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three-point function of the supercurrent in N' = 4 superconformal field theories contains
two linearly independent forms. However, only one of these structures contributes to the
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1 Introduction

In our recent work [1], the two- and three-point correlation functions of the supercurrent
and flavour current multiplets have been computed for three-dimensional (3D) N -extended
superconformal field theories with 1 < A < 3. Here we extend the analysis of [1] to
the NV = 4 case. We also study the reduction of correlation functions in N-extended
superconformal field theory to (N — 1)-extended superspace.

In two dimensions, N' = 3 supersymmetry automatically implies N' = 4 [2, 3] for
nonlinear o-models.! What about three dimensions? As far as the supersymmetric non-
linear o-models are concerned, 3D N = 3 supersymmetry again implies N' = 4. Indeed,
the proof given in [2, 3] remains valid in three dimensions. Moreover, off-shell N' = 3
supersymmetric o-models can be shown to possess off-shell N' = 4 supersymmetry [4].
Analogous results hold for N' = 3 super Yang-Mills theories with matter [5]. However, a
rather counter-intuitive situation occurs with parity odd Chern-Simons terms. The N/ = 3
Chern-Simons action? exists for any gauge group [6-8]. On the other hand, it is well known
that no N/ = 4 supersymmetric Chern-Simons action can be constructed (for a recent proof,
see [9]), although abelian N' = 4 BF couplings are abundant [10].

The R-symmetry group is (locally isomorphic to) SU(2) in N' = 3 supersymmetry and
SU(2)1, x SU(2)r for N/ = 4. This difference implies that there are two inequivalent N' = 4
gauge multiplets [10-12] and two inequivalent ' = 4 hypermultiplets [11, 12], as compared
with a single vector multiplet and a single hypermultiplet in A' = 3 supersymmetry. The

'The proof given in [2, 3] is as follows. It is known that N-extended supersymmetry requires the
existence of N' — 1 anti-commuting complex structures for the o-model target space. In the A" = 3 case,
the target space has two such structures, I and J. Their product, K := I J, is a third complex structure
which anti-commutes with I and J, and therefore the o-model is NV = 4 supersymmetric.

2The N = 3 Chern-Simons action was constructed for the first time by Zupnik and Hetselius [6] in 3D
N = 3 harmonic superspace, and several years later it was re-discovered [7, 8] at the component level.



inequivalent N/ = 4 vector multiplets obey different off-shell constraints and transform
in different representations of the R-symmetry group, and similarly for the inequivalent
hypermultiplets.3

The doubling of gauge and matter multiplets in A/ = 4 supersymmetry has important
implications for the structure of N' = 4 superconformal field theory. First of all, there are
two inequivalent N' = 4 flavour current multiplets whereas there is only one in superconfor-
mal models with N = 1, 2, 3 supersymmetry which were considered in [1]. Secondly, we will
demonstrate that the three-point function of the N' = 4 supercurrent has two independent
structures, as compared with a single structure in the ' = 1,2, 3 cases studied in [1].

The zoo of N' = 4 superconformal field theories in three dimensions is pretty large.
The trivial examples of such theories are provided by models of free hypermultiplets. More
interesting are interacting models of hypermultiplets coupled to vector multiplets, with BF
couplings for the vector multiplets. The non-abelian A/ = 4 superconformal field theories
include the Gaiotto-Witten models [13] and their generalisations [14]. For all abelian N = 4
superconformal field theories, there exist off-shell realisations. As concerns the non-abelian
N = 4 superconformal theories proposed in [13, 14], it is not yet known how to formulate
them in A/ = 4 superspace, which is an interesting open problem. There also exist Chern-
Simons-matter theories with A= 6 [15-17] and N’ = 8 [18-20] superconformal symmetry.
The correlation functions of certain conserved currents in these theories can be studied
using the N' = 4 superfield methods developed in the present paper.

This paper is organised as follows. In section 2 we give a brief review of the supercon-
formal building blocks for the two- and three-point correlation functions in 3D N-extended
superspace following the conventions and notation used in [1]. We also elaborate on those
properties of the building blocks which are specific to the A/ = 3 and N’ = 4 cases. In
section 3 we develop a new representation for the correlation functions of the N' = 3 flavour
current multiplets originally computed in [1]. This representation allows us to easily up-
grade the ' = 3 flavour current correlators to the N' = 4 ones which are derived in section
4. Here we also construct two- and three-point functions of the A = 4 supercurrent and
demonstrate that the latter involves two independent tensor structures which distinguish
the N' = 4 supercurrent correlators from those in the NV = 1,2,3 cases. In section 5 we
consider a particular example of N = 4 superconformal field theories given by the model
of free N = 4 hypermultiplets for which we explicitly compute the correlation functions of
the supercurrent and the flavour current multiplets. For this model we find important re-
lations between the coefficients in the two- and three-point functions which are interpreted
as the manifestations of Ward identities for these correlators. We argue that though these
relations between the coefficients are found for the particular model of free hypermultiplets,
they hold for generic N/ = 4 superconformal field theories as well. Section 6 is devoted
to the derivation of the Ward identities for the 1 < A < 4 flavour current multiplets. In
section 7 we uncover various relations between the coefficients in the two-point and three-
point functions both for the supercurrents and flavour current multiplets for all N' < 4.
Finally, in section 8 we discuss the results and some open problems.

3The inequivalent vector multiplets and hypermultiplets can be described in terms of superfields that
are defined on two different supersymmetric subspaces of the N' = 4 harmonic superspace [11, 12].



The main body of the paper is accompanied by three technical appendices. Appendix
A is devoted to a brief review of 3D off-shell A = 4 multiplets. In appendix B we use
the 3D N = 4 harmonic superspace approach to derive a new representation for the g™
hypermultiplet propagator which is important in studying the implications of the Ward
identity for the correlation functions of the AN/ = 4 flavour current multiplets. In appendix
C we collect some details of the reduction of the A/ = 4 correlation functions computed in
this paper to the N'= 3 and N = 2 superspaces.

2 Superconformal building blocks

This section contains a brief summary of those results in [1] which are necessary for our
subsequent analysis. In addition, we elaborate on specific technical features of the N = 3
and N = 4 cases.

2.1 Superconformal transformations and primary superfields

Consider N-extended Minkowski superspace MBIV parametrised by real bosonic (z%) and
fermionic (6¢) coordinates

A= (%09, a=0,1,2, a=12, I=1,....N.

Here the indices ‘a’ and ‘a’ are Lorentz and spinor ones, respectively, while ‘I’ is the
R-symmetry index. The 3D N-extended superconformal group OSp(N|4;R) cannot be
realised to act by smooth transformations on MBI2V | However, a transitive action of
OSp(N[4;R) is naturally defined on the so-called compactified Minkowski superspace MBI2V
in which M2V is embedded as a dense open domain [4]. In general, only infinitesimal su-
perconformal transformations are well defined on M3V, Such a transformation

b= = B =) FIG R (as, M7 =61 (21)
is associated with an even real supervector field on MBI2V ,
1 P
§=¢"Da =€"00+ 7Dy = =56 00p + 67D, £ =¢7, (2:2)

which obeys the equation [£, DL] o Dg. All solutions of this equation are called the
conformal Killing supervector fields of Minkowski superspace. They span a Lie superalgebra
(with respect to the standard Lie bracket [£1, £2]) that is isomorphic to the superconformal
algebra osp(N|4; R).

Explicit expressions for the components &4 = (€%, &%) of the most general conformal
Killing supervector fields are given by eq. (4.4) in [1]. Equivalent results were derived
earlier by Park [21] and later in [4]. In the present paper, we will not need these explicit
expressions. For our analysis, it suffices to use the relation

«

(&, DL = ~(DLEN) DA = AP (2)D} + AV (2)DY — So(2)D) (23)



Here the superfield parameters on the right are expressed in terms of €4 as follows:
1 [e% 1 a
Map(2) = =17 D(athy, AT (2) = 2D, o(z) = foéf =30.8" . (24)

One may think of A\,s(2), A’7(2) and o(z) as the parameters of special local Lorentz,
R-symmetry and scale transformations, respectively, due to their action on the covariant
derivative given by (2.3). The same interpretation is supported by the explicit expressions

for Aop(2), A'7(2) and o(z) as polynomials in z4:
AB(z) = X — o)) baﬁmah + 2|07 | (2.52)
A[J(Z) = A[J+4i77[0}9J]a+21ba5910J, (2.5b)
0(2) = 0 + bapa®® + 210314 . (2.5¢)

Here the constant parameters A,g, A" and o correspond to the Lorentz, R-symmetry and
scale transformations from OSp(N|4;R), while b*® and 77, generate the special conformal
and S-supersymmetry transformations.

It is the z-dependent parameters (2.4) which appear, along with ¢ itself, in the super-
conformal transformation law* of a primary tensor superfield of dimension ¢

§0% = —£h — qo(2)®% + AP (2)(Map) APOF + Ay (2)(RI)T 707 . (2.6)

Here ‘1)2:4 is assumed to transform in some representations of the Lorentz and R-symmetry
groups with respect to its indices ‘A’ and ‘Z’, respectively. The matrices M,5 and R
n (2.6) are the Lorentz and SO(N') generators, respectively. It should be mentioned
that the R-symmetry subgroup of OSp(N]4;R) is O(N). In what follows, its connected
component of the identity, SO(N'), will be referred to as the R-symmetry group.
Consider a correlation function (®;(z;)...®,(2y)) of several primary superfields @y,
.., ®,, (with their indices suppressed) that originate in some superconformal field theory.
In terms of this correlation function, the statement of superconformal invariance is

D (@i(z1) .. 0Pk(zk) - - Pr(2n)) =0 . (2.7)
k=1

2.2 Two-point functions

In ordinary conformal field theory in d dimensions, a comprehensive discussion of the
building blocks for the two- and three-point correlation functions of primary fields was given
by Osborn and Petkou [23] who built on the earlier works by Mack [24] and others [25-30].
Their analysis was extended to superconformal field theories formulated in superspace by
Osborn and Park [21, 31-33].

In the case of 3D superconformal field theories, the building blocks for the two- and
three-point correlation functions were derived first in [21] using the coset construction for

“The transformation law (2.6) is a 3D super-extension of the Mack-Salam construction [22].



OSp(N[4;R) and more recently in [1] using the supertwistor approach. All building blocks
are composed of the following two-point structures:

2 = (21— 22)°° + 2i0\5605) — 655,05, , (2.82)
079 = (61 — 62)F . (2.8b)

The former transforms homogeneously at z; and zo,

< a 1., o ay (1
oy = (25 Zo(z1) = A 7(zl)> )y + 5] (257%(,22) - Aﬁ(zg)) , (2.9a)

while the latter involves an inhomogeneous piece in its transformation law,

~ 1
59ts = (0750 (0) = X%5(e1) ) 0y + Ars )6y — o), (290
with n7q(2) = —3DLo(z) = npa — bagty. Here the variation ¢ is defined to act on an
arbitrary n-point function O(z1,...,2,) by the rule
" n
00(z1,. ., 2n) = &,0(z1,...,2n) - (2.10)
i=1

As follows from (2.6), each primary superfield ® is determined by the following data:
(1) its dimension ¢; (ii) the representation T" of the Lorentz group to which ® belongs; and
(iii) the representation D of SO(N) in which ® transforms. There are three building blocks,
which are descendants of (2.8) and which take care of the above data in the correlation
functions of primary superfields.

Firstly, using (2.8a) we define the scalar two-point function

1
33122 = —517%8:1312&5 (2.11)
with the transformation law
516122 = (0(21) + U(ZQ)>$122 . (2.12)

In general, the correlation functions contain multiplicative factors proportional to powers
of 2122 in such a way as to guarantee the right scaling properties.

Secondly, the Lorentz structure of the primary fields in correlation functions is taken
care of by the 2 x 2 matrix

T .
Ly = %a (&@12)2 =1,
VvV —I12

where we have used the matrix notation &1y = (w‘fg ) and € = (g4p). Its transformation

(2.13)

law is
oafy = =2 (=) aly — 2 A, (2) . (2.14)



Thirdly, the SO(N) structure of the primary fields in correlation functions is taken
care of by the N' x N matrix

uig = (uf3), ufy = 6" + 2108 (27, )aptls | (2.15)
where .
1 128a
T = ——= 2.16
( 12) af T 192 ( )
is the inverse for (z12)®?, that is (25 )as(®12)?7 = 6. One may check that the matrix

u12 is orthogonal and unimodular,
ulpury = Ly,  detupp=1. (2.17)
It follows from (2.9) that
Sul uld = ATE (z)ul) — wlFAKT () . (2.18)

The above properties provide the rationale why u J naturally arises in correlation functions
of primary superfields with SO(N) indices.

The two-point correlation function of the primary superfield q)ﬁ and its conjugate @“I“
is fixed by the superconformal symmetry up to a single coefficient ¢ and has the form

TAB(e@19) DT 7 (u12)
(w122)4

provided the representations 7' and D are irreducible. The denominator in (2.19) is fixed

(D% (21) @5 (20)) = ¢ (2.19)

by the dimension of ®.
Before turning to three-point building blocks, it should be pointed out that the two-
point structure m12 defined by (2.8a) has the following symmetry property

xol = —als (2.20)
It can be decomposed into its symmetric and antisymmetric parts,
i
) = afy + §5a69122, (2.21)

where
0122 = 055,01010, 2P =200 = (21 — 22)*® + 2100765 . (2.22)
As is seen from (2.9a), the two-point structure x12 does not transform homogeneously,
unlike :1:12 However, in practice it is often useful to deal with xlzﬁ for concrete calculations.
2.3 Three-point functions
Associated with three superspace points z1, 2o and z3 are the following three-point struc-
tures:
X — _(p—1 70 (=l 2.23
108 = —(Z31 )ary o3 (T13 )ss (2.23a)
I —1 I -1 T
Ol = (Ty )aﬁelg — (@5 )aﬁelgv (2.23b)



1J _ IK KL LJ
Ui” = ujy ups uzp . (2.23c)

They transform as tensors at the point z;

0X 105 = A (21) X 175 + X1ay N 5(21) — 0(21) X 105 , (2.24a)
~ 1
501, = <Aa5(Z1) - 25aﬁa(zl)> O + A (21)07, (2.24b)
U = MK @)UST — UIKAR () (2.24¢)

These objects have many properties resembling those of the two-point functions. In partic-
ular, the tensor (2.23a) can be decomposed into symmetric and antisymmetric parts similar
to (2.21), .
i
2
where the symmetric spinor Xi,3 = Xy, is equivalently represented as a three-vector
Xim = _%’Y%BXla,B-

Next, the matrix (2.23c) can be expressed in terms of (2.23a) and (2.23b) similarly
to (2.15):

Xiap = Xiap — 5205017, (2.25)

iQ{QXfa@i]ﬁ

U’ = 6" 4 210, (X7 0]y = 6" -2 %

(2.26)

The matrix U; = (U{”) is orthogonal and unimodular.

We point out that in (2.23) we have defined the three-point structures which transform
as tensors at the point z;. Performing cyclic permutations of the superspace points z1, z9
and z3 in (2.23) one obtains similar objects which transform as tensors at the superspace
points zo and z3. The three-point structures at different superspace points are related to
each other as follows

/ 8's 1 X7’
m%’? X3a’ﬁ’m31 = _(XI )ﬁa = X2 ) (2273)
0
@{79’3'{3)(355 = u{é]@{{ﬁv (2.27b)
UL — WIKUELL (2.270)

Various primary superfields, including the supercurrent, obey certain differential con-
straints. In order to take into account these constraints in correlation functions, we need
rules to evaluate covariant derivatives of the variables (2.23a) and (2.23b) and also those
obtained from them by cyclic permutations of the superspace points z1, 22 and z3. Given
a function f(X3,03), one can prove the following differential identities:

D{1),f(X3,03) = (213 )arui3 D f(X3,03) (2.284)
D(]2)7f(X3’ O3) = i(a:2*31)a7u£g9{3")‘f(X3, 03), (2.28b)

where we have introduced the operators

0 0 0
+iy057 Q3o + 057 . (2.29)

T o _;
Plg = 3 OXy ‘005, 3 oXy

9
003,



Let @, U and II be primary superfields (with indices suppressed) of dimensions ¢,
q2 and g3, respectively. The three-point correlation function for these superfields can be
found with the use of the ansatz

(2132)0 (2932) 22
X Hy\ 54X, 03,Us) (2.30)

(D5 (21) U8 ()11 (23)) =

where H gjgjﬁ{’; is a tensor constructed in terms of the three-point functions (2.23). The

functional form of this tensor is highly constrained by the following conditions:

(i) It should obey the scaling property
HJED (XX, 00,U) = (\2)s=e-a HIET (X 0, U) (2.31)

in order for the correlation function to have the correct transformation law under the
superconformal group.

(ii) When some of the superfields ®, ¥ and II obey differential equations such as the
conservation conditions of conserved current multiplets, the tensor H gllg;ii is con-
strained by certain differential equations as well. In deriving such equations the

identities (2.28) may be useful.

(iii) When two of the superfields ®, ¥ and II (or all of them) coincide, the tensor H
should obey certain constraints originating from the symmetry under permutations
of the superfields, e.g.

(@7 (21) 95 (22)11g (25)) = (—1) D5 (22) 7 (1) I (23)) (2.32)
where ¢(®) is the Grassmann parity of ®4'.

These constraints fix the functional form of the tensor H (and, hence, the three-point
correlation function) up to a few arbitrary constants.

2.4 Specific features of the N/ = 3 case

An important feature of the N' = 3 case is that the R-symmetry group SO(3) is related
to SU(2) by the isomorphism SO(3) = SU(2)/Zy. This isomorphism makes it possible to
convert the SO(3) index of every isovector Z; into a pair of isospinor ones,

i

\/5(2 L&) = Zi(m)d Zi=0, (2.33)

Z] — Zi‘j =
with & the Pauli matrices.”
The isospinor indices will be raised and lowered using the SU(2) invariant antisymmet-

12

ric tensors ¢;; and €% (normalised as £12 = g9; = 1). The rules for raising and lowering the

isospinor indices are
Y=Yy, i = ey (2.34)

2Qur definition of the T-matrices agrees with the one adopted in [4].




In particular, associated with the matrices (77);, eq. (2.33), are the symmetric matrices
(11)ij = (1);i and (77)¥ = (77)?" which are related to each other by complex conjugation:

(r1)ij = (r1)" . (2.35)

If Ar and By are SO(3) vectors and A;; and B;; are the associated symmetric isotensors,
then
A[ == Az‘j<7'])ij 5 A[B[ - Az‘jBij 5 (236)

in accordance with the identities

, 1 -1 ; 1
(r)i* (T = ——=e1sr(TK)i — 261567, (11)ij(T0)kt = = (Eanejt + cagjn) - (2.37)
V2 2 2
Given an antisymmetric second-rank SO(3) tensor, A’/ = —A7  for its counterpart with
isospinor indices AU = — AR = ATJ (7)1 (1) we have
AIJ _ _AJI — AIJ(TI)ij(TJ)le _ _gleik - EikAjl, AZ] _ Ajz ) (238)

Applying the above conversion to the Grassmann coordinates 6% and the spinor co-
variant derivatives D! gives

0% = 0% (rr)ij, DY = (m)" DL, (2.39)
and similarly for the two- and three-point functions (2.8b) and (2.23b)
Ohe = (1) 0120, O = ()01, . (2.40)
The covariant derivatives Dg obey the anti-commutation relation
{DY, Dk} = —2ic"*eDig, 5 . (2.41)

In terms of the superspace coordinates z4 = (x® ,9%) the explicit realisation of the covari-

ant derivatives is
DY —

U= +10°79,4 . (2.42)
002,

The isomorphism SO(3) = SU(2)/Zs implies that associated with the orthogonal uni-
modular matrix u{QJ given by (2.15) is a unique, up to sign, unitary and unimodular matrix
u12 such that

., -, 1
(r1)" (7.0)" U{é] = 5(“12“12 "’uzlgullé) . (2.43)

The matrix uj, can be chosen as

9 x50 ;0
P 12a™12 Y12k 12
ij ij B 6

u = —¢ . Oti= (01 01a)” (2.44)

x12? 8 2
It is easy to check that (2.44) is indeed unitary and unimodular,
uJ{Qlllz = 1o, detupp =1, (2.45)

and obeys the equation (2.43) with uly given by (2.15).

-9 —



The transformation law of the orthogonal matrix wuje, eq. (2.18), has the following

counterpart in terms of the unitary matrix uyo:
suth = AL (z1)uf] + uib Al (z) . (2.46)

Here the symmetric matrix A% (z) with isospinor indices is related to the antisymmetric
matrix A7 (z) with isovector indices, eq. (2.4), according to the general rule (2.38).
Let us introduce one more 2 x 2 matrix by the rule

ij i ik .aBnJ
gooupy &l 015, 1500 4
njp=—-=————-1l—7—-. (2.47)
12 T12 T12

The second expression for n% is given in terms of the symmetric part of :z:f‘f given by (2.22).

It may be shown that the two-point function (2.47) obeys the analyticity condition

D i) =0 (2.48)

This is why n% appears in the correlation functions of A’ = 3 flavour current multiplets.
Similarly to (2.43), we can represent (2.26) as

Y - ! 1 i il ! il ii!
() (7)) UL = §(U1”U1j +Uuy) (2.49)

where we have introduced the matrix

UY = -7 +ief, (X176, + ;e”‘i{; : (2.50)
which can be expressed as a product of three two-point functions (2.44)
U = —u’i];uggklug‘l . (2.51)
As a consequence, the transformation law (2.46) implies
SUY = AL(2)UY + U%¥AL(z) . (2.52)
By analogy with (2.47) we introduce the matrix
Ny = Eﬁ -5 - i%)ﬁi@{’“‘* 7 (2:53)
which obeys the analyticity condition
D N =0, (2.54)

where the derivative DY is related to (2.29) by the rule (2.39).

Here we have only considered the thee-point functions (2.50) and (2.53) which trans-
form as tensors at z1. Performing cyclic permutations of the superspace points z1, 22 and
z3 leads to similar objects which transform as tensors at zo and z3.

,10,



2.5 Specific features of the N = 4 case

In the case of N' = 4 supersymmetry, the R-symmetry group SO(4) possesses the isomor-

phism SO(4) = (SU(2)1, x SU(2)r)/Zy which can be used to convert each SO(4) vector

index into a pair of SU(2) ones,’

o )
= %(z &)F ﬁzﬂsﬁ = Zi(m)iF . (2.55)

The index ‘I’ is an SO(4) vector one, while the indices ‘i’ and ‘7’ are, respectively, SU(2)y,

and SU(2)R spinor indices. Given SU(2)r, and SU(2)g spinors t; and x;, respectively, we

will raise and lower their indices by using the antisymmetric tensors ', e;; and €, &5

(normalised by £'? = g9 = £!?

= e57 = 1) according to the rules:
Wi=elgy, =gt X =eVyg, g =epdd (2.56)

The complex conjugation acts on the T-matrices as

(1) = (r)¥ = aijeﬁ(ﬁ)jj . (2.57)

The 7-matrices have the following properties:
s ]_ . s ]_ =
(T iz () = §5IJ5§'7 (1) 3 () = 551J5f, (rD)i (1) 5 = eijez; - (2.58)

The conversion from SO(4) to SU(2) indices works as follows. Associated with an
SO(4) vector Ay is the second-rank isospinor A defined by

Aig = (T[)ﬁAI — A[ = (T[)iiAﬁ, (259)

such that i
AB' = A;B". (2.60)
Given an antisymmetric second-rank SO(4) tensor, A;; = —Ajs, its counterpart with

isospinor indices, A7y (77):(77) ;7» can be decomposed as

Ay =—Ajr — Ap(thg(r7) 5 = cijAy e iy, A= Aji, A =A4A5;.  (261a)

We also have } B - -
Ap (7D ()i = — i AiT i A (2.61Db)

Applying the conversion rule to the Grassmann variables 6/ and covariant derivatives
DI gives 0% = (77)%0L and D% = (77)%D., respectively. For the two- and tree-point
functions (2.8b) and (2.23b), th§~same rule gives 0%, = (77)%61,, and ©% = (7;)"O1,.
The covariant derivatives D¥ satisfy the anti-commutation relations

{DF DI} = 2iceMa, 5 . (2.62)

®Our definition of the T-matrices agrees with the one used in [4] and differs from that adopted in [34].
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In terms of the superspace coordinates z4 = (2, 9]‘:[), the explicit realisation of the covari-
ant derivatives is

DH +10%M0,5 | (2.63)

c o0y

Due to the isomorphism SO(4) = (SU(2)L, x SU(2)Rr)/Zs2, the orthogonal matrix uld

given by (2.15) is equivalent to a pair of SU(2) matrices u% and u% constrained by
ulg ()" (ry )" = uhui) - (2:64)

The solution to this equation is

ki 0B ] iy o
i ij 201 912,81?: 105" 1961,
Upp = —€7 —1 2 TR 42 TR,
T12 8 12 8 z12
ki .aBpj 4 .
_i0a1x12 912[3’;912 i81]9128 (2 65&)
8 1‘124 128 IL'124 ’
7k‘ B = ~~ o~
R ieizaﬁé 01951, B 196, - 1761,
12 192 8 w192 8 w19t
. gik .oBp] 4 b
1015021 oz’ 1 96" (2.65b)
8 z12* 128 z19% '
where we have used the notation
4 Tapl\2 i 2
9 — (9 O‘Ha) — (szaegia) 5 (2663)
H4 I JpK L kj li jk il
0 = 0,a°P0301 " 0 ey, = 08 wP0,4,00 0 5, — 03F P 0,500 05, . (2.66D)
Both matrices (2.65) are unitary and unimodular, in particular it holds that
uhiog; =6, uphuys =07 (2.67)

Note also that the expressions (2.65) are defined by the equation (2.64) uniquely, up to an
overall sign which we fix as in (2.65) for further convenience. 3

The transformation law (2.18) implies that the matrices u, and u%}, defined by (2.64)

vary under the infinitesimal superconformal transformations as isospinors at z; and zo,
dupy = Aj(z)uy +uiAf(z2), Sl = Af(z)uh + uibAl (), (2.68)

where A% (z) and A (2) are constructed from A?/(z) by the rule (2.61).
Let us define the following matrices:

.. .. ki _afBpj o~
% - 4
G up gii 0T, 1668,
ny = —2 =—— —1i 3 S (2.69a)
T12 12 z12 8 Z12
- ij i ik B gI W7 gA
oo W € J B 1912a$12 0126k e 01, (2.69b)
2= = :
12 12 x193 8 z12°
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Similarly to (2.48), these matrices obey the analyticity conditions

—0, DU all=o0. (2.70)

D (1)

(

(Da"
By analogy with the two-point functions (2.64), we introduce three-point matrices with

SU(2) indices B

ul’ ()" (ry7 = UYUY | (2.71)

which have the following explicit form

ki yaBgi . .
Ol X170 _leveyt  1eYe]

Ul — _gii _ z
S ¢ 8 X2 38X
ohxTIel et g8 (2723)
—= — .72a
8 X4 128 X4
Ui~ i igﬁl&X?ﬁ@{Qk B }553@14 B 1555(:)%
L X2 8 X2 8 X4
i ORXO100" | 1 eyt (2.72b)
8 X4 128 X4 '

Here the composites ©% and ©* are defined by the same rules as in (2.66). By construction,
the matrices (2.72) transform as tensors at the superspace point z;

SUY = AL (2)UY + UFAL (), U = Aé(zl)U’fj + U?Af;(zl) : (2.73)

It is possible to check that the matrices (2.72) can be expressed as products of three
matrices of the type (2.65)

.. . i ~~ ~~ Z~
UY = —ujfugs gy, UY = —ujfuy, ug) - (2.74)
The three-point analogs of (2.69) are

Ui i OnXYel L i

N — 21 & < 2

D s ek or -t ot b (2.75a)

N _ vl el xel,  1:06! 2.75b
T X X X3 8 X e

These matrices are analytic with respect to the spinor derivatives (2.29)

i(i AR il Ak
D(l)aNl =0, D(l)aN1 =0. (2.76)
In this section we considered only the three-point functions which transform as tensors
at the superspace point z;. It is straightforward to obtain the analogs of these objects
transforming covariantly at zo and z3 by permuting the superspace points.
The two- and three-point superconformal building blocks constructed above are very

similar to the N' = 3 ones given in the previous subsection. This is not accidental. Tt
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turns out that the latter can be found from the former by applying the N =4 — N =3
superspace reduction. Indeed, when we switch off one of the four Grassmann variables 0
at each superspace point, say 64 = 0, the expressions (2.65) prove to coincide with (2.44),

u?z(/v=4)|94=0 = uzlj2(/\/:4)|94=0 = “1132(N=3) : (2.77)

Here we have attached extra subscripts, (N = 4) and (N = 3), to the two-point functions to
distinguish them. We usually omit these labels if no confusion occurs. For the three-point
functions (2.50) and (2.72) we have similar relations

Uzlj(/\/=4) ‘94:0 — Ullj(./\f:‘l) ’9420 = Uzlj(/\/’:?)) . (278)

The superspace reduction rules (2.77) and (2.78) will be important below when we turn to
studying the correlators of the N’ = 3 and N = 4 flavour current multiplets.

3 Correlation functions for the A/ = 3 flavour current multiplets revis-
ited

Here we obtain a new representation for the correlation functions of the A" = 3 flavour
current multiplets computed in [1]. Such a representation will be more convenient for
comparison of the N' = 3 correlators with N' = 4 ones.

As discussed in [1], the N/ = 3 flavour current multiplet is described by a primary
isovector superfield L of dimension 1, which is subject to the conservation equation

L

pUrd) _
¢ 3

SDELE =0 . (3.1)
Its superconformal transformation law is
L = —¢L! —o(2) LT + A (2)L7 . (3.2)

The dimension of L! is uniquely fixed by requiring the constraint (3.1) to be invariant
under the superconformal transformations.

Consider an A/ = 3 superconformal field theory possessing n flavour current multiplets

L' @ =1,...,n. Their two- and three-point functions were found in [1] to be
Ia Jb U{i]fsag
(L™(z1) L7 (22)) = an=3 o1y? (3.3)
. ; . ouldd
(L1(21) L7 (22) L7 (25)) = by f*° 52 HIT R (X5, 03) (3.4)
X132 203>

where

HIJK(X,Q) — % €IJK _ ULJ€LIK+UILELJK

116(51J5KMNUMN+€IMNUMNUKJ+€JMNUMNUIK)
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+156(UIJ KMNUMN+5[K JMNUMN+5JK IMNUMN) ) (35)

In (3.4), f&BE denotes the completely antisymmetric structure constants of the Lie algebra
of the flavour group which is assumed to be simple. The tensor H/¥ in (3.5) is expressed
in terms of the orthogonal matrix (2.26). The correlation functions (3.3) and (3.4) are fixed
by the superconformal symmetry and the conservation condition up to arbitrary coefficients
apn—3 and bar—s.

We now switch to the SU(2) notation, L! — L% = (7)Y L’ in accordance with the
rules introduced in subsection 2.4. Then the conservation equation (3.1) turns into the
analyticity condition

DWWk — ¢, (3.6)

and the superconformal transformation (3.2) takes the form
SLY = —¢LY — o(2) L + 200 (2) L)% (3.7)

Here the symmetric matrix A% (z) with isospinor indices is related to the antisymmetric
matrix A’/ (z) with isovector indices, eq. (2.4), according to the general rule (2.38).

Using the relation (2.43) between the two-point building blocks with SO(3) and SU(2)
indices, for (3.3) we immediately get

ab (k170 Jk il
apn—3 6% (u’12u12 + “)

[ija kLD _ UjoUyg 3.8
(L9 () L () = 24 o (33)

Contracting the three-point function (3.4) with three 7-matrices leads to

o _ ~ - uu’uJ] ukk G
(LY (20) LM (20) L™ (25)) = by fO0—1213 8 28 g, 0™ (X 5, ©3), (3.9)
x13%@ 03>
where

HY klmn _ H(zy)(kl)(mn) — (Tl)z'j(TJ)kl( )mnHIJK (310)

In order to compute the right-hand side of (3.10), it is convenient to rewrite the
expression (3.5) in the form
lJK | §IJ_KMN AMN | 5IK_JMN gJMN | sJK_IMN AMN

1JK _ 4 _ _ =
H'7*(X,0) = X + 5 X3 5 X3 5 X3 , (3.11)

where

Al =10 X077 = A/ (3.12)

For the first term in the right-hand side of (3.11) we apply the identity
—V2tr(r I KTy = \/>7' Tkl K gMigikeln (3.13)

The other terms in (3.11) can be rewritten as

5[J5KMNAMN _6IK5JMNAMN _5KJ€IMNAMN — _2\/>7_ Tkl K EmiAjlgkn’ (314)
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where
A = eyt AN =10 X PO, . (3.15)

In deriving (3.14), the following identity
TR MN Ay = —v/24™" (3.16)
may be useful. Now, substituting (3.13) and (3.14) into (3.10) we find

1 <€m(i€j)(l€k)n gm(iAj)(lé.k)n> 1 <€n(i5j)(lgk)m En(iAj)(l&_k)m)

V2 X X3 V2 X * X3

Hij klmn _

(3.17)
Finally, taking into account the explicit expression for A7 given by (3.15), we note that the
tensors in the parentheses in (3.17) can be rewritten in terms of the matrix N7 introduced
in (2.53),

. 1 y o
HY klmn(_}(37 @3) _ E (gm(lNg)(lEk)n + e,_:n(z]\I?Z)(l&‘k)rn) ) (318)
We arrive at the final expression for the three-point function of the N/ = 3 flavour current
multiplets
o . _ N L 1
(L7 %(21) LFP(20) L™ (23)) = bar—g fOPC—13A3 2 2B 0™ (X 3, ©3) , (3.19a)
L1323
B 1 gm(in)(lgk)n En(in)(lgk)m
HIKRm (X, Q5) = — 3 + 3 . 3.19b

Obviously, this three-point function possesses the correct superconformal properties since
it is built out of the covariant two- and three-point objects introduced in subsection 2.4.
After using the identity (2.28a), the conservation law (3.6) implies the following equa-
tion on the tensor H¥kmn.
DU giklmn — (3.20)

It is easy to see that (3.18) obeys this equation since the matrix N/! is analytic (2.54).
The three-point correlation function (3.19a) must have the symmetry property

(L9 (1) LMY (22) L™ (25)) = (L™ (z3) LMY (22) L9 *(1)) (3:21)
which implies the following constraint for the tensor H% kmn

ij T 2 2
Hmnqu<_X 7_@1) = —x13° X3 U13mm/ U13nn/ U13pr

rr’ ss' i gj’ m'n’
XU3 U13q3U3 uzf?)u{% Hi’j/r’s’ (Xg,@g) . (3.22)

Using (2.51) one can check that (3.19b) does satisfy this equation.
Finally, we point out that the explicit form of the correlation function (3.19) is analo-

gous to the three-point correlator of flavour current multiplets in 4D A/ = 2 superconformal
theories [35].
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4 Correlation functions of conserved N = 4 current multiplets

In this section we compute the two- and three-point functions of the N' = 4 supercurrent
and flavour current multiplets.

4.1 Correlation functions of flavour current multiplets

As discussed in [1], there are two inequivalent flavour current multiplets, Li‘] and L1/,
in A/ = 4 superconformal field theories. They are described by primary SO(4) bivectors,

Lli‘] = —L7! subject to the same conservation equation
2
DILIK — plIp Kl _ gngﬂféKﬂ, (4.1)

which implies that Lfr‘] and L'’ have dimension 1. These operators possess the same
superconformal transformation law

SLY = —¢Ll — o(2) LY + 20K () LK (4.2)

However, they have different algebraic properties,

L

gl ML = 21l (4.3)

and thus L7 and L7 belong to inequivalent representations of SO(4).

Let us convert the SO(4) indices of L17 and L/ into SU(2) ones following the rules de-
scribed in subsection 2.5, and specifically eq. (2.61). The (anti) self-duality conditions (4.3)
imply that ) i B i ) B

(r)) (e L =909, () () LY = €LY (4.4)
Here L and L% are symmetric, LY = L7% and LU = [J%, Since Lf and L'/ have different

algebraic properties, the conservation equation (4.1) leads to the two different analyticity

conditions:
DL = 0, (4.52)
DL — 0, (4.5b)

where sz = Df;f = (T])ﬁDé. It follows from (4.2) and (4.3) that the superconformal
transformation laws of L and L% are

SLY = —¢LY — o(2) LY + QAI(f(Z)Lj)ky (4.6a)
5L = ~€L9 — o(2) LY + 20U (z) LI, (4.6b)

where A% (z) and A (2) are constructed from A?/(z) by the rule (2.61).

We emphasise that the flavour current multiplets LY and L are completely inde-
pendent and can be studied independently of each other. Since their properties are very
similar, here we will consider in detail only the correlation functions for L¥” and comment
on the correlators of L at the end of this section.
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The properties of L¥ given by its conservation equation (4.5a) and superconformal
transformation (4.6a) are very similar to those of the N' = 3 flavour current multiplet,
egs. (3.6) and (3.7). This similarity is not accidental since there proves to exist a unique

N = 3 flavour current multiplet Lz\[: associated with LY = Lz(gvz 4).7 The former is

obtained from the latter through the pl?gcedure of N =4 — N = 3 superspace reduction
which has been discussed in the literature in the cases of N’ =4 Minkowski [5] and anti-de
Sitter [36] superspaces (see also [1]). As applied to Lz\/: 4 it works as follows. For the
Grassmann coordinates 69 of the N' = 4 superspace, we make 3 + 1 splitting 7 — (0 i,04)
and then consider the 64-independent component of Lg\/: e It proves to be the desired

N = 3 flavour current multiplet,
Lin=3) = Liy=alo:=o0 - (4.7)

In fact, it is possible to define an inverse correspondence, ng\f::%) — Lz\/: 1) Specifically,
given an N = 3 superfield Lg\/zg) subject to the constraint (3.6), there exists a unique

N = 4 superfield Lg\/z 2 obeying the constraint (4.5a) and related to Lg\f:?’) by (4.7). This
means that all components in the 64-expansion of Lg\[: g) can be restored from the lowest
one given by ng\[:?)).

The above simple observation appears crucial for finding the correlation functions of
the N/ = 4 flavour current multiplets. Indeed, the expressions (3.8) and (3.19) can be
considered as the lowest components in the 04-expansion of the corresponding correlators
of the N’ = 4 flavour current multiplets. Moreover, the full information is encoded in these
parts of the correlators since the higher-order corrections in 64 can be uniquely restored
from these lowest components.

Based on these observations, we propose the following ansatz for the correlation func-
tions of several N' = 4 flavour current multiplets LY %, @ = 1,...,n. The two-point function
. _ ab (4 ik 7l gk il

(L8(21) LB (29)) = an=4 0% (ufbuy, + ujuly)

5 o , (4.8)
while the three-point function reads
o _ B 1 e
(LY%(2) L (29) L™ 8(23)) = b=y fabcwmw (X 3,03), (4.9a)
B 1 Em(in)(lEk)n En(in)(lgk)m
Hz]k:lmn X ’@ _ = 3 + 3 . 4.9b
(X3,03) 7 X, X (4.9b)

The two- and three-point building blocks u% and Ugj used in these expressions were
introduced in subsection 2.5. Taking into account the relations (2.77) and (2.78), it is clear
that (3.8) and (3.19) are related to (4.8) and (4.9a) via the superspace reduction described
above

(L8 (O L (2)lamo = (LA (1) DB (22)) (4.100)

"Here we have attached the labels (N = 3) and (A = 4) to these superfields to distinguish them. Below,
when no confusion is possible, these labels are omitted.
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(L2 () I (22) L (23 gm0 = (L (21) DA (22) LTS5 (23)) - (4.10D)

Let us rewrite the correlation function (4.8) in terms of the two-point matrix (2.69a)

ija b AN'=4 cab, ik, jl ik i
(LY %(20) LM (22)) = 5 0% (niynly + niyniy) - (4.11)

Then, owing to (2.70), it is obvious that (4.11) obeys the conservation condition
DY (LN IRb () =0 (21 # 22) - (4.12)
In the same manner we express (4.9b) in terms of (2.75a)
y 1 o o
H kl mn()(37 @3) _ E <€m(zNg)(l€k)n + En(z]\/vg))(lEk)m> (4‘13)

and observe that i
DL IR (X @) =0, (4.14)

as a consequence of (2.76). The equations (4.12) and (4.14) prove that the correlation
functions of N' = 4 flavour current multiplets constructed in (4.8) and (4.9) do obey the
necessary conservation laws.

As concerns the correlation functions of the flavour current multiplets L , they have
the same form as eqs. (4.8) and (4.9) but with the indices 4, j, . .. replaced with 7, j ... Note
also that all mixed two- and and three-point correlators involving both L%/ and LU vanish.

4.2 Correlation functions of the supercurrent

In accordance with [37, 38] (see also [1]), the N/ = 4 supercurrent is described by a primary
real scalar J subject to the conservation equation

1
DI*pE = Z(SIKDLC“DQJ : (4.15)
Its superconformal transformation law is
0 = —=&J —o(z)J . (4.16)

The constraint (4.15) uniquely fixes the dimension of J to be 1.
Since the supercurrent J is a scalar superfield, its two-point correlation function has a
simple form

(J(2)J(22)) = 25 (4.17)

where cpy—y is a free coefficient. Using (2.21) it is easy to check that (4.17) obeys the
conservation law (4.15).

The three-point correlation function of the N' = 4 supercurrent can be found by making
the following ansatz

1

(J(21)J (22)J (23)) = PRI

H(X3,03), (4.18)
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where the function H has the homogeneity property
H(\’X,)\0) =)\"2H(X,0), (4.19)

for a real positive \. With the use of (2.28a), one can check that the supercurrent conser-
vation condition (4.15) implies a similar equation for H,

1
DDl H = Z(SI Kpleplp (4.20)

where D! is the generalized spinor covariant derivative (2.29).
The general solution of (4.19) can be represented as a ©-expansion
2 4 6 8 Ta@nJBeK~yaLd
H(X,0) :§+62;);_2+63§_3+C4)®{4+C5§ 281 A 6;(5 © XapXns )
(4.21)
where ¢; are some coefficients. It is useful to rewrite (4.21) in terms of the symmetric part
Xop of Xqp given in (2.25). The result is

d1 @2 @4 @6 @8 E[JKL@Ia@Jﬁ@K'Y@L‘SXaﬁX S
H =% +dy—s + dy—= + dy—r + ds—= +d 7
b CRIS RS TR G X0 ’

(4.22)

where d; are some coefficients which can be, in principle, expressed in terms of ¢;. For the
function H in the form (4.22) it is easy to check that it solves (4.20) for

dy=ds=dy=ds =0, (4.23)

and dy, dg are arbitrary real. Thus, if we denote dg = dy—4 and d; = CZN:4, the solution
for H is

da— € eleg/beErglix, s X
H(X,0) = /‘)f(‘* + dpy LKL e L) (4.24)
- 1 16t 3 o8 Oleglbekvelix X
= Ay (ot o ) g IR B0
X 8X3 128 X5 X5

Here, in the second line of (4.24), we expressed the function H in terms of X,z given
in (2.25) and transforming covariantly under the superconformal group.

Using the identities (2.27a) and (2.27b) it is possible to show that for arbitrary da—s
and dp—4 the expression (4.24) obeys the equation

2
€T
H(-XT, -0,) = éﬂ(xg,eg), (4.25)

which must hold as a consequence of the symmetry property
(J(21)J(22)J (23)) = (J(23)J (22)J (21)) - (4.26)

Thus, the N' = 4 supercurrent three-point correlation function (4.18) with H given by (4.24)
obeys all the constraints dictated by the superconformal symmetry and the conservation
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equation with two arbitrary real coefficients dy—s and dy—s. The structure of this three-
point correlator has some similarities with that for the 4D AN = 2 supercurrent computed
in [35].

As was demonstrated in [1], the three-point functions of the supercurrent in N' =
1,2, 3 superconformal theories involve only one free parameter. In this regard, our NV =
4 result given by eqgs. (4.18) and (4.24) may look rather puzzling, since every N' = 4
superconformal field theory is a special N' = 3 superconformal field theory. The resolution
of this puzzle is as follows. We showed in [1] that the N = 4 supercurrent consists of two
N = 3 multiplets, one of which is the N' = 3 supercurrent and the other multiplet includes
conserved currents that are not present in general N/ = 3 superconformal fields theories
(the fourth supersymmetry current and the R-symmetry currents associated with the coset
space SO(4)/SO(3)). In subsection C.1, by performing the N' = 4 — N = 3 reduction
of the N' = 4 supercurrent correlation function (4.18), we demonstrate that the first term
in (4.24) does not contribute to the three-point function of the N' = 3 supercurrent. Hence,
it also does not contribute to the three-point correlation function of the energy-momentum
tensor upon further reduction down to the component fields. This means that just like
in /' = 1,2,3 superconformal theories the three-point function of the energy-momentum
tensor depends just on a single tensor structure and a single free coefficient dyr—4.

4.3 Mixed correlators

For completeness, we also present mixed three-point correlation functions involving both
the supercurrent and flavour current multiplets. It is not difficult to see that

<Lija(21)J(Zg)J<23)> =0. (4.27)

However, for the correlator with one supercurrent and two flavour current multiplet inser-
tions we get

i’ 37’
Uj3Uyy

<Lija(21>J(ZQ)Lle(Z3)> = (5(% 2Hi/j/kl(X3, @3) y (4.28&)

x13%x03
Ui(kgl)j + Uj(kgl)i
X

HIM(X,0) = ¢ < NilkoDi 4 Nj(kgnz') —c , (4.28b)

where ¢ is a constant. The tensor H” ¥ is expressed in terms of the matrices U% and N
which are given by (2.72a) and (2.75a), respectively. This tensor is found as the general
solution of the equations
D ik — (4.29a)
g 1 g
QlanHz] kl _ ZéIJQKaQKaHZ] kl 7 (429b)
which are the corollaries of the analyticity of the flavour current multiplet (4.5a) and the

supercurrent conservation law (4.15). In deriving the equations (4.29) the identities (2.28)
have been used.
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The equation (4.29a) immediately follows from the analyticity of the matrix N,
see (2.76). To check the equation (4.29b) it is convenient to rewrite it in terms of SU(2)
indices o

Qi Qi ikl — (4.30)
It is easy to see that this equation is satisfied as a consequence of the following property
of the matrix (2.75a)

Di(EaD&)ijl _ Qi(gan;)ijl —-0. (431)
Finally, we note that the tensor (4.28b) obeys the constraint
X ’ ’ -7 0
Hi*(X3,03) = f;ualii/031jjfuéf ufy Hyy'' (- XT,-64), (4.32)

which is a corollary of the following symmetry property of the correlation function (4.28a)
(L9 (21) (22) LM (23)) = (LM (25) T (22) LY (21)) - (4.33)

The equation (4.32) can be easily verified with the use of the relation (2.74) which links
together the thee-point and two-point unitary matrices.

5 Free N = 4 hypermultiplets

In this section we consider a family of trivial AV = 4 superconformal field theories — models
for free hypermultiplets. In these models, the correlation functions of conserved currents
can be computed exactly. Using such results will allow us to derive important relations
between the numerical parameters appearing in certain two- and three-point functions in
general N = 4 superconformal field theories.

5.1 On-shell hypermultiplets

In 3D NV = 4 supersymmetry, there are two types of free on-shell hypermultiplets, left q
and right ¢’, that transform as isospinors of the different subgroups SU(2);, and SU(2)R of
the R-symmetry group. They obey the following constraints

Diig) =0, (5.1a)
D) =0, (5.1b)

which are similar to those introduced by Sohnius [39] to describe the ' = 2 hypermultiplet
in four dimensions. These primary superfields possess the superconformal transformation
laws

. 1 . 4 .
0q" = —&¢" — 50(2)q" + Aj(2)d’

5¢' = &0 — 5o(2) + AL ()0 (5.2)

The constraints (5.1a) and (5.1b) uniquely fix the dimension of ¢* and ¢ to be 1/2. Asso-
ciated with ¢’ and ¢’ are their conjugates

¢ =G =y, ¢ =qG= 55567j7 (5.3)
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which may be seen to obey the same constraints as ¢’ and qg.
In accordance with the general results in section 2, the two-point correlation functions
of the primary superfields ¢* and ¢* with their conjugates are

)P (o)) = L0 = Loy (5.4a)
z 29)) = ——==—n Aa
q vq 2 47T 192 471' 12 »
s 1w, 1 3
(@' (1) (22)) = ——22 = —nf, (5.4b)

where the matrices u%, u?, and n%, n%, are defined in (2.65) and (2.69), respectively.
1, Ut
and x12 guarantee that they comply with the requirement of superconformal invariance,

On the one hand, the expressions for {¢’(z1)¢ (22)) and (qg(zl)(ﬁ(zg)) in terms of u

eq. (2.7). On the other hand, expressing these correlators in terms of nzlj2 and n% allows
one to check easily that these two-point functions obey the analyticity constraints (5.1a)
and (5.1b), owing to (2.70).

There exist several off-shell realisations for the hypermultiplet, see appendix A for a
review. In any off-shell realisation for the left hypermultiplet, the two-point function (5.4a)
may differ only by contact terms from that corresponding to the off-shell formulation. In
particular, in the harmonic superspace approach one deals with the ¢™-hypermultiplet for
which it holds that

+Jj

Fz1,u1) ¢ (22, u)) = uf; (¢"(21) Gj(22)) uy? + contact terms . (5.5)

(q
Similar comments apply to the right hypermultiplet correlator (5.4b). For our purposes in
this section, it suffices to work with the two-point functions (5.4a) and (5.4b). A careful
treatment of the singularities of the two- and three-point functions at coincident points is
beyond the scope of this paper.
It should be pointed out that switching off the Grassmann variables in (5.4) leads to
to the correctly normalised correlators of free complex scalars,

@ EHE o= = (gt = 20— (5.60)
@ EHEom = (g = 15— (5.60)

where ¢ () = ¢'(2)]p=0, ¢'(z) = ¢'(2)|6=0-
5.2 Two-point correlators

Let us consider a free model of m left hypermultiplets ¢’ and n right hypermultiplets q%.
We assume that ¢’ transforms in an irreducible representation of a simple flavour group G,
with generators X%, Similarly, q; is assumed to transform in an irreducible representation of
another simple flavour group Gr with generators . Viewing ¢ and qz as column vectors
and their Hermitian conjugates g; and ¢; as row vectors, the supercurrent J is

J=Gq — @d', (5.7)
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and the flavour current multiplets L@, Liid are given by
LY; = —iq;Xqj) , L“] = —i(j(gan;) . (5.8)
We assume that the generators of the flavour groups are normalised such that
tr(29%0) = ko™,  tr(2%%P) = kpo® | (5.9)

The normalisation constants k1, and kr depend on the representations of the flavour groups
G1, and Gr chosen. One can check that, due to the free equations of motion (5.1), the
current multiplets (5.7) and (5.8) obey the conservation laws (4.15) and (4.5), respectively.

The notable feature of the supercurrent (5.7) is that J is asymmetric with respect
to the left and right hypermultiplets. The supergravity origin of this property will be
discussed in section 8.

We compute the two-point correlation functions of the supercurrent and flavour current
multiplets for the free hypermultiplets. Since there is no correlation between the superfields
q" and qz, the two-point function for the supercurrent is given by

(J(z1)J(22)) = (q'(20)F (21) ¢ (22)G5(22)) + (@' (21) @i (21)¢ (22) G (2)) - (5.10)

Performing the Wick contractions and making use of (5.4), we find
m uijzulgij n uzljzum;j 1 m+n

(J(21)J (22)) = @7 22 T e 8w (5.11)

In a similar way we find two-point correlation functions of flavour current multiplets

ki, (aigiuizji + wigii2ik)

a b _ ab

(L§;(21)Lyy(22)) = 39,2 o~ 5, (5.12a)
_ . ke (W00 o7 + W77 ) -
a b o R 12:0 125k 1251 712ik/ ¢ab

<LE§(Z]')L];‘Z(22)> = 327‘(‘2 mlzz (5 . (512b)

Comparing these correlation functions with (4.8) and (4.17) we find the following values
for the coefficients an—4 and cy—4:

kr,
= — 1
AN=1 = Jp3 (5.13)
m—+n
Cj\/':4 — W . (514)

5.3 Three-point correlators

For the three-point function of the flavour current multiplets ng, which are defined by (5.8),
we have

(L% (21) Ly (22) L, (23)) = 1Gi(21) 225 (21) @k (22) Sty (22) A (23) 5%y (23)) - (5.15)

Performing the Wick contractions and using the explicit form of the hypermultiplet two-
point function (5.4a) we find

abe L Y12 23l)(m™Y31n)j 125 23l)(mY31n)i
fabck u L Wo3] u +u AL LRI u

L2 (2 LY, (29) LC —
< zg(zl) kl(ZQ) mn(23)> 12873 T19T13T3

(5.16)
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Using the identity x12? = X32@13%@232 the denominator in (5.16) can be written as
1 1
= 53 . (5.17)
T12T13T23  T13°T23° X3

With the help of (2.74) the correlation function (5.16) gets exactly the form (4.9) with
V2

=4 = — Ky, . 1
N'=4 1283 L (5.18)
Comparing this coefficient with (5.13) we observe that

b= 2

=t _ V2 (5.19)

AN =4 _g ’

Although this relation between the coefficients of the two-point and three-point correlation
functions is obtained for the free hypermultiplets, we propose that it is universal for any
N = 4 superconformal field theory. Indeed, the relation (5.19) can be considered as a
manifestation of a Ward identity relating the two- and three-point correlation functions
of the flavour current multiplets. Since both of these correlation functions depend on a
single tensor structure the relation between their coefficients can be found by considering
a particular theory. The explicit form of the relevant N = 4 Ward identity will be derived
in the next section.

The three-point correlation function for the flavour current multiplets L% can be anal-
ysed in a similar way, with the same relation (5.19) between the coefficients.

Now we turn to computing the three-point correlator for the supercurrent (5.7). In
the right-hand side of

(J(21)J(22) T (23)) = (a'(20)@ (1)’ (22)T;(22)0" (23) T (23))
(' (2@ (21) @’ (22)35(22)4" (23) @ (23)) (5.20)

we perform the Wick contractions and make use of (5.4) to get

m ui2'3uzs’pus; £ wig'pugyuse

j
(J(21)J (22)J(23)) = E 13T 12T 03
no watjugsd pus ¥ + wistpudiuget;
 (4m)3 T13T12%23
2m Uggg 2n Ust;

= — . 5.21
(47‘(‘)3 T12XL23L13 (47[')3 L122313 ( )

Here, in the last line, we have applied the relations (2.74). Next, using the identity (5.17),

we express (5.21) in terms of N¥ and N% introduced in (2.75)
1 1

(1) (22)] (28)) = 35— (m Ny’ — n Ny's) . (5.22)

Taking into account the explicit form of the matrices N* and N given in (2.75), we
conclude that the correlator has the form (4.24),

1 <JN4 dp—s

(J(21)J(22)J (23)) =

X3 X35

3 3 + E]JKL@Ia@JB@Kw@LéXa5X75> , (5.23a)
L1323
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where
m-+n ~ m-—n

e == g

As discussed at the end of subsection 4.2, it is the dpa—4-term in (5.23) which con-
tributes to the three-point function of the energy-momentum tensor upon reduction to

dnr—g = (5.23b)

the component fields. In accordance with (5.23b), the coefficient dar—4 receives additive
contributions from the ¢* and q; hypermultiplets. The other coefficient dyr—y is non-zero
when m # n. It is known that the mirror map® 90t [12, 40] turns every left hypermultiplet
¢' into a right one, qg, and vice versa, see appendix A. Invariance under the mirror map
implies that the theory has the same number of the ¢* and qz hypermultiplets. Thus, we
conclude that the non-vanishing value of dn—s indicates that the superconformal theory
under consideration is not invariant under the mirror map.

The ratio of the coefficient dar—4 in the three-point function (5.23) with car—4, which
determines the two-point correlator (5.14), is

dn=4 1
cnN—4 167

(5.24)

Although we have found this relation for the special model of free N” = 4 hypermultiplets,
we expect that (5.24) is universal for all N’ = 4 superconformal models, as a consequence
of a Ward identity. Indeed, there is a Ward identity relating the two- and three-point
functions of the energy-momentum tensor (see, e.g., [23]). Since in N = 4 superconformal
field theories each of them is determined by a single tensor structure, the relation between
their coefficients can be found by considering a particular theory. Of course, it is possible to
derive a superfield Ward identity expressing the N’ = 4 superconformal symmetry. Since
its main application is to give another derivation of (5.24), we will not indulge in this
technical issue in the present paper.

6 Ward identities for flavour current multiplets

The Ward identities play an important role in quantum field theory as they relate different
Green functions. In this section we derive Ward identities for flavour current multiplets in
N-extended superconformal field theories, with 1 < N < 4. Such Ward identities relate
the two- and three-point correlation functions of the flavour current multiplets and, in
principle, allow one to relate the parameters in these correlators. The common feature of
the four supersymmetry types 1 < N < 4 is that for each of these cases the Yang-Mills
multiplet possesses an unconstrained prepotential formulation.

To derive the Ward identities we will use a standard field theoretic construction that
can be described as follows. Consider a superconformal field theory that possesses a flavour
current multiplet L (with all indices suppressed). We gauge the flavour symmetry by cou-
pling the theory to a background vector multiplet described by an unconstrained prepoten-
tial V' which will be the source for L. An n-point function for L is obtained by computing

8The mirror map is not directly related to mirror symmetry [41].
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n functional derivatives of the generating functional Z[V] with respect to V and then
switching V' off,

o Z[V]
1)...oV(n)|y_’

i"(L(1)...L = 6.1
i"(L(1)... L(n)) VT (6.1)
where the operator insertions on the left are taken at distinct points. The Ward identities
follow from the condition of the gauge invariance of Z[V].

6.1 N = 1 superconformal theories

In N' = 1 superconformal field theory, the flavour current multiplet is described by a
primary real spinor superfield L% of dimension 3/2 subject to the conservation condition

DYL% =0, (6.2)

with a being the flavour index (see [1] for more details). We now gauge the flavour sym-
metry by coupling the theory to a background vector multiplet described by a spinor
prepotential V2, which is real but otherwise unconstrained (see [42] for the details). The

gauge transformation law of V2 is
5AV0 = D AT — fabeybye. (6.3)

with the superfield gauge parameters A\® being real but otherwise unconstrained. The gauge
prepotential V2 is the source for the flavour current multiplet in the sense that

. ra 0Z[V]
where Z[V] is the generating functional. As usual, (...)y denotes a correlation function
in the presence of the background field. The gauge invariance of Z[V] implies that

8Z[V]
oVa(z)

/ A322 (DA — fo0eyb A7) =0. (6.5)

Since the gauge parameters \% are arbitrary superfields, we conclude that

o 6 abéy ba 5 _
(D spar 1V Waa) Z[V]=0. (6.6)

Varying this identity twice and switching off the source V%, we end up with the Ward

)

identity for N’ =1 flavour current multiplets

DL (2) L (21) L5 (22)) + 1f™6% (2 — z1)(L
Fifaedg32 (5 — 2o)(L

O ey
—
I
o
N
~

5
(21)L3(22)) = 0 . (6.7)

Here 0%12(z — 2') is the A = 1 superspace delta-function.
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6.2 N = 2 superconformal theories

The N = 2 flavour current multiplet is described by a primary real scalar superfield L% of
dimension 1 subject to the conservation equation

<Da(1Dg> — ;6UDO‘KD§> Lf=0, (6.8)

see [1] for more details.
In this subsection it is useful to deal with complex Grassmann coordinates #® and 6
for /' = 2 superspace that are related to the real ones, 6%, as follows:
1

V2

The corresponding spinor covariant derivatives are

1

ea
V2

(0F +i03), 6~ (05 —i69) . (6.9)

1 _ 1
D, = —(D! —iD?), D, = —— (D! +iD?) . 6.10
\/5( o ) \/5( o o) (6.10)

In this basis, the conservation equations (6.8) turn into the conditions
D*L% =0, D’ =0, (6.11)

which mean that L® is a real linear superfield.

We gauge the flavour symmetry by coupling the theory to a background vector mul-
tiplet described by a prepotential V', which is real but otherwise unconstrained [43, 44].
The gauge transformation of the prepotential is

S T
BV = JOT N 4 G FIVI A (6.12)

where the gauge parameter A% is an arbitrary chiral scalar superfield. The ellipsis in (6.12)
stands for those terms which are at least quadratic in V', and therefore are irrelevant for
the Ward identity relating the two- and three-point correlation functions. Below, we will
systematically neglect the O(V?)-terms in the gauge transformation of V4,

The gauge prepotential V@ is the source for the flavour current multiplet L® which is
obtained from the generating functional Z[V] by

a 3Z[V]

(L% = — . 6.13
LAONET = (6.13)
The gauge invariance of the generating functional is expressed as
i~ . 1 ope 5 2 <& 0Z[V]
SR (5 U WL IO CINED (o INER e LR 6.14
[t (500 ot v 3+ ) 22 (6.14)

Since the gauge parameters \% are arbitrary chiral superfields, we end up with the following
identity for the generating functional Z:

5
oVe(z)

D2 ( g . if‘_’BEVB(z)

e ¥ > Z[V] =0 (6.15)

— 28 —



and its conjugate. Varying this equation twice and switching off the gauge superfield V%, we
obtain the Ward identity relating the two- and three-point correlation functions of N' = 2
flavour current multiplets

D*(L(2) L% (21) L (22)) — 4164 (2, 21) (L (21) L
—4]"‘%‘{5(54r (2, 22)(L¢(21)L

S

(22))
() = 0. (6.16)

Ql

Here 6. (z,2') is the chiral delta-function; it is expressed in terms of the full superspace
delta-function 0%1(z — 2/) in the standard way

5:(2,7) = —iD253|4(z -2'). (6.17)

6.3 N = 3 superconformal theories

It is known that the conventional 3D A" = 3 Minkowski superspace M?/¢ is not suitable to re-
alise off-shell N' = 3 supersymmetric theories. The adequate superspace setting for them [6]
is M6 x CP!, which is an extension of M?I® by the compact coset space SU(2)/U(1) associ-
ated with the R-symmetry group.?” The most general A" = 3 supersymmetric gauge theories
in three dimensions can be described using either the harmonic superspace techniques [6, 12]
or the projective ones [34]. These formulations are 3D analogues of the 4D N = 2 har-
monic [45, 46] and projective [47-49] superspace approaches (see also [50] for a review of
the projective superspace formalism). The 3D N = 3 projective superspace setting has
been used to construct the most general off-shell N” = 3 superconformal o-models [4] and
supergravity-matter couplings [34]. The 3D A/ = 3 harmonic superspace has been shown
to be efficient for studying the quantum aspects of N' = 3 superconformal theories [51]. Tt
also provides an elegant description of the ABJM theory [52]. In this subsection we will use
the harmonic superspace to derive Ward identities for N’ = 3 flavour current multiplets.
We will use SU(2) harmonic variables u; and u; constrained by

uur — u

; ’ % utl =, . (6.18)

ot = u7Li 0~ =u; 9 oV = u:ri = u;i (6.19)

which form the SU(2) algebra
[0%,07 ) =20+, [0%0 " ]=-20"", [07F,0 ] =0". (6.20)

Using these harmonic variables allows one to introduce a new basis for the Grassmann
variables 6 and the spinor covariant derivatives Dy :

0 — (047,05 ,0) = (wuf 03, uiu; 0, ulu6F), (6.21a)

9For every positive integer AV, the 3D N-extended superconformal group OSp(AN|4; R) is a transformation
group of the compactified Minkowski superspace M®PPV in which Minkowski superspace M2V is embedded
as a dense open domain [4]. In the N’ = 3 case, OSp(3|4; R) is also defined to act transitively on M/ x CP?,
as shown in [4].
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DY — (DIt D57, Do) = (ufuf DY, uiuy DY, wfuy DY) . (6.21b)

As discussed in section 3, the A/ = 3 flavour current multiplet is described by a primary
superfield LY = L7¢ subject to the conservation law (3.6). Associated with this superfield
are the following harmonic projections:

LYt =wfulf LV, L7 =wjuy LY, L) =wfu; LY (6.22)

It is sufficient to study only one of these projections, say L™, since the others can be
obtained by acting on L™ with 9~ ~. By construction, L™ is annihilated by 07,

OTTLTT =0. (6.23)
It is important that the equation (3.6) has the following corollary
DITLT =0, (6.24)

which is usually referred to as the analyticity condition.

The main feature of harmonic superspace is that it allows one to introduce new off-shell
multiplets that are annihilated by D} . Such superfields are defined on a supersymmetric
subspace of M3/6 x CP! known as the analytic subspace. It is parametrised by coordinates

¢ =(2%,057,6% ur), (6.25)
where
o =% +iylg0t o7 (6.26)

In the analytic coordinate basis for MB3I6 x CP! consisting of the variables ¢ and 6., the
spinor covariant derivative DI becomes short,

0
++ _
Da™ = 5" (6.27)
while the harmonic derivative 0T acquires additional terms
94—-&- — 8++ + 2i,ya 9++a00ai + 9++0¢i + 290& 0 (6 28)
op Dz, 960 00— ‘

Therefore, in the analytic basis, the equation (6.24) tells us that L™ = LT%(¢) while (6.23)
becomes a non-trivial constraint
LT =0. (6.29)

We are prepared to derive Ward identities in a superconformal field theory possessing
flavour current multiplets L™ %, For this we gauge the flavour symmetry by coupling the
theory to a background vector multiplet described by a prepotential V™% which is an
analytic real superfield. Its gauge transformation reads
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where the gauge parameters A are unconstrained analytic superfields. The gauge prepo-
tential V14 is the source for the flavour current multiplet L™+% which is obtained from
the generating functional Z[V] by

. 3 0Z[V]
Ltta = ——. 31
IO = St (6:31)
The gauge invariance of Z[V] implies the equation
_ . abe ian 0Z[V]
d (—4) ++y\a _ abe ++bAc i _ 39
[t - gy )5rreE =0 (6.32)

where d¢(=% is the invariant measure on the analytic subspace (6.25). Since the gauge
parameters A% in (6.32) are arbitrary, we conclude that

o o

abc b
<@ v VT Qg

> ZV]=0. (6.33)
Finally, varying this relation twice and switching off the gauge superfield V' we end up
with the Ward identity for the correlation functions of flavour current multiplets L™

@(JE)JF<L++EL(C)L++B(€1)L++E(C2)> + ifaéjél(:x,o) (C7 C1)<L++J(C1)L++ 5(<_2)>
H SN QLTI ) = 0, (6.34)

where 5%’0)@ ,¢") is the delta-function in the analytic subspace.

6.4 N = 4 superconformal theories

The R-symmetry group of the N/ = 4 super-Poincaré algebra is SU(2), x SU(2)R. It is the
superspace (A.1) which is adequate to formulate general off-shell N' = 4 supersymmetric
theories. Hence, one can introduce harmonic variables for either of the SU(2) subgroups,
or for both of them. For studying Ward identities involving correlation functions of the

left flavour current multiplets L% it is sufficient to introduce harmonic variables for the
+

subgroup SU(2)1, which acts on the indices ¢, j. We will use the same harmonic variables u;
constrained by (6.18) and the corresponding harmonic derivatives (6.19). Now we project

the A/ = 4 Grassmann variables 0%’ and spinor covariant derivatives D” as

6 — (65F,07) = (u 611, u; 67), (6.35)
DY — (Dif. Di) = (uf D, uj DI}y . (6.36)

The flavour current multiplet L has the same harmonic projections as in (6.22). The
equation (6.23) remains unchanged in the N/ = 4 case while the analyticity constraint (6.24)
turns into i

DXLt =0. (6.37)

This equation follows from (4.5a) by contracting the indices i, k,! with the u™-harmonics.
Let us consider the analytic subspace of the N/ = 4 harmonic superspace parametrised

by the variables i
¢ = (2% 05 uf), (6.38)

a %
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where
Y = a® +iylg0 e P (6.39)

In the coordinate system ((, 92_), the spinor covariant derivative ng becomes short,

- 0
D'f = , 6.40
« 89”2—01 ( )

while the covariant harmonic derivatives 9™ and 9~ acquire additional terms

0

gttt — gt +wg/39”aef A aa O (6.41a)
Loz 805
- .0d -9
G =0 g0 0 (6.41b)

Ory % o0

The crucial feature of using the analytic coordinates in the A/ = 4 harmonic superspace is
that the equation (6.37) is automatically solved by the analytic superfield LT+ = L1(()
while (6.23) turns into a non-trivial constraint

LT =0. (6.42)

Once the analytic subspace (6.38) in the N/ = 4 superspace is introduced, the further
derivation of the Ward identity for L™" goes exactly the same way as in section 6.3 and
the equations (6.30)—(6.33) remain unchanged. Thus, we end up with the Ward identity
for LT exactly in the form (6.34)

@(Jg;r<L++a(OL++B(C1)L++a(C2)> + ifaBJ(ggl,O) (, C1)<L++ J(C1)L++ 5(42»

500 (¢ LY LTA(G)) = 0. (6.43)

In a similar way one can find the Ward identity for the right flavour current multiplet
L by introducing the harmonic variables for the subgroup SU(2)r of the R-symmetry
group.

It is instructive to check that the Ward identity (6.43) is satisfied for the free hyper-
multiplets.

Consider the action for a single hypermultiplet

S = / dcDgt gttt (6.44)
where ¢* is constrained by
Ditgt =0, (6.45)

and the same constraints hold for its smile-conjugate ¢*. The superfield ¢* contains
infinitely many auxiliary component fields at the component level. These auxiliary fields
vanish on the equation of motion

2T gt =0, (6.46)
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which implies that the hypermultiplet superfields take the form

g (z,u) = u,fq"(z) , G (z,u) = u™G(2) . (6.47)

The two-point function (¢*(¢(1)G" ({2)) corresponding to the action (6.44) is
(@ ()T () = =G (G, 6) - (6.48)
Here we have introduced the Green function G(H1) (¢, ) as a solution of the equation
7HEE (L, G) = 350G, G) - (6.49)

It can be represented explicitly in the following form (see appendix B for the details)

GG, ¢) = L () (6.50)
AT\ /1952124
where
o _ o a a i - ia —\otina ia
Ty = w1 — oho — — 7 [(ug ui )0y "y 9;% — (ufuy )05y 9;; + 20"y 9;;] (6.51)

(u; “; )

is a manifestly analytic coordinate difference that is invariant under @Q-supersymmetry
transformations. We point out that the two-point function (6.48) is related to (5.4a)
according to eq. (5.5).

Let us consider a free superconformal theory describing a column vector g of several

T viewed as a row vector. The corre-

g™ hypermultiplets and their smile conjugates ¢
sponding action, which is the sum of n free actions (6.44) is invariant under rigid flavour
transformations

SqT =iN"¥%T, 5qT = —iNigtxe, (6.52)

with constant real parameters A% and Hermitian generators X2 of the flavour group. We
gauge this symmetry by coupling the hypermultiplets to an analytic gauge prepotential
VT = VHHa(()3° taking its values in the Lie algebra of the flavour group,

S = / AAgtottet — / ac-9g* (.@++ +iv++)q+ . (6.53)
From the action obtained we read off the flavour current multiplet
LTT(¢) =igtxq™ . (6.54)

By construction, LT1% respects the analyticity constraint (6.37). It also obeys the condi-
tion (6.42) on the mass shell. Thus, our new representation (6.54) for the flavour current
multiplet is equivalent to (5.8) we used before.

Let us use the new representation (6.54) to compute the two- and three-point functions
of the flavour current multiplets. Performing the Wick contractions gives

(L)L (G)) =kuo™ (gt (G)TH (G)) T ()T (&) (6.55)
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(L)L (@) LT () ==k ™ (™ (Q)T () (™ (Q)TT () (aF (C2)at (€2))(6.56)

where the propagator is given by (6.48). Now we use the explicit form of the hypermultiplet
Green’s function (6.50) and obtain a new representation for the correlators of the flavour
current multiplets

<L++6(C1)L++B(C2)> _ aN45ab(lj:—1i§;_lL%_)2 , (6.57)
12
(L)L) = Vg g

V122 823% 2312
These expressions are manifestly analytic in all arguments. They are equivalent to (4.8)
and (4.9) modulo contact terms which vanish for non-coincident superspace points. We
stress that for generic values of an—4 and bar—4 the form of the correlation functions (6.57)
and (6.58) is universal for any N' = 4 superconformal theory although they were derived
for free hypermultiplets. The values of the coefficients axr—4 and byr—4 for the case of free
hypermultiplets are given by (5.13) and (5.18), respectively.

Recall that the hypermultiplet Green’s function (6.50) obeys the equation (6.49). Using
this equation we compute the derivative of the expression (6.58)

_ _ +, +
PEHLHQ) LT G)LTH(G)) = 4V2mby—a f7 105 (¢, ) — 857 (¢, )] (”5135’ )
_ 4\/§i7rzjj\\[/if“w[5f’0)(C1, G) = 680 (¢, )L T(G) L (G)) (6.59)

Hence, the correlation functions (6.57) and (6.58) obey the Ward identity (6.43) if the
coefficients apn—4 and by—4 are related to each other by the equation (5.19) which was
found previously for the case of free hypermultiplets. Here we have demonstrated that it
holds for every N/ = 4 superconformal field theory.

7 Relations between correlation functions in superconformal field theo-
ries with 1 < N < 4

The study of correlation functions performed in the present paper is the continuation of
our earlier work [1]. In [1] and in sections 3 and 4 of the present paper, we derived ex-
plicit expressions for the two- and three-point correlation functions of the supercurrent and
flavour current multiplets in three-dimensional A-extended superconformal field theories
with 1 < N < 4. As was discussed above, the coefficients of the two- and three-point func-
tion are not independent but are related by the Ward identities. The aim of this section
is to derive the relations between these coefficients for 1 < N < 4. Our derivation will be
based on the following two observations.

e If both the two- and the three-point functions are fixed up to overall coeflicients
and are related to each other by the Ward identities, we can find a universal relation
between the coefficients by considering a particular theory. We have already used this
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observation to obtain the relations (5.19) and (5.24) which are valid in any N' = 4
superconformal field theory.!?

e Every N/ = 4 superconformal theory can also be viewed as a special N-extended
superconformal theory, with N < 3. Since the relevant two- and three-point func-
tions in theories with A = 1,2,3 supersymmetries are fixed up to overall coef-
ficients!' [1] we can find similar universal relations between the coefficients using
egs. (5.19) and (5.24).

To perform explicit calculations we use the fact that the correlation functions of con-
served currents for different A are related to each other by the superspace reduction.
Indeed, as explained in [1], the supercurrents in 1 < N < 3 superconformal theories can be
derived from the supercurrent .J in the N’ = 4 theory by applying covariant spinor deriva-
tives and switching off some of the Grassmann coordinates. The flavour current multiplets
in 1 < N < 3 theories can also be derived from the N' = 4 flavour current multiplets by
applying the rules of the superspace reduction discussed in [1].

7.1 Superspace reduction of the supercurrent correlation functions
7.1.1 N = 3 supercurrent

Let us start with the N' = 4 supercurrent J whose correlation functions are given
by (4.17), (4.18) and (4.24). The N = 3 supercurrent J, is related to J as follows

Jo =1iDLJ|, (7.1)

where the bar-projection means that we set 6§ = 0. Hence, for the correlation functions of
J, we have

(Ja(21)5(22)) = =DlhyuDiys(I(z1) T (z2))] (72
(a(21)5(22) 5 (25)) = —iD{1y Dy s Dy (J(:1) (22) (20)) - (73)

Computation of the required derivatives of (4.17) and (4.18) is a straightforward but tedious
task. The details of this procedure are given in subsection C.1. Here we present the results:

. T12¢
(Jalz1)J5(22)) = 16N=3Tlif ; (7.4a)
T13aa/T238B" 110/ B
(Ja(e1) g (22) Ty (28)) = dyv=s— g PR HYP (X, 03) (7.4b)

The coefficient da—s does not contribute to the three-point function of the energy-momentum tensor
and, hence, does not appear in the Ward identities. Thus, it is not related to the coefficients car—4 and
dn—4 In a universal manner.

1Tn the case of the three-point function of flavour current multiplets in A/ = 2 superconformal field
theories, there is a second structure proportional to the totally symmetric tensor of the flavour symmetry
group [1]. However, this structure does not contribute to the three-point functions of conserved currents.
Hence, it does not contribute to the Ward identities and can be ignored for our discussion.
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1
X0

+X’BQX“V@£@Z@5€[JK + 2XaHXVﬁ@fL@l{®$€]]Kj| , (7.4¢)

HY (X,0) = — |(05 X 4+ 55 X)X O,,0,08 1K

where

CN=3 = 2CN—4 (7.5a)
dn=3 = 4dpn=4 . (7.5b)

Egs. (7.4) are precisely the expressions for the correlation functions of the N' = 3 su-
percurrent obtained in [1]. Using eq. (5.24) we obtain the following relation between the

coefficients J )
N=S _ (7.6)
CN=3 8
We expect that this relation is valid in any N = 3 superconformal theory.
7.1.2 N = 2 supercurrent
The N = 2 supercurrent J,z is related to the N' = 3 supercurrent J, as follows
Jop = D3 Jg, (7.7)

where the bar-projection means that #§ = 0. Hence, the correlation functions of N' = 2
supercurrents can be found from (7.4) by the rules

(Jaar(21) T3 (22)) = =D{1)a Digya{Jar (21) g (22))] (7.8)
(Joar(21) T3 (22) T3/ (28)) = —=Diya Dy Disyo (S (22) T (22) Sy (zs))] - (7:9)

The details of computations of these derivatives are given in subsection C.2. The resulting
expressions are:

L (o B
(Jap(21)J" 7 (22)) = cN:z%, (7.10)
L13apT13a/p' L oL ol ! oo’
<Jaa/(Zl)Jﬁﬂ/(Zg)JVW/(Zg,)) = dN:2 13ap lilg6mzzg 236 HPP: 77,(X3’ @3) , (7‘11)

where

/ / / 2' / ’ / / / / / ’ /
HO P (X 0) = flg (BB 0707 + (17 )a @?@? 4+ P8 @?@(}} 17

55 3x°' x7'0fef +3x5 x 7 og05 — 5x° X ¥ 6]0] | 7

i

+

. [5€a(v5w')a’ X8 4 5BO)B xad! g a(B B Xw] X% 0lede,

>

X X B8 X x009lole, ;. (7.12)

+
X

DO | Ot

The coefficients cyr—2 and dpr—2 in (7.10) and (7.11) are related to car—3 and dar—3 as

CN=2 = —4CN:3, dN:2 = —6d/\[:3 . (7.13)
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Egs. (7.10), (7.11), (7.12) represent precisely the correlation functions of the N' = 2 super-
current obtained in [1].
Taking into account (7.6), we find the ratio of the coefficients (7.13):

dn=2 3
= — .14
cN—2 167 (7.14)

which we expect to be valid in any N = 2 superconformal theory.

7.1.3 N =1 supercurrent
Consider now the reduction of the N' = 2 supercurrent J,3 to the A’ = 1 supercurrent
Jopy = iDiJﬁv‘ ) (7.15)

where the bar-projection means that 65 = 0. The corresponding relation for the supercur-
rent correlation functions reads

(acwrarr (21) T30 (22)) == D2 Doy g (Jararr (1) T (22))] (7.16)
<Jaa/a// (Zl)‘]ﬁﬂ/f)w (22),]7,7/,}/// (Z3)> = _ID(21)0£D(22)5D(23)’Y <Ja’0<” (Zl ) Jﬁ/ﬁ// (ZQ)J'Y,'VN (2'3)) ’ . (7 17)
The computations of these expressions were performed in [1]. Here we give only the result:

! ! !
T190 Y 1957 12,7
8 b

(Jagn (20777 (22)) = tency (7.18)

T2

/ 1/ ! !

) T130"T130” T1307” X235 T235'7 L2357
<Jaa’a”<zl)‘]65’5” (Z2>J‘Y’Y”Y”(Z3)> = ldy=1 1381038

Xpr/p”O'O'/U”’y’}//’yN(X?n63) s (719)

I A

where the tensor Ho'«"BE8 'Y — (5, ya'e” (5 VB'B" (5, )77 FHOm Bk hag the following
complicated but explicit form:

1 /
Fpom Bnak (X, @) _ (,yp)oa,é’ @'yc(mnp),k+ 5(7?)75®6€qu77qq’c(mnp)’q _i_(,.yr)’)’é(_)éD(mnp),(kr)

Cmnp,k _ ﬁ(nmnnkp + nmknnp + nnk,nmp)
+F(Xka,'7np + Xnanmp + XpXk:nmn)
) 5
—F(XanT/pk + XnXpnmk + XmXpnnk) . FXanXpXk ,

D(mnp),(k:'r) _ Emksnss/T(np),r,s/ _|_6nks1788/T(mp),'r,s/ —i—gpks'r]ss’T(mn)’T’S/

+Emrsnss/T(np),k,s/ + 5nT5nSS/T(mp),k,s’ + Eprsnss/T(mn)’k’sl ,
s _ L[0T XPXT 4P XXE - XX 3XTXPXTX
T2 X5 T X7

It is important that the coefficients cyr—1 and da—; in (7.18) and (7.19) are expressed in

(7.20)

terms of cyr—2 and dy—2 as

CN=1 = 6CN:2, d/\/’;l = —5d/\[:2 . (721)
From (7.14) we find the ratio of these coefficients:
dar=1 5

=——. .22
CN=1 327 (7.22)
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7.2 Correlation functions of flavour current multiplets

We now turn to deriving relations between the coefficients in the two- and three-point
correlators of flavour current multiplets.

7.2.1 N = 3 flavour current multiplets

The two- and three-point correlation functions of AV = 4 flavour current multiplets are
found in the form (4.8) and (4.9). They contain free coefficients an—4 and bar—4 which are
related to each other by (5.19). Owing to the identities (4.10), the same relation must hold
for the coefficients among two-point and three-point functions in N' = 3 superconformal

by=sz V2

an—s 8’

theories

(7.23)

7.2.2 N = 2 flavour current multiplets

Let us consider the reduction of the N'= 3 (LLL) correlator to N’ = 2 superspace. Recall
that the N' = 2 flavour current multiplet is described by a primary real dimension-1
superfield L subject to the constraint

<Da1Dg — ;5”DK°‘D§>L =0, (7.24)

which defines the N' = 2 linear multiplet. Such a superfield can be obtained by bar-
projecting one of the three components of the A" = 3 flavour current multiplet L/,

L=1I13, (7.25)

where the bar-projection assumes that 65 = 0. Hence, the correlation functions of the
N = 2 flavour current multiplets can be obtained by evaluating the bar-projections

(L7(21) L (22)) = (LP*(z1) L (22))] (7.26a)
(L7 (20) L (22) L (z3)) = (L*%(21) L2 (20) L% (29))] - (7.26D)

Now, given the explicit form of the correlation functions of N = 3 flavour current multiplets,
egs. (3.3) and (3.4), we derive

_ . 5&1)
(LU (z21)L"(2)) = N pwel (7.27a)
a _ - 1 fz‘zEE i@faX3aB@j55 . n
(L)L (22) L*(28)) = —5bx=s =5 3 X3 S L (7.27b)

where I, .J are the SO(2) indices. Recall that the N' = 2 flavour current correlation functions
were found in [1] in the form

_ 5&5

(L% (1)L’ (22)) = an= (7.282)

b)
X122
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e 1 e 010 Xy,50707 - ha,
A Lb ¢ - = abcb - 1J>~3 « 3 dabc; (7.28b
()LL) = oy | Py I8 S0 o222 | (7.08p)
Comparing these expressions with (7.27) we conclude that
1 -
an=2 = an'=3, by=2 = —56/\/:3, by—2=0. (7.29)
As a consequence of (7.23) we find the ratio of coefficients byr—o and apar—o
byv— 2
N=2 V2 (7.30)

AN =2 :ﬁ .

Let us point out that bxr—s is found to be zero because the last term in (7.28b) cannot
be lifted to N/ = 3 supersymmetry, but in generic N' = 2 supersymmetric theories it is
not necessarily zero. It can be shown that this term does not contribute to the three-point
function of conserved currents [1] and, hence, is irrelevant for our present discussion.

7.2.3 N =1 flavour current multiplets

Finally, let us discuss the reduction of the N' = 2 flavour current multiplets correlation
functions down to N = 1. The N = 1 flavour current is described by a primary dimension-
3/2 superfield L, obeying the conservation law D*L, = 0. It can be obtained from the
N = 2 flavour current multiplet L by the rule

L, =1iD2L], (7.31)

where the bar-projection assumes that 63 = 0. The corresponding relations among the
correlation functions of N'= 2 and N = 1 flavour current multiplets were found in [1]

a b a b . abL12a
(L&) Lh(22)) = =Dfiyo Diyys (L (1) L0 (22))] = Ziawmad™ 27 (7.32)
(L& (21) L3 (22) L5 (23)) = =iD{1)0 Diyys Dy (L7 (21) L (22) L*(23))|
Tazsp X5 O — X503, — P1X5PO
— Dby S0 @230 5 T5 T A3 T T C 28 D% (7.33)
x13 23 X3

The same expressions for these correlation functions were found in [1] by using the super-
conformal invariance and conservation conditions. The free coefficients of these correlation
functions are related to the ones in (7.32) and (7.33)

an—=1 = 2apn=2 , ba=1 = 2bpyr—o . (7.34)
Hence, these coefficients have the same ratio as in (7.30)

bv—1 V2

aN=1 :16771'

(7.35)
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8 Concluding comments

In this paper, we have studied some implications of N' = 4 superconformal symmetry
in three dimensions. A rather unexpected result of our analysis is that the three-point
function of the supercurrent in N’ = 4 superconformal field theories is allowed to possess
two independent tensor structures, which is a consequence of the superconformal symmetry
and the conservation equation. It may look surprising since any A/ = 4 superconformal
field theory can also be thought of as a special case of one with N’ < 4 and, as we showed
in [1], similar three-point functions in superconformal field theories with N' < 4 contain
only one tensor structure. An apparent disagreement has a simple resolution. From the
viewpoint of N' = 3 (or even less extended) supersymmetry, the N/ = 4 supercurrent
consists of two A/ = 3 multiplets, one of which is the AN/ = 3 supercurrent and the
other contains additional currents, like the R-symmetry currents. Such N' — N — 1
decompositions can be found in the introduction of [1]. As we explained in section 4
(see also subsection C.1), only one tensor structure in the three-point function of the
N = 4 supercurrent contributes to the three-point function of the N' = 3 (and, hence,
N < 3) supercurrent. Thus, just like in general N' < 3 superconformal theories, the
three-point correlator of the energy-momentum tensor in N/ = 4 superconformal theories
is determined by a single tensor structure. As concerned the second tensor structure, in
section 5 we pointed out that it is present in those A/ = 4 superconformal field theories
which are not invariant under the mirror map (see also below). In the case of free N' =4
hypermultiplet models, it is proportional to the difference between the number of left and
right supermultiplets with respect to the R-symmetry group SU(2)1, x SU(2)R.

Another important result of the paper consists in the relations between the coefficients
of the two- and three-point correlation functions of the supercurrent and flavour current
multiplets in all 1 < N < 4 superconformal theories. These relations are derived in section
7 and the analysis is based on two observations. First, if both the two- and three-point
functions of either the supercurrent or the flavour current multiplets are fixed up to a single
coefficient and are related to each other by the Ward identities, we can derive the universal
ratio of the coefficients by simply considering any specific theory. Second, as already
mentioned, any A -extended supersymmetric theory is a special case of a (N — 1)-extended
theory. In particular, any N' = 4 superconformal theory can be considered as an N' = 1,
N =2 or N = 3 superconformal theory. As a result, we can derive all universal relations
between the coefficients of the two- and three-point functions by considering one relatively
simple specific example, namely, the N' = 4 superconformal theory of free hypermultiplets.

The hypermultiplet supercurrent (5.7) is asymmetric with respect to the left and right
hypermultiplets. More generally, given an N/ = 4 superconformal theory that is invariant
with respect to the mirror map, its supercurrent must change sign under the mirror map
M. A simple illustrating example is provided by the model describing an equal number of
left and right hypermultiplets. The corresponding supercurrent

J =G4 — Gd' (8.1)

is odd under the mirror map qZ < ¢'. This property has its origin in N/ = 4 confor-
mal supergravity. To explain this important point, we have to recall three results from
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supergravity. Firstly, as shown in [34], the N/ = 4 super-Cotton tensor X (z) changes its
sign under the mirror map.'? Secondly, the off-shell action Scgq for N' = 4 conformal
supergravity [53] proves to be invariant under the mirror map, and its variation can be
represented as

6Scsq o / PB2ESHX,  E=Ber(Ey?). (8.2)

Here d3®z E is the integration measure of N' = 4 curved superspace, and H(z) denotes
the conformal supergravity prepotential (see also [37, 38]). Therefore, the prepotential
H changes its sign under the mirror map. Thirdly, given a system of matter multiplets
coupled to conformal supergravity, an infinitesimal disturbance of H changes the matter
action Spatter as follows

8 Smatter = / B2 ESHT, (8.3)

where J(z) is the matter supercurrent. If Spatter is invariant with respect to 9, then J is
indeed odd under the mirror map.

As shown in subsection 4.2, the most general expression for the three-point function
of the N/ = 4 supercurrent is

1 dn—g  dn—g
2 2 +
I13°T23

<J(21)J(22)J(23)> = €]JKL@IO‘@JB@K'Y@L6XQ5X75> . (8.4)

X3 X35
The parameter JN:4 must vanish, CZN:4 = 0, in every theory invariant under the mirror
map. The second term in (8.4) is odd under the mirror map due to the property

N . €[JKL(9[O‘@J6@K7@L§X&5X75 — — €[JKL@IO‘@JB@K7@L6XQI3X75 . (8.5)

All other building blocks in (8.4) are invariant under 9i.
It would be interesting to extend the results of the present paper to the cases of
superconformal theories with N' > 4. The A > 4 supercurrent is described by a primary

JIJKL

superfield of dimension 1 subject to the conservation law [37, 38]

4
DéJJKLP _ DgJJKLP] . D(?JQ[JKL&P}I7 IT=1

o3 LN (8.6)

The construction of the correlation functions involving the supercurrent J!//5% has its own
complications due to a large number of R-symmetry indices. We postpone this problem
for later study.
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12The algebra of covariant derivatives for ' = 4 conformal supergravity is known to be invariant under the

mirror map [34]. The super-Cotton tensor is obtained from the completely antisymmetric curvature tensor

XTTKL which is invariant under the mirror map, by the rule X'KLL = 7KL X Since the Levi-Civita

IJKL

tensor & changes its sign under the mirror map, eq. (A.28), the same is true of the super-Cotton tensor.
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A  Comments on off-shell hypermultiplets

The superfield constraints (5.1a) and (5.1b) are on-shell. There exist off-shell models
for left and right hypermultiplets such that their equations of motion are equivalent to the
constraints (5.1a) and (5.1b). Before discussing such off-shell hypermultiplets, some general
comments are in order. Off-shell descriptions exist for many 3D AN = 4 supersymmetric
field theories such as general N' = 4 nonlinear o-models [4]. However, it turns out that
the conventional A/ = 4 Minkowski superspace M®/® is not suitable to realise the most
interesting off-shell couplings. An adequate superspace setting for them is an extension of
M?3® by auxiliary bosonic dimensions parametrising a compact manifold, in the spirit of
the superspace [56] M*® x CP! which is at the heart of the 4D A = 2 harmonic [45, 46]
and projective [47-49] superspace approaches.'® All known off-shell N = 4 supersymmetric
field theories in three dimensions can be realised in the following superspace!* [11, 12]

M3 x CPL x CPL = M?1 x [SU(2)/U(1)];, x [SU(2)/U(1)]R , (A1)

which may be called harmonic or projective depending on the type of N' = 4 off-shell
multiplets one is interested in. All such multiplets are functions over either (CPE or (CPP{.
For definiteness, let us consider left multiplets associated with (CPI}. Our presentation
below is similar to [50].

Let v, = (v') € C2\ {0} be homogeneous coordinates for CP;, and vt = (vf) := (%)
be their conjugates (in what follows, the subscripts ‘L’ and ‘R’ will always be omitted if
no confusion may occur). Any superfield living in M3 x CP! may be identified with a
function ¢(z,v,7) that only scales under arbitrary re-scalings of v:

¢(z,cv,cv) =" " ¢(z,0,7), ceC*=C\ {0} (A.2)

for some parameters n4 such that n, —n_ is an integer. Since vfv = ;0" # 0, we can
always choose n_ = 0 by redefining ¢(z,v,9) — ¢(z,v,0)/(viv)"~. Any superfield with
the homogeneity property

o™ (z,cv,e7) = "¢ (z,0,7), ceC” (A.3)
is said to have weight n. Let us introduce fermionic operators
’Di = Di(l) = vinf, (A.4)

where v; := g;;07. In accordance with (2.62), these operators strictly anticommute with
each other, o
{9,925} =0, (A.5)

13The relationship between the 4D A = 2 harmonic and projective superspace formulations is spelled
out in [54].

HMFor every positive integer AV, the 3D N-extended superconformal group OSp(N[4; R) is a transformation
group of the so-called compactified Minkowski superspace MV in which M??V is embedded as a dense
open domain [4]. In the N = 4 case, OSp(4|4;R) is also defined to act transitively on M®/® x CP} x CP3,

as shown in [4].
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which allows us to introduce left isochiral multiplets (following the terminology of [55])
constrained by

’Did)(") (z,v,0)=0. (A.6)

These constraints are consistent with the homogeneity condition (A.3).
Given an isochiral superfield (b(”)(z, vl j), its complex conjugate

O (2, 05,07) = ¢ (2, 07, ;) (A.7)

is no longer isochiral. However, by analogy with the 4D A = 2 case [45, 56] one can define
a modified conjugation that maps every isochiral superfield ¢() (z,v,0) into an isochiral
one ¢™ (z,v,0) of the same weight defined as follows:

™ (W', 5;) — 6™ (5, 07) — ™ (m 5~ ai) = ¢ (o', ;) . (A.8)

The weight-n isochiral superfield <Zv>(")(z,v,17) is said to be the smile-conjugate of
™ (z,v,7). One can check that

™) (2,0,7) = (=1)"¢™ (2,0, 7) . (A.9)

6\((

Therefore, if the weight n is even, real isochiral superfields can be defined, QUS(Qm) = p(2m),
Within the 3D N = 4 projective superspace approach [4], off-shell multiplets are
described in terms of weight-n isochiral superfields Q(")(z, v),

00" =0,  QM(z,cv)=c"QM(z,v), ceC, (A.10)

which are holomorphic over an open domain of CPI},

0

(n) —
90, Q 0. (A.11)

Such isochiral superfields are called left projective multiplets of weight n. The action
principle in projective superspace involves a contour integral, and not an integral over
CP!'. This is why there is no need for projective multiplets to be smooth over CP'. This
approach is useful to construct the most general N' = 4 supersymmetric o-models, both
in Minkowski superspace [4] and in supergravity [34]. The structure of superconformal
projective multiplets is well understood [4].

Somewhat different isochiral superfields are used in the framework of the 3D N = 4
harmonic superspace approach [11, 12]. The equivalence v’ ~ cvf, which is intrinsic to
CP!', allows one to switch to the description in terms of normalised isotwistors:

% 7

i v - (% _ o+ - +
ut = , u; = =yt = w;,u; ) € SU(2) . A.12
Toe Joto (™) €5U) (A.12)

+

The variables u;- are called harmonics. They are defined modulo the equivalence relation

uljE ~ eii“uf, with a € R. It is clear that the harmonics parametrize the coset space
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SU(2)/U(1) = S2. Given an isochiral superfield ¢{™)(z,v,7) we can associate with it the
following superfield

) (5o =) i (™) ORI W Sy
oMz uTuT) = (z, N \/m)_(\/vTv)”¢ (z,v,7) (A.13)

obeying the homogeneity condition

M (z, e 0T ey 7Y = ™ M (2,0t uT) . (A.14)
This property tells us that o™ (z,u*) has U(1) charge n. Thus the weight of ¢(™(z,v,7)
*)

is replaced with the U(1) charge of o™ (z,u™). Tt is obvious that we have the one-to-one

correspondence ¢(™ (z,v,7) +— @™ (z,u*). The fermionic operators (A.4) turn into
1 < it
0 = u Dy (A.15)

and therefore the isochirality condition (A.6) takes the form

i+
Dy =

Dif o™ (z,ut) = 0. (A.16)
In harmonic superspace, every isochiral superfield (™ (z,uT) is required to be a smooth
charge-n function over SU(2) or, equivalently, a smooth tensor field over the two-sphere S2.
Such a superfield is called left analytic. It can be represented, say for n > 0, by a convergent
Fourier series
oo
o™ (z,ut) = Zcp(il"‘i”pjl“'j”)(z) uf ool u (A.17)

i1 " Vpgp g1 Jp
p=0
in which the coefficients @it-in+2r(z) = @lit-int20)(2) are ordinary N' = 4 superfields
obeying first-order differential constraints that follow from (A.16). The beauty of this
approach is that the power of harmonic analysis can be used.

We are now prepared to discuss off-shell hypermultiplets. In harmonic superspace, the
most suitable off-shell description of a single hypermultiplet makes use of an analytic su-
perfield ¢* (z,u™) = ¢V (z,u*) and its smile-conjugate ¢t (z,u*). The free hypermultiplet
equation of motion, which corresponds to the action (6.44), is

gt =0 = q+(z, ui) = qi(z)u;r, (A.18)

where ¢'(z) obeys the constraint (5.1a).

In projective superspace, the most suitable off-shell description of a single hypermul-
tiplet makes use of an arctic multiplet Y (z, v) and its its smile-conjugate T(l)(z, v). By
definition, Y™ (z,v) is a weight-1 projective multiplet which is holomorphic over the so-
called north chart C of CP! = C U {oc}. Here the point co € CP! is identified with

7
north

the “north pole” v ~ (0,1). In the north chart, it is useful to introduce a complex

(inhomogeneous) coordinate ¢ defined by

vt =0l (1,0), ¢:=—, i=1,2. (A.19)

— 44 —



The arctic multiplet Y() (2, v) looks like
D(z,0) =0" > Th(2)C", (A.20)

and its smile-conjugate antarctic multiplet T(l)(z, v), is

0 1)k
TW(z,0) = v Z (A.21)
k=
The dynamics of the free polar hypermultiplet is described by the action
1 . o
- 7{ vidvt / A3z DY L (z,v)‘ . LO=TOr® (A.22)
27 J, 0=0
where we have defined
P . L p2)ii p-2) D( 2) . _ D( Dy p(-1) =i ._ LuiDﬂ (A3
48 ij by, Da (v,u) @

The fourth-order operator D(—%) in (A.22) involves a constant isotwistor u; constrained
only by the condition (v,u) := v'u; # 0 which must hold along the closed integration
contour . The action (A.22) proves to be independent of w;. It can be shown that the
equation of motion, which follows from the action (A.22), is

TW (z,0) =o' (To(z) + Tl(z)g“> =q'(2)v;, (A.24)

where ¢'(z) obeys the constraint (5.1a). Thus, the ¢© hypermultiplet and the polar hy-
permultiplet provide two different off-shell realisations for the hypermultiplet. Both ac-
tions (6.44) and (A.22) are superconformal.

There is a family of isochiral multiplets that are holomorphic over CP!, and therefore
they are suitable for both the harmonic and projective superspace settings. These are the
so-called O(n) multiplets, where n = 1,2,...,

H™ (z,v) = Hn ()0, .. o0y, DIV~ = ¢ . (A.25)

Such a multiplet is (i) on-shell for n = 1 and describes a free hypermultiplet; and (ii)

off-shell for n > 1. When n is even, one can define real multiplets with respect to the smile-

conjugation. The flavour current multiplet L is described by a real O(2) multiplet L(?). It

may be shown that real O(2n) multiplets with n > 1 can be used to describe neutral hyper-

multiplets. However, the corresponding free hypermultiplet actions are not superconformal.
The mirror map [12, 40] is defined as

M: SUQ2)L +— SUQ2)R . (A.26)

It changes the tensor types of superfields as Dipm ® Dg/z) — Diq/Q) ® Dg/z), where D(®/2)
denotes the spin-p/2 representation of SU(2). The mirror map interchanges the on-shell
left ¢* and right ¢ hypermultiplets,

M-¢'=q¢, M-d=q. (A.27)
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It also interchanges the left L¥ and right L flavour current multiplets. Since the latter

multiplets are (anti) self-dual, eq. (4.3), the mirror map must act on the Levi-Civita tensor
1JKL
€ as

oM. el EL = KL (A.28)

B N = 4 hypermultiplet propagator

The free equation of motion for ¢* hypermultiplet is 27 T¢" = 0, where 27 is defined
in (6.41a). By definition, the Green function of the free hypermultiplet G*+)(¢y, () obeys
the equation

PG (¢, ¢) = —553’1)((17 G2) (B.1)

where 51(:”1)(@, (2) is the analytic delta functions. The solution to this equation is very
similar to the four-dimensional ¢-hypermultiplet Green’s function [45, 57]

1
U

4(53’(1’1 — 332)(58(91 — (92)

(uyug)? ’

GG @) = =(DNDY) (B.2)

where (D1)* = %(DHO‘D;J)(DJ“%DEQ). To check that (B.2) obeys (B.1) one has to take
into account that 2+ commutes with D and hits only the harmonic distribution in (B.2)

producing the harmonic delta-function (see [46] for a review of properties of harmonic

distributions)

1 1., _
" (ufug )P 50 )26 (ug, up) - (B-3)

This harmonic delta function is part of the analytic delta function

SV (C1, G2) = (DF)03 (w1 — 22)8%(01 — 02)837) (ur, up) . (B4)
As a result we have
ZH G (GG = 3 ODNF P i) = 05w (B)
Here we applied the identity
(DY 2™ )?pa = —20¢4, (B.6)

which holds for arbitrary analytic superfield ¢ 4.

We point out that the operator 1/0J in (B.2) acts only on the bosonic delta-function
§3(x1 — 2) and gives the scalar field Green’s function G(x1,r2) which we represent as the
integral over the proper time s

é&g(wl —x9) = —G(x1,22) = —i/ dsU(x1,z2|s), (B.7)
0

where U(x1,x2|s) is the heat kernel of the three-dimensional d’Alembert operator

i i<T1*12)2

U(f]f17f1}'2|8) = W@
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The integration over the proper time in (B.7) can be done explicitly, and the result has
slightly different forms for the point inside and outside the lightcone

1 1 2
e @1 72)7 <0
Glar,xg) =4 Vo) 22 g (B.9)
4 (z1—22)2 ($1 B x2) -0
These two cases can be unified in a single formula such that
1 i 1
— 53y — e — B.10
. ) Am /(21 — 12)? (10
is valid for (x1 — 22)? # 0. Then, we rewrite (B.2) as
' 1 5%(61 — 09)
G, G) = —— (D)D) . B.11

It is important to realize that the supersymmetrized coordinate difference (6.51) at coinci-
dent Grassmann coordinates is simply

alo,=0, = (z1 — 22)" . (B.12)
Thus, in (B.11) we can apply the identity

580y — 05)  3(6) — )

(:El — ZL‘2)2 j122

(B.13)

and use the analyticity of (6.51) in both superspace arguments to represent (B.11) as follows

i1 58(61 — 69)
GG, G) = —— DH (D B.14
Finally, we employ the identity
(DN)H(DF)'8°%(01 — 62) = (ufuz)"* (B.15)
to get the following final expression for the hypermultiplet Green’s function
s
G(Jrﬂr)(c17 C) = _b (ug up) (B.16)

Am Ep?
This representation of the hypermultiplet Green’s function was used in section 6.4 in study-

ing Ward identities of N' = 4 flavour current multiplets. Note that a similar representation
of the four-dimensional hypermultiplet propagator was found in [58] (see also [46]).

C Superspace reduction of correlation functions

The procedure of superspace reduction of supercurrent correlation functions is straightfor-
ward, but quite tedious. It was applied in [1] to find the relations among three-point corre-
lation functions of the N' = 2 and A/ = 1 supercurrents. Here we will follow the same proce-
dure to perform the N =4 — N =3 — N = 2 reductions of the supercurrent correlators.
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C.1 N =4 — N = 3 reduction of the correlation functions for the supercur-
rent

The N = 4 supercurrent is described by the primary scalar superfield J of dimension
1. When reduced to the N/ = 3 superspace, it has two independent N = 3 superfield
components: a scalar S and a spinor J,, [1]

S =J|, (C.1a)
Jo = 1D§J’7 (Clb)

where the bar-projection means 64, = 0. The N' = 4 supercurrent conservation condi-
tion (4.15) turns to the following constraints for the N' = 3 superfields S and J,

(Dfapg - ;gffpf‘apf)s ~0, (C.2a)
Dleg, =0. (C.2b)

Here I,.J, K = 1,2,3 are the indices of SO(3) group.

The superfield J,, is the N’ = 3 supercurrent. In components, it contains the energy-
momentum tensor, conserved currents of N' = 3 supersymmetry and conserved currents
of the SO(3) subgroup of the SO(4) R-symmetry of A/ = 4 theory. The N = 3 scalar
contains among its components the current of the fourth supersymmetry and the currents
of the remaining SO(4)/SO(3) R-symmetry. Therefore, when we consider an N/ = 4 super-
conformal theory in the N' = 3 superspace, the conserved quantities are described by the
following four types of three-point correlation functions

(SSS). (SSTa), (STads), (Jadsl) . (C.3)

In this appendix we derive these correlators from the three-point function of the N/ = 4
supercurrent which was obtained in section 4.2 in the form

1

(J(21)J (22)J (23)) = WH(X&@?;), (C.4a)
dnr— er 000k Qi X, . X

H(X3,03) = %34+dN:4 R 808730 (C.4b)

The distinguishing feature of this correlation function as compared to the ones in the
N =1, 2,3 superconformal theories is that it has two completely different terms with two
independent parameters d n=4 and dy—4. As we will show further, the two terms in (C.4b)
contribute to different correlators (C.3).

C.1.1 Correlator (SSS)

Since the superfield S is just the lowest component of J, see (C.1a), its three-point correlator
appears simply by switching off the Grassmann coordinate 64, at each superspace point
1 dy—
S(21)5(22)S(z3)) = (J(21)J(22)J (2 =— . C.5
(5(21)5(22)5(23)) = (J(21)J (22)J (23))] 2o X (C.5)
Note that the last term in (C.4b) vanishes in this reduction and only the first term with
the coefficient d—4 survives.
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C.1.2 Correlator (J,SS)
To compute this correlation function we have to hit (C.4) by one spinor covariant derivative
1

2

“x132@03

(Ja(21)S(22)S(23)) = iD{y0 (T (21)J (22)J (23))] = 1Dy H(X3,03)] . (C.6)

Note that the spinor covariant derivative acts on the two-point function (2.8a) by the rule
Dy ahy = —2i6k075 . (C.7)

Hence, all terms in which the derivative Dzll)a hits the bosonic two-point and three-point
structures vanish under the bar-projection and only the last term in (C.4b) contributes

) 1 er7k OO 08 Ok X3, X5,y
T S S — idr— D4 3 3 3 3 1% 14
(Ja(21)S(22)S(23)) = i N=1 T D e X,
— _id L1303 48 5IJKLGéﬂegygfp@gaXBMVXZSpa
N:4CE134CI3232 (3) X35
— didy—y Z13ap X:l;VXgU@ o4 93751,]1( (C.8)
T xigtaas? X35

Here, in the second line, we applied the identity (2.28a). Note that, in contrast to (C.5),
this correlation function depends on the coefficient dar—4 rather than da—4.

C.1.3 Correlator (JoJgS)

To compute this correlation function we have to hit (C.4) by two spinor covariant derivatives
s H(X5,09)]
L137T23

(C.9)

As is seen from (C.7), when two covariant spinor derivatives hit the correlation func-

(Ja(21)S(22) T3(z3)) = Dl 3Dy (T (21) T (22) 7 (23))] = Disys Dy

tion (C.4), only the following two terms survive under the bar-projection

(Ja(21)S(22)J5(23)) = A+ B, (C.10a)
1 1
A= — (D} ,D} )HX,@ , C.10b
T3’ ( ®Pmag 3 | H(Xs,03)l (C.10b)
1
B=———D} D} X3,03)| . C.10c
21?z0s2 L@ a H(X3,03)| ( )

In the part A we easily compute the derivatives owing to (C.7)

1 T
4 4 . L13ap
D(g)ﬂD(l)ax132‘ =25 2F (C.11)
Thus, for (C.10b) we have )
A= gi Zzes_dv=1 (C.12)

T13'Ts? X3
In the part B given by (C.10c) two derivatives hit the function H. For one of them we
apply the identity (2.28a) to represent it in the form

D( )6D4 oHl = ),Bml?waulépl H| = wli’wa[D( 3)8 D47H| + (D ),3“13)DMH|] (C.13)
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The two terms in the right-hand side of (C.13) give the following two contributions to the

correlation function

T130" CZN 4‘
B = ——"—— D4 .14
' migtaast (3)6 G x; I (C.14a)
T130" I dN:4‘
By = ———(D Digy. —1| . .14b
2= i 7 ( (3)~,U13) X, (C.14b)

Here we have taken into account that the last term in (C.4b) does not contribute to (C.13).
In the right-hand side of (C.14a) we use the explicit form (2.29) of the derivative D§
to represent this expression as

L~ 130" 1
By = 1d/\/:47( (3)/3@(3))8

331343023
.5 Z130” —16 —16 X?w&
= —idy=a——F (T35 — T3 °p)
L 215t X33

é
.5 Z13 013 ) Xy
= —1dN:470‘“/4 < X3ps + 1555 5 + 2ix 13/3u013 93[,12’ 321V5> X—Z’S . (C.15)

Here, in the last line, we applied the identity

w1_31a,8 w231a,8 = —X38a + 156& s + 2ix 13@913 Hégxg;ua : (C.16)
In this identity, only the first term in the right-hand side is given by the three-point struc-
ture while the other two terms are non-covariant in the sense that they are represented
by the combination of two-point superconformal structures and cannot be expressed solely
in terms of three-point ones. These non-covariant terms should cancel against the con-
tributions form (C.14b). Indeed, using the definition (2.15) we compute the derivatives
n (C.14b)

= T13 1 ipai 1
By = 2dN=47a 131,8p91§®?{6875f

iU134iU13
2 ¥é
s ®1307013° X348 = Ti3ay 1 _—1plppio X3
= dn=— + 2d VPN L x HPHU . C.17
N=4 .’L'136.’L'232 X33 11313411323 138p* do 23 X 3 ( )

Thus, in the sum of (C.15) and (C.17) only one term remains which we represent in the
following form using (2.25)

5 Y i ’Y 2
L13ay X355Xg :idN W( 5'8 @3> . (C.18)

Bi + By = idy—4

=4 - s — =
r13twes? X33 x134 1032 X3 2 X33

Finally, we put together the contributions (C.12) and (C.18) and get the resulting
expression for the correlation function (C.9) in the form

<Ja(21)5<22)Jﬁ<23)> = ld/\/ 4%1{7()(3,@3) (C.19a)
x 1342932

H}(X,0 '63 1Xg@2 C.19b

3X,0) =i+ o (C.19b)
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One can verify that the tensor (C.19b) obeys the equations
~ ~ ~ 1 PN ~ ~
DLHG =0, (DMDg - 35”@“1)5) H) =0, (C.20)

which are the corollaries of (C.2).
It is interesting to note that the correlation function (C.19a) depends only on the
parameter dar—4 similar to (C.5).

C.1.4 Correlator (JoJgJy)

To compute the correlation function with three A' = 3 supercurrents J, we have to hit (C.4)
by three spinor covariant derivatives

(Ja(21) Ta(22) Ty (2)) = 1D} Dy 5Dy (T (21) T (22) I (zs)) . (C.21)

First of all, we point out that the first term in (C.4b) does not contribute to (C.21).
Indeed, due to the identity (C.7), when three derivatives hit this term we always get the
contribution which vanishes under the bar-projection
idy—a4D{}y oDy s Dy S S C.22
~ldv=1Dya DDy oo o5 | =0 (C22)
Hence, we need to consider only the second term in (C.4b).
Taking into account (C.22) we represent (C.21) as a sum of two contributions

<J (zl)Jﬁ(ZQ)J (Z )> =A+ B, (C.23a)
1 ~
A= —5(Dg),D DY H(X3,©
T132 < 3) (2),83623) (1o (X3,03)
. 4 4 1
2932 <D( WPag 2 7152 D@mH(Xs,@s)( (C.23b)
— i 4

B = a2 Do Diy)sD{1ya (X3, 03)| (C.23¢)

where H is the second term in (C.4b)

€[JKL@IO‘@J59K7@L5XQ5X,Y5 4dN 4

H(X,0) = dyn—4 %5 =55 (CHCHCHEEFSICID G Ll
(C.24)
In the right-hand side of (C.23b) we apply the following relations
1 T 1 T
4 4 5. 4238y 5. L13ay

Next, using the identities (2.28) we have

ﬂlc13ap L238p

4y =
T 32 D(g)H(X?H 63)| )
(C.26)

DiyyoH(X3,05)| = 2D H(X3,03)|, DiyysH(X3,03)| =

3)
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where the derivative of (C.24) reads

iy XPPX e, 0L0T0K
DY H(X,0)| = 4dp—4 <5 : (C.27)

Substituting now (C.25)—(C.27) into (C.23b) we get the corresponding contribution to the
correlation function

_ L13aa’T23BB" 1,0/ B
A= e DI (C.28a)
o ol ook xm (X9 + X8
g Eiik v Y
Hy v = 8dn=4 5 (C.28b)
Using (2.28) we get the following representation for the part (C.23c)
L1300/ L2386 17a’ B
B=———""= X 2
m13432234 (B) 'y( 37@3)a (C 9)
where
o 0 o 0 o 0 o 0 5
H = ol < % x 9 % \x 2 9 x, % % \f.
(B)7 ( To! 00} T X, 008 T X, 008 9K aeﬁ) |
(C.30)
Computing the derivatives of the function (C.24) which are necessary for (C.30) gives
s0l i 0 84 il
8918@

16dN_ iad ok 8dr—4 fof ok
5 A xenxreletele; . + 3 txefxmelelele; .. (C.31)

o 0 o 0 o 0
P LG G g —— ) 7
( M DXy 0O% | DX, 004 TOX 58@4> |
4dN_ o y 8dn =1 o y >
=5 X sxmelelele, . - 5 X rxPreleloke .

AdN=4 s pv( ya Mololok
— XX + XPP50)elen 0 ey (C.32)

Finally, we collect the results of computations (C.28b), (C.31) and (C.32) in a single ex-
pression

L1300/ L o
(Ja(21)J5(22) I (23)) = —oe B0 o' (Xy, 03) (C.33a)
x13i 3t

Adpn=y falak
St xer - osxen xmele]ef e

+ XX OLO]OK e 5 + 2X W X OLO]OK 51 ] . (C.33D)

H*?(X,0) =

This expression for H 0‘57 coincides with (7.4c) upon the replacement X, — X 5. Al-
though X,z and X,z differ in a ©-dependent term, see (2.25), one can check that these
additional terms do not contribute to (C.33b). To match the expressions (7.4b) and (C.33)
one has to make also the identification of their parameters (7.5b).
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C.1.5 Reduction of the two-point function

The superspace reduction of the two-point function of N' = 4 supercurrents (4.17) to the
N = 3 superspace is much simpler than the same procedure for the three-point functions.
Indeed, the correlator of the superfield S immediately follow from (4.17)
CN'=4
(9(z20)8(z2)) = (J(21) (z2))] = 5 (C.34)
while for the correlation function of the N' = 3 supercurrent .J, we have
1

(Ja(21)J5(22)) = Dy gDy (I (21) T (22))] = CN=4D?2)5D?1)(1@ - (C.35)
Applying the identity (C.11) we find
(Ja(21)J5(22)) = 2icpr—g 2228 (C.36)
12

Comparing this two-point function with (7.4a) allows us to get the relation (7.5a) among
the coefficients cy—3 and cy—4.
C.2 N =3 — N = 2 reduction of the supercurrent correlation function

Recall that the AN/ = 3 supercurrent .J, contains the following two independent N/ = 2
supermultiplets [1]:

Ro = Ju|, Dl*R, =0; (C.37a)
Jag = D}, Jg) DI J,5=0, f=12. (C.37b)
Here J,p is the N' = 2 supercurrent, while R, contains the third supersymmetry current
and two R-symmetry currents corresponding to SO(3)/SO(2). In this appendix we con-
sider all two- and three-point correlation functions of R, and J,3 which follow from the
corresponding correlators of N' = 3 supercurrent .J,.
C.2.1 Two-point correlators

Consider the two-point correlation function of the N' = 3 supercurrent (7.4a). Obviously,
the two-point correlator of the superfield R, has the same form in N' = 2 superspace
) T
(Ra(21)Ra(22)) = (Ja(21)J5(22))] = ien=s— oy (C.38)

)
x12?

where the bar-projection assumes 03, = 0.
To find the two-point function of N' = 2 supercurrent we need to hit (7.4a) by two
spinor covariant derivatives

. 120/
(Joar(21) T35 (22)) = = Diy) o Dy 5T (21) T (22))| = ienr=3 D) s DYy, =t

4

C.39
o1 (C.39)

It is straightforward to compute these derivatives using the definition of the two-point
structure (2.8a)

14 (
(Jap(21) TP (22)) = —denr—s
12

Comparing this expression with (7.10) we find the relation among the coefficients cpar—2

’
Y128
6

L12c A

(C.40)

and cy—g given in (7.13).
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C.2.2 Three-point correlators involving R,

There are three correlation functions involving R:

(Ra(21)Rp(22)Ry(23)) ,  (Jas(21)Rp(22)Ry(23)) ,  (Jas(21)Jpp(22) Ry(23)) -

It is easy to see that

(Ra(21)Rp(22) Ry (23)) = (Ja(21)Jp(22) J5(23))| = O . (C.41)

Indeed, the tensor H,g, which defines the N' = 3 supercurrent correlator (7.4c) vanishes
under the bar-projection owing to @é@é@f erji| = 0. Similarly, it is possible to show
that

(s (21)Tpp(22) R (23)) = —Dfygs Dy (o (21)Ja(22) 5 (22)) | = 0. (C.42)
Thus, we need to consider only (Jas5(21)Rg(22)R(23)) which is non-trivial

(Jas(21)Rp(22) Ry (23)) = D{1y5(Ja(21)J5(22) I (23))]

L13aa/ L1356' T23B8" 1~36" rra’ B!
: A D [ ,Y| . (C.43)
T13-T23

= —dn=3

Here we have applied the identity (2.28a) and the representation (7.4b) for the N' = 3
supercurrent three-point function. It is easy to evaluate the derivative of the tensor (7.4c)
since under the bar projection only those terms survive in which D9 acts on the generalized
Grassmann variable ©/ but not on X - As a result, we get the following representation
for the correlator (C.43)

LT13aqa/ L 1 ’ ‘ol B!
(Jas(21)Ro(22) Ry (23)) = dy—g— o0 200 g7 (X5,03),  (C.dda)
13- T23
1
HP (X,0) = %5 SIXOXM(00), + 200 X X (00),,

+2X*X"(00),, + 261" XX (00),,

+400 XX VP (00),, + 4X P XD (00),, |, (C.44b)

where we use the notation (00),, = @£®g€]].

C.2.3 Three-point correlator of the A/ = 2 supercurrent

Consider now the three-point function of the N' = 2 supercurrent
(Jaar(21)T5p/(22) Ty (23)) = =Dy o Dy s Dy (Jar (21) T (22) T (23))] - (C.45)

The N = 3 supercurrent three-point correlation function is found in the form (C.33)
involving the tensor H aﬁq,. For the following calculations it will be convenient to use the
form of this tensor with the pair of spinor indices a8 converted into a vector one m

1 .6 .18
H™ = —570%1[[&57 = —i4305(00)" +iz X" XTO7(00),
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: 2 u : 8 m I
—1ﬁgp q(yq)g@f;(@@)pﬂﬁx XTsPQ(yq)g@g(@@)p

. 4 mr : 2 mr
+igse Q(fyq)gxrxp@i(@@)p+1FXTX% 1(79)103(00),, (C.46)

where we employ the short-notation (©0),, for
i
(©O)m = —§(Vm)aﬁ@£9561j - (C.47)

We substitute (C.33a) into (C.45) and represent it as a sum of two parts with specific
distribution of covariant spinor derivatives on the factors

D?3)7D?2)6D?1)aWH @8 (X3,03)| = A+ B,  (C.48a)
A= xi;f <D(33)7D?2),6w2£;ﬂ"> Dy HY P

7%@‘?" <D?3>"/D ?an> Dy sHY" "] (C.48b)
b= %D?3)7D?2)BD?1)CMHQH5H7" : (C.48c¢c)

One can check that in (C.48a) the terms in which the covariant spinor derivatives are
distributed in other ways vanish under the bar-projection. Now consider the computations
of contribution (C.48b) and (C.48c) separately.

In the part A given by (C.48b) we need the following relations

L1130/’ 2i
D?ii)vD?l)a m;j | = G (T1300T130/y + T1307T130’a’) 5
:D23615// 21
D3 D3 e x23 //{1323 / +(]323 CC23 181 ) C49
GrPes 1| = o5 (238972307 + Ta3pyTaspsr) (C.49)

which follow from the definition (2.8a). With the use of identities (2.28) we have

1! 13 3 /ol
Diyo H7 (X3, 03)] = — 2L DG H77(X3,0)],

13! To3 3 o
DiyysHY 77 (X3,03)| = $2:;82”D(3p)H“57(X3,®3)| . (C.50)

Taking into account (C.49) and (C.50) we represent the part A in the form

L13apT13a/ p' L23B0L238' " 11pp’ oo’
A= H (X3,03), C.51
21302230 (A) vy (X3, 03) ( )

where

H{37 oy = =48 DY HP 7 s + 85 D HP 7y 4+ 5D HP'7 oy 4 65 DY H )| . (C.52)

In the expression (C.48c) we use the identities (2.28) to represent it in the form
Disy, Dl Do H™ 7 (X3, 03)| = i35035 D3y i s Q7D HY7 (X5, 0)]
= i(z13) al@33) 8Df), [Q0 D) + uiz QD + ui3 Q;D;
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+udiOL DS + w33 Q2D HY P (X3, 03)] . (C.53)

Below we consider various terms in this expression separately.
For the first term in the square brackets in (C.53) we use explicit forms of generalised
spinor covariant derivative and the supercharge (2.29) to rewrite it as

3 313 o’ B
D(3)7Q0DPH ’ 7|
o o 0 o 9 0
_ - (pmlp _
= [(@13)" = (@25 )"] (axw 96% * 9Xan 9o%  9Xr7 g

>H“'5'V] . (C.54)

Here we used the fact that in the bar-projection only those terms survive in which the
derivative D?g),y acts on ©% and produces the factor [(zy3)", — (293 )*,]. As is pointed
out in [1], this factor cannot be expressed solely in terms of X 3,5 and @éa, but it involves

the two-point structures as well

-1 —1 . EaB o | —1
(%13 )ap — (T3 )ap = —X3a8 + 17332 023 + 2i(2 13 ) anb3052 (T35 )us - (C.55)
The last two terms here are non-covariant in the sense that they are expressed in terms
of two-point superconformal invariants rather than the three-point ones. Then taking into
account (C.55) we rewrite (C.54) as

I g 0 o 0 a 0 g0
3 33’ Bl — _ x M _ o' By
Diayy QoD HE ] = =Xl <8X‘W 90% T 9xon 9o%  gxe 8®3u) AN
+non-covariant terms, (C.56)

where the ‘non-covariant terms’ are those which correspond to the last two terms in (C.55).
Here we do not write down these terms explicitly as they cancel against the contributions
coming from the remaining terms in the square brackets in (C.53)!%

Dy, [uf3 Q3 Dy + uf3 Q5D +u3i QD) + w3 QS Dy HY P
Jg 0 Jg 0 '
=2 <@£8@1"0@3P + @38@2“8@3/’> H*P"7| — non-covariant terms. (C.57)

Thus, when we take the sum of (C.56) and (C.57) these ‘non-covariant terms’ cancel and
we get the contribution to the N' = 2 supercurrent correlation functions in the form

_ L13ap®13a/p' 23B0L236' 0" 11pp oo’
b= 21351930 H(B) 77(X3,03), (C.58)
where
fo o 0 0o 0 o 0
HET 0 (X,0) = i( 20— ——= 4207 ~ 5 ——= — X, =—— =
B v (X0) 1( ©961008 2D ge200 ~ Nax,, 963
o 0 o 0

-X

- v v p/cr/ )
" 0X,, 003 * A X po 8@i>H y(X,0)[ . (C.59)

15This cancellation has been explicitly demonstrated in appendix C.1 of [1] for the case of superspace
reduction of the N' = 2 supercurrent correlation function down to N' = 1. In the present case the cancellation
of the non-covariant terms can be checked in the same way.
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Summarizing (C.51) and (C.58) we find the N' = 2 supercurrent three-point correlation
function

L13apL13a’ p' L2385 L235' 0’ ! oo
<Jaa’(Zl)Jﬁﬂ'(ZQ)J’Y’Y’(Z?)» - or iBa13pG:1323g ik HrP o9 'Y’Y'(X37 @3) , (C60)

where the tensor HPP' 77 'W/ is expressed in terms of derivatives of the tensor H O‘Bﬂ, in the
N = 3 theory given by (C.33b)

HPP o7y = H(pzﬁ)aa vy +H (pfiﬁm vy T Hﬂ’éﬁ” vyt Hfﬁf ¥y (C.61a)
/O_o_l . o a /o./ o./ a lo.
Hly™ v = 2 (f% a@;‘;ﬂp v oy a@,?;ﬂp v
o0 g, s O oo C.61b
JWT@;; 7'+767@§ )1 (C.61b)
/ ’ a 8 3 a ! 5!
pp' oo o 1 2 o
Hipy vy =2 (976(9;6@}, + @m@ga@g’;) AR (C.61c)
. o 0 o 0 -
pplood’ i x X gre'
Hipy) 1< M )X gy 903 TTOX,, acag) vl (C61d)
/ / a 8 / !
pp' oo —iX o
Hipyy vy =1 WTX,)(,T@,?;HP vl (C.61¢)

As a result, the problem is reduced to computing the derivatives of the tensor (C.33b).
Let us convert the spinor indices of H pr' ‘mlwr into the vector ones

1 ! / !
k k o
e LA (C.62)

It is known that the tensor H™" which defines the three-point correlation function of
N = 2 supercurrent can be represented in the form [1]

H™ = (90),cmmPk (C.63)
where (©0), is given in (C.47) and C™"* is symmetric and traceless in the indices mnp,
Cmnp,k _ C(mnp)Jf’ nmncmnp,k: —0. (C64)

Hence, the tensor HPP' 77 /w’ has the following symmetry property

qre'ed = glerer) (C.65)

As a consequence, the relation (C.62) can equivalently be rewritten as
mmnk 1 m_.n NYY rypp’ oo’
H = _g’}/pa’}/p’o’ (’7 ) H ¥y (066)

and it appears to be more convenient to use the tensor (C.46) for further computations.
Indeed, the expression (C.61b) can be rewritten as a derivative of (C.46)

mn (AT o a m mnp,
HEG = 2i(1") 50 (V)7 5 g3 HY' = C ©0),,
P
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1 3
C(’Z?P,k — 94 <X3 nknnmp < nnkaXp>

24
(XM Xk 4 XFEXPy™) 4 (PP XX 4 P XXP) L (CL6T)

B s

In contrast to (C.64), the tensor C( 4) Pk is not symmetric and traceless in the indices mnp.
However, when all contributions (C.61) are taken into account, the resulting tensor C™"P:*
should obey the symmetry (C.64). Hence, it is sufficient for the following to consider only
the symmetric part of (C.67) in the indices mnp

C(mnp),k _ _ﬁ(nnknmp + nmknnp + nkpnmn)
40
+ﬁ( anmXp + nkanXp + nkpXan)
16
-5 (XFX™y 4 XE X 4 xR X Py (C.68)
In the same way using the tensor (C.46) we compute the expression (C.61c)—(C.61d),

mnkiin 18 0 2a 0 m _ ~mnpk
HIES = o) <@7 501907 + % ae1507 ) F = 5} (00N (C:o%)

i 2 36 . on
Clo" =~ XX
12
—55 (XEX™YP 4 XPX P 4 Se1l X XP 4P X™MXP) | (C.69D)
mnk __ i n (k\yy' 0 0 m __ ~mnp,k
H(Bg) = —57’00_(7 )’Y’Y X3#7m87(—)2H7l = C(Bgz); s (C?O&)
mnp,k 6 nk mp 12 mk,__np mn kp
Ol = 53" 0™ + 5 (™0™ +1 )
55" XMXP ek X Xp—ﬁn PX™X
+557 XkxP 4 + 55X Xky P+ 55X Xkpme (C.70b)
n i / a 0 m -k
Higy = 50" Xow e ge3 1 = ey (9O (C.71a)
12 12 48
mnp,k mk, n nk ym mk yn
C(Bs) - X377 n p_'_XS77 X Xp+7577 X" XP
~ pxkxm 4 gmnxkXP) - ek rxkx + 5 XX XkXP . (C.71b)

We need only symmetric parts of the tensors (C.69b), (C.70b) and (C.71b) in the indices
mnp:

o)k _

(B1) —ﬁ(nm" 0P 4 pkngmP 4 pkmyne)
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20

X5(
8
—F(X’fxm NP 4+ XExme 4 xk x| (C.72a)

10
C((g;;?) _ ﬁ(nkmnnp+nknnmp+nkpnmn)
50

X5(
20
+ﬁ(x’fxpnm” + Xk xmgme 4 xR x™P) (C.72b)

+ kpXan + nkanXp + nk’nXmXp)

anmXp + nkanXp + nkpXmXp)

4
Cfg;;p) = —ﬁ(nkmn’“’ + kP kg

———(XFxPymn L xXE Xy xR XM pney 4 XX XFXP . (C.720)
The sum of (C.67) and (C.72) is

k _ ~(mnp)k (mnp)k (mnp)k (mnp)k

ot = Oy + Cp, +Cp, " +Cp,
1

= —6dp_s3 ﬁ(nkmnnp_i_nknnmp_i_nkpnmn)

)
X5
)
X5
3 kmnp k yn,mp k yp,,mn 5mnkp
e (R - XX XX — o XX XRXP|L(C.73)

( kpXan + nanmXp)

( kpXan + nk’nXmXp + nk’anXp>

Substituting this tensor back into (C.63) we find the N/ = 2 supercurrent correlation
function in the form (7.11) where the parameter dy—s is related to dar—3 as

dpar=2 = —6dpr=3 . (C.74)
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