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1 Introduction and summary

Consider a (1+1)d CFT in some state having non-trivial quantum correlations. If the

system is perturbed at some instant of time tω and evolve unitarily afterwards, it is natural

to ask whether there exists any time scale when its subsystems become uncorrelated. Since

the mutual information IA:B = SA + SB − SA∪B between two such subsystems A and B

provides an upper bound for the connected two-point functions of operators acting on these

subsystems1 [1]

IA:B ≥
(〈OAOB〉 − 〈OA〉〈OB〉)2

2‖OA‖2‖OB‖2
, (1.1)

1This bound is proved for finite dimensional Hilbert spaces. We are not aware of an extension of this

result to QFTs/CFTs, but we expect it to hold when regulating and normalising appropriately the relevant

quantities in the continuum limit.
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it is natural to study the vanishing of this quantity to answer this question. The study

of the time dependence in this measure of entanglement can help us to understand the

time scales controlling how quantum systems get thermalized, which is one of the most

important problems in non-equilibrium physics.

A particular situation of the above scenario is when a perturbation acts on a thermal

state. In holographic theories, thermal states are believed to have a gravity dual in terms

of black holes [2, 3]. Black hole physics suggests that the speed at which the system forgets

initial conditions, i.e. the perturbation, is the fastest among all physical diffusive processes.

This gave rise to the notion of fast scramblers and the scrambling conjecture [4, 5]. The

main goal of this paper is to provide a first principle derivation for the time scale at which

this phenomenon occurs for 2d CFTs in the large c limit in a concrete setup which allows

both CFT and holographic computations.

Recently, Shenker and Stanford considered an excellent and tractable setup to study

the fast scrambling phenomena in the context of an eternal black hole [6–8]. This involves a

pair of non-interacting CFTs in an entangled state, the thermofield double state. Tracing

any entire CFT Hilbert space, gives rise to a thermal density matrix in the remaining

CFT. The perturbation is described by some boundary CFT operator and its gravity dual

involved a shock-wave propagating in the black hole background. No matter how small

the boundary perturbation is, the blue shift of energies when this perturbation reaches the

horizon suggests the existence of a non-trivial backreaction.

In this work, we study such a setup for a perturbation localized in a point-like region,

triggered by a primary operator in a given CFT. To obtain analytical results, we consider

2d large c CFTs and their gravity duals given by a perturbation of the BTZ black hole [9].

Recent developments in the calculation of 4-pt functions involving heavy and light operators

in the large c limit of the dual 2d CFT [10, 11] (see also [12, 13]) allow us to analytically

test these ideas.

Computations of time evolutions of entanglement entropy after local perturbations2

by primary operators have been formulated in [15, 17] and have been applied to many

examples for CFTs at zero temperature in [16, 19–23]. Entanglement entropy and mutual

information at finite temperature CFTs has been analyzed for integral CFTs in [24]. On

the other hand, the holographic calculations of time-evolutions of entanglement entropy

after local perturbations have been analyzed in [18, 25, 26] at zero temperature and in [24]

at finite temperature. In this paper we will extend the discussion of local excitations to

the thermofield double formalism of finite temperature CFTs in the large c limit.

Summary of results. Specifically, we perturb the thermofield double (TFD) state by

a local primary operator ψ at time tω in the past and compute the mutual information

between regions A and B belonging to opposite boundaries. We denote the two boundary

2Note that this setup looks similar to the local quenches in CFTs [14]. However, in the latter the local

excitations are triggered by joining two semi-infinite lines and lead to local excitations in all sectors of a

given CFT. Thus their behaviours differ from each other in integrable CFTs [15–17]. On the other hand,

in large c CFTs, they behave similarly [18–20] in that both results for 2d CFTs show logarithmic time

evolution of entanglement entropy.
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times in the thermofield double by tL ≡ t− and tR ≡ t+. When measuring the mutual

information at t− = t+ = 0, we ask for the time scale t?ω when the mutual information

vanishes

IA:B(t?ω) = 0 . (1.2)

Equivalently, we ask for the time scale t?ω at which correlations between A and B vanish.

When both subsystems A andB are the intervals (0 <)y ≤ x ≤ y+L and the perturbation is

turned on at x = 0 and time t− = −tω, we obtain the following analytical result for t?ω � β

t?ω = y +
L

2
− β

2π
log

(
β

πε

sinπαψ
αψ

)
+
β

π
log

(
2 sinh

πL

β

)
, (1.3)

where β is the inverse temperature and αψ =
√

1− 24hψ/c carries the information about

the primary operator perturbation of conformal dimension hψ. The parameter ε represents

a UV cut off for the local excitation, so that the excited state is localized around a region of

size ε of the operator insertion. This makes the energy of the perturbation Eψ = πhΨ
ε finite.

In the limit hψ/c � 1, which is the relevant one to match the butterfly effect discussed

in [6, 7], this reduces to

t?w = f(L, β) +
β

2π
log

(
πSdensity

4Eψ

)
, (1.4)

where Sdensity = πc
3β is the entropy density of the original thermal system. The log S

behavior in (1.4) is consistent with the fast scrambling conjecture [5, 6].

Given the bound (1.1), it should be possible to extract the same time scale from the

condition of vanishing two sided 2-pt functions. We explicitly show this in appendix C,

confirming the observation made in Shenker and Stanford [6] that both scales are controlled

by the same physics.

In the second part of this work, we derive the same time scale from bulk holographic

considerations and find a perfect matching between both calculations. Our holographic

model is based on the description of the local boundary perturbation in terms of some free

falling particle satisfying an initial condition guaranteeing such particle carries the right

amount of energy from the CFT stress tensor perspective. This is done by generalizing the

model in [18, 24] to the two sided BTZ black hole, based on the back reaction description of

point particles as quotients of AdS3. Applying the holographic entanglement entropy [28,

29] to evaluate the entanglement entropy and mutual information in our set-up, leads to

the same scrambling time (1.3). At the same time, our setup and calculation may be useful

for the interesting question regarding the dual CFT interpretation of a particle falling into

a AdS black hole in future studies.

Our local boundary perturbation includes a regularization parameter ε describing its

size. This parameter is holographically interpreted as the bulk position (distance from the

boundary) from which the massive particle falls into the black hole. Our solution computes

the back reacted geometry for any tω and approaches a localised shock-wave in the limit

of large tω [6, 27].

The paper is organized as follows: in section 2, we will analyze the time evolution

of entanglement entropy in large c 2d CFTs at finite temperature, which agrees perfectly
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with a previous gravity dual computation. In section 3, we study local perturbations in

finite temperature CFTs by employing the thermofield double formalism. We compute the

mutual information from entanglement entropies. In section 4, we compute the scrambling

time for the mutual information. In section 5, we introduce our holographic model. In

section 6, we present our holographic computations of mutual information in a two sided

AdS3 black hole background with a local excitation. In appendix A, we explained the

details of treatment of twist operators in the replica method computations of entanglement

entropy in the thermofield double formulation. In appendix B, we present some details of

our holographic model. In appendix C we describe a computation of two point function in

our model.

Note added. While finishing our main computations, the work of Roberts and Stan-

ford [30] appeared. The latter has a detailed account of two point functions in the presence

of localised excitations over thermal states and briefly mentions the behaviour of the mutual

information in the same set-up. Thus, it has some overlap with our results. In our paper, we

literally evaluate the mutual information between the thermofield double in both 2d large

c CFTs and their gravity duals independently and show their results perfectly agree. Our

gravity solutions explicitly have the regularization parameter ε and our matching between

gravity and CFT results holds while keeping this parameter small but non-zero. We would

also like to mention that in the interesting recent paper [31] by Maldacena, Shenker and

Stanford, the fast scrambling behavior of the correlations functions has been interpreted

in terms of chaos.

2 Single sided entropy

To introduce our basic tools and fix the notation, we analyse the local perturbation to a

thermal state in a single 2d CFT at finite temperature in this section.

Consider a thermal state ρβ locally perturbed by a primary operator ψ(0,−tω) inserted

at x = 0 at time −tω. The time evolution of the resulting density matrix is given by

ρ(t) = N e−iHtψ(0,−tω) ρβ ψ
†(0,−tω) eiHt , (2.1)

where H is the Hamiltonian of our system.

Denote by ρA = TrĀρ(t) the reduced density matrix on a finite interval A with end-

points3 y, y + L satisfying y, L > 0. Its entanglement entropy SA can be computed using

the replica trick. We first compute the Renyi entropies

S
(n)
A ≡ 1

1− n
log Tr ρnA(t) . (2.2)

The entanglement entropy is obtained by taking the limit SA = limn→1 S
(n)
A .

The trace of the reduced density matrix Tr ρnA(t) requires the calculation of the nor-

malised 4-point function

Tr ρnA(t) =
〈Ψ(x1, x̄1)σn(x2, x̄2)σ̃n(x3, x̄3)Ψ†(x4, x̄4)〉

(〈ψ(x1, x̄1)ψ†(x4, x̄4)〉C1)
n (2.3)

3Notice that the perturbation is originally inserted outside of the interval A.
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with the insertion points

x1 = −iε, x2 = y − tω − t−, x3 = y + L− tω − t−, x4 = +iε

x̄1 = +iε, x̄2 = y + tω + t−, x̄3 = y + L+ tω + t−, x̄4 = −iε . (2.4)

The operator Ψ stands for the product of the operators ψi in each of the i-th copies of the

theory4

Ψ = ψ1 · ψ2 · · ·ψn (2.5)

and has conformal dimension hΨ = nhψ, where hψ is the conformal dimension of the

original perturbation ψ. Notice ε is a parameter smearing the local operator perturbation

and all the time evolution is carried by the twist operators σn, σ̃n which are initially inserted

at both ends of the interval when cyclically gluing the different cylinder copies that give rise

to the manifold Cn. Finally, the conformal dimension ∆σ = 2Hσ of the twist operators is

Hσ =
c

24

(
n− 1

n

)
. (2.6)

We compute (2.3) analogously to [20] but with an additional composition of a map

from the cylinder to the plane

w(x) = e
2π
β
x
, (2.7)

to take care of the thermal nature of the original state, as well as the map

z(w) =
(w1 − w)w34

w13(w − w4)
(2.8)

that brings the points w1 → 0, w2 → z, w3 → 1, w4 →∞.

The transformation properties of primary operators determine the resulting trace

to be5

Tr ρnA(t) =

∣∣∣∣ β

πεUV
sinh

(
πx23

β

)∣∣∣∣−4Hσ

|1− z|4Hσ G(z, z̄) (2.9)

where we used the 2-pt function on the cylinder C1

〈ψ(x1, x̄1)ψ(x4, x̄4)〉C1 =

∣∣∣∣βπ sinh

(
πx14

β

)∣∣∣∣−4hψ

(2.10)

and introduced the canonical 4-point function

G(z, z̄) ≡ lim
z4→∞

|z4|4hΨ〈ψ(z4, z̄4)σn(z, z̄)σ̃n(1, 1)ψ(0, 0)〉

≡ 〈ψ|σn(z, z̄)σ̃n(1, 1)|ψ〉
(2.11)

defined in terms of the cross-ratio

z =
w12w34

w13w24
, 1− z =

w14w23

w13w24
. (2.12)

4This correlator is formally computed in the cyclic orbifold CFTn/Zn.
5We already used the regularised twist operators so that εUV is the standard UV cut-off.
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We defined wij = wi − wj in all the above formulas and the same conventions hold for xij
and zij .

The Renyi entropies are computed by inserting (2.9) into (2.2)

S
(n)
A =

c(n+ 1)

6
log

(
β

πεUV
sinh

π L

β

)
+

1

n− 1
log(|1− z|4HσG(z, z̄)) , (2.13)

where εUV is the UV cut off of the CFT i.e. the lattice spacing. The first term is the

standard Renyi entropy for an interval L in a 2d CFT at finite temperature T = 1/β;

the second term captures the extra contribution due to the local operator insertion. In

particular, the dependence on the conformal dimension of the local operator hψ is encoded

in G(z, z̄).

In general, the extra contribution to the Renyi entropies requires the knowledge of the

full four-point function G(z, z̄), i.e. the dynamical details of the particular 2d CFT under

consideration. To make further progress, we consider the large c limit.6 Notice that in the

limit n→ 1, the twist operators σn, σ̃n become light

Hσ/c =
1

24

(
n− 1

n

)
→ 0 as n→ 1 . (2.14)

If hψ/c remains fixed in the large c limit, the 4-pt function (2.11) becomes a 4-pt function

involving two heavy and two light operators. This is precisely the set-up considered in [10,

11] to compute the dominant (vacuum) contribution to G(z, z̄).7 Using their results, one

derives [20]

logG(z, z̄) ' −c(n− 1)

6
log

(
z

1
2

(1−αψ)z̄
1
2

(1−ᾱψ)(1− zαψ)(1− z̄ᾱψ)

αψᾱψ

)
+O((n− 1)2) (2.15)

where

αψ =

√
1−

24hψ
c

, (2.16)

encodes all the dependence on the conformal dimension of the local operator hψ. Finally,

we can compute the variation in the entanglement entropy due to the insertion of the local

primary operator to be

∆SA =
c

6
log

(
z

1
2

(1−αψ)z̄
1
2

(1−ᾱψ)(1− zαψ)(1− z̄ᾱψ)

αψᾱψ(1− z)(1− z̄)

)
, (2.17)

where we subtracted the entanglement entropy of the interval L at finite temperature

T = 1/β

Sthermal =
c

3
log

(
β

πεUV
sinh

π L

β

)
. (2.18)

As explained in [24], to extract a non-trivial contribution to the entanglement entropy

in the CFT at finite temperature we must take the smearing parameter ε small but finite.

6We assume a class of CFTs allowing such a limit.
7We refer the readers to [32, 33] for the description of the regularisation of twist operators used to

compute entanglement entropy.
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This still allows us to work with completely analytic formulas at order ε. Then, in the

small ε/β limit,8 the cross-ratios are

z ' 1 +
2πiε

β

sinh π L
β

sinh π(y+L−t−−tω)
β sinh π(y−t−−tω)

β

+O(ε2)

z̄ ' 1− 2πiε

β

sinh π L
β

sinh π(y+L+t−+tω)
β sinh π(y+t−+tω)

β

+O(ε2) .

(2.19)

Due to the non-trivial monodromy properties of G(z, z̄), we must carefully deal with the

sign of the imaginary part of the cross-ratios [20, 30].9 Notice the imaginary part of z̄

never changes sign, for t− + tω ≥ 0. Thus, we conclude z̄ ' 1 for all such times. On the

other hand, the imaginary part of z does flip sign whenever t− + tω ∈ (y, y + L). Thus,

we either have (z, z̄) → (1, 1) for t− + tω < y and t− + tω > y + L or (z, z̄) → (e2πi, 1) for

y < t+ tω < y + L. Using these phases in (2.17), we reach our first important result

∆SA = 0 , t− + tω < y and t− + tω > y + L

∆SA =
c

6
log

 β
πε

sinπαψ
αψ

sinh
(
π(y+L−t−−tω)

β

)
sinh

(
π(t−+tω−y)

β

)
sinh

(
πL
β

)
 y < t− + tω < y + L .

(2.20)

Thus, there is no variation in the entanglement entropy SA either till the perturbation

reaches region A (t− + tω < y) or when it leaves region A (t− + tω > y + L). While the

perturbation can causally be in region A, the variation in entanglement reaches a maximum

at t− + tω = y + L
2

(∆SA)max =
c

6
log

[
β

2πε

sinπαψ
αψ

tanh
π L

2β

]
. (2.21)

In the high temperature limit (or large interval L), the increase in entanglement due to the

perturbation equals

∆SA '
c

6
log

[
β

2πε

sinπαψ
αψ

]
β → 0 ,

β

ε
� 1 . (2.22)

In section 6.1 we will match this result with the gravity dual computation using the

holographic entanglement entropy. Let us now proceed with the entanglement entropies

that involve intervals in both CFTs.

3 Two-sided entropies

Entanglement entropy and mutual information in the thermofield double state involving

intervals in both CFTs were discussed in detail in [35] and their time evolution in [36, 37].

8We are assuming that y− t−− tω and y+L− t−− tω are larger than the smearing parameter ε in units

of β.
9We choose a reference phase to be consistent with causality and make entanglement entropies real and

non-negative.
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Here we only briefly review this setup and extend by the insertion of a local operator to

one of the CFTs.

Consider two non-interacting 2d CFTs, CFTL and CFTR with isomorphic Hilbert

spaces HL and HR. The thermofield double (TFD) state is a particular entangled state in

the total Hilbert space Htot = HL ⊗HR.

|Ψβ〉 =
1√
Z(β)

∑
n

e−
β
2
En |n〉L|n〉R, (3.1)

where |n〉L,R ∈ HL,R are the eigenstates in each Hilbert space and Z(β) is a partition

function in total Hilbert space (and also in each Hilbert space).

Z(β) =
∑
n

e−βEn . (3.2)

If we have the total Hamiltonian Htot = HL + HR, this partition function is a partition

function on a cylinder C1 with circumference β

Z(β) =
∑
n,m

〈n|L〈n|Re−
β
2

(HL+HR)|m〉L|m〉R = Trtot

[
e−

β
2

(HL+HR)
]
. (3.3)

Tracing out the Hilbert space HR from the pure state density matrix, we can get the

thermal density matrix in CFTL with temperature β

ρL = TrR|Ψβ〉〈Ψβ | =
1

Z(β)

∑
n

e−βEn |n〉L〈n|L . (3.4)

A general time evolution of the TFD state is obtained by applying the evolution operator

to both CFTs

|Ψβ(t−, t+)〉 = e−it−HL+it+HR |Ψβ〉 =
1√
Z(β)

∑
n

e−i(t+−t−−i
β
2 )En |n〉L|n〉R . (3.5)

One can immediately check that setting t− = t+ = t, that can be seen as evolving with

Hamiltonian HL −HR, leaves the TFD state invariant (the symmetry of the TFD state).

On the other hand, setting t− = −t+ = t yields the time dependent state corresponding to

evolution with HL +HR as in [36]. These two configurations should be kept in mind since

we leave general t− and t+ in our formulas so that our formalism can be used to extract

the evolution after a local excitation with any of the two total Hamiltonians.10

In the TFD formalism, we can also relate one-sided and two-sided correlators by the

analytical continuation of t. For example, consider the following one-sided correlator

〈Ψβ |OL(x1, 0)O†L(x2, t)|Ψβ〉 =
∑
n,m

e−βEn+it(En−Em)〈n|LOL(x1, 0)|m〉L〈m|LO†L(x2, 0)|n〉L .

(3.6)

10In fact our results also hold for evolution of the TFD state with HL or HR only and one can extract

these formulas by setting t− = t and t+ = 0 or t− = 0 and t+ = t respectively.
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Figure 1. Our setup in the computation of the mutual information. We have two intervals A and

B of size L2 − L1 = L in each CFT and a local operator inserted at time tw in the past. The

operators are separated by distance 2ε and in the CFT formulas we use L1 = y and L2 = y + L.

On the other hand, we can deform the two-sided correlator as follows

〈Ψβ |OL(x1, 0)OR(x2, t)|Ψβ〉

=
∑
n,m

e−
β
2

(En+Em)+it(En−Em)〈n|LOL(x1, 0)|m〉L〈n|ROR(x2, 0)|m〉R

=
∑
n,m

e−βEn+i(t−iβ2 )(En−Em)〈n|LOL(x1, 0)|m〉L〈m|RO†R(x2, 0)|n〉R . (3.7)

Therefore, the one-sided and two-sided correlators can be related through the analytical

continuation t→ t+ iβ2

〈Ψβ |OL(x1, 0)OL(x2, t)|Ψβ〉 = 〈Ψβ |OL(x1, 0)O†R

(
x2, t− i

β

2

)
|Ψβ〉 . (3.8)

If the operators OL in CFTL are located at τ = 0, the operators OR are located at τ = β
2 ,

or at the opposite side on the cylinder. We can express the correlators in the TFD state

as the correlators on the cylinder C1 (see figure 1).

Let us also mention a simple fact related to the symmetry of the TFD state. Namely,

in the CFT, we compute the entanglement entropies as well as the mutual information in

a state

˜|ψ〉 = e−iHLtωOL(x)eiHLtω |ψβ〉 (3.9)

with the TFD state |ψβ〉. Since HL − HR leaves the TFD invariant, the above state is

equivalent to

˜|ψ〉 = e−i(HL−HR)tωOL(x) |ψβ〉 . (3.10)

– 9 –
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Thus, the mutual information computed at t− = t+ = 0 in these two states has exactly the

same functional dependence on tω. This can be confirmed from our explicit formulas for

IA:B in this section.

Notice that in the previous single sided entanglement entropy calculations, we used

translation invariance to write the time dependence of the operator insertions in (2.4) as a

function of t−+ tω. When computing two-sided observables, the same shift will be applied

on the CFT time t+ in the opposite boundary. This is consistent with the TFD path

integral construction [3] and it also appears naturally in our holographic dual model as it

can explicitly be seen in the embedding equations (B.2) and (B.3) appearing in appendix B.

3.1 Semi-infinite intervals

Before proceeding with finite entangling regions, consider A and B to be semi-infinite in-

tervals x ∈ [0,∞). We want to clarify the difference between previous results for the second

(n = 2) Renyi mutual information in this setup [24] and our current mutual information

(n = 1) discussion. In the large central charge c limit, and after the insertion of a local

operator, the second Renyi entanglement entropy of the union S
(2)
A∪B grows linearly with

time. Equivalently, the change in the second Renyi mutual information for semi-infinite

intervals decreases linearly with time [24]

∆I
(2)
A∪B ' −

8πhψ
β

t . (3.11)

This holds for late times in the regime where 1 � hψ � c. Below, we want to compare

this behavior with a large c computation of the mutual information (n → 1) with twist

operators and for heavy local operators hψ ∼ O(c) (as in [30]).

To compute the entanglement entropy SA∪B between two semi-infinite intervals A and

B with starting point L1 = y > 0 on each boundary CFT, we must calculate

Tr ρnA∪B(t) =
〈Ψ(x1, x̄1)σn(x2, x̄2)σ̃n(x6, x̄6)Ψ†(x4, x̄4)〉

(〈ψ(x1, x̄1)ψ†(x4, x̄4)〉C1)
n (3.12)

with the insertion points

x1 = −iε, x2 = y − tω − t−, x6 = y + i
β

2
− t+ − tω, x4 = +iε

x̄1 = +iε, x̄2 = y + tω + t−, x̄6 = y − iβ
2

+ t+ + tω, x̄4 = −iε . (3.13)

Notice the edge of region B (the location x6) was shifted by iβ2 , in accordance with (3.8)

and the dependence on t+ is also through t+ + tω.

We follow the same strategy as before: after mapping the cylinder to a plane by

w = e
2π
β
x
, it is the cross-ratio z, z̄ on the plane that controls the relevant 4-pt function

z =
w12w64

w16w24
' 1 +

2πiε

β

cosh π(t−−t+)
β

sinh π(y−t−−tω)
β cosh π(y−t+−tω)

β

+O(ε2) , (3.14)

z̄ =
w̄12w̄64

w̄16w̄24
' 1− 2πiε

β

cosh π(t−−t+)
β

sinh π(y+t−+tω)
β cosh π(y+t++tω)

β

+O(ε2) . (3.15)
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As before, the sign of the imaginary part of z flips for tω+ t− > y from positive to negative,

whereas that of z̄ is negative for all tω and t±. To the first order in ε, we find (z, z̄)→ (1, 1)

for tω + t− < y and (z, z̄) → (e2πi, 1) for tω + t− > y. Using the same method as for the

single sided case, we obtain the entanglement entropy SA∪B for the semi-infinite intervals

to be

SA∪B=


c
3 log

[
β

πεUV
cosh π∆t

β

]
(t− + tω < y)

c
6 log

[(
β

πεUV

)2
β
πε

sinπαψ
αψ

cosh π∆t
β sinh π(tω+t−−y)

β cosh π(t++tω−y)
β

]
(y < t− + tω)

(3.16)

where ∆t = t− − t+. In particular, when t− = t+ = 0 and tω is very large (y � tω), SA∪B
grows linearly with tω

SA∪B ∼
πc

3β
(tω − y) +

c

6
log

[(
β

πεUV

)2 β

4πε

sinπαψ
αψ

]
. (3.17)

We can find that the first term behaves like thermal entropy which is proportional to 1/β.

Equivalently the mutual information decreases linearly with tw but now with a coefficient

proportional to the central charge c. As explained in [24], this behavior is interpreted as the

destruction of the entanglement between CFTL and CFTR and the broken “entanglement

bond” reconnects between the subsystem A∪B and its complement. The unit cost of this

reconnection process is proportional to πc
3β (which is the entropy density Sdensity).

3.2 Mutual information for finite intervals

In this section we compute the mutual information between finite regions A and B in

opposite boundaries in the TFD state at large central charge. The setup is depicted on

figure 1.

The mutual information is defined as

IA:B = SA + SB − SA∪B (3.18)

where SA∪B stands for the entanglement entropy of the union of the two intervals. Each

of the three entropies is computed using the replica trick in terms of the correlators of the

local operators Ψ (2.5) and twist fields inserted at the endpoints of the entangling regions.

Since we already computed SA, we focus on SB and SA∪B.

3.2.1 SB

The calculation of the entanglement entropy SB in the second CFTR is analogous to the

one for SA. It involves the same type of normalised correlation function

Tr ρnB(t) =
〈Ψ(x1, x̄1)σn(x5, x̄5)σ̃n(x6, x̄6)Ψ†(x4, x̄4)〉

(〈ψ(x1, x̄1)ψ†(x4, x̄4)〉C1)
n (3.19)
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but with the insertion points for the twist operators conveniently shifted by ±iβ2 as reviewed

above

x1 = −iε, x5 = y + L+ i
β

2
− t+ − tω, x6 = y + i

β

2
− t+ − tω, x4 = +iε

x̄1 = +iε, x̄5 = y + L− iβ
2

+ t+ + tω, x̄6 = y − iβ
2

+ t+ + tω, x̄4 = −iε .

(3.20)

As stated earlier, t+ + tω is the shifted time being used in the right CFT. To compute the

4-pt correlator, we compose the map (2.7) with

z(w) =
(w1 − w)(w6 − w4)

(w1 − w6)(w − w4)
. (3.21)

The corresponding cross-ratios equal

z = z5 ' 1− 2πiε

β

sinh π L
β

cosh π(y−t+−tω)
β cosh π(y+L−t+−tω)

β

+O(ε2) ,

z̄ = z̄5 ' 1 +
2πiε

β

sinh π L
β

cosh π(y+t++tω)
β cosh π(y+L+t++tω)

β

+O(ε2) .

(3.22)

Notice that the signs of the imaginary parts are the same for all t+ and tw. Thus, in the

small ε limit, (z, z̄)→ (1, 1) for all t+. This reflects the intuition that the local perturbation

turned on on the left CFT has no effect, at lowest order in ε, in the quantum entanglement

measured in the right CFT. Using the expansion in these cross-ratios, we derive

SB =
c

3
log

(
β

πεUV
sinh

πL

β

)
∀ t+ . (3.23)

Thus, quantum entanglement in the region B remains thermal for all t+ at lowest order in

ε, i.e. ∆SB = 0.

3.2.2 SA∪B

The most interesting piece in the mutual information is SA∪B. Following [35], this requires

the calculation of the 6-pt function

Tr ρnA∪B(t) =
〈ψ(x1, x̄1)σn(x2, x̄2)σ̃n(x3, x̄3)σn(x5, x̄5)σ̃n(x6, x̄6)ψ†(x4, x̄4)〉

(〈ψ(x1, x̄1)ψ†(x4, x̄4)〉C1)
n (3.24)

where the different insertion points correspond to the different interval endpoints

x1 = −iε, x2 = y − t− − tω, x3 = y + L− t− − tω, x4 = +iε

x̄1 = +iε, x̄2 = y + t− + tω, x̄3 = y + L+ t− + tω, x̄4 = −iε

x5 = y + L+ i
β

2
− t+ − tω, x6 = y + i

β

2
− t+ − tω,

x̄5 = y + L− iβ
2

+ t+ + tω, x̄6 = y − iβ
2

+ t+ + tω . (3.25)
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See appendix A, for further comments on the ordering of the twist operators appearing

in (3.24). Following the same strategy as before, we compose the two maps

w(x) = e
2π
β
x

and z(w) =
(w1 − w)w34

w13(w − w4)
, (3.26)

and use the transformation properties of primary operators, to write the trace (3.24) as

Tr ρnA∪B =

∣∣∣∣ β

πεUV
sinh

(
πL

β

)∣∣∣∣−8Hσ

|1− z|4Hσ |z56|4Hσ

· 〈ψ|σn(z, z̄)σ̃n(1, 1)σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉 (3.27)

where the cross-ratios (z, z̄) are given in (2.19), and zi ≡ z(wi).

In the following, we discuss two different CFT channels: S and T-channel, where we

compute this 6-pt function on the plane in the large c limit (see a detailed discussion in [12]).

The corrections to the particular channel choice are suppressed by e−O(c) factors. We will

explicitly see how these channels match the two different bulk geodesics determining the

holographic entanglement entropy in our holographic discussions. The upshot is that S

and T-channel correspond to the disconnected and connected geodesics for the holographic

calculation of SA∪B, respectively.

S-channel. Let us introduce a resolution of the identity

〈ψ|σn(z, z̄)σ̃n(1, 1)σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉 =∑
α

〈ψ|σn(z, z̄)σ̃n(1, 1) |α〉 〈α|σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉 (3.28)

where the sum runs over all possible intermediate states.

Consider the first 4-pt function 〈ψ|σn(z, z̄)σ̃n(1, 1) |α〉. As we have seen in (2.19),

the relevant limit corresponding to ε → 0, is either (z, z̄) → (1, 1) or (z, z̄) → (e2πi, 1).

Thus, in either limit, the correlation function can be computed using the OPE of twist

operators [38, 39]

σn(z, z̄)σ̃n(1, 1) ∼ I +O ((z − 1)r) r ∈ Z+ . (3.29)

Ignoring the terms proportional to (z − 1) and focusing in the dominant contribution due

to the identity operator, we reach the important conclusion that the summation over the

entire set of intermediate steps is restricted to |α〉 = |ψ〉 due to the orthogonality of 2-pt

functions in any CFT. We stress that we could have reached the same conclusion in the

limit of small L2 − L1, but this is not required in our set-up.

Thus, our 6-pt function can then be approximated by

〈ψ|σn(z, z̄)σ̃n(1, 1)σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉'〈ψ|σn(z, z̄)σ̃n(1, 1)|ψ〉〈ψ|σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉.
(3.30)

The first 4-pt function equals G(z, z̄) in (2.11), whereas the second 4-pt function factor will

be proportional to the same function but evaluated at a different cross-ratio. To see this,

consider the map taking z1 → 0 and z4 →∞

z̃(x) =
(z1 − x)(z6 − z4)

(z1 − z6)(x− z4)
. (3.31)
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This allows us to write the desired correlator as

〈ψ|σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉 = |1− z̃5|4Hσ |z56|−4Hσ 〈ψ|σn(z̃5, ¯̃z5)σ̃n(1, 1)|ψ〉 . (3.32)

Thus, the leading contribution in this channel is

Tr ρnA∪B '
∣∣∣∣ β

πεUV
sinh

(
πL

β

)∣∣∣∣−8Hσ

|1− z|4Hσ |1− z̃5|4Hσ G(z, z̄)G(z̃5, ¯̃z5) + . . . (3.33)

where the dots stand for the contributions coming from the subleading terms in the OPE

of the twist operators (3.29). Interestingly, since the cross-ratio z̃5 equals z5, the cross-ratio

determining SB, we reach the conclusion that

SA∪B = SA + SB, and IA:B = 0 . (3.34)

This channel reproduces the bulk expectation coming from geodesics joining points in the

same boundary, leading to a vanishing mutual information.

T-channel. We could also introduce the resolution of the identity as follows

〈ψ|σn(z, z̄)σ̃n(1, 1)σn(z5, z̄5)σ̃n(z6, z̄6)|ψ〉 =∑
α

〈ψ|σn(z, z̄)σ̃n(z6, z̄6) |α〉 〈α|σn(z5, z̄5)σ̃n(1, 1)|ψ〉 . (3.35)

Notice the correlations involve twist operators inserted in different boundaries. Thus, we

expect this channel to reproduce the bulk contribution from geodesics connecting both

boundaries. Remember that in the small ε limit, we already argued that z5 → 1. Thus,

we can use the same OPE argument as above to conclude that the dominant contribution

comes from |α〉 = |ψ〉. By definition, this gives

〈ψ|σn(z5, z̄5)σ̃n(1, 1)|ψ〉 = G(z5, z̄5) . (3.36)

The remaining correlation is again proportional to the same function, but evaluated at a

different cross-ratio. This is proved by considering the map

z̃(x) =
(z1 − x)(z6 − z4)

(z1 − z6)(x− z4)
(3.37)

which allows us to derive

〈ψ|σn(z, z̄)σ̃n(z6, z̄6) |ψ〉 = |1− z̃2|4Hσ |z26|−4HσG(z̃2, ¯̃z2) (3.38)

where z2 = z(w2) = z as in (2.19) and z̃2 = z̃(z2). Thus, after some manipulations we have

Tr ρnA∪B '
∣∣∣∣ β

πεUV
sinh

(
πL

β

)∣∣∣∣−8Hσ
∣∣∣∣ x

1− x

∣∣∣∣4Hσ |1−z5|4Hσ |1− z̃2|4HσG(z̃2, ¯̃z2)G(z5, z̄5)+ . . .

(3.39)

where (x, x̄) are the cross-ratios computed out of the insertion points of the four twist

operators

x =
z23z56

z25z36
=
w23w56

w25w36
=

2 sinh2 π L
β

cosh 2π L
β + cosh 2π(t−−t+)

β

= x̄ , (3.40)

– 14 –



J
H
E
P
0
8
(
2
0
1
5
)
0
1
1

what allows us to write the dominant contribution from the T-channel as

Tr ρnA∪B '
∣∣∣∣ β

πεUV
cosh

(
π∆t

β

)∣∣∣∣−8Hσ

|1− z̃2|4HσG(z̃2, ¯̃z2)|1− z5|4HσG(z5, z̄5) + . . . , (3.41)

where ∆t = t− − t+ and the cross-ratios

z5 = 1− 2πiε

β

cosh π(t−−t+)
β

sinh π(y+L−t−−tω)
β cosh π(y+L−t+−tω)

β

+O(ε2) ,

z̄5 = 1 +
2πiε

β

cosh π(t−−t+)
β

sinh π(y+L+t−+tω)
β cosh π(y+L+t++tω)

β

+O(ε2) ,

z̃2 = 1 +
2πiε

β

cosh π(t−−t+)
β

sinh π(y−t−−tω)
β cosh π(y−t+−tω)

β

+O(ε2) ,

˜̄z2 = 1− 2πiε

β

cosh π(t−−t+)
β

sinh π(y+t−+tω)
β cosh π(y+t++tω)

β

+O(ε2) ,

(3.42)

Now, using that at large central charge and for two heavy and two light operators we

have the identity [10, 11]

|1− z|4hG(z, z̄) '

(
z

1−α
2 (1− zα)z̄

1−α
2 (1− z̄α)

α2(1− z)(1− z̄)

)−2h

(3.43)

as well as (3.42) we can extract the behaviour of SA∪B for any time regime. Let us analyse

this carefully below assuming as before that 0 < y < y + L.

It is clear that the monodromies of the correlator are determined depending on the

relation of t−+ tω with y and y+L. From (3.42) the signs of the imaginary parts of z̄5 and
˜̄z2 do not change with time and we have z̄5 ' 1 and ˜̄z2 ' 1. On the other hand z̃2 ' e2πi

when t− + tω > y and z5 ' e−2πi when t− + tω > y + L. This gives us three possible

contributions:

SA∪B '
2c

3
log

∣∣∣∣ β

πεUV
cosh

(
π∆t

β

)∣∣∣∣ t− + tω < y

SA∪B '
2c

3
log

∣∣∣∣ β

πεUV
cosh

(
π∆t

β

)∣∣∣∣
+
c

6
log

 β

πε

sinπαψ
αψ

sinh π(t−+tw−y)
β cosh π(t++tw−y)

β

cosh π∆t
β

 y < t− + tω < y + L

(3.44)
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and for t− + tω > y + L we can rewrite our trace as

Tr ρnA∪B '∣∣∣∣ β

πεUV
cosh

(
π∆t

β

)∣∣∣∣−4Hσ

 β

πε

sinπαψ
αψ

sinh π(t−+tw−y)
β cosh π(t++tw−y)

β

cosh π∆t
β

−2Hσ

×
∣∣∣∣ β

πεUV
cosh

(
π∆t

β

)∣∣∣∣−4Hσ

 β

πε

sinπαψ
αψ

sinh π(t−+tw−y−L)
β cosh π(t++tw−y−L)

β

cosh π∆t
β

−2Hσ

.

(3.45)

The entanglement entropy SA∪B in this time regime can then be written as

SA∪B '
c

6
log

sinh π(t−+tω−y)
β cosh π(t++tω−y)

β

cosh π∆t
β

sinh π(t−+tω−y−L)
β cosh π(t++tω−y−L)

β

cosh π∆t
β


+

2c

3
log

∣∣∣∣ β

πεUV
cosh

(
π∆t

β

)∣∣∣∣+
c

3
log

(
β

πε

sinπαψ
αψ

)
t− + tω > y + L .

(3.46)

Notice that (3.45) resembles the contributions from two different pieces. In the holographic

part, these will be interpreted as the contributions from two bulk geodesics connecting

points in opposite boundaries.

3.3 The evolution of the mutual information

The evolution of the mutual information after turning on the local excitation can now be

computed in the large central charge limit. At early times t− + tω < y, the single sided

entropies are thermal SA ' SB = Sthermal. Thus, the mutual information equals

I0
A:B ≡

2c

3
log

(
sinh π L

β

cosh π∆t
β

)
. (3.47)

This is clearly finite and depends on the Hamiltonian driving the evolution. If we use the

bulk isometry HL − HR, then t− = t+ and ∆t = 0, giving rise to a time independent

mutual information, as it should. Notice that positivity of the mutual information in this

case requires πL/β & 1. Whereas for the HL + HR Hamiltonian, we recover the mutual

information time decrease discussed in [36].

These results can be understood using causality considerations: for t− + tω < y,

the perturbation did not enter into region A and could not possibly disturb the original

thermal entanglement. Once the excitation reaches region A (y < t− + tω < y + L),

using (2.20), (3.23) and (3.44), the mutual information evolves as

IA:B ' I0
A:B +

c

6
log

sinh π(y+L−t−−tω)
β cosh π∆t

β

cosh π(t++tw−y)
β sinh π L

β

 . (3.48)
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Note how the dependence on the conformal dimension hψ of the perturbation cancels,

between the contributions in SA and SA∪B, in this regime. It would be interesting to

understand the mechanism behind this large c behaviour of the mutual information.

In the last region t− + tω > y + L > y the mutual information equals

IA:B ' I0
A:B −

c

3
log

(
β

πε

sinπαψ
αψ

)

− c

6
log

sinh π(t−+tω−y)
β cosh π(t++tω−y)

β

cosh π∆t
β

sinh π(t−+tω−y−L)
β cosh π(t++tω−y−L)

β

cosh π∆t
β

 .

(3.49)

It is important to stress that when extracting the answer for the mutual information

for various times t∓ as well as tω, one has to maximise the mutual information between

the S and the T channel answers so that it is always non-negative.

4 Scrambling time

Shenker and Stanford [6] defined the scrambling time t?ω as the time scale at which the

perturbation has destroyed all the preexistent correlations. In our notation, their condition

reduces to setting t− = t+ = 0 and to study the vanishing of the mutual information

IA:B(t?ω) = 0 . (4.1)

Evaluating our previous results (3.47), (3.48) and (3.49) for t− = t+ = 0, we obtain

IA:B '
2c

3
log sinh

π L

β
, tω < y (4.2)

IA:B '
c

6
log


(

sinh π L
β

)3
sinh π(y+L−tω)

β

cosh π(tω−y)
β

 , y < tω < y + L (4.3)

IA:B '
2c

3
log sinh

π L

β
− c

3
log

(
β

πε

sinπαψ
αψ

)

− c
6

log

sinh 2π(tω−y)
β sinh 2π(tω−y−L)

β

4

 , tω > y + L . (4.4)

Notice the mutual information is a monotonically decreasing function of tω. Thus, starting

with a positive mutual information, i.e. πL/β & 1, there is a single root t?ω where (4.1)

holds. After that, by switching channels, the mutual information remains zero.

The first question to answer is whether t?ω ∈ (y, y+L) or whether t?ω > y+L. Clearly,

the second condition can only hold if the mutual information is positive at the transition.

This requirement gives rise to the constraint

t?ω > y + L ⇒ IA:B(y + L+ ε) > 0 ⇒ β

πε

(
sinπαψ
αψ

)2

<
sinh3 πL

β

cosh πL
β

, (4.5)
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where we already used ε� β, as in our previous CFT analysis.11 Because of working in this

region of parameter space (ε � β), we conclude that only small perturbations (αψ → 1)

allow scrambling time scales t?ω > y + L. Since the function sin(παψ)/αψ is monotonically

decreasing in αψ (or increasing in hψ), the smaller the perturbation is, the easier it is to

fulfil condition (4.5) for generic values of L/β. Since this is the regime considered in [6],

we will study the scrambling time under these circumstances.12

For tω > y + L and ∆t = 0, the mutual information (3.49) becomes

IA:B(tω) ' c

6
log

sinh4 πL
β

(
β
πε

sinπαψ
αψ

)−2

cosh
(
π(tω−y)

β

)
sinh π(tω−y)

β sinh π(tω−y−L)
β cosh π(tω−y−L)

β

. (4.6)

This vanishes when2παψε sinh2
(
πL
β

)
β sin(παψ)

2

= sinh2 2π(t?ω − y)

β
cosh

2πL

β

1−
tanh 2πL

β

tanh 2π(t?ω−y)
β

 . (4.7)

Notice that t?ω − y > L guarantees the positivity of the left hand side. Condition (4.7)

gives rise to a quadratic equation in sinh2 2π(t?ω−y)
β . It can be shown that there is a unique

consistent root, in agreement with our previous arguments. In the limit t?ω/β � 1, this

root reduces the scrambling time t?ω to

t?ω = y +
L

2
− β

2π
log

(
β

πε

sinπαψ
αψ

)
+
β

π
log

(
2 sinh

πL

β

)
. (4.8)

Due to the non-compactness of the 2d CFT, no recurrences were expected to be seen in

our calculation. Working in the small hψ/c limit, as required by our analysis, then

β

πε

sinπαψ
αψ

∼
Eψ

Sdensity
, where Sdensity =

πc

3β
, (4.9)

and Eψ =
πhψ
ε is the total energy of our local excitation given by integrating the energy

density as in [19]. In this limit, the scrambling time reduces to

t?ω = y +
L

2
+

β

2π
log

(
πSdensity

4Eψ

)
+
β

π
log

(
2 sinh

πL

β

)
. (4.10)

The logS dependence is indeed consistent with the original scrambling conjecture [5, 6].

5 Holographic description

In this section we compute the mutual information using the AdS3 gravity dual of the

2d CFT set-up discussed in the previous section. The starting thermal state ρβ in the

11If ε� β breaks down, then condition (4.5) is modified.
12One can equally study the conditions under which t?ω ∈ (y, y+L). These generically require heavier per-

turbations. We do not understand this regime, which appears precisely when the mutual information (3.48)

is αψ independent.
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quantum theory is described in the semiclassical approximation of the correspondence by

a black hole in the gravity side, the BTZ black hole [9]. Observables involving a single

Hilbert space are described by the metric outside of the event horizon, whereas observables

depending on both Hilbert spaces require the Kruskal-like extension of the BTZ black hole,

as described in [3].

To compute the time evolution of the holographic entanglement entropy, we approxi-

mate the local CFT perturbation with conformal dimension ∆(= 2hψ) by a bulk free falling

massive point particle with mass m = ∆/R [18]. Next, we compute its back-reaction on

the BTZ background in Kruskal coordinates using the coordinate transformation in [40].

Finally, we compute the entanglement entropy and the mutual information using the holo-

graphic prescription [28, 29].

In three dimensions, the back-reacted metric of a point particle at r = 0 in global

coordinates is known

ds2 = −
(
r2 +R2 − µ

)
dτ2 +

R2dr2

r2 +R2 − µ
+ r2dϕ2 , (5.1)

where the mass of the point particle is related to µ by µ = 8GNR
2m =

24hψ
c R2 and R is

the radius of AdS3. Depending on the mass of the particle, the background describes a

conical singularity or a BTZ black hole.

Now, the holographic entanglement entropy is given by R
4GN

= c
6 times the length Lγ

of geodesic γ which connects the boundaries of the subsystem A for which we define the

entanglement entropy SA. In the above metric, the entanglement entropy of the boundary

region A with endpoints (r
(1)
∞ , τ

(1)
∞ , ϕ

(1)
∞ ) and (r

(2)
∞ , τ

(2)
∞ , ϕ

(2)
∞ ) is [18]

SA =
c

6
log

[
2r

(1)
∞ · r(2)

∞
R2

cos (|∆τ∞|a)− cos (|∆ϕ∞|a)

a2

]
, (5.2)

where a ≡
√

1− µ
R2 = αψ carries the information on the perturbation, as in the CFT

discussion, ∆τ∞ = τ
(2)
∞ − τ (1)

∞ and ∆ϕ∞ = ϕ
(2)
∞ − ϕ(1)

∞ satisfies 0 < |∆ϕ∞| < π.

Mapping the static r = 0 geodesic to one starting at some distance ε from the boundary

and falling into the horizon afterwards can approximate the local perturbation turned on

in the boundary theory. This is precisely the approach followed in [24] to describe the time

dependent evolution of entanglement entropy in the bulk for locally perturbed thermal

states. To describe the evolution across the horizon, which is required to study two sided

correlation functions, one must use Kruskal coordinates. This is one of the tasks we will

undertake in this section.

5.1 Free falling particle in Kruskal coordinates

The geodesic of a free falling particle in the AdS-Schwarzschild patch of the BTZ black hole

ds2 =
R2

z2

[
−
(
1−Mz2

)
dt2− +

dz2

1−Mz2
+ dθ2

]
, θ ∼ θ + 2π (5.3)
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was already computed in [24] to be

t− = τ̃ , θ = 0, 1−Mz2 = (1−Mε2) cosh−2
(√

M(τ̃ + tω)
)
. (5.4)

The only addition in the expression above is the shift τ̃ → τ̃ + tω to account for the initial

boundary condition z(−tω) = ε guaranteeing the particle’s energy

E =
mR

ε

√
1−Mε2 (5.5)

matches the energy of the CFT perturbation in the small ε limit.13 We extend this result

to the entire eternal black hole by working in Kruskal coordinates.

One way to achieve this goal is to map the global AdS3 description (5.1) to Kruskal

coordinates. A second one is to solve the geodesic equation directly in Kruskal coordinates.

We check below that, as expected, both approaches agree.

Free falling particle in Kruskal coordinates. The Kruskal extension of the BTZ

metric (5.3) is given by

ds2 = R2−4dudv + (−1 + uv)2dφ2

(1 + uv)2
= R2−4dT 2 + 4dX2 +

(
1− T 2 +X2

)2
dφ2

(1 + T 2 −X2)2 , (5.6)

where u = T − X ∈ R, v = T + X ∈ R with their range satisfying −1 < uv < 1 and

φ ∼ φ + 4π2/β. The conformal boundary, horizons and singularities are at uv = −1,

uv = 0 and uv = 1, respectively, with the left and right Kruskal regions defined by

Left: R− = {0 ≤ u,−1 ≤ uv ≤ 0}
Right: R+ = {u ≤ 0,−1 ≤ uv ≤ 0} .

(5.7)

Both coordinate systems are related to the AdS-Schwarzschild patches via

u = ±
√
zH − z
zH + z

et∓/zH v = ∓
√
zH − z
zH + z

e−t∓/zH

T = ±

√
1−
√
Mz

1 +
√
Mz

sinh
(√

Mt∓

)
X = ∓

√
1−
√
Mz

1 +
√
Mz

cosh
(√

Mt∓

)
.

(5.8)

Using these maps (5.8), we can rewrite the geodesic (5.4) in the parametric form

X(τ̃) = −

√
1−Mε2

cosh(
√
Mτ̃)

cosh(
√
M(τ̃+tω))

1 +

√
1− (1−Mε2) cosh−2

(√
M(τ̃ + tω)

) ,

T (τ̃) =

√
1−Mε2

sinh(
√
Mτ̃)

cosh(
√
M(τ̃+tω))

1 +

√
1− (1−Mε2) cosh−2

(√
M(τ̃ + tω)

) ,
(5.9)

13In the absence of matter fields and working in the large c limit, as we do, the satisfaction of this condition

guarantees that our holographic model should capture the bulk description of the identity conformal block,

which in 2d includes the stress tensor.
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The initial condition (t−, z) = (−tω, ε) is mapped to

(T0, X0) =

√
1−
√
Mε

1 +
√
Mε

(
− sinh

(√
Mtω

)
,− cosh

(√
Mtω

))
. (5.10)

This allows us to determine tω = tω(T0, X0). Similarly, τ̃ = τ̃(T,X) can be determined

from (5.8). Altogether, we can solve for T (X) as

T (X) = −
sinh

(√
Mtω

)
√

1−Mε2
±

√√√√√X +
cosh

(√
Mtω

)
√

1−Mε2

2

− Mε2

1−Mε2
. (5.11)

Proceeding in a similar way, we can obtain the geodesic v = v(u) that reduces to

v(u) = −a1u− 1

u+ a2
, (5.12)

with

a1 =
1− u0v0

2u0
=

e
√
Mtω

√
1−Mε2

, a2 =
1− u0v0

2v0
= − e−

√
Mtω

√
1−Mε2

. (5.13)

Checking equations of motion. Consider the relativistic action for a particle of mass

m moving in the background metric (5.6) at constant φ. Working in the gauge where the

parameter along the curve equals u, this effective action reduces to

S = −2mR

∫ √
v′du

1 + uv
. (5.14)

Its equation of motion

v′′(uv + 1)− 2v′(uv′ − v) = 0 (5.15)

has general solution

v(u) =
C2 +

(
C1 + C2

2

)
u

1 + C2u
, v′(u) =

C1

(1 + C2u)2
. (5.16)

This agrees with the geodesic solution (5.12) if the integration constants are matched as

C1 = − v0(u0v0 + 1)2

u0(u0v0 − 1)2
= Mε2e2

√
Mtω , C2 =

2v0

1− u0v0
= −

√
1−Mε2e

√
Mtω . (5.17)

In T,X coordinates these extended geodesics have two branches which meet at the point

Xm =

√
Mε− cosh

(√
Mtω

)
√

1−Mε2
, Tm = −

sinh
(√

Mtω

)
√

1−Mε2
. (5.18)

They cross the future and past horizons at

Xh± = −1

2

√
1−Mε2e∓

√
Mtω (5.19)

and hit the past and future singularities at

Xs± = ± sinh
(√

Mtω

)
. (5.20)

All these features can be seen in the sample geodesic plotted on the T −X Kruskal diagram

(figure 2).
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Xm Xh- Xh+Xs- Xs+
X

Tm

T

Figure 2. Plot shows our time-like geodesic on Kruskal diagram. The red part is given by (5.9)

and the full geodesic (blue) by (5.11). Plot for M = 10, ε = 0.01 and tω = 0.25

5.2 Back-reacted metric

The back reaction of the free falling particle in Kruskal coordinates can be obtained by

following [40] and rewriting the metric (5.1) in Kruskal coordinates, but taking into the

account the specific initial conditions discussed above. To solve this problem when tω = 0,

in [24], we considered a boost in the plane X1 −X3 with rapidity λ2 = λ2(M, ε) . In order

to introduce the further parameter tω, we will consider a preliminary boost in X0 − X3,

since this corresponds to the natural boost action on the light-like coordinates u− v which

captures the blue-shift of energy near the horizon stressed in [6]. In practice we then apply

two particular boosts into the embedding coordinates of AdS3 such that the identification

between global and Kruskal coordinates becomes√
R2 + r2 sin τ = coshλ1X0 + sinhλ1X3

= R
eλ1u+ e−λ1v

1 + uv√
R2 + r2 cos τ = coshλ2X1 − sinhλ2 (sinhλ1X0 + coshλ1X3)

=
R coshλ2(1− uv)

1 + uv

(
coshφ− tanhλ2

eλ1u− e−λ1v

1− uv

)
r sinϕ = X2 = R

1− uv
1 + uv

sinhφ

r cosϕ = − sinhλ2X1 + coshλ2 (sinhλ1X0 + coshλ1X3)

=
R coshλ2(1− uv)

1 + uv

(
eλ1u− e−λ1v

1− uv
− tanhλ2 coshφ

)
.

(5.21)

Solving for r = r(u, v, φ)

r =

∣∣∣∣R(1− uv) coshλ2

1 + uv

∣∣∣∣
√

sinh2 φ

cosh2 λ2

+

(
eλ1u− e−λ1v

1− uv
− tanhλ2 coshφ

)2

(5.22)
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we can determine λ1 and λ2 requiring that the location of the static particle in global

AdS3, r = 0, gets mapped into the free falling geodesic v(u) in (5.12). This fixes both

boost parameters to be

λ1 =
√
Mtω , tanhλ2 =

√
1−Mε2 . (5.23)

These boost parameters determine the explicit map between global AdS3 and a free

falling particle in Kruskal coordinates:

r =
R√
Mε

∣∣∣∣1− uv1 + uv

∣∣∣∣
√√√√Mε2 sinh2 φ+

(
e
√
Mtω u− e−

√
Mtω v

1− uv
−
√

1−Mε2 coshφ

)2

(5.24)

and also

tan τ =
√
Mε

e
√
Mtωu+e−

√
Mtωv

1−uv

coshφ−
√

1−Mε2 e
√
Mtω u−e−

√
Mtω v

1−uv

, (5.25)

tanϕ =
√
Mε

sinhφ

e
√
Mtωu−e−

√
Mtωv

1−uv −
√

1−Mε2 coshφ
. (5.26)

Using this map, we can compute the exact back-reacted metric corresponding to a free

falling particle in the eternal black hole satisfying the initial condition (u0, v0).

Our analysis is valid for any value of tω. This allows us to compare with some ap-

proaches in the literature where the back reaction of the local perturbation in the CFT was

approximated by a shock-wave, i.e. a BTZ spacetime in the presence of some non-trivial

stress tensor localised at the horizon. Since our approach in 3d was based on computing

the explicit backreaction of some point particle moving in some geodesic into the BTZ

geometry, we can study the limit tω/β � 1 in our geodesic analysis in subsection 5.1. In

particular, figure 2 illustrates how our particle geodesic approaches a null geodesic on the

horizon for such large tω. Thus, our back-reacted metric in this particular limit should

indeed correspond to a shock-wave propagating in the BTZ background as originally de-

scribed in [6]. The advantage of the shock-wave description is that it also applies in higher

dimensions, whereas our finite tω results show the agreement between CFT and bulk com-

putations also hold beyond this regime.

6 Bulk mutual information

The mutual information IA:B between regions A and B in the left and right boundaries,

respectively

IA:B = SA + SB − SA∪B , (6.1)

can now be computed by applying (5.2) to the three different bulk geodesics providing

the relevant minimal surface computing entanglement entropy in the bulk. All we need to

know are the locations of the endpoints in the limits of small ε and z∞ that we will insert

into (5.2).

To keep the gravity formulas compact, the endpoints of the intervals will be denoted by

Li, i ∈ {1, 2}, where 0 < L1 < L2. To compare with the CFT formulas one can substitute

L1 = y and L2 = y + L.
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6.1 Geodesic in the left boundary

The two endpoints of the entanglement region A in the left boundary are (t−, z1, θ1) =

(t−, z∞, L1) and (t−, z2, θ1) = (t−, z∞, L2). It is convenient to compute their image in

global AdS3 using the asymptotic maps to the right and left regions (see appendix B).

Proceeding this way, their radial coordinates in global AdS3 satisfy

r(1)r(2) '
(

R

Mεz∞

)2

D1D2 (6.2)

where

Di = | cosh
√
MLi − cosh

√
M(t− + tω)| i = 1, 2 (6.3)

whereas the other coordinates are

tan τ (i) '
√
Mε

sinh
(√

M(t− + tω)
)

cosh
(√

MLi

)
− cosh

(√
M(t− + tω)

) (6.4)

tanϕ(i) '
√
Mε

sinh
(√

MLi

)
cosh

(√
M(t− + tω)

)
− cosh

(√
MLi

) (6.5)

with i = 1, 2.

The length of the geodesics depends on the value of the time argument t−+ tw. When

t− + tw < L1 < L2, then the boundary points equal

τ (i) '
√
Mε

sinh
(√

M(t− + tω)
)

Di
, ϕ(i) ' π −

√
Mε

sinh
(√

MLi

)
Di

. (6.6)

These determine the coordinate intervals to be

|∆τ | '
√
Mε

D1D2
|D2 −D1| sinh

√
M(t− + tω) ,

|∆ϕ| '
√
Mε

D1D2

∣∣∣D1 sinh
√
ML2 −D2 sinh

√
ML1

∣∣∣ . (6.7)

Due to the identity

D1D2(|∆ϕ|2 − |∆τ |2) = 4Mε2 sinh2 π∆L

β
, (6.8)

the geodesic length is

Lγ ' log

[
2r(1)r(2)

R2

cos (a|∆τ |)− cos (a|∆ϕ|)
a2

]
' log

[
r(1)r(2)

R2
(|∆ϕ|2 − |∆τ |2)

]

' 2 log

(
β

πz∞
sinh

πL

β

)
.

(6.9)

This reproduces the thermal entanglement entropy (2.18) computed in the CFT in the

same time interval once both UV cut-offs are identified εUV = z∞.
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Similarly, when t− + tw > L2 > L1, the boundary points equal

τ (i) ' π −
√
Mε

sinh
(√

M(t− + tω)
)

Di
, ϕi '

√
Mε

sinh
(√

MLi

)
Di

. (6.10)

These are different from (6.6), but give rise to the same intervals (6.7). Thus, the length

of the bulk geodesic joining them equals (6.9). This matches our CFT again.

Finally, when L2 > t− + tω > L1, the boundary points are

τ (1) ' π −
√
Mε

sinh
√
M(t− + tω)

D1
, ϕ(1) '

√
Mε

sinh
√
ML1

D1
,

τ (2) '
√
Mε

sinh
√
M(t− + tω)

D2
, ϕ(2) ' π −

√
Mε

sinh
√
ML2

D2
.

(6.11)

From them we can easily get the absolute values of the intervals

|∆τ | ' π −
√
Mε

D1D2
(D1 +D2) sinh

√
M(t− + tω) ,

|∆ϕ| ' π −
√
Mε

D1D2

(
D1 sinh

√
ML2 +D2 sinh

√
ML1

)
.

(6.12)

Notice that in the small ε limit we are working on, |∆τ | and |∆ϕ| are close to each other

δ= |∆ϕ|−|∆τ |=
√
Mε

D1D2

[
(D1 +D2) sinh

√
M(t− + tω)−D1 sinh

√
ML2−D2 sinh

√
ML1

]
.

(6.13)

This allows us to write the length of the bulk geodesic between these two boundary points as

Lγ ' log

[
2r(1)r(2)

R2

cos (a|∆τ |)− cos (a|∆ϕ|)
a2

]

' log

[
2r(1)r(2)

R2

sinπa

a
δ

]

' log

( β

πz∞
sinh

π∆L

β

)2 β

πε

sinπa

a

sinh π(tω+t−−L1)
β sinh π(L2−tω−t−)

β

sinh π∆L
β

 .
(6.14)

where ∆L = L2 − L1. This also perfectly matches our CFT result (2.20) after employing

the Ryu-Takayanagi formula.

6.2 Geodesic in the right boundary

The two endpoints of the entanglement region B in the right boundary are (t+, z1, θ1) =

(t+, z∞, L1) and (t+, z2, θ1) = (t+, z∞, L2). Their radial coordinates satisfy

r(1)r(2) '
(

R

Mεz∞

)2

D1D2 (6.15)
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where

Di = | cosh
√
MLi + cosh

√
M(t+ + tω)| i = 1, 2 (6.16)

whereas the other coordinates are

tan τ (i) ' −
√
Mε

sinh
(√

M(t+ + tω)
)

Di
, tanϕ(i) ' −

√
Mε

sinh
(√

MLi

)
Di

. (6.17)

In this case, no matter what the value of t+ is, the boundary points are identified as

τ (i) ' −
√
Mε

sinh
(√

M(t+ + tω)
)

Di
, ϕ(i) ' π −

√
Mε

sinh
(√

MLi

)
Di

. (6.18)

These give rise to the intervals

|∆τ | '
√
Mε

D1D2
|D1 −D2| sinh

√
M(t+ + tω) ,

|∆ϕ| '
√
Mε

D1D2

∣∣∣D1 sinh
√
ML2 −D2 sinh

√
ML1

∣∣∣ . (6.19)

Using the identity

D1D2(|∆ϕ|2 − |∆τ |2) = 4Mε2 sinh2 π∆L

β
, (6.20)

the geodesic length equals

Lγ ' log

[
2r(1)r(2)

R2

cos (a|∆τ |)− cos (a|∆ϕ|)
a2

]
' log

[
r(1)r(2)

R2
(|∆ϕ|2 − |∆τ |2)

]

' 2 log

(
β

πz∞
sinh

π∆L

β

)
.

(6.21)

This reproduces the well-known thermal answer obtained in the CFT [32]

SB '
c

3
log

(
β

πz∞
sinh

π∆L

β

)
= Sthermal, (6.22)

which also agrees with the CFT expression for SB in (3.23).

6.3 Geodesics across the horizon and mutual information

We want to compute the geodesic length between two opposite boundary points located

at the same space like location but with different time labels t∓. We will describe the

calculation once and apply it to the two cases of interest afterwards. The product of the

radial coordinates equals

r(1)r(2) '
(

R

Mεz∞

)2

D1D2 (6.23)

where

D1 = | cosh
√
MLi − cosh

√
M(t− + tω)| (6.24)

D2 = | cosh
√
MLi + cosh

√
M(t+ + tω)| (6.25)
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where Li labels the space like location in both boundaries, i.e. either L1 or L2. The other

coordinates for the left boundary point are

tan τ (1) '
√
Mε

sinh
√
M(t− + tω)

cosh
√
MLi − cosh

√
M(t− + tω)

(6.26)

tanϕ(1) '
√
Mε

sinh
√
MLi

cosh
√
M(t− + tω)− cosh

√
MLi

. (6.27)

At early times, Li > tω, these are given by

τ (1) '
√
Mε

sinh
√
M(t− + tω)

cosh
√
MLi − cosh

√
M(t− + tω)

(6.28)

ϕ(1) ' π −
√
Mε

sinh
√
MLi

cosh
√
MLi − cosh

√
M(t− + tω)

(6.29)

whereas at late times,

τ (1) ' π −
√
Mε

sinh
√
M(t− + tω)

cosh
√
M(t− + tω)− cosh

√
ML1

(6.30)

ϕ(1) '
√
Mε

sinh
√
ML1

cosh
√
M(t− + tω)− cosh

√
ML1

. (6.31)

The remaining coordinates for the right boundary point are

tan τ (2) ' −
√
Mε

sinh
√
M(t+ + tω)

cosh
√
MLi + cosh

√
M(t+ + tω)

(6.32)

tanϕ(2) ' −
√
Mε

sinh
√
MLi

cosh
√
M(t+ + tω) + cosh

√
MLi

. (6.33)

In this case, they are always given by

τ (2) ' −
√
Mε

sinh
√
M(t+ + tω)

cosh
√
MLi + cosh

√
M(t+ + tω)

= −
√
Mε

sinh
√
M(t+ + tω)

D2
(6.34)

ϕ(2) ' π −
√
Mε

sinh
√
MLi

D2
. (6.35)

Let us compute the length of the geodesic in the early time regime Li > tω. In this

case, the interval differences are

|∆τ | = |τ (1) − τ (2)| '
√
Mε

D1D2

∣∣∣D2 sinh
√
M(t− + tω) +D1 sinh

√
M (t+ + tω)

∣∣∣ ,
|∆ϕ| = |ϕ(1) − ϕ(2)| '

√
Mε

D1D2

∣∣∣D2 sinh
√
MLi −D1 sinh

√
MLi

∣∣∣ . (6.36)

Plugging this into the geodesic length (5.2), we obtain

Lγ ' log

[
2r(1)r(2)

R2

cos (a|∆τ |)− cos (a|∆ϕ|)
a2

]
' log

[
r(1)r(2)

R2
(|∆ϕ|2 − |∆τ |2)

]

' 2 log

[
β

πz∞
cosh

π∆t

β

]
. (6.37)
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In the late time regime, the interval differences equal

|∆τ | ' π −
√
Mε

D1D2

(
D2 sinh

√
M(t− + tω)−D1 sinh

√
M(t+ + tω)

)
(6.38)

|∆ϕ| ' π −
√
Mε

D1D2

(
D1 sinh

√
MLi +D2 sinh

√
MLi

)
. (6.39)

Since they are very close, we have

|∆τ | ' |∆τ | − δ (6.40)

where

δ '
√
Mε

D1D2

[
D2(sinh

√
M(t− + tω)− sinh

√
MLi)−D1(sinh

√
M(t+ + tω) + sinh

√
MLi)

]
.

(6.41)

This allows to write the geodesic length as

Lγ ' log

[
2r(1)r(2)

R2

cos (a|∆τ |)− cos (a|∆ϕ|)
a2

]

' log

[
2r(1)r(2)

R2

sinπa

a
δ

]

' log

β2 1
2

(
1 + cosh 2π∆t

β

)
π2z2
∞

2√
Mε

sinπa

a

sinh π(t−+tω−Li)
β cosh π(Li−t+−tω)

β

cosh π∆t
β


(6.42)

where ∆t = t− − t+. These geodesics can now be used to compute the entanglement

entropy of the union SA∪B.

In particular we will be interested in large tω > L2 > L1 when SA = SB = Sthermal. In

this case, there is a competition between the two geodesics connecting points in opposite

boundaries and the geodesics connecting points in the same boundary giving rise to 2SB.

The length of the new geodesics is

L1
γ ' log

(β cosh π∆t
β

πz∞

)2
β

πε

sinπa

a

sinh π(t−+tω−L1)
β cosh π(L1−t+−tω)

β

cosh π∆t
β

 (6.43)

L2
γ ' log

(β cosh π∆t
β

πz∞

)2
β

πε

sinπa

a

sinh π(t−+tω−L2)
β cosh π(L2−t+−tω)

β

cosh π∆t
β

 (6.44)

where again ∆t = t− − t+.

Summarizing, the holographic entanglement entropy of the union of two intervals on

the left and the right boundary is given by

SA∪B '
c

6

(
L1
γ + L2

γ

)
, (6.45)

which matches with the CFT result (3.46).
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Finally from the above holographic results, we obtain the holographic mutual infor-

mation IA:B = SA +SB −SA∪B and this again reproduces the CFT result (3.49) perfectly.

As a consequence the scrambling time derived in the CFT (4.8) also holds as a result in

gravity replacing αψ → a, as stressed below (5.2).
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A Twist operators in the TFD state

In this appendix we explain the proper ordering prescription of twist operator insertions

when computing the two sided entanglement entropy SA∪B (or mutual information IA:B)

in the thermofield double state.

When computing SA∪B, with regions A and B belonging to opposite boundaries, the

replica trick instructs us to insert twist operators σn, σ̃n on each boundary. The order of

these insertions is important, because different orderings can give rise to different replica

geometries. There are two kinds of insertion orders. One, where both boundaries have the

same order, such as

(σn, σ̃n)L, (σn, σ̃n)R . (A.1)

In this case, going around the replica n-sheeted cylinder by passing through the cuts be-

tween the twist operators on each boundary, one returns to the starting point after going

around n cylinders (see the right picture in figure 3). There exists a second insertion order

in which both boundaries have opposite twist operator orders, such as

(σn, σ̃n)L, (σ̃n, σn)R . (A.2)

The same operation as above returns to the same point after going once around a standard

cylinder (see the left picture in figure 3).

The question is what the right order prescription is when we consider the TFD state.

To answer this question, we provide two CFTs and one holographic bulk arguments.

It is convenient to remember the TFD state can be constructed by Euclidean time

evolution from the pure state
∑

n |n〉L|n〉R with Euclidean time ±β/4 for each boundary.

To compute the density matrix ρA∪B, one glues partially by imposing boundary conditions
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++ + +− −−−

Figure 3. In the left picture (the second choice (A.2)), one returns to the starting point after going

around two standard cylinders. In the right picture (the first choice (A.1)), this operation involves

going around n standard cylinders.

Figure 4. In the replica geometry which we obtain by gluing n cylinders along the cuts, we can go

around 2 standard cylinders, for example, i-th and (i+ 1)-th cylinders (dotted line).

to each sheet (half cylinder) . Finally, to construct TrρnA∪B, one glues the cylinders through

their cuts on the cylinders, giving rise to a partition function on the n-sheeted cylinder. If

one goes around this n-sheeted cylinder through the cuts, one returns to the starting point

after going once around a standard cylinder because one should obtain the original state

in the limit β → 0. Thus, the second insertion order (A.2) for twist operators is selected

in this way.

A further argument to confirm this choice is as follows. The n-sheeted replica geometry

is constructed by gluing single-sheets together along the cuts. If one enters the cuts from

the negative region, one emerges in the upper sheet, whereas if one enters from positive

region, one ends in the lower sheet. From this gluing condition, one obtains the n-sheeted

replica geometry corresponding to the second type of insertion order of twist operators (see

figure 4).

Our final argument is holographic. In the bulk, one is instructed to consider geodesics

connecting the different edges of the subsystems. Twist operators are inserted in these
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edges. For geodesics connecting edges on the same boundary, the inserted twist operators

must have the same monodromy (or charge) properties, whereas for geodesics connecting

edges in opposite boundaries, twist operators must have opposite monodromy (or charge).

For example, if σn is on an edge, σ̃n must appear at the other edge. This consistency

condition chooses the same twist operator insertion order as in the CFT side.

B Details of the holographic model

Here we collect several useful formulas and conventions that we used in the part with

holographic computations.

The relation between Kruskal and AdS-Schwarzschild coordinates can be obtained by

referring both descriptions to the R2,2 where AdS3 becomes the quadratic surface

−X2
0 −X2

1 +X2
2 +X2

3 = −R2 (B.1)

in which we have

±R
√

1−Mz2

√
Mz

sinh
(√

Mt∓

)
= X0 = R

u+ v

1 + uv
= R

2T

1 + T 2 −X2
,

R√
Mz

cosh
(√

Mθ
)

= X1 = R
1− uv
1 + uv

coshφ = R
1− T 2 +X2

1 + T 2 −X2
coshφ ,

R√
Mz

sinh
(√

Mθ
)

= X2 = R
1− uv
1 + uv

sinhφ = R
1− T 2 +X2

1 + T 2 −X2
sinhφ ,

±R
√

1−Mz2

√
Mz

cosh
(√

Mt∓

)
= X3 = R

u− v
1 + uv

= −R 2X

1 + T 2 −X2
.

(B.2)

This formulas fix our conventions for the appropriate signs on the gravity side.

In order to derive lengths of the geodesic in the back-reacted metric we only need to

know the asymptotic form of the map from the left and the right wedge to AdS3 in global

coordinates. This is just the map that takes the trajectory of our massive point particle

in Kruskal coordinates to the r = 0 particle in global AdS3. In the left and right exteriors

the map becomes

√
R2 + r2 sin τ = ±

R
√

1−Mz2
∞√

Mz∞
sinh

(√
M(t∓ + tω)

)
,

√
R2 + r2 cos τ =

R

Mεz∞

(
cosh

(√
Mθ
)
∓
√

1−Mε2
√

1−Mz2
∞ cosh

(√
M(t∓ + tω)

))
,

r sinϕ =
R√
Mz∞

sinh
(√

Mθ
)
,

r cosϕ =
R

Mεz∞

(
±
√

1−Mz2
∞ cosh

(√
M(t∓ + tω)

)
−
√

1−Mε2 cosh
(√

Mθ
))

.

(B.3)

The points in the main text are extracted to the first order in ε.

Note that the map from the right wedge also depends on ε as well as tω.
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C Two sided 2-pt functions

Given the bound (1.1) that the mutual information provides on the amount of correlation,

it is natural to study the two sided two-point correlation function in the TFD after a local

perturbation is turned on in one of the boundaries. This is the calculation described in

this appendix.

Given a local primary probe operator Oh(x, x̄) of conformal dimension h and a pertur-

bation described by a different primary Ohw , the appropriate normalised 4-point two sided

correlation is

C4 =
〈Ohw(x1, x̄1)Oh(x2, x̄2)Oh(x3, x̄3)Ohw(x4, x̄4)〉

〈Ohw(x1, x̄1)Ohw(x4, x̄4)〉
(C.1)

where the insertion points are

x1 = −iε x2 = L1 − t− − tω, x3 = L2 − t+ − tω + i
β

2
x4 = iε

x̄1 = iε x̄2 = L1 + t− + tω, x̄3 = L2 + t+ + tω − i
β

2
x̄4 = −iε . (C.2)

Assuming h/c � 1 and keeping hw/c fixed, the numerator is again a 4-point function

involving two heavy and two light operators. Using the large central charge results of [10]

we can write the correlator as

C4 =

∣∣∣∣ β

πz∞
sinh

πx23

β

∣∣∣∣−4h

|1− z|4hG(z, z̄) (C.3)

with

G(z, z̄) '

(
z

1−α
2 (1− zα)z̄

1−α
2 (1− z̄α)

α2

)−2h

, α =

√
1− 24hω

c
. (C.4)

In the limit of small ε/β, the cross-ratios reduce to

z ' 1 +
2πiε

β

cosh π(∆L+∆t)
β

sinh π(L1−t−−tω)
β cosh π(L2−t+−tω)

β

(C.5)

z̄ ' 1− 2πiε

β

cosh π(∆L+∆t)
β

sinh π(L1+t−+tω)
β cosh π(L2+t++tω)

β

(C.6)

where ∆L = L2−L1 and ∆t = t−−t+. As in our main text discussions, the key observation

is that the imaginary part of z depends on the sign of L1 − t− − tω. For L1 > t− + tω, we

have (z, z̄) ∼ (1, 1) and

C4 '

(
β

πz∞

√
1

2

(
cosh

2π∆L

β
+ cosh

2π∆t

β

))−4h

(C.7)
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whereas for L1 < t− + tω, (z, z̄) ∼ (e2πi, 1) and

C4 '

(
β

πz∞

√
1

2

(
cosh

2π∆L

β
+ cosh

2π∆t

β

))−4h

·

 β

πε

sin(πα)

α

sinh π(t−+tω−L1)
β cosh π(L2−t+−tω)

β

cosh π(∆L+∆t)
β

−2h

. (C.8)

It can be checked this result precisely matches the gravity computation where the two-

point function is given by the length of a geodesic (6.42) between two-boundaries in our

back-reacted metric.

One can read off the scrambling time scale from the two-point correlators. For example,

setting L1 = L2 = 0 and t− = t+ = 0, the correlation (C.8) for large tω is given by

C4 '
(

β

2πz∞

)−4h

exp

[
−4πh

β

(
tw +

β

2π
log

(
β

πε

sin(πα)

α

))]
. (C.9)

This reproduces the dependence on the perturbation for the scrambling time derived in the

mutual information analysis.
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