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1 Introduction

The spontaneous breaking of conformal invariance (SBCI) is interesting for two reasons,

both connected with naturalness. First, this symmetry breaking pattern may give rise to

a Goldstone boson — the dilaton — which should come with a protected mass. Second,

the effective theory for the dilaton presents a toy version of the Cosmological Constant

(CC) problem that can shed new light on the actual CC problem. Recently, there has been

significant progress on these questions due to Contino, Pomarol and Rattazzi (CPR), who

realized that SBCI and a light dilaton should occur naturally in certain nearly marginal

deformations of Conformal Field Theories (CFTs) [1–3]. CPR suggested a simple holo-

graphic implementation that has been checked to work in [4, 5]. Thus, this represents a

first natural model of SBCI and of a light dilaton. This holographic model is dual to a

CFT that contains at least two scalar operators. The purpose of the present paper is to

examine how the CPR proposal operates in CFTs with a single operator. But first let us

review some basic facts.

If a CFT exhibits SBCI (and thus a massless dilaton), then physics at low energies

can be captured by EFT methods. The effective theory for such putative light dilaton

is constructed by writing down the most general Lagrangian invariant under the scale-

transformation xµ → b−1 xµ. The canonically normalized dilaton field χ must be propor-

tional to the (appropriate power of the) scale responsible for SBCI. Therefore, the scale

transformation acts like χ → b(d−2)/2χ, in d > 2 space-time dimensions. The effective

Lagrangian compatible with this symmetry allows a potential of the form

V CFT
dil (χ) = U0 χ

2d
d−2 ,
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with an arbitrary ‘quartic’ coupling U0 — the analogue of the Cosmological Constant.

Since any U0 is allowed by the symmetries, a generic CFT is expected to lead (if anything)

to a nonzero U0 (for CFTs with a stable ground state, U0 ≥ 0).

In this language, having SBCI means that 〈χ〉 6= 0. But with this potential for χ it is

clear that this only happens in CFTs if the dilaton quartic vanishes, U0 = 0. Since this

value of U0 is not protected in the absence of additional assumptions, this is a fine-tuning.

Thus, a CFT may exhibit SBCI only if either i) it is fine-tuned or ii) it enjoys additional

symmetries (such as SUSY) that enforce U0 = 0. Conversely, generic (non-tuned, non-

supersymmetric) CFTs do not exhibit SBCI nor a massless dilaton.1

The analogy with the CC problem is also obvious from the above effective potential.

Anything like a SBCI and a light dilaton must have small U0, but the naive generic EFT

expectation is that U0 is large (of order one) at least for strongly coupled theories. Thus,

for a light dilaton to be naturally realized something similar to the screening of a large

‘dilaton constant’ U0 must take place.

The next logical question, raised in [1–3], is: can there be a naturally light dilaton in

QFTs that are close to conformally invariant (CI)? The simplest and closest to a CFT is

a CFT deformed by a nearly-marginal operator (‘nearly-marginal deformation’ for short).

This introduces a small explicit breaking of CI and now the dilaton action does not need to

be scale invariant. If the deformation is nearly-marginal, then the effective action should

be close to the CI case. To fix terminology, we assume that a CFT contains a (marginally)

relevant operator O of dimension Dim(O) = d−∆−, and we consider the Lagrangian

deformation defined by adding the perturbation

δL = −λ O . (1.1)

Since the dilaton shifts like a scale transformation, RG computations capture exactly

the dependence on the dilaton. Thus the effective potential is obtained by evaluating the

running coupling constants at the scale µ = χ2/(d−2). For the above deformation, this

generally takes the form

Vdil(χ) = χ
2d
d−2 U (λ(χ)) , (1.2)

where λ(χ) is the running coupling constant λ(µ) (equal to λUV at ΛUV). The function

U(λ(χ)) depends on the model, and we can call it the ‘dilaton quartic function’. For small

coupling λ, it should admit a perturbative expansion U(λ) = U0 + U1λ+ . . . .

Now one can ask whether SBCI occurs in addition to the explicit breaking of CI: that

amounts to having a nontrivial minimum of Vdil. Let us call the scale associated to this vev

the infrared scale, and the location of the minimum χIR. Since χV ′dil = 2
d−2χ

2d
d−2 (d U + U ′β)

it follows that if β ≡ dλ
d log µ at the minimum is small, then both the dilaton quartic at the

minimum and the dilaton mass are small. Indeed,

Vdil|IR ≡ UIRχ
2d
d−2
IR ∼ βIR χ

2d
d−2
IR and m2

dil = V ′′dil|IR ∼ βIR χ
2
IR (1.3)

(as well as all higher-derivatives of Vdil) are generically suppressed by one power of βIR.

1Indeed, if U0 > 0, then 〈χ〉 = 0, which means no SBCI and there cannot be a dilaton in the first place,

so we reach a contradiction. Thus, for CFTs, U0 6= 0 is incompatible with SBCI and with a light or massless

dilaton.
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Note that this conclusion only relies on 2 assumptions: i) the beta function is small

(‘walking’) at ΛIR, the scale where CI is broken; ii) the function U(λ) is generic — it

does not contain small or large parameters. Of course, it is possible to have additional

suppressions by tuning U(λ). For instance, if both U and U ′ vanish at the minimum,2 then

m2
dil ∼ β2

IR.

Clearly, this has an impact on the two naturalness issues: the dilaton mass and the

value of the potential at the minimum can be naturally suppressed at the IR scale, even

if it involves order one parameters in the UV. SBCI can be naturally realized in nearly-

marginal deformations. Interestingly enough, in deformed CFTs the physics of the dilaton

is discontinuous in the parameter ∆− for ∆− → 0.

One holographic realization of this idea that was advocated in [1–3] and elaborated

in [4, 5] is also quite simple. The nearly-marginal deformation is realized by a domain wall

solution of a nearly-massless scalar φ. The approximate global shift symmetry enjoyed by

φ is responsible for the walking, i.e., for protecting a small beta function throughout the

flow. The dilaton is realized by a hard IR brane that finds its location along the domain

wall geometry. In field theory language the hard IR brane corresponds to one (or more)

additional operator(s) O′ with arbitrarily large dimension ∆′, which develops a condensate

— thereby breaking conformal invariance spontaneously. The dilaton is identified as 〈O′〉
1

∆′ ,

and holographically it corresponds to the (warp factor at the) location of the IR brane,

χ ≡ a(yIR). The IR brane is allowed to break the global shift symmetry by the presence

of a localized potential on the IR brane UIR brane(φ). In field theory, that is an order-

one crossed-coupling between O and O′. In the probe limit, the effective potential for

the dilaton is the induced metric times the IR potential, Vdil = a4
IRUIR brane(φ(aIR)), which

realizes exactly (1.2) and leads to identify the IR brane potential UIR brane(φ) as the dilaton

quartic function.3

Encouraged by this match, in this paper we try to test the CPR proposal in slightly

simpler and perhaps more ‘realistic’ models, involving a single nearly marginal operator

O. The RG flows triggered by a relevant deformation already have all the ingredients to

possibly realize SBCI, because upon performing a deformation −λO generally one expects

that O itself develops a condensate, 〈O〉. The fluctuation of 〈O〉 then can already play

the role of a (possibly light) dilaton. This can be quite easily tested using the techniques

developed in the context of holographic RG flows [8–14] and soft-wall models [15, 16].

Specifically, we consider confining RG flows, i.e., flows that generate a ‘universal’ mass

gap ΛIR, in the sense that all operators in the theory acquire gapped spectra controlled

by ΛIR. It is rather straightforward to see that this implies that the beta function must

go to an order-one constant. This seems to jeopardize the possibility that there is a light

dilaton — the beta function cannot be small in the deep IR. However, there is a subtle way

out: the dilaton will turn out to be light whenever the beta function turns to the confining

regime fast enough. The natural and generic way that the beta function experiences a fast

rise is by the condensation of O itself. The only requirement, then, will be that the beta

2As is arranged for if U(λ) = f(λ)2 and f has a simple zero [6, 7].
3One can see that for nearly-marginal deformation this is true up to small corrections.

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
1

function stays small (walking) at the condensation scale. The end result will be completely

in line with the CPR observation.

Before going to the main points, a brief note on related literature. The interest for

the dilaton as the pseudo-Goldstone boson of spontaneous breaking of scale has a long

history, dating back to [17–19]. More recently there has been a renewed interest mostly

triggered by LHC phenomenology — see [20–29] and references therein. The identification

of a dilaton in a holographic RG flows goes back at least to [9], which identified a massless

dilaton in the tuned SBCI flows and no dilaton in deformation flows. Recently, there was

a renewed interest, though some of the cases studied involve what in the present paper

we classify as tuned SBCI [30, 31], which displays an exactly massless dilaton. Works

discussing the formation of a condensate in holographic CFT deformations include [12–

14, 32]. There is also a considerable amount of literature on string-theoretic embeddings

of walking dynamics and light dilatons, starting from [33] (see also [34] and references

therein for a more recent account). Since these scenarios are supersymmetric, it is hard to

disentangle whether the dilaton lightness stems from SBCI or from SUSY. In the present

work, we consider non-supersymmetric flows.

The rest of this paper is organized as follows. In section 2.1 we review the holographic

RG flows, using the language of the holographic beta function, which is very convenient to

understand when the dilaton should be light. In section 2.2 we introduce the differential

equation that the holographic beta function obeys, and describe how it gives a method to

compute the condensate 〈O〉 once the model (the bulk potential) is specified. This method

may be well understood by the expert reader, but we find that a clear and systematic

presentation of it was lacking in the literature. In section 2.3 we describe the most basic

general features of the flows of main interest, running between a CFT in the UV and a

confining IR and how the condensation of O emerges in this picture. We then introduce

in section 2.4 the two representative models (model ‘A’, which has 〈O〉 6= 0; and model

‘B’, with 〈O〉 = 0), for which we will compute the scalar glueball spectrum. In section 3

we present the analytic and numerical computations of the spectra for both ‘A’ and ‘B’

models. We offer some conclusions and discussion in section 4.

2 Nearly-marginal deformations, holographically

In this section, we review the holographic description of the CFT deformations, and exploit

the holographic beta function (or the equivalent superpotential method) to describe how

confinement and the condensation of operators arise in holographic RG flows.

Holographically, the deformations of a CFT by a scalar operator O are realized as

a domain wall geometry, where a (d + 1)-dimensional scalar field φ develops a profile in

the ‘holographic’ extra dimension y and the metric responds according to the (d + 1)-

dimensional Einstein equations. To fix the notation and normalizations we shall take the

d+ 1 action as

S =
Md−1

2

∫
dd+1x

√
−g
{
R− (∂φ)2 − 2V (φ)

}
(2.1)
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where we factor out an overall Planck constant and we will work with dimensionless scalar

φ = φcanonical

/
M (d−1)/2 and rescaled potential V = Vcanonical

/
Md−1 . We intend to keep

the discussion as independent as possible of the specific choice of the potential V (φ).

However, the main focus will be on monotonous potentials that admit an AdS vacuum,

that we will choose to be at φ = 0.

A ‘domain wall’ geometry is a solution with d-dimensional Poincare symmetry,

ds2 = dy2 + a2(y)dxµdxνηµν ,

φ = φ(y) . (2.2)

With this type of ansatz, the equations reduce to one 2nd order and one 1st order equations,

φ̈+ d
ȧ

a
φ̇ = V ′(φ) (2.3)

d(d− 1)

2

(
ȧ

a

)2

=
φ̇2

2
− V (φ) (2.4)

where a dot stands for a y-derivative. As it is well known [8], these equations can be

equivalently written as the following system of first order equations

φ̇ = −W ′(φ) (2.5)

ȧ

a
=
W (φ)

d− 1
(2.6)

in terms of a superpotential W (φ) that obeys

W ′(φ)2 = 2V (φ) +
d

d− 1
W 2(φ) . (2.7)

In non-supersymmetric theories, the superpotential equation should be understood as

an equation for W (φ) that depends only on the choice of V . Since it is a first order ODE,

W is determined up to an integration constant (to be identified as the condensate 〈O〉 in

our case). Below we describe a well defined prescription to fix this integration constant

from a certain regularity condition in the IR.

Before that, though, let us bring up two convenient coordinates for the domain wall

geometry. The first one is the ‘Unitary gauge’, where the field φ (being a monotonous

function along the geometry) is itself the coordinate. In this coordinate, the metric reads

ds2 =
dφ2

[W ′(φ)]2
+ a2(φ)dxµdxµ ,

and the only evolution equation is for a, ∂φ log a = − W (φ)
(d−1)W ′(φ) .

2.1 The holographic beta function

The other convenient choice is the ‘RG-gauge’ where the warp factor a is the coordinate.

Since the warp factor a is what plays the role holographically of the renormalization scale

µ, in this gauge the comparison with the field theory language is most convenient.

– 5 –
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In this gauge, the metric reads

ds2 =
da2

a2W 2(φ(a))
+ a2dxµdxµ .

Once the RG scale µ is identified with the warp factor, and since the value of φ close to

the boundary is identified as the coupling strength of the deformation (the λ in eq. (1.1)),

one immediately identifies the holographic version of the beta function [10, 11, 35] as

a∂aφ = −(d− 1)
W ′(φ)

W (φ)
≡ β(φ) . (2.8)

The results of section 3 support that this is the correct identification of what plays the

role of the beta function. It follows that the superpotential relates to β(φ) as

W (φ) =
d− 1

`
exp

(
−
∫ φ

0
dφ′

β(φ′)

d− 1

)
(2.9)

and that the superpotential equation in terms of the beta function is the following integral

equation [36, 37] (
β2 − d(d− 1)

) W 2

2(d− 1)2
= V . (2.10)

In principle one could use this equation (together with (2.9)) to work out β once V is given

or vice-verse. However, it is slightly more convenient to use (2.7) first and then (2.9).

From eq. (2.10) it is clear that the domain walls (with V (φ) < 0 everywhere) map to

flows with a bounded beta function,

β2 < d(d− 1) (2.11)

everywhere along the flow. Also clear at this point is that a constant beta function maps

into exponential superpotential and potential. Shortly, we will see that confining geometries

require that for φ→∞, β goes to an order-one constant β(φ)→ β∞ in the range
√
d− 1 <

−β∞ <
√
d(d− 1). Hence, we encounter one important difference between the (confining)

soft walls and the probe brane realization of [1–5]: βIR is not small for the confining soft

walls, and it is a priori unclear from the CPR argument whether one should expect a light

dilaton or not. As we will see, the answer is still yes for certain types of flows.

2.2 The beta function equation

Before turning to specifying the flows, let us emphasize an important point. Using (2.10)

and its derivative, it is straightforward to realize that the beta function β(φ) which describes

the flow obeys a differential equation,

β β′ =
(
β2 − d(d− 1)

)( β

d− 1
+

1

2

V ′

V

)
, (2.12)

which we will refer to as the beta function equation.4

4Equations equivalent to (2.12) have appeared previously in the literature, e.g. in [14, 38]. After the

completion of this work we realized that [39] also discusses a differential equation for a beta function in a

spirit very similar to the following discussion.
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In non-supersymmetric theories, the logic that we will take is that the bulk poten-

tial V (φ) (which is basically a free function within certain limits) is given. And then we

solve (2.12) to find β(φ). The solutions are typically non-analytic and involve an integra-

tion constant, which maps to the condensate 〈O〉. The way to fix it — to compute the

condensate — requires some physical boundary condition, which we are going to take as

requiring that the flow is ‘regular’ (minimally singular, rather) in the IR end of the flow.

We describe in detail this procedure in the following subsections.

At this stage, it is already clear that (2.12) has a number of notorious features. Fixed

points (β = 0) indeed map to extrema of V (eq. (2.10) requires them to be AdS extrema).

Another type of flows stands out: those with a nonzero but constant β(φ), which give

a relaxed notion of self-similarity. Indeed, a constant β(φ) implies that the 5D metric

differs from AdS by a scaling conformal factor (ds2 = z2θds2
AdS with θ 6= 0 and z the

conformal coordinate). This is known as “hyperscaling violation” in the literature [40] (see

also [41, 42]).5 As will become clear in section 2.3 the hyperscaling ‘points’ with large

enough beta function exhibit confinement.

It is also clear that there are two attractors dominating eq. (2.12), corresponding to

the vanishing of the two factors on the r.h.s. of (2.12). The first one (β = −
√
d(d− 1)) is

an ‘IR attractor’, in the sense that is attractive towards large φ. This is ‘bad’ attractor —

it gives rise to singularities of Gubser’s bad type [15].

The other (‘good’) attractor depends on the form of V (φ), and it is a UV attractor (at-

tractive towards small φ). For smooth potentials (specifically, with small
(
V ′

V

)′
), it drives

the beta function towards β ' −d−1
2

V ′

V , (the superpotential is driven towards ∝
√
−V ).

For suitably chosen V (φ), this then leads to singularities of Gubser’s ‘good’ type. For

exponential V (φ) (i.e., V ′/V = constant), it leads to constant beta function (hyperscaling

flows).6 Provided that V ′/V is not too large, these are ‘good’ singularities.

Let us finally emphasize that the beta function equation (2.12) and the superpotential

equation (2.7) are basically equivalent problems. The existence of a smooth, real and single-

valued W (φ) solution to eq. (2.7) seems to be equivalent to existence of an equally smooth

solution β(φ) to the beta equation (2.12). This follows from the fact that given a smooth

β then W is obtained by eq. (2.9). Strictly speaking, β(φ) needs to be integrable, but for

most cases of interest this is the case. Conversely, given a smooth (and differentiable) W

then β is given by (2.8). Thus, for potentials with AdS minima, it is possible to obtain

the usual Breitenlohner-Freedman bound from the requirement of reality of the solutions

to (2.12) (see section 2.3 below) near the AdS minimum.

For a generic potential V (φ), it is not possible or easy to show analytically the existence

of a smooth solution to the beta function equation. However, eq. (2.12) is straightforward

to integrate numerically, for instance by shooting from the ‘good’ attractor (whenever

present). In the examples that we consider below, V (φ) interpolates between const+φ2 for

5The identification of hyperscaling with a constant β (of some scalar operator) seems to apply straight-

forwardly also in Lorentz non-invariant cases.
6The scale-covariance of the hyperscaling geometries is directly related to the scale symmetry enjoyed

by the exponential potentials (see e.g. [43, 44]).
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small φ to an exponential for φ → ∞ that admits a ‘good’ attractor. For large φ, then, a

smooth β(φ) is granted to exist. It is non-trivial, though, that this can be matched to the

AdS asymptotics at φ = 0, since this requires that β(φ) goes linearly in φ (equivalently,

W ∼ const + φ2) near φ = 0. Typically, if the transition to the exponential behaviour

starts at small enough φ, then this becomes incompatible with the AdS asymptotics (β is

forced to go to a nonzero constant or equivalently W to go like const + φ) or with single-

valuedness. However, it is possible to see numerically that arranging the transition to the

exponential regime in V (φ) to start at large enough φ, then the regular AdS asymptotics

can be reached simultaneously with the good singularity attractor at φ → ∞. This is the

form of V (φ) that we consider in all the examples below. For these models, then, one can

say that there is numerical evidence that smooth, real and single-valued β(φ) and W (φ)

exist.

We will perform a more detailed study of the implications of (2.12) in section 2.3 for

the specific potentials of interest in this work.

2.3 CFTs with confining deformations

Let us now describe in detail the type of RG flows that most clearly illustrate when and

how a naturally light dilaton emerges. To make the discussion as well defined as possible,

we will concentrate on flows from close to a CFT in the UV down to a confining IR.

In this case, the spectrum is granted to be gapped and the dilaton is going to be easily

identifiable as a low-lying mass-eigenvalue. The simplest realization then requires a CFT

with a (marginally) relevant and confining operator O, which is dual to a scalar field φ in

the bulk. The RG flow of interest will then be given by the deformation of the CFT by the

operator O, and that this deformation is confining maps into having an appropriate form

of the bulk potential V (φ) at large φ.

Some of the main points presented in this section have been derived previously e.g.

in [14, 36, 38, 45–48] and may be well understood by many readers. Still we find that a

concise and hopefully pedagogic presentation may be useful.

The UV. RG flows from a UV CFT fixed point translate into Domain Wall geometries

that are asymptotically AdS (towards the AdS conformal boundary), so we require the

potentials V (φ) to have an AdS extremum. With no loss of generality, we will choose

the field variable such that such extremum is at φ = 0. Small φ is then identified as

corresponding to ‘the UV’ region. To simplify the analysis, we will restrict to potentials

that are analytic in φ and even under φ → −φ, that is they admit a series expansion in

powers of φ2. For small φ then we have

V (φ) = −d(d− 1)

2`2
+
M2
φ

2
φ2 +O

(
φ4
)
. (2.13)

Towards the AdS boundary (recall that the a coordinate plays the role of the RG scale

µ) such a scalar contains two modes,

φ(a) ' λ a−∆− + 〈O〉 a−∆+ . (2.14)

– 8 –
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The sub-leading mode is identified with a CFT operator O and the leading one is identi-

fied with its conjugated source (or coupling) λ. This identification is known as standard

quantization, and is the only choice consistent with unitarity for nearly-marginal operators.

Let us emphasize that the bulk field variable plays the role of a generalized version of the

running coupling constant that includes not only the running coupling λ(a) ∼ λ a−∆− but

also possibly the ‘running condensate’ ∼ 〈O〉a−∆+ .

In fact, once the potential is fixed to (2.13), all of this information is nicely encoded in

the beta function equation (2.12). One only needs to plug the expansion (2.13) in (2.12),

and work out the expansion of β(φ) for φ → 0. Importantly, since β(φ) is only asked to

solve (2.12), one should allow that the beta function contains both a perturbative and a

non-perturbative part7 [14, 38],

β(φ) = βP(φ) + βNP(φ) .

The perturbative part, βP, is completely fixed by V . Writing V (φ) =
∑

n=0 v2nφ
2n and

βP(φ) =
∑

n=0 β2n−1φ
2n−1 in (2.12) then the β2n−1’s are simple algebraic functions of the

v2n’s. At the first order

βP(φ) = −∆ φ+ . . . (2.15)

and, from (2.12), ∆ is seen to obey ∆(∆ − d) = M2
φ

/
`2 . Thus, ∆ is set to either of ∆±

with the familiar expressions

∆± =
d

2
±

√(
d

2

)2

+M2
φ `

2 . (2.16)

All the higher order coefficients β2n−1 with n > 1 are given by a single-valued expression

involving the v2n and β2n−1 up to the same order. Thus all the β2n−1 are completely fixed

up to the binary choice in ∆.8

Hence for a given potential V , there can be two types of beta function (and of super-

potential), with either ∆ = ∆− or ∆ = ∆+ (called W−-type and W+-type in [14]). The

physical meaning of such beta functions is very different. From (2.8) or (2.5), it follows

that a ‘∆+-type’ beta function describes a CFT where the operator O condenses, that is

a CFT with purely spontaneous breaking of conformal invariance.9 From the discussion

in the introduction, one expects that this situation is either fine-tuned or supersymmetric.

We will see this more explicitly below. Instead, a ‘∆−-type’ beta function is a genuine

deformation of a CFT by the operator O (δL = −λO) — an explicit breaking of conformal

invariance.

7Needless to say, in light of (2.8) or (2.9), everything that one can say about β can immediately be

translated in terms of the superpotential: W (φ), also, admits a similar separation, W (φ) = WP(φ)+WNP(φ).
8Strictly speaking, this requires that ∆± are irrational numbers, an assumption that we will take through-

out this paper but which is not essential for our main results.
9Recall that the holographic beta function defined through (2.8) measures both the running of the

deformation coupling as well as the dimension of the condensate — it is a measure of the breaking of scale

invariance independently of whether the breaking is explicit or spontaneous. In undeformed CFTs with

SBCI (the type W+-flows), the holographic beta function defined by (2.8) is not really a beta function of

any coupling — it just reads the (anomalous) dimension of the condensate.
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Thus, ∆+-type beta functions represent CFTs with SBCI — or simply ‘SBCI flows’.

Conversely, ∆−-type beta functions are CFT deformations — or ‘deformed CFTs’.

The next step is to realize that, generically, the deformed CFTs also induce the for-

mation of a condensate: an explicit breaking of conformal invariance also induces spon-

taneous breaking. To see this, we turn to the non-perturbative part, βNP. By definition,

this is a function that satisfies the nonlinear ODE (for βNP(φ)) obtained by plugging

β = βP(φ) + βNP(φ) and V (φ) in (2.7). This problem has been studied at length [14] (in

terms of superpotentials) and the outcome is quite interesting. Generally, WNP is a non-

analytic function of φ2, and its presence is controlled by an integration constant — usually

referred to as s. It is possible to parametrize this integration constant so that s = 0 means

βNP = WNP = 0 [14]. When βNP is a small correction to βP, the differential equation

can be linearized and the solution explicitly found. Whenever β(φ)� 1 (as happens close

enough to φ = 0) the expression simplifies to

βNP(φ) ∝ s exp

(
−
∫ φ

0
dφ′

d+ β′P(φ′)

βP(φ′)

)
. (2.17)

For the obtained UV behaviour of βP (2.15), one sees that βNP ∼ s φ
d

∆±
−1

(the NP su-

perpotential goes like WNP ∼ φ
d

∆± ), which is generically non-analytic in φ. For ∆+-type

flows the only choice compatible with βNP being a small correction in the UV is that s = 0.

Thus SBCI flows do not allow a NP part. This is a first hint that these CFTs have to be

tuned.

Instead, deformation beta functions are compatible with βNP because φ
d

∆−
−1

is sub-

leading to φ. Not only that, for finite s there is always a region of sufficiently small φ where

WNP is well approximated by (2.17).

Now, the physical meaning of the integration constant s is none other than the value

of the condensate 〈O〉. Indeed, upon using (2.8) or (2.5) and a β(φ) of the form β =

−∆−φ+ · · · − s φ
d

∆−
−1

+ . . . (dots denoting higher integer powers), one obtains

φ = λ a−∆−(1 + . . . ) + s
λ

∆+
∆−

∆+ −∆−
a−∆+ (1 + . . . ) . (2.18)

Thus, indeed, the subleading mode (dual to the condensate 〈O〉) is proportional to s. In

brief we will see that for generic choices of V (φ) the condensate is nonzero.

So far, we have seen i) that the perturbative part of the flow is uniquely fixed by

the bulk potential V (φ); ii) that for given V there are at most two types of flows; iii)

that the SBCI-flow does not have an integration constant to be adjusted; and iv) that the

deformation flows do have one which is physically the condensate.

The condensate. Let us now see how to determine the condensate 〈O〉 — or s. The

main idea is that s should be adjusted so that the IR part of the flow is regular — or at

least as regular as possible. Generally the flows to a confining IR (or any IR which is not a

CFT) correspond to singular bulk geometries, with a curvature singularity in the φ → ∞
region. However, as pointed out by Gubser [15] (see also [49, 50] and [45–47, 51]) not all
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singularities are equally ‘bad’. The natural IR boundary condition that supplements the

beta function equation (2.12) is that the φ→∞ region is as regular as possible. This selects

uniquely a critical value for the integration constant, referred to as sc in [14], which maps to

the physical value of the condensate 〈O〉 in the regular ground state of the deformed CFT.

In light of the properties of the beta function equation (2.12), the procedure to find

sc is straightforward: the behaviour of β(φ) for large φ is dominated by the bad attractor

of (2.12). If one ‘over-shoots’ from the UV (taking s > sc), then the solution falls on

the bad attractor, β → −
√
d(d− 1). If one under-shoots (s < sc), then one can see that

the solutions do not reach out to φ → ∞ (it becomes singular at a finite φ). The critical

solution is, then the first solution that extends for φ→∞; and the last that does not fall

into the ‘bad’ attractor. There are many physically meaningful solutions that are examples

of such critical solutions, ranging from extremal (hairy) black holes [15, 50, 51] to the AdS

Soliton [52, 53].

The procedure to find sc numerically for a general V (φ) can be made systematic

and efficient by shooting instead from the IR — since then the ‘bad’ attractor is in fact

repulsive. A class of potentials that is especially simple to treat is given by potentials

that grow exponentially for φ → ∞, i.e. with V ′

V = constant. For these, the regular beta

function obeys at φ→∞

β → β∞ ≡ −
d− 1

2

V ′

V
= const. (2.19)

Whenever β∞ > −
√
d(d− 1), such a solution is maximally regular — it is a ‘good’ singu-

larity according to Gubser’s criterium. In particular, it follows that in order to possibly

admit for IR-regular flows, the potential cannot grow too large — it is also restricted to

V ′

V
<

1

2

√
d

d− 1
. (2.20)

The main point that we want to emphasize now is that generically sc is nonzero.

Typically, the only way to have a maximally regular β(φ) in the IR is to allow for a

nonzero integration constant. Of course, it is always possible to design a beta function

that has no NP part — and that is therefore an analytic function of φ2 that has smooth

IR as in (2.19). However, these inevitably descend from fine-tuned potentials — these

are fine-tuned CFTs. And there are two types of such tuned CFTs: CFTs with SBCI

for (∆+-type flows) or deformations of CFTs that don’t induce a condensate. Both of

these situations are automatically generated in supersymmetric cases — or, whenever one

assumes a superpotential which is an analytic function of φ2.10

Instead, for randomly chosen potentials V (φ) (which are analytic in φ2 and with smooth

enough IR (as in (2.20))), then:

1. generically, there is no SBCI flow (no ∆+-type beta function or superpotential) with

regular IR. Typically, ∆+-type flows fall into the bad attractor and so these solutions

10Of course, this is true both for standard and alternative quantization. For the alternative quantization,

one interprets the leading mode in φ as 〈O〉 and the subleading as λ. Then, the ∆− solutions have a

condensate and ∆+ solutions don’t. In addition, generically the ∆− solutions have both a condensate and

a source term, so these are deformations. The tuned sub-type of ∆− solutions with no subleading mode

are the tuned CFTs with SBCI. And the ∆+ solutions are deformations that induce no condensate.
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Model A

Figure 1. Form of d−1
2

V ′

V (blue dotted) and −β(φ) (continuous red) for the model ‘A’. Three

regimes (deformation, condensation and confinement) are clearly distinguishable in β(φ). The

black dashed lines are the behaviour of the beta function in the three regions. In the deformation

region, −β(φ) ' ∆−φ. In the condensate-dominated region it is given by the ∆+-type form

β ' −∆+(φ − φcond), or even better, eq. (2.25); in the confinement region −β(φ) ' ν
√
d(d− 1).

−β(φ) tracks the function (d−1)
2

V ′

V everywhere except on the condensate-dominated region. The

shaded area corresponds to regular and confining flows. The plot is for ∆− = 0.05, ν = 0.8,

φconf = 2.6, d = 4 and a smoothing of the jump in V ′/V with N = 20.

are discarded as unphysical. Therefore, generic potentials (or CFTs) do not lead

to SBCI.

2. there is always a deformation flow (a ∆−-type beta function or superpotential), gener-

ically with a nonzero condensate 〈O〉 (sc 6= 0). Therefore, CFT deformations by an

operator O generically lead to a condensate 〈O〉.

We won’t give here a proof of these statements — they are almost straightforward conse-

quences of the form of the beta function equation, eq. (2.12), equipped with the maximally-

regular-IR boundary condition.

Instead, we can illustrate that this is what happens looking at the first of the examples

that we will work out below. For the Type-A model depicted in figure 1, V ′/V behaves

like ∼ ∆−φ for φ < φconf and jumps to an order-one constant for φ > φconf . The numerical

integration to extract β(φ) reveals that immediately after the dip in V ′/V (going towards

small φ), β(φ) behaves like a ∆+-type solution which is typically displaced from the origin,

that is with β(φ) approaching 0 at φ 6= 0. In the generic situation depicted in figure 1

what happens then is that β(φ) is attracted towards ∆−φ, so in the end the solution is of

∆−-type. In order for the beta function to be really of ∆+-type, one should fine tune φconf

so that β(φ) ‘lands’ exactly at φ = 0 while it is still of ∆+-type. This clearly illustrates

both points 1) and 2) above.

The region where the β(φ) looks like a displaced ∆+-type solution clearly is to be

interpreted as the generation of the condensate 〈O〉. Importantly, this also means that one
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can clearly distinguish two threshold values of φ: the start of the confining region φconf

and the start of the condensate-dominated region φcond. It is obvious from the figure that

φcond < φconf .

Integrating (2.8), this implies that there is also a clear separation of scales: the condensation

scale acond = a(φcond) is generically bigger than the confinement scale aconf . For the Type-A

model of figure 1, this separation of scales can be estimated as

aconf

acond
∼ (∆−)1/∆+ .

This picture suggests that the scale of the condensate being parametrically bigger than the

confinement scale may be a rather general rule. Amusingly enough, in QCD the scale of

the gluon condensate is around 400–500 MeV [54], which is about twice of what is usually

taken as ΛQCD.

Another result implied by this prescription to find β(φ) refers to stability. As is well

known, the gravity-scalar bulk theories admit ‘energy bounds’ — for the given asymptotic

boundary conditions, one can establish that there is a minimum energy solution (see e.g. [51,

55, 56] and references therein). This is granted whenever there exists a solution with a

superpotential defined for all φ, which is certainly the case for the critical (with s = sc)

flows. This implies that the critical flow is the ground state of the deformed theory and that

therefore all excitations around the flow should have positive energy. We will check this

property below, as the dilaton mode that we will find always has a positive mass-squared.

Notice that this applies even in the sc < 0 case. Since sc ∼ 〈O〉 ∼
δSeff
δλ , this might look like

a kind of instability. However, these arguments suggest that there is nothing particularly

unstable about sc < 0.

The deep IR. To complete this discussion, let us now briefly characterize some of the

possible types of flow in the IR in terms directly of the (holographic) beta function. The

discussion applies at least to theories with a gravity dual. Similar discussions can be found

in terms of the superpotential [45–47]. Depending on the form of β(φ) for large φ, the

following IR behaviours stand out:

1. fixed point : β(φ) has a simple zero at finite φ. In this case, the flow is from a UV

CFT to an IR CFT, and the spectrum is gapless.

2. ‘asymptotic’ fixed point : β(φ) vanishes at φ→∞.

3. hyperscaling : β′(φ) → 0 (with β(φ) → β∞ 6= 0) at φ → ∞, and −β∞ <
√
d− 1.

In this case there is no universal mass gap (see below), so this case is qualitatively

distinct from confinement and from a fixed point.

4. confinement : β(φ) → β∞, with
√
d− 1 < −β∞ <

√
d(d− 1). In this case, the

theory generates a universal mass gap — the spectrum of all excitations becomes

discretized (see below). The case β∞ = −
√
d− 1 is marginal, and whether it gives

rise to confinement and with what sort of discrete spectrum depends on how β(φ)
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approaches this constant (see e.g. [47] for an equivalent discussion in terms of the

superpotential).

This list is not intended to be exhaustive. Other more exotic options such as β(φ) ap-

proaching asymptotically a periodic (and bounded) function of φ seem conceivable.11

In this work, we are mostly interested in confining flows. A simple holographic cri-

terium for confinement (i.e. universal mass-gap generation) is that the conformal coordinate

has a finite range. Placing the AdS boundary at z = 0, this implies that the location of

the IR singularity is at a finite conformal coordinate z = zs. In terms of the beta function,

this leads to the condition

zs =

∫ ∞
0

dφ

a(φ)W ′(φ)
=

`

a0

∫ ∞
0

dφ

−β(φ)
exp

(∫ φ

0
dφ′
{
β(φ′)

d− 1
− 1

β(φ′)

})
<∞ . (2.21)

Imposing that zs is finite, one then obtains a bound on the beta function

− β∞ >
√
d− 1 (2.22)

(β∞ ≡ limφ→∞ β(φ)). Thus, confining flows must inescapably have an order-one beta

function in the deep IR. Yet, we will see in section 3 that the dilaton can still be suppressed

in some cases.

Provided (2.21) is finite, then the mass-splittings in the spectrum of resonances is close

to (see e.g. [47]),

ΛIR =
1

zs

and ΛIR can be thus identified as the mass-gap. The marginal case β∞ = −
√
d− 1 can

lead to more QCD-like trajectories for the resonances m2
n ∼ nγ (with γ depending on how

β(φ) approaches the line β = −
√
d− 1), but we won’t consider this case here.

Our analysis will apply straightforwardly to the family of flows where β(φ) asymp-

totes to

β∞ ≡ −ν
√
d(d− 1)

with
1√
d
< ν < 1 .

All of these cases have a finite mass gap and a tower of resonances with an even spacing,

mn ∼ n. The upper limit ν < 1 stems from requiring that the singularities are of Gubser’s

good type.

2.4 Two models

Having presented most of the background material on holographic RG flows, we are now

ready to specify the two concrete choices of V (φ) that allow to illustrate the physics of

light dilatons. Our basic requirements are that 1) the UV corresponds to a nearly-marginal

(‘walking’) deformation of a CFT and 2) that the IR is confining. Thus, the potential V (φ)

11This is certainly compatible with the null energy condition in the bulk since it only requires the potential

(in fact, V ′/V ) to be oscillating.

– 14 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
1

needs to have 1) an approximate shift symmetry in the UV region (φ� 1); and 2) V ′/V ∼
of order one and therefore a large breaking of the shift symmetry in the IR (for φ� 1).

At this point let us only note that this kind of potential is natural in the technical

sense. The flatness of V is protected by the shift symmetry which is certainly realized for

small φ, and the order-one breaking of the shift symmetry can stay localized to the large φ

region. In effective field theory reasoning, the shift-symmetry breaking terms are irrelevant

operators — the shift symmetry in the bulk can be seen as an ‘emergent’ or accidental

symmetry.

The two models below will share these properties. Their difference will be in the

presence/absence of the condensate 〈O〉.

Model A: 〈O〉 6= 0. Let us start with a representative model of the most generic case,

when the condensate 〈O〉 is present. The only thing that we need to do is to take the

simplest potential V (φ) that joins an approximately shift-invariant UV with a confining

IR. In terms of

V (φ) ≡ −d(d− 1)

`2
exp (v(φ)) (2.23)

we need v′(φ) small for φ � 1 and v′(φ) > 1
2

d
d−1 for φ � 1. Thus, we will consider v′(φ)

to experience a sharp order one jump at a certain φconf ,

v′(φ)=


2(Mφ`)

2φ
d(d−1) for φ� φconf

2ν√
d−1

for φ� φconf

⇒ v(φ)=


(Mφ`)

2φ2

d(d−1) for φ� φconf

2ν√
d−1

φ+ v0 for φ� φconf .
(2.24)

The precise form of V (φ) is not important so long as it satisfies these properties. An

analytic expression for this type of potential can easily be obtained, e.g., like V (φ) =

−d(d−1)
`2

(
V N

UV + V N
IR

) 1
N , with VUV/IR having the corresponding UV/IR behaviours with

VUV(φconf) = VIR(φconf), and with a large enough N .

One then has to integrate (2.12) to extract β(φ). Shooting from the IR (large φ) close

to the good attractor β(φ) ' −ν
√
d(d− 1) immediately leads to the smooth beta function

displayed in figure 1. We see that β(φ) stays close to the attractor −ν
√
d(d− 1) until v′

experiences the jump. The beta function then enters a ‘condensate-dominated’ region. In

this region, β(φ) is well approximated by a condensate-type (∆+-type) solution which is

displaced from the origin. It goes like β ' −∆+(φ − φcond) with some constant φcond for

φ − φcond small. A better approximation can be found by solving (2.12) with V ′ = 0. At

zero-th order in ∆−, one finds

− β(φ) '
√
d(d− 1) tanh

[
d

d− 1
(φ− φcond)

]
. (2.25)

Notice that this expression re-sums the perturbative expansion in powers of s (the first

term of which is given by (2.17)) in the region where the condensate dominates.

Eventually, β(φ) ‘lands’ again on the good attractor and tracks its UV behaviour

β(φ) ' −∆−φ until φ = 0. An important remnant of the condensate-dominated region is

the non-zero integration constant sc carried by the non-perturbative part — the condensate

〈O〉 — which is generated in this way, the subleading mode ∼ a−∆+ in (2.18).
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Incidentally, the fact that the ∆+-type (or SBCI) flows do not exist generically for a

given V (φ) is clearly seen in this exercise: in order to have such a SBCI flow we would need

that φcond = 0, so that the condensate region lands at φ = 0. This is clearly non-generic.

For later reference, let us bring in some convenient labels for the most notorious land-

marks of this flow. The value of φ where the condensate starts to dominate (coming from

UV) is what we call φcond. The value of φ where we enter the confinement region, we

label φconf and it is where v′(φ) experiences the jump. Hence, we see that the condensate

dominates before confinement. This is expected to be generic, and suggests that the scale

of the condensates is slightly bigger than that of confinement.

As we will see, the most interesting case consists of flows that stay in a walking regime

as close as possible to the confining ‘deep IR’ region. This is accomplished by taking

Mφ`� 1 and having the jump in v′(φ) at a moderate φ (φconf = a few).

Model B: 〈O〉 = 0. It is, of course, also possible to design the beta function so that

there is no condensate. This is in fact quite easy since this is the case that corresponds to

an analytic expression for β(φ). Hence, one only needs to pick an analytic function with

appropriate UV and IR behaviour and it is granted that this will be a physical flow with

sc = 〈O〉 = 0 in the ground state. Needless to say, this is far from being the generic case.

So, just for the sake of comparison, let us see what happens in this case — it turns out

that the dilaton also notices a tuning.

It suffices to take (as we did previously for v′) any smoothed version of a β(φ) piece-wise

defined

β(φ) =

{
−∆−φ for φ� φconf

−ν
√
d(d− 1) for φ� φconf .

(2.26)

A simple analytic expression is obtained directly in terms of the superpotential, likeW (φ) =
d−1
`

(
WN

UV +WN
IR

)1/N
, with WUV/IR chosen appropriately and with N large enough.

We display in figure 2 the resulting β(φ) and v′(φ). The oscillating feature in v′(φ)

near the jump in β(φ) is a manifestation that the potential needs to be carefully adjusted

in order to avoid forming a condensate.

3 Spectra

In this section, we present the computation of the scalar spectrum in general for nearly-

marginal deformations and specifically for the two representative models introduced in

section 2.4. There are in the literature many computations very close to the one in this

section, e.g. [9, 57–59], though these were not considering precisely the present problem.

We will mostly follow ref. [59] adapted to the holographic setup.

The most general scalar perturbation of the background flow solution is given by

allowing

φ = φ0(y) + δφ and ds2 = N2dy2 + gµν(dxµ +Nµdy)(dxν +Nνdy)

with N = 1 + δN , Nµ = ∂µψ, gµν = a2(y) e2ξ ηµν . In the following, we will work in

the Unitary gauge, δφ = 0, though everything can be equivalently done using gauge-
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Figure 2. Plot of d−1
2

V ′

V (blue dotted line) and of −β(φ) (continuous red line) for the model ‘B’,

with ∆− = 0.2, ν = 0.8, φconf = 2.6, d = 4 and a smoothing of the jump in β with N = 15. The

blue dotted line is (d−1)
2

V ′

V . The black dashed lines are the behaviour of the beta function in the

deformation region and confinement regions. There is still something like a ‘condensate-dominated’

region where β does not track V ′/V , but the condensate (〈O〉 ∝ sc) in this flow vanishes.

invariant variables. In this gauge, the dynamically propagating bulk scalar is ξ. Since

ξ + δφ/β is a gauge invariant variable then one can translate from the ξ variable into a

δφ perturbation by adding a factor β. Here and below, β stands for the background beta

function, β(φ0(y)) = φ̇0

(log a)̇ , and we recall that dots stand for y-derivatives.

It is straightforward to obtain linearized equations that δN and Nµ satisfy, and one

finds that both variables are constrained to be given in terms of ξ and its derivatives.

Substituting these expressions into the action (2.1), using the background equations of

motion and integrating by parts a number of times, one quite easily arrives at the following

‘reduced’ action for ξ

Sred =
Md−1

2

∫
ddxdy adβ2

[
(∂µξ)

2

a2
− ξ̇2

]
. (3.1)

Thus, the equation of motion for ξ in terms of the background proper coordinate y reads

1

ad β2

d

dy

[
ad β2 ξ̇

]
− �0ξ

a2
= 0 , (3.2)

with �0 = ∂2
t − ∂2

x − . . . . Introducing a Fourier decomposition in the boundary coordi-

nates ξ = ξne
−ikµxµ , one then obtains an eigenvalue problem for the modes, with masses

kµk
µ = m2

n,
1

ad β2

d

dy

[
ad β2 ξ̇n

]
+m2

n

ξn
a2

= 0 . (3.3)

The spectrum of mn becomes discrete once we provide boundary conditions at the two ends

of the flow. On the UV end (at conformal coordinate z = 0), we will require that δφ contains

only the sub-leading mode (standard quantization), thus β ξ ∝ z∆+ . On the IR end (at
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conformal coordinate z = zs), we will require that the modes are regular. As will become

clear below, one can require that the modes go to a constant at the singularity, z = zs.

3.1 A massless dilaton in CFTs with SBCI

Before going to the two representative models with a presumably light dilaton, let us first

review the case with an exactly massless dilaton, which should be present in the SBCI

flows (the ∆+-type flows), independently of the fact that these are fine tuned. A similar

computation can be found in [9].

In fact, it is illustrative to start requiring that the dilaton is massless and see what this

demands on the background flow. Thus, let us assume that there is one zero eigenvalue.

Setting mn = 0 in (3.3), one immediately finds (from now on we switch to the conformal

coordinate dz = dy/a)

ξ = c1 + c2

∫ z

0
dz′

1

ad−1 β2
. (3.4)

We can now simply check when this expression satisfies all the boundary conditions (and

is normalizable).

Let us start by the IR. Note that if mn is indeed vanishing, then there are no approxi-

mations in (3.4) — this expression holds even at the singularity. Since the c2-mode clearly

diverges at the singularity, then IR-regularity requires c2 = 0. Hence, when present, a

massless dilaton has a constant wavefunction in the ξ variable.

Let us now see when this also satisfies the UV boundary condition. A constant-ξ mode

translates into a δφ mode proportional to the background beta function

δφ = c1 β . (3.5)

Thus, whether this mode belongs to the spectrum of physical modes depends only on the

type of flow. If the flow is of SBCI-type (a ‘∆+-type’ flow, with only the sub-leading mode

φ ∼ z∆+ turned on), then such a δφ mode automatically satisfies ‘standard quantization’

prescription. Since the δφ wave-function involves the fast-decaying mode, it is granted that

this mode will be normalizable. Hence the dilaton is a physical massless mode for the SBCI

flows.

Instead, if the flow is of the deformation-type (a ‘∆−-type’ flow, with the leading

mode φ ∼ z∆− turned on), then such a δφ mode does not satisfy ‘standard quantization’

prescription.12 This proves that the dilaton cannot be massless in CFT deformations.

Let us only add at this point that the reader familiar with Domain Walls will find (3.5)

quite reasonable. Since β ∝ φ̇0 this is just the mode that displaces the Domain Wall location

φ(y, x) = φ0 (y + δy(x)) along the holographic direction. Since the SBCI flows only contain

the condensate (φ ∼ 〈O〉 z∆+ + . . . ), a displacement of the domain wall location then is

equivalent to a rescaling of 〈O〉, and this should indeed be massless. From this point of

view, it is less intuitive why there is no massless dilaton for Domain Walls dual to CFT

deformations. From the previous paragraph, the massless Domain Wall displacement mode

(φ(y, x) = φ0 (y + δy(x))) is still there, and regular in the IR. The problem is that it fails to

fulfill (asymptotically) Conformally Invariant boundary conditions and/or normalizability.

12For ∆− < (d− 2)/2, in addition, the wave-function of such a mode would not be normalizable.
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Figure 3. Spectrum for the Type-A model as a function of ∆− — the scaling dimension of the

nearly-marginal coupling λ. The first 6 modes are depicted. The lightest mode — the dilaton —

scales like m2
dil ∼ ∆−.

3.2 A light dilaton in marginal CFT deformations

Let us now see that the dilaton is massive in CFT deformations, and possibly light if the

deformations are nearly-marginal.

Lacking generically an analytic solution to the eigenvalue problem (3.3), finding the

full spectrum requires numerical methods. The first few modes for the spectra of the above

models ‘A’ and ‘B’ are depicted in figures 3 and 4 respectively. It is obvious from the

figures that there is a light state — the dilaton is light.

In the following, we concentrate on the light mode, which allows for an analytic treat-

ment.13 The reader not interested in technical details may jump to the mass formula for

the dilaton, eq. (3.12).

The technique to solve for the light mode is the standard method of matched asymp-

totic expansions (see e.g. [30, 60]). That is, one finds approximations to the wave-function

ξdil separately valid in the UV (ξUV
dil ) and the IR regions (ξIR

dil), and matches them together.

Implementing the UV (IR) boundary condition on ξUV
dil (ξIR

dil) is straightforward, and then

the matching procedure determines the eigenvalue, m2
dil. Importantly, if the mode is light

enough (mdil � ΛIR), then both the UV- and the IR-expansions have a finite overlap region

of validity, which allows a well defined matching procedure.

UV-expansion. Treating m2 as a small parameter in (3.3), the solutions in the near-

boundary region of (3.3) can be obtained iteratively in powers of m2 starting from (3.4).

Formally, the UV expansion takes the form (see e.g. [30])

ξUV
dil =

(
1−m2 IUV + . . .

) [
c1 + c2

∫ z

0
dz′

1

ad−1 β2

]
, (3.6)

13Whenever there is a mass gap, the mn 6= 0 modes separate into ‘heavy’ (m & ΛIR) and ‘light’ (m� ΛIR)

modes.
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Figure 4. Spectrum for the Type-B model as a function of ∆−. The first 6 modes are depicted.

The lightest mode — the dilaton — scales like mdil ∼ ∆−.

with the integral operator (acting to the right)

IUV ≡
∫ z

0
dz′

1

ad−1β2

∫ z′

0
dz′′ad−1β2 ,

and the dots denote higher powers of the operator m2IUV. In the following it will suffice

to work at the lowest order in m so one can drop the round brackets in (3.6). But it is

important to display the higher order terms so that we can estimate the validity of this

approximation. Note that the expansion parameter really is m2
/
a2 . Then, the validity of

the UV small m expansion is estimated as that zm obeying zsm/a(zm) ∼ 1.

The UV-boundary condition is ‘standard quantization’, i.e., no leading (z∆−) mode in

δφ = β ξ. Since we are now assuming that the flow is a CFT-deformation, β ∼ ∆−z
∆− ,

we require c1 = 0,

ξUV
dil ' c2

∫ z

0
dz′

1

ad−1 β2
. (3.7)

Indeed, with c1 = 0 then δφ ∼ c2 z
d−∆− . We see that c2 represents a shift of the background

value of the condensate 〈O〉, which looks like a reasonable candidate to play the role of the

dilaton.

IR-expansion. The IR-expansion works exactly like the UV-expansion, only that one

starts the integrations at the IR end of the flow, that is on the singularity z = zs. Thus

we write

ξIR
dil =

(
1−m2 IIR + . . .

) [
b1 + b2

∫ zs

z
dz′

1

ad−1 β2

]
, (3.8)

with the integral operator now being

IIR ≡
∫ zs

z
dz′

1

ad−1β2

∫ zs

z′
dz′′ad−1β2 .
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At zero-th order in m2 the two linearly independent solutions are still of the form (3.4),

and the regularity on the IR selects b2 = 0. That is because for the confining models that

we consider (zs finite) the integral
∫ zs
z dz′ 1

ad−1 β2 is always divergent.14 Thus we now have,

ξIR
dil = b1

(
1−m2 IIR

)
(3.9)

with IIR acting on 1, and we keep the first term in parenthesis in order to capture the

leading order z-dependence.

Notice that deep enough in the confining region, with β(φ) = β∞ = const, and W ∼

W0 e
ν
√

d
d−1

φ
one can solve analytically (3.2) in terms of Bessel functions, of which one

selects the regular one. This can be useful for the heavy modes but not for the light

dilaton mode, because this approximation inevitably fails when β(φ) departs from β∞.

The approximation (3.9), instead, holds for values of z (and φ) much closer to the UV, and

so maximizes the overlap region.

Matching. The overlap region where both (3.6) and (3.9) are valid is approximately

given by zs
2 . z � zm, which is certainly a finite region of the flow for zsm � 1, that is

precisely when there the dilaton is light. It is now enough to require

ξUV
dil (zM) = ξIR

dil(zM) and ξUV
dil
′(zM) = ξIR

dil
′(zM) (3.10)

at a point zM in the overlap region. The precise choice of zM should not change much

the results — by definition of overlap region — but is possible to choose zM to improve

the approximation done by truncating ξUV and ξIR at a given order (see below). For the

moment, one can clearly see in the plots of figure 5 that there is indeed a considerably wide

overlap region (which widens more the smaller is ∆−).

Taking c1 = 0 and b2 = 0, the matching conditions (3.10) are easily seen to give

c2

b1
' m2

dil

∫ zs

zM

dz ad−1 β2 ,

and

1

m2
dil

'
(∫ zM

0
dz

1

ad−1 β2

)(∫ zs

zM

dz ad−1β2

)
+

∫ zs

zM

dz
1

ad−1β2

∫ zs

z
dz′ad−1β2 . (3.11)

Interestingly, mdil is expressible in terms of integrals over the flow — some sort of averages

of the beta function. Equation (3.11) still depends on the matching point zM, which is to

be chosen so that the approximation works as well as possible. This can be decided by

14In conformal coordinate, close to z = zs one has a(z) ' as
(
zs−z
zs

) 1
dν2−1 and β → const. Thus, the

b2 integral is finite only for ν < 1/
√
d, but in this case zs is not finite — there is no confinement. In RG

flows with a fixed point or hyperscaling in the IR, instead, one may allow for a nonzero b2 consistently with

IR-regularity, suggesting that the IR boundary condition is qualitatively different in those cases. Indeed,

for IR CFTs, the relevant condition is the ingoing boundary condition [61]. The dilaton mode should then

be realized as a quasi-normal mode — it should have a finite decay width. We leave this case for future

investigation.
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Figure 5. The dilaton wave function ξ(φ) as a function of the φ-coordinate (continuous blue

line), obtained by numerically solving eq. (3.3). The UV- and IR-approximations to ξ(φ) (eqs. (3.7)

and (3.9) respectively), and the background beta function are also plotted. The dilaton wavefunction

switches on at the condensation threshold φcond. The pink bullets indicate ξUV
dil computed up to

the m2 IUV term in eq. (3.6) at some sample points. This already approximates quite well to the

numerical ξ(φ), indicating a rather fast convergence of the perturbative expansion. The left (right)

panel refers to model A (B).

plotting the combined error — the error committed by both the UV- and the IR-expansions

added in quadrature. We display the result of the error in figure 6.

There is, however, a much more interesting choice to take: zM = 0. This does not give

as good an approximation but it has the virtue that it provides a formula for mdil that

does not involve zM anymore,

m2
dil '

1∫ zs
0 dz 1

ad−1β2

∫ zs
z dz′ad−1β2

. (3.12)

Remarkably, sending zM → 0 is not only finite, but it is even a reasonably good approxi-

mation (see figures 6 and 7).

Now, let us use (3.12) to extract when the dilaton is light. The ‘average’ in (3.12) is

of a very special kind. The structure
[∫
a1−dβ−2

]−1
is automatically small if β is small

(walking) in the IR (a small).

To see more precisely how the double integral behaves, let us consider a toy model

that captures the main features of the flow. We can simplify the whole flow by assuming

that β(φ) is a piecewise linear function in 3 distinct regions: deformation, condensation

and confinement. Let us model the condensate-dominated by a generic slope ∆̃+, which

maps to the dimension of the condensate. In this way we allow that the operator dimension

in the IR may not be the same as in the UV. Thus we take

− β(φ) =


∆−φ for 0 < φ < φcond

∆̃+(φ− φcond) + ∆−φcond for φcond < φ < φconf

ν
√
d(d− 1) for φ > φconf .

(3.13)
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IR and m2
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IR.
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It is straightforward to integrate now eq. (2.8) for φ(a), and (3.12). The inner integrand

is a smooth function of z and can be estimated as a constant of order zs. The outer

integrand in (3.12) is highly peaked close to φcond. Since the backreaction is still small at

φcond, it is a good approximation to take the conformal coordinate as z = 1/a, and one can

straightforwardly integrate (3.12). Up to order-one factors, the result for small ∆− is15

m2
dil ∼ (∆−)2−d/∆̃+ Λ2

IR . (3.14)

Thus, mdil is suppressed so long as ∆− � 1 and the dimension of the condensate is big

enough,

∆̃+ >
d

2
.

Pictorially, the rise towards confinement needs to be fast enough. In hindsight, this seems

quite natural. Unless the beta function has a sharp rise towards confinement (order 1

values) there is no way that the beta function can possibly be small in the ‘IR’.

Eq. (3.14) correctly reproduces the suppression of mdil in models A and B. In model

A, ∆̃+ = ∆+ = d−∆−, so now obtains

m2
dilA ∼ ∆− Λ2

IR . (3.15)

For model B, instead, ∆̃+ ∼ N � 1 and

m2
dilB ∼ ∆2

− Λ2
IR . (3.16)

These behaviours are indeed observed in the numerical computation. Figure 7 shows a

comparison between the full result against formulas (3.11) and (3.12). The scalings (3.15)

and (3.16) are indeed reproduced.

Recall from the introduction that the CPR argument states that generically m2
dil ∼ βIR,

even though additional suppressions can arise by tuning the IR brane potential. In the soft-

wall realizations, the confinement plays the role of the hard IR brane and the condensate

region controls the IR brane potential.

4 Conclusions and discussion

In this paper, we have studied confining deformations of CFTs driven by a single nearly-

marginal scalar operator O. Generically, such deformations induce a nonzero condensate

〈O〉, and the spectrum of scalar excitations can contain a naturally light dilaton mode

identifiable with the fluctuation of the condensate 〈O〉. We found a mass-formula for the

dilaton involving an integral over the flow,

m2
dil '

[∫ zs

0
dz

1

ad−1β2

∫ zs

z
dz′ ad−1β2

]−1

, (4.1)

where a is the RG scale, β the beta function, z the bulk conformal coordinate that runs

from 0 to zs = 1/ΛIR, being ΛIR the mass gap. This formula can be thought of as a kind of

15The condensation and confinement scales in this model are related as aconf/acond ∼ (∆−) 1/∆̃+ .
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average over the flow of the beta function. It has the remarkable property that whenever

i) the beta function is small (walking) in the ‘IR’ and ii) the rise in β towards confinement

(β of order one) is fast enough, then the dilaton is light.

In nearly marginal deformations, Dim(O) = ∆+ = d − ∆− with ∆− � 1 and the

deformation beta function can be estimated to be of order ∆−. The rise between walking

and confinement can be and is generically interpolated by the condensation of the operator

O. It is illustrative to allow that Dim(O) changes along the flow. Let us call ∆̃+ the

effective dimension at the condensation scale. Then (4.1) reduces to

m2
dil ∼ (∆−)2−d/∆̃+ Λ2

IR . (4.2)

Hence, in order for the dilaton to be light ∆̃+ > d/2, this gives a quantitative idea of

how fast the rise to confinement needs to be. In the simplest models, with Dim(O) not

changing along the flow (∆̃+ = ∆+), the suppression is linear m2
dil ∼ ∆− Λ2

IR. However,

arranging for bigger ∆̃+ gives a stronger suppression. This is exactly in line with the CPR

proposal [1–3].

We have illustrated this by considering two families of holographic RG flows with IR-

walking and a confining soft-wall: models of ‘Type-A’, which are dual to deformations of

CFTs that are generic in that they induce a condensate 〈O〉; and models of ‘Type-B’,

which are dual to deformations of CFTs that are tuned so that 〈O〉 = 0, but which mock

the condensation of an IR operator of large dimension ∆̃+ � d. For the Type-A models,

we find m2
dil ∼ ∆− Λ2

IR, whereas for Type-B models, m2
dil ∼ ∆2

− Λ2
IR. The light dilaton is

there in both cases, regardless of whether 〈O〉 vanishes or not. This makes perfect sense, on

one hand because the dilaton mode is the fluctuation of 〈O〉 and on the other because even

if 〈O〉 = 0 the confining flow still breaks ‘spontaneously’ scale invariance by generating a

mass gap.

Thus far, we have showed that there is a light state in these models. Its mass is sup-

pressed by the order parameter of the breaking of conformal invariance (the beta function)

evaluated at the condensation threshold (the largest of the scales that emerge in the IR).

Clearly, then, this is a dilaton.

Let us now comment on the technical naturalness of this construction. From the point

of view of the gravity theory, we have certainly made an assumption on the form of the

bulk potential V (φ). In the simplest (Type-A) models, the potential for the bulk scalar φ

is almost flat for small field φ . φconf , and exponential in φ for φ & φconf . Such a potential

might well be technically natural, because it interpolates between shapes that are protected

by the shift symmetry φ→ φ+ const. At φ . φconf , V (φ) is (approximately) invariant. At

φ & φconf , V (φ) scales by an overall constant under the shift. Of course, around φ = φconf

there is no symmetry protecting V (φ), and shift-symmetry breaking terms can permeate to

small and large φ in the quantum theory. However, one expects that this communication

is suppressed precisely in the limit that the transition is very sudden — when the range

∆φ with an unprotected potential is small ∆φ/φconf � 1. For instance, assume that the

leading tail at small φ from the break at φconf is φ2p with integer p. This interaction

certainly contributes radiatively to e.g. the mass, but this starts at p − 1 loops. Hence,
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for very large p (very sudden transition) the communication is suppressed by many (p− 1)

loop factors.16 Interestingly enough, the form of the beta function (see figure 1) seems

quite insensitive to the details of the transition in V (φ) so long as it is fast enough. A

more quantitative study of this protection is perhaps worth pursuing, but we take this as

a very suggestive indication that this type of potentials are technically natural.

All of these results are perfectly in line with the recent observation made by Con-

tino, Pomarol and Rattazzi [1–3] (that a naturally light dilaton can emerge provided the

beta function ‘in the IR’ is small). Their proposal is realized even in quite simple CFTs

containing a single (nearly-marginal) scalar operator.

The mass-formula (4.1) has another obvious remarkable model-independent feature:

m2
dil is explicitly positive, so this can be seen as a perturbative stability result. The dilaton

turns out to be never tachyonic, at least in confining models. This is not so surprising,

though. The scalar-gravity system dual to a CFT with a scalar operator obeys positive

energy theorems [51, 55, 56]. This allows to identify the regular RG flows as the ground

state of the CFT deformation, and seemingly implies that the spectrum of glueballs should

not include any tachyons.

Let us also emphasize that eq. (3.12) has a wide applicability for confining flows — it

can be used as a diagnostic for the presence of a light dilaton. However, it is not necessarily

applicable to other types of IR. For instance, in CFT deformations that flow to an IR CFT

one would expect that the physical dilaton state acquires a finite decay width [61]. These

cases are left for future investigation.

On the other hand, we have also elaborated on the method to compute the condensate

〈O〉 resulting from a (CFT-) deformation δL = −λO. Holographically, the method is based

on the fact that the holographic beta function satisfies a first-order differential equation,

eq. (2.12). Supplemented with a regularity condition in the IR, this differential equation

uniquely determines the condensate 〈O〉 once the holographic model (namely, the bulk

potential V (φ)) is specified. The origin of the differential equation eq. (2.12), obviously, lies

on the fact that the scalar dual to O obeys a second order Klein Gordon equation. It seems,

then, that locality in the holographic direction is what leads to the simple prescription to

compute the condensates from a differential equation.

An immediate application of this method is that in theories (potentials) with a sharp

transition to confinement, then i) a condensate generically develops and ii) the condensation

scale is larger than the confinement scale. The ratio of scales goes like acond/aconf ∼
(∆−)−1/∆̃+ . Here, ∆− is a proxy for the beta function at the condensation scale and ∆̃+

for the effective dimension of the condensing operator. This suggests that the scale of the

condensate should be larger than the confinement scale even in theories with a moderate

beta function at the condensation scale. Intriguingly enough, QCD seems to obey this rule:

the scale of the gluon condensate (around 400–500 MeV) is about twice of ΛQCD [54].

The method is of course applicable to a very wide class of models — beyond the

confining flows considered here. In all cases one expects that for a given ‘model’ (or bulk

16It is intriguing that the criterium for when V (φ) is natural is very similar to the criterium for when the

dilaton is light — they both require a fast transition.
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potential V (φ)), generically 〈O〉 will not vanish. Also, if the flow experiences sudden

changes (as in the flows discussed here), then one should expect condensate-dominated

regions.

Concerning possible applications of the scenarios with a naturally light dilaton, the

most obvious one — adopting the light dilaton as the Higgs boson — unfortunately seems

to be already under some tension with LHC data [27, 29]. However, given that in this type

of models it is natural to have a considerable hierarchy of scales between the Higgs and the

tower of resonances, it may be worthy to push this idea further. The other obvious target

is the Cosmological Constant problem. Finding a similar natural mechanism to relax the

Cosmological Constant (that is, to by-pass Weinberg’s no-go theorem [62]), seems far from

straightforward [5]. We hope to return to these issues in the future.
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[44] A. Flachi, J. Garriga, O. Pujolàs and T. Tanaka, Moduli stabilization in higher dimensional

brane models, JHEP 08 (2003) 053 [hep-th/0302017] [INSPIRE].

[45] U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP

02 (2008) 032 [arXiv:0707.1324] [INSPIRE].

– 29 –

http://dx.doi.org/10.1007/JHEP04(2013)015
http://arxiv.org/abs/1209.3259
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3259
http://dx.doi.org/10.1140/epjc/s10052-013-2333-x
http://dx.doi.org/10.1140/epjc/s10052-013-2333-x
http://arxiv.org/abs/1209.3299
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3299
http://dx.doi.org/10.1007/JHEP09(2013)121
http://arxiv.org/abs/1304.1795
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1795
http://dx.doi.org/10.1051/epjconf/20136017005
http://arxiv.org/abs/1312.0259
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0259
http://dx.doi.org/10.1007/JHEP10(2013)181
http://dx.doi.org/10.1007/JHEP10(2013)181
http://arxiv.org/abs/1307.2572
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2572
http://dx.doi.org/10.1007/JHEP07(2013)056
http://arxiv.org/abs/1304.3051
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3051
http://dx.doi.org/10.1002/prop.201400007
http://arxiv.org/abs/1401.0888
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.0888
http://dx.doi.org/10.1016/j.physletb.2010.02.023
http://arxiv.org/abs/0908.2808
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2808
http://dx.doi.org/10.1007/JHEP05(2014)003
http://arxiv.org/abs/1312.7160
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7160
http://dx.doi.org/10.1016/S0550-3213(99)00773-7
http://arxiv.org/abs/hep-th/9907070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9907070
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.022
http://arxiv.org/abs/0911.0627
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0627
http://dx.doi.org/10.1016/j.physletb.2011.01.011
http://dx.doi.org/10.1016/j.physletb.2011.01.011
http://arxiv.org/abs/1009.4639
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4639
http://dx.doi.org/10.1088/0264-9381/31/3/035011
http://dx.doi.org/10.1088/0264-9381/31/3/035011
http://arxiv.org/abs/1310.0858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0858
http://dx.doi.org/10.1007/JHEP12(2011)103
http://arxiv.org/abs/1107.0870
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0870
http://dx.doi.org/10.1007/JHEP06(2012)041
http://arxiv.org/abs/1201.1905
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1905
http://dx.doi.org/10.1007/JHEP11(2010)151
http://arxiv.org/abs/1005.4690
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4690
http://dx.doi.org/10.1007/JHEP12(2011)036
http://arxiv.org/abs/1107.2116
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2116
http://dx.doi.org/10.1016/S0550-3213(03)00065-8
http://arxiv.org/abs/hep-th/0111277
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111277
http://dx.doi.org/10.1088/1126-6708/2003/08/053
http://arxiv.org/abs/hep-th/0302017
http://inspirehep.net/search?p=find+EPRINT+hep-th/0302017
http://dx.doi.org/10.1088/1126-6708/2008/02/032
http://dx.doi.org/10.1088/1126-6708/2008/02/032
http://arxiv.org/abs/0707.1324
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1324


J
H
E
P
0
8
(
2
0
1
4
)
0
8
1

[46] U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part

II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].

[47] J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-Wall Stabilization, New J. Phys. 12

(2010) 075012 [arXiv:0907.5361] [INSPIRE].

[48] E. Megias, H.J. Pirner and K. Veschgini, QCD thermodynamics using five-dimensional

gravity, Phys. Rev. D 83 (2011) 056003 [arXiv:1009.2953] [INSPIRE].

[49] R.M. Wald, Dynamics In Nonglobally Hyperbolic, Static Space-times, J. Math. Phys. 21

(1980) 2802 [INSPIRE].

[50] G.T. Horowitz and D. Marolf, Quantum probes of space-time singularities, Phys. Rev. D 52

(1995) 5670 [gr-qc/9504028] [INSPIRE].

[51] T. Faulkner, G.T. Horowitz and M.M. Roberts, New stability results for Einstein scalar

gravity, Class. Quant. Grav. 27 (2010) 205007 [arXiv:1006.2387] [INSPIRE].

[52] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Int. J. Mod. Phys. A 16 (2001) 2747 [Adv. Theor. Math. Phys. 2 (1998) 505]

[hep-th/9803131] [INSPIRE].

[53] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy

conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

[54] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Sum Rules,

Nucl. Phys. B 147 (1979) 385 [INSPIRE].

[55] A.J. Amsel and D. Marolf, Energy Bounds in Designer Gravity, Phys. Rev. D 74 (2006)

064006 [Erratum ibid. D 75 (2007) 029901] [hep-th/0605101] [INSPIRE].

[56] A.J. Amsel and M.M. Roberts, Stability in Einstein-Scalar Gravity with a Logarithmic

Branch, Phys. Rev. D 85 (2012) 106011 [arXiv:1112.3964] [INSPIRE].

[57] G. Arutyunov, S. Frolov and S. Theisen, A Note on gravity scalar fluctuations in holographic

RG flow geometries, Phys. Lett. B 484 (2000) 295 [hep-th/0003116] [INSPIRE].

[58] T. Tanaka and X. Montes, Gravity in the brane world for two-branes model with stabilized

modulus, Nucl. Phys. B 582 (2000) 259 [hep-th/0001092] [INSPIRE].

[59] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary

models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
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