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ABSTRACT: Jets are an important probe to identify the hard interaction of interest at the
LHC. They are routinely used in Standard Model precision measurements as well as in
searches for new heavy particles, including jet substructure methods. In processes with
several jets, one typically encounters hierarchies in the jet transverse momenta and/or
dijet invariant masses. Large logarithms of the ratios of these kinematic jet scales in the
cross section are at present primarily described by parton showers. We present a general
factorization framework called SCET,, which is an extension of Soft-Collinear Effective
Theory (SCET) and allows for a systematic higher-order resummation of such kinematic
logarithms for generic jet hierarchies. In SCET. additional intermediate soft/collinear
modes are used to resolve jets arising from additional soft and/or collinear QCD emissions.
The resulting factorized cross sections utilize collinear splitting amplitudes and soft gluon
currents and fully capture spin and color correlations. We discuss how to systematically
combine the different kinematic regimes to obtain a complete description of the jet phase
space. To present its application in a simple context, we use the case of eTe™ — 3 jets. We
then discuss in detail the application to N-jet processes at hadron colliders, considering
representative classes of hierarchies from which the general case can be built. This includes
in particular multiple hierarchies that are either strongly ordered in angle or energy or not.
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1 Introduction

A thorough understanding of the production of hadronic jets is crucial to take full advantage
of the data from high-energy colliders. Jet processes typically involve hierarchies between
the short-distance scale of the hard scattering (e.g. the jet energies or invariant masses
between jets) and the scale at which the individual jets are resolved (e.g. the mass or
angular size of a jet), leading to logarithms of the ratio of these scales in the perturbative
expansion of the cross section. An accurate description of these effects is obtained by
resumming the dominant logarithmic corrections to all orders in perturbation theory.

In multijet events one generically encounters additional hierarchies in the hard kine-
matics of the jets, namely among the jet energies and/or among the angles between jets.
At the LHC, an important class of examples are jet substructure methods to reconstruct
boosted heavy objects, which essentially rely on identifying soft or collinear (sub)jets. An-
other example is cascade decays of heavy new (colored) particles leading to experimental
signatures with jets of widely different pp. There are also cases where additional jets pro-
duced by QCD are used to tag or categorize the signal events, a prominent example being
the current Higgs measurements. Whenever such kinematic hierarchies arise among QCD-
induced jets, in particular in the corresponding background processes, the enhancement of
soft and collinear emissions in QCD leads to additional logarithms of the jet kinematics in
the cross section. So far, a complete and general factorization framework for multijet pro-
cesses that allows for a systematic resummation of such kinematic logarithms for generic
jet hierarchies has been missing. Current predictions therefore rely on Monte Carlo parton
showers and are thus mostly limited to leading logarithmic accuracy.

In this paper we develop such a factorization and resummation framework for generic
jet hierarchies in hard-scattering processes with large momentum transfer by considering an
extension of Soft-Collinear Effective Theory (SCET) [1-6] referred to as SCET .. Compared
to the usual soft and collinear modes in SCET, SCET . contains additional intermediate
modes that behave as soft modes (with eikonal coupling) with respect to the standard
collinear modes but at the same time behave as collinear modes with respect to the overall
soft modes. Their precise scaling, which is now simultaneously soft and collinear, depends
on the considered measurement or observable (in analogy to how the scaling of the modes
in SCET is determined by the considered observable).

In SCET individual hard QCD emissions are resolved as jets, while the effects of soft
and collinear emissions on observables are each resolved at a single scale. The intermediate



modes in SCET are required to further resolve the additional scales induced by measure-
ments or hierarchies which are not separated in SCET.! The case we discuss in detail in
this paper is the explicit measurement of soft or collinear (sub)jets. Here, also individual
soft or collinear emissions are explicitly resolved, and SCET . allows us to capture their
effects on observables.

Generically, there are two types of intermediate SCET ;. modes that appear which can
be distinguished by their origin as follows

e Collinear-soft (csoft) modes arise as soft offspring from a collinear sector of a pa-

rent SCET.
e Soft-collinear modes arise as collinear offspring from a soft sector of a parent SCET.

This distinction is helpful, as it automatically determines the correct Wilson-line structure
and interactions of the modes with respect to the other modes present in the final SCET .
Both types of modes can be present at different scales and in different directions. There
can also be cases where the two types become degenerate.

SCET, first appeared in ref. [7], where its purely collinear regime described by csoft
modes was constructed and used to describe the situation of two energetic jets collinear
to each other. In ref. [8], SCET, was used to describe the situation where two resolution
variables are measured simultaneously, requiring csoft modes separated from the collinear
modes in either virtuality or rapidity depending on the measurements. The purely soft
regime of SCET involving soft-collinear modes was first considered in ref. [9]. There it
was shown that this regime is essential for the resummation of nonglobal logarithms by
explicitly resolving additional soft subjets (see also ref. [10]). In ref. [11], the soft and
collinear regimes were used to factorize and resum a two-prong jet substructure variable
(defined in terms of energy-correlation functions [12]). They also discussed a way to treat
the overlap between the two regimes by removing the double counting at the level of
the factorized cross section. More recently, a SCET | setup was applied in refs. [13, 14]
for the factorization of both global and nonglobal logarithms appearing in jet rates (see
e.g. refs. [15-20]).

In this paper, we give a general description of SCET ;. for generic jet hierarchies. We
first focus on the case of a single hierarchy. We review the purely collinear regime, following
ref. [7], which we will label as c+. Furthermore, we present in detail the purely soft regime
(labeled s+) as well as the overlap between the collinear and soft regimes (labeled cs+),
involving both csoft and soft-collinear modes. The corresponding kinematic hierarchies for
ete” — 3 jets are illustrated in figure 1. Standard SCET applies to case (a) where the
jets are parametrically equally hard and well separated, s;; ~ Q?, where s;j are the dijet
invariant masses and () the total center-of-mass energy. The collinear regime is shown

We stress that this does not imply that SCET describes such effects incorrectly. It does correctly
contain these effects at each fixed order but it is not sufficient for resumming the associated additional
logarithms. In fact, we will match onto SCET in the limit where the additional hierarchies disappear and
the corresponding logarithms are not enhanced. This is precisely analogous to the relation between SCET
and fixed-order QCD for the logarithms resummed by SCET.
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Figure 1. Different hierarchies for three-jet events in eTe™ collisions.

in case (b), where two jets (labelled 1 and 2) are close to each other. It is characterized
by the hierarchy s12 < s13 ~ s23 ~ Q2. The soft regime is shown in case (c), where
one jet (labelled 1) is less energetic than the others. It is characterized by the hierarchy
s12 ~ 813 < 893 ~ Q2. Finally, in the soft/collinear overlap regime, shown in case (d), one
jet is softer than the others and at the same time closer to one of the hard jets, leading to
the hierarchy sjo < 513 < s23 ~ Q2.

In general, SCET can have multiple soft and collinear regimes (along with the cor-
responding overlap regimes), which is necessary to describe multiple hierarchies between
several jets. We discuss in detail the application of the SCET, formalism for a generic
N-jet process at hadron colliders and for a number of different hierarchies. The cases we
explicitly consider include

e One soft jet.

Two jets collinear to each other, with or without a hierarchy in their energies.
Two jets collinear to each other plus an additional soft jet.

Two soft jets with or without a hierarchy in their energies.

Two soft jets collinear to each other.

Three jets collinear to each other with or without a hierarchy in the angles be-
tween them.

These cases contain the nontrivial features and essential building blocks that are needed
to describe arbitrary hierarchies. In particular, we show how spin and color correlations
are captured in the associated factorization theorems.

Each regime requires a different mode setup in SCET ., so technically corresponds to
a different effective field theory. We explain how they are appropriately combined and



matched to the corresponding SCET in the nonhierarchical limit. This yields a complete
description of the jet phase space that accounts for all possible kinematic hierarchies.

We will consider an exclusive N-jet cross section and require that the N jets can
always be distinguished from each other by imposing the parametric relation m% < 84
We assume that the corresponding jet resolution variable(s) that enforce this constraint do
not exhibit any hierarchies among themselves, such that there are no parametrically large
nonglobal logarithms from soft emissions. For definiteness and simplicity, we consider N-
jettiness [21] as our overall N-jet resolution variable. In refs. [22, 23], it was shown that
N-jettiness can be promoted into an exclusive cone jet algorithm, and with a suitable
choice of N-jettiness measure the resulting jets are practically identical to anti-kr jets.
We stress though that the general setup for the treatment of kinematic hierarchies is
largely independent of the specific choice of jet resolution variable and jet algorithm. In
the application to jet substructure the setup can get more complicated when subjets get
sensitive to the jet boundary [9, 11]. For earlier analytic work on jet hierarchies in eTe™ —
jets see ref. [24].

The remainder of this paper is organized as follows: in section 2 we describe the basic
SCET regimes (c+, s+, and cs+) and the structure of the resulting factorization theorems
for ete™ — N jets that resum the corresponding kinematic logarithms. In section 3, we
present a detailed discussion with explicit perturbative results for the case of eTe™ — 3
jets, which is simple enough that the single hierarchies shown in figure 1 are sufficient
to exhaust all kinematic limits. We subsequently discuss step-by-step the generalizations
required to treat a generic LHC process pp — N jets plus additional nonhadronic final
states. Specifically, collinear initial-state radiation, spin and color correlations for a single
kinematic hierarchy are addressed in section 4. In section 5 we discuss the various cases
with multiple hierarchies outlined above. We conclude in section 6.

2 Overview of the effective field theory setup

In this section, we discuss the general factorization framework for each regime of SCET .,
considering for simplicity eTe™ — N jets. We start in section 2.1 with reviewing the stan-
dard case without additional hierarchies, which also serves to establish our notation. The
purely collinear, purely soft, and soft/collinear regimes are discussed in sections 2.2, 2.3,
and 2.4. For now we only consider kinematic configurations with one hierarchy. The gen-
eral case will be discussed in section 5 in the context of pp — N jets. In section 2.5 we
show how to combine the resulting factorization theorems from the different kinematic
regions. We first explicitly consider a SCET] jet resolution observable, and we outline the
modifications required for a SCET[; measurement in section 2.6.

2.1 Standard SCET: equally separated and energetic jets

We first discuss the hard kinematics for processes with jets. The total momentum PZ-” of

the ¢th jet is given by
ni‘
2

Pl=qg' +k' ¢ =w—, nf=(1"m). (2.1)



Here, the massless reference (label) momentum ¢!' contains the large component of the jet
momentum. That is, w;/2 = P? +O(P?/P?) corresponds to the jet energy and we take the
unit vector ﬁ, = P,/|P,| to point along the direction of the jet. The residual momentum
k' = P! — ¢! then only has small components of O(P?/P?).

To describe the degrees of freedom of the effective field theory, it is convenient to use
lightcone coordinates,

nt b

P =nip o+ pj + ' = (niep, i, pi) = (07,07, 01)i (2.2)

where 7' = (1, —7;), and p// . contains the components perpendicular to n!' and nt. The
7 1 i i

subscript ¢ will be dropped if it is obvious which lightcone coordinates we are referring to.
For definiteness, we consider N-jettiness [21] as the SCET} jet resolution observable,
defined as

TN_Zrm {2%“} > min { “’k} ZTN . (2.3)
k

We use a geometric measure with Q); = p;w;, where the parameter p; controls the size
of the ith jet region and can in principle depend on the hard jet kinematics. It roughly
corresponds to the typical jet radius p; ~ Ri2 and we consider it as p; ~ 1. The minimization
assigns particles to the jet they are closest to, and we denote the contribution to 7y from
the ith jet region by ij,i ). Note that Qﬂ']\(,i ) is equal to the jet invariant mass Pf up to
power corrections.

The SCET description applies in the exclusive N-jet limit where all jets are sufficiently
narrow and there are no additional jets from additional hard emissions. This limit corre-
sponds to taking Ty < Q. Formally, we work at leading order in the power expansion in

2=Tn/Q ~ m%/Q?, where we use m; to denote the typical (average) jet mass. Due to
the singular structure of QCD, jets typically have masses much smaller than their energy.
Hence, in practice most of the events naturally have m; < Q.

We stress that our discussion of the kinematic jet hierachies largely decouples from
the precise choice of Ty, and in principle any jet resolution observable which constrains
my (more precisely, any SCET-type variable) can be utilized. Furthermore, the precise
jet algorithm that is used to find the actual jet momenta P;, which then determine the
gi, is also not relevant to our discussion. One option is to promote eq. (2.3) itself to a
jet algorithm by further minimizing the value of Ty over all possible jet directions n; [21].
This is the basis of the recently introduced XCone jet algorithm [22, 23]. Any other jet
algorithm that yields the same jet directions n; up to power corrections can be used, which
includes the usual kp-type clustering algorithms.

We denote the large pairwise invariant mass between two jets with

ni-nj

Sij = 2(]i . Qj = wiwj 9 (24)
We order the jets such that
t = s12 = min{s;;}, w1 < Wy, (2.5)
i#]



mode P =(+,—,1) p?

collinear (ny,...,ny) | (Tv,Q,vVINGQ) | TnQ ~ m?
ultrasoft (TN, TN, TN) T2 ~ mfl]/Q2

Table 1. Scaling of the modes in standard SCET for N equally separated and energetic jets.

and we define
u = Maxsi, Q*=(q1+ - +aqn)*. (2.6)

So, t is the smallest dijet invariant mass, and u measures the softness of jet 1. For eTe™ — 3
jets, u = s13 is just the intermediate dijet invariant mass.

The situation where all jets are equally energetic and well separated corresponds to
w; ~ Q and n;-nj ~ 1 and therefore ¢t ~ u ~ s;; ~ Q?. Tt is described by the usual SCET
framework, since all dijet invariant masses are of the same order so there are no additional
hierarchies between physical scales. In contrast, the SCET | regimes illustrated in figure 1
and discussed in the following subsections are characterized by ¢ < u ~ Q2 (c+ regime),
t ~u < Q? (s+ regime), and t < u < Q? (cs+ regime).

The degrees of freedom in SCETT consist of collinear modes for every jet direction and
ultrasoft (usoft) modes interacting with these. The parametric scaling of these modes is
summarized in table 1. The collinear modes for the different jet directions cannot interact
with each other in the effective theory, while the interactions with the usoft modes decouple
at leading power in Tn/Q ~ m?%/Q? via the BPS field redefinition [4]. This leads to the
following SCET Lagrangian for N-jet production

N
Lscer = Y L, + Lus + LT - (2.7)

i=1
The Lagrangians £,,, and L,s describe the dynamics of the n;-collinear and usoft sectors,
respectively, and only contain interactions among the fields within each sector. Their
explicit expressions can be found in refs. [2-4]. The hard-scattering Lagrangian £33,
consists of leading-power SCET operators, built from collinear fields and usoft Wilson lines,
and their Wilson coefficients. It arises from matching the hard-scattering processes in QCD
onto SCET, where fluctuations with a virtuality above the scale p ~ ) are integrated out.
The factorization theorem for the differential cross section following from eq. (2.7) has

the following structure [17, 21, 25, 26|

N N
dO’SCETNC_:;rVX |:HJ1®§N:| XéN:tr[ﬁNXHJi(X)S’\N]. (2.8)
=1 i=1

The Wilson coefficients C'y arise from EIS%YST and encode the short-distance physics of

the hard-scattering process. They determine the hard function H N = C')NC_’)}V The jet
functions J; incorporate the dynamics of the collinear radiation that leads to the formation
of jets, which takes place at the scale u ~ my. Finally, the cross talk between the jets via
usoft radiation is described by the soft function S '~ at the scale pu ~ m?, /Q. Here, Cy is



a vector and S ~ and H are matrices in the color space of the N external hard partons.
The jet functions J; are scalars in color space, i.e. color diagonal, and can therefore be
pulled outside the color trace. The precise form of the jet and soft functions and the
structure of the convolution between them is determined by the N-jet resolution variable.
Since each function in the cross section eq. (2.8) only involves a single scale, the logarithms
of Tn/Q ~ mQJ/ Q? can be systematically resummed by evaluating each function at its
natural scale and evolving them to a common scale using their renormalization group
evolution (RGE).

2.2 c+ regime: two collinear jets

We now consider the kinematic situation where the first two jets come close to each other,
but remain energetic, i.e.,

nyng L1, ni'anl, wi ~ Q = t<<UNQ2. (29)

Thus, all of the dijet invariant masses remain equally large except for ¢ = s19 < Q2. This
additional hierarchy introduces large logarithms of ¢/Q? ~ ni-ng in the hard and soft
functions in eq. (2.8). The SCET, theory that resums these logarithms (which we now
regard as the c+ regime of SCET ) was introduced in ref. [7].2 We briefly recall it here
and refer to ref. [7] for a detailed derivation. It was applied in refs. [11, 29] in the context
of jet substructure.

The relevant modes in the c+ regime are given in table 2. Due to the measurement
of ¢ there are additional collinear-soft (csoft) modes. Compared to the usoft modes, they
have a higher angular resolution allowing them to resolve the two nearby jets separated by
the angle of order |7 |/p~ ~ v/t/Q. Hence, they interact with the usoft modes as collinear
modes with lightcone direction n;. At the same time, they interact with the two nearby
jets 1 and 2 (the ni-collinear and na-collinear sectors) as soft modes. In particular, at their
own collinearity scale the directions ni and ng belong to the same equivalence class as
nt. The requirement that their plus component is constrained by the SCET] jet resolution
measurement implies p* ~ Ty ~ m?/Q which then fully determines their scaling as given
in table 2.

To disentangle all physical scales, we perform the two-step matching shown in figure 2.
We first match QCD onto standard SCET with N — 1 collinear sectors n:, ng,...,ny with
corresponding invariant mass fluctuations ~ v/t and an associated usoft sector at the scale
t/Q. At this point, the two nearby jets are not separately resolved yet and contained in the
ng-collinear sector. After decoupling the collinear and usoft modes, this theory is matched
onto SCET . For the collinear sectors of jets 3 to N as well as for the usoft sector only
the virtuality scale is lowered to mj and mQJ /@, respectively. The ng-collinear sector of the
parent SCET with scaling pf, ~ (t/Q, @, v/t) is matched onto the two collinear sectors for
jets 1 and 2 and the csoft mode. This step involves nontrivial matching coefficients, related
to the collinear splitting amplitudes. They appear when matching the hard-scattering
Lagrangian of the parent SCET onto the final £28" of SCET4. As shown in ref. [7], the

2The refactorization of the hard sector was already discussed earlier in refs. [27, 28].



mode pt=(+,—,1) P>
collinear (nq,...,ny) (TN, Q, \/m) TNQ ~ m?
collinear-soft (n;) (T, T Q%/t, Tn Q/VE) | T2 Q%/t ~mi /t
ultrasoft (Tv. Tns Tw) T ~my/Q?

Table 2. Scaling of the relevant modes in the ¢+ regime of SCET, . For the collinear-soft mode,
ny1 and ng belong to the same equivalence class as n;.

scale
A
Q

Figure 2. Illustration of the multistage matching procedure for the c+ regime of SCET, with
t < u~ Q> The modes and their virtuality scale are indicated.

interactions between the two collinear modes and the csoft modes can be decoupled via
a further BPS field redefinition. This leads to the leading-power Lagrangian, which has

again no interactions between different sectors,

N
Lo = Lo, + Ly, + Lus + LI (2.10)
i=1
Here, L, is the Lagrangian for the csoft modes and is identical to the Lagrangian for
collinear modes L,,;, except for the different scaling of the label momenta and associated
scaling of the csoft gauge fields. It is important that the csoft fields are defined with
a zero-bin subtraction [30] to avoid double counting with the usoft fields in analogy to
the collinear fields. In addition, the ny and ns-collinear modes are now defined with an
appropriate zero-bin subtraction with respect to both csoft and usoft modes.
The factorization theorem for the differential cross section following from eq. (2.10)
has the structure [7]

N
docy ~ C_;}Lvil C: X I:H Ji®S.® S\N—l] x C, C_;N—l
1=1

N
:tr[ﬁ]\[_l XHCXH']i®SC®§N—1:| . (2.11)
i=1



Compared to eq. (2.8), the hard coefficient Cy got factorized into Cn_1 for N — 1 hard
external partons at the scale p ~ @ (arising from the first matching step in figure 2) and a
collinear splitting coefficient C. describing the splitting of the n;-collinear sector into the
n1- and ng-collinear sectors at the scale p ~ v/t (arlslng from the second matching step
in figure 2). The correspondmg hard functions are H N1 = Cn_ 1CN , and H. = |C. 2.
The soft function S v got factorized into a usoft function S ~—1 at the scale u ~ m J/ Q
that only resolves the IV — 1 well-separated jets, and a csoft function S, that describes the
csoft radiation between the two nearby jets at the scale p ~ m% / V/t. Note that H, and S,
have a trivial color structure, since they are related to a 1 — 2 collinear splitting for which
the relevant color space is one dimensional. In other words, in the collinear limit the full
N-parton color space separates into the subspace for NV — 1 partons and the subspace for
the collinear 1 — 2 splitting.

2.3 s+ regime: one soft jet

Next, we consider the kinematic situation that the first jet becomes less energetic, while
all jets remain well separated from each other, i.e.,

w KQ, wiz2~Q, nin;~1 = t~u< QP (2.12)

In this case, all dijet invariant masses involving the first soft jet are all of the same order
s1; ~ u < @Q2%. This additional hierarchy leads to large logarithms of u/Q? in eq. (2.8),
appearing this time only in the hard function. There are no large logarithms in the soft
function as it only depends on the angles between the jet directions, which do not exhibit
any hierarchy. Hence, the appropriate EFT setup, which we identify with the s+ regime
of SCET,, only refactorizes the hard function. This type of setup was also considered
in refs. [9, 11] to calculate energy-correlation functions describing jet substructure. Note
however, that their conjectured factorization theorem for the general N-jet case does not
correctly account for color correlations.

The relevant modes in the s+ regime are given in table 3. In addition to the usual
collinear modes for the energetic jet sectors 2,..., N and the overall usoft modes, we have
a soft-collinear mode with momentum scaling p} ~ w1(A?,1,\) that is responsible for the
collinear dynamics of the soft jet. Its overall scaling is fixed by the kinematic constraint
515 ~ w1@ ~ u and the constraint imposed by the measurement of the jet resolution variable
requiring that p = w1A? ~ Ty ~ m?%/Q.> Since we still have Ty < u/Q ~ w, this soft-
collinear mode cannot couple to any of the other well-separated collinear modes. Hence, it
is just a collinear mode with a smaller energy and consequently a smaller invariant mass,
m3 ~m%u/Q* < m?.

To match onto the s+ regime, we perform the two-step matching shown in figure 3.
We first match QCD onto standard SCET with N — 1 collinear sectors ne,...,ny at the
scale y/u and a corresponding usoft sector at the scale u/Q. At this point, the soft jet is
still unresolved and contained in the usoft sector. After decoupling the collinear and usoft

3Here it is important that we are using a SCETT jet resolution variable like N-jettiness, which fixes the
size of small lightcone component pf‘.



mode = (+,—,1) p?
collinear (ng,...,ny) (Tv, Q. VTNQ) TNQ ~m?
soft-collinear (ny) (Tv, w/Q, VTnu/Q) | Tvu/Q ~ m?u/Q?
ultrasoft (Tv, T, Tn) T ~my/Q?

Table 3. Scaling of the relevant modes in the s+ regime of SCET,.

scale
A
Q

Figure 3. Illustration of the multistage matching procedure for the s+ regime of SCET, with
t ~u < Q2 The modes and their virtuality scale are indicated.

modes, we match this theory onto SCET,.. The virtuality of the collinear sectors is simply
lowered to mj. The decoupled usoft sector with momentum scaling p* ~ u/Q(1,1,1) is
matched onto the soft-collinear mode for the now resolved jet 1 and the usoft sector at the
lower scale m?, /Q. This involves nontrivial matching coefficients related to the soft gluon
current, which appear when matching the hard-scattering Lagrangian from the parent
SCET onto the £12™d of SCET... The soft-collinear and usoft sectors can be decoupled via
a second BPS field redefinition in the soft-collinear sector. Since the parent usoft sector is
equivalent to full QCD at a lower scale, this decoupling proceeds completely analogous to
the usual matching from QCD to SCET. The final leading-power Lagrangian has again all
sectors completely decoupled,

N
Loy =Ln, + Y Lo+ Lus + LI (2.13)
i=2
The Lagrangian £,,, for the soft-collinear mode is given by the usual collinear Lagrangian,
but with a different power counting for the label momenta.
The factorization theorem following from eq. (2.13) has the structure

N N
dowy ~ O, Cf x [H 5 §N] % 8y Oy_r = tr [@ Ay G [[ e §N} 2w
i=1 =1

~10 -



Compared to eq. (2.8), the hard coefficient Cy got factorized into Cn_1 for N — 1 hard
external partons at the scale u ~ @ (arising from the first matching step in figure 3) and
a soft splitting coefficient 6’5 describing the splitting of the parent usoft sector in SCET
into the n-soft-collinear and the usoft sector in SCETy at the scale p ~ t/Q (arising from
the second matching step in figure 3). The 6’3 is a matrix in color space that promotes
the hard coefficient Cy_; from the (N — 1)-parton color space to the full N-parton color
space in which the soft function S ~ acts. Note that at leading power in u/Q? the soft jet
is initiated by a gluon, J; = Jj, since only gluon emissions are enhanced in the soft limit,
and the natural scale for its jet function is p ~ my x v/u/Q.

2.4 cs+ regime: one soft jet collinear to another jet

We now consider the kinematic situation where the first two jets come close to each other
and at the same time the first jet becomes soft. The remaining jets stay equally separated
and energetic, i.e.,

nyng L1, w1 K Q, n;-nj~1, wizng = t<<u<<Q2. (2.15)

Hence, this case is characterized by the combination of the collinear and soft hierarchies
in the dijet invariant masses, t = s12 < u ~ 51;>3 <K Q?, while all remaining Sjk ~ Q2.
Treating this case in either the s+ or c+ regimes with the corresponding generic scales
would leave large logarithms of either u/Q? or ¢/u in the hard and/or soft functions. The
resummation of both types of large logarithms is achieved in the cs+ regime of SCET,
which has not been discussed in the literature before. This EFT setup combines the
expansion in the softness of jet 1 and the angle between jets 1 and 2, and is the theory
connecting the ¢+ and s+ regimes. As we will see below, this kinematic situation can
effectively be described within the c+ regime by an appropriate choice of resummation
scales in the hard sector that takes into account the softness of jet 1. This has been
exploited in ref. [11]. It is nevertheless important to explicitly consider the cs+ regime in
order to fully separate all scales and to show that all logarithms are resummed correctly
in this way. This also shows that this kinematic situation cannot be described within the
s+ regime, which lacks the required refactorization of the soft sector. The cs+ regime is
also useful to account for the overlap between the s+ and ¢+ regimes, see section 2.5, and
to be able to handle more complicated overlapping hierarchies.

The relevant modes in the cs+ regime are summarized in table 4. Besides the usual
collinear modes with the labels no,...,ny and the usoft modes, we have a soft-collinear
mode in the n; direction that describes the collinear dynamics of the soft jet, and a csoft
mode that is responsible for the cross talk between the two nearby jets 1 and 2. As
for the soft case, the scaling of the soft-collinear mode is determined by u ~ Quw; and
pf ~ TN ~ m% /Q. And as for the collinear case, to be able to resolve the two nearby jets
1 and 2, the csoft mode is boosted in the lightcone direction n; with angular resolution
scale |py1|/p; ~ /M1-n2 ~ \/t/u. The constraint from the jet resolution measurement,
pf ~ m%/Q, then fixes its scaling.

We now perform the three-step matching procedure shown in figure 4. We first match
QCD onto SCET with N — 1 collinear modes n¢,ns,...,ny and usoft modes with virtu-
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mode pt = (+,—,1) p?
collinear (ng,...,ny) (Tv, Q. VTNQ) TNQ ~ m?
soft-collinear (nq) (Tvuw/Q/Tau/Q) | Tvu/Q ~m?u/Q?
collinear-soft (n;) (Twv, T w/t, Tu/uft) | TEu/t ~ mbu/(Q%)
ultrasoft (TN, Tw, 'TN) TE ~m4/Q?

Table 4. Scaling of the relevant modes in the cs+ regime of SCET ..

scale
A
Q

Figure 4. Ilustration of the multistage matching procedure for the cs+ regime of SCET with
t < u < Q% The parent SCET is matched onto an intermediate SCET, with a single soft-
collinear sector. In the final matching step, this is further matched onto separate soft-collinear and
csoft modes.

ality scales v/u and u/Q, respectively. Next, we match onto an intermediate SCET ;. with
standard collinear and usoft modes at the lower virtuality scales v/t and t/Q, respectively,
and a soft-collinear sector in the n; direction at the lower scale \/ﬁ/ () with momentum
scaling p* ~ (t/Q,u/Q, Vtu/Q), which can resolve the angular size of the n-collinear sec-
tor. As before, the collinear, soft-collinear, and usoft sectors are decoupled by appropriate
BPS field redefinitions. At this point, the soft jet is not yet resolved and still contained in
the soft-collinear sector. This means that there is no nontrivial hard matching coefficient
in this step, and as we will see in section 3, the matching of the operators in the hard-
scattering Lagrangian happens entirely at the level of soft Wilson lines. This also means
that one could in principle directly construct this SCET, and match onto it from QCD
(see e.g. refs. [7, 8]).

In the last step in figure 4, we match the intermediate SCET with N — 1 collinear
sectors onto the final cs+ theory. Here, the virtualities of the collinear and usoft modes are
simply lowered, with the ns;-collinear mode now being refined to the final no-collinear mode.
The parent decoupled soft-collinear sector is matched onto the final nq-soft-collinear mode
for the now resolved jet 1, and the final csoft mode in the n; direction. (Hence, taking into
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account its full ancestry, the final csoft mode here could be referred to as a soft-collinear-

soft mode.) The corresponding matching coefficients are now related to the soft limit of the

collinear splitting amplitudes or equivalently the collinear limit of the soft gluon current.

Analogous to the c+ regime, the csoft and soft-collinear modes are decoupled by a BPS field

redefinition. Note that the consistency of figure 4 can be verified by taking the limit { — u

or u — Q2 for which it reduces to the matching for the s+ and c+ regimes, respectively.
The final fully decoupled leading-power Lagrangian is given by

N
Lesy =Ly + Y Lo, + L, + Lus + LI (2.16)
=2

where both £,, and £,, are collinear Lagrangians with the appropriate scaling of their
label momenta.
The factorization theorem resulting from eq. (2.16) has the structure

N
docsy ~ C_;]Tv_l Cry x [H Ji®S.® §N—1:| X Cus Cn_1

=1

N
=1tr |:ﬁN_1 X H.s X H J; ® S, ® §N—1:| . (2.17)

i=1

Asin eqs. (2.11) and (2.14), the hard coefficient Cy_; describes the production of N—1 hard
partons at the scale u ~ Q). The coefficient C.; now describes the soft-collinear splitting
at the scale u ~ v/tu/Q. Compared to the c+ regime in eq. (2.11), C.s corresponds
to the soft limit of the collinear splitting coefficient C., whose scale got lowered from
Vt — Vt x y/u/Q. Similarly, the scale of the csoft function S, is now lowered to p ~
m? /vt x \/u/Q. Compared to s+ regime in eq. (2.14), Cs corresponds to taking the
collinear limit of the soft splitting coefficient 65, lowering its scale from u/Q — u/Q X \/t/iu
and making it color diagonal. In addition, the soft sector got refactorized as in the c+
regime leading to S. at the scale u ~ m?%/Q x \/1T/t As in the s+ regime, the soft jet 1 is
always initiated by a gluon with the natural scale for its jet function being p ~ mj x /u/Q.

2.5 Combining all regimes

We now discuss how to combine the factorization theorems for the different SCET | regimes
as well as the nonhierarchical SCET limit to obtain a complete description for any ¢, u, Q% >
m?] This will be generalized to the full N-jet phase space with arbitrary hierarchies among
the s;; > mQJ in section 4. The goal is to be able to resum all logarithms of any ratios of
si; and at the same time to reproduce the correct fixed-order result whenever there are no
longer large hierarchies.

Each of the factorization theorems in egs. (2.8), (2.11), (2.14), and (2.17) has been
power expanded in the ratio of scales whose logarithms are being resummed. They thus
receive power corrections in the corresponding scale ratio, which become O(1) in the non-
hierarchical limit where that scale ratio is no longer small. To obtain a smooth and com-
plete description, we basically need to add to the resummed result in a given kinematic
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Figure 5. Schematic overview of the fixed-order content of the different theories discussed here.
Approaching the c¢s+ regime in the center, more and more logarithms get large and are resummed,
at the expense of additional expansions. The missing fixed-order corrections from these expansions
can be incorporated by adding back the relevant nonlogarithmic fixed-order differences between
the theories.

region the relevant missing nonlogarithmic (“nonsingular”) corrections at fixed order, such
that we reproduce the full fixed-order result everywhere. In addition, to ensure a smooth
transition across different kinematic regions it is also important to smoothly turn off the
resummation in any nonhierarchical limit. This can be achieved through a suitable choice
of resummation profile scales [31, 32].

A Venn diagram of the fixed-order content of the different theories is shown in figure 5,
from which the nonsingular corrections can be directly read off. The basic idea is to start
from the inner most hierarchical (most expanded) case and go outwards step by step
matching to the fixed-order content of the next less hierarchical (less expanded) case until
we reach the outermost full QCD result. For ete™ — 3 jets this procedure will be discussed
in some detail in section 3.5.

We start from the cs+ result which resums all kinematic logarithms in the ¢t < u < Q?
limit and add nonsingular corrections to match it to the c+ and s+ results, which yields
the combined SCET. cross section,

doy = doesy + dog{™ + dogd™,
nons __ .
do ™ = doey [dacs+} FO(u<Q?)

dog?™ = dosy — [dacs+] (2.18)

FO(t<u) *
The FO(...) notation indicates that the hierarchy specified in brackets is not resummed but
taken at fixed order. For example, for [docs+|po(u«q?) the logarithms of ¢ /u are resummed,
while the logarithms of u/Q? are not resummed, and are instead expanded to the same
fixed order as they are present in do.,. Hence, in do2{™ the logarithms of ¢/ Q? are still
resummed, while the fixed-order corrections that are singular in u/Q? cancel between the
two terms, such that do?9™ is a power correction in u/Q?.

Having obtained doy, we can further add the nonsingular corrections from SCET in

the limit ¢ ~ u ~ @Q? and eventually the nonsingular corrections from full QCD relevant in
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the limit my ~ Q,

do = doy + doglpr + dogeD
dog¢gr = doscer — [da+]FO(t<<u<<Q2)

= dosceT — [do'c-i— +dosy — dacs+] FO(t<u<@?)
ogen = doqep — [dUSCET] FO(m,<Q) " (2.19)
Note that in our approach, the overlap between the c+ and s+ regimes is automatically
taken care off via the separate cs+ regime. In ref. [11] this overlap is removed manually
by subtracting it at the level of the factorized cross section, which yields technically the
same result.

2.6 SCETj1 observables

Here we briefly discuss SCET . for SCET-type jet resolution variables, which constrain
the transverse momenta within the jets rather than their invariant mass or small lightcone
momenta. A simple example is N-jettiness with the broadening measure,

n 2| X Pk [ |Pk 1]

TN = zk:miln{ 0; } = Ek:miln{ o } , (2.20)
where 1; denotes the component perpendicular to the direction n; of the ith jet. Other
examples are the XCone measures with angular exponent § = 1 [22]. Measures of this
type have been utilized for jet substructure studies using N-subjettiness [33, 34]. These
observables are in principle sensitive to the precise definition of the jet axes n; due to the
fact that the recoil from soft emissions cannot be neglected. To keep the factorization
theorem simple, one can employ the recoil-insensitive broadening axes [35].

The distinct feature of SCET1-type observables is that all modes in the effective theory,
i.e. collinear, soft, csoft and soft-collinear, have the same virtuality. This directly follows
from the fact that the measurement of T]\J,- constraints their p; components, which sets
the scale of their virtuality p> ~ p%. The scaling of the relevant modes in the different
regimes is summarized in tables 5, 6, 7, and 8. The different modes are now parametrically
separated in rapidity ~ p~/pT rather than virtuality, and the corresponding logarithms
can be summed by using the rapidity renormalization group evolution [36, 37].

In the c+ regime, there are again csoft modes mediating between the two nearby jets 1
and 2. As before, their scaling is determined by the requirement that they have a resolution
angle |’ |/p~ ~ V/t/Q and the measurement constraint p; ~ T]\%. In the s+ regime, the
scaling of the soft-collinear modes pj ~ w1 (A%, 1, \) is fixed by the facts that w1Q ~ u and
wiA ~ p, . Finally, the cs+ regime again combines the features of the ¢+ and s+ regimes.

The structure of the corresponding factorization theorems is analogous to those in
egs. (2.8), (2.11), (2.14), and (2.17). The essential difference is that the convolutions
between soft and jet functions are now in transverse momentum variables, and involve
the resummation of rapidity logarithms. Since the matching steps are insensitive to the
details of the jet measurement, all the arising Wilson coefficients C_"N, C_”N,l, Ce, 68, and
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mode P =(+,—,1)

collinear (ny,...,ny) (pi/Q,Q,PL)
soft (pL,pL,pL)

Table 5. Scaling of the modes in SCETy; for the standard case with N equally separated and
energetic jets. The virtuality of all modes is p? ~ p? and therefore not displayed.

mode pt=(+,—,1)
collinear (nq,...,ny) (pi/Q» Q,PL)
collinear-csoft (n;) (pj_ Vt/Q,pL Q/VE, pJ_)
soft (pL,pL.p1)

Table 6. Scaling of the relevant modes in the c+ regime of SCET, for a SCET}; observable.

mode Pt =(+,—,1)

collinear (nga,...,ny) (pi/Q,Q,PL)
soft-collinear (nq) (pi Q/u,u/ Q’pL)
soft (pL.pi,pL)

Table 7. Scaling of the relevant modes in the s+ regime of SCET for a SCETy; observable.

mode pt=(+,—,1)
collinear (ng,...,ny) (pi/Q, Q,PJ_)
soft-collinear (n1) (p%_ Q/u, U/Q,pL)
collinear-csoft (n;) | (p1 v/t/u,p1 Vu/t,p1)
soft (pL.pi,pL)

Table 8. Scaling of the relevant modes in the cs+ regime of SCET, for a SCET]; observable.

C.s are the same as for a SCET-type observable. The factorized cross sections for the
different regimes can be combined to describe the complete phase space by accounting for
the nonsingular corrections as discussed in section 2.5.

3 ete™ — 3 jets

In this section, we discuss in detail all kinematic regimes for eTe™ — 3 jets, considering
each hierarchy in turn. The jets are again ordered according to the kinematics such that
t =512 <uU=S13<8=893~Q?, Q*=s+t+u. (3.1)

As jet resolution variable we use 3-jettiness as defined in eq. (2.3). For simplicity, in this
section we use the geometric measure with p; = 1 so @; = w; and

T3 = Zmin{nl'pmm'pk,n&pk} = 275(7;) : (3.2)
% i
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In the exclusive 3-jet limit (or more precisely at leading order in the power expansion in
T3/Q), we can uniquely associate each jet with one of the partons in the underlying hard
partonic scattering process, denoted as

ete” — r1(q1) kalqo) k3(q3), k = {K1, Ko, K3} . (3.3)
Since we label the jets by their kinematic ordering rather than their flavor, we use « to
denote the partonic channel, which in the present case can be any permutation of {g, ¢, G}
where ¢ stands for any quark flavor.

By evaluating all functions in the factorization theorems below at their natural scales
and RG evolving them to the common arbitrary scale p, all kinematic logarithms of ¢/Q?,
u/Q?, and t/u in their respective regimes as well as the logarithms of 73/Q are resummed.
The perturbative ingredients required for the resummation to NNLL are fully known. We
give the one-loop results for the additional SCET; ingredients below. The required com-
mon RGE solutions and anomalous dimensions can be found for example in the appendices
of refs. [7, 31, 38, 39], and are not reproduced here.

3.1 Standard SCET regime: t ~ u ~ Q3

We first review the notation and conventions for SCET helicity operators and the matching
from QCD. We then discuss the factorization theorem for the standard SCET case where
all three jets are equally energetic and well separated.

3.1.1 Helicity operators and matching to SCET

We start by briefly discussing SCET helicity operators [40-42], which are convenient for
carrying out the matching from QCD onto SCET. In particular, they make it straightfor-
ward to construct the complete operator basis in SCET with multiple collinear sectors.
We summarize the necessary definitions and some basic properties here, and refer for de-
tails to ref. [41]. A summary of the common SCET notation and conventions is given in
appendix A.

Collinear quark and gluon jet fields in the n;-collinear sector with specified helicity are
defined as

145 _
Xit = =5 Xniw, o Bl = —ewalni i) By, 1 (3.4)

which involve the polarization vectors and spinors for massless on-shell momenta

(pE]y* kL)
V2(kF|pt)

Since fermions always come in pairs, we can use currents with fixed helicity as basic building

) = 22 u(p). (35)

ei(p, k) ==+

blocks of helicity operators,

ca B
V2el(nisng) Xis YuXe

Vo (nFingE)

Tl == (3.6)
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The leptonic vector current is defined analogously but does not contain any QCD Wilson
lines. The normalization of the fermion currents and gluon fields are chosen such that the
tree-level Feynman rules for the corresponding final state give delta functions of the label

momenta p = w;n!' /2,

(g% (p1)|BYL]0) = 6921 (51 — p1),
(022 (p2) 3% (p3) | J5222|0) = 67252 65395 55y — po) 6(pi3 — p3) , (3.7)

and zero otherwise. The delta function and integral of label momenta are denoted by

5B — ) = gy p Dl — p) / dj; = / duws, (3.8)
{ni}
with 0f,,,3, = 1 if ng-p = O(X?) and zero otherwise.
We now match the QCD currents onto the corresponding SCET operators, resulting

in the hard-scattering Lagrangian

3 _
L= > / [1d5i 0355, ) (Bi} 1) L5 s (i 1) - (3.9)

Ao Aghe Y i=1

Here, the helicity labels Ay, Ay, Ay = £ are summed. For ete™ — 3 jets, the complete (and
minimal) operator basis is given in terms of the gluon fields B‘f)\g and the quark and lepton

currents, J;‘gq and Jysy,, as

Oi?f +) — it Jzasi Jast Oa?ﬁ +) — = Bi_ J23 Jas
0537 ) = Bl I35 Juss, 0%V ) =Bl J55, Jass (3.10)

The operators and Wilson coefficients in eq. (3.9) are written as general vectors in the
color space of the external partons. For eTe™ — ¢gg, the color decomposition is trivial
because there is only one allowed color structure, T 5, so the relevant color-conserving sub-
space is one dimensional. However, in anticipation of the more complicated color structure
for N-jet production, we employ the general notation

acf _ rfraaf A _ ma
CAg(Aq;Ae) =T Crgrgine) = Tag Cry0gire) » (3.11)
where
T = (T35). Coyong = (Coy0rann) (3.12)

are one-dimensional row and column vectors, respectively. We define the corresponding
conjugate vector for the Wilson coefficient by

St xaaf aaf _ T (
C/\g(Aq,/\g) CAQ()\q;AZ)T CAg(Aq,AZ) Tyqq = (C)\g()\q;)\e)NcCF) ) (3.13)

where the color sum matrix is given by

~

quq = (Tal oz26z3)TTa1 203 _ (Tm T _ ) — (NCCF) = NcCFl X (3_14)

azat asds
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It explicitly appears in eq. (3.13), because the color basis in 7298 is not normalized.
(In the N-jet case, the color basis will typically also not be orthogonal, so T will be a
nontrivial matrix.)

The matching coefficients are given in terms of the IR-finite part of the UV-renormali-
zed QCD amplitudes. For example, for a specific helicity configuration, the QCD amplitude
is written as

A0 = g a5 @ 6 0F) = Tals, A5 25, 37547,57). (3.15)

Using dimensional regularization as UV and IR regulator, the corresponding UV-renorma-
lized amplitude in SCET is given to all orders in «a; by

Ascer = (99 (01)052 (2)3% (a3) |iL85 81|+ (—qa) 0 (—a5))

/Hdp@ (g7 (q1)aT* (a2)a™* (g3 \O+(+ o (D) |5 (=q2) e (—45)) iCY L +i {pi})

=1

nglocg quq({ }) +,:|:)({ql}) (316)

Here we used the SCET counterterm Z,,; defined by

20y4a{Pi})
ZeNZa

together with the fact that the matrix element of the bare operator is given by the tree-

0302 1" (5} = 0% L, ({B) = 047 (B} Zyaa(Pi)) . (3.17)

level result, since all loop graphs in the effective field theory are scaleless and vanish in
pure dimensional regularization. Note that we use an outgoing convention, which is why
the momentum, spin, and particle type for the incoming leptons in eq. (3.16) are reversed.
Requiring the QCD and SCET amplitudes to be equal, the IR divergences cancel between
them, implying that to all orders in a5 we have

Chitpy({a}) = im[Zg4q({a}) ALT; 27,35 145.57)] - (3.18)

3.1.2 Factorization theorem

The factorization theorem in SCET for 3-jettiness is given by [21]

doscer _ & T s -~ G)  Si o
Jrro(z)]. o1

The partonic channel kK = {k1, k2, k3} is summed over all six permutations of {g, ¢, ¢} and

also over the desired quark flavors. Label momentum conservation

7 7

N n n n
(Q.0)=q/'+d +d =w1 L +wr 2 +ws 2

2
2 2 2 (3:20)

4In general, Z,. is a matrix in color space defined by [O_”r}bare =0'Zo Z, "‘1/2Z no/2 = 0'Z,.
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fixes the energies of the jets, yielding
S t+u

U t
Q_@ Q ) WQZQ_év WSZQ_Q (321)

Since there is only one color structure for this process, the hard and soft functions in

eq. (3.19) are simply one-dimensional matrices and the trace is over this trivial color space,
Hy=(H,), Se=(S:), tr[H,S]=H.Ss. (3.22)

We employ the matrix notation to make the generalization to the N-jet case straightfor-
ward. We drop the hats whenever we refer to the matrix components.

The hard function H « describes the physics at the hard-interaction scale pug ~ Q. It
is given in terms of the Wilson coefficients as

Higgay(t,u, Q% ) = 10 (4n)? 47T 3 42 Z< N Ogine) 101, @2, 43, — a5, —qe}s 1)
A¢ >‘97>‘Q
x C q()\ .,\Z)({Q17Q2aQS, —dqp, _QZ}7IM)> -
= 10 (4n)? 47T 3 42 Z<‘C>\ g @i} )| >ZNcCF1, (3.23)
97)\‘1

where we included the flux factor 1/(2Q?), averaged over the spins of the incoming leptons,
and included the prefactor of the 3-body phase space

[ ——— 20

Since we do not keep track of any angular dependence between the beam directions and
final-state jet axes, we have averaged over the directions of the incoming leptons indi-
cated by (...)y7. The results for the other partonic channels can easily be obtained via
crossing symmetry,

ﬁ{g’@q} (t7 U, Q27 ,U,) = ﬁ{g,q,(j} (tv u, Q27 ,U,) ’
H{’LQ@} (t’ u, Q27 ,u) = H{q,g,q} (t7 u, Q2> :u) = H{g,q,q} (tv Q2 —t—u, QQa ,U) s
Higaor(tu, Q% p) = Hyg g iy (t,u, Q% p) = Hy o 0 (Q% — t — u,u, Q% 1) . (3.25)

The tree-level hard function is given by

as(WCr (@ —1)* +(Q% — )’

(0) 2 N _
H{gy@} (t7 u, Q ’ ,LL) - 271' Q4 tu ’ (326)
where we have pulled out the tree-level cross section for ete™ — ¢q,
. 4ral, N, o Q2 (1)3 + a?])(vf + a2) — 2Q¢ Qq vqve(1 — m%/Q?) (3.27)
0, :
1= agr ¥ (1=m3/Q%)? +myT3/Q*

Here, cem is the electromagnetic coupling, (), are the lepton and quark charges, vy, and
agq are the vector and axial couplings of the leptons and quarks to the Z boson, and
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my and I'z are the mass and width of the Z boson. The one-loop hard function can be
extracted from the one-loop virtual corrections for |A(gqq)|? in ref. [43], or directly from
the one-loop helicity matching coefficients given e.g. in ref. [41].

The J; = J,,, in eq. (3.19) are the inclusive quark and gluon jet functions in SCET,
which are known to O(a?) [44-48]. They determine the contribution to the measurement
from collinear radiation at the scale pj ~ /QT3. At tree level, Ji(o)(s,-, w) = 6(s;).

The soft function S, in eq. (3.19) determines the contribution to the measurement
from usoft radiation at the scale ug ~ 73. It is a matrix element containing three usoft
Wilson lines in the directions nj, ne, and ns in the appropriate color representation. For
example, for the {g, ¢, G} channel

St (3, i p) = Ty gy (100 20)! SEEGEPER (Y, {miomy) ) T2

1 _
= o >t [ (O[T [V, Yo, T, Vio ]| X
Xs

3
X (X T[], Yo, 7], Vo, ) 0)| TT 0(6 = miek?) . (3.28)
=1

where kgi) denotes the momentum of the soft state X, in the ith jet region. At tree level,

the soft function is given by Sg)q = 5(€1)0(£2)6(¢3). In ref. [49], the N-jettiness soft
function for general N was calculated at one loop and the all-order form of its anomalous
dimension was derived. A procedure to extend this calculation to two loops has been

described in ref. [50].

3.2 c+ regime: t € u ~ Q?

We now discuss the case where jets 1 and 2 come close together, which was already discussed
in ref. [7]. As discussed in section 2.2, we first match QCD onto SCET with two collinear

sectors with label directions n; and 7y = n3 and virtuality ~ v/t. At this scale, the
two nearby jets are not yet resolved. The relevant operators in this theory are those for
ete” = qq,

Oy = I s, O = T3 Juse. (3.29)

This process also has a unique color structure,

ofB el A o ~ aff _ ~ _
C(/\q;)\e) =T C(AqQ\Z) - 5,15 C()\q;/\g)a T8 — (5aﬂ) , C(Aq;)\l) = (C(Aq;)\g)) , (3.30)
with the corresponding color sum matrix given by
qu = (T(X10_42)TT0(15£2 = (5&1a25a1&2) = (Nc) =N,1. (3.31)

The matching coefficients are directly related to the IR-finite part of the eTe™ — ¢q
amplitudes, in analogy to eq. (3.16).

After decoupling the usoft degrees of freedom in the parent SCET, the two nearby jets
are resolved in one of the collinear sectors at the scale p ~ +/t. If the gluon jet is close
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to the quark jet, this corresponds to matching the ns-collinear sector of the parent SCET
onto the ni-collinear, no-collinear, and n;-csoft sectors of the ¢+ regime of SCET,,

X, = € Wn)* =Y / dpr dpa C2 37, (e, Brs Pa, 1) (X, Bin, ) (Xar, X1, Vil (3.32)
>\g

and similarly for the case of the gluon jet being close to the antiquark jet. Note that this
matching preserves the helicity of the (anti)quark field. Equation (3.32) leads to matching
the SCET ¢q operators in eq. (3.29) onto SCET g¢qg operators, which have the same
helicity structure as in eq. (3.10), but are dressed with additional csoft Wilson lines. The
csoft Wilson lines X,,, and X}, sum the emissions of csoft gluons A,, from Y., and B,,.
They arise from the field redefinition of the nj s-collinear fields decoupling them from the
csoft modes. The V,,, Wilson line sums the csoft emissions from the remaining collinear
sector(s). It can be interpreted as the csoft remnant of the collinear W, in the parent
ng-collinear sector. The csoft Wilson lines are defined as

P PR ey Sy | -9 .
Vo, =P exp[ 19/0 dsng- An, (1) )] [Z exp(ﬁt'Pnt ny Ant>] ,

X,, = P exp [_19 [ as nQ.Ant<sng>] , (3.33)
0

with an analogous expression for A),, in the adjoint representation. The label momentum
operator P, in the first line acts only inside the square brackets.

Performing the color decomposition using the same color basis as in eq. (3.12), we can
write the matching coefficient as®

Y s =0 By A i NP1
Cg’f;y/\g (nt7p17p27 N’) = Taﬁ’y : CC,)\q)\g <2p1'p27 — ) (334)

ng-(p1+ p2)’
We also used that reparametrization invariance [52] implies that to all orders C. can only
depend on t = 2p;-pe and the lightcone momentum fraction z = 7, -py /fig- (p1 + p2) [7].
Since it only depends on a single dimensionful scale, all large logarithms of ¢t must appear
as In(t/u?), which can thus be minimized by choosing the natural scale pg, ~ V.

>The fact that the collinear matching coefficient C¢#7 only depends on the color space of the 1 — 2
splitting is a direct consequence of the usoft-collinear factorization in SCET, which implies that the matching
in eq. (3.32) only involves a single collinear usoft-decoupled sector. As discused in detail in ref. [7], this also
holds for the general N-jet case and is equivalent to the factorization of QCD amplitudes in the collinear
limit in terms of universal splitting amplitudes. The results of ref. [51], which are based on a partial 3-loop
calculation supplemented by consistency arguments in the high-energy limit, indicate that this collinear
factorization of amplitudes might be violated. If this result confirmed by the complete 3-loop calculation, it
would require a more general matching condition than in eq. (3.32) involving all recoiling collinear sectors
and C. would then become a general matrix from N — 1 to N-parton color space. This would require the
explicit non-cancellation of Glauber effects in a hard-scattering calculation at 3 loops in order to connect
the different collinear sectors in the parent SCET, which would be quite unexpected.

Note added. After initial submission of our paper a revised version of ref. [51] appeared, which now
confirms collinear factorization at three loops, as expected from and consistent with the SCET+ matching

in eq. (3.32).
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The two nearby jets originate from collinear emissions in the n;-collinear sector of the
parent SCET. The total momentum p}' = Qn}'/2 + k* of the ns-collinear sector includes
a residual momentum component k* ~ O(t/Q), which is responsible for generating the
small dijet invariant mass t. For a single collinear emission at tree level, momentum
conservation reads

(Q+k) +7<>+ —p’f+p’57

u AP
=2(Q+ k" )—t +(1 —z)kJr—t—i-k“,
nk
ph=(1-2)(Q+k )7—i—zk+ 5 — Kt (3.35)
where k2 = —z(1 — 2)(Q + k™)kT such that p? = p3 = 0. From the point of view

of SCET,, this corresponds to the hard splitting process that determines the large jet
momenta corresponding to the SCET label momenta. However, since SCET already
contains a power expansion in t/Q?, the observed jet momenta and dijet invariant masses
can only be computed up to relative O(t/Q?) corrections. Choosing 71 = p1/|p1| and
Mo = Pa/|pal, we thus have

o
n

zQ[lJr(’)(QQ)}—, p’Q‘:(l—z)Q[1+O<Q2)}n§7
)] —2(1 - 2)Q? ”12”2 [1 + (’)(QQ)] (3.36)

t_Qk+[1+O(Q2

Once we take the final matrix element in SCET the measurement identifies p} = ¢’ and
Py = ¢4 and the SCET label momentum conservation reads

nH
n
pt—q1+q2—w17+w272 w = 2Q, wr = (1-2)Q, (3.37)

where the O(t/Q?) corrections in eq. (3.36) can be absorbed into the residual components

of pf'.
A similar discussion applies to the 7n;-collinear sector,
. I
= = si=afiro( )]
Q
W= 2y ps = 202 [1+O(Q2)] (3.39)

where we chose 7i3 = p3/|p3| in the first line. The SCET label momentum conservation

simply becomes
“w

n
p?:quW373, W3:Q. (339)

Even though this appears trivial, it is important to remember that upon matching from
SCET onto SCET, the label momentum gets refined from O(t/Q) to O(73). In particular,
the parent 7n; direction corresponds to a wider equivalence class of collinear directions

than the final n3 direction in SCET,, and we identified ny = n3 from the start only
for convenience.
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Since g3 is unaffected by the details of the nearby jets 1 and 2, we could carry out the
matching in eq. (3.32) independent of the third jet. In other words, while the residual mo-
mentum conservation in the splitting of the n;-collinear sector is important for determining
the n; and no directions, there is no residual momentum conservation between the n; and
n; = ng collinear sectors and thus also no recoil because of the power expansion in SCET.

As expected, the above label momenta correspond to the ¢ < u ~ Q? limit of eq. (3.21).
As shown in ref. [7], the intrinsic O(t/Q?) ambiguity in the ¢; also allows one to implement
the full kinematic dependence in egs. (3.20) and (3.21) in SCET,.. This effectively incor-
porates some kinematic O(t/Q?) nonsingular corrections from the well-separated SCET
regime. However, to maintain the exact consistency of the factorization theorem, one has
to be careful to incorporate the corresponding recoil effect also in the parent SCET. The
above discussion shows explicitly that the power corrections of O(t/Q) in the label mo-
menta can be consistently dropped in the derivation of the factorization theorem, which
we therefore do here.

The remaining steps are mainly related to the factorization of the measurement and
are discussed in ref. [7]. The resulting factorization theorem for the c+ regime is given by

da3—c+ Ztr[ an( 2,,11/)/dk’ldk‘gscmL ki, ko, :||:H/dsl 5“/1/:|

dtdu[[;_,
Xtr[ﬁqq(Q2,M)§q ( \/7k177§ __\/§k277;,(3)_537/’4):|
w2 w3

t m?,

{1+(9( ; )} : (3.40)

where we have used

. t t

St = nne = = Zz = Y (341)

2 wiwe  2(1—2)Q2’ Q2
and the kinematic ordering of the jets implies z < 1/2. The partonic channel is now
separated as

ete” = ry(qr) r3(gs) K2 = {kKt, K3},

k(@) — k1(q1) ka(q2) ke = {ke; K1, K2},

where  is either {g, ¢} or {g,¢}. The sum over r. runs over {q:; 9,9}, {a:; ¢, 9}, {@: 9, a},
{q; q, g} for all desired quark flavors, which already includes the two cases for 3. The jet

(3.42)

functions J;(s;) are the same as before in eq. (3.19), all of them having the same natural
jet scale puy ~ /QTz. The two color traces in eq. (3.40) are over different color spaces,
which are both still trivial here. The one-loop results for the hard and soft functions have
been computed in ref. [7], and for completeness we reproduce them here. For an explicit
derivation of their RGEs, anomalous dimensions, and consistency we refer to ref. [7].

The dijet hard function fIqq—(QQ, 1) has the natural hard scale ug ~ Q. It is related
to the matching coefficients C_"()\ ) Via

. 1
H,0(Q% 1) = 16ﬂQ24ZZ< g (a1, 2. —ap—aet 1) C A ({2 =g —ae}, M)>M

e Ag

167TQZ 4ZZ< (AgsAe) {Q1vQ27 —qp, QK} :U’)‘ >€l7 Ncl7 (343)
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where we included the flux factor 1/(2Q?), averaged over the spins and relative directions
of the incoming leptons, and included 1/(87) from the two-body phase space. Up to one
loop it is given by [53, 54|
2 as(p)Cr 2 Q* Q? 77 2
Hq(Q7,p) = Uo,q{1 +—5—|~In (F) + 3111(?) — 84 | +0(ag) , (3:44)
where the tree-level result og 4 is given in eq. (3.27).
The functions H., ., contain the collinear splitting and their natural scale is pg, ~ V.
They are related to the matching coefficients C"Q AgAg 1D €Q. (3.34) via

Hc,{q;g,q} (t’ Z, lu’) = W Z CC,)\qu (t7 2, l’L) Cc,)\q)\_q (t? 2, :u’)
c Ay
1 2
= Gpaen, LGt N1, (3.49)

where we averaged over the color of the initiating quark (but not its spin which is fixed)
and included the prefactor from the two-body collinear phase space

/ 4P, — (477)12Q? / dt du. (3.46)

Since the virtual corrections in SCET . are scaleless and vanish in pure dimensional reg-
ularization, the éc are equivalent (up to overall normalization) to the IR-finite parts of
the universal collinear splitting amplitudes [55-61]. This is completely analogous to the
discussion for the full amplitudes leading to eq. (3.18). For the same reason, the C. can
also be computed directly from the collinear matrix elements in SCET, see appendix C.1
and eq. (C.1) for the explicit prescription. The NLO result is given by

as(p)Cp 14+ (1—2)? as(n) [ Caf, o/tz . Tr?
o {1+ ! [ ; <ln (MZ)-FQLlQ(l—Z)—G)

He 149,93t 2, 1) =

+ (%—CF) <2 ln<:2) In(1—2)+In2(1—z)+2 Lig(z)>

+(Ca—Cr) 1—1—(12—2)2} +0(a§)} : (3.47)

which can be obtained from the NLO splitting amplitudes given e.g. in refs. [57, 60, 61],
or alternatively from the collinear limit of the hard function for three well-separated jets,

Higoar(tu, Q% 1) = Hyg(Q% 1) He 0.0} (t, % u) [1 n O(%)} . (3.48)

t<u~Q?

The results for the other quark-initiated channels are related via

~

Hc,{q;g,(j} (tv 2y /’L) = Hc,{q;q,g} (ta 11—z, :u) = Hc,{q;tj,g} (t, 11—z, :u) = Hc,{q;g,q} (t7 2, .U) . (3'49)

Since the collinear quark splitting amplitudes are independent of A4, all spin correlations
between the hard interaction at the scale y ~ @ and the splitting process ¢ — gg or
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g — qg at the scale p ~ /t drop out in eq. (3.40), and this is why we could sum over Ag
in eq. (3.43). For collinear gluon splittings ¢ — gg and g — qq, C. does depend on the
helicity of the initiating gluon, so that spin correlations between the hard sectors need to
be taken into account (see section 4.3). These would be relevant here if we were to also
consider eTe™ — gg.

The csoft function for the splitting channels x. = {q; g, ¢} and {g; g, g} is defined as

S’\C,{q;%q}(kb ko, ’u) — j'\'—17 (Tcu az&t)TSmazdt b1826t(l€1, ko, /A)Tbl N

944 c{a:9.4}
1 T a
- v ;tr[@\T[vthmT X1 X | X o) (3.50)

; - ny kY ny -k

X (Xoo| T (X5, X, XS, V2, 0)] 6 11 - )il )
which we decomposed in the color basis of eq. (3.34). The kg? denote the momentum of
the csoft state X s in the ith jet region. The csoft function in general depends on the
directions n, ng (through the measurement and the X,,) and n; (through V,,). Using
reparametrization invariance one can show [7] that the only parametric scale the csoft
function can depend on is k; = n; - ké? / V/5¢.% Its natural scale is thus s, ~ ki ~ T3/ V3¢ ~
T3Q/+/t. The one-loop result is

Se g0y (R1s k2, 1) = Se(g9,03 (K1, k2, 1) (3.51)
= ki) + 2 o [, (B1) T st
+4a{iz&%)a@yﬁwnig(f)+§%MMMbﬂ}+Om9,
where the plus distributions are defined as usual,
Lo(z) = [WL. (3.52)

The results for the splitting channels k. = {¢; ¢, g} and {g; g, g} are obtained by interchang-
ing k1 <> k9. The csoft function is universal and only depends on the color representation
of the partons involved in the splitting. The result for general color structures is given in
ref. [7].

Finally, the ultrasoft function involves two soft Wilson lines with directions n; and 7,
and is given by

§qq(£17£27£37 p) = fqgl (TamQ)T 5%1&2 B182 (01, 09,03, 1) Tﬁ152
1 _
== Ztr[m\T[YJtYm] | XWX | TV Y] |0>]
C XS

x 8 (01 —ny- kD)6 (bo — g k(P) o (b3 — - kD)) . (3.53)

SCompared to ref. [7], we have rescaled the argument k; of S. by v/3;, such that the explicit dependence
on §; drops out in S., as reparametrization invariance implies, and instead appears in the factorization
theorem in eq. (3.40) through the convolution argument of the usoft function.
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In contrast to the usual hemisphere soft function, it measures the momentum kgi) of the
soft state X in all 3 jet regions. However, since the usoft modes cannot resolve the nearby
jets 1 and 2, it has no information on the angle between them (or equivalently §;), and
the separation into the contributions k‘gl) and k‘gz) essentially happens by splitting the n;-
hemisphere in half. Reparametrization invariance then implies that §qq is independent of
3¢ to all orders in «g, so its natural scale is as usual pug ~ 73. Up to one loop it is given by

Sualbr. o, £3,) = 8(£1)(E2)0(t5) + 22UE [ﬁawl)a@z)éwg) -2 (B)aesen
1 V4 1 V4
~45(0) L (5)5(53) ~85((1)0(t2).. L (;’)] L0, (3.54)

3.3 s+ regime: t ~ u K Q2

We now discuss the case where the first jet becomes soft, following the two-step matching
described in section 2.3. Since the soft jet is not resolved at large invariant mass fluctua-
tions, the first matching takes place from full QCD onto SCET with two collinear sectors
with label directions n; = ny and f; = n3 and virtuality ~ /u. This step is the same as
for the c+ case, leading to the dijet hard function ﬁqq(QQ, W) in eq. (3.44).

After decoupling the collinear and usoft sectors in the parent SCET, the third jet is
resolved in the usoft sector at the scale u/Q. This corresponds to matching the usoft sector
of the parent SCET onto the n;-soft-collinear and usoft sectors of SCET,

(V)P (¥, =30 / dpr C¥9P (ng, mg, pr, 1) (Vg Bin, ) (Vi) (Yg) 7% (3.55)
Ag

The Y, on the left-hand are the usoft Wilson lines arising in the hard scattering operator
in eq. (3.29) from the decoupling [see eq. (A.4)]. The color indices v and § are contracted
with the collinear fields, while 3 and 7 are contracted with the matching coefficient C(ﬁ)\z; )
from eq. (3.30). The virtuality of the usoft fields in the Wilson lines is lowered to 73 on the
right-hand side. Here ), is an adjoint usoft Wilson along the n; direction. Equation (3.55)
leads to matching the SCET ¢g operators in eq. (3.29) onto the gqq operators in eq. (3.10).
Due to parity invariance, the matching is independent of the gluon helicity A, (up to an
irrelevant phase).

Inserting the color bases for the hard Wilson coefficient and reducing the arguments
of Cs with reparametrization invariance, we have

Cgﬁ'BW'(ng,ng,ﬁl,u) TBY — TaBy AS<2n2-p1 n3-p1 7 M) ‘ (3.56)
ng-n3
Thus, 65 is a matrix from the ¢g color space to the gqq color space (which is still one
dimensional in this case).
The matching onto the SCET | na-collinear and ns-collinear sectors is equivalent to
that for the ms-collinear sector in the c+ regime in eq. (3.38), except that the power
expansion in the parent SCET is now in u/Q? The first jet now originates from soft
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emissions. For a single soft emission at tree level, the jet momenta and dijet invariant
masses in the parent SCET are

n:u‘ ﬁ#
n' n
Ph=pl = QM == Qo
t=2p; - p2_7<?+Q[1+0<Q2>} u=2p-p3 ="k~ Q[1+(9(Q2)]
5=2p2- P3—Q2[1+O(Q2>} (3.57)
Choosing 7; = p;/|pi|, the SCET label momentum conservation is thus given by
I
t
I p nh Iz ny
p=d =wr,  w2=0, p——q3—w32 w3=@Q. (3.58)

Note that this reproduces the t ~ u < Q? limit of eq. (3.21), as it should.

After this two-step hard matching, the derivation of the factorization theorem is iden-
tical to that in section 3.1, since the remaining low-energy interactions communicating via
residual momenta are the same. We obtain

- (47r)22Q2 Zq:/dsldSQ dsz Jg(s1, 1) Jq(s2, 1) Jg(s3, 1)
X tr[@(g;,u)ﬁqq@ » )CT<Q27M)
2

% Stgqa ({77 - jj} {m-nj},uﬂ {1 - O(% ”ZLJ)} . (3.59)

The overall factor of 2 comes from summing over the two partonic channels {g, ¢, ¢} and

d0'5+
dtdu T[>, a7

{9, q, q} that are nonvanishing in the soft limit, and which give identical contributions. The
sum over ¢ runs over the desired quark flavors. We have explicitly included the factor from
the soft emission phase space

/ D, = M / dt du. (3.60)

In eq. (3.59), 68 describes the soft large-angle splitting and is evaluated at

2ny-qins-q1 _ 29214391 _ tu (3.61)
n2-N3 q2-q3 Q2

Since this is the only scale it depends on, it contains no large logarithms when evaluated at

its natural scale pg, ~ vtu/Q. Because ﬁqq has a trivial color structure, we can combine
Cs and C;r into a single hard function

()~ ) (o) s O (o) 05 ()
(3.62)
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The matching coefficients 68 can be calculated directly from soft matrix elements in SCET
since the virtual corrections in SCET, are scaleless and vanish in pure dimensional regu-
larization, see eq. (C.2) for the explicit prescription. They are also equivalent (up to overall
normalization) to the soft gluon current [56, 60, 62, 63]. The result for Hs up to one loop
reads (see appendix C.2)

HS(é;’“> _ a(“ﬂ)CF tlu{1 _ O‘S(ZZCA [mQ(QtZZ?) - 57:] O(o@)}. (3.63)

We provide the two-loop expression in eq. (C.15) obtained from the corresponding compu-

tations of the soft gluon current in refs. [64, 65]. Alternatively, Hy can be obtained from
the soft limit of the hard coefficient for three well-separated jets,

Hgqq(t,u, Q2:M)‘ Hyg(Q% 1) Hs<tu ) [1 + O(éﬂ : (3.64)

@,/J,

The remaining ingredients of the factorization theorem are the same as for the case

t~u<<Q2_

of three well-separated jets in eq. (3.19), except that the invariant mass of the soft gluon
jet is smaller than for the quark jets, and the corresponding natural scale for the gluon jet
function is now pj, ~ /T3u/Q ~ mj/u/Q <K my.

Based on the p-independence of the factorization theorems in egs. (3.19) and (3.59),
we can derive the all-order form for the anomalous dimension of @(u). Since the soft and
jet functions are identical in both cases, it is sufficient to require consistency in the hard
sector, namely

d

d
T Coalts 0. @2 ) c(Gn)ca@m|. o)

truQ? - dlnp @’M
Defining the anomalous dimensions for each of the coefficients as

d
dlnp

Coleo ) =70, (oo p2) Gl 1) (3.66)

eq. (3.65) requires that

YCs (Z;a M) = VCyqq (t, u, Q2a M)‘ - ﬁYqu(QQ, ,U:) . (367)

t~ukQ?

The all-order structure of the anomalous dimensions for Cy,3 and Cyg (without assuming
Casimir scaling) reads [53, 66, 67|

Tusplavs ()] ln{(tJriO)(quiO)

g0 Q% 1) = J+Ttplos ) 1 (=52 8o ().

2 w?(—s—i0)
—0?—i
(@ 1) = Thploe )] In(=Z2) 298 ) (3.68)

where T () are the quark and gluon cusp anomalous dimensions [68], and ~(as)

are the noncusp anomalous dimensions and are defined by eq. (3.68). Hence, using s =
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Q?[1 + O(u/Q?)], we have

U gusp Qs —tu/Q? —1i 9qd q
e (Z)?”) == [2 2 ln( t /222 0) + ¢ s ()] = 298 s ()]
g Qs —tu 2 —1i
_ rcusp[2 ()] m( t /222 0) 8 las()] + O(ad). (3.69)

In the second line we used that %7 (a;) = 27& () + 7 (evs), which is known to hold at

least up to two loops [69], where 27 («s) is the noncusp anomalous dimension of the gluon
form factor. We also explicitly verified eq. (3.69) to O(a?) for the perturbative results

7
cusp

in egs. (3.63) and (C.15), using the explicit 2-loop expressions for T' and v}, given in

appendix B.

3.4 cs+ regime: t € u <K Q2

Finally, we discuss the case where the first jet becomes soft and also close to the second
jet, such that all kinematic scales are separated. This follows the multistage matching
procedure described in section 2.4. In the first step, we match full QCD onto SCET with
two collinear sectors of virtuality ~ y/u and label directions n; = ns and 7y = n3. This step
is the same as in the s+ regime. In the next step, the parent usoft sector splits into usoft
modes with lower virtuality ¢/Q and scaling phs ~ (u/Q) x (t/u,t/u,t/u), and soft-collinear
modes with virtuality v/ u/Q and scaling ps. ~ (u/Q) x (t/u, 1,/t/u) that will eventually
produce the soft gluon jet. If the gluon jet is close to the quark jet, the matching onto this
intermediate SCET | reads

X, (Vi) (Vg 10 = X85, (X, Vi) 2 ()P (V)72 (3.70)
The X,,, and V;,, Wilson lines are defined as in eq. (3.33). They sum up n;-soft-collinear
gluon emissions along the n; and n; directions, respectively, as required by gauge invariance.
The matching in this step is purely in terms of Wilson lines and does not introduce a hard
matching coefficient: although the soft-collinear modes are being separated from the usoft
modes, the soft jet is not yet resolved and thus no scale setting measurement is performed.”
At the scale vtu/Q the final soft jet 1 gets resolved. This corresponds to matching the
ng-soft-collinear sector of the parent SCET, onto the final ni-soft-collinear and n-csoft
sectors of the cs+ regime,

(XH Vo) =37 / dp1 CX (ng, i, r, 1) (Xmy Bin, ) (X)) (Vi )7 . (3.71)
>‘9

This is the soft Wilson-line version of the ¢+ matching in eq. (3.32). It is also identical
to the soft splitting in eq. (3.55) with the replacements Y, — X,,, Yo, — Vi, and the
simplification that the indices 3 and ~ therein are contracted.

"The precise identification of this intermediate mode as either soft-collinear or csoft is not as unique
as in the ¢+ and s+ cases, as it shares aspects of both. Due to its momentum scaling we interpret it as
collinear offspring arising from the parent usoft sector and refer to it as soft-collinear. However, the Wilson
line structure in eq. (3.70) is reminiscent of the csoft modes and can also be obtained by directly matching
from QCD onto this intermediate SCET ., where the interactions between the collinear, soft-collinear, and
usoft modes can be decoupled by consecutive BPS field redefinitions, as shown in ref. [7].
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The discussion for the label momenta proceeds in the same way as in the c+ and s+
regimes. The final label momenta are given by

u
A Wy = W3 = Q7 (372)
Q
corresponding to the ¢t < u < Q2 limit of eq. (3.21).

The operators that result from these matching steps are the same as for the c+ case

w1 =

with the only difference being the different scaling for the label momenta. Thus one obtains
essentially the same factorization theorem

CV‘gH_zZtr{ ( Q,M)/dkldkzgcs(khkzaﬂ)

dtdu[[;_

X /d51 dsodss Jg(s1, 1) Jg(s2, 1) Jz(ss, )
xtr[ Hyq(Q%, 1) qq(T(l = _\/gklﬂé( _*_\/>k2» —,M)}
w1 w3
2
« {1 *O(&Z?ﬂ . (3.73)
Summing the two nonvanishing channels {g, ¢, ¢} and {g, g, ¢} gives rise to the overall factor
of 2, as in the s+ case in eq. (3.59).

The hard function ﬁcs incorporates the collinear-soft splitting at the natural scale
pm.. ~ Viu/Q and is related to the matching coefficient Ceq in eq. (3.71). Here, C,, can
be obtained from soft-collinear matrix elements in SCET (see eq. (C.3) for the explicit
prescription), which are equivalent to the collinear limit of the soft splitting amplitudes
or the soft limit of the collinear splitting amplitudes for ¢ — ¢qg. The similarity between
eq. (3.71) and eq. (3.55) implies

Hcs(Z;;nu) :HS(Z;;7M> . (374)
We stress however that this identity is special to the case of eTe™ — 3 jets and does not
hold when the color space is nontrivial, as we will see in section 4.5.

All of the remaining components in eq. (3.73) have already been discussed in section 3.2.
We have denoted the csoft function by §CS = §c,{g,q,(j}7 whose natural scale is ug,, ~
T34/u/t. Furthermore, the natural scale of the gluon jet function is now ps, ~ v/T3u/Q.

We now discuss the relationship between the factorization theorems in the cs+, c+,

and s+ regimes. First, the difference with respect to eq. (3.40) only concerns the hard
sector. Expanding the c+ hard function H,,, in the soft limit gives

Hep, (t, % u) rege = s H(Z; , u) [1 n O(QQ)} (3.75)

This can be checked explicitly at one loop using eqs. (3.47) and (3.63). Second, we observe

that the factorization theorems in s+ and cs+ regimes differ only in the usoft sector. The
corresponding relation that needs to hold for consistency reads

Stgaqay (b2, s, 1), ., / dky dky Seq (01 — /50y, bo — /30 ko, €3, 1)

X S (g.qay (s o, 1) [1+ O(%)} . (3.76)
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(In the general case, when the color space for §qq and §c,{qu,q} are nontrivial, this relation
would involve a tensor product in these color spaces.) The full 3-jettiness soft function
appearing in ogy can be calculated fully analytically in the collinear limit, which yields the
result [7]

S{g,q@} (01, L2, b3, 1) |t<<u

zawnabw@@+“j?{a{ﬁﬁwoa@www e ﬁ(

Vi
+cp%%woa@w<> v%u (oot -~ (=

_ le (il)a(ez)a(zg) ey (62)5(61)5(63) - le (63)5(51)5(42)} } (3.77)

i ) (£2) 5(53)}

)aenies)

Using egs. (3.51), (3.54) and (3.77), the consistency relation in eq. (3.76) can be explicitly
verified at one loop (see also ref. [7]).

3.5 Combining all regimes

As outlined in section 2.5, to obtain a complete description across the full 3-jet phase space,
we need to combine the resummed results obtained in the different regimes.

We start from the cs+ regime, where we have the maximal amount of hierarchies
between the dijet invariant mass scales that can arise for et e~ — 3 jets, and which allows
us to resum large logarithms in the kinematic ratios u/Q, t/u, and jet resolution variables
E(i) . We then systematically add the nonsingular power corrections to take into account
the correct fixed-order contributions in the less hierarchical situations where one or more
scales are parametrically the same. The cross section for arbitrary t,u, Q> > m?] is thus
written as

d
do = T — dogsy £ Ao + o™ + doBSr + doBS (3.78)

dtdu 2, a7y

where the denominator is suppressed for convenience.

As shown in egs. (2.18) and (2.19), the nonsingular corrections for a given scale hier-
archy are given by the difference of the corresponding full and resummed cross sections,
where the latter has the logarithms of the scale hierarchy expanded to the same fixed or-
der in perturbation theory as they are present in the full cross section. By including the
fixed-order terms in the relevant hard, beam, jet, and soft functions to the same required
order, corresponding to the often utilized N*LL’ order counting, the fixed-order expan-
sion to N*LO can be conveniently obtained simply by turning off the resummation in the
relevant scale hierarchy.

The nonsingular correction to connect dogs+ in eq. (3.73) to docy in eq. (3.40) is
given by

dopo{™ = doey — dacs+‘ (3.79)

,J,(CS):‘UJ(C) *
Here, the natural scales in do.s+ are set equal to the ones used in o.y, i.e. ppg,, = UH.,

MSiS) = uy and u(scj) = ,u(SCC). This turns off the additional resummation in u/Q? in the cs+
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regime with respect to the c+ regime, and instead includes the corresponding logarithms
in u/Q? at fixed order.
Similarly, the nonsingular correction connecting do.s+ to dosy in eq. (3.59) is

nons

oo™ = dogy — doesy| (3.80)

p(es) =p(s) >

where the natural scales in do.s+ are now set equal to the ones used in dos4, i.e. pg,., = pH,,
MS?S) = (Jsl) and u(scj) = pg, which turns off the additional resummation in ¢/u in doesy.
The nonsingular correction between SCET and SCET is given in terms of the cross

sections in egs. (3.19), (3.40), (3.59), and (3.73) as

do-él%IIlST = dUSCET - [dac+ + d05+ - dacs+] (381)

H+=USCET ’

where all the additional scales in the SCET | cross sections are set to the corresponding
ones in SCET, i.e. puy, = pg, = pH,, = MH, b, = g, and pg, = pg, which turns off
all additional resummation in ¢/ Q? in do.y and Viu / Q? in dosy. The term do sy arises
with an opposite sign [see eq. (2.19)] and removes the double counting between the c+ and
5+ regimes.

Finally, the nonsingular correction between SCET and full QCD is given by

dogep = doqep — dosceT | uscer=pro » (3.82)

where all the resummation scales in SCET are set to a common fixed order scale, i.e. ug =
g = s = pro ~ @, so that the resummation in 73/@Q is turned off.

4 pp — N jets

In this section, we extend the discussion of section 3 to the general case of pp — N
jets. We address in particular collinear initial-state splittings and additional complications
related to color, spin, and kinematics. We consider adding one kinematic hierarchy to the
standard SCET case of equally energetic and well-separated jets, and discuss the SCET
factorization for the cases of a jet close to a beam, a soft jet, and a soft jet close to another
jet, corresponding to the simplest c+, s+, and cs+ regimes. The N-jet phase space implies
a proliferation of hard kinematic scales allowing for the possibility of multiple hierarchies
between the jets, which may be independent, strongly ordered or correlated. These are
discussed in section 5.

4.1 N-jet kinematics

We start by discussing the kinematics for pp — N jets. The initial-state partons that enter
the hard interaction are labeled with a and b, such that the hard scattering process is

Ka(qa)ko(q) — K1(q1)k2(q2) -+ kn(gn) + L), k= {Ka,Kp; k1, 6N} (4.1)

In cases where a parton’s helicity becomes relevant we will include a helicity label such
as mz)‘z The large label momenta ¢; for the final-state jets are defined as discussed in
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section 2.1. We also allow for an additional color-singlet final state L with total momentum
¢, which is suppressed in . It does not affect the factorization setup for the QCD final
state, apart from contributing to the overall label momentum conservation

htaq =q+---+dyvt+di. (4.2)
The label momenta for the initial partons are defined as

1 . 1 .
q;b =5 ZapEem (1, £0) = B Wap(1, £0) . (4.3)

They are given in terms of the hadronic center of mass energy E.n,, the momentum fractions
Zq, Tp and the unit vector 7 pointing along the beam axis. Alternatively, they may be
written in terms of w,p = Qe™Y, where @ is the invariant mass and Y the total rapidity
of the hard partonic system which are determined from eq. (4.2).

To keep the notation concise, we collectively denote by ®p the full dependence on
the kinematics, helicities, and partonic channel of the hard process. In particular, we
abbreviate the hard Wilson coefficients as

C(@n) = Cryorn ({0 21}, 1) - (4.4)
Correspondingly, the fully-differential Born phase space measure is denoted by d®y and
given by
1 dz, dxy / dq?
doy = — | —=do Sq1y - - do 4.5
/ N 2Ec2m/ T. Tp o N+1(qa+Qb7Q17 7QNaQL) L(QL)ZZ7 ( )

o {Ni}

where d®n41(qa + @3 q1,...) and d®r(qr) denote the standard Lorentz-invariant phase
space for N+1 final-state momenta and for the nonhadronic final state. We also included
the flux factor 1/(2E2), the integral over momentum fractions, the sum over partonic
channels k, including the desired quark flavors, and the sum over helicities.

As jet resolution variable we use again N-jettiness in eq. (2.3) with the general ge-
ometric measure Q; = p;w;. We write the N-jet cross section with additional kinematic
constraints X on the jets as

dg%() - /d(I)N Oh’d(,}{jVN)X(@N). (4.6)

In the following, we will discuss the results for do(®y)/d Ty, which is fully differential in
® . For simplicity we only consider the cross section differential in the total sum 7y of
the contributions from each jet and beam region as in eq. (2.3).

We define the invariant masses s;;, taking into account that a and b are incoming, as

Sab=(qa+ )", Sak=(da—ar)*, sk=(B—w), su=(a+a), (4.7)
where k,1 # {a,b}. We also define the generalized angular measures

L 2¢iqi  lsigl  mimy

8;i = = = )
Y QiQ;  QiQ;  2pip;

(4.8)
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4.2 Standard SCET regime

The N-jettiness factorization for pp collisions was derived for active-parton cross sections
in refs. [21, 49, 70]; the factorization for generalized measures was discussed in ref. [22].%
The factorized N-jettiness cross section for N energetic well-separated jets, s;; ~ Q?, is

given by
doscer(®x) 1
S(;%NN =5, /dsa dsp Ba(Sa, Ta, 1t) Bo(sp, Tp, i) [H /dSk Jk(Sk,M)} (4.9)
k=1
" ~ N Si = m
x CT( @, 1) Sk (TN — Z 57 {§ij}aﬂ> C(®n, 1) [1 T O(Cﬁ])} '

Here, s, denotes the symmetry factor for the partonic channel x, which also accounts for
color averaging for incoming partons. The beam functions B, are the counterparts of
the jet functions Jj for initial states, and depend on the transverse virtualities s,; and
momentum fractions x,;. They describe the collinear initial-state radiation contribut-
ing to the measurement of 7Ty and incorporate the nonperturbative parton distribution
functions [38, 70].

The hard matching coefficient C/(®y) is now a vector and the soft function S, a
matrix in the nontrivial color space for the IV 4 2 colored partons participating in the hard
interaction described by eq. (4.1). As discussed in detail in ref. [41], the hard matching
coefficients é(@ ~) are directly related to the IR-finite parts of the color-stripped QCD
helicity amplitudes in dimensional regularization [analogous to eq. (3.18)]. Making its

color decomposition in terms of a color basis T,? @ N explicit,”
CoeoN = N e oN Ok = Toa-on . 0 (4.10)
k
The conjugate vector Ctis given by
Gt = ¢#ouon Toan — GT T, (4.11)
with the color sum matrix
T, = (TN poaan (4.12)

The typically utilized color bases are not orthogonal in which case fn is a nontrivial matrix.

8In this paper, we only consider factorization for the active-parton scattering cross sections, initiated by
incoming quarks or gluons. This avoids the complications associated with the spectator partons present for
incoming hadrons. In a MC context, this corresponds to the primary hard interaction without additional
multi-parton interactions. The associated factorization formulae for inclusive event shapes like N-jettiness
do not include contributions from perturbative Glauber gluon exchange that start at O(a3) [71, 72]. These
terms can be incorporated using the Glauber operator framework of ref. [73], but do not affect the additional
factorization in SCET ., which we are primarily interested in here.

9Here the same indices a; are used for both fundamental and adjoint representations.

— 35 —



The color decomposition of the soft function is given by!"

o~

S, = Alzl(faa.--aN)TSga...aN Ba...BN TﬁamﬁN 7 (4.13)
which at tree level reduces to the identity
SO(O) = T T *N) 6(0) Sayp, - Sanpy TP 0N =16(0). (4.14)

To describe the kinematic jet hierarchies in the general N-jet case, we always assume
that the corresponding nonhierarchical limit where all jets are equally separated and equally
energetic is described in standard SCET by eq. (4.9). We note that while parametrically this
corresponds to counting all s;; ~ Q?, the relevant numerical value for the hard matching
scale pp, at which the matching coefficients 6(@ N, ) are calculated, typically differs by
O(1) factors from the total partonic invariant mass ). For example, a good choice for
the hard scale for V+ jet would be puy =~ p (see e.g. ref. [74]). This means we can
describe any processes where there is an underlying hard scattering taking place with a
hard momentum transfer ~ (@) into the final state, to which we then add a number of
additional soft or collinear jets, as discussed in the following subsections and section 5.

An important situation that falls outside the above general class of processes is the
case of purely collinear forward (¢-channel) scattering, such as pp — 2 jets with both jets
collinear to one of the beams, for which there is no hard momentum transfer ~ ). This
would corresponds to a parametric regime s12 > |s14], [S2b], q% and requires a fundamentally
different factorization theorem already in SCET (see ref. [73]). A framework that allows
to resum the single logarithms in this multi-Regge limit, i.e. energetic forward jets with
large rapidity separation and small transverse momenta in ¢t-channel scattering, has been
discussed e.g. in ref. [75]. The soft version of this would be a purely soft scattering, i.e.,
pp — N jets in the limit N > 1 such that all final-state jets are parametrically soft
compared to the total partonic beam energy. In this case there is again effectively no
hard interaction with a hard momentum transfer to the final state, requiring a different
description already in SCET.

4.3 c+ regime

We continue with the case where two jets are close to each other or one jet is close to one
of the beams. Since both cases are very similar and the former was discussed in ref. [7],
we focus on the latter. We take the first jet to be close to the direction of beam a, while
all other jets remain equally energetic and separated, so we have

w1

0< —tE—81a<<‘SZ'j‘ NQz, Z_uT’ 8¢ = 841, (4.15)
a

with {i,5} # {1,a}. The factorization procedure follows the two-step matching in sec-
tion 3.2, which separates the process into

’ia(Qa) - ’{t(Qt) K1 (QI) Re = {’ia; R1, K?t}

ke(qr) Ko(qp) = K2(q2) -+ - kN (gN) kN1 = {KM, Ky ko, .. kN, (4.16)

OFor a degenerate (i.e. nonminimal) color basis T~ is a generalized inverse matrix, i.e. TT 1T =T.
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and analogously for s, and xy_; with Ay — A;. A new feature compared to section 3.2 is
that the helicity of x; can differ between the amplitude and conjugated amplitude, which
can lead to nontrivial spin correlations.

The factorization formula is given by

doey (P
(;C](?VN) = Sy S /dsadsbB (Sa, Ta, 1t) Bp(Sp, Tp, ) [H /dsk Ji(Sk, )]

/dk Z CT (k pa7p17,u’) C_;C,)\t(q)cmu’>

At AL
~ N S
X C;[\;((I)N—la U) SHN71 (TN - Z azz - \/gka {gij}v M) C)\t(q)N—la M)

X [1+o(mJ 52)] (4.17)

where s, _, and s,_ are the symmetry factors for each hard interaction process,

1
Sk S =
renN chﬂtq + (]Vc2 - 1)6l€tg

Sk - (4.18)

Here, ®. = {k¢; Aa, A1, Mis L, 2, ¢} contains all information on the collinear splitting, whose
phase space can be parametrized by the variables ¢, z, and an azimuthal angle ¢. There
is no phase-space factor, because the measurement is fully differential and the phase space
factorizes d®y = d®n_1 d®. in the collinear limit [76].

The short-distance scattering process ky_1 is described by the Wilson coefficient
5(¢N—1), whose natural scale is pug ~ @, and which is a vector in the color space of
the N + 1 colored particles in x£y_1. The corresponding soft function S, ~_, 1s built out of
Wilson lines in the directions of these N+1 partons. It depends on the angles {3;;} of all
well-resolved directions and in addition also on the measures p, and p; of the closeby jet
and beam that determine the separation between their regions.

The matching coefficient C_"C(q)c) describes the (universal) k, — K1k splitting at the
natural scale gy, ~ /—t. Although the color space for C. is trivial [see eq. (3.34)],!

Taﬂ’? — (Tgﬁ) ’ Tabc _ (ifabc) ’ C_:c — (CC) , (4.19)

we keep our notation more general in anticipation of section 5. The matching coefficients
C_:c,nc can be obtained from the final-state collinear splitting amplitudes (see e.g. ref. [57])
using crossing. At tree level (dropping an irrelevant overall phase), we have

Iz g1 Vis
V20 ) _ﬁgﬁ i "
C(O)— —— (t,Z, QO:M) = \/ig ! \/g

edd™i97.0 } 2(1—2) [al] \ﬁ m

1 Charge conjugation invariance prohibits the d**® color structure to all orders in as. See also the footnote

above eq. (3.34).

(0) _
07{6‘;g+@§}(t’z’ ) = =
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C,ﬁo{)ﬁ gy Bz ) = —ﬁgﬁz)(aw = fg\/L 1:2 e
Cc(:f?q—;qﬂg;}(t’ 2p.1) = V2 (1_12)[@1] = —V2g \/l_—t % e,
Cc(i)g_;g+,g;}(t’ z,0,1) = —V2g \/1§_<a21) — V2g \/1_7 1\;; i

Ci(?g 97.9r }(t %P, 0) = ﬂgm = —V2g \/1_—75 \/2(11— 5 el
Cc(f){)g+;g+7gf}(t’z’ ) = \@g (1_232/)2[a1] = _\/59\/1_7 1Z3_/2 i
Cc(f){)gﬂgﬂgf}(t’z’ 1) =0, (4.20)

where the subscript ¢ labels the off-shell parton ;. We have written these both in terms of
spinor products (ij), [ij] (see e.g. refs. [77, 78] for a review) of the first two partons in k.
and as function of ¢ and (. For convenience we adopt a spinor convention here such that ¢
is both the azimuthal angle and the phase. All other channels can be obtained from parity
and charge conjugation invariance, where parity flips all helicities and sends ¢ — ™ — ¢
and charge conjugation changes q <> q.

The parton type of x; is completely fixed by k., and k1 but its helicity is not, inducing
correlations between C}NA and C#mc. The helicity A¢ of k; in the amplitude and )} in
the conjugate amplitude need not be the same and are summed over in eq. (4.17). This
interference shows up when k; is a gluon and introduces a dependence on the azimuthal
angle ¢ in C.. For example,

co ato }(t 2,0, 1) +h.c. = 4g°CrN,1 = ! cos2p, (4.21)

z
eda5a 9} edaia oy t(1—2)2
leading to a nonvanishing dependence on the azimuthal angle. It is straightforward to
verify that for k1 = ¢ in the soft limit z — 0, C. ,\tC B is independent of the gluon helicity
and the azimuthal angle .
The csoft function S’\Cﬁc is fully determined by the 1 — 2 splitting and thus given in
terms of eq. (3.50) by projecting onto the global 7y measurement,

§c,,.ic (k, Pas P1, M) = Z <O‘T VT’YtOétXT’YaaaX’hm |Xcs><Xcs‘ XTBI'YIX/Ba'Ya Vﬁwt ‘0>
XCS

1.(a) .
Ng-kes ny-kes > ' (422)

paVi  p1v/se

The Wilson lines X,, and V,, can be either in the fundamental or adjoint representation,

> f,;l (Tataaa1)TT5t6aﬂ15 <k _

as determined by .. We emphasize that §C,Rc now also depends on p,/p1 because we
no longer assume p; = 1. The different causal structure of the Wilson lines X,,, and V,,,
(which enters through the i0-prescription of the eikonal propagator [79]) does not affect
the perturbative results, at least up to two-loop order [80]. Note that in contrast to C.,
both §,€N_1 and §C,,ic are spin independent.
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4.4 s+ regime

We now consider the case where the first jet becomes soft but separated from the remaining
energetic jets,

wy K Wi£] ~ Q, §ij ~1 = U ~ ’31k‘ < |5kl| ~ Q2 (4.23)

with k,1 # 1. We now use u as the generic soft dijet invariant mass scale. The full process
separates into the hard interaction and soft splitting

Ka(qa)ku(ap) = K2(q2) - - kN (gN) KN—1 = {Ka, Kbi K2, ..., KN}

— k1(q1) k2(q2) - - kN (gN) KN = {Ra, Kb; K1, K2, ..., KN} . (4.24)

The factorization procedure follows the same steps as in section 3.3, but now involves the
associated nontrivial color spaces, leading to the factorized cross section

N
dos (P
J;;VN) = Sy, /dsadSb Ba(5a,%a, 1) By(sp, b, jt) /dsl Jg(s1, ) Lll /dSk Jk@kn“«)}

N
< Gt (@1, ) O (wor, {mi} 1) S (TN S IPNENE u)

< Conten ) Gl |1+ 0 )], (1.25)

)
u

where s, |, = s5,. The hard matching coefficient C, is the same as in eq. (4.17), and

N—-1
S, is the same soft function as in eq. (4.9).

The soft jet is gluon initiated (k1 = g) and generated by the soft splitting amplitude
657,{, which is now a matrix converting the (N + 1)-parton color space of C’lNA to the
(N + 2)-parton color space that S, acts on. It depends on the momentum ¢; of the soft
parton as well as the directions of the hard partons in ®_; but not on their helicities.
Its natural scale is upg, ~ w1 ~ u/Q. At tree level, it is given by (see e.g. ref. [63] and

references therein)

~ a1 Ex 0 4i
O (wr, {ni}, ) = g(u) Y TP 2 (4.26)
i#1 q1 - q;

where a; is the color and 5’;1 the polarization vector of the gluon xk; with helicity A;.
The polarization vector leads to an angle-dependent phase, which, however, upon squaring
drops out in the cross section. (This is no longer true in more complicated cases that
require us to sum over the polarization at the amplitude level as in eq. (5.15).) Using the
explicit spinor representation of the polarization vectors in eq. (3.5) in terms of an auxiliary
momentum vector k*, the tree-level matching coefficient reads e.g. for A\ = +

A _ o Ldlk)  V29(n) o i)
§?f3(w1,{ni},u)—f29(u)#lei D ~ N 1 i;;lTi G (4.27)
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where in the second step we averaged over the N + 1 different choices of k* = q;.J with j # 1
for symmetry reasons and used [1|¢,[7) = [17](ij).

At the cross section level, the kinematic dependence from 5;[ e 68 arises through the
familiar soft factors

Sij 1 277,171] 1 EX1 Qi ENy Ex Gy
S14 S1j B uT% ni-n;ni-nj _2%: q1:4q; 91°9; ' (4.28)
However, we emphasize that in contrast to section 3.3 the matching coefficients aw and
6’;{” in eq. (4.25) cannot be combined into a hard function matrix in color space. Apart
from this, our result in eq. (4.25) for the factorized cross section in the soft jet limit agrees
with the conjecture for it made in ref. [9].
The color charge operator T;" in egs. (4.26) and (4.27) transforms the color space from
(N + 1)-parton to (/N + 2)-parton color space,

a1 pogapes...Bi..oan _ e gy ... ;.. N
T THN ’ = azﬁle’va ,

(4.29)

where the a; and f; can be in the (anti)fundamental or adjoint representations, while a; is
always in the adjoint representation since k1 = g. The dependence on the partonic channel
k enters through the representation of tg; 8

1P

T(ilﬁl if kK, =q,
tiﬁﬁz‘ - _Tailoéi if ki =g, (4.30)

ifet i =g,

where T;'s denote the usual SU(3) generators and fei@ P the structure constants.
At higher orders in perturbation theory, the color of the emitted soft gluon is correlated
to several external legs, resulting in a more involved structure for Cs .. At one loop [63]

Qs aic c(Ex 4 EX Y —s1; 815 — 10 w2
Clilen, fna). ) = (“)sgr)z 1 T T ( 1 1 ])[l (sz)Jrﬁ]
175]751 ql Q’L q q] 1) ,U

(4.31)
This result can also be obtained directly from the calculation in appendix C by retaining
the general color charge operators. Note that crossing momenta does not affect the overall
sign of the argument of the logarithm in eq. (4.31). Using eq. (4.28) for the argument of the
logarithm, we can see that the natural scale for 6'5,5 is indeed pp, ~ wiy since n; - n; ~ 1.
The general form of the anomalous dimension for 657,{ can be derived from RG consis-
tency analogous to section 3.3. The additional factorization in the s+ regime with respect
to SCET concerns only the hard matching, C/(®y, ) lucg2 = C, wlwr, {ni}, W) C(Pn_1, ),
which requires the p dependence to satisfy

d
dlnp

Conltt) = A0y (sii}s 1) g2 Con1) = Conli) Ay (Lsighim). (4:32)
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The general all-order structure of the hard anomalous dimension follows from the p inde-
pendence of the cross section (see e.g. refs. [66, 67, 81]) and is given by

~ 835 — 10 ~
e ({si7h 1) = ~Teusplars ()] 2 T Ty =25 45, fos (1)
1<J
Ao, (as —127 as) + O(a?), (4.33)

where T; - T; = 3, T{T}. The noncusp anomalous dimension 5¢, (cs) is proportional to
the identity operator and independent of the s;; up to two loops [69] but not beyond [51].
Combining eqgs. (4.32) and (4.33) yields

dlcrll,u,a wli) = ~Teusplas(p {KJZ#I ( )[Ti-Tj,@,H(u)] (4.34)
(e )Tl‘Ti@M}+{v%[asm)]+0<a2>}@ﬁ<m.

1#£1

While the two terms proportional to I'cysp in eq. (4.34) separately depend on s;; and
s14, they must combine into logarithms of s1;51;/si;, which only depend on ¢; and {n;1},
which imposes a constraint on the color structure of 557,.6. We can check explicitly at one
loop how this happens by inserting the tree-level expression eq. (4.26) into the right-hand
side. Using the color identities

[T - T, Tf] =i (0 TETS, + 05 TVTG)  fori#j #1,

(Ty-T; Tj,)® = —ifPec T TS for i,k # 1,
Z Ty =0 on N+1 parton color space, (4.35)
i#1

and the anomalous dimensions in appendix B, we find at one-loop order

L6, =g 2 { > ipteemimy (2E 6A1'(-’j)ln(_s”';io) (4.36)

dlnp 2T i Q1 i q1 - q; K
r ety 2 (M) - 2t
i.j#1 p o q1- i
— _g(u)a5<u)|: fbalchTC<6 *q; . Exre QJ)I ( 51;?132 1 )
i1 q1 - q; q1 - qj ij M
4P ﬁo a1 €A1 qz]
2 T q - qi

This also agrees with directly taking the p-derivative of C(O) + C§2 using eqs. (4.26)

and (4.31).



4.5 cs+ regime
Finally, we consider the case, where the first jet becomes soft and close to a beam,

w A N
0< —t=—841 < u~ |s14 <<\sjk|~Q2, z:w—l, 8¢ = 841 (4.37)

a
for i # a and j,k # 1, which is in close analogy to the case of a soft jet close to a final-
state jet. The hard process now splits in the same way as in the c+ case in eq. (4.16).
The factorization proceeds as in section 3.4 and the result for the factorized cross section

corresponds to the soft limit of eq. (4.17) or the collinear limit of eq. (4.25),

docst (Pn)

= Skn_15ke /dsadsb Ba(Sa, Ta, 1t) By(Sp, Tp, 1) /d51 Jg(s1, )
d7n

—

N
X |:H /dsk Jk(sknu)] /dkc_"::fs,nc(tzau) SC,Kc(kapaaplaM) CCS,Nc(tZ’M)
k=2
X CT((I)NflaH) SNN—l (TN - Z al _\/gkv {gij}’ﬂ) C(‘PNAM)
t u

~

The hard coefficient C (Pn—_1) as well as the csoft function §mc and the soft function S
are the same as in the ¢+ regime in eq. (4.17).

KN-1

The Wilson coefficient C_"CS,RC now describes the collinear-soft splitting at its natural
scale g, ~ +/—tz. It can be obtained from the soft limit z — 0 of the collinear matching
coefficient C¢ ., e.g. at tree-level for A\ = +

1
CC(?H)C (t’ 2% 'U’)}zﬁ\o = _6ff15] 6>\t>\a \/ig(,u) m = 5N19 5>\t>\a Cég,)nc (tZ’ :U*) . (4'39)

The spin correlations and interference effects that were present in the c+ case now vanish
between C(®n_1) and Cgs . because the helicity of the initial splitting parton does not
change as shown by the factor dy,y, in eq. (4.39). The associated hard function defined by'?

~

SHes ke (t 2, 1) = Siy_y Sne 665750 (tz,p) C_;Zs,nc (tz, ) (4.40)

thus has at leading order the familiar expression

HO (tz,p) = 8ms(u)i T?. (4.41)

cS, ke i

Alternatively, C_"CS,,.@C can be obtained from the collinear limit s41/51; ~ t/u — 0 of 687,{,
resulting in a dependence only on the one-dimensional color space related to the subprocess
ke. Using eq. (4.27) for the tree-level expression of Cs ,, with A\ = +, only terms with i = a

12¥We include the color averaging factors for the sake of a common normalization with the soft jet case.
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or j = a contribute at leading order in the collinear limit, which yields

_ Vg() (ja) o (i)
0) _ VA [ may _ M ap _ \YY
Corligen = N 11 <T“ 2 oy T 2T <u><a1>>

i#la i#la
= —Va) T oy = TOC, =T CD =00, ()
where we used
(1i) = v/z{ai) [1 + O(Wﬂ fori #a,l,
Z T =0 on (N+1)-parton color space. (4.43)

i#1

In the last line of eq. (4.42) we highlighted that the internal one-dimensional color space
of Cys behaves as a color matrix proportional to the color charge operator T¢!, going from
(N + 1)-parton to (N + 2)-parton color space. In other words, the internal color space of
the 1 — 2 splitting comes as a tensor product with the (N 4 1)-parton color space.

To see more explicitly that the collinear limit of the s+ regime coincides with cs+
regime at the level of the factorization theorem, we first note that also the soft functions
need to satisfy

o 1 S _ SO
St 857110y = 0 / Ak ToSry (0= /3 by {83} 1)L © B (s pas i) s (4.44)

where T, corresponds to the action of T2, This agrees with eq. (6.38) of ref. [7] (where
T; = T, since we are in the soft limit). The ® indicates that S
in different color spaces. Thus we can write

ey, and §c,nc formally live

C.%N,lcs,ﬁ Sfi CS# CﬁN—l \t|<< - Ta (Ccs,nc) SC7K/C CCS,fic X CHN,lsﬁN—1CHN—1 (445)
Skn_15ke = ~ N - N
= C;rs,nc SC,fic CCS,KC X Cf];N_l SHN 1C’€N71 )

Sk

using (C_"jSﬁC)T = C"gs,ncj“\,;l with T, = T2[Nebyog + (N2 — 1)64,4] and eq. (4.18).
This demonstrates the relation between the factorization theorems in eqs. (4.25)
and (4.38) explicitly.

Finally, we also give the one-loop result for the hard function ﬁcs,nc, which is in direct

correspondence to the expression for 6{92 in eq. (4.31),13

AW, (2, 0) = |COE0N + CLEO)
[t|l<u
) _ Y 2
— —2a%(p) Y iftmeTaThTs 2 [m?( Plafly 1 ) + W] +he
A 51iS1a Saj 6
#j#1a
1 as(p)Cy —tz—1i0 572
_ 2 s 2
= 8mas(p) Tz T In ( 2 ) ~ % (4.46)

13The result is independent of ;. Since we consider fixed helicity, eq. (4.46) differs by a factor of 1/2
with respect to eq. (3.63), in addition to phase space factors that we have not included here.
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using the relations in eq. (4.43). The fact that only in the collinear limit the soft splitting
amplitude collapses onto a one-dimensional color subspace, which renders the expression
for flcsy,{c independent of all widely separated partons, represents a key difference to the
case of ete™ — 3 jets, where ﬁg,cs = .FAI37S holds without any additional expansion.

5 Multiple hierarchies

Up to this point we have restricted our attention to kinematic hierarchies induced by one
splitting process, resulting in one soft jet or two nearby jets (or their combination). For
ete™ — 3 jets this describes all possible kinematic configurations. However, for pp — N
jets, we can encounter more complicated kinematic hierarchies. These can arise due to
splitting processes at different scales, which can be independent (section 5.1) or strongly
ordered in energies or angles (section 5.2). In addition, multiple emissions can arise from
the same splitting, which we discuss in section 5.3.

5.1 Independent hierarchies

First we discuss the case that jet hierarchies arise from splitting processes in separate
sectors, which allows us to perform the respective matching steps independently of each
other. If collinear splittings occur in different collinear sectors leading to independent pairs
of nearby jets or beams, they are described by iterating the results in section 4.3. The
same naturally holds when some of these splittings are collinear-soft. All these cases can
also be combined with a single soft jet, as we now discuss in the context of an example.

We consider a kinematic hierarchy with one soft jet (labelled as 1) and two nearby jets
(labelled as 2 and 3), such that
w2

2
K w; ~ < 845 ~ = — 5.1
w1 Wws Q. 523 ’82]| Q°, z Wy + w3 ( )

with ¢ # j # 1. This situation is relevant in the context of jet substructure, when perform-
ing the first step in the resummation of the leading nonglobal logarithms in the dressed
gluon approximation of ref. [9] for a resolved pair of jets next to each other.

The soft and collinear splittings are independent of each other since the resolved
collinear emission only affects the sectors originating from the no3-collinear mode describing
the parent fat jet above the scale so3 and since the soft emission does not resolve the two
nearby jets at leading order in the power counting. The partonic content of the associated
subprocesses is given by

Ka(qa)ko(@) = Ke(qr) kalqa) - - kv (an) KN—2 = {Ka, b5 K, Ky - KN}
— K1(q1) Ke(qt) Kalqa) - - - kv (gn) KN_1 = {Ka, p; K1, K3 Ky - oo KN
ki(qr) — k2(q2)r3(g3) ke = {Kp's Ko, K3} - (5.2)
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Applying the results from sections 4.3 and 4.4 the active-parton factorization reads

N
dop(®
# = Swn_25ke /dsadSb Bo(SasTas i) By(sp, To, 1) /d81 Jg(s1,10) an /dSk Jk(skvﬂ)]

< [k 37 Gl (520, 000) S () Con 52,20 0)
PYIPWA

N
N ~ ~ S; N ~
X CI\; ((I)Nf% /~L) C;r,mv_l (wla {ni}ﬁN—lnu') SKN—l <TN - Z a — V23 k’ {Sij}v :U'>

- = m2 m2 W1 823
 Coms 1, ) ) o (Bv-a) [ L+ O T S 2| (53)
We stress that the relative hierarchy between the invariant mass scales of the soft and
collinear splitting, N%IS ~ 51i815/Sij ~ w? and ,u%ic ~ 893, is irrelevant for setting up the
factorization in this case.

5.2 Strong ordering in angles or energies

Moving on to more complicated hierarchies, we consider the case where the consecutive
hierarchies are strongly ordered in their angles or energies (this condition will be relaxed in
section 5.3). The strong ordering enables an iterative treatment. We separately consider
the case of multiple jets that are close to each other with a strong ordering in their angles
and multiple soft jets with a strong ordering in their energies. These two cases can be
combined as in section 5.1 if they involve independent sectors.

5.2.1 Strong ordering in angles

Let us start by considering the case where all jets are equally energetic, w; ~ @, and M
jets are close to each other ordered in their angles. (The case of M —1 jets close to a beam
is related by crossing, requiring minor modifications as in section 4.3.) This is described
by iterating the c+ in sections 3.2 and 4.3, where in each successive step the virtuality is
lowered and an additional (proto)jet becomes separately resolved, building a tree of 1 — 2
splittings. Strong ordering requires that angles are parametrically smaller as one follows
any path down this tree, but angles of independent branches do not have to be strongly
ordered with respect to each other (see section 5.1). This picture resembles a parton shower
but is not limited to leading-logarithmic accuracy.
To illustrate this with a specific example, we take M = 3 with

s12 < s123 < Q7 wi ~ Q. (5.4)

The partonic process is separated into

Ka(qa) Ko(qp) —K123(q123) Ka(qa) - - KN (gN) KN_2 = {Ka, kb K335, Ky - KN}
k123(q123) — k12(q12) k3(q3) ke = {K}32% K002, K3}
r12(q12) — K1(q1) K2(ge) Fe = {K13%s K1, o} - (5.5)
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The helicities of k123 and k12 in the amplitude are denoted by A123, A12 and in the conjugate
amplitude by |53, |, encoding spin correlations between the hard process at the scale
1~ @ and the two collinear splittings. The corresponding factorization formula is given by

N
doi (P
(J{;;VN) = Skn_oSkeSie /dsadsb Ba(Sas Ta, 1t) By(sp, T, 11) Ll_[l /dSk Jk(skvﬂ)]

X /dk Z C_:Z’)‘/ms (51237 z21 + 22, P, M) SCﬁc (kv M) éc,A123 (81237 Z1 + 22, @, :u)
123,93

21 a P 21 ~
i C,(, )Sk(](7>
e \ 3120 L Py 1 (k, 1) Cengs ( 512 1 P
/\127)\12

N
—. ~ 87/ = = ~ "
X 01/123((I)N—27 1) Skn_o <TN - Z 0~ V123 k — /512 k, {55}, M)

;m

- m?%  s12 si23
x Gy (B2, 1+(9(J,,)}, 5.6
i (Bvz) [14+0(72, 212 21 56)
with
A 512 N 5123 wj
S19 = ———, 193 = — ", %= —). 5.7
270102 Q1+ Q)Qs T w tw ws (5.7)

The csoft function §c,,~.€c communicates between the jets 1 and 2 at the natural scale y ~
m?/,/s12 and is the same as in eq. (4.22). The S, . describes the csoft radiation between
the protojet (12) and jet 3 at the scale y ~ m?/,/s123. It has the same Wilson line structure
as in eq. (4.22) and is given by

G (ks 1) = / by ks Ay S, (ki Ko, K 1) S (k — by — ks — k) (5.8)
where
Semelkr ko, ks, 1) = Y (0| TV X739 X% ]| Xoo) (X TIXFT X B2V ] 0)
XCS

_ (3) (i)
S—1 (radas\ 888 5 N3 kes s N2 kcs . '
L TS psmm (b= o) ®9

The representations of the Wilson lines X and V and the color indices «;, 3;,7; are deter-
mined by k.. It now resolves the contribution to the measurement of 7'(1), 7-]\(,2), and 7']\(73)
Even though there is only one Wilson line in the combined nis direction, the measurement
is separated into k; and k. This is analogous to the soft function §qq in eq. (3.53), which is
built out of two Wilson lines but separates the contribution to 73 from all three jet regions.

5.2.2 Strong ordering in energies

We next consider the case where the first M jets are soft and strongly ordered in their
energies, while all jets are well separated,

W Cwp < - Lwy Lwp~Q,  8ij~1. (5.10)
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where k ¢ {1,..., M}. This is described by iterating the s+ regime in sections 3.3 and 4.4
and corresponds to a sequential rather than a tree-like structure.

For example, for M = 2 this involves the subprocesses

Ka(qa)kn(qp) = K3(q3) - kn(aN) KN—2 = {Ka, Kb} K3, ..., KN}
— k2(q2) k3(q3) - - - kN (gN) KN—1 = {Ka, Kb} K2, K3, ..., KN}
— k1(q1) k2(q2) k2(q2) - - - kN (gw) KN = {Ka, Kb} K1, K2, K3, ..., KN} -

(5.11)
The corresponding factorization formula is given by

do i (Pn)

dTN = Skn_o /dSadSb Ba(saa La, /’L) Bb(5b7 Lp, /’L) /d81 d52 Jg(slv /'L) Jg(SQ, lu’)

N
x [H [asnton m} Gt @0 ) Ol (w2, (i o) G, {i} )
k=3

N
~ S; N ~ ~
X Sfi <TN - Z av {Sij}a N) Cs,n(wh {nz}) ,U,) Cs,nN_l (w27 {ni}nN_l)/J')

2
x C(®N_2, 1) [1+O(gg1:;°g)] (5.12)

In the strongly ordered limit all soft jets are initiated by a gluon. The soft splitting
coefficients Cj ;. successively promote the color space from N-parton to (N +1)-parton and
from (N + 1)-parton to (N 4 2)-parton color space, respectively.

5.2.3 Correlated strong ordering in angles and energies

Finally, we also discuss the case with soft jets close to each other arising from an ordered
sequence of soft and collinear splittings. As an example, we consider the situation where a
soft jet further splits into two collinear jets, corresponding to the partonic subprocesses

Ka(da) ko(qp) — K3(q3) - - kv (gn) KN—2 = {Ka, Kb; K3, ..., KN}
— k12(qi2) K3(g3) - kN (gn) KN_1 = {Ka, kb K132, K3y - -, KN}
k12 — k1(q1) K2(q2) Ke = {Iii\%Q; K1,K2}, (5.13)

where k12 = ¢. This is characterized by the kinematic hierarchies

. . S1kS
wleQ<<wi¢172NQ’ 312<<5ijN]- = UNSlkNS2k<<Q2, S12 K 1: 2l’
kt
(5.14)
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with k,¢ # 1,2. Combining the results in sections 4.3 and 4.4 yields the factorized
cross section

N
doy (P
:—1,%\7]\7) = Skn_25ke /dsadsb Ba(Sa; Tas 1) Bo(sb, T, 14) L}_[l /dsk Jk(skaﬂ)] (5.15)

x [dk Z C;r,)\’m(sl% 2y Py M) SC,Hc(ka M) CC,)\12 (5127 25 P, :u)
A12,M\]y

X éT(¢N—27 iu) 61.

/7
SKN—1 ’)\12 (

N
X gnN,l (TN - Z % —V5s12k, {§z‘j}7#>

w1 + wa, {n’i}HN—laM)

s12) w2 Q2

As discussed in section 4.4 the spin interference effects between the hard process at the

~ . 2 2 y
x CS’ENflv)‘l?(wl + w2, {ni}ﬁN—p:u) C((I)Nf%:u’) |:1 + O(J @51 >:| .

scale u ~ @ and the soft splitting vanish, but in general they do not between the soft and
collinear splitting processes, since the helicity of the soft gluon is not fixed. Therefore, we
have explicitly denoted the dependence of (s, , on the helicity of the soft gluon Ais.

5.3 Beyond strong ordering

Having discussed the strongly-ordered case, we now discuss situations where several jets
exhibit a hierarchy with respect to the remaining energetic and well-separated jets, but not
among each other, i.e. where multiple soft or collinear jets originate from the same sector
at the same scale.

5.3.1 Multiple collinear emissions

First we discuss the case of M energetic jets being close to each other without any special
ordering in the angles between them,

tNSij<<8ikNSngQ2, wi ~wj~Q, (5.16)
where i,7 € {1,...,M} and k,¢ ¢ {1,..., M}. The corresponding partonic process is
Ka(qa) Ko(an) = Ke(qr) i (qnr+) - E (an) RN-M = {Ras Ko; K2 K41y o BN
ke(q) = k1(q1) -+ kar(qnr) ke = {K{ k1, .. kp ). (5.17)
Taking for example M = 3, this leads to the factorized cross section
N
e = sencase [dsadon Batows o) Boon v | I] fask o] 519

X /dk Z C_;Zc,)\; (Pec, 1) §cc,nc(kv {§ij}ncy 0] C_;cc)\t (Pec, 1)
A,

N
a S /A A
X OI\Q (¢N725 ,U‘) SK/N_Q <TN - Z @ - 5123 ku {Sij}HN_27M> C;l-\t((pN727 ,M)

<iro(™ 5]
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where we define

. 8123 Wi
t=s13 = (q1 + @2 +qs)?, S = y #= e (519
123 = (@1 +q2 + q3) 123 Q1Q2 + Q1Q3 + Q2Q3 ! w1 + wa + w3 ( )

An interesting new feature is that the color space of chcﬁc and 3’\007%6 is now nontrivial.
The matching coefficient C_"CC,HC(@c, u) describes the collinear 1 — 3 splitting at the scale
@~ /'t, and we denoted with ®.. the 3-body collinear phase space. It can be extracted at
tree level from the 1 — 3 collinear splitting amplitudes in refs. [82-84]. For example, for
q — qQQ (with different quark flavors Q # ¢) the collinear splitting amplitudes read

CCC7{q:r;q+Q—Q+}(Q17 12,q3) = —g

o 1 [Vz12223 n [13](y/Z1(12) — \/5<23>)} 1
sz 1—21 5123 —1/N. )’

Ccc,{qt_;q*Q*Q+}(Q17 q2, Q3) = Cccj{q?';q+Q*Q+}(Q17 q3, Q2) ) (520)
where we used the color basis
TP = (05505a> Opads) - (5.21)

In the strongly-ordered limit, this reduces to the product of two 1 — 2 splitting coefficients,
which will reproduce the result in section 5.2.1,

Bady
ce{gt it Q- Qt}

Ba 67
= Z gxaxq g,\zAQ- (5.22)

5128123

One can check this relation at tree level using the explicit results for the collinear splitting
amplitudes in ref. [57] (related to the ones given in eq. (4.20) via crossing) and eq. (5.20).
Note that the leading 1/s93 term in eq. (5.20) cancels, which requires a careful expansion
up to order 1/,/s235123, as pointed out e.g. in refs. [85, 86].

The csoft function §CC7,€C characterizes the csoft radiation exchanged between the 3
nearby jets at the scale u = m%/\/f,

(Tatocloczaa )TSata1Oc2a3 BtB1B283 (k {s ]} ,U) TBtB1B8203

T}
= Z< ’T[VT’HO% HX;ZO%} XCS><X T[HX%%V”B;%} O>
XCS 1 Z:1
3

o ) R AQ)
% T—l Taarazas TTﬁt,3152535(k M- Res ) . 5.23
e ( ) Z; piv/3123 5:23)

Scc /@C(k {523 }Hm :u)

The representation of the Wilson lines V,,, and X,,, are determined by the parton ;.
Unlike in egs. (3.50) and (4.22), the function now depends on several invariants, namely
the generalized angles §;; = 2¢;-q;/(Q:Q;) = nin;/(2pip;) and the p; with ¢ # j € {1,2,3}.
However, the typical angular scale is still v/3123 which we pull out front.
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Using that at tree level §§2?HC = 16(k), and summing (averaging) over the outgoing
(incoming) helicities, leads to the ¢ — ¢QQ tree-level splitting function [87]

- . A )
5 Z ng((:),)gc ((I)C& :u) Ség,)mc(ka {Sij}ﬁc’ :u) Cé((:),)nc ((I)Cm ,LL)

A=\
2¢*CrT 1 29813 — 238 29—2 2 dz14(29—23)2 s

_ =9 FF|:_ (2 281323512 | 22 3523> i} (22—23) Frotazg— 2 | 5(k
5235123 5235123 22+ 23 z2+23 z2+23 S123

5.3.2 Multiple soft emissions

Next we discuss the case where all jets are equally separated and the first M jets are soft
without any special ordering in their energies,

Wi ~ Wj L wp ~Q, §ijw§ik~§kgwl = UNSik<<SngQ2. (5.25)
with i,7 € {1,...,M} and k,¢ ¢ {1,..., M}. The partonic process separates as

Ka(qa) k(@) — karr1(gm+1) - - kv (an) KN-M = {Kas Kb; EM41,-- - KN}

— k1(q1) - kn(gN) KN = {Ka, Kb; K1y kN }.  (5.26)

This case involves the soft splitting amplitudes for M particles and is a straightforward
generalization of eq. (4.25). For example, for M = 2 we get

N
do (P
:{%VN) = Skn_s /dsadSb Ba(8a, Tas 1t) By(8p, To, 1) Ll:[l /dSk Ji(sk, M)]

N
< Oy O ploron ) ) 8o T = 3 o5 (5o

2
% Clys (Wi, wo, i}, 1) C(® o, 1) {1 + o(% 5‘2)} , (5.27)
The matching coefficients 633,,4 have as natural scale y ~ u/Q and are given in terms of
soft splitting amplitudes. They are now matrices going from N-parton to (N + 2)-parton
color space. The soft jets no longer have to be gluon jets, since a soft gluon can split into
a soft gg-pair. The tree-level expressions for 555 can be obtained from refs. [82, 83]. For
the emission of two soft gluon jets we have

o~ 3 1 Lty
’ i 212 q1-4; q2-q;

+ Z K(WaT?g M _jfazma 5)\2-611),]:,? Ex G A
£ q2-q; q1-q2 (g1 + q2)-qi

1, Exvéxs (@2 —q1)ai
4+ Zjfearaza ZAL A2 + (1< 2 . 5.28
4 f aree (@t @e)a ( ) (5.28)
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If the energies of the gluons are strongly ordered, this reduces to the iteration of the 5&%
as in eq. (5.12). At tree level, we have

~ 6 . . 6 . . 6 . E . .
Cs(g,)n — g2< Z T?l A 4i T(;z o' 4 + Z ifa2a1a Aq2 T Ao QZ)
51,52k

. . . . ? . .
i1 q1-4; q2-q;j iE1.2 q1-q92 q2-4q;
2 al Exiqi as ENy 45
Sy S S g 0
i£1 v j£1,2 J
=COCc0 | (5.29)

where we used that (Tgl)aw/2 = if92019 and the tree-level expression in eq. (4.26).

5.3.3 Remaining cases

The case of several soft jets close to energetic jet(s) combines the features of eqs. (5.18)
and (5.27). It leads to the color structure and soft functions in eq. (5.18). As the soft jets
arise from collinear-soft emissions, the corresponding matching coefficient is the analogue
of 633 on the set of the nearby jets, see eq. (3.71). One can also encounter the situation
of several nearby jets which are partially hierarchically ordered in their energies, but not
in their angles, leading to collinear and collinear-soft splittings at different invariant mass
scales and a communication via a common collinear-soft function that depends on all of
their directions.

The factorization formulae in this section (and their generalizations) can be combined
with those describing the strongly-ordered kinematics following the same logic as in sec-
tions 2.5 and 3.5. This allows one to cover the complete jet phase space and all possible
jet hierarchies and thus to systematically resum all kinematic logarithms. For multiple jets
the number of possible kinematic hierachies quickly proliferates. In practice, the number of
relevant cases can be greatly reduced by imposing restrictions on the jet kinematics one is
interested in and the perturbative accuracy one aims to achieve. For example, any hierar-
chy for which a fixed-order description is sufficient can be ignored and is then automatically
included via the nonsingular matching corrections.

6 Conclusions

Processes with multiple jets in the final state depend on several hard kinematic variables,
like the jet energies and invariant masses between jets, generating large logarithms in
the cross section whenever there are sizable hierarchies between the corresponding kine-
matic scales. This is in fact the generic situation, due to the enhancement of soft and
collinear emissions in QCD. To obtain precise predictions with well-controlled perturba-
tive uncertainties, the systematic resummation of these kinematic logarithms beyond the
leading-logarithmic accuracy provided by the parton shower is needed. This is particularly
relevant at the LHC, where there is plenty of phase space and a large kinematic range
between the highest probed scales at ~ few TeV to the lowest jet energies at ~ 30 GeV.
We constructed the effective field theory framework that enables the systematic re-
summation of kinematic logarithms for generic jet hierarchies in multijet hard-scattering
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processes through RG equations. We have presented this in detail for all hierarchies for
eTe™ — 3 jets, and discussed a representative set of the general pp — N jet case, demon-
strating how to handle the complications arising from the large number of possible hierar-
chies and due to spin and color correlations. Our framework allows for a combination of
the results for the various different regimes via a sequence of nonsingular corrections that
avoids double counting. Although we have mainly focused on jets defined via a SCETy
jet resolution variable like N-jettiness, the SCET framework is general and applicable
also to other jet definitions and resolution variables like a SCET1-type pr-veto applied in
jet binning, since in particular the factorization in the hard sector is independent of the
specific jet definition.

Important applications of our framework include jet substructure analyses and jet bin-
ning. Though the numerical implementation is beyond the scope of this work and left for
future work, the necessary perturbative ingredients are generically known for the resumma-
tion up to NNLL, which requires the full one-loop matching corrections and two-loop non-
cusp anomalous dimensions. In particular, our results for the exclusive N-jet cross sections
from SCET, can be used to systematically improve upon the LL description of kinematic
logarithms in parton showers, for example by incorporating them into the GENEVA Monte
Carlo framework [88-90] or possibly by extending the MINLO method [91-93]. Further-
more, in ref. [9] it was argued that nonglobal logarithms can be systematically accounted for
by considering and marginalizing over increasingly resolved hierarchical multijet configura-
tions, for which the kinematic logarithms can be resummed. Our results make it possible to
explicitly carry out this procedure to higher perturbative accuracy and subleading orders.
Differential measurements with jets play an increasingly important role in collider physics
and the aim of our SCET, framework is to improve the theoretical predictions and to
better control perturbative uncertainties in multijet processes.
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A SCET notation and conventions

In this appendix we briefly summarize the common SCET notation we use. The momentum
of a particle in the nm-collinear direction is decomposed into a large label momentum pf;
with respect to the n-collinear direction and a small residual momentum k* of order QA?,

nu‘

PRk, Pi=npi 40, ~QOLA), R~ QNN (A
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The n-collinear quark and gluon fields with label momentum pf, are denoted by &, 5(z*)
and Azﬁ(ac“), where the coordinate z# is conjugate to the residucal momentum k*. The
label operator P} picks out the label momentum of a field, P} &, 5 = p* &, 5, while deriva-
tives acting on the fields pick out the residual momentum dependence, i0* ~ k*. We are
often only interested in the label n for the collinear direction, &, and A}, which implies
that the momentum labels are implicitly summed over subject to overall label momen-
tum conservation.

The operators appearing in the hard-scattering Lagrangian are constructed from fields
and Wilson lines that are invariant under collinear gauge transformations [2, 3]. The
smallest building blocks are collinearly gauge invariant quark and gluon fields, which are
defined as

Xnwo(@) = 3w = 7-P) Wi (@) €u(a)]

BY (x) = ; (5w + 2P () D2 (2) W) (A.2)

n,wl
With these standard conventions, w > 0 for an incoming quark or outgoing gluon and
w < 0 for an outgoing antiquark or incoming gluon. The collinear covariant derivative
is given by iD!, = P! + gAl | and W,(z) is a Wilson line of n-collinear gluons in

label-momentum space

Wi (2) = [Z exp(ﬁf;n ﬁ-An(m))] : (A.3)

perms

The usoft fields Al couple to the collinear fields via the usoft covariant derivative
iDls = i0* 4+ gALs. These interactions in the collinear Lagrangians are eliminated by the
field redefinition [4]

0
Xnwo(@) = Ya(@) XL(@), Bl (@) =Ya(@) BID @) V@), (A4)
where Y;,(x) denotes the ultrasoft Wilson line along the n direction,

Y, (z) =P exp [—ig/o dsn-Ays(sn* 4+ )|, (A.5)

and P denotes anti-path-ordering. Usually we do not display the superscript (0) explicitly
on the redefined fields for notational simplicity.

B Anomalous dimensions

Here we give explicit expressions for the cusp and noncusp anomalous dimensions of the
hard Wilson coefficient in egs. (3.69) and (4.33) and the /5 function. Using the expansions

n+1

Blas) = —2a iﬁ"(ﬁ)nH’ Teusp(vs) = f:rn(jﬂ) : (B.1)
n=0 n=0
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the one-loop and two-loop coefficients in the MS scheme are given by [68, 94, 95]

11 4 34 20
Bo = *C'A—g FNf, 51:70,%1_<7CA+4CF>TF7%H
268  4Ar? 80

with 'Y = Cpl,, and 'Y = C41,,.
For the noncusp anomalous dimensions of the quark and gluon form factors

e i Qg n+1
s) = Z%m(@) ; (B.3)
n=0

the coefficients are [96, 97]

41 3 65 72
Yeo=-3Cr, &, = CFKQ - 26C3>CA + < — 27 4 24C3) Cr+ <18 2)50] ,
59 19 72
Vo ==Bo, L= (—9+2<3)CA+ <—9+6)CA60—61. (B.4)

C Hard splitting functions in SCET

In this appendix, we explain how to directly calculate the hard splitting functions H., Hy,
and H,s for ete™ — 3 jets discussed in section 3. We use this specifically to compute Hg
at one loop and to extract the two-loop result from available results in the literature.

C.1 Calculational prescription

The hard function H. can be directly computed from the matching within a single collinear
sector in SCET using the fact that the associated loop diagrams in SCET | are scaleless
and vanish in pure dimensional regularization. Following a similar line of reasoning as
discussed above eq. (3.18), we can write H, for the collinear splitting ¢ — ggq, i.e. for the
partonic channel k. = {q; g, q}, as

Zgqq,c
He {q:g9.q3(t: 2 0) = ‘ qzz 47rNcQ3 Z/d4a?e za® ‘QXTL ‘QQ> gq!an ‘O>] 2,2Q
_ | Zgqac (277) / d’p, / d’py 2
o ‘ N.Q? (27r)32p2 (27‘()32pg colorzs:pinlMC(O - g(pg)Q(pq))‘
_ _ Dy
5(Q = py = py) 8 (par + o1 81t~ QY +27)10(= ~ 5 ). (C.1)

The factor Z; 43, indicates the common counterterm of the operators O ( Agihe) in the c+
regime with three collinear directions in analogy to eq. (3.17), while Z4 is "the counterterm
of the ¢q operators O?‘)\B ) D €q. (3.29). The states |g) and |g) in the first line of eq. (C.1)
denote on-shell gluon and quark states with momenta pj = py + ki and pj = pj + kb,
respectively, which we have split up into label and residual components in SCET as in

eq. (A.1). The spins and polarizations are summed over and the trace runs also over color
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indices. The second line of eq. (C.1) represents the direct computational prescription in
terms of the collinear amplitude M.(0 — g(pg)q(pq)) obtained from the collinear SCET
Feynman rules.

Similarly, the hard function Hg can be directly computed from the usoft sector in
SCET with two collinear sectors and can be written as

tu 9499,8
HS(@;M) = ‘

_ ‘ Zgqa.s
Zqq

Ztr[o\T V2] o) | T [¥;1¥a] [0)] 8(t = Q) d(u — Q)

2
- oy 0 a() e = @0 0= o). (C2

where Zg 44 is the counterterm of the operators O} af in the s+ regime. Here, |g) is

Ag(AgsAe)
an on-shell gluon state with momentum pj§j = kfj (i.e. with vanishing label momentum in
the parent SCET).

Finally, the hard function H.s can be directly computed from the csoft sector in SCET

with two collinear sectors and can be written as

V4

t q,cs 2 1 T
e G =| | g S TRl Q1505)5,.
Zgqi.cs 2 1 d -
- % N, /mggolMcs(O%gpg ) o(t=-Qp)du—Qpy).  (C3)

where Z; 45,5 is the counterterm of the operators O ()\ ) in the cs+ regime. Eq. (C.3)
gives the same result as eq. (C.2) due to the identical “form of the Wilson lines X, and Yy,
V,, and Y5, see egs. (3.33) and (A.5).

These expressions can be easily adapted to IV jets, which only affects the form of
eq. (C.2) due to the fact that more usoft Wilson lines appear, and to initial-state split-
tings. Furthermore, also the hard functions with several additional emissions discussed in

section 5.3 can be computed in the same way.

C.2 Calculation of H,

Here we calculate the hard function for the soft splitting in the s+ regime with two hard jets
at one-loop order, and extract the two-loop result from the literature. Following eq. (C.2)

we write
tu Zgaas|” 75 -
H <77 )E 29435 | g(bare) _ Z95.8 §d) 4 glket) ) C4
Q") =172z, 7 2\ 2 S (C4)
k i+j=k
where S("2¢) indicates the bare soft matrix element (with renormalized o). At order a+1

this originates from the interference S(*7) of soft currents with loop corrections of O(a?)

and (’)(ag) and k = i + j. Since S are given in terms of the unrenormalized strong

(k,ct) )

coupling, we include the associated counterterm .S For convenience we abbreviate

Zy = |Zq<i’2 and Z3 s = [Zgqq. 2
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Figure 6. Diagrams contribution to Hy for et e™ — 3 jets. The left and middle diagram are the
nonvanishing contributions to S, The right diagram gives S(\'1) | entering H, at two loops.

In our calculation we employ the 't Hooft-Veltman (HV) scheme [98], in which the
momentum and polarization of the measured external soft gluon is kept in four dimensions,
and only unresolved partons in loops obtain nonvanishing components in d — 4 dimensions.
This gives the same results as in conventional dimensional regularization, but is more
convenient since O(¢) corrections do not arise in the tree-level correction.

At one loop, only the first two diagrams in figure 6 contribute, yielding

2,VE N € 4

d - -
[ e (€5)
(2m)d k= —q= +10 gt +i0 (k—q)2 +1i6 ¢2+10

where we rescaled p? — p2e7? /4w anticipating MS renormalization. The integrals can be
easily solved using standard methods like Feynman parameters. The final d-dimensional
result reads

G(10) _ _oz?C’FC'A 1/ tu B T2 () T3 (1 — ) (C.6)
N 472 tu\ Q%u? (1 — 2¢) '
We renormalize o in the MS-scheme which gives rise to the contribution
0o 1
et — _L450 THO). (c.7)

Thus we obtain for the full one-loop hard matching function given in eq. (3.63),

HM <Z2Q; M) = 00 1 500 4 gt 1 (Z{) — 25V ) H

2
) asCaf, o¢ tu \ bm
H; . [ln <Q2M2) < | (C.8)

where we used the one-loop MS counterterms

1 aCr[2 2 Q* 3
M = B S S g
2 27 [62 € n,u2 ek
s [2 2CF — 2 t 2
Z§1):a7 Cr+Ca 2CF CAIHQ_% n— +1ln =~ +M . (C.9)
S 2 €2 € 2 € p? I €
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We now extract Hs at two loops, which can be written as
HS(Q) = 602) 4 g20) 4 g(11) 4 g(2ct) 4 (5(1,0) + 5(0,1))(Z§15) _ Zél))
+ |20 - 2 - 2025 + (Z87)*| B (C.10)

in the notation of eq. (C.4). The interference term between the two-loop and tree-level
current has been calculated in refs. [64, 65, 99]. The finite pieces are given by

2C 2 22 67 1072
S0 4 g20)| - _ g0 LEAY o 124 22y (20 L2 C.11
+ e % 1672 17437 T o "3 (C.11)
386 12177 gc PERICN 73772 %C 7t
27 18 3 81 108 3% 360
8 20 76 2272 130 5572 124
Trng|—-L3 + 212 - (2 — L4 — 2t 2=
+F”f{ 0" Ty (27 9 > HESTET 9C3”’

with L = In( 0% —5%>) and using still an unrenormalized strong coupling. The only nonvanish-
ing diagram for the interference contribution between the two one-loop currents is given in
figure 6. The result for the bare correction is given by square of the one-loop contribution,

asCa(  tu TCEET2() T3 (1 — ) |?
A Q%2 (1 — 2e)

Including also the counterterm corrections for the renormalization of a in the MS-scheme,

gL — f(0)

s

(C.12)

2
Set) — _ (‘Zf)g %H§0> - a;‘f”%(sﬂm + 500y (C.13)

and the cross term between the one-loop counterterm and one-loop contributions to the
bare soft matrix element yields

S(lvl) + (S(lro) + S(Ovl)) (Z:gils) _ Zél)) + S(27Ct) fnite (C14)
2
g©Cal [ 14 177 5 28 1174 1 5LL_E
5162{A6+6 Cz”+180 Tho| gl G
Summing all contributions gives the final two-loop result,
204 1 11 67 w2
H = g% iy 5 B (LA 1
3<Q2’) S ez \ A2 T 9 "2 (C.15)
386 llx? 26 )L — 1142 N 7372 @C 2974
27 3 3 81 108 37 360
4 20 76 47 130 5572
Teng|—-LP+ =12 — (= - —— L+ = -2 _ 2 .
+F"f[9 5 (27 3> HETRT, 943]}

As a cross check, we verified that this result agrees with the anomalous dimension in
eq. (3.69) using the expressions in eq. (B.4).
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