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1 Introduction

There has recently been considerable work on defining and studying supersymmetric gauge

theories on curved backgrounds. The main reason for this interest is that these quantum

field theories possess classes of observables that may be computed exactly using localization

methods. Such non-perturbative results allow for quantitative tests of various conjectured

dualities, and have also led to the discovery of new dualities. A primary example is the

AdS/CFT correspondence, where exact strong-coupling field theory calculations may be

compared to semi-classical gravity.

In this paper we focus on rigid supersymmetry in d = 5 dimensions, which is currently

not as well-developed as its lower-dimensional cousins. Supersymmetric gauge theories were

constructed and studied on the round S5 in [1–4]. The product background S1×S4 studied

in [5, 6] leads to the superconformal index. As in lower dimensions, the first constructions

of non-conformally flat backgrounds were produced via various ad hoc methods. These

include the squashed S5 geometries of [7, 8], and the product backgrounds S3 ×Σ2 [9, 10]

and S2×M3 [11–13]. In the latter two cases the spheres are round, while supersymmetry on

the Riemann surface Σ2 or three-manifold M3 is achieved via a topological twist utilizing

the SU(2)R symmetry of the theory. These constructions have been used to successfully

test AGT-type correspondences.

A systematic method for constructing rigid supersymmetric field theories on curved

backgrounds, in any dimension d, was initiated in [14]. Here one first couples the field
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theory to off-shell supergravity, and then takes a decoupling limit in which the gravity

multiplet becomes a non-dynamical background field. This approach was applied to five-

dimensional Poincaré supergravity [15–17] in the series of papers [18–20].1 Supersymmetry

of the background requires a certain generalized Killing spinor equation to hold, whose

related geometry was investigated in [18], together with an algebraic “dilatino” equation

which was studied in [19]. The latter reference recasts these conditions into local geometric

constraints on the five-manifold M5. As in lower dimensions, one finds that the background

is parametrized by various arbitrary functions/tensors. In particular (M5, g) is equipped

with a Killing vector field ξ = ∂ψ, with dual one-form S2(dψ + ρ) and transverse four-

dimensional metric g(4), where locally the function S = ‖ξ‖ and tensors ρ and g(4) are

ξ-invariant but otherwise freely specifiable.2 The authors of [19] furthermore show that

locally all deformations of the background fields lead to Q-exact deformations of the action,

where Q is the supercharge. Despite this generality, these backgrounds apparently don’t

include the conformally flat S1 × S4 geometry mentioned above [19]. We shall comment

further on these issues later.

In [1] a twisted version of N = 1 super-Yang-Mills theory is defined on contact five-

manifolds (M5, η). Here η is a contact one-form, meaning that η ∧ dη ∧ dη is a volume

form. On a Sasaki-Einstein five-manifold [22] one can construct N = 1 super-Yang-Mills

coupled to matter [23]. This is essentially because the two Killing spinors on a Sasaki-

Einstein manifold satisfy the same Killing spinor equations as those on the round sphere.

For the special class of toric (U(1)3-invariant) Sasaki-Einstein manifolds of [24] the localized

perturbative partition function has been computed in [25–27], with the last reference also

giving a conjectured formula for the full partition function. The authors of [28] furthermore

show that one can define a twisted version of N = 2 super-Yang-Mills theory on any K-

contact five-manifold. We also note that K-contact geometry arises as a special case in [18].

In the present paper we instead take a holographic approach, similar to [29] in lower

dimensions, to construct rigid supersymmetry in five dimensions. Here M5 is realized

as the conformal boundary of a six-dimensional bulk solution of Romans F (4) gauged

supergravity [30]. Some of the groundwork for this was laid in [31, 32], where supergravity

duals of the squashed five-sphere backgrounds of [7, 8] were constructed (see also [33, 34] for

holographic duals to the supersymmetric Rényi entropy in five dimensions). We begin with

a general supersymmetric asymptotically locally AdS solution to the Romans theory, and

extract the conditions this imposes on the five-dimensional conformal boundary. Although

the resulting spinor equations are quite complicated, we will show they are completely

equivalent to a very simple geometric structure. We find that M5 is equipped with a

conformal Killing vector ξ = ∂ψ which generates a transversely holomorphic foliation. This

is compatible with an almost contact form η = dψ + ρ, where up to global constraints

that we describe the norm S = ‖ξ‖ and ρ are arbitrary, and the transverse metric g(4) is

Hermitian. The only other remaining freedom is an arbitrary function α (such that Sα is

ξ-invariant), which together with the metric determines all the remaining background data.

1See [21] for the construction of supersymmetric Lorentzian backgrounds within the superspace formu-

lation of five-dimensional conformal supergravity.
2There are also additional freely specifiable fields, which determine the rest of the background.
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This structure is similar to the rigid limit of Poincaré supergravity described above, but

with the addition of an integrable transverse complex structure and Hermitian metric. In

fact it is a natural hybrid of the “real” three-dimensional rigid supersymmetric geometry

studied in [35, 36] and the four-dimensional supersymmetric geometry of [37, 38] (where

the four-manifold is complex with a compatible Hermitian metric).

The outline of the rest of the paper is as follows. In section 2 we summarize the form of

supersymmetric asymptotically locally AdS solutions to Romans supergravity, in particular

extracting the Killing spinor equations on the conformal boundary M5. These are then

used as a starting point for a purely five-dimensional analysis in section 3. We show that

the spinor equations are completely equivalent to a simple geometric structure on M5, and

present a number of subclasses and examples, including many of the examples referred to

above. In section 4 we constructN = 1 supersymmetric gauge theories formed of vector and

hypermultiplets on this background geometry. Our conclusions are presented in section 5.

2 Rigid supersymmetry from holography

The bosonic fields of the six-dimensional Romans supergravity theory [30] consist of the

metric, a scalar field X, a two-form potential B, together with an SO(3)R ∼ SU(2)R R-

symmetry gauge field Ai with field strength F i = dAi − 1
2εijkA

j ∧ Ak, where i = 1, 2, 3.

Here we are working in a gauge in which the Stueckelberg one-form is zero, and we set the

gauge coupling constant to 1. The Euclidean signature equations of motion for this theory

may be found in [32], although we will not require their explicit form here.

A solution is supersymmetric provided there exists a non-trivial SU(2)R doublet of

Dirac spinors εI , I = 1, 2, satisfying the following Killing spinor and dilatino equations

DM εI =
i

4
√

2
(X + 1

3X
−3)ΓMΓ7εI −

i

16
√

2
X−1FNP (ΓM

NP − 6δM
NΓP )εI (2.1)

− 1

48
X2HNPQΓNPQΓMΓ7εI +

1

16
√

2
X−1F iNP (ΓM

NP − 6δM
NΓP )Γ7(σi)I

JεJ ,

0 = −iX−1∂MXΓM εI +
1

2
√

2

(
X −X−3

)
Γ7εI +

i

24
X2HMNPΓMNPΓ7εI

− 1

8
√

2
X−1FMNΓMN εI −

i

8
√

2
X−1F iMNΓMNΓ7(σi)I

JεJ . (2.2)

Here ΓM are taken to be Hermitian and generate the Clifford algebra Cliff(6, 0) in an

orthonormal frame, M = 0, . . . , 5. We have defined the chirality operator Γ7 = iΓ012345,

which satisfies (Γ7)2 = 1. The covariant derivative acting on the spinor is DM εI = ∇̂M εI +
i
2A

i
M (σi)I

JεJ , where ∇̂M = ∂M + 1
4Ω NP

M ΓNP denotes the Levi-Civita spin connection

while σi, i = 1, 2, 3, are the Pauli matrices.

Given a supersymmetric asymptotically locally AdS solution we may introduce a radial

coordinate r, so that the conformal boundary is at r = ∞ and the metric admits an

expansion of the form

ds2 =
9

2

dr2

r2
+ r2

[
gµν +

1

r2
g(2)
µν + · · ·

]
dxµdxν . (2.3)
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Here xµ, µ = 1, . . . , 5, are coordinates on the conformal boundary, which has metric g =

(gµν). Notice that the particular form of the metric in (2.3) is not reparametrization

invariant under r → Λr, where Λ = Λ(xµ). However, the correction terms under such a

transformation are subleading in the 1/r expansion. This will play an important role in

the next section.

For simplicity we shall mainly consider Abelian solutions in which A1 = A2 = 0, and

A3 ≡ A, with field strength F ≡ dA. Similarly to the metric (2.3) we then write the

following general expansions for the remaining bosonic fields

X = 1 +
1

r2
X2 + · · · ,

B = rb− 1

r2
dr ∧A(0) + · · ·

A = a+ · · · , (2.4)

where we define f ≡ da. Some of the terms a priori present in these expansions are set to

zero by the equations of motion; for example, the O(1/r) term in the expansion of X [32].

The Killing spinors similarly admit an expansion of the form

εI =
√
r

(
χI

−iχI

)
+

1√
r

(
ϕI

iϕI

)
+O(r−3/2) . (2.5)

Here we have used the orthonormal frame

E0 =
3√
2

dr

r
, Eµ = reµ + · · · (2.6)

for the metric (2.3). Furthermore, the spin connection expands as

Ω 0ν
µ = −

√
2

3
δ ν
µ +

1

r2
ω ν
µ + · · · . (2.7)

Also as in [32] we consider a “real” class of solutions for which εI satisfies the symplectic

Majorana condition ε J
I εJ = C6ε

∗
I ≡ εcI , where C6 denotes the charge conjugation matrix,

satisfying ΓTM = C−1
6 ΓMC6. The bosonic fields are all taken to be real, with the exception

of the B-field which is purely imaginary. With these reality properties, one can show that

the Killing spinor equation (2.1) and dilatino equation (2.2) for ε2 are simply the charge

conjugates of the corresponding equations for ε1. In this way we effectively reduce to a

single Killing spinor ε ≡ ε1, with SU(2)R doublet (ε, εc). We then note the following large

r expansions of bilinears:3

ε†Γ7ε = 4αS + · · · ,
iε†Γ7Γ(1)ε = 2SrK2 − 3

√
2dr + · · · . (2.8)

Here we have defined Γ(1) ≡ ΓME
M and

S ≡ χ†χ . (2.9)

3Here we take the spinors to be Grassmann even.
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We also note that the bilinear ε†Γ(1)ε is a Killing one-form in the bulk [32]. This will hence

restrict to a conformal Killing vector on the boundary at r =∞.

Substituting the expansions (2.5) into the bulk Killing spinor equation (2.1), at the

first two orders we obtain(
∇µ +

i

2
aµ

)
χ = −

√
2

3
iγµϕ−

i

12
√

2
bνσγ

νσ
µ χ+

i

3
√

2
bµνγ

νχ , (2.10)(
∇µ +

i

2
aµ

)
ϕ = − i

6
√

2
bµνγ

νϕ+
1

16
√

2
fνσγ

νσ
µ χ− 3

8
√

2
fµνγ

νχ (2.11)

+
1

48
(db)νρσγ

νρσγµχ−
1

36
A(0)
ν γ ν

µ χ+
1

12
A(0)
µ χ+

i

2
ω ν
µ γνχ .

Here γµ generate the Clifford algebra Cliff(5, 0) in an orthonormal frame, while ∇ denotes

the Levi-Civita spin connection for the boundary metric g. Similarly, the bulk dilatino

equation (2.2) implies

− 1

6
√

2
bµνγ

µνϕ−
√

2

3
X2χ+

i

8
√

2
fµνγ

µνχ+
i

24
(db)µνσγ

µνσχ− i

18
A(0)
µ γµχ = 0 . (2.12)

As explained in [32], equation (2.10) may be rewritten in the form of a charged confor-

mal Killing spinor equation, with additional b-field couplings. Setting b = 0 one obtains the

standard charged conformal Killing spinor equation, whose solutions (twistor spinors) have

been studied in the holographic context for three-manifolds and four-manifolds in [29, 38–

41]. On the other hand, previous work on rigid supersymmetry in five dimensions [18–20]

has used Killing spinor equations of a different form, without the coupling to ϕ in (2.10).

We may make closer contact with this work by noting that supersymmetry in the bulk also

implies the algebraic relation

ϕ = −αχ− i

2
(K2)νγ

νχ . (2.13)

This follows from the bilinear expansions (2.8).

In the remainder of the paper we shall take equations (2.10), (2.11), (2.12), and (2.13)

as our starting point for a purely five-dimensional analysis.

3 Background geometry

In this section we begin with a Riemannian five-manifold (M5, g), on which we’d like to

define rigid supersymmetric gauge theories. The gauge/gravity correspondence implies this

should be possible, provided the spinor equations derived in the previous section hold.

Let us summarize the background data. In addition to the real metric g, we have two

generalized Killing spinors χ, ϕ. Globally these are spinc spinors, being sections of the spin

bundle of M5 tensored with L−1/2, χ, ϕ ∈ Γ[Spin(M5) ⊗ L−1/2], where L is the complex

line bundle for which the real gauge field a is a connection. This Abelian gauge field is a

background field for U(1)R ⊂ SU(2)R, with (χ, χc), (ϕ,ϕc) forming SU(2)R doublets, where

χc ≡ Cχ∗ with C the five-dimensional charge conjugation matrix. The spinors χ, ϕ then

satisfy the coupled Killing spinor equations (2.10), (2.11), where the background b-field is

– 5 –
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taken to be a purely imaginary two-form, A(0) is a purely imaginary one-form, while ωµν =

gνσω
σ
µ is real and symmetric. Furthermore, χ and ϕ are related algebraically by (2.13),

which introduces the additional background fields α and K2, which are respectively a real

function and real one-form. Finally we have the dilatino equation (2.12), which introduces

the real background function X2.

In the remainder of this section we shall analyse the geometric constraints that these

equations impose on (M5, g). Although the background data and equations (2.10)–(2.13)

appear a priori complicated, in fact we shall see that the geometry they are equivalent to

is very simple.

3.1 Differential constraints

In the analysis that follows it is convenient to assume that the spinc spinor χ is nowhere zero.

More generally χ could vanish along some locus Z ⊂M5, and the local geometry we shall de-

rive below is valid on M5\Z. If Z is non-empty one would need to impose suitable boundary

conditions, although we shall not consider this further in this paper. A nowhere zero spinc

spinor equips (M5, g) with a local SU(2) structure. Specifically, we may define the bilinears

S ≡ χ†χ , K1 ≡
1

S
χ†γ(1)χ ,

J ≡ − i

S
χ†γ(2)χ , Ω ≡ − 1

S
(χc)†γ(2)χ . (3.1)

Here we have introduced the notation γ(n) ≡ 1
n!γµ1···µndxµ1 ∧ · · · ∧ dxµn , where xµ,

µ = 1, . . . , 5, are local coordinates on M5. Since χ is nowhere zero the scalar function S

is strictly positive, and it makes sense to normalize the bilinears as in (3.1). We note that

K1 is a real unit length one-form, while J is a real two-form with square length ‖J‖2 = 2.

Here the square norm of a p-form φ is defined via ‖φ‖2 vol5 = φ ∧ ∗φ, where ∗ denotes the

Hodge duality operator on (M5, g) and vol5 denotes the Riemannian volume form. The

complex bilinear Ω is globally a two-form valued in the line bundle L−1.

That χ, or equivalently the bilinears (3.1), defines a local SU(2) structure follows from

some simple group theory. The spin group is Spin(5) ∼= Sp(2) ⊂ U(4), with the latter acting

in the fundamental representation on the spinor space C4. The stabilizer of a non-zero

spinor is then Sp(1) ∼= SU(2). When M5 is spin and L is trivial, so that χ ∈ Γ[Spin(M5)],

this defines a global SU(2) structure. However, more generally we require only that M5 is

spinc, and in this case the global stabilizer group is enlarged to U(2): the additional U(1)

factor rotates the spinor by a phase, which may be undone by a U(1) gauge transformation.

To see this in more detail we introduce a local orthonormal frame ea, a = 1, . . . , 5, so that

K1 = e5 , J = e1 ∧ e2 + e3 ∧ e4 , Ω = (e1 + ie2) ∧ (e3 + ie4) , (3.2)

where the metric is g =
∑5

a=1(ea)2. The U(2) = SU(2) ×Z2 U(1) structure group acts in

the obvious way on the C2 spanned by e1 +ie2, e3 +ie4. This leaves K1, J and the metric g

invariant, but rotates Ω by the determinant of the U(2) transformation. In order for this to

be undone by a gauge transformation, this identifies the line bundle as L = Λ2,0. The latter

is the space of Hodge type (2, 0)-forms for the four-dimensional vector bundle spanned by

– 6 –
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e1, e2, e3, e4, and with almost complex structure I for which e1 + ie2 and e3 + ie4 are

(1, 0)-forms. Thus our rigid supersymmetric geometry will in general be equipped with a

global U(2) structure on M5 (or more precisely on M5 \ Z).

The one-form SK1 = χ†γ(1)χ arises simply from the restriction of the bulk Killing one-

form ε†Γ(1)ε to the conformal boundary, and thus defines a conformal Killing one-form on

(M5, g). This is easily confirmed from the Killing spinor equation (2.10) for χ, which implies

∇(µ(SK1)ν) = Lξ(logS)gµν , (3.3)

where we have introduced the dual vector field ξ, defined by g(ξ, ·) = SK1, and L denotes

the Lie derivative.

One finds that the spinor equations (2.10)–(2.13) imply the following differential con-

straints:

dS = −
√

2

3
(SK2 + iiξb) , d(Sα) = − 1

2
√

2
iξda , (3.4)

d(SK1) =
2
√

2

3

[
2αSJ + SK1 ∧K2 + iSb− i

2
iξ(∗b)

]
, (3.5)

d(SK2) = iiξdb− iLξ(logS)b , (3.6)

d(SJ) = −
√

2K2 ∧ (SJ) , (3.7)

d(SΩ) = −i
(
a− 2

√
2αK1 − i

√
2K2

)
∧ (SΩ) . (3.8)

Here (iV φ)a1···ap−1 = V bφba1···ap−1 defines the interior contraction of a vector V into a p-

form φ. Notice that the background data X2, A(0) and ωµν in (2.10)–(2.13) does not enter

equations (3.4)–(3.8): they simply drop out (one only needs to use the reality properties

we specified, together with the fact that ωµν = ωνµ is symmetric).

It is straightforward to verify that (3.4)–(3.8) are invariant under the Weyl transfor-

mations

α → Λ−1α , a → a , K2 → K2 −
3√
2

d log Λ ,

S → ΛS , K1 → ΛK1 , b → Λb ,

g → Λ2g , J → Λ2J , Ω → Λ2Ω . (3.9)

This symmetry is of course inherited from invariance under the change of radial variable

r → Λr in the bulk. If S is nowhere zero notice that one might use this symmetry to set

S ≡ 1.

Using equations (3.4)–(3.8) one can show that the conformal Killing vector ξ preserves

all of the background geometric structure, provided one rescales the fields by appropriate

powers of S according to their Weyl weights in (3.9). For instance, contracting ξ into the

second equation in (3.4) shows that Lξ(Sα) = 0. On the other hand, taking the exterior

derivative of the same equation one finds Lξda = 0. One can hence locally choose a gauge

in which a is invariant under Lξ, so that the second equation in (3.4) is solved by

Sα =
1

2
√

2
iξa . (3.10)

– 7 –
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In a similar way, one can show that also S−1b and S−2J are invariant under Lξ, while

S−2Ω is invariant under Lξ in the gauge choice for which (3.10) holds. Notice that the

first equation in (3.4) implies that iξK2 = − 3√
2
Lξ(logS).

Without loss of generality it is convenient to henceforth impose LξS = 0.4 In terms

of the bulk expansion in section 2 this means choosing the radial coordinate r to be in-

dependent of the bulk Killing vector. This is a natural choice, which in turn implies that

LξS = 0 and SK1 is Killing, and we shall make this convenient (partial) conformal gauge

choice in the following. We may then introduce a local coordinate ψ so that

ξ = ∂ψ . (3.11)

The condition LξS = 0 is then equivalent to S being independent of ψ.

3.2 Geometric structure

The Killing vector ξ has norm S, and the dual one-form K1 may be written locally as

K1 = S(dψ + ρ) ≡ Sη , (3.12)

where iξρ = 0. Notice that η has Weyl weight zero and norm 1/S. The local frame

e1, e2, e3, e4 provide a basis for D = ker η, and D inherits an almost complex structure

from J . One then defines an endomorphism Φ of the tangent bundle of M5 by

Φ |D= I , Φ |ξ= 0 , (3.13)

where I is the almost complex structure. One easily verifies that Φ2 = −1 + ξ ⊗ η, which

is a defining relation of an almost contact structure. Moreover, the five-dimensional metric

takes the form

ds2
M5

= S2η2 + ds2
4 , (3.14)

where ds2
4 is Hermitian with respect to I. Although ξ is Killing, this structure is in

general not a K-contact structure, which is a stronger condition. In particular the latter

requires [42] that dη is the fundamental (1, 1)-form J associated to the transverse almost

complex structure (which in general is not the case here), which in turn implies that η is a

contact form, i.e. that η ∧ dη ∧ dη is a volume form (which in general is also not the case

here). Notice that since ξ is nowhere zero, its orbits define a foliation of M5.

Let us now turn to the differential constraints (3.4)–(3.8). The two equations (3.4)

allow us to write

b = iSη ∧
(
K2 +

3√
2

d logS

)
+ b⊥ , a = 2

√
2Sαη + a⊥ , (3.15)

where b⊥ and a⊥ are basic forms for the foliation defined by ξ; that is, they are invariant

under, and have zero interior contraction with, ξ. Recall that in writing the gauge field

in the form in (3.15) we have made a (partial) gauge choice, as in (3.10). This leaves a

4An exception being the S1 × S4 geometry discussed in section 3.3.
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residual gauge freedom a⊥ → a⊥ + dλ, where λ is a basic (ξ-invariant) function. The

equation (3.6) is simply equivalent to b being invariant under ξ.

The differential constraint (3.5) reduces to

dρ =

√
2

3S
(−i ∗4 b⊥ + 2ib⊥ + 4αJ) . (3.16)

Here ∗4 is the Hodge dual with respect to the transverse four-dimensional metric ds2
4, with

volume form e1 ∧ e2 ∧ e3 ∧ e4. It is then convenient to introduce

b⊥ = b+ + b− , (3.17)

decomposing into the transversely self-dual and anti-self-dual parts. Equation (3.16) is

then equivalent to

b+ = i

(
4αJ − 3√

2
Sdρ+

)
, b− = − i√

2
Sdρ− . (3.18)

The constraint (3.7) simply identifies

θ ≡ J dJ = −
√

2K2 − d logS , (3.19)

with the Lee form θ of the transverse four-dimensional Hermitian structure. That is, every

four-dimensional Hermitian structure with fundamental two-form J satisfies dJ = θ ∧ J .

Finally, the differential constraint (3.8) now reads

dΩ = (θ − ia⊥) ∧ Ω . (3.20)

This implies that the almost complex structure I is integrable, thus defining a transversely

holomorphic foliation of M5. We may introduce local coordinates ψ, z1, z2 adapted to the

foliation, where the transition functions between the z1, z2 coordinates are holomorphic.

Notice that we may rewrite (3.20) as

dΩ = −iaChern ∧ Ω , (3.21)

where we have defined

aChern ≡ a⊥ − I(θ) , (3.22)

and I(θ) ≡ −iθ#J , where θ# is the vector field dual to θ. To obtain an explicit expression

for the Chern connection aChern, we begin by noting that Ω ∧ Ω̄ = 2J ∧ J . Using local

coordinates zα, α = 1, 2, for the transverse space we may write

Ω = f dz1 ∧ dz2 , J =
i

2
g

(4)

αβ̄
dzα ∧ dz̄β̄ , (3.23)

which implies that |f | =
√

det g(4). Notice that globally f is a section of L−1, where

L ∼= Λ2,0 ≡ K is the canonical bundle. Writing f = |f |eiφ we then have

dΩ = d log f ∧ Ω = i

(
1

2
dc log det g(4) + dφ

)
∧ Ω , (3.24)
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where dc ≡ I ◦ d. We thus recognize (up to gauge)

aChern = −1

2
dc log det g(4) (3.25)

as the Chern connection on the canonical bundle.

The geometric content of the differential constraints (3.4)–(3.8) may hence be sum-

marized as follows. M5 is equipped with a transversely Hermitian structure, so that the

metric takes the form

ds2
M5

= S2(dψ + ρ)2 + ds2
4 . (3.26)

Here the Killing vector is ξ = ∂ψ, which generates a transversely holomorphic foliation.

The almost contact form is η = (dψ + ρ), and ds2
4 is a transverse Hermitian metric. One

is also free to specify the functions α and S. Given this data, the remaining background

fields a and b that enter (3.4)–(3.8) are determined via

a = 2
√

2Sαη + aChern + I(θ) ,

b = − i√
2
Sη ∧ (θ − 2 d logS) + 4iαJ − i√

2
S(3dρ+ + dρ−) . (3.27)

In particular the choice of a transverse Hermitian metric g(4) fixes the two-form J , and

hence the Lee form θ, while the Hodge type (2, 0)-form Ω and Chern connection aChern

in (3.25) are also determined up to gauge. Notice that the terms Sαη and I(θ) entering

the formula for a in (3.27) are both global one-forms on M5, implying that globally a is a

connection on L = Λ2,0.

We shall furthermore show in section 3.4 that any choice of transversely Hermitian

structure on M5 of the above form gives a supersymmetric background. In particular the

remaining background fields X2, A(0), and ωµν appearing in the spinor equations (2.10)–

(2.13) are also determined by the above geometric data.

3.3 Examples

In this section we shall present some explicit examples of the above construction. These

include all explicit examples appearing in the literature (within the Abelian truncation on

which we are mostly focusing), including examples with six-dimensional gravity duals, plus

large families of new solutions.

General families. We begin by noting some special families of backgrounds:

• Setting ρ = 0 and S ≡ 1 gives a product metric M5 = R ×M4 or M5 = S1 ×M4,

where M4 is any Hermitian four-manifold. Notice this four-manifold geometry is the

same as the rigid supersymmetric geometry one finds in four dimensions [29, 37]. The

first reference here follows a similar holographic approach to the present paper, while

the second takes a rigid limit of “new minimal” supergravity in four dimensions.

• If dθ = 0 then the transverse Hermitian metric is locally conformally Kähler.

– If furthermore θ = 0 then the transverse four-metric is Kähler.
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– If θ = 0 and dρ is a positive constant multiple of J then the five-metric is

locally conformally Sasakian. Supersymmetric gauge theories on Sasaki-Einstein

manifolds, for which furthermore S ≡ 1 and g is a positively curved Einstein

metric, were defined in [23], and further studied in [25–28].

• We may take any circle bundle over a product of Riemann surfaces S1 ↪→ Σ1×Σ2. The

Hermitian metric may be taken to be simply a product of two metrics on the Riemann

surfaces, while ρ is the connection one-form for the fibration. One can generalize this

further by allowing S1 orbibundles over a product of orbifold Riemann surfaces.

– If we only fibre over Σ1, this leads to direct product M3 × Σ2 solutions, where

M3 is a Seifert fibred three-manifold. Notice this three-manifold geometry is

the same as the rigid supersymmetric geometry in three dimensions [35]. Max-

imally supersymmetric Yang-Mills theory has been studied on similar back-

grounds in [9–13], including the direct products S3×Σ2 and M3×S2. Here the

spheres are equipped with round metrics and the associated canonical spinors,

while the spinors on Σ2 and M3 are constructed by topologically twisting with

the SU(2)R symmetry.

• Finally, if dρ has Hodge type (1, 1) the transversely holomorphic foliation admits a

complexification [43], i.e. adding a radial direction to ξ we naturally have a complex

six-manifold M6, with a transversely holomorphic foliation. Notice that Sasakian ge-

ometry and the direct product S1×M4 are special cases. When the orbits of ξ all close,

M5 fibres over a Hermitian four-orbifold M4, and the associated U(1) orbibundle is

the unit circle in a Hermitian holomorphic line orbibundle over M4. The correspond-

ing complex M6 is then simply the total space of the associated C∗ bundle over M4.

Squashed Sasaki-Einstein. We have already noted that a Sasakian five-manifold is a

particular case of a supersymmetric background. Recall that Sasakian metrics take the

form

ds2
5 = η2 + ds2

4 , (3.28)

where η defines a contact structure on M5, with Reeb Killing vector field ξ, and ds2
4 is a

transverse Kähler metric. Moreover dη = dρ = 2J . If the transverse Kähler metric g(4)

is Einstein, then the metric (3.28) is said to be a squashed Sasaki-Einstein metric.5 For

a given choice of transverse Kähler-Einstein metric, we obtain a two-parameter family of

backgrounds, parametrized by the constants c1, c2:

S ≡ 1 , α = c1 , K2 = − 1√
2
θ ≡ 0 ,

a = c2η , b = i(4c1 − 3
√

2)J . (3.29)

The Kähler-Einstein metric g(4) satisfies the Einstein equation Ric(4) = 2(2
√

2c1 − c2)g(4).

Notice that we have presented the solution (3.29) in a different gauge choice to (3.10).

5In the mathematical literature [42] these are called η-Sasaki-Einstein metrics.
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We may impose the latter gauge choice by simply transforming a → a + (2
√

2c1 − c2)dψ,

although the form of a in (3.29) makes it clear that we may take a to be a global one-form

on M5 for this particular class of solutions.

When g4 is taken to be the standard metric on CP2, the above geometry is a squashed

five-sphere. This corresponds to the conformal boundary of the 1/4 BPS bulk Romans

supergravity solutions constructed in [32].

Black hole boundary. In this section we consider the conformal boundary of the 1/2

BPS topological black hole solutions constructed in [33]. We begin with the following

product metric on S1 ×H4, where H4 is hyperbolic four-space:

ds2
5 = dτ2 +

1

q2 + 1
dq2 + q2(dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2) . (3.30)

Here τ is a periodic coordinate on S1, q is a radial coordinate with q ∈ [0,∞), ϑ ∈ [0, π2 ]

while ϕ1, ϕ2 have period 2π. The metric in brackets is simply the round metric on a unit

radius S3. For this solution b vanishes identically, while a is gauge-equivalent to zero. The

Killing spinors for this background [33] in general depend on four integration constants

(being 1/2 BPS), but for simplicity here we present only the “toric” solution discussed

in [33]. The remaining fields are then

S =
√
q2 + 1 , α = − 3

2
√

2
√
q2 + 1

,

K2 = − 3√
2

q

q2 + 1
dq = − 3

2
√

2
d log(q2 + 1) , (3.31)

while in a gauge6 in which a = 0 the U(2) structure is given by

K1 =
1√
q2 + 1

[
dτ + q2(cos2 ϑdϕ2 − sin2 ϑdϕ1)

]
,

J =
q2

2
sin 2ϑ dϑ ∧ (dϕ1 + dϕ2) +

q

(q2 + 1)
dq ∧

[
dτ + sin2 ϑdϕ1 − cos2 ϑdϕ2

]
,

Ω = −q ei(ϕ1−τ−ϕ2)

2
√
q2 + 1

[
sin 2ϑ (q dτ − idq) ∧ (dϕ1 + dϕ2) + q sin 2ϑ dϕ1 ∧ dϕ2

+2i q dϑ ∧ (dτ + sin2 ϑdϕ1 − cos2 ϑdϕ2)− 2 dq ∧ dϑ

]
. (3.32)

The supersymmetric Killing vector is

ξ = g(SK1, · ) = ∂τ + ∂ϕ2 − ∂ϕ1 . (3.33)

Furthermore, notice that rescaling J by 1/(q2+1) leads to a closed two-form, hence showing

that the Hermitian metric transverse to ξ is conformal to a Kähler metric. Moreover, one

can also check that the almost contact form η = K1/S is a contact form in this case, i.e.

that η ∧ dη ∧ dη is a volume form.

6This is different to the gauge choice (3.10), where instead a = −3dτ for this solution.
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Conformally flat S1 × S4. In this section we consider the conformally flat metric on

S1 × S4, which we may write as

ds2
5 = dτ2 + ds2

S4 , (3.34)

where

ds2
S4 = dβ2 + sin2 β(dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2) . (3.35)

Here τ is a periodic coordinate on S1, while the metric in brackets in (3.35) is simply the

round metric on a unit radius S3, as in the previous black hole boundary example. The

polar coordinate β ∈ [0, π]. The metric (3.34) of course arises as the conformal boundary of

Euclidean AdS in global coordinates, and as such the background fields a = 0 = b. There

are many Killing spinors in this case, and here we simply choose one so as to present simple

expressions for the remaining background data. We find

S = e−τ , α = 0 , K2 =
3√
2

dτ . (3.36)

The U(2) structure is given by

K1 = sin β dβ − cosβ dτ ,

J = sin2 β sin(ϕ1 + ϕ2)

{
cot(ϕ1 + ϕ2) (dϑ ∧ dτ − cotβ dβ ∧ dϑ)− sin2 ϑ dϑ ∧ dϕ1

− cos2 ϑ dϑ ∧ dϕ2 + sinϑ cosϑ
[
(cotβ dβ + dτ) ∧ (dϕ1 − dϕ2)

− cot(ϕ1 + ϕ2) dϕ1 ∧ dϕ2

]}
,

Ω = i sin2 β sin(ϕ1 + ϕ2)
[

cotβ dβ ∧ dϑ− dϑ ∧ dτ + sinϑ cosϑ dϕ1 ∧ dϕ2

]
+ sin2 β sinϑ

[
sinϑ+ i cosϑ cos(ϕ1 + ϕ2)

](
cotβ dβ ∧ dϕ1 − cotϑ dϑ ∧ dϕ2

+dτ ∧ dϕ1

)
+ sin2 β cosϑ

[
cosϑ− i sinϑ cos(ϕ1 + ϕ2)

](
cotβ dβ ∧ dϕ2

+ tanϑ dϑ ∧ dϕ1 + dτ ∧ dϕ2

)
. (3.37)

Notice that in this example we obtain a conformal Killing vector from the Killing spinor bi-

linear, but not a Killing vector. As described at the end of section 3.1, we may always make

a Weyl transformation of the background to obtain a Killing vector. In the case at hand

this corresponds to the Weyl factor Λ = eτ , and the corresponding Weyl-transformed met-

ric is then (locally) flat, with the Weyl-transformed J and Ω both closed and hence defining

a transverse hyperKähler structure. Nevertheless, the fact that the metric (3.34) leads to a

conformal Killing vector explains why this background is missing from the rigid supersym-

metric geometry in [18, 19]: in the latter references the corresponding bilinear is necessarily

a Killing vector. This also suggests that the conjecture made in [19] is likely to be correct:

that is, to obtain the S1 × S4 background from a rigid limit of supergravity, one should

begin with conformal supergravity in five dimensions, rather than Poincaré supergravity.7

7See [44] for a related discussion on this point.
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Squashed S5. We consider the squashed five-sphere metric

ds2
5 =

1

s2
(dτ + C)2 + dσ2 +

1

4
sin2 σ(dϑ2 + sin2 ϑdϕ2)

+
1

4
cos2 σ sin2 σ(dβ + cosϑdϕ)2 , (3.38)

where s ∈ (0, 1] is the squashing parameter and

C ≡ −1

2
sin2 σ(dβ + cosϑdϕ) . (3.39)

The coordinates σ, β, ϑ, ϕ are coordinates on the base CP2, with β having period 4π, ϕ

having period 2π, while σ ∈ [0, π2 ], ϑ ∈ [0, π], and 1
2dC is the Kähler two-form on CP2. For

the “toric” family discussed in [31, 32] we find

S =
cos2 σ

b2
+

sin2 σ

b1
, (3.40)

where

b1 = 1 +
√

1− s2 , b2 = 1−
√

1− s2 . (3.41)

The other background fields are, in an appropriate gauge (i.e. not that in (3.10)),

α =
b1(b1 + b2)(b1 − 7b2 + (b1 − b2) cos 2σ)

4
√

2(b1 cos2 σ + b2 sin2 σ)
,

a =
b1 − b2

2b2
(dτ + C) ,

b = − i(b1 − b2)

2
√

2b1b2(b1 + b2)
dC ,

K2 =

√
2 (b1 − b2) sin 2σ

b1 cos2 σ + b2 sin2 σ
dσ = −

√
2 d log (b1 cos2 σ + b2 sin2 σ) . (3.42)

The U(2) structure is

K1 =
1

4b1b2(b1 + b2)
(
b1 cos2 σ + b2 sin2 σ

)[(b1 + b2)(b1 − b2 + (b1 + b2) cos 2σ)dτ

−1

2
sin2 σ

(
(b1 − b2)2 cos 2σ + b21 − 4b1b2 − b22

)
(dβ + cosϑdϕ)

]
,

J =
sinσ

8 b1b2 (b1 + b2)2
(
b1 cos2 σ + b2 sin2 σ

) [4 cosσ
(

2(b1 + b2) dσ ∧ dτ

−b1dσ ∧ (dβ + cosϑdϕ)
)

+ 2 sinϑ sinσ (b1 cos2 σ + b2 sin2 σ)dϑ ∧ dϕ

]
,

Ω =
sinσ ei(τ−β)

8b1b2(b1 + b2)2
(
b1 cos2 σ + b2 sin2 σ

) [− sin 2σ
(

i sinϑ ( b1dϕ ∧ dβ

+2(b1 + b2) dτ ∧ dϕ)− 2(b1 + b2) dϑ ∧ dτ + b1 dϑ ∧ (dβ + cosϑdϕ)
)

−4 (b1 cos2 σ + b2 sin2 σ) (sinϑ dσ ∧ dϕ+ i dϑ ∧ dσ)

]
. (3.43)
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The supersymmetric Killing vector is

ξ = b1∂τ + 2(b1 + b2)∂β . (3.44)

One also computes

η ∧ dη ∧ dη =
b31b

3
2 (b1 + b2)2

2
(
b1 cos2 σ + b2 sin2 σ

)5 ((b1 − b2)2 cos 2σ + b21 − 4b1b2 − b22
)

×
((
b21 − b22

)
cos 2σ + b21 − 6b1b2 + b22

)
vol5 , (3.45)

where vol5 denotes the Riemannian volume form and η = K1/S is the almost contact form.

The right hand side of (3.45) can have non-trivial zeros, and we thus see that in general η

does not define a contact structure. These backgrounds arise as the conformal boundary

of the 3/4 BPS solutions of Romans supergravity constructed in [31, 32].

3.4 From geometry to supersymmetry

In this section we will show that any choice of transversely Hermitian structure on M5

defines a supersymmetric background. The background U(1)R gauge field a and the b-

field are given in terms of the geometry by (3.27). It then remains to show that the

geometry also determines the fields X2, A(0) and ωµν , in such a way that the original

spinor equations (2.10)–(2.13) are satisfied.

We first examine the Killing spinor equation (2.10) for χ. In order to proceed it is

convenient to choose a set of projection conditions (see for example [45])

γ12χ = γ34χ = iχ , γ5χ = χ . (3.46)

These allow one to substitute for the fields b and K2 in terms of the geometry, via (3.27)

and (3.19), into the right hand side of equation (2.10). In doing this calculation it is also

convenient to write Ω = J2 + iJ1, J = J3 so that

J1 = e14 + e23 , J2 = e13 − e24 , J3 = e12 + e34 . (3.47)

Notice that Ji, i = 1, 2, 3 span the transverse self-dual two-forms, and hence may be used

as a basis thereof. One can furthermore make use of various identities that easily follow

from (3.46), such as iγmχ = Jmnγ
nχ, where m,n = 1, . . . , 4, and (β−)mnγ

mnχ = 0 for any

transverse anti-self-dual two-form β−.

In this way it is straightforward to show that the µ = 5 (the ψ direction) component

of (2.10) simply imposes ∂ψχ = 0.8 Thus χ is independent of ψ. Taking instead µ = m,

m = 1, 2, 3, 4, one finds (2.10) is equivalent to

∇(4)
m χ =

1

4
θnγmnχ−

i

2
(a⊥)mχ+

1

2
(∂m logS)χ , (3.48)

where ∇(4) denotes the Levi-Civita spin connection for the transverse four-dimensional

metric. Recall that the latter metric is Hermitian. It is then more natural to express

8Without loss of generality we take the four-dimensional frame e1, . . . , e4 to be independent of the Killing

vector ξ = ∂ψ.
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equation (3.48) in terms of an appropriate Hermitian connection, which preserves both the

metric and the two-form J . The Chern connection is such a connection, defined by

∇Chern
m χ = ∂mχ+

1

4
(ωChern
m )pqγ

pqχ ,

where (ωChern
m )pq ≡ (ω(4)

m )pq +
1

2
J n
m (dJ)npq . (3.49)

This coincides with the Levi-Civita connection if and only if dJ = 0 (equivalently θ = 0),

so that the metric is Kähler.

Next, let us notice that under the Weyl transformation (3.9) we have χ → Λ1/2χ, so

that it is also natural to introduce

χ̃ ≡ S−1/2χ , (3.50)

so that χ̃ is Weyl invariant. In this notation (3.48) becomes

∇Chern
m χ̃+

i

2
aChernχ̃ = 0 , (3.51)

where recall that aChern = a⊥ − I(θ) is the Chern connection for the canonical bundle

K ≡ Λ2,0, given explicitly by (3.25). It is then a standard fact, and is straightforward to

show, that any Hermitian space admits a canonical solution χ̃ to (3.51). Specifically, any

Hermitian space admits a canonical spinc structure, with twisted spin bundles Spinc =

Spin⊗K−1/2. In four dimensions this is isomorphic to

Spinc ∼=
(
Λ0,0 ⊕ Λ0,2

)
⊕ Λ0,1 , (3.52)

where Λp,q denotes the bundle of forms of Hodge type (p, q). In the case at hand, these are

defined transversely to the foliation generated by the Killing vector ξ. Under (3.52) the

Killing spinor χ̃ = S−1/2χ is a section of the trivial line bundle Λ0,0. Moreover, the Chern

connection restricted to this summand is flat, with the induced connection −1
2aChern on the

twist factor K−1/2 effectively cancelling that coming from the spin bundle. Concretely, in

terms of local complex coordinates zα, α = 1, 2, we have (ωChern) β
α = (∂g(4))αγ̄(g(4))γ̄β , and

using the projection conditions (3.46) one can show this precisely cancels the contribution

from (3.25). The spinc spinor χ̃ is simply a constant length section of this flat line bundle.

Put simply, the rescaled Killing spinor χ̃ = S−1/2χ is constant.

Next we turn to the dilatino equation (2.12). Substituting for ϕ in terms of χ, us-

ing (2.13), after a somewhat lengthy computation one finds the dilatino equation holds

provided

A(0) = −9

4
∗

(
d ∗ b− i

√
2

3
b ∧ b

)
, (3.53)

and

X2 = −4α2 − 1

4
〈K2,K2〉 −

i

6
√

2
S〈η,A(0)〉 − 3

16
〈da⊥, J〉 −

3

4
√

2
〈K2, d logS〉 . (3.54)

Here we have introduced the notation φ1 ∧ ∗φ2 = 1
p!〈φ1, φ2〉 vol5 for the inner product

between two p-forms φ1, φ2. Notice that the expression (3.53) for the imaginary one-form
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A(0) coincides with that in [32], which was derived by solving the bulk equations of motion

near the conformal boundary, in terms of the boundary data. Notice that under the Weyl

scaling (3.9) we have

A(0) → 1

Λ

(
A(0) +

9

2
id log Λ#b

)
, X2 →

1

Λ2
X2 . (3.55)

The fact that X2 has Weyl weight −2 is clearly consistent with the bulk expansion (2.4), but

the “anomalous” transformation of A(0) in (3.55) naively appears to contradict (2.4), for

which A(0) has Weyl weight −1. However, this is where the comment above equation (2.4)

is relevant: the reparametrization r → Λr does not preserve the subleading terms in the

metric (2.3). It is therefore not a strict symmetry of the system we have defined. However,

the leading order terms in the expansions (2.3), (2.4) are invariant. This explains why the

differential constraints (3.4)–(3.8) have the Weyl symmetry (3.9), while the higher order

term A(0) arising in the expansion of the B-field does not. One could restore the full Weyl

symmetry by adding a cross term 9dr
r Cµdxµ into the metric (2.3), so that

C → C − d log Λ , (3.56)

under r → Λr preserves the form of the metric. Then C is a new background field on M5,

and one finds

A(0) = −9

4
∗

[
(d + 2C∧) ∗ b− i

√
2

3
b ∧ b

]
. (3.57)

This now has Weyl weight −1, as expected, and the anomalous variation in (3.55) arises

simply because we have made the gauge choice C = 0 in our original expansion. In

general notice that a field of Weyl weight w will couple to a Weyl covariant derivative

Dµ ≡ ∂µ + wCµ, and w = 2 for ∗b.
It remains to show that the background geometry implies the ϕ Killing spinor equa-

tion (2.11). At this point notice that everything is fixed uniquely in terms of the free

functions α and S, and the transversely Hermitian structure on M5, apart from the higher

order spin connection term ωµν which appears in (2.11). After a lengthy computation, in

our orthonormal frame one finds the expression

ω55 = −6
√

2α2 − 1

3
√

2
〈K2,K2〉 −

√
2X2 −

1

2
√

2
〈da⊥, J〉 − 〈K2, d logS〉 ,

ω5m =

[
− i

3
√

2
i
K#

2
b⊥ + id logS#

(
2αJ +

1√
2
Sdρ−

)]
m

= ωm5 ,

ωmn =

√
2

3
(K2)m(K2)n −∇(4)

(m(K2)n) −
(

4

3
Sα dρ− +

1√
2

da−⊥

)
mp

Jpn

+

(
2
√

2α2 +

√
2

3
X2 −

1

3
√

2
〈K2,K2〉+

1

4
√

2
〈dα⊥, J〉

)
δmn . (3.58)

This is manifestly real and symmetric, apart from the last term in the penultimate line.

However, it is straightforward to show that (β−)mpJ
p
n is symmetric for any transverse
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anti-self-dual two-form β−. Thus (2.11) is satisfied provided ωµν is given by (3.58). We

conclude this subsection by noting the following formula

ω µ
µ = 2

√
2α2 +

√
2

3
X2 − 〈K2,

1√
2
K2 + d logS〉+

1

2
√

2
〈da⊥, J〉 − ∇(4)

m Km
2 . (3.59)

This trace will appear in the supersymmetric Lagrangians constructed in section 4.

3.5 Summary

A supersymmetric asymptotically locally AdS solution to six-dimensional Romans super-

gravity leads to the coupled spinor equations (2.10)–(2.13) on the conformal boundary M5.

These are a rather complicated looking set of equations for the spinc spinors χ, ϕ, depend-

ing on the large number of background fields g,X2, a, A
(0), b and ωµν on M5, with ϕ and χ

related to each other by the further background fields α and K2 via (2.13). However, we

have shown these equations are completely equivalent to a very simple geometric structure:

(i) The five-manifold M5 is equipped with a transversely holomorphic foliation, with

the one-dimensional leaves generated by the (conformal) Killing vector field ξ = ∂ψ.

This structure is a natural odd-dimensional cousin of a complex manifold, and means

we may cover M5 locally with coordinates ψ, z1, z2, where the transition functions

between the z1, z2 coordinates are holomorphic (more formally we have an open cover

{Ui} and submersions fi : Ui → C2 with one-dimensional fibres, such that on overlaps

Ui ∩ Uj we have fj = gji ◦ fi where gji are biholomorphisms of open sets in C2).

(ii) This foliation is compatible with an almost contact form η = dψ + ρ. Choose a

particular ρ = ρ0, which notice is defined only locally in the foliation patches, gluing

together to give the global η. Then for fixed foliation any other choice of ρ is related

to this by ρ = ρ0 + ν, where ν is a global basic one-form. That is, ν is a global

one-form on M5 satisfying Lξν = 0 = iξν.

(iii) One can choose an arbitrary transverse Hermitian metric ds2
4, invariant under ξ and

compatible with the foliation.

(iv) Finally, one is free to choose the ξ-invariant real functions α and S (with S nowhere

zero).

An interesting special case is when all the leaves of the foliation are closed, so that ξ

generates a U(1) action on M5 and ψ is a periodic coordinate. In this case M5 fibres over

a complex Hermitian orbifold M4 = M5/U(1), where η is a global angular form for the

U(1) orbibundle. Different choices of ν in (ii) above are then simply different connections

on this bundle, with (iii) giving different Hermitian metrics on M4.

We have shown that any choice of the data (i)–(iv) determines a supersymmetric

background, solving the spinor equations (2.10)–(2.13), and conversely any such solution

determines a choice of the above geometric data. Furthermore, solving (2.10)–(2.13) is

equivalent to finding a supersymmetric asymptotically locally AdS solution to Romans

supergravity, to the first few orders in an expansion around the conformal boundary M5.
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Of course whether or not this extends to a complete non-singular supergravity solution, as

some of the explicit examples in section 3.3 do, is another matter.

4 Supersymmetric gauge theories

In this section we construct N = 1 supersymmetric gauge theories formed of vector and

hypermultiplets on the background geometry described in section 3.

We adopt the same notation as [2], in particular using ξ and η to denote five-

dimensional Killing spinors. The γµ are 4 × 4 Hermitian matrices which form a basis of

Cliff(5, 0) in an orthonormal frame. A complete set of 4×4 matrices is given by (14, γµ, γµν)

and we choose γµνρστ = −εµνρστ with ε12345 = +1. The five-dimensional charge conjuga-

tion matrix, C = (Cαβ), is unitary and anti-symmetric in the spinor indices α, β = 1, 2, 3, 4

of Spin(5) ∼= Sp(2). The matrices Cγµ are anti-symmetric in spinor indices whereas Cγµν
are symmetric. Spinor bilinears are denoted (ηγµ1···µnξ) = ηα(Cγµ1···µn)αβξ

β . Finally, the

Fierz identity for Grassmann odd spinors in five dimensions is

γAηα(ξγBλ) = −1

4
(ηξ)γAγBλα − 1

4
(ηγµξ)γ

AγµγBλα +
1

8
(ηγµνξ)γ

AγµνγBλα , (4.1)

where γA, γB denote arbitrary elements of Cliff(5, 0).

4.1 Supersymmetry algebra

An off-shell N = 1 vector multiplet in five dimensions consists of a gauge field Aµ, a real

scalar σ, a gaugino λI , and a triplet of auxiliary scalars DIJ , all transforming in the adjoint

representation of the gauge group G. Here I, J = 1, 2 are SU(2)R symmetry indices. The

gaugino is a symplectic-Majorana spinor which satisfies (λαI )∗ = εIJCαβλβJ whilst the auxil-

iary scalars satisfy (DIJ)† = εIKεJLDKL, where recall that εIJ is the Levi-Civita symbol.

We introduce the following covariant derivatives:

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] ,

Dµσ = ∂µσ − i[Aµ, σ] ,

DµλI = ∇µλI − i[Aµ, λI ] ,
DµDIJ = ∂µDIJ − i[Aµ, DIJ ] , (4.2)

where ∇ is the Levi-Civita spin connection. In general we may consider turning on an

SU(2)R background gauge field aiµ, i = 1, 2, 3, or equivalently we may introduce

VµIJ ≡ −
i

2
aiµ(σi)IJ , (4.3)

where σi, i = 1, 2, 3, denote the Pauli matrices. In section 2 recall that for simplicity we

restricted to an Abelian background gauge field, with a1 = a2 = 0, a3 = a, but in this

section we will relax this assumption. There is also a background two-form b-field and we

choose to introduce the gauge field Cµ associated with restoring Weyl invariance — see
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the earlier discussion around equation (3.56). With this background gauge field active we

modify the covariant derivatives to

Dµσ = Dµσ − Cµσ ,

DµλI = DµλI −
3

2
CµλI − VµIJλJ ,

DµDIJ = DµDIJ − 2CµDIJ − 2Vµ(I
KDJ)K , (4.4)

so that they are covariant with respect to both Weyl and R-symmetry transforma-

tions. These correspond to Weyl weights w = (−1, 0,−3
2 ,−2) for the gauge multiplet

(σ,Aµ, λI , DIJ).

Given this background data we consider the following (conformal) supersymmetry

variations:

δξσ = iεIJξIλJ ,

δξAµ = iεIJξIγµλJ ,

δξλI = −1

2
γµνξIFµν + γµξIDµσ −DIJξ

J +
i

3
√

2
γµνξIbµνσ −

2
√

2i

3
ξ̃Iσ ,

δξDIJ = −2iξ(Iγ
µDµλJ) + 2[σ, ξ(IλJ)] +

2
√

2

3
ξ̃(IλJ) −

1

6
√

2
ξ(Iγ

µνλJ)bµν . (4.5)

This has Grassmann odd supersymmetry parameters ξI , ξ̃I . We find that these transfor-

mations close onto

[δξ, δη]σ = −ivνDνσ −
√

2i

3
%σ , (4.6)

[δξ, δη]Aµ = −ivνFνµ +DµΥ ,

[δξ, δη]λI = −ivνDνλI + i[Υ, λI ]−
√

2i

3

[
3

2
%λI +R J

I λJ −
1

4
ΘαβγαβλI

]
,

[δξ, δη]DIJ = −ivνDνDIJ + i[Υ, DIJ ]−
√

2i

3

[
2%DIJ +R K

I DJK +R K
J DIK

]
,

where we have defined

vµ = 2εIJξIγ
µηJ ,

Υ = −2iεIJξIηJσ ,

% = −2iεIJ(ξI η̃J − ηI ξ̃J) ,

RIJ = −3i(ξI η̃J + ξJ η̃I − ηI ξ̃J − ηJ ξ̃I) ,

Θαβ = −2iεIJ(ξ̃Iγ
αβηJ − η̃IγαβξJ)− 2iεIJ(ξIηJ)bαβ +

i

4
εµνραβbµνvρ , (4.7)

and R J
I = εJKRIK , provided that the spinors (ξ, ξ̃) and (η, η̃) satisfy the SU(2)R-

covariantization of the (χ, ϕ) spinor equations (2.10)–(2.12). More precisely

DµξI = −
√

2i

3
γµξ̃I −

i

12
√

2
bνργµ

νρξI +
i

3
√

2
bµνγ

νξI , (4.8)
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Dµξ̃I = − i

6
√

2
bµνγ

ν ξ̃I −
1

16
DνbρσγµνρσξI +

1

16
Dµbνργ

νρξI −
1

8
Dνbµργ

νρξI

+
i

8
√

2
VνρI

Jγµ
νρξJ −

3i

4
√

2
VµνI

JγνξJ −
1

36
A(0)
ν γµ

νξI +
1

12
A(0)
µ ξI +

i

2
ωµνγ

νξI ,

0 = − 1

6
√

2
bµνγ

µν ξ̃I −
√

2

3
X2ξI +

i

8
Dµbνργ

µνρξI −
i

18
A(0)
µ γµξI −

1

4
√

2
VµνI

JγµνξJ ,

with Vµν
IJ ≡ 2∂[µVν]

IJ − 2V[µ
K(IVν]K

J). Recall that b has Weyl weight w = 1, while the

spinors have weight w = ±1/2.

It is crucial for the closure of the algebra that ωµν = ωνµ, which is the same condition

used in deriving the differential constraints (3.4)–(3.8). Also as for that computation the

closure of the supersymmetry algebra is insensitive to the explicit form of ωµν , A(0) or X2.

Let us also notice that the supersymmetry variations (4.5) reduce to those of the round S5

in [2] (in particular b ≡ 0 for the round S5, and ξ̃here
I = 3√

2
iξ̃there
I ).

We now consider the on-shell hypermultiplet which consists of two complex scalars qI
and a spinor ψ, all transforming in an arbitrary representation of the gauge group. A system

of r hypermultiplets is described by qAI , ψ
A with A = 1, . . . , 2r. The fields satisfy the reality

conditions (qAI )∗ = ΩABε
IJqBJ and (ψAα)∗ = ΩABCαβψBβ with ΩAB being the invariant

tensor of Sp(r). The supersymmetry variations for the system of r hypermultiplets coupled

to the vector multiplet are

δξq
A
I = −2iξIψ

A ,

δξψ
A = εIJγµξIDµq

A
J + iεIJξIσq

A
J −
√

2iεIJ ξ̃Iq
A
J . (4.9)

The commutator of two supersymmetry transformations leads to

[δξ, δη]q
A
I = −ivµDµq

A
I + iΥqAI −

√
2i

3

[
3

2
%qAI +RI

JqAJ

]
,

[δξ, δη]ψ
A = −ivµDµψ

A + iΥψA −
√

2i

3

[
2%ψA − 1

4
Θαβγαβψ

A

]
+

1

2
vρΓ

ρ

(
iγµDµψ

A + σψA + εIJλIq
A
J −

1

4
√

2
γµνψAbµν

)
− εKL(ξKηL)

(
iγµDµψ

A + σψA + εIJλIq
A
J −

1

4
√

2
γµνψAbµν

)
, (4.10)

where

Dµq
A
I = ∂µq

A
I − iAµqAI −

3

2
Cµq

A
I − VµIJqAJ ,

Dµψ
A = ∇µψA − iAµψA − 2Cµψ

A . (4.11)

Closure of the algebra occurs only on-shell and this identifies the fermionic equation of

motion as

Eψ ≡ iγµDµψ
A + σψA + εIJλIq

A
J −

1

4
√

2
γµνψAbµν = 0 . (4.12)
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Acting on Eψ with the supersymmetry transformations gives the bosonic equation of mo-

tion:

εIJ
(

DµDµq
A
J + σ2qAJ −

1

3
X2q

A
J +

1√
2
ωµ

µqAJ − 2(ψAλJ)

)
+ iDIJqAJ = 0 . (4.13)

4.2 Lagrangians

The action for a vector multiplet in five dimensions is determined by the prepotential F (V),

which is a real and gauge invariant function of the vector superfield V. Gauge invariance

limits the prepotential to being at most cubic in V [46] and classically it takes the form

F (V) = Tr

[
1

2g2
V2 +

k

6
V3

]
. (4.14)

Here g is the dimensionful gauge coupling constant and k is a real constant which is subject

to a quantization condition dependent on the gauge group [47]. Writing the components

of the vector superfield as VaTa = (σaTa,AaµTa, λaITa, Da
IJTa) where Ta are generators of

the gauge group in the adjoint representation we find the cubic prepotential term in our

curved backgrounds to be

Lcubic = dabc

[
1

24
εµνρστAaµF bνρFcστ +

i

8
εIJ(λaIγ

µνλbJ)Fcµν +
i

4
Da,IJ(λbIλ

c
J)

]
+ dabcσ

a

[
1

4
F bµνFc,µν −

1

2
Dµσ

bDµσc − 1

4
Db
IJD

c,IJ

− i

2
√

2
σbFcµνbµν +

1

3
σbσc

(√
2

3
ωµ

µ +
2

3
X2 −

5

18
bµνb

µν

)
(4.15)

+
i

2
εIJ(λbIγ

µDµλ
c
J)− 1

2
εIJλbI [λJ , σ]c +

1

8
√

2
εIJ(λbIγ

µνλcJ)bµν

]
.

Here dabc ∝ k
π2 Tr

(
T(aTbTc)

)
is a symmetric invariant tensor of the gauge group. It vanishes9

for all simple gauge groups except U(1) or SU(N) with N ≥ 3. The Lagrangian Lcubic

is invariant under the superconformal transformations (4.5) provided the supersymmetry

parameters satisfy (4.8), and in addition A(0) is given by

A(0) = −9

4
∗

(
(d + 2C∧) ∗ b− i

√
2

3
b ∧ b

)
, (4.16)

which matches precisely the expression (3.57) in section 3.

The quadratic term in the prepotential includes Yang-Mills kinetic terms and is not

conformally invariant. We therefore expect to break conformality by using the relation

ξ̃I = −αIJξJ −
i

2
(K2)µγ

µξI , (4.17)

9For example, taking the gauge group to be G = SO(N) so that the Lie algebra generators satisfy

T ta = −Ta then Tr
(
T(aTbTc)

)
= Tr

(
T(aTbTc)

)t
= −Tr

(
T(aTbTc)

)
.
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which is the SU(2)R-covariantization of (2.13). The Lagrangian describing the quadratic

piece can be found from Lcubic by identifying one of the vector superfields with a constant

supersymmetry preserving Abelian vector multiplet [7]. That is

LYM =
1

2g2
V(1)Tr[V2] , (4.18)

where V(1) = (σ(1),A(1)
µ , λ

(1)
I , D

(1)
IJ ). We choose σ(1) = 1 and λ

(1)
I = 0. Then V(1) is

supersymmetry preserving if the fermion variation

δξλ
(1)
I = −1

2
γµνξIF (1)

µν −D
(1)
IJ ξ

J +
i

3
√

2
γµνξIbµν −

2
√

2i

3
αIJξ

J −
√

2

3
(K2)µγ

µξI ,

= 0 , (4.19)

holds for non-trivial spinor parameters ξI and some choice of D
(1)
IJ , A(1)

µ such that F (1) =

dA(1). Here we have substituted for ξ̃I using (4.17). To progress, note that there are two

natural one-forms in our geometry namely K1 and K2. If we concentrate on K1 which,

with S = 1, satisfies (3.5)

dK1 =
2
√

2

3

[
2αJ +K1 ∧K2 + ib− i

2
iξ(∗b)

]
, (4.20)

then upon SU(2)R-covariantizing and multiplying by −1
2γ

µνξI we find

0 = −1

2
γµνξI

(
(dK1)µν −

i
√

2

3
bµν

)
−
√

2

3
γµξI(K2)µ −

8
√

2i

3
αIJξ

J . (4.21)

To derive the previous equation we have used the projection conditions satisfied by the

background geometry: (K1)µγ
µχ = χ and Jµνγ

µνχ = 4iχ, along with (K1)µ(K2)µ = 0 =

(K1)µCµ and −i(K1)µbµν = (K2)ν + 3√
2
Cν . Comparing this to (4.19) gives the constant

vector multiplet as

V(1) = (σ(1),A(1)
µ , λ

(1)
I , D

(1)
IJ ) = (1, (K1)µ, 0, 2

√
2iαIJ) , (4.22)

and the corresponding Yang-Mills Lagrangian is

LYM =
1

g2
Tr

[
1

4
FµνFµν −

1

2
DµσDµσ − 1

4
DIJD

IJ +
i

2
εIJ(λIγ

µDµλJ)− 1

2
εIJλI [λJ , σ]

+
1

8
εµνρστFµνFρσ(K1)τ −

i√
2
σFµνbµν +

1

2
σFµν(dK1)µν (4.23)

− 2
√

2iσDIJαIJ + σ2

(√
2

3
ωµ

µ +
2

3
X2 −

5

18
bµνb

µν − i

2
√

2
(dK1)µνb

µν

)

+
i

8
εIJ(λIγ

µνλJ)(dK1)µν +
1

8
√

2
εIJ(λIγ

µνλJ)bµν −
1√
2

(λIλJ)αIJ

]
.

The second candidate one-form is K2 but taking F (1) = dK2 does not lead to (4.19).
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The superconformal Lagrangian for the vector coupled hypermultiplets exists irre-

spective of the gauge group and is straightforward to construct: we simply integrate the

equations of motion (4.12) and (4.13) found from closing the superalgebra to find

Lhm = ΩAB

[
− 1

2
εIJDµqAI Dµq

B
J +

1

2
εIJqAI σ

2qBJ +
i

2
qAI D

IJqBJ

− 2εIJqAI (ψBλJ) + εIJqAI q
B
J

(
1

2
√

2
ωµ

µ − 1

6
X2

)
+ i(ψAγµDµψ

B) + ψAσψB − 1

4
√

2
(ψAγµνψB)bµν

]
. (4.24)

5 Discussion

In this paper we have constructed rigid supersymmetric gauge theories with matter on a

general class of five-manifold backgrounds. By construction these are the most general

backgrounds that arise as conformal boundaries of six-dimensional Romans supergravity

solutions. We find that (M5, g) is equipped with a conformal Killing vector which generates

a transversely holomorphic foliation. In particular the transverse metric g(4) is an arbitrary

Hermitian metric with respect to the transverse complex structure. This is a natural

hybrid/generalization of the rigid supersymmetric geometries in three and four dimensions

constructed in [35, 37, 38], and includes many previous constructions as special cases.

It is interesting to compare the geometry we find to the rigid limit of Poincaré super-

gravity [18, 19] and the twisting of [28]. In the former case the backgrounds naively appear

to be more general, as there is no almost complex structure singled out, nor integrability

condition. However, they don’t include the S1 × S4 geometry relevant for the supersym-

metric index, which as we showed in section 3.3 is included in our backgrounds. In fact

the singling out of the almost complex structure associated to J = J3, where recall that

Ω = J2 +iJ1, in our geometry is almost certainly related to the fact that in section 3 we fo-

cused on the case where we turn on only an Abelian U(1)R ⊂ SU(2)R. This was motivated

in part for simplicity, and in part because the known solutions to Romans supergravity

discussed previously also have this property. Nevertheless, the supersymmetry variations

and Lagrangians we constructed in section 4 are valid for an arbitrary background SU(2)R
gauge field, and it should be relatively straightforward to analyse the geometric constraints

in this more general case. Indeed, this is certainly necessary, and presumably sufficient,

to reproduce the partially topologically twisted backgrounds S2 ×M3 of [11–13], since the

SU(2) spin connection of M3 is twisted by SU(2)R. On the other hand recall that the twist-

ing in [28] requires that M5 be a K-contact manifold. This shares many features with our

geometry, with one important difference: for a K-contact manifold the transverse two-form

J is closed, so the corresponding foliation is transversely symplectic; however, our case is

in some sense precisely the opposite, namely transversely holomorphic. These intersect

precisely for Sasakian manifolds. It is interesting that these various approaches generally

seem to lead to different supersymmetric geometries, with varying degrees of overlap.

Given the geometry we find and the results of [48], it is natural to conjecture that the

partition function and other BPS observables depend only on the transversely holomorphic
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foliation, i.e. for fixed such foliation they are independent of the choice of the remaining

background data (functions S, α, the one-form ν defined in section 3.5, and the transverse

Hermitian metric g(4)). It will be interesting to verify that this is indeed the case, and

to compute these quantities using localization methods. Notice that locally a transversely

holomorphic foliation always looks like R×C2, which perhaps also explains why in [19] the

authors found that locally all deformations of their backgrounds were Q-exact. Finally, our

construction allows one to address holographic duals of these questions, which we plan to

return to in future work.
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