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1 Preliminaries

Wilson loops are important non-local operators in any gauge theory. In three dimensions

they play a central role in that their expectation values and correlation functions constitute

the main observables of Chern-Simons theories.

In this note we will focus on Wilson loops evaluated on a light-like polygonal contour,

which display remarkable properties. In particular, they develop UV divergences due to the

cusps in the contour, which get strengthened by the on-shell conditions on the edges. These

divergences are controlled by a rather universal and ubiquitous quantity, the cusp anoma-

lous dimension, which also governs the leading IR singularities of scattering amplitudes of

massless particles and the anomalous dimensions of high-spin operators.

In N = 4 SYM, light-like Wilson loops exhibit even more interesting features, as it

has been observed that, loop by loop, not only their UV divergent part maps to the IR

divergent part of scattering amplitudes, but also their finite non-constant contributions

match [1]–[4]. This equivalence is achieved by writing particle momenta in scattering am-

plitudes in terms of dual variables pi = xi+1 − xi, which are then identified with the

ordinary space-time coordinates of Wilson loops. Under this transformation ordinary con-

formal invariance of Wilson loops is mapped into the so-called dual conformal invariance

of scattering amplitudes.

The Wilson loops/scattering amplitudes duality has a profound meaning at strong

coupling. In this regime, scattering in N = 4 SYM was studied via the AdS/CFT cor-

respondence, where dual coordinates emerge as a T-duality transformation and the com-

putation of the amplitude is mapped to that of a Wilson loop with a light-like polygonal

shape [5]. Moreover, the duality has a deep explanation in terms of the invariance of the

dual superstring model under a combination of bosonic and fermionic T-dualities [6, 7].

All known perturbative results for scattering amplitudes and light-like Wilson loops in

N = 4 SYM respect the maximal transcendentality principle [8], first formulated for the

anomalous dimensions of twist-2 operators [8]–[11]. In the case of scattering amplitudes

and Wilson loops computed using the dimensional reduction scheme, this principle states

that assigning transcendentality (−1) to the dimensional regularization parameter ǫ, the
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l-loop correction to such observables exhibits uniform transcendentality 2l. More generally,

the principle has been proved to be satisfied by other quantities in N = 4 SYM, like for

instance the Sudakov form factor [12]. This leads to speculate that the principle might

be related to intrinsic properties of the master integrals that appear in the computation

of form factors in this theory [11]. On the other way around, finding a basis of master

integrals with nice transcendentality properties leads to simplifications in the computation

of integrals by differential equations [13, 14].

In particular, for planar scattering amplitudes maximal transcendentality seems to be

a property of dual conformally invariant integrals appearing in their loop computation,

although the converse is not true.

It is certainly interesting to investigate whether such a remarkable property is shared by

other theories in different dimensions and/or with a different amount of supersymmetry. In

this note we will address this question for pure Chern-Simons theories in three dimensions

and for the N = 6 Chern-Simons-matter theory (ABJM) introduced in [15].

Known results for tree amplitudes in ABJM [16, 17] signal the presence of dual su-

perconformal [18]–[20] and Yangian [21] symmetry. By using a three-dimensional version

of BCFW recursion relations [22] these properties could be extended to planar loop inte-

grands. In fact, the two-loop four point amplitude [23, 24] and one-loop amplitudes [25, 26]

can be written as linear combinations of dual conformally invariant integrals. Notably, the

corresponding results exhibit maximal transcendentality. Perturbative results on form fac-

tors in ABJM are going to appear [27, 28], exhibiting this property too. On the other

hand, N = 8 SYM in three dimensions violates the maximal transcendentality principle.

In fact, its two-loop four-point scattering amplitude contains terms of non-uniform tran-

scendentality [29]. This is probably connected to the fact that the integrals in this theory

are just dual conformally covariant but not invariant [30].

Light-like Wilson loops in three-dimensional Chern-Simons theories with and without

matter have been computed in perturbation theory up to two loops. In [31] their expecta-

tion value has been found to vanish at one loop for polygonal contours with any number

of edges. In [32] the authors have derived an expression for the two loop correction to the

four cusps Wilson loop in pure Chern-Simons and in ABJM theory, which has been later

extended to all points [33].

In three dimensions, strong arguments in support of dual superconformal symmetry

and Wilson loops/scattering amplitudes are still lacking. In fact, at strong coupling it

is not yet clear how to implement the fermionic T-duality invariance of the ABJM dual

string background [34]–[40]. At weak coupling, despite a number of results on higher-point

amplitudes has been found in [25, 26, 41–43], it is not clear yet how the duality might

work, since for more than four external particles the amplitudes cease to be MHV.1

The four cusps Wilson loop in ABJM is nonetheless special since it has been discovered

to match the non-constant part of the two-loop four-point amplitude [23, 24, 44, 45]. This

is a hint that a Wilson loop/scattering amplitude duality might work even for ABJM.

1In three dimensions there is no notion of helicity. However, the name MHV (Maximally-Helicity-

violating) is commonly used in analogy to N = 4 SYM amplitudes.
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However, a puzzle already highlighted in [32] arises for what concerns maximal tran-

scendentality: The Wilson loop result fails to be maximally transcendental due to a residual

(log 2) term appearing in the constant, which cannot be reabsorbed into a redefinition of

the regularization scale. On the contrary, the four-point amplitude seems to enjoy dual

conformal symmetry and respects the maximal transcendentality principle. Therefore, it

would be quite inexplicable if the dual Wilson loop were not maximally transcendental.

It is the purpose of this note to tackle and solve this puzzle. We will argue that the

problem resides in the regularization of a divergent integral associated to a gauge three-

vertex diagram. After regularizing it by dimensional regularization in dimensional reduc-

tion scheme (DRED) and treating properly the contractions between three-dimensional

and d-dimensional objects, we find that maximal transcendentality is restored, opening the

possibility that this property can hold for pure Chern-Simons and ABJM, as well.

2 Regularization

We will be primarily interested in the evaluation of a light-like Wilson loop in pure U(N)

Chern-Simons theory2

〈W4〉CS =
1

N

〈

TrP exp i

∮

C
Aµdx

µ

〉

(2.1)

and of the analogous object for U(N)×U(N) ABJM theory

〈W4〉ABJM =
1

2N

〈

TrP exp i

∮

C
Aµdx

µ + T̂rP exp i

∮

C
Âµdx

µ

〉

(2.2)

where C is a tetragon with edges pµi ≡ xµi+1 − xµi , i = 1, · · · , 4 satisfying p2i = 0.

Perturbative evaluation suffers from short distance divergences arising near the cusps.

A widely used method for regularizing integrals is based on analytical continuation of

the space-time dimensions. In supersymmetric theories the most convenient scheme is

dimensional regularization with dimensional reduction [46], where Feynman rules are given

in integer dimensions n, the spinorial and tensorial algebras involving objects like γ matrices

and Levi-Civita ε tensors are performed strictly in n dimensions, whereas momentum

integrals are continued to complex d = n − 2ǫ. This scheme has been applied to three-

dimensional Chern-Simons theories with and without matter and has been proved to be

consistent with the gauge invariance and supersymmetry of the theory [47]. Recently, this

prescription has been also shown to reproduce the results coming from localization for the

case of 1/2 BPS circular Wilson loops in ABJM theory [48].

Care has to be taken when contracting objects of different dimensionality, specifically

three-dimensional objects coming from Feynman rules with d-dimensional tensors arising

from tensorial integrals. DRED scheme assigns the following rules [49] for contracting

three-dimensional metrics ηµν (we consider Lorentzian signature ηµν = diag(1,−1,−1))

and d-dimensional ones η̂µν

ηµνηµν = 3 η̂µν η̂µν = 3− 2ǫ ηµν η̂νρ = η̂µρ (2.3)

2We refer to [32] for notations, conventions and Feynman rules.
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(a) (b)

Figure 1. Gauge contributions.

Analogously, vectors pµi coming from integrals have to be thought as being d-dimensional

vectors, so that unambiguous rules are applied for contractions pµi pj µ and pµi η̂µν or pµi ηµν .

A concern may arise, instead, when contracting d-dimensional metric tensors with

Levi-Civita tensors which cannot be defined outside three dimensions. Usually, two possible

strategies for overcoming the problem can be used: Either tensor algebra is performed until

one reaches a situation where only scalar integrals survive [47], or one applies algebraic

identities in order to get rid of all ε tensors.

In the following, we will adopt the second strategy to compute tetragonal Wilson

loops (2.1), (2.2).

3 The computation

As discussed in [31, 32], the expressions (2.1), (2.2) vanish at one-loop. Therefore, the first

non-trivial contribution appears at two loops.

In the planar limit, the only non-vanishing diagrams for the two-loop Wilson loop in

pure Chern-Simons theory are associated to ladder and three-vertex topologies given in

figure 1.

While the ladder diagrams are finite and can be computed directly in three dimensions,

divergent integrals appear from diagrams of the type 1(b), which have then to be dimen-

sionally regularized. Consequently, they suffer from regularization ambiguities due to the

explicit appearance of ε tensors coming from the cubic vertex and the gauge propagators.

After some algebra, the contributions from 1(b)-type diagrams can be expressed in

terms of the following integral [32]

I321 =

∫

d3s1,2,3 ε
λµν ερστ p1λ p2µ p

ρ
3 p

σ
2 ∂z1 ν ∂

τ
z3

∫

ddw
(d− 2)−2

(w2)3/2−ǫ [(w − z12)2]
1/2−ǫ [(w − z32)2]

1/2−ǫ
(3.1)

where zi indicate the position on the edge pi, parameterized by si, z
µ
i = xµi + pµi si. The

method adopted in [32] consists in first solving the scalar integral by Feynman parameter-

ization in d dimensions

I321 = i πd/2 Γ (d− 2)

Γ (3d/2− 2)

1

(d− 2)2

∫

[dβ]3 d
3s1,2,3 ε

λµν ερστ p1λ p2µ p
ρ
3 p

σ
2 ∂z1 ν ∂

τ
z3

1

∆d−2

(3.2)
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where (zµij ≡ zµi − zµj , β̄i = 1− βi)

∆ = 2β1 β3 (z12 · z32)− z212 β1 β̄1 − z232 β3 β̄3 (3.3)

∫

[dβ]3 ≡

∫ 1

0
dβ1 dβ2 dβ3 (β1β2β3)

(d−2)/2−1 β2 δ

(

∑

i

βi − 1

)

Γ(3d2 − 2)

Γ(d2)Γ(
d
2 − 1)2

(3.4)

and then applying the derivatives. It is important to note that, since this is equivalent

to performing the derivatives first and then compute a tensor integral, the derivatives are

to be considered as living in d = (3 − 2ǫ) dimensions. It follows that the application of

derivatives yields

∂z1 ν ∂
τ
z3

1

∆d−2
= (3.5)

−(d− 2)

[

2β1 β3 η̂
τ

ν

∆d−1
− 4(d− 1)

(β1 β3 z32 ν − β1 β̄1 z12 ν)(β1 β3 z
τ
12 − β3 β̄3 z

τ
32)

∆d

]

where the metric appearing in the first term is a d-dimensional metric.

Inserting back into I321, the second term in (3.5), being proportional to external vec-

tors, can be safely contracted with the product of ε tensors as done in [32], giving the

second piece in formula (3.10) below. In the first term, instead, we have to evaluate

ελµν ερστ η̂
τ

ν p1λ p2µ p
ρ
3 p

σ
2 (3.6)

where contractions of a d-dimensional metric with three-dimensional Levi-Civita tensors

appear. To overcome the problem, we can get rid of ε tensors by using the identity

ελµνερστ = δλµν[ρστ ] (3.7)

When applied to our case, all terms containing ηµσ vanish because of the light-cone condi-

tion, p22 = 0. We are then left with

−
(

η̂ρρ − 2
)

ηλσ η
µ
ρ p1λ p2µ p

ρ
3 p

σ
2 (3.8)

This can be evaluated using the DRED rules (2.3) and gives (2 p1 · p2 ≡ s, 2 p2 · p3 ≡ t)

−
d− 2

4
s t (3.9)

Therefore, the final integral to be computed reads

I321 = i πd/2 Γ(d− 1)

8 Γ3(d/2)
st

∫ 1

0
d3 s1,2,3 d

3 β1,2,3 (β1 β2 β3)
(d−2)/2

δ

(

∑

i

βi − 1

)

(

1

∆d−1
(d− 2)− 2

(d− 1)

∆d
β1 β3 s̄1 s3 (s+ t))

)

(3.10)

We see that this expression differs from the result (B.7) in ref. [32] by a factor (d− 2) =

(1−2ǫ) in the first term. This discrepancy can be traced back to the application of DRED

rules when dealing with ε tensors.
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Figure 2. Matter contributions.

As discussed in [32], the ABJM Wilson loop (2.2) is obtained by adding to the contri-

butions from diagrams in figure 1 two extra contributions drawn in figure 2 where one-loop

matter corrections to the gauge propagators appear.3

While the first diagram is finite, the second one is divergent and requires regularization.

The one-loop correction to the gauge propagator, coming only from matter contributions,

contains ε tensors. However, summing bosonic and fermionic loops, the index structure

reduces to three dimensional tensors only and the ε tensor algebra can be performed un-

ambiguously, as done in [32].

To summarize, both for the pure Chern-Simons and for the ABJM Wilson loops the

only change which arises from a careful application of DRED is confined to the vertex

integral (3.10). In the next section we discuss the consequences of this mismatch on the

final result for 〈W4〉CS and 〈W4〉ABJM.

4 The result

As described above, revisiting the calculation of [32] by a careful use of DRED does not

lead to any change in the evaluation of two-loop diagrams for planar light-like Wilson

loops, except for the integral (3.10) associated to the vertex diagram in figure 1. Since

the integral I321 is 1/ǫ divergent, the evanescent term carried by the extra factor (d − 2)

in (3.10) modifies non-trivially the constant part of the two-loop result, as we now explain.

The final result for the pure Chern-Simons Wilson loop found in [32] by summing

ladder and vertex contributions reads

〈W4〉
(2)
CS = −

(

N

k

)2 1

4

[

log 2
4
∑

i=1

(−x2i,i+2 µ̃
2)2ǫ

ǫ
− 10ζ2 + 8 log 2 + 8 log2 2

]

(4.1)

where the regularization scale has been redefined as µ̃2 = µ2πeγE . This result exhibits

a non-maximally transcendental constant 8 log 2. This leads to the speculation that the

heuristic maximal transcendentality principle [8] might not be working for light-like Wilson

loops in Chern-Simons theory.

However, if we now redo the calculation by taking into account the extra factor (d−2)

in eq. (3.10) it is easy to realize that a further constant contribution −8 log 2 is produced,

which exactly cancels the transcendentality-one term in (4.1).

3We recall that in DRED the one-loop gauge and ghost corrections cancel exactly [47].
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Therefore, using a proper prescription for dealing with Levi-Civita tensors in DRED,

the final expression for the tetragonal Wilson loop in pure Chern-Simons turns out to be

〈W4〉CS = 1−

(

N

k

)2 1

4

[

log 2
4
∑

i=1

(−x2i,i+2 µ̃
2)2ǫ

ǫ
− 10ζ2 + 8 log2 2 +O(ǫ)

]

+O(k−3) (4.2)

and is manifestly maximally transcendental.

The same effect occurs in the evaluation of the ABJM Wilson loop. In fact, summing

to the previous result the extra contributions from diagrams in figure 2 and redefining the

mass scale as µ′2 = 8πeγEµ2 in order to avoid the appearance of 1/ǫ poles, we find

〈W4〉ABJM = 1 +
1

4

(

N

k

)2
[

−
(−µ′2 x213)

2ǫ

ǫ2
−

(−µ′2 x224)
2ǫ

ǫ2
+ 2 log2

(

x213
x224

)

(4.3)

+ 16ζ2 + 12 log2 2 +O(ǫ)

]

+O(k−3)

We observe that it does have maximal transcendentality, exactly like its analogue in N = 4

SYM [1–3] and its dual object, the four-point scattering amplitude [23, 24]. In particular,

expressing the four-point amplitude in terms of dual variables pi = xi+1−xi and identifying

them with the Wilson loop coordinates, the result (4.3) not only matches the divergent

and log2
(

x2

13

x2

24

)

parts of the scattering amplitude, but it also matches its maximally tran-

scendental constant.

The result we have found opens the possibility that light-like Wilson loops in ABJM

theory could enjoy maximal transcendentality, as it appears to be the case in N = 4 SYM.

To test this conjecture, the educated use of DRED that we have applied in the evaluation of

the tetragonal Wilson loop should be extended to n cusped Wilson loops [33], with effects

on the constant part of the result. However, for generic n the analysis of transcendentality

is hampered by the lack of analytical results for the constants.

The correctness of our prescription for dealing with Levi-Civita tensors in DRED is

proved by the fact that it has played a crucial role in the recent computation of 1/2 BPS

circular Wilson loops, in particular in matching the perturbative result with the prediction

from localization [48].
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