channels κ, including the desired quark flavors, and the sum over helicities.

As jet resolution variable we use again N -jettiness in eq. (2.3) with the general ge-

ometric measure Qi = ρiωi. We write the N -jet cross section with additional kinematic

constraints X on the jets as

dσ(X)

dTN
=

∫
dΦN

dσ(ΦN )

dTN
X(ΦN ) . (4.6)

In the following, we will discuss the results for dσ(ΦN )/dTN , which is fully differential in

ΦN . For simplicity we only consider the cross section differential in the total sum TN of

the contributions from each jet and beam region as in eq. (2.3).

We define the invariant masses sij , taking into account that a and b are incoming, as

sab = (qa + qb)
2 , sak = (qa − qk)2 , sbk = (qb − qk)2 , skl = (qk + ql)

2 , (4.7)

where k, l 6= {a, b}. We also define the generalized angular measures

ŝij =
2qi ·qj
QiQj

=
|sij |
QiQj

=
ni ·nj
2ρiρj

. (4.8)
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4.2 Standard SCET regime

The N -jettiness factorization for pp collisions was derived for active-parton cross sections

in refs. [21, 49, 70]; the factorization for generalized measures was discussed in ref. [22].8

The factorized N -jettiness cross section for N energetic well-separated jets, sij ∼ Q2, is

given by

dσSCET(ΦN )

dTN
= sκ

∫
dsa dsbBa(sa, xa, µ)Bb(sb, xb, µ)

[ N∏
k=1

∫
dsk Jk(sk, µ)

]
(4.9)

× ~C†(ΦN , µ) Ŝκ

(
TN −

N∑
i=a

si
Qi
, {ŝij}, µ

)
~C(ΦN , µ)

[
1 +O

(m2
J

Q2

)]
.

Here, sκ denotes the symmetry factor for the partonic channel κ, which also accounts for

color averaging for incoming partons. The beam functions Ba,b are the counterparts of

the jet functions Jk for initial states, and depend on the transverse virtualities sa,b and

momentum fractions xa,b. They describe the collinear initial-state radiation contribut-

ing to the measurement of TN and incorporate the nonperturbative parton distribution

functions [38, 70].

The hard matching coefficient ~C(ΦN ) is now a vector and the soft function Ŝκ a

matrix in the nontrivial color space for the N + 2 colored partons participating in the hard

interaction described by eq. (4.1). As discussed in detail in ref. [41], the hard matching

coefficients ~C(ΦN ) are directly related to the IR-finite parts of the color-stripped QCD

helicity amplitudes in dimensional regularization [analogous to eq. (3.18)]. Making its

color decomposition in terms of a color basis Tαa...αNk explicit,9

Cαa...αN =
∑
k

Tαa...αNk Ck ≡ T̄αa...αN · ~C . (4.10)

The conjugate vector ~C† is given by

~C† = C∗αa...αN T̄αa...αN = ~C∗T · T̂κ . (4.11)

with the color sum matrix

T̂κ = (T̄αa,...,αNi )† T̄αa,...,αN . (4.12)

The typically utilized color bases are not orthogonal in which case T̂κ is a nontrivial matrix.

8In this paper, we only consider factorization for the active-parton scattering cross sections, initiated by

incoming quarks or gluons. This avoids the complications associated with the spectator partons present for

incoming hadrons. In a MC context, this corresponds to the primary hard interaction without additional

multi-parton interactions. The associated factorization formulae for inclusive event shapes like N -jettiness

do not include contributions from perturbative Glauber gluon exchange that start at O(α4
s) [71, 72]. These

terms can be incorporated using the Glauber operator framework of ref. [73], but do not affect the additional

factorization in SCET+, which we are primarily interested in here.
9Here the same indices αi are used for both fundamental and adjoint representations.
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The color decomposition of the soft function is given by10

Ŝκ = T̂−1
κ (T̄αa...αN )†Sαa...αN βa...βN

κ T̄ βa...βN , (4.13)

which at tree level reduces to the identity

Ŝ(0)
κ (`) = T̂−1

κ (T̄αa...αN )† δ(`) δαaβa · · · δαNβN T̄ βa...βN = 1 δ(`) . (4.14)

To describe the kinematic jet hierarchies in the general N -jet case, we always assume

that the corresponding nonhierarchical limit where all jets are equally separated and equally

energetic is described in standard SCET by eq. (4.9). We note that while parametrically this

corresponds to counting all sij ∼ Q2, the relevant numerical value for the hard matching

scale µH , at which the matching coefficients ~C(ΦN , µ) are calculated, typically differs by

O(1) factors from the total partonic invariant mass Q. For example, a good choice for

the hard scale for V+ jet would be µH ' pJT (see e.g. ref. [74]). This means we can

describe any processes where there is an underlying hard scattering taking place with a

hard momentum transfer ∼ Q into the final state, to which we then add a number of

additional soft or collinear jets, as discussed in the following subsections and section 5.

An important situation that falls outside the above general class of processes is the

case of purely collinear forward (t-channel) scattering, such as pp → 2 jets with both jets

collinear to one of the beams, for which there is no hard momentum transfer ∼ Q. This

would corresponds to a parametric regime s12 � |s1a|, |s2b|, q2
L and requires a fundamentally

different factorization theorem already in SCET (see ref. [73]). A framework that allows

to resum the single logarithms in this multi-Regge limit, i.e. energetic forward jets with

large rapidity separation and small transverse momenta in t-channel scattering, has been

discussed e.g. in ref. [75]. The soft version of this would be a purely soft scattering, i.e.,

pp → N jets in the limit N � 1 such that all final-state jets are parametrically soft

compared to the total partonic beam energy. In this case there is again effectively no

hard interaction with a hard momentum transfer to the final state, requiring a different

description already in SCET.

4.3 c+ regime

We continue with the case where two jets are close to each other or one jet is close to one

of the beams. Since both cases are very similar and the former was discussed in ref. [7],

we focus on the latter. We take the first jet to be close to the direction of beam a, while

all other jets remain equally energetic and separated, so we have

0 < −t ≡ −s1a � |sij | ∼ Q2 , z =
ω1

ωa
, ŝt = ŝa1 , (4.15)

with {i, j} 6= {1, a}. The factorization procedure follows the two-step matching in sec-

tion 3.2, which separates the process into

κa(qa)→κt(qt)κ1(q1) κc = {κa;κ1, κ
λt
t }

κt(qt)κb(qb)→ κ2(q2) · · ·κN (qN ) κN−1 = {κλtt , κb;κ2, . . . , κN} , (4.16)

10For a degenerate (i.e. nonminimal) color basis T̂−1 is a generalized inverse matrix, i.e. T̂ T̂−1 T̂ = T̂ .
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and analogously for κ′c and κ′N−1 with λt → λ′t. A new feature compared to section 3.2 is

that the helicity of κt can differ between the amplitude and conjugated amplitude, which

can lead to nontrivial spin correlations.

The factorization formula is given by

dσc+(ΦN )

dTN
= sκN−1sκc

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

[ N∏
k=1

∫
dsk Jk(sk, µ)

]
×
∫

dk
∑
λt,λ′t

~C†
c,λ′t

(Φc, µ) Ŝc,κc(k, ρa, ρ1, µ) ~Cc,λt(Φc, µ)

× ~C†
λ′t

(ΦN−1, µ) ŜκN−1

(
TN −

N∑
i=a

si
Qi
−
√
ŝt k, {ŝij}, µ

)
~Cλt(ΦN−1, µ)

×
[
1 +O

(m2
J

t
,
t

Q2

)]
, (4.17)

where sκN−1 and sκc are the symmetry factors for each hard interaction process,

sκcsκN−1 =
1

Ncδκtq + (N2
c − 1)δκtg

sκ . (4.18)

Here, Φc ≡ {κc;λa, λ1, λt; t, z, ϕ} contains all information on the collinear splitting, whose

phase space can be parametrized by the variables t, z, and an azimuthal angle ϕ. There

is no phase-space factor, because the measurement is fully differential and the phase space

factorizes dΦN = dΦN−1 dΦc in the collinear limit [76].

The short-distance scattering process κN−1 is described by the Wilson coefficient
~C(ΦN−1), whose natural scale is µH ∼ Q, and which is a vector in the color space of

the N + 1 colored particles in κN−1. The corresponding soft function ŜκN−1 is built out of

Wilson lines in the directions of these N+1 partons. It depends on the angles {ŝij} of all

well-resolved directions and in addition also on the measures ρa and ρ1 of the closeby jet

and beam that determine the separation between their regions.

The matching coefficient ~Cc(Φc) describes the (universal) κa → κ1κt splitting at the

natural scale µHc ∼
√−t. Although the color space for ~Cc is trivial [see eq. (3.34)],11

T̄ a βγ̄ =
(
T aβγ̄
)
, T̄ abc =

(
ifabc

)
, ~Cc =

(
Cc
)
, (4.19)

we keep our notation more general in anticipation of section 5. The matching coefficients
~Cc,κc can be obtained from the final-state collinear splitting amplitudes (see e.g. ref. [57])

using crossing. At tree level (dropping an irrelevant overall phase), we have

C
(0)

c,{q̄−;g+,q̄−t }
(t, z, ϕ, µ) = −

√
2g

√
1− z√
z 〈a1〉 =

√
2g

1√−t

√
1− z√
z

e−iϕ ,

C
(0)

c,{q̄−;g−,q̄−t }
(t, z, ϕ, µ) =

√
2g

1√
z(1− z) [a1]

= −
√

2g
1√−t

1√
z(1− z)

eiϕ ,

11Charge conjugation invariance prohibits the dabc color structure to all orders in αs. See also the footnote

above eq. (3.34).
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C
(0)

c,{q̄−;q̄−,g+
t }

(t, z, ϕ, µ) = −
√

2g
z

(1− z)〈a1〉 =
√

2g
1√−t

z

1− z e
−iϕ ,

C
(0)

c,{q̄−;q̄−,g−t }
(t, z, ϕ, µ) =

√
2g

1

(1− z)[a1]
= −
√

2g
1√−t

1

1− z e
iϕ ,

C
(0)

c,{g−;g+,g−t }
(t, z, ϕ, µ) = −

√
2g

1− z√
z 〈a1〉 =

√
2g

1√−t
1− z√
z
e−iϕ ,

C
(0)

c,{g−;g−,g−t }
(t, z, ϕ, µ) =

√
2g

1√
z(1− z)[a1]

= −
√

2g
1√−t

1√
z(1− z)

eiϕ ,

C
(0)

c,{g+;g+,g−t }
(t, z, ϕ, µ) =

√
2g

z3/2

(1− z)[a1]
= −
√

2g
1√−t

z3/2

1− z e
iϕ ,

C
(0)

c,{g+;g−,g−t }
(t, z, ϕ, µ) = 0 , (4.20)

where the subscript t labels the off-shell parton κt. We have written these both in terms of

spinor products 〈ij〉, [ij] (see e.g. refs. [77, 78] for a review) of the first two partons in κc
and as function of t and ϕ. For convenience we adopt a spinor convention here such that ϕ

is both the azimuthal angle and the phase. All other channels can be obtained from parity

and charge conjugation invariance, where parity flips all helicities and sends ϕ → π − ϕ
and charge conjugation changes q ↔ q̄.

The parton type of κt is completely fixed by κa and κ1 but its helicity is not, inducing

correlations between ~CκN−1 and ~Cc,κc . The helicity λt of κt in the amplitude and λ′t in

the conjugate amplitude need not be the same and are summed over in eq. (4.17). This

interference shows up when κt is a gluon and introduces a dependence on the azimuthal

angle ϕ in ~Cc. For example,

~C
(0)

c,{q̄−;q̄−,g+
t }

~C
†(0)

c,{q̄−;q̄−,g−t }
(t, z, ϕ, µ) + h.c. = 4g2CFNc 1

1

t

z

(1− z)2
cos 2ϕ , (4.21)

leading to a nonvanishing dependence on the azimuthal angle. It is straightforward to

verify that for κ1 = g in the soft limit z → 0, ~Cc,λt
~C†
c,λ′t

is independent of the gluon helicity

and the azimuthal angle ϕ.

The csoft function Ŝc,κc is fully determined by the 1 → 2 splitting and thus given in

terms of eq. (3.50) by projecting onto the global TN measurement,

Ŝc,κc(k, ρa, ρ1, µ) =
∑
Xcs

〈
0
∣∣T̄ [V †γtαtnt X†γaαana Xγ1α1

n1
]
∣∣Xcs

〉〈
Xcs

∣∣T [X†β1γ1
n1

Xβaγa
na V βtγt

nt ]
∣∣0〉

× T̂−1
κc (T̄αtαaα1)†T̄ βtβaβ1δ

(
k − na ·k(a)

cs

ρa
√
ŝt
− n1 ·k(1)

cs

ρ1

√
ŝt

)
. (4.22)

The Wilson lines Xn and Vn can be either in the fundamental or adjoint representation,

as determined by κc. We emphasize that Ŝc,κc now also depends on ρa/ρ1 because we

no longer assume ρi = 1. The different causal structure of the Wilson lines Xna and Vnt
(which enters through the i0-prescription of the eikonal propagator [79]) does not affect

the perturbative results, at least up to two-loop order [80]. Note that in contrast to Cc,

both ŜκN−1 and Ŝc,κc are spin independent.
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4.4 s+ regime

We now consider the case where the first jet becomes soft but separated from the remaining

energetic jets,

ω1 � ωi 6=1 ∼ Q , ŝij ∼ 1 ⇒ u ∼ |s1k| � |skl| ∼ Q2 (4.23)

with k, l 6= 1. We now use u as the generic soft dijet invariant mass scale. The full process

separates into the hard interaction and soft splitting

κa(qa)κb(qb)→ κ2(q2) · · ·κN (qN ) κN−1 = {κa, κb;κ2, . . . , κN}
→ κ1(q1)κ2(q2) · · ·κN (qN ) κN = {κa, κb;κ1, κ2, . . . , κN} . (4.24)

The factorization procedure follows the same steps as in section 3.3, but now involves the

associated nontrivial color spaces, leading to the factorized cross section

dσs+(ΦN )

dTN
= sκN−1

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

∫
ds1 Jg(s1, µ)

[ N∏
k=2

∫
dsk Jk(sk, µ)

]

× ~C†(ΦN−1, µ) Ĉ†s,κ(ω1, {ni}, µ) Ŝκ

(
TN −

N∑
i=a

si
Qi
, {ŝij}, µ

)
× Ĉs,κ(ω1, {ni}, µ) ~C(ΦN−1, µ)

[
1 +O

(m2
J

u
,
u

Q2

)]
, (4.25)

where sκN−1 = sκN . The hard matching coefficient ~CκN−1 is the same as in eq. (4.17), and

Ŝκ is the same soft function as in eq. (4.9).

The soft jet is gluon initiated (κ1 = g) and generated by the soft splitting amplitude

Ĉs,κ, which is now a matrix converting the (N + 1)-parton color space of ~CκN−1 to the

(N + 2)-parton color space that Ŝκ acts on. It depends on the momentum q1 of the soft

parton as well as the directions of the hard partons in ΦN−1 but not on their helicities.

Its natural scale is µHs ∼ ω1 ∼ u/Q. At tree level, it is given by (see e.g. ref. [63] and

references therein)

Ĉ(0)
s,κ(ω1, {ni}, µ) = g(µ)

∑
i 6=1

Ta1
i

ελ1 · qi
q1 · qi

, (4.26)

where a1 is the color and εµλ1
the polarization vector of the gluon κ1 with helicity λ1.

The polarization vector leads to an angle-dependent phase, which, however, upon squaring

drops out in the cross section. (This is no longer true in more complicated cases that

require us to sum over the polarization at the amplitude level as in eq. (5.15).) Using the

explicit spinor representation of the polarization vectors in eq. (3.5) in terms of an auxiliary

momentum vector kµ, the tree-level matching coefficient reads e.g. for λ1 = +

Ĉ(0)
s,κ(ω1, {ni}, µ) =

√
2g(µ)

∑
i 6=1

Ta1
i

[1|/qi|k〉
〈1i〉[i1]〈k1〉 =

√
2g(µ)

N + 1

∑
i 6=j 6=1

Ta1
i

〈ji〉
〈1i〉〈j1〉 , (4.27)
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where in the second step we averaged over the N+1 different choices of kµ = qµj with j 6= 1

for symmetry reasons and used [1|/qi|j〉 = [1i]〈ij〉.
At the cross section level, the kinematic dependence from Ĉ†s · · · Ĉs arises through the

familiar soft factors

sij
s1i s1j

=
1

ω2
1

2ni ·nj
n1 ·ni n1 ·nj

= −1

2

∑
λ1

ελ1 · qi
q1 · qj

ελ1 · qj
q1 · qj

. (4.28)

However, we emphasize that in contrast to section 3.3 the matching coefficients Ĉs,κ and

Ĉ†s,κ in eq. (4.25) cannot be combined into a hard function matrix in color space. Apart

from this, our result in eq. (4.25) for the factorized cross section in the soft jet limit agrees

with the conjecture for it made in ref. [9].

The color charge operator Ta1
i in eqs. (4.26) and (4.27) transforms the color space from

(N + 1)-parton to (N + 2)-parton color space,

Ta1
i T̄αaαbα2...βi...αN

κN−1
= ta1

αiβi
T̄αaαbα2...βi...αN
κN−1

, (4.29)

where the αi and βi can be in the (anti)fundamental or adjoint representations, while a1 is

always in the adjoint representation since κ1 = g. The dependence on the partonic channel

κ enters through the representation of ta1
αiβi

ta1
αiβi

=


T a1
αiβi

if κi = q ,

−T a1
βiαi

if κi = q̄ ,

ifαia1βi if κi = g ,

(4.30)

where T a1
αiβi

denote the usual SU(3) generators and fαia1βi the structure constants.

At higher orders in perturbation theory, the color of the emitted soft gluon is correlated

to several external legs, resulting in a more involved structure for Ĉs,κ. At one loop [63]

Ĉ(1)
s,κ(ω1, {ni}, µ) = g(µ)

αs(µ)

8π

∑
i 6=j 6=1

if ba1c Tb
i Tc

j

(ελ1 · qi
q1 · qi

− ελ1 · qj
q1 · qj

)[
ln2
(−s1i s1j − i0

sij µ2

)
+
π2

6

]
.

(4.31)

This result can also be obtained directly from the calculation in appendix C by retaining

the general color charge operators. Note that crossing momenta does not affect the overall

sign of the argument of the logarithm in eq. (4.31). Using eq. (4.28) for the argument of the

logarithm, we can see that the natural scale for Ĉs,κ is indeed µHs ∼ ω1 since ni · nj ∼ 1.

The general form of the anomalous dimension for Ĉs,κ can be derived from RG consis-

tency analogous to section 3.3. The additional factorization in the s+ regime with respect

to SCET concerns only the hard matching, ~C(ΦN , µ)|u�Q2 = Ĉs,κ(ω1, {ni}, µ) ~C(ΦN−1, µ),

which requires the µ dependence to satisfy

d

d lnµ
Ĉs,κ(µ) = γ̂CκN ({sij}, µ)

∣∣
u�Q2 Ĉs,κ(µ)− Ĉs,κ(µ) γ̂CκN−1

({sij}, µ) . (4.32)
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The general all-order structure of the hard anomalous dimension follows from the µ inde-

pendence of the cross section (see e.g. refs. [66, 67, 81]) and is given by

γ̂Cκ({sij}, µ) = −Γcusp[αs(µ)]
∑
i<j

Ti ·Tj ln
(−sij − i0

µ2

)
+ γ̂Cκ [αs(µ)] ,

γ̂Cκ(αs) = 1
∑
i

γκiC (αs) +O(α3
s) , (4.33)

where Ti ·Tj ≡
∑

a Ta
iT

a
j . The noncusp anomalous dimension γ̂Cκ(αs) is proportional to

the identity operator and independent of the sij up to two loops [69] but not beyond [51].

Combining eqs. (4.32) and (4.33) yields

d

d lnµ
Ĉs,κ(µ) = −Γcusp[αs(µ)]

{ ∑
i<j 6=1

ln
(−sij − i0

µ2

)[
Ti ·Tj , Ĉs,κ(µ)

]
(4.34)

+
∑
i 6=1

ln
(−s1i − i0

µ2

)
T1 ·Ti Ĉs,κ(µ)

}
+
{
γgC [αs(µ)] +O(α3

s)
}
Ĉs,κ(µ) .

While the two terms proportional to Γcusp in eq. (4.34) separately depend on sij and

s1i, they must combine into logarithms of s1is1j/sij , which only depend on q1 and {ni 6=1},
which imposes a constraint on the color structure of Ĉs,κ. We can check explicitly at one

loop how this happens by inserting the tree-level expression eq. (4.26) into the right-hand

side. Using the color identities

[
Ti ·Tj ,T

a
k

]
= if bac

(
δik Tb

jT
c
k + δjk Tb

iT
c
k

)
for i 6= j 6= 1 ,

(T1 ·Ti T̂k)
a = −if bac Tb

i Tc
k for i, k 6= 1 ,∑

i 6=1

Ta
i = 0 on N+1 parton color space , (4.35)

and the anomalous dimensions in appendix B, we find at one-loop order

d

d lnµ
Ĉs,κ = g(µ)

αs(µ)

2π

[ ∑
i 6=j 6=1

if ba1c Tb
i Tc

j

(ελ1 · qi
q1 · qi

− ελ1 · qj
q1 · qj

)
ln
(−sij − i0

µ2

)
(4.36)

+ 2
∑
i,j 6=1

if ba1c Tb
i Tc

j

ελ1 · qj
q1 · qj

ln
(s1i − i0

µ2

)
− β0

2

∑
i 6=1

Ta1
i

ελ1 · qi
q1 · qi

]

= −g(µ)
αs(µ)

2π

[ ∑
i 6=j 6=1

if ba1c Tb
i Tc

j

(ελ1 · qi
q1 · qi

− ελ1 · qj
q1 · qj

)
ln
(−s1i s1j − i0

sij µ2

)
+
β0

2

∑
i 6=1

Ta1
i

ελ1 · qi
q1 · qi

]
.

This also agrees with directly taking the µ-derivative of Ĉ
(0)
s,κ + Ĉ

(1)
s,κ using eqs. (4.26)

and (4.31).
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4.5 cs+ regime

Finally, we consider the case, where the first jet becomes soft and close to a beam,

0 < −t = −sa1 � u ∼ |s1i| � |sjk| ∼ Q2 , z =
ω1

ωa
, ŝt = ŝa1 (4.37)

for i 6= a and j, k 6= 1, which is in close analogy to the case of a soft jet close to a final-

state jet. The hard process now splits in the same way as in the c+ case in eq. (4.16).

The factorization proceeds as in section 3.4 and the result for the factorized cross section

corresponds to the soft limit of eq. (4.17) or the collinear limit of eq. (4.25),

dσcs+(ΦN )

dTN
= sκN−1sκc

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

∫
ds1 Jg(s1, µ)

×
[ N∏
k=2

∫
dsk Jk(sk, µ)

] ∫
dk ~C†cs,κc(t z, µ) Ŝc,κc(k, ρa, ρ1, µ) ~Ccs,κc(t z, µ)

× ~C†(ΦN−1, µ) ŜκN−1

(
TN −

N∑
i=a

si
Qi
−
√
ŝt k, {ŝij}, µ

)
~C(ΦN−1, µ)

×
[
1 +O

(m2
J

t
,
t

u
,
u

Q2

)]
. (4.38)

The hard coefficient ~C(ΦN−1) as well as the csoft function Ŝc,κc and the soft function ŜκN−1

are the same as in the c+ regime in eq. (4.17).

The Wilson coefficient ~Ccs,κc now describes the collinear-soft splitting at its natural

scale µHcs ∼
√−t z. It can be obtained from the soft limit z → 0 of the collinear matching

coefficient ~Cc,κc , e.g. at tree-level for λ1 = +

C(0)
c,κc(t, z, ϕ, µ)

∣∣
z→0

= −δκ1g δλtλa
√

2g(µ)
1√
z 〈a1〉 = δκ1g δλtλa C

(0)
cs,κc(tz, µ) . (4.39)

The spin correlations and interference effects that were present in the c+ case now vanish

between ~C(ΦN−1) and ~Ccs,κc because the helicity of the initial splitting parton does not

change as shown by the factor δλtλa in eq. (4.39). The associated hard function defined by12

sκĤcs,κc(t z, µ) = sκN−1sκc
~Ccs,κc(t z, µ) ~C†cs,κc(t z, µ) (4.40)

thus has at leading order the familiar expression

Ĥ(0)
cs,κc(t z, µ) = 8παs(µ)

1

−t z T2
t . (4.41)

Alternatively, ~Ccs,κc can be obtained from the collinear limit sa1/s1i ∼ t/u→ 0 of Ĉs,κ,

resulting in a dependence only on the one-dimensional color space related to the subprocess

κc. Using eq. (4.27) for the tree-level expression of Ĉs,κ with λ1 = +, only terms with i = a

12We include the color averaging factors for the sake of a common normalization with the soft jet case.
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or j = a contribute at leading order in the collinear limit, which yields

Ĉ(0)
s,κ

∣∣∣
|t|�u

=

√
2g(µ)

N + 1

(
Ta1
a

∑
j 6=1,a

〈ja〉
〈1a〉〈j1〉 +

∑
i 6=1,a

Ta1
i

〈ai〉
〈1i〉〈a1〉

)
= −
√

2g(µ) Ta1
a

1√
z 〈a1〉 = Ta1

a C
(0)
cs,κc ≡ T̄ a1αaβa

κc · ~C(0)
cs ≡ Ĉ(0)

cs,κc , (4.42)

where we used

〈1i〉 =
√
z〈ai〉

[
1 +O

(√
|t|/u

)]
for i 6= a, 1 ,∑

i 6=1

Ta1
i = 0 on (N+1)-parton color space. (4.43)

In the last line of eq. (4.42) we highlighted that the internal one-dimensional color space

of ~Ccs behaves as a color matrix proportional to the color charge operator Ta1
a , going from

(N + 1)-parton to (N + 2)-parton color space. In other words, the internal color space of

the 1→ 2 splitting comes as a tensor product with the (N + 1)-parton color space.

To see more explicitly that the collinear limit of the s+ regime coincides with cs+

regime at the level of the factorization theorem, we first note that also the soft functions

need to satisfy

Ŝκ(`, {ŝij}, µ)
∣∣
|t|�u =

1

T2
a

∫
dk T̂aŜκN−1

(
`−
√
ŝt k, {ŝij}, µ

)
T̂†a⊗ Ŝc,κc(k, ρa, ρ1, µ) , (4.44)

where T̂a corresponds to the action of Ta1
a . This agrees with eq. (6.38) of ref. [7] (where

T̂t = T̂a since we are in the soft limit). The ⊗ indicates that ŜκN−1 and Ŝc,κc formally live

in different color spaces. Thus we can write

~C†κN−1
Ĉ†s,κ Ŝκ Ĉs,κ

~CκN−1

∣∣∣
|t|�u

= T2
a ( ~C∗cs,κc)

T Ŝc,κc ~Ccs,κc × ~C†κN−1
ŜκN−1

~CκN−1 (4.45)

=
sκN−1sκc

sκ
~C†cs,κc Ŝc,κc

~Ccs,κc × ~C†κN−1
ŜκN−1

~CκN−1 ,

using ( ~C∗cs,κc)
T = ~C†cs,κc T̂

−1
κc with T̂κc = T2

a[Ncδκaq + (N2
c − 1)δκag] and eq. (4.18).

This demonstrates the relation between the factorization theorems in eqs. (4.25)

and (4.38) explicitly.

Finally, we also give the one-loop result for the hard function Ĥcs,κc , which is in direct

correspondence to the expression for Ĉ
(1)
s,κ in eq. (4.31),13

Ĥ(1)
cs,κc(t z, µ) =

[
Ĉ(0)
s,κĈ

(1)†
s,κ + Ĉ(1)

s,κĈ
(0)†
s,κ

]
|t|�u

= −2α2
s(µ)

∑
i 6=j 6=1,a

if ba1c Ta1
i Tb

aT
c
j

sia
s1is1a

[
ln2
(−s1as1j − i0

sajµ2

)
+
π2

6

]
+ h.c.

= 8παs(µ) T2
a

1

t z

αs(µ)CA
4π

[
ln2
(−t z − i0

µ2

)
− 5π2

6

]
, (4.46)

13The result is independent of λ1. Since we consider fixed helicity, eq. (4.46) differs by a factor of 1/2

with respect to eq. (3.63), in addition to phase space factors that we have not included here.
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using the relations in eq. (4.43). The fact that only in the collinear limit the soft splitting

amplitude collapses onto a one-dimensional color subspace, which renders the expression

for Ĥcs,κc independent of all widely separated partons, represents a key difference to the

case of e+e− → 3 jets, where Ĥ3,cs = Ĥ3,s holds without any additional expansion.

5 Multiple hierarchies

Up to this point we have restricted our attention to kinematic hierarchies induced by one

splitting process, resulting in one soft jet or two nearby jets (or their combination). For

e+e− → 3 jets this describes all possible kinematic configurations. However, for pp → N

jets, we can encounter more complicated kinematic hierarchies. These can arise due to

splitting processes at different scales, which can be independent (section 5.1) or strongly

ordered in energies or angles (section 5.2). In addition, multiple emissions can arise from

the same splitting, which we discuss in section 5.3.

5.1 Independent hierarchies

First we discuss the case that jet hierarchies arise from splitting processes in separate

sectors, which allows us to perform the respective matching steps independently of each

other. If collinear splittings occur in different collinear sectors leading to independent pairs

of nearby jets or beams, they are described by iterating the results in section 4.3. The

same naturally holds when some of these splittings are collinear-soft. All these cases can

also be combined with a single soft jet, as we now discuss in the context of an example.

We consider a kinematic hierarchy with one soft jet (labelled as 1) and two nearby jets

(labelled as 2 and 3), such that

ω1 � ωi ∼ Q , s23 � |sij | ∼ Q2 , z =
ω2

ω2 + ω3
(5.1)

with i 6= j 6= 1. This situation is relevant in the context of jet substructure, when perform-

ing the first step in the resummation of the leading nonglobal logarithms in the dressed

gluon approximation of ref. [9] for a resolved pair of jets next to each other.

The soft and collinear splittings are independent of each other since the resolved

collinear emission only affects the sectors originating from the n23-collinear mode describing

the parent fat jet above the scale s23 and since the soft emission does not resolve the two

nearby jets at leading order in the power counting. The partonic content of the associated

subprocesses is given by

κa(qa)κb(qb)→ κt(qt)κ4(q4) · · ·κN (qN ) κN−2 = {κa, κb;κλtt , κ4, . . . , κN}
→ κ1(q1)κt(qt)κ4(q4) · · ·κN (qN ) κN−1 = {κa, κb;κ1, κ

λt
t , κ4, . . . , κN}

κt(qt)→ κ2(q2)κ3(q3) κc = {κλtt ;κ2, κ3} . (5.2)
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Applying the results from sections 4.3 and 4.4 the active-parton factorization reads

dσ+(ΦN )

dTN
= sκN−2

sκc

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

∫
ds1 Jg(s1, µ)

[ N∏
k=2

∫
dsk Jk(sk, µ)

]
×
∫

dk
∑
λt,λ′t

~C†c,λ′t
(s23, z, ϕ, µ) Ŝc,κc

(k, µ) ~Cc,λt
(s23, z, ϕ, µ)

× ~C†λ′t
(ΦN−2, µ) Ĉ†s,κN−1

(ω1, {ni}κN−1
, µ) ŜκN−1

(
TN −

N∑
i=a

si
Qi
−
√
ŝ23 k, {ŝij}, µ

)
× Ĉs,κN−1

(ω1, {ni}κN−1
, µ) ~Cλt(ΦN−2, µ)

[
1 +O

(m2
J

s23
,
m2
J

Qω1
,
ω1

Q
,
s23

Q2

)]
, (5.3)

We stress that the relative hierarchy between the invariant mass scales of the soft and

collinear splitting, µ2
Hs
∼ s1is1j/sij ∼ ω2

1 and µ2
Hc
∼ s23, is irrelevant for setting up the

factorization in this case.

5.2 Strong ordering in angles or energies

Moving on to more complicated hierarchies, we consider the case where the consecutive

hierarchies are strongly ordered in their angles or energies (this condition will be relaxed in

section 5.3). The strong ordering enables an iterative treatment. We separately consider

the case of multiple jets that are close to each other with a strong ordering in their angles

and multiple soft jets with a strong ordering in their energies. These two cases can be

combined as in section 5.1 if they involve independent sectors.

5.2.1 Strong ordering in angles

Let us start by considering the case where all jets are equally energetic, ωi ∼ Q, and M

jets are close to each other ordered in their angles. (The case of M−1 jets close to a beam

is related by crossing, requiring minor modifications as in section 4.3.) This is described

by iterating the c+ in sections 3.2 and 4.3, where in each successive step the virtuality is

lowered and an additional (proto)jet becomes separately resolved, building a tree of 1 → 2

splittings. Strong ordering requires that angles are parametrically smaller as one follows

any path down this tree, but angles of independent branches do not have to be strongly

ordered with respect to each other (see section 5.1). This picture resembles a parton shower

but is not limited to leading-logarithmic accuracy.

To illustrate this with a specific example, we take M = 3 with

s12 � s123 � Q2 , ωi ∼ Q . (5.4)

The partonic process is separated into

κa(qa)κb(qb)→κ123(q123)κ4(q4) · · ·κN (qN ) κN−2 = {κa, κb;κλ123
123 , κ4, . . . , κN}

κ123(q123)→ κ12(q12)κ3(q3) κc = {κλ123
123 ;κλ12

12 , κ3}
κ12(q12)→ κ1(q1)κ2(q2) κ̃c = {κλ12

12 ;κ1, κ2} . (5.5)
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The helicities of κ123 and κ12 in the amplitude are denoted by λ123, λ12 and in the conjugate

amplitude by λ′123, λ
′
12, encoding spin correlations between the hard process at the scale

µ ∼ Q and the two collinear splittings. The corresponding factorization formula is given by

dσ+(ΦN )

dTN
= sκN−2sκcsκ̃c

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

[ N∏
k=1

∫
dsk Jk(sk, µ)

]
×
∫

dk
∑

λ123,λ′123

~C†
c,λ′123

(s123, z1 + z2, ϕ, µ) Ŝc,κc(k, µ) ~Cc,λ123(s123, z1 + z2, ϕ, µ)

×
∫

dk̃
∑

λ12,λ′12

~C†
c,λ′12

(
s12,

z1

z1 + z2
, ϕ̃, µ

)
Ŝc,κ̃c(k̃, µ) ~Cc,λ12

(
s12,

z1

z1 + z2
, ϕ̃, µ

)

× ~C†
λ′123

(ΦN−2, µ) ŜκN−2

(
TN −

N∑
i=a

si
Qi
−
√
ŝ123 k −

√
ŝ12 k̃, {ŝij}, µ

)
× ~Cλ123(ΦN−2, µ)

[
1 +O

(m2
J

s12
,
s12

s123
,
s123

Q2

)]
, (5.6)

with

ŝ12 =
s12

Q1Q2
, ŝ123 =

s123

(Q1 +Q2)Q3
, zi ≡

ωi
ω1 + ω2 + ω3

. (5.7)

The csoft function Ŝc,κ̃c communicates between the jets 1 and 2 at the natural scale µ ∼
m2
J/
√
s12 and is the same as in eq. (4.22). The Ŝc,κc describes the csoft radiation between

the protojet (12) and jet 3 at the scale µ ∼ m2
J/
√
s123. It has the same Wilson line structure

as in eq. (4.22) and is given by

Ŝc,κc(k, µ) =

∫
dk1 dk2 dk3 Ŝc,κc(k1, k2, k3, µ) δ(k − k1 − k2 − k3) , (5.8)

where

Ŝc,κc(k1, k2, k3, µ) =
∑
Xcs

〈
0
∣∣T̄ [V †γαn123

Xγ3α3
n3

X γ̃α̃
n12

]
∣∣Xcs

〉〈
Xcs

∣∣T [X†β̃γ̃n12
X†β3γ3
n3

V βγ
n123

]
∣∣0〉

× T̂−1
κc (T̄αα̃α3)†T̄ ββ̃β3δ

(
k3 −

n3 ·k(3)
cs

ρ3

√
ŝ123

) 2∏
i=1

δ
(
ki −

n12 ·k(i)
cs

ρi
√
ŝ123

)
. (5.9)

The representations of the Wilson lines X and V and the color indices αi, βi, γi are deter-

mined by κc. It now resolves the contribution to the measurement of T (1)
N , T (2)

N , and T (3)
N .

Even though there is only one Wilson line in the combined n12 direction, the measurement

is separated into k1 and k2. This is analogous to the soft function Ŝqq̄ in eq. (3.53), which is

built out of two Wilson lines but separates the contribution to T3 from all three jet regions.

5.2.2 Strong ordering in energies

We next consider the case where the first M jets are soft and strongly ordered in their

energies, while all jets are well separated,

ω1 � ω2 � · · · � ωM � ωk ∼ Q , ŝij ∼ 1 . (5.10)
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where k /∈ {1, . . . ,M}. This is described by iterating the s+ regime in sections 3.3 and 4.4

and corresponds to a sequential rather than a tree-like structure.

For example, for M = 2 this involves the subprocesses

κa(qa)κb(qb)→ κ3(q3) · · ·κN (qN ) κN−2 = {κa, κb;κ3, . . . , κN}
→ κ2(q2)κ3(q3) · · ·κN (qN ) κN−1 = {κa, κb;κ2, κ3, . . . , κN}
→ κ1(q1)κ2(q2)κ2(q2) · · ·κN (qN ) κN = {κa, κb;κ1, κ2, κ3, . . . , κN} .

(5.11)

The corresponding factorization formula is given by

dσ+(ΦN )

dTN
= sκN−2

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

∫
ds1 ds2 Jg(s1, µ) Jg(s2, µ)

×
[ N∏
k=3

∫
dsk Jk(sk, µ)

]
~C†(ΦN−2, µ) Ĉ†s,κN−1

(ω2, {ni}κN−1 , µ) Ĉ†s,κ(ω1, {ni}, µ)

× Ŝκ
(
TN −

N∑
i=a

si
Qi
, {ŝij}, µ

)
Ĉs,κ(ω1, {ni}, µ) Ĉs,κN−1(ω2, {ni}κN−1 , µ)

× ~C(ΦN−2, µ)

[
1 +O

( m2
J

Qω1
,
ω1

ω2
,
ω2

Q

)]
. (5.12)

In the strongly ordered limit all soft jets are initiated by a gluon. The soft splitting

coefficients Ĉs,κ successively promote the color space from N -parton to (N+1)-parton and

from (N + 1)-parton to (N + 2)-parton color space, respectively.

5.2.3 Correlated strong ordering in angles and energies

Finally, we also discuss the case with soft jets close to each other arising from an ordered

sequence of soft and collinear splittings. As an example, we consider the situation where a

soft jet further splits into two collinear jets, corresponding to the partonic subprocesses

κa(qa)κb(qb)→ κ3(q3) · · ·κN (qN ) κN−2 = {κa, κb;κ3, . . . , κN}
→ κ12(q12)κ3(q3) · · ·κN (qN ) κN−1 = {κa, κb;κλ12

12 , κ3, . . . , κN}
κ12 → κ1(q1)κ2(q2) κc = {κλ12

12 ;κ1, κ2} , (5.13)

where κ12 = g. This is characterized by the kinematic hierarchies

ω1 ∼ ω2 � ωi 6=1,2 ∼ Q , ŝ12 � ŝij ∼ 1 ⇒ u ∼ s1k ∼ s2k � Q2 , s12 �
s1ks2l

sk`
,

(5.14)
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with k, ` 6= 1, 2. Combining the results in sections 4.3 and 4.4 yields the factorized

cross section

dσ+(ΦN )

dTN
= sκN−2sκc

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

[ N∏
k=1

∫
dsk Jk(sk, µ)

]
(5.15)

×
∫

dk
∑

λ12,λ′12

~C†
c,λ′12

(s12, z, ϕ, µ) Ŝc,κc(k, µ) ~Cc,λ12(s12, z, ϕ, µ)

× ~C†(ΦN−2, µ) Ĉ†
s,κN−1,λ

′
12

(ω1 + ω2, {ni}κN−1 , µ)

× ŜκN−1

(
TN −

N∑
i=a

si
Qi
−
√
ŝ12 k, {ŝij}, µ

)
× Ĉs,κN−1,λ12(ω1 + ω2, {ni}κN−1 , µ) ~C(ΦN−2, µ)

[
1 +O

(m2
J

s12
,
Q2s12

u2
,
u

Q2

)]
.

As discussed in section 4.4 the spin interference effects between the hard process at the

scale µ ∼ Q and the soft splitting vanish, but in general they do not between the soft and

collinear splitting processes, since the helicity of the soft gluon is not fixed. Therefore, we

have explicitly denoted the dependence of Ĉs,κN−1 on the helicity of the soft gluon λ12.

5.3 Beyond strong ordering

Having discussed the strongly-ordered case, we now discuss situations where several jets

exhibit a hierarchy with respect to the remaining energetic and well-separated jets, but not

among each other, i.e. where multiple soft or collinear jets originate from the same sector

at the same scale.

5.3.1 Multiple collinear emissions

First we discuss the case of M energetic jets being close to each other without any special

ordering in the angles between them,

t ∼ sij � sik ∼ sk` ∼ Q2 , ωi ∼ ωj ∼ Q , (5.16)

where i, j ∈ {1, . . . ,M} and k, ` /∈ {1, . . . ,M}. The corresponding partonic process is

κa(qa)κb(qb)→κt(qt)κM+1(qM+1) · · ·κN (qN ) κN−M = {κa, κb;κλtt , κM+1, . . . , κN}
κt(qt)→ κ1(q1) · · ·κM (qM ) κc = {κλtt ;κ1, . . . , κM} . (5.17)

Taking for example M = 3, this leads to the factorized cross section

dσ+(ΦN )

dTN
= sκN−2sκc

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

[ N∏
k=1

∫
dsk Jk(sk, µ)

]
(5.18)

×
∫

dk
∑
λt,λ′t

~C†
cc,λ′t

(Φcc, µ) Ŝcc,κc(k, {ŝij}κc , µ) ~Ccc,λt(Φcc, µ)

× C†
λ′t

(ΦN−2, µ) ŜκN−2

(
TN −

N∑
i=a

si
Qi
−
√
ŝ123 k, {ŝij}κN−2 , µ

)
C†λt(ΦN−2, µ)

×
[
1 +O

(m2
J

t
,
t

Q2

)]
,
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where we define

t = s123 = (q1 + q2 + q3)2 , ŝ123 =
s123

Q1Q2 +Q1Q3 +Q2Q3
, zi =

ωi
ω1 + ω2 + ω3

. (5.19)

An interesting new feature is that the color space of ~Ccc,κc and Ŝcc,κc is now nontrivial.

The matching coefficient ~Ccc,κc(Φc, µ) describes the collinear 1 → 3 splitting at the scale

µ ∼
√
t, and we denoted with Φcc the 3-body collinear phase space. It can be extracted at

tree level from the 1 → 3 collinear splitting amplitudes in refs. [82–84]. For example, for

q → qQ̄Q (with different quark flavors Q 6= q) the collinear splitting amplitudes read

~Ccc,{q+
t ;q+Q̄−Q+}(q1, q2, q3) = −g2 1

s23

[√
z1z2z3

1− z1
+

[13](
√
z1〈12〉 − √z3〈23〉)

s123

](
1

−1/Nc

)
,

~Ccc,{q−t ;q−Q̄−Q+}(q1, q2, q3) = ~Ccc,{q+
t ;q+Q̄−Q+}(q1, q3, q2) , (5.20)

where we used the color basis

T̄ βᾱδγ̄ =
(
δβγ̄δδᾱ, δβᾱδδγ̄

)
. (5.21)

In the strongly-ordered limit, this reduces to the product of two 1 → 2 splitting coefficients,

which will reproduce the result in section 5.2.1,

Cβᾱδγ̄
cc,{q+

t ;q+Q̄−Q+}

∣∣∣
s12�s123

=
∑
λg

Caβᾱc,λgλq
Caδγ̄c,λgλQ

. (5.22)

One can check this relation at tree level using the explicit results for the collinear splitting

amplitudes in ref. [57] (related to the ones given in eq. (4.20) via crossing) and eq. (5.20).

Note that the leading 1/s23 term in eq. (5.20) cancels, which requires a careful expansion

up to order 1/
√
s23s123, as pointed out e.g. in refs. [85, 86].

The csoft function Ŝcc,κc characterizes the csoft radiation exchanged between the 3

nearby jets at the scale µ = m2
J/
√
t,

Ŝcc,κc(k, {ŝij}κc , µ) = T̂−1
κc (T̄αtα1α2α3)†Ŝαtα1α2α3 βtβ1β2β3

cc,κc (k, {ŝij}κc , µ) T̄ βtβ1β2β3

=
∑
Xcs

〈
0
∣∣∣T̄[V †γtαtnt

3∏
i=1

Xγiαi
ni

]∣∣∣Xcs

〉〈
Xcs

∣∣∣T[ 3∏
i=1

Xβiγi
ni V βtγt

nt

]∣∣∣0〉

× T̂−1
κc (T̄αtα1α2α3)†T̄ βtβ1β2β3δ

(
k −

3∑
i=1

ni ·k(i)
cs

ρi
√
ŝ123

)
. (5.23)

The representation of the Wilson lines Vnt and Xni are determined by the parton κi.

Unlike in eqs. (3.50) and (4.22), the function now depends on several invariants, namely

the generalized angles ŝij = 2qi·qj/(QiQj) = ni·nj/(2ρiρj) and the ρi with i 6= j ∈ {1, 2, 3}.
However, the typical angular scale is still

√
ŝ123 which we pull out front.
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Using that at tree level Ŝ
(0)
cc,κc = 1 δ(k), and summing (averaging) over the outgoing

(incoming) helicities, leads to the q → qQ̄Q tree-level splitting function [87]

1

2

∑
λ=λ′

~C(0)†
cc,κc(Φcc, µ) Ŝ(0)

cc,κc(k, {ŝij}κc , µ) ~C(0)
cc,κc(Φcc, µ)

=
2g4CFTF
s23s123

[
− 1

s23s123

(
2
z2s13−z3s12

z2+z3
+
z2−z3

z2+z3
s23

)2
+

4z1+(z2−z3)2

z2+z3
+z2+z3−

s23

s123

]
δ(k)

≡ Pq→qQ̄Q δ(k) (5.24)

5.3.2 Multiple soft emissions

Next we discuss the case where all jets are equally separated and the first M jets are soft

without any special ordering in their energies,

ωi ∼ ωj � ωk ∼ Q , ŝij ∼ ŝik ∼ ŝk` ∼ 1 ⇒ u ∼ sik � sk` ∼ Q2 . (5.25)

with i, j ∈ {1, . . . ,M} and k, ` /∈ {1, . . . ,M}. The partonic process separates as

κa(qa)κb(qb)→ κM+1(qM+1) · · ·κN (qN ) κN−M = {κa, κb;κM+1, . . . , κN}
→ κ1(q1) · · ·κN (qN ) κN = {κa, κb;κ1, . . . , κN} . (5.26)

This case involves the soft splitting amplitudes for M particles and is a straightforward

generalization of eq. (4.25). For example, for M = 2 we get

dσ+(ΦN )

dTN
= sκN−2

∫
dsadsbBa(sa, xa, µ)Bb(sb, xb, µ)

[ N∏
k=1

∫
dsk Jk(sk, µ)

]

× ~C†(ΦN−2, µ) Ĉ†ss,κ(ω1, ω2, {ni}, µ) Ŝκ

(
TN −

N∑
i=a

si
Qi
, {ŝij}, µ

)
× Ĉss,κ(ω1, ω2, {ni}, µ) ~C(ΦN−2, µ)

[
1 +O

(m2
J

u
,
u

Q2

)]
, (5.27)

The matching coefficients Ĉss,κ have as natural scale µ ∼ u/Q and are given in terms of

soft splitting amplitudes. They are now matrices going from N -parton to (N + 2)-parton

color space. The soft jets no longer have to be gluon jets, since a soft gluon can split into

a soft qq̄-pair. The tree-level expressions for Ĉss can be obtained from refs. [82, 83]. For

the emission of two soft gluon jets we have

Ĉ(0)
ss,κ = g2

{ ∑
i 6=j 6=1,2

Ta1
i

ελ1·qi
q1 ·qi

Ta2
j

ελ2·qj
q2 ·qj

+
∑
i 6=1,2

[(
δa1aTa2

i

ελ2·qi
q2 ·qi

− ifa2a1a ελ2·q1

q1 ·q2

)
Ta
i

ελ1·qi
(q1 + q2)·qi

+
1

4
ifaa1a2Ta

i

ελ1·ελ2

q1 ·q2

(q2 − q1)·qi
(q1 + q2)·qi

+ (1↔ 2)

]}
. (5.28)
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If the energies of the gluons are strongly ordered, this reduces to the iteration of the Ĉs,κ
as in eq. (5.12). At tree level, we have

Ĉ(0)
ss,κ

∣∣∣
s1k�s2k

= g2

( ∑
i,j 6=1,2

Ta1
i

ελ1·qi
q1 ·qi

Ta2
j

ελ2·qj
q2 ·qj

+
∑
i 6=1,2

ifa2a1a ελ1·q2

q1 ·q2
Ta
i

ελ2·qi
q2 ·qi

)
= g2

∑
i 6=1

Ta1
i

ελ1·qi
q1 ·qi

∑
j 6=1,2

Ta2
j

ελ2·qj
q2 ·qj

= Ĉ(0)
s,κ Ĉ

(0)
s,κN−1

, (5.29)

where we used that (Ta1
2 )a2a′2

= ifa2a1a′2 and the tree-level expression in eq. (4.26).

5.3.3 Remaining cases

The case of several soft jets close to energetic jet(s) combines the features of eqs. (5.18)

and (5.27). It leads to the color structure and soft functions in eq. (5.18). As the soft jets

arise from collinear-soft emissions, the corresponding matching coefficient is the analogue

of Ĉss on the set of the nearby jets, see eq. (3.71). One can also encounter the situation

of several nearby jets which are partially hierarchically ordered in their energies, but not

in their angles, leading to collinear and collinear-soft splittings at different invariant mass

scales and a communication via a common collinear-soft function that depends on all of

their directions.

The factorization formulae in this section (and their generalizations) can be combined

with those describing the strongly-ordered kinematics following the same logic as in sec-

tions 2.5 and 3.5. This allows one to cover the complete jet phase space and all possible

jet hierarchies and thus to systematically resum all kinematic logarithms. For multiple jets

the number of possible kinematic hierachies quickly proliferates. In practice, the number of

relevant cases can be greatly reduced by imposing restrictions on the jet kinematics one is

interested in and the perturbative accuracy one aims to achieve. For example, any hierar-

chy for which a fixed-order description is sufficient can be ignored and is then automatically

included via the nonsingular matching corrections.

6 Conclusions

Processes with multiple jets in the final state depend on several hard kinematic variables,

like the jet energies and invariant masses between jets, generating large logarithms in

the cross section whenever there are sizable hierarchies between the corresponding kine-

matic scales. This is in fact the generic situation, due to the enhancement of soft and

collinear emissions in QCD. To obtain precise predictions with well-controlled perturba-

tive uncertainties, the systematic resummation of these kinematic logarithms beyond the

leading-logarithmic accuracy provided by the parton shower is needed. This is particularly

relevant at the LHC, where there is plenty of phase space and a large kinematic range

between the highest probed scales at ∼ few TeV to the lowest jet energies at ∼ 30 GeV.

We constructed the effective field theory framework that enables the systematic re-

summation of kinematic logarithms for generic jet hierarchies in multijet hard-scattering
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processes through RG equations. We have presented this in detail for all hierarchies for

e+e− → 3 jets, and discussed a representative set of the general pp→ N jet case, demon-

strating how to handle the complications arising from the large number of possible hierar-

chies and due to spin and color correlations. Our framework allows for a combination of

the results for the various different regimes via a sequence of nonsingular corrections that

avoids double counting. Although we have mainly focused on jets defined via a SCETI

jet resolution variable like N -jettiness, the SCET+ framework is general and applicable

also to other jet definitions and resolution variables like a SCETII-type pT -veto applied in

jet binning, since in particular the factorization in the hard sector is independent of the

specific jet definition.

Important applications of our framework include jet substructure analyses and jet bin-

ning. Though the numerical implementation is beyond the scope of this work and left for

future work, the necessary perturbative ingredients are generically known for the resumma-

tion up to NNLL, which requires the full one-loop matching corrections and two-loop non-

cusp anomalous dimensions. In particular, our results for the exclusive N -jet cross sections

from SCET+ can be used to systematically improve upon the LL description of kinematic

logarithms in parton showers, for example by incorporating them into the Geneva Monte

Carlo framework [88–90] or possibly by extending the MINLO method [91–93]. Further-

more, in ref. [9] it was argued that nonglobal logarithms can be systematically accounted for

by considering and marginalizing over increasingly resolved hierarchical multijet configura-

tions, for which the kinematic logarithms can be resummed. Our results make it possible to

explicitly carry out this procedure to higher perturbative accuracy and subleading orders.

Differential measurements with jets play an increasingly important role in collider physics

and the aim of our SCET+ framework is to improve the theoretical predictions and to

better control perturbative uncertainties in multijet processes.
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A SCET notation and conventions

In this appendix we briefly summarize the common SCET notation we use. The momentum

of a particle in the n-collinear direction is decomposed into a large label momentum p̃µn
with respect to the n-collinear direction and a small residual momentum kµ of order Qλ2,

pµn = p̃µn + kµ , p̃µn = n̄·p̃ n
µ

2
+ p̃µn⊥ ∼ Q(0, 1, λ) , kµ ∼ Q(λ2, λ2, λ2) . (A.1)
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The n-collinear quark and gluon fields with label momentum p̃µn are denoted by ξn,p̃(x
µ)

and Aµn,p̃(x
µ), where the coordinate xµ is conjugate to the residucal momentum kµ. The

label operator Pµn picks out the label momentum of a field, Pµn ξn,p̃ = p̃µ ξn,p̃, while deriva-

tives acting on the fields pick out the residual momentum dependence, i∂µ ∼ kµ. We are

often only interested in the label n for the collinear direction, ξn and Aµn, which implies

that the momentum labels are implicitly summed over subject to overall label momen-

tum conservation.

The operators appearing in the hard-scattering Lagrangian are constructed from fields

and Wilson lines that are invariant under collinear gauge transformations [2, 3]. The

smallest building blocks are collinearly gauge invariant quark and gluon fields, which are

defined as

χn,ω(x) =
[
δ(ω − n̄·Pn)W †n(x) ξn(x)

]
,

Bµn,ω⊥(x) =
1

g

[
δ(ω + n̄·Pn)W †n(x) iDµ

n⊥(x)Wn(x)
]
. (A.2)

With these standard conventions, ω > 0 for an incoming quark or outgoing gluon and

ω < 0 for an outgoing antiquark or incoming gluon. The collinear covariant derivative

is given by iDµ
n⊥ = Pµn⊥ + gAµn⊥, and Wn(x) is a Wilson line of n-collinear gluons in

label-momentum space

Wn(x) =

[ ∑
perms

exp
( −g
n̄·Pn

n̄·An(x)
)]
. (A.3)

The usoft fields Aµus couple to the collinear fields via the usoft covariant derivative

iDµ
us = i∂µ + gAµus. These interactions in the collinear Lagrangians are eliminated by the

field redefinition [4]

χn,ω(x) = Yn(x)χ(0)
n,ω(x) , Bµn,ω⊥(x) = Yn(x)Bµ(0)

n,ω⊥(x)Y †n (x) , (A.4)

where Yn(x) denotes the ultrasoft Wilson line along the n direction,

Yn(x) = P exp

[
−ig

∫ ∞
0

ds n·Aus(snµ + xµ)

]
, (A.5)

and P denotes anti-path-ordering. Usually we do not display the superscript (0) explicitly

on the redefined fields for notational simplicity.

B Anomalous dimensions

Here we give explicit expressions for the cusp and noncusp anomalous dimensions of the

hard Wilson coefficient in eqs. (3.69) and (4.33) and the β function. Using the expansions

β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, Γcusp(αs) =

∞∑
n=0

Γn

(αs
4π

)n+1
, (B.1)
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the one-loop and two-loop coefficients in the MS scheme are given by [68, 94, 95]

β0 =
11

3
CA −

4

3
TF nf , β1 =

34

3
C2
A −

(20

3
CA + 4CF

)
TF nf ,

Γ0 = 4 , Γ1 =
(268

9
− 4π2

3

)
CA −

80

9
TF nf , (B.2)

with Γqn = CFΓn and Γgn = CAΓn.

For the noncusp anomalous dimensions of the quark and gluon form factors

γiC(αs) =

∞∑
n=0

γiC n

(αs
4π

)n+1
, (B.3)

the coefficients are [96, 97]

γqC 0 = −3CF , γqC 1 = −CF
[(

41

9
− 26ζ3

)
CA +

(
3

2
− 2π2 + 24ζ3

)
CF +

(
65

18
+
π2

2

)
β0

]
,

γgC 0 = −β0 , γgC 1 =

(
−59

9
+ 2ζ3

)
C2
A +

(
−19

9
+
π2

6

)
CAβ0 − β1 . (B.4)

C Hard splitting functions in SCET+

In this appendix, we explain how to directly calculate the hard splitting functions Hc, Hs,

and Hcs for e+e− → 3 jets discussed in section 3. We use this specifically to compute Hs

at one loop and to extract the two-loop result from available results in the literature.

C.1 Calculational prescription

The hard function Hc can be directly computed from the matching within a single collinear

sector in SCET using the fact that the associated loop diagrams in SCET+ are scaleless

and vanish in pure dimensional regularization. Following a similar line of reasoning as

discussed above eq. (3.18), we can write Hc for the collinear splitting q → gq, i.e. for the

partonic channel κc = {q; g, q}, as

Hc,{q;g,q}(t, z, µ) =

∣∣∣∣Zg qq̄,cZqq̄

∣∣∣∣2 1

4πNcQ3

∑
q,g

∫
d4x ei t

2Qx
−

tr
[〈

0
∣∣∣ /̄n
2
χn(x)

∣∣∣gq〉〈gq∣∣χ̄n,Q(0)
∣∣0〉]δp̃−g ,zQ

=

∣∣∣∣Zg qq̄,cZqq̄

∣∣∣∣2 (2π)3

NcQ2

∫
d3pq

(2π)32p0
q

∫
d3pg

(2π)32p0
g

∑
color,spins

∣∣Mc

(
0→ g(pg)q(pq)

)∣∣2
× δ(Q− p−q − p−g ) δ2(pq⊥ + pg⊥) δ[t−Q(p+

q + p+
g )] δ

(
z − p−g

Q

)
. (C.1)

The factor Zg qq̄,c indicates the common counterterm of the operators Oaᾱβλg(λq ;λ`)
in the c+

regime with three collinear directions in analogy to eq. (3.17), while Zqq̄ is the counterterm

of the qq̄ operators Oᾱβ(λq ;λ`)
in eq. (3.29). The states |g〉 and |q〉 in the first line of eq. (C.1)

denote on-shell gluon and quark states with momenta pµg = p̃µg + kµg and pµq = p̃µq + kµq ,

respectively, which we have split up into label and residual components in SCET as in

eq. (A.1). The spins and polarizations are summed over and the trace runs also over color
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indices. The second line of eq. (C.1) represents the direct computational prescription in

terms of the collinear amplitude Mc

(
0 → g(pg)q(pq)) obtained from the collinear SCET

Feynman rules.

Similarly, the hard function Hs can be directly computed from the usoft sector in

SCET with two collinear sectors and can be written as

Hs

( t u
Q2

, µ
)

=

∣∣∣∣Zg qq̄,sZqq̄

∣∣∣∣2 1

Nc

∑
g

tr
[〈

0
∣∣T̄ [Y †n̄Yn]∣∣g〉〈g∣∣T [Y †nYn̄]∣∣0〉] δ(t−Qk+

g ) δ(u−Qk−g )

=

∣∣∣∣Zg qq̄,sZqq̄

∣∣∣∣2 1

Nc

∫
d3pg

(2π)32p0
g

∣∣Ms

(
0→ g(pg)

)∣∣2 δ(t−Qp+
g ) δ(u−Qp−g ) , (C.2)

where Zg qq̄,s is the counterterm of the operators Oaᾱβλg(λq ;λ`)
in the s+ regime. Here, |g〉 is

an on-shell gluon state with momentum pµg = kµg (i.e. with vanishing label momentum in

the parent SCET).

Finally, the hard function Hcs can be directly computed from the csoft sector in SCET+

with two collinear sectors and can be written as

Hcs

( tu
Q2

, µ
)

=

∣∣∣∣Zg qq̄,csZqq̄

∣∣∣∣2 1

NcQ

∑
g

tr
[〈

0
∣∣T̄ [V †nXn]

∣∣g〉〈g∣∣T [X†nVn]
∣∣0〉]δ(t−Qk+

g )δ(k−g )δp̃−g ,u/Q

=

∣∣∣∣Zg qq̄,csZqq̄

∣∣∣∣2 1

Nc

∫
d3pg

(2π)32p0
g

∣∣Mcs

(
0→ g(pg)

)∣∣2δ(t−Qp+
g )δ(u−Qp−g ), (C.3)

where Zg qq̄,cs is the counterterm of the operators Oaᾱβλg(λq ;λ`)
in the cs+ regime. Eq. (C.3)

gives the same result as eq. (C.2) due to the identical form of the Wilson lines Xn and Yn,

Vn and Yn̄, see eqs. (3.33) and (A.5).

These expressions can be easily adapted to N jets, which only affects the form of

eq. (C.2) due to the fact that more usoft Wilson lines appear, and to initial-state split-

tings. Furthermore, also the hard functions with several additional emissions discussed in

section 5.3 can be computed in the same way.

C.2 Calculation of Hs

Here we calculate the hard function for the soft splitting in the s+ regime with two hard jets

at one-loop order, and extract the two-loop result from the literature. Following eq. (C.2)

we write

Hs

( t u
Q2

, µ
)
≡
∣∣∣∣Zg qq̄,sZqq̄

∣∣∣∣2S(bare) =
Z3,s

Z2

∑
k

( ∑
i+j=k

S(i,j) + S(k,ct)

)
, (C.4)

where S(bare) indicates the bare soft matrix element (with renormalized αs). At order αk+1
s

this originates from the interference S(i,j) of soft currents with loop corrections of O(αis)

and O(αjs) and k = i + j. Since S(i,j) are given in terms of the unrenormalized strong

coupling, we include the associated counterterm S(k,ct). For convenience we abbreviate

Z2 ≡ |Zqq̄|2 and Z3,s ≡ |Zg qq̄,s|2.
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k

k − q

q

Y †
n

T [Yn̄]

Yn

T̄ [Y †
n̄ ]

Y †
n

T [Yn̄] T̄ [Y †
n̄ ]

Yn

T [Yn̄] T̄ [Y †
n̄ ]

YnY †
n

Figure 6. Diagrams contribution to Hs for e+e− → 3 jets. The left and middle diagram are the

nonvanishing contributions to S(1,0). The right diagram gives S(1,1), entering Hs at two loops.

In our calculation we employ the ’t Hooft-Veltman (HV) scheme [98], in which the

momentum and polarization of the measured external soft gluon is kept in four dimensions,

and only unresolved partons in loops obtain nonvanishing components in d−4 dimensions.

This gives the same results as in conventional dimensional regularization, but is more

convenient since O(ε) corrections do not arise in the tree-level correction.

At one loop, only the first two diagrams in figure 6 contribute, yielding

S(1,0) = −g4CACF

(µ2eγE

4π

)ε ∫ d4k

(2π)4

1

k− − iδ
(−2πi) δ(k2) δ(t−Qk+) δ(u−Qk−)

×
∫

ddq

(2π)d
2k− − q−

k− − q− + iδ

1

q+ + iδ

1

(k − q)2 + iδ

1

q2 + iδ
, (C.5)

where we rescaled µ2 → µ2eγE/4π anticipating MS renormalization. The integrals can be

easily solved using standard methods like Feynman parameters. The final d-dimensional

result reads

S(1,0) = −α
2
sCFCA
4π2

1

t u

(
− t u

Q2µ2

)−ε eγEε Γ2(ε) Γ3(1− ε)
Γ(1− 2ε)

. (C.6)

We renormalize αs in the MS-scheme which gives rise to the contribution

S(1,ct) = −αsβ0

4π

1

ε
H(0)
s . (C.7)

Thus we obtain for the full one-loop hard matching function given in eq. (3.63),

H(1)
s

(
t u

Q2
, µ

)
= S(10) + S(01) + S(1,ct) +

(
Z

(1)
3,s − Z

(1)
2

)
H(0)
s

= −H(0)
s

αsCA
4π

[
ln2
( t u

Q2µ2

)
− 5π2

6

]
, (C.8)

where we used the one-loop MS counterterms

Z
(1)
2 =

αsCF
2π

[
2

ε2
− 2

ε
ln
Q2

µ2
+

3

ε

]
,

Z
(1)
3,s =

αs
2π

[
2CF + CA

ε2
− 2CF − CA

ε
ln
Q2

µ2
− CA

ε

(
ln

t

µ2
+ ln

u

µ2

)
+

3CF + β0/2

ε

]
. (C.9)
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We now extract Hs at two loops, which can be written as

H(2)
s = S(0,2) + S(2,0) + S(1,1) + S(2,ct) +

(
S(1,0) + S(0,1)

)(
Z

(1)
3,s − Z

(1)
2

)
+
[
Z

(2)
3,s − Z

(2)
2 − Z(1)

2 Z
(1)
3,s +

(
Z

(1)
2

)2]
H(0)
s . (C.10)

in the notation of eq. (C.4). The interference term between the two-loop and tree-level

current has been calculated in refs. [64, 65, 99]. The finite pieces are given by

S(0,2) + S(2,0)
∣∣∣
finite

= H(0)
s

α2
sCA

16π2

{
CA

[
2

3
L4 +

22

9
L3 −

(
67

9
+

10π2

3

)
L2 (C.11)

+

(
386

27
− 121π2

18
+

22

3
ζ3

)
L− 1142

81
+

737π2

108
+

341

9
ζ3 +

7π4

360

]
+TFnf

[
−8

9
L3 +

20

9
L2 −

(
76

27
− 22π2

9

)
L+

130

81
− 55π2

27
− 124

9
ζ3

]}
,

with L = ln( t u
Q2µ2 ) and using still an unrenormalized strong coupling. The only nonvanish-

ing diagram for the interference contribution between the two one-loop currents is given in

figure 6. The result for the bare correction is given by square of the one-loop contribution,

S(1,1) = H(0)
s

∣∣∣∣αsCA4π

(
− t u

Q2µ2

)−ε eγEε Γ2(ε) Γ3(1− ε)
Γ(1− 2ε)

∣∣∣∣2 . (C.12)

Including also the counterterm corrections for the renormalization of αs in the MS-scheme,

S(2,ct) = − α
2
sβ1

(4π)2

1

ε
H(0)
s −

αsβ0

2π

1

ε

(
S(10) + S(01)

)
, (C.13)

and the cross term between the one-loop counterterm and one-loop contributions to the

bare soft matrix element yields

S(1,1) +
(
S(1,0) + S(0,1)

)(
Z

(1)
3,s − Z

(1)
2

)
+ S(2,ct)

∣∣∣
finite

(C.14)

= H(0)
s

α2
sCA

16π2

{
CA

[
−1

6
L4 +

17π2

6
L2 − 28

3
ζ3L+

11π4

180

]
+ β0

[
−1

3
L3 +

5π2

6
L− 14

3
ζ3

]}
.

Summing all contributions gives the final two-loop result,

H(2)
s

(
t u

Q2
, µ

)
= H(0)

s

α2
sCA

16π2

{
CA

[
1

2
L4 +

11

9
L3 −

(
67

9
+
π2

2

)
L2 (C.15)

+

(
386

27
− 11π2

3
− 2ζ3

)
L− 1142

81
+

737π2

108
+

187

9
ζ3 +

29π4

360

]
+ TFnf

[
−4

9
L3 +

20

9
L2 −

(
76

27
− 4π2

3

)
L+

130

81
− 55π2

27
− 68

9
ζ3

]}
.

As a cross check, we verified that this result agrees with the anomalous dimension in

eq. (3.69) using the expressions in eq. (B.4).
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