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1 Introduction

A crucial role in gauge theory dynamics is played by various dualities. They give a weakly

coupled description of some strong coupling phenomena (like confinement and chiral sym-

metry breaking), and may point to a deep structure underlying the theory. In different

situations these dualities manifest themselves differently. Some 4d superconformal theories

like N = 4 and certain N = 2 supersymmetric theories exhibit exact electric/magnetic

duality, leading to several distinct descriptions of the same theory, with different values of

the coupling constant and sometimes even different gauge groups. Many four-dimensional

N = 1, 2, three-dimensional N = 2, 3, · · · , and certain two-dimensional theories have IR

dualities, relating different theories with the same IR limit [1]. In some situations, includ-

ing 4d N = 1 SO(N) dualities, it is clear that these are also related to electric/magnetic
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duality [1–3]; when the gauge group is broken to SO(2) they reduce to an Abelian elec-

tric/magnetic duality, and they exchange Wilson lines with ’t Hooft-Wilson lines [4, 5].

In 3d there are several known examples of such IR dualities, both with N = 2 and

with higher supersymmetries. In a previous paper we argued that most and perhaps all

such dualities in 3d originate from ancestor dualities in 4d [6] (see also [7]). The purpose

of this note is to extend this discussion to theories with orthogonal gauge groups.

The discussion in [6] starts with any 4d N = 1 duality, and by carefully compactifying

it on a circle, it leads to a clear prescription for how to generate from it a corresponding 3d

duality. For example, we can start with the characteristic example of a 4d N = 1 duality.

This is the duality between an SU(Nc) gauge theory with Nf flavors Qi and Q̃ĩ, and its

dual SU(Nf − Nc) gauge theory with Nf dual quarks qi and q̃ĩ and elementary gauge

neutral “mesons” M i
ĩ
and a superpotential W = M i

ĩ
qiq̃

ĩ [1]. It is common to refer to these

theories as the electric and the magnetic theories, but we will refer to them as theory A

and theory B. A naive dimensional reduction of any of these two dual theories to 3d leads

to a theory with an additional “axial” U(1) global symmetry. This is the symmetry that

is anomalous in 4d, but is preserved in 3d. The prescription of [6] is to modify the naive

dimensionally reduced theory by adding to its Lagrangian a suitable operator, generated

by non-perturbative effects in the theory on a circle, which explicitly breaks this anomalous

U(1) symmetry. In theory A we add a superpotential

WA = ηY , (1.1)

where η = Λb0 is the instanton factor [3] of theory A, and Y is its monopole operator. In

theory B, which already had a superpotential in 4d, we have

WB = M i
ĩ
qiq̃

ĩ + η̃Ỹ , (1.2)

where η̃ = Λ̃b̃0 = (−1)Nf−Ncη−1 is the instanton factor of theory B, and Ỹ is its monopole

operator.1 The arguments of [6] imply that the two 3d theories (1.1), (1.2) are equivalent

at low energies.

Once such a 3d duality is established one can find many additional 3d dualities, which

follow from it. First, we can turn on relevant operators in the two sides of the duality

and flow to the IR. Second, we can gauge any of the global symmetries of the theories

and generate new dual pairs. These two tools were used in [6] to reproduce all the known

dualities between 3d N = 2 theories with SU(Nc), U(Nc) and USp(2Nc) gauge groups, and

to generate many new dualities.

However, the application of this procedure to theories with orthogonal gauge groups

turns out to need more care. In fact, already in 4d N = 1 theories the IR dualities

for orthogonal groups are significantly more subtle than for unitary or symplectic gauge

1The first term in (1.2) contains already in 4d a scale µ [3], which is related to the normalization of the

kinetic terms of M , q and q̃. It is natural to normalize M such that it is identified with the composite

operator M = QQ̃ in theory A. We will choose this normalization. When we reduce to 3d the parameter µ

is still present, and there are also various factors of the radius. Here we ignore this normalization, which is

irrelevant in the IR. We fix arbitrarily (but self-consistently) the coefficient of the first term in (1.2) (µ = 1)

and in the analogous expressions for SO(Nc).
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groups [1–3, 8]. One underlying reason for this complexity was recently identified in [5].

It is known that if the Lie algebra of the gauge symmetry is so(Nc), the gauge group

can be Spin(Nc) or SO(Nc) (and it could even have disconnected components, making it

Pin(Nc) or O(Nc)). The main point of [5] is that even when the gauge group is SO(Nc),

there are two distinct 4d gauge theories with that gauge group, denoted by SO(Nc)±. In

the Euclidean path integral they are distinguished by a new term in the Lagrangian —

a certain Z2-valued theta-like-angle, associated with the Pontryagin square P(w2) of the

Stiefel-Whitney class w2 of the gauge bundle.

A simple physical way to distinguish between the three gauge theories SO(Nc)± and

Spin(Nc) already in R
4 is to study their line operators. The Spin(Nc) theory has a Wilson

loop W in a spinor representation.2 Its square W 2 can be screened by dynamical fields and

we will view it as trivial. The two SO(Nc) theories do not have a Wilson loop in a spinor

representation. Instead, they have ’t Hooft loops carrying smaller magnetic charge than is

allowed in Spin(Nc). The SO(Nc)+ theory has a purely magnetic ’t Hooft loop operator

H, and the SO(Nc)− has the non-trivial loop operator HW . For a closely related earlier

discussion, see [9].

For Nc = 3 the distinction between SO(3)± can be understood by extending the range

of the ordinary theta-angle to be in [0, 4π), and then [9]

SO(3)θ+ = SO(3)θ+2π
− . (1.3)

Similarly, forNc = 4 we have Spin(4) = SU(2)×SU(2) and SO(4) = (SU(2)×SU(2)/Z2.

Hence, the so(4) theory has two theta-angles, one for each SU(2), and

SO(4)θ1,θ2+ = SO(4)θ1,θ2+2π
− = SO(4)θ1+2π,θ2

− = SO(4)θ1+2π,θ2+2π
+ . (1.4)

For higher values of Nc the distinction between the two SO(Nc) theories cannot be

absorbed in extending the range of θ, and the only way to describe it at the level of the

Lagrangian is by using the Pontryagin square P(w2).

The 4d N = 1 IR duality relates [1–3, 8] an so(Nc) gauge theory with Nf vectors Qi

to an so(Ñc = Nf −Nc+4) gauge theory, with Nf vectors qi and elementary gauge singlet

mesons M ij , and with a superpotential W = 1
2M

ijqiqj . When either Nc or Ñc are 2, 3, 4 a

more careful discussion is needed. The analysis of [5], which took into account the global

structure,3 identified this duality as

Spin(Nc)→ SO(Ñc)− ,

SO(Nc)− → Spin(Ñc) ,

SO(Nc)+ → SO(Ñc)+ .

(1.5)

Subtleties associated with the line operators in the 4d theory translate into subtleties

with the local operators when the theory is compactified on a circle to 3d. In particular,

2In this note we will study so(Nc) gauge theories with matter fields in the vector representation. There-

fore, for many purposes we can identify Wilson loops in different spinor representations. For a more detailed

discussion see [5].
3For an earlier related discussion see [4].
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a 4d ’t Hooft line operator H wrapping this circle turns into a local monopole operator Y

in 3d. Hence, the choice of line operators in 4d becomes a choice of local operators in 3d,

which has more dramatic consequences, as we will see in our discussion below.

An additional subtlety in the analysis of orthogonal groups is that the corresponding

4d supersymmetric QCD (SQCD) theories on S
1 have a Coulomb branch that is not lifted

by quantum corrections. This did not occur in any of the cases analyzed in [6], and the

mapping of the Coulomb branch across the duality turns out to be non-trivial.

In section 2 we discuss some classical and quantum properties of 3d N = 2 theories

with orthogonal gauge groups. We identify the coordinates on their moduli space of vacua,

paying particular attention to the global structure (the distinction between Spin(N) and

SO(N)). In section 3 we discuss the 4d gauge theories on R
3×S

1 and their moduli space of

vacua. Here the distinction between the three different theories with the same Lie algebra

so(Nc) is crucial. In section 4 we follow [6] and consider two dual 4d theories compactified

on a circle, and carefully identify their moduli spaces.

In section 5 we derive the main result of this paper. By taking an appropriate limit

of the 4d theory on a circle we derive 3d dualities. In particular, the SO(Nc) SQCD

theory with Nf vectors Q is dual to an SO(Nf − Nc + 2) gauge theory with Nf vectors

q, with gauge singlet fields M and Y , and with an appropriate superpotential. Here the

elementary fields M and Y are identified with the composite meson QQ and monopole

operator of the original SO(Nc) theory. This is closely related to dualities of O(Nc) SQCD

theories, previously found in [10–12]. We also find that the Spin(Nc) theory is dual to

an O(Nf − Nc + 2)− theory, where O(N)− is a novel 3d O(N) theory that we introduce

in section 2.4. We perform various tests of these dualities, and deform them to obtain

dualities for theories with Chern-Simons terms. Additional detailed tests are performed in

section 6, where we discuss the S
2× S

1 and the S
3 partition functions of all these theories.

2 Background

Much of the necessary background for this paper is found in the preceding paper [6],

and in references therein. We will assume here familiarity with that paper, and discuss

only the new issues which arise for orthogonal gauge groups. Some aspects of the theory

depend on the precise choice of gauge group, while others depend only on the gauge algebra

g = so(Nc), and we will try to distinguish the two in the following.

2.1 Monopole operators and Coulomb branch coordinates for g = so(Nc)

Three dimensional N = 2 gauge theories have classical Coulomb branches, where the

adjoint scalar σ in the vector multiplet gets an expectation value, generically breaking the

gauge group G to U(1)rG (where rG is the rank of G). On this branch we can dualize the rG
photons to scalars ai, or supersymmetrically dualize the rG U(1) vector multiplets to chiral

multiplets Yi. The expectation values of these chiral multiplets label the classical Coulomb

branch of the theory. The chiral multiplets Yi are “monopole operators” in the effective low-

energy theory, creating a U(1)rG magnetic flux around them. In some cases they arise as

low-energy limits of microscopic “monopole operators”. The allowed spectrum of monopole
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operators, and thus the appropriate coordinates on the Coulomb branch, depends on the

choice of the gauge group; this choice determines the allowed Wilson line operators, and

the monopole operators need to be mutually local with respect to these Wilson lines.

For theories based on the Lie algebra g = so(Nc), when Nc is even, Nc = 2rG and

when Nc is odd, Nc = 2rG + 1. We write the adjoint matrix σ as a matrix in the vector

representation of so(Nc), and we can always diagonalize it. For every non-zero eigenvalue,

there is another eigenvalue of equal magnitude and opposite sign. For even values of Nc

we write the eigenvalues as {σ1, · · · , σrG ,−σrG , · · · ,−σ1}. By a Weyl transformation we

can always choose

Nc even : σ1 ≥ σ2 ≥ · · · ≥ σrG−1 ≥ |σrG |. (2.1)

If our gauge group includes reflections (namely, it is G = O(Nc) or G = Pin(Nc)

rather than G = SO(Nc) or G = Spin(Nc)) then we can also set σrG ≥ 0, while otherwise

we cannot do this in general. For odd values of Nc we can write the eigenvalues of σ as

{σ1, · · · , σrG , 0,−σrG , · · · ,−σ1}, and by a Weyl transformation we can always choose

Nc odd : σ1 ≥ σ2 ≥ · · · ≥ σrG−1 ≥ σrG ≥ 0. (2.2)

The magnetic charges carried by the Coulomb branch coordinates should be thought

of as charges in the magnetic-dual algebra to so(Nc). For even Nc, this algebra is so(Nc),

and for odd Nc, it is usp(Nc − 1). There are always operators carrying the charges of

the roots of this algebra, and when the gauge group is G = Spin(Nc), these are the only

allowed charges. We can then write the Coulomb branch coordinates semi-classically as

Yi ≈ exp

(
σi − σi+1

ĝ23
+ i(ai − ai+1)

)
, (i = 1, · · · , rG − 1),

YrG ≈




exp

(
σrG−1+σrG

ĝ23
+ i(arG−1 + arG)

)
for even Nc,

exp
(
2σrG

ĝ23
+ i(2arG)

)
for odd Nc.

(2.3)

Here ĝ23 = g23/4π, where g3 is the gauge coupling constant of the 3d gauge theory,

normalized as in [6]. The dependence of these operators on the σ’s that we wrote is valid

far out on the Coulomb branch, and gets quantum corrections, while their dependence on

the dual photons ai is exact. As usual, the global symmetry charges of these operators can

be determined by summing over the charges of the fermions in chiral and vector multiplets,

which are coupled to the corresponding σ’s [13]. The SO(Nc) and Spin(Nc) theories have

a global charge conjugation symmetry Z
C
2 , which is gauged in the O(Nc) and Pin(Nc)

theories. In the theories with even Nc, this symmetry exchanges the Coulomb branch

coordinates YrG−1 and YrG .

As discussed in [6, 14], some of the Coulomb branch coordinates are low-energy limits

of microscopic monopole operators. These are defined so that their insertion at a point x

generates some magnetic flux on the S2 surrounding x, and takes the σ(y)’s pointing in the

direction of the flux to +∞ as y → x. In the Spin(Nc) theory, the monopole operators all

carry charges corresponding to roots of the dual magnetic group. The minimal monopole
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operator YSpin turns on one unit of flux, breaking so(Nc)→ so(Nc−2)×u(1), and takes one

of the eigenvalues of σ to ∞. On the moduli space at low energies, using (2.1) and (2.2),

this monopole YSpin looks semi-classically like

YSpin ≈ exp

(
2σ1
ĝ23

+ 2ia1

)
. (2.4)

It is a combination of the Coulomb branch coordinates described in (2.3),

YSpin =

{
Y 2
1 Y

2
2 · · ·Y 2

rG−2YrG−1YrG for even Nc,

Y 2
1 Y

2
2 · · ·Y 2

rG−1YrG for odd Nc.
(2.5)

Another monopole operator that will play a role in our discussion is the one that takes

two eigenvalues of σ to infinity together, breaking so(Nc) → so(Nc − 4) × u(2). This

monopole semi-classically looks like

Z ≈ exp

(
σ1 + σ2

ĝ23
+ i(a1 + a2)

)
, (2.6)

and we will see that it will play an important role in the discussion of 4d so(Nc) theories

on a circle. It obeys YSpin = Y1Z, and

Z =

{
Y1Y

2
2 Y

2
3 · · ·Y 2

rG−2YrG−1YrG for even Nc,

Y1Y
2
2 Y

2
3 · · ·Y 2

rG−1YrG for odd Nc.
(2.7)

For G = SO(Nc), Wilson lines carrying spinor charge are not allowed (we will always

assume that Wilson lines in the vector representation are allowed, since we will be inter-

ested here in theories with matter fields in the vector representation). This means that

extra Coulomb branch coordinates and monopole operators are allowed, carrying weights

which are not roots of the dual magnetic group. For even Nc they are allowed to carry

weights in the vector representation of the dual so(Nc), and for odd Nc in the fundamental

representation of the dual usp(Nc − 1). The basic monopole operator in this case behaves

semi-classically as [10, 12]

Y ≈ exp

(
σ1
ĝ23

+ ia1

)
, (2.8)

and it obeys

Y 2 = YSpin = Y1Z. (2.9)

All other “new” monopole operators that exist in this case may be written as products

of Y with the operators corresponding to roots of the dual gauge group. Note that while

for the monopole operators corresponding to roots, there is a classical ’t Hooft-Polyakov

monopole solution (which is an instanton of the 3d theory) that is associated with them,

there is no such solution for Y of (2.8). But this is not related to the definition of this

operator, both microscopically and in the low-energy effective action.

The fact that the quantum numbers of the Coulomb branch coordinates are determined

by those of the matter fields implies that they change when some matter fields go to
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infinite mass and decouple. In such cases we have a relation between the Coulomb branch

coordinates in the high-energy and in the low-energy theories, which can usually be uniquely

determined by matching their quantum numbers. For example, if we start from a Spin(Nc)

theory with Nf chiral superfields in the vector representation, and give a mass m to one

of them in the superpotential, we have a relation of the form

(YSpin)Nc,Nf
= m(YSpin)Nc,Nf−1. (2.10)

Similarly, if we start from such a theory and break the gauge group to Spin(Nc − 1) with

(Nf − 1) flavors, by giving an expectation value to one of the chiral superfields Q in the

vector representation, we have a relation

(YSpin)Nc,Nf

〈
Q2
〉
= (YSpin)Nc−1,Nf−1. (2.11)

For low values of Nc, Nc < 5, some modifications are needed in our discussion.

For Nc = 2 the gauge group G = Spin(2) = U(1), and instead of the operator YSpin we

have the two standard U(1) Coulomb branch coordinates [13]

V̂+ ≈ exp

(
2σ

ĝ23
+ 2ia

)
, V̂− ≈ exp

(
−2σ

ĝ23
− 2ia

)
, (2.12)

parameterizing the parts of the Coulomb branch with σ positive and negative, respectively.

Note that in Spin(2) we have particles of charge ±1/2 under the U(1) group, and hence the

normalization of the monopole operators is twice the usual normalization. For G = SO(2)

all particles have integer U(1) charge, and we have monopole operators carrying half the

charge of (2.12), given by

V+ ≈ exp

(
σ

ĝ23
+ ia

)
, V− ≈ exp

(
− σ

ĝ23
− ia

)
. (2.13)

The charge conjugation symmetry Z
C
2 exchanges V̂+ and V̂− (or V+ and V−), and we will

find it convenient to define the linear combinations

W± ≡ V+ ± V− , Ŵ± ≡ V̂+ ± V̂− , (2.14)

that are even and odd under ZC
2 .

For Nc = 3, we have Spin(3) = SU(2), and the monopole YSpin that we defined above is

the standard Coulomb branch coordinate / monopole operator of the SU(2) theory (usually

denoted by Y [13]). When the gauge group is SO(3) = SU(2)/Z2, there exists a monopole

operator of lower charge, which we denoted by Y above.

For Nc = 4, the group Spin(4) is equivalent to SU(2) × SU(2), and we can then have

separate Coulomb branch coordinates and monopole operators in the two SU(2) factors.

The Coulomb branch coordinates of the two SU(2)’s correspond to σ1±σ2 in our notations

above. Thus, the Coulomb branch coordinates of the two SU(2)’s, which we will denote

by Y (1) and Y (2), look semi-classically like the operators Y1 and Z discussed above. The

operator YSpin in this case is the product of these two SU(2) operators. When the gauge
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group is G = SO(4) = (SU(2) × SU(2))/Z2, one does not allow Wilson loops carrying a

charge under the center of each SU(2) separately, but only under both SU(2)’s. In this case

the operator Y that we defined in (2.8) exists, and squares to the product of the two SU(2)

monopole operators, Y 2 = Y (1)Y (2). The charge conjugation symmetry Z
C
2 exchanges the

two SU(2) factors, exchanging Y (1) with Y (2). As in (2.14), it is convenient to define the

combinations

Y± ≡ Y (1) ± Y (2), (2.15)

which are even and odd under ZC
2 .

2.2 The quantum moduli space of 3d N = 2 theories with g = so(Nc)

In the quantum theory, most of the Coulomb branch described above is lifted. Whenever

two of the eigenvalues of σ come together at a non-zero value, the corresponding U(1)2

symmetry is enhanced to U(2). As shown in [15], the corresponding ’t Hooft Polyakov

monopole-instanton solutions generate a superpotential in this case, which drives the eigen-

values apart. For even values of Nc we have this effect whenever σi approaches σi+1 for

i = 1, 2, · · · , rG−1, and also when σrG−1 approaches −σrG . Thus, in the 3d pure g = so(Nc)

theory with Nc even we have an effective quantum superpotential

Nc even : W =

rG−1∑

i=1

1

Yi
+

1

YrG
, (2.16)

which completely lifts the Coulomb branch. For odd values of Nc there is always one

eigenvalue at σ = 0, and when σrG approaches 0, the corresponding u(1) is enhanced to

so(3) from 3 eigenvalues coming together at σ = 0. There is a similar superpotential arising

here, with a different normalization [16], so that

Nc odd : W =

rG−1∑

i=1

1

Yi
+

2

YrG
. (2.17)

Again this completely lifts the Coulomb branch, so that the pure 3d supersymmetric Yang-

Mills (SYM) theory has a runaway with no supersymmetric vacua.

We can follow the reasoning used in [6] for SU(N) gauge theories to show that (2.16)

and (2.17) are in fact exact. More precisely, they are exact as functions of the chiral

superfields Yi, but the Yi are complicated functions of σi and ai.

Similar superpotentials lift the Coulomb branch also for g = so(3) = su(2), and for

g = so(4) = su(2) ⊕ su(2), where we have a separate superpotential of this type in each

su(2) factor. For g = so(2) = u(1) there is no such effect, and the Coulomb branch of the

(free) pure gauge theory is simply a cylinder, labeled by V̂+ = 1/V̂− for G = Spin(2), and

by V+ = 1/V− for G = SO(2).

In theories with flavors in the vector representation that have no real mass, these flavors

become massless whenever some eigenvalues of σ vanish. This gives extra zero modes to

monopole-instantons corresponding to eigenvalues coming together at σ = 0, such that they

no longer generate superpotentials; for odd Nc this happens for the monopole YrG , and for
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even Nc it happens either for YrG−1 or for YrG , depending on the sign of σrG . In these

theories the moduli space is not completely lifted, but a one (complex) dimensional branch

remains, where only a single eigenvalue σ1 is turned on (and σ2 = σ3 = · · · = σrG = 0).

In the Spin(Nc) theories, this quantum Coulomb branch may be parameterized by the

operator YSpin of (2.4), and for G = SO(Nc) theories it can be parameterized by Y of (2.8).

Note that because of the quantum superpotentials (2.16), (2.17), the operator Z is not

a chiral operator in the low-energy 3d theory,4 but Y and YSpin still are. As discussed

in [10, 12], for low numbers of flavors, Nf < Nc − 2, there are additional quantum effects

that lift the Coulomb branch, while for Nf ≥ Nc− 2 the Coulomb branch is not lifted. For

Nf ≥ Nc − 1, the quantum moduli space is the same as the classical moduli space (the

discussion in [10, 12] is just for G = O(Nc), but most of it can be generalized also to the

other gauge groups with g = so(Nc)).

The 3d SQCD theory with Nf chiral multiplets Qi in the vector representation has a

global SU(Nf )×U(1)A×U(1)R symmetry. We can choose the flavors Qi to transform in the

fundamental of SU(Nf ), with one unit of U(1)A charge and no U(1)R charge. In this case,

for G = SO(Nc) theories the Coulomb branch coordinate Y is a singlet of SU(Nf ), with

(−Nf ) units of U(1)A charge and (Nf −Nc + 2) units of U(1)R charge. For G = Spin(Nc)

the operator YSpin has the same charges as Y 2 in the G = SO(Nc) theories.

Note that for Nc = 2 our theories with flavors are the same as the U(1) theories with

flavors discussed in [13]. However, for Nc = 3 our so(3) theories have matter in the triplet

(adjoint) representation, so they are not the same as su(2) theories with fundamental mat-

ter. In particular, for Nc = 3 and Nf = 1, the SQCD theory has enhanced supersymmetry,

and it is the same as the 3d N = 4 SYM theory discussed in [17]. For Nc = 4 the matter

fields are charged under both SU(2)’s, and couple them together. Depending on where we

are in the moduli space, the superpotential involving the Coulomb branch coordinate of

one of the SU(2)’s is lifted by the matter zero modes, while the other one remains. For

Nc = 3, 4 we can still parameterize the remaining part of the Coulomb branch by YSpin or

Y , as for higher values of Nc.

2.3 Baryon-monopole operators

In the g = so(Nc) SQCD theory with Nf flavors Qi, the list of chiral multiplets includes the

monopole operators discussed above, the mesons Mij = QiQj (symmetric in i, j) and (for

Nf ≥ Nc, and for G = SO(Nc) or G = Spin(Nc)) the baryons B = QNc , contracted with an

epsilon symbol in so(Nc). The operator B2 may be written as a combination of products

of Nc mesons M , but B is an independent operator, charged under Z
C
2 . For G = O(Nc)

and G = Pin(Nc) the operator B does not exist, since the charge conjugation symmetry

is gauged.

Consider now a monopole operator like Y in SO(Nc), which breaks

SO(Nc)→ S
(
O(Nc − 2)×O(2)

)
. (2.18)

4Z is proportional to two supercharges acting on (YSpinY1KY1), where KY1 is the derivative of the Kähler

potential with respect to Y1.
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Note that this includes transformations with determinant (−1) both in SO(Nc − 2) and in

SO(2). This means that the gauge-invariant operator Y must be charge conjugation even

in SO(2), and thus it reduces to the operator W+ (2.14) in this group. However, we can

also build a “baryon-monopole” operator involving W− in SO(2) (2.14), by defining

β = QNc−2W−, (2.19)

with the indices of the flavors contracted by an epsilon symbol in the SO(Nc − 2) that is

unbroken by the monopole. The product QNc−2 is invariant under the SO(Nc− 2)×SO(2)

subgroup of SO(Nc) that is left unbroken by the monopole, and its product with W−
is invariant also under the extra Z2, so that (2.19) defines a gauge-invariant operator in

SO(Nc). Note that the operators (2.19) exist for any Nf ≥ Nc−2. The standard matching

of quantum numbers for monopole operators, generalizing (2.11), implies that when we

give a VEV to Q breaking SO(Nc) to SO(2), β reduces directly to W−low in the low-energy

SO(2) theory (with no extra factors of 〈Q〉).
As we discussed above, when the gauge group is Spin(Nc), the monopole operators Y

and W± do not exist. But we can still repeat the above discussion using the operator YSpin
(which reduces to Ŵ+), and define a baryon-monopole

βSpin = QNc−2Ŵ− (2.20)

as above. Note that in an SO(2) theory, Ŵ− = V 2
+ − V 2

− = (V+ − V−)(V+ + V−), so in

SO(Nc) theories βSpin = βY .

The operator β satisfies an interesting chiral ring relation. Consider the 3d SO(Nc)

gauge theory with Nf = Nc − 2. At a generic point on the moduli space of this theory, we

break SO(Nc)→ SO(2). The monopole operator Y reduces in the low-energy SO(2) theory

to W+low; the standard mapping of monopoles (2.11) implies that W+low = Y
√
det(M).

The low-energy SO(2) theory has no massless flavors, and hence V+lowV−low = 1. Therefore,

in this vacuum

β2 = W 2
−low = V 2

+low − 2V+lowV−low + V 2
−low = W 2

+low − 4 = Y 2det(M)− 4. (2.21)

This reflects an exact chiral ring relation

β2 = Y 2det(M)− 4 , (2.22)

which is valid in every vacuum of this theory. Classically this theory has a point at the

origin of its moduli space where Y = M = β = 0, but we see that quantum mechanically

the moduli space is deformed and obeys (2.22). This is similar to the deformation of the

classical moduli space in some 4d theories [18] and in some 3d theories [13].

Similarly, we can use the extra monopole operators of SO(4), by having monopoles

breaking SO(Nc) to SO(Nc − 4)×U(2). More precisely, to define such monopoles we first

choose some S(O(Nc − 4) × O(4)) ⊂ SO(Nc), and then turn on a monopole like (2.6) in

the SO(4) factor, breaking it to U(2). As in our discussion above, the monopole Z on its

own reduces to the even operator Y+ in SO(4) (2.15). But we can now consider instead

the operator

b = QNc−4Y−, (2.23)
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where the quarks are contracted with the epsilon symbol of SO(Nc−4). As in our discussion

above, this operator b is gauge-invariant in the G = SO(Nc) theory, including also the gauge

transformations of determinant (−1) in the two factors. The same discussion applies also

to Spin(Nc) theories. The baryon-monopole b exists for any Nf ≥ Nc − 4 (for Nc = 4 it is

simply Y−). As in our discussion of Z above, due to quantum effects b is not really a chiral

operator in 3d SQCD theories, but we will see that it still plays a role in our analysis.

We cannot generalize this construction to breaking SO(Nc)→ S
(
O(Nc−2n)×O(2n)

)

with n > 2, because there is no obvious monopole operator in SO(2n) that is odd under

charge conjugation.

2.4 On 3d O(Nc) theories

We mentioned above that one can obtain O(Nc) theories by gauging the charge conjugation

symmetry of SO(Nc), but in fact there are two different O(Nc) theories in 3d that will play a

role in this paper. In one O(Nc) theory the minimal monopole operator Y of SO(Nc), which

is charge-conjugation-even in the SO(Nc) theory, is gauge-invariant, and is the minimal

monopole operator also for O(Nc). We will denote this theory by O(Nc)+; this is the

theory that was discussed in previous papers about 3d O(Nc) theories and their dualities.

However, as in [5], one can also define a second O(Nc)− theory, in which the monopole

operator Y is charge-conjugation-odd (it changes sign under gauge transformations whose

determinant is (−1)). In this O(Nc)− theory, Y and B are both not gauge-invariant, but

their product, as well as the operators YSpin and β, are gauge-invariant (note that β is not

gauge-invariant in the standard O(Nc)+ theory).

In the Lagrangian language, the two theories differ by a discrete theta angle, analo-

gous to the one that distinguishes the 4d SO(Nc)± theories [5]. The relevant term in the

Lagrangian is proportional to w1 ∧ w2, where wi ∈ H i(X,Z2) are Z2-valued characteristic

classes of the O(Nc) bundle on a manifold X; w1 is non-zero when the O(Nc) bundle can-

not be written as an SO(Nc) bundle, while w2 is non-zero when the O(Nc) bundle cannot

be written as a Pin(Nc) bundle. In particular, w2 is non-zero on a two-sphere around an

insertion of the operator Y . Note that the two options exist only for O(Nc) gauge groups,

not for SO(Nc), Spin(Nc) or Pin(Nc) (in which either w1, or w2, or both, are trivial).5

3 The Coulomb branch of 4d so(Nc) theories on S
1

3.1 4d Spin(Nc) theories on S
1

As discussed in [6], when one compactifies a 4d gauge theory on S
1 and goes to low energies,

naively one gets the same gauge theory in 3d, but there are two important differences. The

first is that the Coulomb branch coordinates now come from holonomies of the gauge field

on a circle, so the coordinates σ described above are periodic and the Coulomb branch is

compact. The second is that there is an extra monopole-instanton in the theory on a circle,

that gives an extra term in the effective superpotential. We will start by discussing these

5More generally, it may be possible to add other terms such as w1 ∧w1 ∧w1, but we will not discuss this

here.
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aspects for the reduction of a 4d theory with G = Spin(Nc), and consider G = SO(Nc)

theories in the next subsection. We begin with the case of Nc ≥ 5.

In the 4d theory on a circle of radius r, the scalars σ described in the previous section

originate from A3, but only the eigenvalues of U = P exp(i
∮
A3) are gauge-invariant, so

there are relations between different values of σ associated with large gauge transforma-

tions. In particular, the eigenvalues of U in the vector representation are exp(±2πirσi), so
each σi gives the same holonomy in this representation as σi + 1/r. Note that the eigen-

values of U in the spinor representation are exp(2πir(±σ1/2 + · · · )), so the periodicity of

each σi for G = Spin(Nc) is actually 2/r (or one can shift two σi’s together by 1/r). But

the masses of W-bosons and matter fields in the vector representation are periodic in σi
with periodicity 1/r. In particular, whenever all the σi are integer multiples of 1/r, the

gauge group is unbroken and any matter fields in the vector representation are massless.

In the 4d theory on a circle, we can get an enhanced non-Abelian symmetry not just

by having σi → σi+1, but also by having eigenvalues meet the images of other eigenvalues.

When σ1 meets the image −σ1 at 〈σ1〉 = 1/2r there is no enhanced non-Abelian symmetry,

since we just have an enhancement of U(1) to SO(2) or Spin(2). However, when σ1 meets

the image of −σ2, when σ1 = −σ2 +1/r, there is an enhancement of U(1)2 to U(2) (if this

happens at σ1 = 1/2r then there is even an enhancement to SO(4) or Spin(4)). The same

computation yielding the monopole-instanton contributions described above [15], thus gives

in the theory on a circle an extra superpotential. The analogy with the 1/Y superpotential

of [15] implies that semi-classically the extra superpotential looks like

1

exp
( 1

r
−σ1−σ2

ĝ23
− i(a1 + a2)

) ≈ ηZ, (3.1)

where Z was defined in (2.6), and η ≡ Λb0 = exp(−8π2/g24) = exp(−4π/g23r) is the strong

coupling scale of the 4d gauge theory (b0 = 3(Nc−2)−Nf is the 4d one-loop beta function

coefficient, and we set the 4d theta angle to zero and the renormalization scale to one for

simplicity). The precise form (3.1) follows by carefully analyzing all the instantons, as

in [16, 17, 19–21]. From the point of view of the effective 3d theory, (3.1) breaks precisely

the global U(1) symmetry that is anomalous in the 4d theory. Note that in the 3d theory

Z is not a chiral operator, but in the 4d theory on a circle, it can no longer be written as

a descendant, due to the extra superpotential (3.1).

In the pure SYM theory, the extra term (3.1) stabilizes the runaway caused by (2.16)

and (2.17), and leads to a finite number of supersymmetric vacua, obtained by solving the

F-term equations for the Yi. One can check that, both for even and odd values of Nc, this

leads to (Nc − 2) supersymmetric vacua, with

(2η 〈Z〉)Nc−2 = 16η. (3.2)

This is the same number of vacua as in the 4d theory, as expected in this case [5], and the

value of the superpotential also agrees with its 4d value. As discussed in [6], the 4d chiral

operator S ∝ tr(W 2
α) reduces in the theory on a circle to Z, with a chiral ring relation

S = ηZ, (3.3)
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which is consistent with (3.2). Note that in the 4d theory on a circle, the monopole and

baryon-monopole operators discussed in the previous section do not exist microscopically

(due to the compactness of the Coulomb branch), but we can give a microscopic definition

to Z using (3.3).

Moving next to the theories with flavors, note that unlike in the cases of G = SU(Nc)

and G = USp(2Nc) discussed in [6], here the extra superpotential (3.1) is not proportional

to the coordinate YSpin along the unlifted Coulomb branch of the 3d Spin(Nc) SQCD theory.

Thus, this superpotential does not lift the Coulomb branch, but just adds extra interactions.

The coordinate YSpin on this Coulomb branch is uncharged under the continuous SU(Nf )×
U(1)R global symmetry that is preserved by (3.1).

The global structure of the moduli space is interesting. First, σ1 should be identified

with (−σ1 + 2/r) because they lead to the same holonomy, so we can take 0 ≤ σ1 ≤ 1/r.

In the quantum theory the moduli space is parameterized by YSpin (2.4), and we identify

the point YSpin = 0 with σ1 = 0, and the point YSpin = ∞ with σ1 = 1/r. Classically,

at generic values of YSpin the Spin(Nc) symmetry is broken, and at the two special points

YSpin = 0,∞ the full Spin(Nc) symmetry is preserved.

Second, if our Spin(Nc) gauge theory does not couple to matter fields in a spinor

representation, the compactified theory has a global Z2 symmetry, acting on the moduli

space by σ1 → −σ1 + 1/r. The point is that these two values of σ1 represent two different

holonomies in Spin(Nc), but this difference is not felt by any dynamical field.6 The two

special points on the moduli space YSpin = 0,∞ are not identified. Instead, they are

exchanged by the global Z2 symmetry, which acts on the moduli space as

YSpin ←→
1

η2YSpin
. (3.4)

In the 4d G = Spin(Nc) theory there are several baryonic operators defined in [1, 2],

B = QNc , Wα = WαQ
Nc−2, b4d = W 2

αQ
Nc−4, (3.5)

which all involve contractions with the epsilon symbol of Spin(Nc). The first operator

obviously reduces to the same baryon operator in 3d. The second operator is useful when

6More generally, whenever we have a Zp gauge theory in d dimensions that does not couple to charged

fields, the theory compactified to d−1 dimensions has both a gauge Zp symmetry and a global Zp symmetry.

One way to see that is to represent the Zp gauge theory by a one-form U(1) gauge field A(1) and a (d− 2)-

form gauge field A(d−2) with a Lagrangian given by p

2π
A(1) ∧ dA(d−2) [22, 23]. Reducing this system

to d − 1 dimensions leads to four fields, with the Lagrangian p

2π

(

A(1) ∧ dA(d−3) +A(0) ∧ dA(d−2)
)

. The

first term represents a Zp gauge theory, and the second term describes a Zp global symmetry (and a

gauge symmetry for A(d−2)). The global symmetry acts as A(0) → A(0) + 2π/p, with the identification

A(0) ∼ A(0) + 2π. If the original d dimensional theory includes matter fields charged under the Zp gauge

symmetry, the global symmetry A(0) → A(0)+2π/p in the d−1 dimensional theory is explicitly broken, but

the identification A(0) ∼ A(0) + 2π is preserved. A famous example of this phenomenon, due to Polyakov,

is the compactification of a 4d SU(N) gauge theory without matter on S
1. The resulting 3d theory has a

global ZN symmetry, which originates from the 4d ZN ⊂ SU(N) gauge symmetry. The order parameter

for its spontaneous breaking is the Polyakov loop eiA
(0)

∝ 1
N
tr(ei

∮
A). In our case, the relevant Z2 gauge

symmetry is the subgroup of the center of Spin(Nc) that acts on spinors.
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(Nc − 2) quarks get expectation values breaking the gauge group to g = so(2), to label

the remaining unbroken so(2) ⊂ so(Nc); in the effective 3d theory the same role is played

by β or βSpin. Similarly, when the gauge group is broken to g = so(4), we have a relation

between S1−S2 (of SU(2)×SU(2) in 4d) and Y− of so(4) (2.15) that is analogous to (3.3),

and that implies that the 4d baryon b4d goes down in the low-energy effective theory to η

times the baryon-monopole b defined in (2.23).

As in the 3d discussion, there are some modifications to this story for low values of

Nc. For Nc = 2 there is no extra superpotential on the circle, and the moduli space for

G = U(1) was discussed in section 4.2 of [6]. For Nc = 3, there is only a single non-

trivial eigenvalue of σ, and instead of (3.1) we get a superpotential from the fact that

when σ1 → 1/r the gauge group is enhanced again to so(3). The full superpotential

of the 4d Spin(3) pure SYM theory on a circle takes the form W = 1/YSpin + η2YSpin,

consistent with the global symmetry (3.4) that acts also in this case. Note that in this

special case the instanton factor of Spin(3) is actually ηSpin(3) = η2 = Λ2b0 (keeping our

general definition above for η), so this discussion is consistent with the standard discussion

of 4d SU(2) theories on a circle [17]. The 4d Spin(3) SYM theory on a circle has two vacua

at YSpin = ±1/η = ±1/√ηSpin(3) , which are fixed points of the Z2 symmetry (3.4) (though

they are related by a Z4 global R-symmetry transformation).

For Nc = 4 with Spin(4) = SU(2)× SU(2), we have in the pure 4d gauge theory on a

circle two copies of the discussion of the previous paragraph,

W =
1

Y (1)
+

1

Y (2)
+ ηY (1) + ηY (2) (3.6)

(consistent with the identification of Z discussed in section 2.3). Note that the two SU(2)’s

have η1 = η2 = η. There are 4 supersymmetric vacua at Y (1) = ±1/√η, Y (2) = ±1/√η.
In two of these vacua YSpin = Y (1)Y (2) = 1/η, and in the other two YSpin = −1/η; they are

all fixed points of the global symmetry transformation (3.4).

3.2 4d SO(Nc) theories on S
1

We saw in the previous section that an important difference between G = Spin(Nc) and

G = SO(Nc) is that in the latter case there is an extra monopole operator Y that can be

used to label the Coulomb branch. The Coulomb branch of the SO(Nc) theory is a double

cover of that of the Spin(Nc) theory, which is labeled by YSpin = Y 2. When we discuss the

4d theory on a circle, another difference is that the global symmetry transformation (3.4)

becomes a large gauge transformation in SO(Nc), with the gauge transformation parameter

periodic around the circle in SO(Nc) but not in Spin(Nc). Thus, the points on the Coulomb

branch related by (3.4) are identified. This is related to the fact that we no longer have a

spinor Wilson line, so the σi have periodicity 1/r, and we can restrict the range of σ1 to

0 ≤ σ1 ≤ 1/2r.

Let us see in more detail how the Z2 large gauge transformation acts on Y . Given the

relation Y 2 = YSpin, and the action on YSpin (3.4), there are two possible actions on Y : it

could act either as Y ←→ 1/ηY , or as Y ←→ −1/ηY . These two options are related to

the fact that there are two distinct SO(Nc) 4d gauge theories [5], SO(Nc)±. As explained
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in [5] and reviewed in the introduction, the difference between the three 4d gauge theories

Spin(Nc) and SO(Nc)± is in the choice of line operators. YSpin has the same magnetic

quantum numbers as the minimal 4d ’t Hooft loop of the Spin(Nc) theory H2, wrapped

on the circle. Y in the SO(Nc)+ theory is related to the wrapped 4d ’t Hooft loop H, and

Y in the SO(Nc)− theory is related to the wrapped 4d ’t Hooft-Wilson loop HW . (The

wrapped ’t Hooft loops are not BPS operators, but they reduce to chiral superfields in the

low-energy effective action.) Correspondingly, the large gauge transformation in SO(Nc)±
acts on Y and leads to the identification (recalling that the wrapped spinor Wilson line W

is odd under this transformation)

SO(Nc)+ : Y ∼ 1

ηY
, SO(Nc)− : Y ∼ − 1

ηY
. (3.7)

In the 3d dimensionally reduced theory which arises as η → 0, we are left just with the

region near Y = 0 so there is no longer any distinction between SO(Nc)+ and SO(Nc)−,
and there is just a single 3d SO(Nc) gauge theory.

In both cases, in the theories with flavors, the Coulomb branch of the 4d gauge theory

on a circle is labeled by Y with the identification (3.7). These theories also have a Z2 global

symmetry taking Y → −Y , which acts on the Coulomb branch (this symmetry, acting on

the non-trivial wrapped ’t Hooft lines, is not present in the Spin(Nc) theory). Note that

this symmetry remains also in the 3d limit, and that the baryon-monopole β of (2.19) is

odd under it (while βSpin of (2.20) is even).

To summarize, in the SO(Nc)± theories we have a gauge identification on the Coulomb

branch given by (3.7), and in all 3 theories we have a Z2 global symmetry changing the

sign of the non-trivial line operator wrapped on the circle. We denote this symmetry by

Z
M
2 . It acts on the Coulomb branch as:

Spin(Nc) : YSpin ←→
1

η2YSpin
, SO(Nc)± : Y ←→ −Y . (3.8)

We can now look at the pure so(Nc) SYM theory on a circle, and see how many

vacua we have in the different so(Nc) theories [5]. Solving the F-term equations of the

Spin(Nc) theory as above gives (Nc − 2) different solutions for Z (3.2), which all have

〈YSpin〉 = 〈Y1Z〉 = 1/η. In the Spin(Nc) theory, these are all fixed points of ZM
2 . In the

SO(Nc) theories, we can additionally characterize each vacuum by the expectation value

of Y , which can be ±1/√η. In the SO(Nc)+ theory, each of the two possibilities maps to

itself under the gauge identification (3.7), and thus each solution of (3.2) splits into two

separate vacua, giving a total of 2(Nc−2) supersymmetric vacua. On the other hand, in the

SO(Nc)− theory, the two options for the sign of Y are mapped to each other by the gauge

identification (3.7), and thus there are only (Nc − 2) supersymmetric vacua. This shows

the consistency of our identifications (3.7) with the counting of vacua presented in [5].

While much of our discussion remains the same also for low values ofNc, it is interesting

to verify its consistency with the relations (1.3) and (1.4). For Nc = 3 we mentioned that

ηSO(3) = η2, so shifting the SO(3) theta angle by 2π as in (1.3) takes η → −η, consistent
with (3.7). In this case there is no extra monopole operator Z, and Y carries the full
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information about the vacuum. Each of the Spin(3) vacua at YSpin = ±1/√ηSpin(3) splits
into two possible SO(3) vacua at Y = ±

√
YSpin. In the 4d SO(3)+ SYM theory on a

circle two of these are identified by the large gauge transformation (3.7), and the other

two are not, and the situation is reversed in the SO(3)− theory. Both theories thus have

3 vacua [5]. Similarly, for Nc = 4 the two vacua at YSpin = 1/η each split into two vacua

with Y = ±1/√η, and the two vacua at YSpin = −1/η each split into two vacua with

Y = ±i/√η. In the SO(4)+ theory the latter two vacua are identified by (3.7), so that we

have 6 overall vacua, and similarly in the SO(4)− theory the vacua from the first splitting

are identified, and again we have 6 overall vacua [5]. The transformation shifting (say) the

first theta angle in (1.4) changes the sign of Y (1) and thus of YSpin, and exchanges the two

types of vacua, consistent with its exchanging SO(4)+ and SO(4)−.

4 The 4d duality on a circle

4.1 Dual theories on a circle

As discussed in [6], whenever we take two theories that are IR-dual in 4d, compactify them

on a circle of radius r, and go to low energies (compared to the scales 1/r, Λ and Λ̃), the

resulting low-energy 3d theories are IR-dual as well. We can start from the 4d duality

reviewed in the introduction (with Nc ≥ 4 and Nf ≥ Nc), between theory A with gauge

group G (which can be Spin(Nc), SO(Nc)+ or SO(Nc)−), with Nf chiral multiplets Qi

in the vector representation and WA = 0, and theory B with gauge group G̃ (which is

SO(Ñc)−, SO(Ñc)+ or Spin(Ñc), respectively, with Ñc = Nf − Nc + 4), with Nf chiral

multiplets qi in the vector representation, Nf (Nf +1)/2 singlets M ij and a superpotential

WB = 1
2M

ijqiqj .
7 The continuous global symmetries in both theories are SU(Nf )×U(1)R,

with Q in the (Nf )((Nf−Nc+2)/Nf ) representation in theory A, and q in the (Nf )((Nc−2)/Nf )

representation in theory B. Both theories have a Z2Nf
×Z

C
2 discrete symmetry. The charge

conjugation symmetry Z
C
2 , generated by C, under which the baryonic operators (3.5) are

odd, maps to itself under the duality. The Z2Nf
symmetry of theory A (which is a subgroup

of the anomalous axial U(1) symmetry) is generated by g : Q→ exp(2πi/2Nf )Q, and that

of theory B by g̃ : q → exp(−2πi/2Nf )q. They are mapped by the duality as g ↔ g̃C [1, 2].
When we compactify the two theories on a circle, we generate extra superpotentials

WA = ηZ, WB =
1

2
M ijqiqj + η̃Z̃, (4.1)

where the 4d duality implies ηη̃ = (−1)Nf−Nc/256 [2, 3]. We also get the compact Coulomb

branches on both sides, described in the previous section. The general arguments of [6]

imply that the low-energy theories with these extra superpotentials and compact Coulomb

branches should be dual at low energies.

The mapping between the chiral operators involving the flavors, and the associated

flat directions, is the same in the theory on a circle as in 4d; M ij in theory B is identified

with QiQj , and the baryonic operators B, Wα and b4d are identified with b̃4d, W̃α and B̃,

7We begin by discussing connected gauge groups, we will discuss the disconnected O(N) and Pin(N)

cases below.
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respectively [1, 2]. But on a circle we have the extra Coulomb branch that we need to

identify, which is not lifted by the extra superpotential (4.1), and we have the associated

chiral operators that parameterize it. Note that the Coulomb branch coordinates are not

charged under any continuous global symmetries, so these do not constrain their mapping.

However, there are discrete symmetries acting on the Coulomb branch (3.8), and these

should map to each other under the duality (this follows from the mapping of the corre-

sponding 4d non-trivial line operators [4, 5]). In fact, the full mapping of the Coulomb

branches is uniquely determined by requiring that we have a single-valued meromorphic

transformation between them (after identifying by the large gauge transformations (3.7)

for SO(N)), which correctly maps the global Z2 symmetries (3.8), together with the extra

requirement (for the SO(N)+ case) that the mapping is non-trivial (this follows from the

analysis of the next subsection). The mapping between the Coulomb branch coordinate

YSpin of Spin(Nc), and the coordinate Ỹ of the dual SO(Ñc)− theory, takes the form

ηYSpin =

[
i+
√
η̃Ỹ

1 + i
√
η̃Ỹ

]2
. (4.2)

The two choices of sign for
√
η̃ are related by the global symmetry Ỹ → −Ỹ , which maps

in the dual theory to the global symmetry YSpin → 1/η2YSpin. The two identified points Ỹ

and (−1/η̃Ỹ ) map to the same value of YSpin, as they should.

The map between the coordinate Y of the SO(Nc)− theory, and the coordinate ỸSpin
of the dual Spin(Ñc) theory, is simply the inverse of this map (consistent with the fact that

performing the duality twice should bring us back to the same point). The map between

the two SO(N)+ theories is just the square root of (4.2),

√
ηY =

i+
√
η̃Ỹ

1 + i
√
η̃Ỹ

. (4.3)

Again, one can check that it is consistent with the discrete gauge and global symmetries

on both sides.

For low numbers of flavors, Nc = 3 or Ñc = 3, there are extra terms appearing in the

dual superpotential [2], and the mapping of η to η̃ is somewhat different because of the

different instanton factor in so(3) theories. Both for Nc = 3 and Nc = 4 there are also

extra “triality” relations between the 4d theories [2, 5, 8], because of the relations (1.3)

and (1.4). In any case, the extra superpotential factors and dualities do not introduce any

new issues when reduced on a circle, so we will not discuss them further here.

Note that we can get the dualities for the O(N) and Pin(N) theories just by gauging

the charge conjugation symmetries in the dualities for SO(N) and Spin(N). This is true

both in 4d, and for the 4d theories on a circle. The main difference in the non-connected

cases is that we do not have the baryon operators on both sides, so we have fewer distin-

guishable vacua and fewer chiral operators.

4.2 A test of the duality and of the Coulomb branch mapping

As a consistency check for our mappings (4.2), (4.3), let us analyze what happens far on

the Higgs branch of theory A. In this theory we can turn on a vacuum expectation value
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(VEV) for M ij = QiQj of rank Nc, such that the gauge group is completely broken. For

each such VEV there are two supersymmetric vacua, differing by the sign of the non-zero

component of the baryon B = QNc (which squares to detNc×Nc(M)). This is true both in

4d and in the theory on a circle. In the latter case, since the gauge group is completely

broken by the quarks, we must be at a point on the Coulomb branch where classically the

gauge group is unbroken, namely YSpin = 0 or YSpin = ∞ for Spin(Nc), and Y = 0 for

SO(Nc).

We now discuss these vacua in theory B. The meson VEV gives a mass to Nc quarks,

leaving (Nf −Nc) = Ñc− 4 massless quarks. The low-energy theory is so(Ñc) with Ñc− 4

massless flavors q, with a scale η̃low = η̃ detNc×Nc(M). Let us first ignore the singlets and

the superpotential. We then have classically a moduli space for the q’s, where generically

the gauge group is broken to so(4), with no light charged fields. We can think of the

so(4) theory as an su(2) ⊕ su(2) gauge theory, where each su(2) factor has an instanton

factor η̃su(2) related to that of the original so(Ñc) theory by η̃su(2) = η̃low/det(qq). In the

4d theory, gaugino condensation in each su(2) factor leads to an effective superpotential

W = 2(±1 ± 1)η̃
1/2
su(2) for the q’s, which vanishes (and leads to a supersymmetric vacuum

for the original so(Ñc) theory), if and only if we choose opposite signs for the two gaugino

condensates. The operator b̃4d of theory B is then equal to

b̃4d = qÑc−4W̃ 2
α = ±2

√
det(qq)

√
η̃su(2), (4.4)

where at generic points on the moduli space this W̃ 2
α is the difference between the two

gaugino bilinears of the two su(2) factors. It does not vanish in the SUSY vacua. This

operator obeys

b̃24d = 4det(qq) η̃su(2) = 4η̃low = 4η̃ detNc×Nc(M). (4.5)

Clearly, this relation is true for any value of the q’s and is an exact ring relation. Hence, in

the full 4d theory B we find that b̃4d is non-zero when M has rank Nc, and obeys a similar

relation to B of theory A, so that we can identify

b̃4d = 2
√
η̃B (4.6)

(when we normalize the superpotential of theory B to be 1
2Mqq with no extra factors).

We thus identify the two supersymmetric vacua discussed above for this VEV of M in

theory B. Similarly, one can show that if rank(M) > Nc there is no supersymmetric vacuum

in theory B.

Let us now repeat our discussion of theory B, when it is compactified on a circle. Most

of the discussion is the same for Spin(Nc) and SO(Nc), so first we will not distinguish

between them. Again we turn on a VEV of rank Nc for M , leaving in theory B (Ñc − 4)

massless flavors. The matching between the high-energy and low-energy Coulomb branch

coordinates implies that Z̃low = Z̃/detNc×Nc(M) (as in (2.10)), so that the low-energy

superpotential (4.1) includes η̃Z̃ = η̃lowZ̃low. Again, let us ignore for a moment the extra
1
2Mqq superpotential in theory B, and imagine that we turn on generic VEVs for the

remaining massless q’s, breaking the gauge symmetry to so(4). Each of the su(2) factors
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in so(4) now has a Coulomb branch coordinate Ỹ (j), and, as in (2.11), the relation of the

low-energy and high-energy coordinates is

Ỹ+ = Ỹ (1) + Ỹ (2) = Z̃low det(qq). (4.7)

The full low-energy superpotential, including the Affleck-Harvey-Witten superpoten-

tials [15] of the two su(2)’s, is thus

WB =
1

Ỹ (1)
+

1

Ỹ (2)
+

η̃low
det(qq)

(Ỹ (1) + Ỹ (2)), (4.8)

leading to four states with

Ỹ (j) = ±
√

det(qq)

η̃low
= ± 1√

η̃su(2)
. (4.9)

(More precisely, in counting the physical states we should take into account the global

aspects of whether our gauge group is Spin(Ñc) or SO(Ñc). We will do this momentarily.)

Note that this is consistent with our discussion in the previous paragraph, and with the

relation ηY = S for SU(2) theories on a circle [6]; in this case we have (in the chiral ring)

η̃su(2)Ỹ
(j) = Sj . As in 4d, in order not to turn on a superpotential for the q’s we need the

expectation values to obey Ỹ (1) = −Ỹ (2). So, as in 4d, we find two supersymmetric vacua

in theory B, in which

Ỹ (1)Ỹ (2) = − 1

η̃su(2)
= −det(qq)

η̃low
. (4.10)

Note that the two choices for the sign of Ỹ (j) are distinguished by the sign of the

baryons b̃ = qÑc−4Ỹ−.8 The discussion above implies that b̃2 has an expectation value

equal to 4 detNc×Nc(M)/η̃, so we can identify

b̃ =
1

η̃
b̃4d =

2√
η̃
B . (4.11)

For every value of M of rank Nc in theory A there are two choices of B, and they are

mapped under the duality to the two choices of b̃ in theory B.

But we mentioned above that for fixed M of rank Nc and fixed sign of B there could

be either one or two vacua in theory A. Are they mapped correctly? For that we should

be more careful about our gauge group.

When theory A is Spin(Nc), for each VEV of M of rank Nc and each sign of B there

are also two choices for the monopole operator: YSpin = 0 or YSpin = ∞ (related by Z
M
2 ).

In this case theory B is SO(Ñc)−, and we have

Ỹ 2 = ỸSpin =
detNc×Nc(M)

det(qq)
ỸSpin,low =

detNc×Nc(M)

det(qq)
Ỹ (1)Ỹ (2) = −1

η̃
. (4.12)

The two possible values of Ỹ = ± i√
η̃
are fixed points of the identification Ỹ ∼ − 1

η̃Ỹ
(3.7),

and hence lead to two different vacua. They are related by the global ZM̃
2 symmetry whose

8Like the operator Z, the b baryon-monopole operators in the low-energy effective action cannot be

written as descendants in the 4d theory on a circle, even though they are descendants in 3d SQCD.
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generator takes Ỹ → −Ỹ , and are the dual of the choice of YSpin = 0,∞ in theory A. This

interpretation is consistent with our mappings (4.2).

When theory A is SO(Nc)−, for each value of M there are still two values of B, but

there is a single choice, Y = 0 (which is a fixed point of ZM
2 ). Correspondingly, theory B

is Spin(Ñc) in which there are two values of b̃, as in (4.11), but no additional freedom in

the VEV of the monopole operator ỸSpin in (4.12).

When theory A is SO(Nc)+ there is freedom only in the sign of B but not in Y = 0.

In this case theory B is SO(Ñc)+, and there are again two possible values for Ỹ , which

using (4.12) are Ỹ = ±i/√η̃. But these two vacua are actually identified by (3.7), so we

have a single vacuum, agreeing with the situation in theory A (and with (4.3)).

Thus, the mapping (1.5) leads to a consistent mapping of all these vacua far on the

Higgs branch in the 4d theory on a circle, using (4.2) and (4.3).

5 3d dualities

5.1 Reduction of the SO(N)+ duality to 3d

The duality we found up to now is not purely a 3d duality, since it involves the compact

moduli spaces that we get in the 4d theory on a circle. In this subsection we will see how

we can turn it into a bona fide duality of 3d gauge theories.

Consider the duality between SO(Nc)+ and SO(Ñc)+. The SO(Nc)+ theory discussed

above differs from the 3d SO(Nc) theory by the superpotential (4.1) and by the compactness

of the moduli space. Let us focus on theory A near the origin of the moduli space Y = 0,

and keep |ηY 2| ≪ 1. In the dual theory B, this means that we are (using (4.3)) near

Ỹ = i/
√
η̃ (or equivalently Ỹ = −i/√η̃), with |√η̃Ỹ − i| ≪ 1.

If we look at the low-energy superpotential in theory A we still have WA = ηZ, though

the effects of this superpotential are very small in the region we are now discussing. In

theory B we break the SO(Ñc) theory at this value of Ỹ to SO(Nf −Nc+2)×SO(2).9 The

operator Ỹ maps at low energies to the Coulomb branch coordinate V+ of the SO(2), and we

can consider a new Ỹlow Coulomb branch coordinate for the low-energy SO(Nf−Nc+2) (de-

fined as in (2.8)). In the low-energy superpotential of theory B we have contributions from

the original WB of (4.1). The semi-classical forms of the monopole operators (2.6), (2.8),

imply that Z̃ = Ỹ Ỹlow. In addition we have an Affleck-Harvey-Witten superpotential re-

lated to the breaking of the SO(Ñc) gauge group, which is proportional to Ỹlow/Ỹ . Thus,

the full low-energy superpotential near this point is

WB =
1

2
Mqq +

Ỹlow

Ỹ
+ η̃ỸlowỸ . (5.1)

9Naively, one may think that the symmetry is broken to S(O(Nf −Nc + 2) × O(2)), with an extra Z2

factor. However, the identification on the moduli space (3.7) uses the Weyl transformation σ1 → −σ1,

which is in O(2), but not in SO(2). This means that the unbroken gauge symmetry in the SO(Ñc)+ theory

around Ỹ = i/
√
η̃ is only SO(Nf −Nc + 2)× SO(2).
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We can now use the mapping (4.3) between Ỹ and Y to rewrite this in terms of Y ,

which is now an elementary field in theory B:

WB =
1

2
Mqq + 4

√
ηη̃Ỹlow

Y

1 + ηY 2
. (5.2)

The choice of sign for the square root is arbitrary (the two choices are related by the

global symmetry Y → −Y ). We can now simply take η → 0 on both sides (keeping

ηη̃ = (−1)Nf−Nc/256 fixed); in theory A this is allowed since the effect of the superpotential

smoothly goes to zero in the region we are keeping, and in theory B the same is also true

(since |ηY 2| ≪ 1). In this limit we find in theory A an SO(Nc) 3d theory with a non-

compact Coulomb branch and with WA = 0, and in theory B an SO(Nf − Nc + 2) 3d

theory, again with a non-compact Coulomb branch, and with

WB =
1

2
Mqq +

iNf−Nc

4
ỸlowY, (5.3)

where Y is now an elementary singlet in this low-energy theory, and Ỹlow is its standard

Coulomb branch coordinate (2.8).

We can now lift this to a high-energy 3d duality between these two gauge theories, by

replacing Ỹlow by the appropriate microscopic monopole operator ỹ of SO(Nf − Nc + 2),

and the superpotential of theory B with

WB =
1

2
Mqq +

iNf−Nc

4
ỹ Y . (5.4)

Note that unlike in other cases discussed in [6], here we did not need to perform any real

mass deformation in order to obtain the duality for the standard 3d SQCD theory from

4d, but just to take the 3d limit carefully. In the 3d limit we have an extra global U(1)A
symmetry, that was anomalous in 4d. The quantum numbers of the various operators are

consistent with the superpotential (5.4); using a specific choice for the 3d R-symmetry,

they are

SO(Nc) SU(Nf ) U(1)A U(1)R Z
C
2 Z

M
2

Q Nc Nf 1 0

M 1 Nf (Nf + 1)/2 2 0 +1 +1

Y 1 1 −Nf Nf −Nc + 2 +1 −1
B 1 (Nf )

Nc

A Nc 0 −1 +1

β 1 (Nf )
Nc−2
A Nc −Nf − 2 Nf −Nc + 2 −1 −1

(5.5)
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in theory A, and

SO(Nf −Nc + 2) SU(Nf ) U(1)A U(1)R Z
C
2 Z

M̃
2

q Nf −Nc + 2 Nf −1 1

M 1 Nf (Nf + 1)/2 2 0 +1 +1

Y 1 1 −Nf Nf −Nc + 2 +1 −1
ỹ 1 1 Nf Nc −Nf +1 −1
B̃ 1 (Nf )

Nc−2
A Nc −Nf − 2 Nf −Nc + 2 −1 +1

β̃ 1 (Nf )
Nc

A Nc 0 −1 −1

(5.6)

in theory B. Note that SU(Nf ) × U(1)A is really U(Nf ). (Nf )
Nc−2
A and (Nf )

Nc

A denote

totally antisymmetric products. Z
C
2 is the charge conjugation symmetry, generated by C,

and Z
M
2 and Z

M̃
2 are the global symmetries (3.8), generated by M and M̃, respectively.

We included their action only on the gauge singlets. The composites B̃ and β̃ in theory B

are defined as in theory A (see (2.19)), and their identification in theory A will be discussed

below.

The three symmetries U(1)A, Z
C
2 and Z

M
2 are actually not independent. In theory A

with gauge group SO(Nc), the action of eπiA (which is in SU(Nf ) for even values of Nf )

on Q is part of the gauge group for even values of Nc, and is the same as C for odd values

of Nc. The action of eπiA on Y is the same as MNf . Thus, on gauge-invariant operators

we have

eπiACNcMNf = 1, (5.7)

and SU(Nf )× U(1)A × Z
C
2 × Z

M
2 is really (U(Nf )× Z

C
2 × Z

M
2 )/Z2. In the dual theory we

have eπiACNf−Nc+2M̃Nf = 1, implying that for odd values of Nf ,

M←→ M̃C. (5.8)

We will see below that this must be true for even values of Nf as well.

The duality we find is very similar to the one discussed for O(Nc) theories (more

precisely, O(Nc)+ theories) in [10–12]. Indeed, if we now gauge the charge conjugation

symmetry Z
C
2 on both sides, we obtain precisely that duality, so our discussion is a deriva-

tion of this duality from 4d. But we obtain a duality also for SO(Nc) groups, meaning

that there should be a consistent mapping of the charge-conjugation-odd baryons between

the two sides. We can follow what happens to the 4d baryon mapping by our reduction

procedure. In 4d the baryon B = QNc mapped to b̃4d/2
√
η̃ (4.11). In the reduction on the

circle we say that this first becomes equal to
√
η̃b̃/2 (4.11), where the latter operator (2.23)

involves a monopole operator in so(4). When we go onto the Coulomb branch as above,

this monopole operator Ỹ− becomes i/
√
η̃ (from the VEV of Ỹ ) times the odd monopole

operator W̃− of SO(2), so we find that B maps to iβ̃/2, with β̃ defined as in (2.19). This

is consistent with their global symmetry quantum numbers as in (5.5), (5.6).

The 4d operator b4d goes to zero in the η → 0 limit that we described, as does its 4d

dual B̃4d = qNf−Nc+4 (since only (Nf−Nc+2) components of the quarks remain massless in
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the limit we took in theory B). However, we now get a new relation (required by consistency

of the duality), mapping β to the 3d baryon B̃ = qNf−Nc+2. We cannot derive this duality

directly from 4d, but on the part of the moduli space where we break both gauge groups to

SO(2), it follows by dualizing the vector multiplets (3.5) in the 4d relation Wα ↔ W̃α into

chiral multiplets (taking into account again the VEV of Ỹ in theory B). It is also consistent

with the global symmetries as in (5.5), (5.6). We conclude that the baryons map in the 3d

duality between SO(Nc) and SO(Nf −Nc + 2) by

{B, β} ←→
{
i

2
β̃,−2iB̃

}
. (5.9)

Note that this mapping requires that the Z
M
2 symmetry (3.8), which takes B → B and

β → −β, maps under the duality by (5.8) for all values of Nf . As we mentioned above,

in the 3d theory b and Z are not chiral, so they do not have a simple mapping under the

duality.

We can perform many tests of this duality, comparing moduli spaces, chiral operators,

deformations, and so on, but most of these tests are identical to tests of the O(Nc)+ duality

that were already performed in [12]. We can find new tests by involving also the baryon

operators. For instance, suppose that we turn on a VEV for M of rank Nc, as in our

discussion of the previous section. In theory A we still have two vacua for every such M ,

with B2 = detNc×Nc(M). In theory B we now give a mass to Nc quarks, so that we are left

at low energies with Nf − Nc = Ñc − 2 massless quarks, and with a low-energy Coulomb

branch coordinate ỸNf−Nc = ỹ/
√
detNc×Nc(M). Our discussion around (2.22) implies that

in this low-energy theory, in which the superpotential sets its meson qq = 0, there is a

relation β̃2
Nf−Nc

= −4. Translating this into the high-energy theory (using (2.10)) we find

β̃2 = −4 detNc×Nc(M), so that we can indeed identify β̃ with (−2iB).

For low values of Nc and of Nf −Nc there are slight modifications of this discussion,

as in the 4d duality [2] and in the analysis of the pure 3d theory [12], but these do not raise

any new issues so we will not discuss them in detail here.

5.2 Reduction of the Spin(Nc)↔ SO(Ñc)− duality to 3d

We can similarly obtain the dual of the 3d Spin(Nc) theory, by starting from the 4d duality

between Spin(Nc) and SO(Ñc)−. We can again focus on the same points YSpin = 0 and

Ỹ = −i/√η̃ in the moduli space, and obtain the low-energy superpotential (5.1). However,

now we are at a fixed point of (3.7), so the discussion in footnote 9 implies that the

unbroken gauge symmetry in theory B is S(O(Nf − Nc + 2) × O(2)). The moduli space

coordinate Ỹ is the monopole operator of the SO(2) factor; when expressed in terms of

Ỹ , the SO(2) ⊂ O(2) is not visible. Focusing on the region around Ỹ = −i/√η̃, it is

convenient to change variables from the approximate free field Ỹ to y defined by

4
√
ηη̃

y

1 + ηy2
=

1

Ỹ
+ η̃Ỹ . (5.10)

Now we expand around y = 0, the mapping from theory A to theory B (4.2) identifies

YSpin = y2, and the extra Z2 gauge identification acts as y → −y. This Z2 also acts on the
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SO(Nf−Nc+2) theory as charge conjugation, and it also changes the sign of the monopole

operator ỹ = Ỹlow of SO(Nf −Nc + 2). Thus, we recognize the gauge theory we get as an

O(Nf −Nc+2)− theory, with the elementary field y odd under ZC̃
2 ⊂ O(Nf −Nc+2). The

low energy superpotential after taking η → 0 is

WB =
1

2
Mqq +

iNf−Nc

4
ỹ y . (5.11)

The bottom line is that the dual of the Spin(Nc) SQCD theory is similar to (5.4), but the

dual gauge group is O(Nf −Nc + 2)−, and y and ỹ are odd under its ZC̃
2 subgroup.

The Z
C
2 global symmetry of theory A is mapped under this duality to Z

M̃
2 . In the

Spin(Nc) theory B is a Z
C
2 -odd gauge-invariant operator, while Y and β do not exist. In

the dual O(Nf − Nc + 2)− theory β̃ is a Z
M̃
2 -odd gauge-invariant operator (mapped to

B), while y, ỹ and B̃ are not gauge-invariant. The operator βSpin of (2.20) is present in

theory A, and maps to the gauge-invariant operator B̃y in theory B.

In the discussion above we expanded around the point YSpin = 0, which is mapped to

Ỹ = −i/√η̃. Instead we could expand around Ỹ = 0, which corresponds to YSpin = −1/η.
Here the SO(Nf − Nc + 4) gauge group of theory B is unbroken, while the gauge group

of theory A is broken as Spin(Nc) → (Spin(Nc − 2) × Spin(2))/Z2, where the Z2 acts on

the spinors in both groups. Next we analyze the low energy dynamics of theory A, as

we did in theory B above, focusing on the Spin(2) dynamics. It is important that there

are no massless fields charged under this group. Hence, its Wilson loops become trivial

at long distances. Further, we can map each (Spin(Nc − 2) × Spin(2))/Z2 bundle to an

SO(Nc − 2) bundle by simply ignoring the Spin(2) transition functions. Hence, when we

integrate out the Spin(2) dynamics we are left with an SO(Nc− 2) gauge theory. The dual

of the Spin(2) gauge field, YSpin, is an almost free field, which we can replace using (4.2)

by an elementary field Ỹ , identified with the monopole operator of theory B. Finally, we

can identify the gauge-invariant operator (iYlow,Spin/
√
ηZ) in theory A (where Ylow,Spin is

the Coulomb branch coordinate of Spin(Nc − 2)) with Ylow of SO(Nc − 2), and, as in our

analysis above, the various monopole-instantons couple Ỹ to Ylow. For η̃ → 0 we find a

superpotential term proportional to YlowỸ , as in (5.3). The duality we derive this way

is precisely the inverse of the SO(N) duality that we derived in section 5.1. This is a

non-trivial consistency check on our web of dualities, because in section 5.1 we derived this

duality from the compactification of a different 4d duality.

We can also obtain a dual for Pin(Nc), by gauging the global symmetry Z
M
2 in the

duality for O(Nc)+ groups. The fact that in the O(Nc)+ duality the symmetry Z
M
2 maps

to itself implies that the Pin(Nc) theory is dual to a Pin(Nf −Nc + 2) theory.

5.3 Dualities with Chern-Simons terms

As in [6], we can flow from the duality above to a duality with Chern-Simons terms. We

can obtain an SO(Nc) theory with Nf flavors and a Chern-Simons term at level k >

0 by starting from the theory with Nf + k flavors and giving k flavors a positive real

mass, by turning on a background field for the U(Nf + k) global symmetry. In the dual

SO(Nf + k−Nc + 2) theory, this maps to giving k flavors a negative real mass, giving the
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mesons they couple to a positive real mass, and also giving a negative real mass to the

singlet Y . Integrating out the massive fields we find an SO(Nf + k −Nc + 2) theory with

Nf flavors, level (−k), and a WB = 1
2Mqq superpotential. This is precisely the duality

conjectured in [24] for the O(N) theories (more precisely, O(N)+ theories), and here we

see that it is true also for SO(N).

The difference between O(N)+ and SO(N) is that now we need to understand also

how to map the baryon operators in the two sides, and this is more complicated (as in the

discussion of SU(Nc) Chern-Simons-matter theories in [6]) since they involve monopoles.

In theory A we still have the baryon operator B = QNc , while the baryon-monopole

β = QNc−2W− is no longer gauge-invariant in the presence of the Chern-Simons term, and

similarly in theory B. We claim, similar to what we found for SU(Nc) Chern-Simons-matter

theories, that the dual of B is now given by a monopole operator β̃′ = qNf−NcW̃−(W̃α)
k,

which is gauge-invariant. The quarks are contracted with an epsilon symbol, and break

SO(Nf + k − Nc + 2) to SO(k + 2). The monopole operator W̃− breaks SO(k + 2) to

SO(k) × U(1), and because of the Chern-Simons term it carries a charge (−k) under the

U(1). The gluinos W̃α are off-diagonal gluinos in SO(k) × U(1) which cancel this charge,

and carry k different vector indices of SO(k) that are contracted by an epsilon symbol,

such that the total operator is gauge-invariant. One can verify that the global symmetry

charges of this β̃′ exactly match with those of B. Similarly, we can construct an operator

β′ in theory A that matches with B̃ = qNf+k−Nc+2.

In theory A we have the relation B2 = detNc×Nc(M). To see this in theory B we turn

on a VEV of rank Nc for M , leaving Nf − Nc massless flavors q, and we then ignore for

a moment the superpotential and imagine giving an expectation value to the remaining

massless flavors. This breaks the gauge group to SO(k+2) with level (−k) and no massless

flavors. At low energies this is a purely topological theory, in which we can construct a

singlet operator β̃′ = W̃−W̃ k
α as above, which is charged under the charge conjugation

symmetry of this theory, and argue that it squares to one (similar to our discussion of the

SU(k) theory at level (−k) in [6]). Lifting this to the high-energy theory using (2.10) we

get precisely the expected relation (which turns out to be independent of the VEVs of the

q’s, so it is valid even for q = 0).

For Nf = 0 our duality reduces to a duality of pure supersymmetric Chern-Simons

theories, SO(Nc)k being identified with SO(|k| − Nc + 2)−k. This is just the standard

level-rank duality of SO(N) Chern-Simons theories. At low energies we can integrate out

the gauginos, shifting the SO(Nc) level to k → k − (Nc − 2)sign(k). We then obtain the

standard level-rank relation [25–27]

SO(n)m ←→ SO(m)−n, (5.12)

for n,m > 0, that can be proven by studying nm real fermions in two dimensions.

Similarly, we can flow from our Spin(Nc) duality to find a duality between Spin(Nc)k
and (O(Nf + |k|−Nc+2)−)−k (and a corresponding non-supersymmetric level-rank duality

taking Spin(n)m to (O(m)−)−n), and a duality between the supersymmetric Pin(Nc)k and

Pin(Nf + |k|−Nc+2)−k theories (with a level-rank duality taking Pin(n)m to Pin(m)−n).
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5.4 The special case of SO(2) = U(1) with Nf = 2: a triality of dualities

We now have two different dualities for SO(2) = U(1) gauge theories with Nf flavors, which

we refer to as theory A. First, we can view the gauge group as U(1) and find a dual theory

based on U(Nf − 1) [28]. We will refer to this dual theory as B1. Alternatively, as in this

paper, we can view it as SO(2) and find a dual theory based on SO(Nf ). We will refer to

it as B2. The B1 dual exhibits the full SU(Nf )× SU(Nf )×U(1)A ×U(1)J ×U(1)R global

symmetry, while the B2 dual exhibits explicitly only SU(Nf ) × U(1)A × U(1)R, and the

other symmetries arise as accidental symmetries at low energies.

The SO(2) theory with Nf = 2 deserves special attention. In this case the gauge groups

of theories A, B1 and B2 are all U(1), and they all have two flavors. Furthermore, in this

case there is also a mirror theory, that also has gauge group U(1) and two flavors [29, 30]–

[13, 31]. We will refer to this theory as B3.

Let us understand the relation between these dual descriptions (see also [12]). We

begin with theory A. We can think of it either as a U(1) theory with two flavors Qa, Q̃ã

(a, ã = 1, 2), or as an SO(2) theory with two doublets Pi (i = 1, 2). Let us work out

the translation between these two languages. In the U(1) description of this theory, the

chiral operators are the magnetic monopoles V± (2.13) and four mesons M̂ab̃ = QaQ̃b̃. The

translation to SO(2) variables, if we keep the standard normalization for the kinetic terms,

is by

Qi =
1√
2
(P 1

i + iP 2
i ), Q̃i =

1√
2
(P 1

i − iP 2
i ) . (5.13)

Defining the standard SO(2) mesons Mij = Pi · Pj , the symmetric part of M̂ is related to

M by M̂ij + M̂ji = Mij . The anti-symmetric part of M̂ is related to the SO(2) baryon

B ≡ P 1
1P

2
2 − P 2

1P
1
2 by M̂12 − M̂21 = −iB. The natural monopole-related operators in the

SO(2) language are

Y ≡ V+ + V− , β ≡ V+ − V− . (5.14)

The former is the basic monopole in the SO(2) language, and the latter is the baryon

operator β (2.19) in this special case. The charges of the different objects under the

global U(1)A × U(1)R symmetry that is visible in all descriptions are (using our standard

conventions):

U(1)A U(1)R

Q, Q̃, P 1 0

Y, β −2 2

B,M 2 0

(5.15)

The dual description which has all the symmetries of theory A manifest is B1. This is

a U(1) theory with two flavors q
(1)
a , q̃

(1)
ã (a, ã = 1, 2) and with additional singlet fields M̂ab̃

(1)

and V
(1)
± . The superpotential is [28]

WB1 = q(1) M̂ (1) q̃(1) + V
(1)
+ Ṽ

(1)
− + V

(1)
− Ṽ

(1)
+ . (5.16)
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For comparison with other duals it will be useful to translate this to the SO(2) language,

as we did above. We define as above

Ỹ (1) ≡ Ṽ
(1)
+ + Ṽ

(1)
− , β̃(1) ≡ Ṽ

(1)
+ − Ṽ

(1)
− , B̃(1) ≡ i(q

(1)
1 q̃

(1)
2 − q

(1)
2 q̃

(1)
1 ) . (5.17)

Translating the quarks q, q̃ to SO(2) quarks p as above, the superpotential (5.16) becomes

WB1 =
1

4
M

(1)
ab p(1)a p

(1)
b −

1

2
B(1) B̃(1) +

1

2
Y (1) Ỹ (1) − 1

2
β(1)β̃(1) , (5.18)

with the singlets B(1) and M (1) related to M̂ (1), and the singlets β(1) and Y (1) related

to V
(1)
± , as in theory A. These singlets are identified with the corresponding operators in

theory A. The U(1)A ×U(1)R charges of the different objects are:

U(1)A U(1)R

q(1), q̃(1), p −1 1

Ỹ (1), β̃(1) 2 0

B̃(1) −2 2

(5.19)

The normalization of the first term in (5.18) is half of the normalization in the standard

SO(Nc) duality (5.4), and it will be easier to compare them if we have the same normaliza-

tion in both cases. Since the p’s do not appear in any gauge-invariant chiral operator, we

can simply rescale them to new variables p̂
(1)
i = p

(1)
i /
√
2. This also rescales the baryon B̃(1)

to
˜̂
B

(1)
= B̃(1)/2, and because of the relation of the quantum numbers of the monopoles

to those of the quarks, the latter are also rescaled to
˜̂
Y

(1)
= 2Ỹ (1),

˜̂
β
(1)

= 2β̃(1). We can

now write (5.18) as

WB1 =
1

2
M

(1)
ab p̂(1)a p̂

(1)
b −B(1) ˜̂

B
(1)

+
1

4
Y (1) ˜̂Y

(1)
− 1

4
β(1) ˜̂β

(1)
. (5.20)

The dual description B2, with gauge group SO(2), is quite similar to B1. The difference

is that we do not have the singlet fields B and β, and the superpotential is (5.4)

WB2 =
1

2
M

(2)
ab p(2)a p

(2)
b +

1

4
Y (2) Ỹ (2) . (5.21)

The map between the chiral operators here is

M →M (2) , B → i

2
β̃(2) , β → −2iB̃(2) , Y → Y (2) . (5.22)

Note that in description B2 the U(1)J symmetry is not present in the UV gauge theory, as

the singlet Y mixes with β under this symmetry. Moreover only an SU(2) ⊂ SU(2)×SU(2)

flavor symmetry is visible in the UV. The symmetries broken in this UV description should

appear as accidental symmetries of the IR physics.

Finally, in description B3 we do not have M12 and Y , and the superpotential is

WB3 = M̂11
(3) q

(3)
1 q̃

(3)
1 + M̂22

(3) q
(3)
2 q̃

(3)
2 =

1

4
M

(3)
11 p

(3)
1 p

(3)
1 +

1

4
M

(3)
22 p

(3)
2 p

(3)
2 . (5.23)
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Using the fact that mirror symmetry exchanges the monopoles V± with the off-diagonal

mesons M̂12, M̂21 with coefficient one, the map between the chiral operators here is

Mℓℓ →M
(3)
ℓℓ , B → iβ̃(3) , β → −iB̃(3) , Y → p

(3)
1 p

(3)
2 , M12 → Ỹ (3) .

(5.24)

Here U(1)J is present in the UV description and is identified with part of the dual flavor

group, but only U(1)× U(1) ⊂ SU(2)× SU(2) is a symmetry of the UV theory. As in the

B1 theory, it is convenient to rescale the p’s by
√
2, and in the rescaled variables defined

as above we have

WB3 =
1

2
M

(3)
11 p̂

(3)
1 p̂

(3)
1 +

1

2
M

(3)
22 p̂

(3)
2 p̂

(3)
2 , (5.25)

with the new mapping

Mℓℓ →M
(3)
ℓℓ , B → i

2
˜̂
β
(3)

, β → −2i ˜̂B
(3)

, Y → 2p̂
(3)
1 p̂

(3)
2 , M12 →

1

2
˜̂
Y

(3)
.

(5.26)

Note that the mapping between the B’s and β’s is now the same as in (5.22).

Let us now relate these theories, by understanding their deformations. We claim

that the IR superconformal field theory that all these theories flow to has eight marginal

deformations, and that two of them are exactly marginal. In the B1 description the eight

marginal operators are M̂aã
(1)V

(1)
± . Denote their coupling constants by λ±

aã. The space

of exactly marginal deformations is generally given by the (complexified) quotient of the

space of marginal deformations by the global symmetries, which act on it non-trivially [32].

This can be found by noting the invariant combinations constructed out of λ±
aã. All these

deformations preserve U(1)A, but they are charged under SU(2) × SU(2) × U(1)J . There

are two non-trivial invariants of this group: ǫabǫãb̃λ+
aãλ

−
bb̃
and

(
ǫabǫãb̃λ+

aãλ
+

bb̃

)(
ǫcdǫc̃d̃λ−

cc̃λ
−
dd̃

)
.

This shows that there are two exactly marginal deformations. Equivalently, the global

symmetry SU(2)× SU(2)×U(1)J is not completely broken on the space of couplings, but

a U(1) always remains (which is a subgroup of the diagonal SU(2)).

By a global symmetry transformation, we can choose the two exactly marginal defor-

mations to be given by (in the SO(2) language)

δW = γ B β + ρM12 Y . (5.27)

Note that these deformations are invariant under ZC
2 , but they break Z

M
2 (3.8).

Suppose we first add the term with γ to theory A. In the B1 dual description, the

superpotential becomes after integrating out the massive singlet fields

WB1 + γ B(1) β(1) → 1

2
M

(1)
ab p̂(1)a p̂

(1)
b +

1

4
Y

˜̂
Y

(1)
− 1

4γ
˜̂
β
(1) ˜̂

B
(1)

. (5.28)

This is exactly the same as the superpotential WB2, deformed by −1
4γ B̃(2) β̃(2). On the other

hand, adding γ B β to theory A translates in theory B2 to adding γ B̃(2) β̃(2). These two

descriptions should be equivalent, so we conclude that our deformed IR superconformal

field theory possesses an exact duality under γ ←→ (−1/4γ).
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Next we add the term with ρ to theory A. The superpotential in the dual B2 description

becomes, after integrating out massive singlet fields,

WB2 + ρM
(2)
12 Y (2) → 1

2
M

(2)
11 p

(2)
1 p

(2)
1 +

1

2
M

(2)
22 p

(2)
2 p

(2)
2 −

1

4ρ
Ỹ (2) p

(2)
1 p

(2)
2 . (5.29)

This is exactly the same as the superpotential WB3, deformed by − 1
4ρ

˜̂
Y

(3)
p̂
(3)
1 p̂

(3)
2 ; as we

mentioned, the baryon mappings are also consistent. On the other hand, adding ρM12 Y

to theory A translates in theory B3 to adding ρ
˜̂
Y

(3)
p̂
(3)
1 p̂

(3)
2 . Thus we conclude that our

IR superconformal field theory also possesses an exact duality ρ←→ (−1/4ρ).
Assuming the three dualities, we deduced that the exactly marginal couplings enjoy

dualities taking γ ←→ (−1/4γ) and ρ ←→ (−1/4ρ). Alternatively, if one could prove the

duality of the marginal deformations, one could deduce all three duals of U(1) with two

flavors from knowing any one of them.

6 Partition functions and indices for so(N) dualities

A set of useful checks of dualities is given by comparisons of supersymmetric partition

functions of the putative dual pair: if the two 3d UV theories describe the same IR physics,

their S
3 and S

2 × S
1 supersymmetric partition functions should agree. In this section we

will discuss these checks for the dualities of the previous section.

6.1 The partition function on S
2 × S

1

Let us start by discussing the matching of the partition function on S
2×S

1, also known as

the supersymmetric index. The indices for the O(Nc)+ versions of the dualities discussed in

this paper were checked to match in [11, 33]. The index is sensitive to the global structure

of the gauge group, and thus the matching of the indices for SO(Nc) does not directly

follow from these computations.10 We will check here that the supersymmetric indices

match also for the SO(Nc) dualities. In the process of doing this, we will see that, since the

index contains information about local operators, it can test the proposed mapping of the

baryon operators to the baryon-monopole operators discussed in the preceding sections.

First, let us briefly review the definition of the 3d supersymmetric index. It is defined

by the following trace over states on S
2 × R (see [34–37]–[6, 38] for details):

I(x; {ua}) = Tr

[
(−1)2J3 x∆+J3

∏

a

ueaa

]
. (6.1)

Here ∆ is the energy in units of the S
2 radius (related to the conformal dimension for

superconformal field theories), J3 is the Cartan generator of the Lorentz SO(3) isometry

of S2, and ea are charges under U(1) global symmetries (which could be subgroups of non-

Abelian global symmetries). The states that contribute to this index satisfy ∆−R−J3 = 0,

where R is the R-charge (that is used in the compactification on S
2).

10We will discuss below a generalization of the O(Nc)+ index, which contains the same information as

the SO(Nc) index.

– 29 –



J
H
E
P
0
8
(
2
0
1
3
)
0
9
9

This index can be computed by a partition function on S
2×S1, and localization dictates

that the index gets contributions only from BPS configurations. For example, for a U(1)

gauge multiplet, we can take the gauge field to have a holonomy z ∈ U(1) around the S
1

and magnetic flux m ∈ Z on the S
2, which then determines the configurations of the other

fields in the gauge multiplet. The 1-loop determinant of a chiral multiplet of R-charge R

coupled with unit charge to this gauge multiplet is:

IRχ (x; z;m) ≡ (x1−Rz−1)|m|/2
∞∏

j=0

1− (−1)mz−1x|m|+2−R+2j

1− (−1)mzx|m|+R+2j
. (6.2)

For a general gauge theory with gauge group G of rank rG, one introduces fugaci-

ties zi (i = 1, · · · , rG) parameterizing the maximal torus of G, with corresponding GNO

magnetic fluxes mi on S
2. One can similarly introduce fugacities ua and fluxes na for

background gauge multiplets coupled to global symmetries. The 1-loop determinant in

such a configuration is given by taking the product of the contributions (6.2) of the chiral

multiplets, along with a contribution from the vector multiplet:

IV (x; zi;mi) ≡
∏

α∈R
x−|α(m)|/2(1− (−1)α(m)zαx|α(m)|), (6.3)

where the product is over the roots of the gauge group. One can also include Chern-Simons

terms for background or dynamical gauge multiplets, whose contribution, for instance, for

a level k term for a U(1) gauge multiplet, is zkm. Finally, the partition function is given

by integrating over the gauge parameters zi and summing over the gauge fluxes mi.

We will be interested in the SO(Nc) gauge theory with Nf chiral multiplets Qa of

R-charge R in the vector representation of SO(Nc), and with a Chern-Simons term at

level k. We include fugacities and fluxes, µa and na, a = 1, · · · , Nf , for the U(Nf ) flavor

symmetry, as well as fugacities ζ = ±1 for the global symmetry Z
M
2 , and χ = ±1 for the

charge conjugation symmetry Z
C
2 .

Let us write down explicitly the relevant indices. The index with χ = +1 is given by:

IASO(Nc)
(x;µa;na; ζ, χ = +1) = ζkζ

∑
a na

∏

a

µa
kFna

∑

{m1,...,mrG
}
ζ
∑

i mi
1

|W{mℓ}|

∮ rG∏

ℓ=1

(
dzℓ

2πi zℓ
zℓ

kmℓ

)Nf∏

a=1

(
(IRχ (x;µa;na))

ǫ
rG∏

i=1

IRχ (x; ziµa;mi+na)IRχ (x; zi−1µa;−mi+na)

)

rG∏

i<j

(
x−|mi−mj |(1− (−1)mi−mjziz

−1
j x|mi−mj |)(1− (−1)mi−mjz−1

i zjx
|mi−mj |)

x−|mi+mj |(1− (−1)mi+mjzizjx
|mi+mj |)(1− (−1)mi+mjz−1

i z−1
j x|mi+mj |)

)

( rG∏

i=1

x−|mi|(1− (−1)mizix
|mi|)(1− (−1)mizi

−1x|mi|)

)ǫ

. (6.4)

Here Nc = 2rG + ǫ with ǫ = 0, 1. The integers mi run over the Weyl-inequivalent GNO

charges, and |W{m}| is the order of the residual Weyl group [35]. In the first term on the
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first line we have introduced background Chern-Simons terms for the global symmetries. kF
is the level of a background Chern-Simons term for the U(Nf ) global symmetry [39, 40],11

and kζ (obeying kζ ∼ kζ + 2) is a similar term mixing the discrete Z
M
2 symmetry with

U(1)A.
12 We are free to choose the values of these terms, as long as parity anomalies are

canceled so that the index is well defined, namely, it has an expansion in fugacities with

integer powers.13 This requires

kζ ∈ {0, 1} , kF ∈ Z+
1

2
Nc , (6.5)

where the second requirement is the standard parity anomaly [41, 42].

Next we want to compute the index with χ = −1, where we should sum over holonomies

of O(Nc) that have determinant (−1). The computation is different for the cases of odd

and even Nc (see [11, 33] and also [43]). First, let us discuss the odd Nc case. A general

O(2rG + 1) holonomy of determinant χ can be brought to the form

diag
(
z1, z

−1
1 , · · · , zrG , z−1

rG
, χ
)
. (6.6)

Thus, the indices with χ = −1 are given by14

IASO(Nc)
(x;µa;na; ζ, χ = −1) =

(
ζkζχkχ

)∑
a na∏

a

µa
kFna

∑

{m1,...,mrG
}
ζ
∑

i mi
1

|W{mℓ}|

∮ rG∏

ℓ=1

(
dzℓ

2πi zℓ
zℓ

kmℓ

) Nf∏

a=1

(
IRχ (x;χµa;na)

rG∏

i=1

IRχ (x; ziµa;mi+na)IRχ (x; zi−1µa;−mi+na)

)

rG∏

i<j

(
x−|mi−mj |(1− (−1)mi−mjziz

−1
j x|mi−mj |)(1− (−1)mi−mjz−1

i zjx
|mi−mj |)

x−|mi+mj |(1− (−1)mi+mjzizjx
|mi+mj |)(1− (−1)mi+mjz−1

i z−1
j x|mi+mj |)

)

( rG∏

i=1

x−|mi|(1 + (−1)mizix
|mi|)(1 + (−1)mizi

−1x|mi|)

)
. (6.7)

We introduced here a background Chern-Simons term with coefficient kχ (kχ ∼ kχ + 2)

mixing the charge conjugation symmetry Z
C
2 with U(1)A, and for the partition function to

be well-defined we must have

kχ ∈
{
− 1

2
,
1

2

}
. (6.8)

11We could also introduce different levels for U(1)A and SU(Nf ).
12If we describe the background Z

M
2 gauge symmetry by two U(1) gauge fields A1,2 with an action given

by an off-diagonal Chern-Simons term at level two [22, 23], we can write kζ as the coefficient of an ordinary

Chern-Simons term that mixes A1 with the background U(1)A gauge field.
13Note that, in the building blocks defining the index, there appear half-integer powers of the fugacities

(see, e.g. (6.2)), and so these factors are not well-defined individually. However, when we expand the index

as a series and include the appropriate background Chern-Simons terms, this expansion has only integer

powers of the fugacities, and thus is well-defined.
14In the expression of the index here and in the even Nc case below, we write the last eigenvalue of the

holonomy as χ in the contribution of the chiral multiplets, in order to keep track of the fractional powers

of χ appearing in the intermediate expressions in a consistent way.
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For even Nc = 2 rG, any holonomy of determinant χ = −1 can be brought to the form

diag
(
z1, z

−1
1 , · · · , zrG−1, z

−1
rG−1, 1, −1

)
. (6.9)

Thus, the index is given by

IASO(Nc)
(x;µa;na; ζ, χ = −1) =

(
ζkζχkχ

)∑
a na∏

a

µa
kFna

∑

{m1,...,mrG−1}
ζ
∑

i mi
1

|W{mℓ}|

∮ rG−1∏

ℓ=1

(
dzℓ

2πi zℓ
zℓ

kmℓ

) Nf∏

a=1

( rG−1∏

i=1

(
IRχ (x; ziµa;mi + na)IRχ (x; zi−1µa;−mi + na)

)

IRχ (x;µa;na)IRχ (x;χµa;na)

) rG−1∏

j=1

x−2|mj |(1− z−2
j x2|mj |) (1− z2jx

2|mj |)

rG−1∏

i<j<rG

(
x−|mi−mj |(1− (−1)mi−mjziz

−1
j x|mi−mj |)(1− (−1)mi−mjz−1

i zjx
|mi−mj |)

x−|mi+mj |(1− (−1)mi+mjzizjx
|mi+mj |)(1− (−1)mi+mjz−1

i z−1
j x|mi+mj |)

)
,

(6.10)

with the same quantization conditions on the background Chern-Simons terms as above.

The dual theory has an SO(Ñc = Nf + |k| −Nc + 2) gauge group and Chern-Simons

level (−k), with Nf chiral multiplets qa in the vector representation, Nf (Nf +1)/2 singlet

mesons Mab, and, for k = 0, also a singlet Y . The index of the dual theory with χ = 1,

with the charges and the background terms mapped appropriately across the duality, is:

IB
SO(Ñc)

(x;µa;na; ζ, χ = +1) = ζ(kζ−kχ)
∑

a na
∏

a

µa
kFna

ζ−
sign(k)

2

∑
a na

(∏

a

(µax
R)

1
2
(kna−sign(k)

∑
a na)

)
x

sign(k)
2

(Nf+1−Nc)
∑

a na

( Nf∏

a≤b

I2Rχ (z;µaµb, na + nb)

) [
INf+2−Nc−NfR
χ (z; ζ−1

∏

a

µa
−1,−

∑

a

na)

]δk,0

∑

{m1,...,mr̃G
}
ζ
∑

i mi
1

|W{mℓ}|

∮ r̃G∏

ℓ=1

(
dzℓ

2πi zℓ
zℓ

−kmℓ

)

Nf∏

a=1

(
(I1−R

χ (x;µa
−1,−na))

ǫ̃
r̃G∏

i=1

I1−R
χ (x; ziµa

−1;mi − na)I1−R
χ (x; zi

−1µa
−1;−mi − na)

)

r̃G∏

i<j

(
x−|mi−mj |(1− (−1)mi−mjziz

−1
j x|mi−mj |)(1− (−1)mi−mjz−1

i zjx
|mi−mj |)

x−|mi+mj |(1− (−1)mi+mjzizjx
|mi+mj |)(1− (−1)mi+mjz−1

i z−1
j x|mi+mj |)

)

( r̃G∏

i=1

x−|mi|(1− (−1)mizix
|mi|)(1− (−1)mizi

−1x|mi|)

)ǫ̃

, (6.11)
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where again Ñc = Nf + |k|−Nc+2 = 2r̃G+ ǫ̃. Note that the parameter ζ now also appears

in the contribution of the elementary field Y , since the ZM̃
2 symmetry in theory B also acts

on this singlet. The factors on the first and the second line represent the contribution of

background Chern-Simons terms. The background Chern-Simons terms on the second line

are the relative ones, which must be included when k 6= 0 [10] (here we defined sign(k) = 0

for k = 0) for the duality to work. The expressions for IB
SO(Ñc)

with χ = −1 are obtained

in an analogous way to our discussion of theory A above.

The dualities discussed in this paper imply the following equality for the indices,

IASO(Nc)
(x;µa;na; ζ, χ) = IBSO(Nf+|k|−Nc+2)(x;µa;na; ζ, ζ χ) . (6.12)

We have checked this equality for various values of the discrete parameters k, na, ζ and χ,

by expanding both sides in a power series in x and comparing the leading coefficients.

We also can write the indices for other orthogonal gauge groups. In the SO(Nc) index

computation we introduced a fugacity χ = ±1 for the global charge conjugation symmetry

Z
C
2 . Similarly, we can introduce in the computation for an O(Nc) gauge group a discrete

theta-like parameter χ′ = ±1, determining whether we project on even or odd states under

Z
C
2 . The O(Nc)+ result for χ′ = 1 is half of the sum of the SO(Nc) results with χ = 1,−1,

and the O(Nc)+ result for χ′ = −1 is half of their difference. Thus, allowing for arbitrary

χ and χ′ one can relate the SO(Nc) and the O(Nc)+ expressions.15 In the O(Nc)− case

we need to change the sign of the projection for states charged under Z
M
2 . Similarly, the

Spin(Nc) and Pin(Nc) indices are given by summing over the sectors with different ζ, and

we can define for them an index with ζ ′ = 1 that projects on the Z
M
2 -even states (which

make up the standard Spin(Nc) and Pin(Nc) theories), and an index with ζ ′ = −1 that

projects on the odd states. We then have:

ISpin(Nc)(x;µa;na; ζ
′, χ) =

1

2

(
ISO(Nc)(x;µa;na; ζ = +1, χ) + ζ ′ ISO(Nc)(x;µa;na; ζ = −1, χ)

)
,

IO(Nc)+(x;µa;na; ζ, χ
′) =

1

2

(
ISO(Nc)(x;µa;na; ζ, χ = +1) + χ′ ISO(Nc)(x;µa;na; ζ, χ = −1)

)
,

IO(Nc)−(x;µa;na; ζ, χ
′) =

1

2

(
ISO(Nc)(x;µa;na; ζ, χ = +1) + χ′ ISO(Nc)(x;µa;na;−ζ, χ = −1)

)
,

IPin(Nc)(x;µa;na; ζ
′, χ′) =

1

2

(
ISpin(Nc)(x;µa;na; ζ

′, χ = +1) + χ′ ISpin(Nc)(x;µa;na; ζ
′, χ = −1)

)
. (6.13)

Our tests of the SO(Nc) duality (6.12) with general ζ and χ provide tests also for the du-

alities between two O(Nc)+ theories, between Spin(Nc) and O(Ñc)− theories, and between

two Pin(Nc) theories.
16

15This is a discrete version of the situation for U(Nc) gauge groups discussed in [6, 44, 45], where one

can go between SU(Nc) and U(Nc) by gauging a U(1) or by “ungauging” a topological U(1)J symmetry.
16Note that the standard indices of these theories map to each other, but the twisted indices which project

onto odd states map only up to a sign, because of the non-trivial mapping of the Z2 global symmetries that

is embodied in (6.12).
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When the indices are expanded as a series in the various fugacities, the terms in the

series represent the contributions of BPS operators with the corresponding charges, as

follows from the definition of the index (6.1). Thus we can use the expressions above to

attempt to trace how the baryons map between the two dual SO descriptions (6.12).17 On

the electric side the usual baryons are QNc , with an anti-symmetric product of some choice

of Nc flavors. For example, let us define B to be the operator constructed out of the flavors

a = 1, · · · , Nc. In the dual side, this maps to a monopole-baryon operator, β̃′, as described
in section 5.3. Specifically, in this case:

B =

Nc∏

a=1

Qa → β̃′ = eσ̃1/ĝ23+iã1

(
k+2∏

α=3

λ̃1α

) 


Nf∏

a=Nc+1

qa


 . (6.14)

Here eσ̃1/ĝ23+iã1 is the basic SO(Ñc) monopole with GNO charges (1, 0, 0, . . . , 0), λ̃αβ

are the gluinos, and qa are the dual quarks, with their color indices contracted anti-

symmetrically in the subgroup SO(Nf − Nc) ⊂ SO(Ñc) that is left unbroken by the

monopole and the gluinos. To test this mapping in the index, note that each chiral

multiplet Qa,α (α = 1, · · · , Nc, a = 1, · · · , Nf ) contributes a factor18 xRwαµa, so the

operator B contributes a term xRNc
∏Nc

a=1 µa to the index. On the dual side, qa,β con-

tributes x1−R wβµa
−1, each gluino contributes −xwα/w1, and the monopole background

contributes (−1)kwk
1 x

Nc−Nf−k+NfR
∏Nf

a=1 µa. Putting this together we find that the con-

tribution of β̃′ matches that of B (there is also a factor of χ in theory A, and a fac-

tor of ζχ in theory B). The baryons of theory B qÑc are mapped in a similar way to

β′ = eσ1/ĝ23+ia1
(∏k+2

α=3 λ1α

)
QNc−k−2 in theory A.

6.2 The partition functions on S
3

Let us now comment on the S
3 partition functions. The partition functions on S

3 for

N = 1 SQCD with O(Nc)+ gauge group were computed and found to agree for the O(Nc)+
dualities discussed in [10, 11, 24, 33]. In fact, the equality of the partition functions of

the theories with SO(Nc) (and Spin(Nc)) gauge groups discussed in the preceding sections

follows directly from the equality of partition functions for theories with O(Nc)+ gauge

groups. The S3 partition functions are computed by a matrix integral over the Lie algebra,

which is the same in all these cases, and thus the partition functions differ only by overall

factors of 2 due to the different volumes of the gauge groups. Hence, the results of [10,

11, 24, 33] straightforwardly imply that the SO(Nc) dual pairs discussed in this paper have

the same S
3 partition functions.

In certain cases, e.g. the dualities discussed in [6], the equality of the partition functions

on S
3 of the 3d theories follows in a simple way from the equality of the 4d partition

17This statement comes with an obvious caveat. The index counts operators with signs in such a way

that long multiplets cancel out, so we cannot exclude the possibility that there may be multiple states

contributing to a given term.
18Here we use the notation w2j−1 = zj and w2j = zj

−1, j = 1, · · · , rG, and wNc
= 1 for Nc odd, where

zj , j = 1, · · · , rG span the maximal torus of SO(Nc) as in (6.4). Thus the wα, α = 1, · · · , Nc run over the

weights of the vector representation, with
∏Nc

α=1 wα = 1.
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functions on S
3 × S

1 (the supersymmetric index) of the 4d theories from which these 3d

theories descend. However, this is more subtle in the case of dualities with orthogonal

groups, as we will now explain.

First, let us briefly outline how the 3d partition functions are obtained from the 4d

indices: for more details see [6, 7, 46–48]. The partition function of a 4d theory on

S
3×S1 can be thought of explicitly as an S

3 partition function of the dimensionally reduced

theory with all the KK modes included.19 The (inverse) radius of the S
1 appears in the

S
3 partition function as a real mass for the U(1) symmetry associated with the rotation

around the circle. Taking the small radius limit corresponds to taking this real mass to

be large, and thus decoupling the massive KK modes. The fugacities for the 4d global

symmetries become real mass parameters in 3d. Some of the classical symmetries of the

4d gauge theories are anomalous, but the 3d theories obtained by dimensional reduction

of the matter content of the 4d ones do have these symmetries at the full quantum level.

The 4d index cannot be refined with fugacities for the anomalous symmetries, and thus

the 3d partition functions obtained by this reduction procedure are not refined with the

corresponding real mass parameters. This is an indication that the 3d theory obtained by

the reduction has a superpotential breaking the symmetry that is anomalous in 4d [6].

The above discussion presumes that the dimensional reduction produces a well-defined

and finite S
3 partition function. This presumption is true for the cases discussed in [6],

but it is not true for the SO(Nc) theories discussed in this paper: the reduction of the

4d index20 for SO(Nc) SQCD produces a divergent 3d partition function. The divergence

can be explained physically by the fact that not all of the Coulomb branch is lifted when

putting the theory on the circle, as discussed in the previous sections. In particular, in

the 4d theory on S
1, the operators Y or YSpin, parameterizing the Coulomb branch, have

no continuous global symmetry charges and no R-charge, and the presence of such a field

leads the 3d partition function to diverge.21 We have seen in the previous sections that

due to the intricate moduli space on the circle, the 3d SO(Nc) dualities are obtained by

focusing on certain regions of the Coulomb branch. It is possible that this more intricate

procedure can also be mimicked at the level of the index,22 and we leave this question to

future investigations.

19For the free chiral field, the representation of the 4d index as a product of 3d partition functions of KK

modes is the physical content of [49], as explained in appendix B of [6].
20The equality of 4d indices of dualities with so(Nc) Lie algebras were checked in [50]. See also [51] for a

related discussion.
21One can see this problem directly in 3d. The partition functions on S

3 and S
2 × S

1, of SO(Nc) SQCD

with general real mass parameters and R-charges, are finite and well defined. However, on the subspace

corresponding to the 4d R-symmetry, and where we turn on only real masses for non-anomalous symmetries

in 4d, both partition functions diverge.
22A possible way to obtain a finite 3d partition function is to take a “double scaling” limit, of a small

radius of the circle together with taking some of the real masses to be large.
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