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Abstract: We investigate a dynamically generated Mott gap from holographic fermions

in asymptotical geometries with hyperscaling violation by employing a bulk dipole coupling

for fermions. We find that when the coupling strength increases, the spectral function first

appears at the negative frequency region but is soon transferred to the positive region. A

stable gap and two bands emerge for all momentums when the coupling strength exceeds

a critical value. Generally, the upper band on the positive frequency axis is much sharper

than the lower band on the negative side. When the diploe coupling increases further,

the gap becomes larger. The upper band keeps sharp while the lower band disperses and

widens, concentrating on the small momentum space. We also find that the bands will be

smoothed out gradually with the increasing of hyperscaling violation.
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1 Introduction

In recent years, AdS/CFT correspondence has been widely used to study condensed-matter

theory (AdS/CMT). The strongly coupled conformal theory in the boundary is mapped

to weakly coupled gravity theory in the bulk. With this great advantage, people have

successfully constructed holographic models of Fermi and non-Fermi liquids in kinds of

geometries [1–9] and analytically investigated the liquids properties, showing the dispersion

relation and the width of the quasiparticle-like excitation.

Since condensed-matter systems are usually described by non-relativistic field theo-

ries, in order to search more proper gravity duals people have further generalized the

correspondence to non-relativistic holography, which describes anisotropic scaling behav-

iors for temporal and spatial coordinates [10–13] i.e. Lifshitz-like geometry with dynamical

exponent. For realistic systems, another important exponent i.e. hyperscaling violation

will emerge and play a crucial role in low energy physics. It is certainly necessary to

extend holography to this non-trivial case. This is realized by employing the standard

Einstein-Maxwell-dilaton action in the bulk [4, 14–17]. The metric behaves like:

ds2 = − dt
2

r2m
+ r2ndr2 +

dx2i
r2

, (1.1)

where i = 1, 2, . . . , d is the space index, m and n are related to dynamical exponent z and

hyperscaling violation θ by

z =
m+ n+ 1

n+ 2
, θ =

n+ 1

n+ 2
· d . (1.2)

Note that when n = −1, the metric reduces to the pure Lifshitz spacetime and n = −2

corresponds to a class of spacetime conformally related to AdS2 × Rd with locally critical

limit z →∞, θ → −∞, while z/θ is fixed to be a constant [18]. The metric transforms as

t→ λzt , xi → λxi , r → λ(d−θ)/dr , ds→ λθ/dds . (1.3)
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Clearly, the metric is not scale invariant. In general, the dual boundary theory exhibits

this peculiar behavior below some non-trivial dimensional scale. However, we will not

consider this complication. Instead we assume that the metric is asymptotical geometry

with hyperscaling violation in this paper.

We found remarkable influence of hyscaling violation on the dynamical gap by intro-

ducing a magnetic dipole coupling for bulk fermions. It was first proposed in [19, 20] and

further studied in [21–24]. A gap in the spectral function was opened when the dipole

coupling strength p exceeds some critical value, which behaves like a Mott insulator. The

gap becomes wider when p increases. The coupling strength p plays a role similar to the

dimensionless interaction strength U/t in the Hubbard model of fermions. The novel fea-

ture we find is that two bands exist in the spectral function, an upper band on the positive

frequency axis and a lower band on the negative side, respectively. These two bands behave

qualitatively different with the increasing of the interaction p and hyperscaling violation θ.

The remainder of this paper is organized as follows: in section 2, we briefly review the

effective gravity model, i.e., Einstein-Maxwell-dilaton theory for geometries with hyperscal-

ing violation. In section 3, we study the bulk fermions with a dipole interaction, deriving

the equations of motion for the retarded correlator. In section 4, we numerically solve the

equations of motion under proper boundary conditions and extract the main results of the

emergence of the gap. Finally, we present a conclusion in section 5.

2 Effective gravity model

The standard Einstein-Maxwell-dilaton (EMD) action reads

S =

∫
dd+2x

√
−g
[
R− 2(∂φ)2 − V (φ)− κ2

2
Z(φ)F 2 − κ2

2
H2

]
, (2.1)

where the AdS radius has been set to 1. The solutions with hyperscaling violation are

listed in the following:

ds2 = −r−2mh(r)dt2 + r2nh−1(r)dr2 +
dx2i
r2

, h(r) = 1−
(
r

rh

)δ
, (2.2)

F rt = F0r
(m−n+d)Z−1(φ) , Hrt = H0r

(m−n+d), (2.3)

φ = k0 log r , k0 =

√
d

2
(m−n−2) , (2.4)

V (φ) = −V0e−βφ , V0 = δ(m+ d− 1) , β =
2(n+ 1)

k0
, (2.5)

Z−1(φ) = Z0e
−αφ + Z1 , α =

2(n+d+1)

k0
, Z0 =

δ(m−1)

κ2F 2
0

, Z1 = −H
2
0

F 2
0

,

(2.6)

where δ = m+n+d+1, rh is the location of the horizon, F0, H0 are constants which are pro-

portional to the conserved charges carried by the black brane. The Hawking temperature

and the entropy density of the black brane are given by

T =
δ

4π

1

r
(m+n+1)
h

, s =
1

8κ2rdh
. (2.7)

– 2 –



J
H
E
P
0
8
(
2
0
1
3
)
1
1
9

In the zero temperature limit (rh →∞), the entropy density approaches to zero. This

is important for realistic systems with degenerate ground states.

In order to admit a stable theory, the dilaton solution is required to be real, leading to

m ≥ n+2 or equivalently z ≥ 1+θ/d, θ < d. Moreover, in the asymptotic limit r → 0, the

field strength Fµν diverges such that the dual chemical potential cannot be well defined.

Therefore we introduce another gauge field H = dB to obtain a proper definition for the

finite density

B(r) = µ

(
1− r(d−m+n+1)

r
(d−m+n+1)
h

)
dt , (2.8)

where µ is the chemical potential. The constraint condition which makes B and H finite

in the UV limit is

2 ≤ m− n ≤ d , d ≥ 3 . (2.9)

The divergent behavior of the field Fµν certainly needs to be treated properly in a

holographic renormalization procedure which we will not discuss in this paper. Since the

bulk fermions we consider don’t couple to the dilaton and F fields directly, the results we

obtain are still credible, in the absence of a full treatment of the holographic EMD theory.

3 Holographic fermion with magnetic dipole coupling

In order to explore the effects of magnetic dipole coupling on the spectral function of

fermions, we start from the following action

Sf [Ψ] = i

∫
dd+2x

√
−gΨ(ΓaDa −M − ipH)Ψ + Sbdy[Ψ] , (3.1)

Sbdy[Ψ] = i

∫
ε
dd+1x

√
−gε
√
grr Ψ+Ψ− , (3.2)

where Sbdy is a boundary action to ensure a well defined variational principle [25] for

the total fermion action. Ψ = ΨΓt, Da = (ea)
µDµ, with Dµ = ∂µ − iqBµ + 1

4ωµabΓ
ab,

Γab = 1
2 [Γa,Γb]. ωµab is the spin connection 1-form and H = 1

2Γab(ea)
µ(eb)

νHµν . Γa are

the d + 2 dimensional gamma matrices; (ea)
µ are vielbeins and M is the fermion mass.

Furthermore, gε is the determinant of the induced metric on the constant r slice, r = ε.

Ψ± is defined by

Ψ± =
1

2
(1± Γr)Ψ , ΓrΨ± = ±Ψ± . (3.3)

The Dirac equation derived from the action reads

(ΓaDa −M − ipH)Ψ = 0 . (3.4)

Taking a Fourier transformation

Ψ(r, xµ) = (−ggrr)−
1
4 e−iωt+ikix

i
ψ(r, kµ) , kµ = (−ω, ~k) , (3.5)

– 3 –
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where the prefactor was introduced to remove the spin connection in the equations of

motion. Since the theory is rotational invariant, we can choose the momentum along x1
direction. The Gamma matrices are chosen as follows

Γr =

(
−σ3 0

0 −σ3

)
, Γt =

(
iσ1 0

0 iσ1

)
, Γx1 =

(
−σ2 0

0 −σ2

)
, (3.6)

where σ are Pauli matrices. We further set

ψ =

(
ψ+

ψ−

)
, ψ± =

(
u±
d±

)
. (3.7)

Since the Dirac equation is first order, there exists some relation between ψ+ and ψ−.

Assuming ψ+(r, kµ) = −iξ(r, kµ)ψ−(r, kµ), we can derive an elegant equation to extract

correlators √
grr ∂rξ± + 2Mξ± =

(
v− ± k

√
gx1x1

)
ξ2± +

(
v+ ∓ k

√
gx1x1

)
, (3.8)

where ξ+ = iu−/u+, ξ− = id−/d+, ξ± are the eigenvalues of the matrices ξ. v± are defined

as follows:

v± =
√
−gtt

(
ω + qBt ± p

√
grr ∂rBt

)
. (3.9)

The corresponding retarded functions can be readily obtained as follows [26]

GO(kµ) = lim
r→0

ξ(r, kµ) . (3.10)

At the event horizon, we impose in-falling boundary conditions

ξ(rh, kµ) = i , for ω 6= 0 . (3.11)

We emphasize that the dimension of the fermionic operator O is ∆ = (m + d)/2

which leads to the fact that the unitarity bound was automatically satisfied with m ≥ 0

given by the null energy conditions [26]. The fermion mass decouples from the operator

UV dimension, contributing only to the IR physics which is peculiar in the asymptotical

geometries with hyperscaling violation.

4 Numerical results and emergence of the gap

To extract the effects of bulk dipole coupling on the spectral function, we need to nu-

merically solve the flow equation (3.8) with initial conditions (3.11). The spectral func-

tion is proportional to ImG(ω, k), up to normalization. Due to the relation G11(ω, k) =

G22(ω,−k), we will only consider G22(ω, k) and omit the subscript in the following. For

convenience, we set M = 0, µ = 1, q = 2, z = 2, d = 3. The dipole interaction strength p

and hyperscaling violation θ (or n) remain to be free.

First, we fix the hyperscaling violation, considering n = 0 case. From the plots above

in figure 1, we find that a sharp quasi-particle like peak occurs at kF ≈ 1.2044 for p = 0,

indicating the existence of a Fermi surface. The dual liquid is of Fermi type with linear

dispersion relation at the maximum height of the spectral function. For larger charge q,

– 4 –
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Figure 1. The 3D and density plots of ImG(ω, k). In the plots above, p = 0, a sharp peak occurs

at k ≈ 1.2044. In the plots below, p = 4, a gap emerges around ω = 0.

it has been investigated with great detail in [26] that more branches of Fermi surfaces

appear. Moreover, when q is sufficiently large, there exists a peculiar Fermi shell-like

structure, which contains many sharp and singular peaks in some narrow interval of the

momentum space.

When the interaction strength was turned on at p = 4, a gap emerges as is shown in

the plots below of figure 1. There are two bands, located at positive frequency (we call it

upper band) and negative frequency (called lower band) regions respectively. Evidently,

the lower band is stronger than the upper one, occupying the main intensity of the spectral

function. More interestingly, the upper band appears very sharp. In the big momentum

region, the lower band is also as sharp as the upper one but disperses for relatively small

momentum.
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Figure 2. The 3D plots and density plots of ImG(ω, k) for p = 6 (plots above) and p = 8 (plots

below).

From plots in figure 2,1 we can see that when p increases further, the gap becomes

larger. The upper band still keeps sharp for all momentum, translationally moving to the

higher frequency region. However, the lower band is deformed much by transfer of the

spectral weight to relatively higher momentum space.

In order to show the emergence of the gap in detail, we present the plots of spectral

function in figure 3. For very small p, the spectral function still has a sharp peak at

ω = 0, showing the main feature of a Fermi surface. As p increases, the intensity of

the peak degrades and the spectral density begins to appear at the negative frequency

axis. As p increases further, the spectral density is transferred to the positive frequency

region. Finally, at some critical interaction strength pcrit the original sharp peak at ω = 0

disappears and two stable bands emerge in both frequency regions.

1The black part in the 3D plots are purely numerical noise.
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Figure 3. The plots of ImG(ω, k) (k = 1.2) for p = 0.01, 0.2, 0.4, 1.1, 1.5, 2.0, from left to right and

top to down, respectively.

To further explore the properties of the spectral function, we show the spectral function

as a function of ω for p = 0, 4, 6, 8 for sample values of momentum. From the left plot

above in figure 4, some peaks appear at both frequency regions. Around ω = 0, the peaks

become sharper with its height tending to infinity, indicating that a Fermi surface exists

at k = kF . When p is amplified, the quasiparticle-like peaks around ω = 0 degrade and

vanish when p exceeds some critical value pcrit. A gap will be opened for all momentum as

the cases in literatures [19–22]. Evidently, the upper band appears sharper than the lower

one. For the lower band, the height of the spectral function increases monotonically with

the increasing of momentum. As p increases further, the gap widens. Both of the bands

appear robust. Notice that in the right plot below of figure 4, the lower band disappears

(the green and blue lines) when momentum exceeds some critical value, implying that a

– 7 –
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Figure 4. The plots of the spectral function ImG(ω, k) as a function of ω for sample values of

k ∈ [0.5, 2.5] for p = 0 (left plot above), p = 4 (right plot above), p = 6 (left plot below) and p = 8

(right plot below); k = 0.5 (black), k = 0.9 (purple), k = 1.3 (orange), k = 1.7 (red), k = 2.1 (blue)

and k = 2.5 (green).

redistribution and deformation happens. All of these results are consistent with our 3D

and density plots in figure 2.

In order to determine the critical strength pcrit, we plot the density of states A(ω), the

total spectral weight, which is defined by the integral of the spectral function ImG(ω, k)

over k. We find that the onset of the gap is at pcrit ≈ 1.2. Notice that for small p

(p < pcrit) the total spectral weight mainly distributes at the negative frequency region. As

p increases, it transfers to the positive region to open a gap. When the value of p is large

enough, the spectral weight will redistribute and backtrack to the negative region again.

These results are compatible with our previous observations (figure 1, figure 2, figure 3 and

figure 4).

Finally, in figure 6 we find that the width of the gap ∆ increases with the increasing

of the interaction strength p.

We now vary the hyperscaling violation θ with fixed p. Without loss of generality, we

set p = 6. In figure 7 and 8, we show plots of the spectral function for n = 0.5 and n = 1.

Clearly, the bands are highly suppressed as n increases. The upper band disappears first.

The lower band also becomes smooth gradually. As n is amplified further, we may argue

that in the θ → d limit, any sharp peak of the spectral function will be completely smoothed

out. The spectral density may transfer and redistribute to all frequency-momentum space

– 8 –
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Figure 5. The plots of density of states A(ω); in the left plot, p = 0.7 (black), p = 1.2 (red) and

p = 1.7 (blue); in the right plot, p = 3 (purple), p = 3.5 (orange) and p = 4 (green); the onset of

the gap is at p ≈ 1.2.

Figure 6. The gap width ∆ as a function of p.

homogeneously, with no explicit gap and band structure. This probably indicates some

unknown critical phase.

5 Conclusions

In this paper, we have studied the novel features of fermions in the presence of bulk dipole

coupling in the geometries with hyperscaling violation. For a finite hyperscaling violation

θ = d/2, we observe that when the dipole interaction strength p=0, a sharp quasi-particle

like peak occurs near kF ≈ 1.2044 at zero frequency, showing the existence of a Fermi

surface. As p increases, the intensity of the sharp peak degrades and the spectral weight

begins to appear at the negative frequency region but is soon transferred to the positive

frequency space. When p crosses a critical value pcrit, the Fermi sea disappears. Instead, a

stable gap and two bands emerge for all momentums. The upper band appears sharper than

the lower one which however occupies the main intensity of the spectral function. When p

increases further, the gap becomes wider. The upper band keeps sharp. In contrast, the

– 9 –
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Figure 7. The density plots of ImG(ω, k), n = 0.5 for the left plot, n = 1 for the right plot

respectively.

Figure 8. The plots of spectral function ImG(ω, k) as a function of ω for sample values of k ∈
[0.5, 2.5] for n = 0.5 (the left plot), n = 1 (the right plot); k = 0.5 (black), k = 0.9 (purple), k = 1.3

(orange), k = 1.7 (red), k = 2.1 (blue) and k = 2.5 (green).

lower band is deformed much by redistributing the intensity to small momentum space.

We also find that the width of the gap increases with the increasing of p.

When we fix p = 6 and turn on larger hyperscaling violation at n = 0.5, 1, the peaks

and bands are substantially suppressed. More interestingly, the upper band disappears

first while the lower band becomes smooth gradually. Thus, the strength of the spectral

density might distribute homogeneously in all frequency-momentum space in the θ → d

limit. It is of certain interests to explore this postulated critical phase in this limit. We

will address it in the near future.

– 10 –
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