
J
H
E
P
0
8
(
2
0
1
3
)
0
9
7

Published for SISSA by Springer

Received: May 31, 2013

Accepted: July 17, 2013

Published: August 20, 2013

Lifshitz to AdS flow with interpolating p-brane

solutions

Harvendra Singh

Theory Division, Saha Institute of Nuclear Physics,

1/AF Bidhannagar, Kolkata 700064, India

E-mail: h.singh@saha.ac.in

Abstract: In continuation with our studies of Lifshitz like Dp-brane solutions, we propose

a class of 1/4 BPS supersymmetric interpolating solutions which interpolate between IR

Lifshitz solutions and UV AdS solutions smoothly. We demonstrate properties of these

classical solutions near the two fixed points. These interpolating solutions are then used

to calculate the entanglement entropies of strip-like subsystems. With these bulk solutions

the entropy functional also gets modified. We also make a curious observation about the

electric-magnetic duality and the thermal entropy of the Hodge-dual Lifshitz Dp brane

systems.

Keywords: AdS-CFT Correspondence, p-branes, Holography and condensed matter

physics (AdS/CMT)

ArXiv ePrint: 1305.3784

c© SISSA 2013 doi:10.1007/JHEP08(2013)097

mailto:h.singh@saha.ac.in
http://arxiv.org/abs/1305.3784
http://dx.doi.org/10.1007/JHEP08(2013)097


J
H
E
P
0
8
(
2
0
1
3
)
0
9
7

Contents

1 Introduction 1

2 Dp-branes and relativistic CFTs 2

2.1 The thermal entropy of the relativistic theory 4

3 1

4
-BPS Lifshitz Dp-branes 5

3.1 The thermal entropy of a Lifshitz system 6

3.2 Lifshitz solutions in eleven dimensions 7

4 Interpolating solutions 9

4.1 Problem with Lifshitz solutions in the UV region 9

4.2 Interpolating Dp solutions 10

4.3 Entanglement entropy 12

5 Conclusion 14

1 Introduction

Recently a significant amount of work is being carried out [1]–[33], on the construction of

the string duals of some strongly coupled quantum systems near the critical fixed points,

exhibiting Lifshitz type scaling symmetries [4]

t → λat , xi → λxi. (1.1)

Namely the time and space coordinates in the CFT do scale asymmetrically. Some of these

systems exhibit a non-fermi liquid or strange metallic behaviour at ultra low temperatures,

see for details [21, 22]. There are also issues related to the entanglement entropy of the

quantum subsystems [21, 34, 35]. The entanglement entropy of the subsystems can be de-

fined geometrically as the area of a minimal surface within the bulk, with specific boundary

conditions [34, 35]. Recently, a class of Lifshitz and Schrödinger type spacetimes have been

constructed in type II string theory and M theory, exhibiting a fixed amount of supersym-

metry [9, 13]. The Lifshitz like solutions have also been shown to arise in [14, 16, 23, 24]

and from intersecting D-branes in [26, 27]. Our main focus in this work is a class of 1/4

BPS Lifshitz Dp solutions [9, 13], which can be generically obtained as vanishing horizon

double limits of the boosted black p-branes vacua [13]. The supersymmetry makes these

Lifshitz solutions more interesting, because we can find more definitive predictions about

the boundary nonrelativistic CFT. Let us note that some of these Lifshitz IR solutions

have problems in the UV region. In the paper [11], an specific resolution of the UV problem

was attempted for D3-brane Lifshitz solutions. Particularly, the solutions were modified
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such that they remain well behaved classical geometries even in the UV region. Here in

this article we extend that particular approach to all Lifshitz Dp solutions given in [13].

We write down a new class of 1/4 supersymmetric solutions which can interpolate between

(IR) Lifshitz solutions and (UV) AdS solutions smoothly. We demonstrate various proper-

ties of these classical solutions in the IR and UV asymptotic regions. These interpolating

bulk solutions are then used to calculate the entanglement entropy of strip-like subsystems

of the boundary CFT. In general, the entropy functional gets modified. We also make a

curious observation about the effect of electric-magnetic duality on the thermal entropy

of the electric/magnetic (Hodge) dual Lifshitz solutions. For example, the entropy of the

near extremal Lifshitz Dp-brane goes as

S(p) ∼ T
1
p̃ (1.2)

where p̃ is nothing but the number of spatial world-volume directions of the corresponding

(magnetic) dual Lifshitz Dp̃-brane. The same relation holds good for the pair of non-

extremal Lifshitz M2 and M5-branes.

The paper is planned in the following way. In the section 2 we review the basic proper-

ties of the maximally supersymmetric AdS×S vacua in type II string theory. In section 3

we study the 1/4 BPS Lifshitz Dp-brane vacua and obtain expressions for their thermal

quantities at finite temperature. We do show how various thermodynamical quantities be-

have when vanishing temperature limit is taken. We explore the effect of electric-magnetic

duality on the thermal entropy. In section 4 we write down new interpolating solutions

which are well behaved in the UV. We obtain the entanglement entropy using these smooth

interpolating solutions. The entanglement entropy expression matches with the recent

works [32, 33] for the strip like subsystems. The conclusions are given in the section 5.

2 Dp-branes and relativistic CFTs

The maximally supersymmetric near horizon Dp-brane solutions are given by [20]

ds2AdS = R2
pr

p−3
2

[

r5−p
[

(dx−)2 − dx+dx− + d~x2(p−1)

]

+
dr2

r2
+ dΩ2

(8−p)

]

,

eφ = (2π)2−pg2YMR3−p
p r

(7−p)(p−3)
4 (2.1)

along with a suitable (p+ 2)-form field strength

Fp+2 = (7− p)R2p−2
p r6−pdr ∧ dx+ ∧ dx− ∧

[

dx(p−1)

]

(2.2)

for the electric type Dp-branes (p < 3) and a (8− p) form

F8−p = (7− p)R4
p ω8−p (2.3)

for the magnetic type (hodge dual) Dp-branes (p > 3). Specially for D3-brane case we

have F5 = 4(1 + ⋆)ω5, which is self-dual 5-form field strength. We have introduced x+, x−

as lightcone coordinates along the world volume of the branes, and ~x(p−1) represents other

(p−1) spatial directions parallel to the Dp-brane, and as usual r is the radial (holographic)

coordinate. The interpretation of various parameters can be found in [20] and also given

in [13].
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A proposal. One should note that, in these conformally AdSp+2 × S8−p solutions, we

have taken a slightly modified AdS metric elements: r5−p[(dx−)2−dx+dx−+d~x2(p−1)]+
dr2

r2
.

Namely we have introduced a constant g−− component. Doing this is actually harmless as

it still remains an AdS geometry. The constant g−− term can be reabsorved by a coordinate

shifts like x+ → x+ + x−, if the need arises. However, certain global symmetries of the

metric, such as the lightcone boost x− → λx−, x+ → 1
λx

+, are spontaneously broken in

this new modified frame. The inclusion of g−− component in these solutions is useful in

the following way. We shall be considering (nonrelativistic) Lifshitz-like solutions, having

nontrivial g−− deformations. In these solutions, we shall take x− to be mostly a compact

direction. Note that, when x− is compactified, in order to trust our classical string metric,

it makes sense to keep g−− finite instead of taking it to be vanishing, also see comments in

ref. [5]. Of course, in the ‘shifted’ (x+, x−) frame, as in (2.1), the DLCQ of boundary CFT

will have a slightly changed energy-mass relationship; see the discussion in the appendix

of [13]. For the case of D3-branes, such UV geometry was specifically proposed as a

resolution of ‘UV problem’ of the a = 3 Lifshitz solutions of [13]. We must emphasize that

all our Lifshitz solutions, as given below in section 3, are good only in some intermediate

range of z, while they do have problem in extreme UV region, i.e. as we get near to the

AdS boundary. We propose that, all those Lifshitz solutions (p < 5) can be modified so as

to include the spacetime in eq. (2.1) as the asymptotic metric in UV.

Let us redefine the radial coordinate

rp−5 = z2 for p 6= 5 (2.4)

Similar, redefinition of the radial coordinate can be done for D5-brane separately, if re-

quired. With z as holographic coordinate and some scaling of the brane coordinates the

above solutions can be brought to the form

ds2 = R2
pz

p−3
p−5

[{

(dx−)2

z2
+

−dx+dx− + d~x2(p−1)

z2
+

4

(5− p)2
dz2

z2

}

+ dΩ2
(8−p)

]

eφ = (2π)2−pg2YMR3−p
p z

(7−p)(p−3)
2(p−5) (2.5)

along with the (p+ 2)-form flux. One can find that under the dilatations the coordinates

would rescale as

z → ξz , x± → ξx±, ~x → ξ~x (2.6)

while the dilaton and the string metric in (2.5) conformally rescale as

gMN → ξ
p−3
p−5 gMN , eφ → ξ

(7−p)(p−3)
2(p−5) eφ (2.7)

Note this latter conformal rescaling is the standard Weyl rescaling behaviour, of non-

conformal Dp-branes AdS solutions [20], giving rise to the RG flow in the boundary CFT.

From eq. (2.6) the dynamical exponent of time is a ≡ arel = 1, so that the boundary

theories are (p + 1)-dimensional ‘relativistic’ CFT(p+1) with sixteen supercharges. Note,

once x− is taken to be a coordinate on a circle, the boundary CFT becomes a DLCQ theory
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and is a p-dimensional theory. While the compactification of the bulk solution (2.5) along

x− and S8−p, results in (p+ 1)-dimensional (Einstein) metric given as

ds2p+1 ∼ z
( p−5
p−1

+ p−3
p−5

)
[

− (dx+)2

z2
+

d~x2(p−1)

z2
+

4

(5− p)2
dz2

z2

]

= z
2(p2−7p+14)
(p−1)(p−5)

[

− (dx+)2

z2
+

d~x2(p−1)

z2
+

4

(5− p)2
dz2

z2

]

≡ z
2θ
d ds2AdSp+1

. (2.8)

From where we can read the hyperscaling parameter, as it is known now, to be

θ =
p2 − 7p+ 14

p− 5
≡ θrel . (2.9)

Note that, d ≡ p − 1 gives the total number of spatial directions of the boundary CFTp.

Let us mention here that there is also a running (p+ 1)-dimensional dilaton field

e−2φ(p+1) ∼ z
p−5
2 (2.10)

as well as other form fields arising out of reduction of (p + 2)-form field strength. These

solutions are extremal solutions.

2.1 The thermal entropy of the relativistic theory

In order to know the thermal behaviour of the boundary CFT, one incudes black holes in

the bulk anti-de Sitter geometry. In our coordinates the near extremal Dp solutions are

ds2 =R2
pz

p−3
p−5

[{

− (f−1)(dx+)2

4z2
+
−dx−dx++(dx−)2+d~x2(p−1)

z2
+

4

(5−p)2
dz2

fz2

}

+ dΩ2
(8−p)

]

=R2
pz

p−3
p−5

[{

− f(dx+)2

4z2
+

d~x2(p−1)

z2
+

4

(5−p)2
dz2

fz2

}

+
1

z2

(

dx−− 1

2
dx+

)2

+dΩ2
(8−p)

]

(2.11)

where function

f = 1−
(

z

z0

)
2p−14
p−5

vanishes at z = z0 (z0 > 0) as it is the location of the horizon. As usual with black

hole Dp-branes, the dilaton and other flux form fields remain unchanged. Corresponding

thermal CFTs have a definite temperature behaviour. For example, the entropy density,

s, of the relativistic theories [20]

s ≡ S

Vd
∼ 2πr−T

p−9
p−5 , T ∼ z−1

0 (2.12)

where Vd is the volume of the d-dimensional spatial ensemble box. There is also a chemical

potential µ ∼ 1
2r−

, which is trivial, as the corresponding charge density is vanishing. This

is simply an artefact of our coordinate choice (shifted lightcone frame). This could be

undone by a gauge choice, but we do not worry about it here. Thus the system is still a
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Dp-brane d arel θrel s ∼ Tα

1 0 1 −2 T 2

2 1 1 −4
3 T

7
3

3 2 1 −1 T 3

4 3 1 −2 T 5

Table 1. Dynamical scaling exponents and θ parameter arising out of the relativistic Dp brane

solutions.

canonical ensemble with a fixed number of particles. Using the expression for θrel given

above, entropy is also expressible as

s ∼ T p−1−θrel ≡ T
d−θrel
arel (2.13)

Note that the dynamical exponent of time coordinate in relativistic solutions is simply unity.

Thus literally there is a hyperscaling violation as (θrel 6= 0) in these relativistic systems

too, due to the nontrivial conformal factors in the metrics. This is an all familiar terrain

so far. We prepare a table of the corresponding CFT data in the table 1. The exponent α

of the T in the entropy expression increases with the increase in the dimensionality of the

relativistic ensemble.

3 1

4
-BPS Lifshitz Dp-branes

The Lifshitz like Dp solutions with eight supersymmetries are given by [9, 13]

ds2lif = R2
pz

p−3
p−5

[{

β2

z4/(p−5)
(dx−)2 +

−dx+dx− + d~x2(p−1)

z2
+

4

(5− p)2
dz2

z2

}

+ dΩ2
(8−p)

]

,

eφ = (2π)2−p(gYM)2R3−p
p z

(7−p)(p−3)
2(p−5) (3.1)

with the (p + 2)-form flux, given above (for p 6= 5). Here β is arbitrary scale parameter

and can be absorbed by scaling the lightcone coordinates. These solutions can simply be

obtained by employing ‘vanishing horizon double limits’ of the boosted black Dp-branes

solutions [9, 13]. These could also be described as conformally AdS spacetimes with plane

wave, having momentum along x−. In these Lifshitz like solutions the light cone coordinates

do scale asymmetrically under the dilatations

z → ξz , x− → ξ2−ax−, x+ → ξax+, ~x → ξ~x (3.2)

with the dynamical exponent of time a = alif =
2p−12
p−5 . At the same time the dilaton field

and the metric in eq. (3.1) conformally rescale as in eq. (2.7). These Lifshitz solutions (3.1),

on explicit compactifications along x− and S8−p, generically give rise to (p+1)-dimensional

noncompact Lifshitz metrics (in Einstein frame)

ds2lifp+1
∼ z

2(p2−6p+7)
(p−1)(p−5)

(

− (dx+)2

β2z2alif
+

d~x2p−1 + dz2

z2

)

, (3.3)
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with

alif =
2p− 12

p− 5
(3.4)

Thus the hyperscaling parameter

θlif =
p2 − 6p+ 7

p− 5
, (3.5)

for all 0 < p ≤ 6 but p 6= 5. Note that θ is never vanishing in these Lifshitz solutions (3.3)

or in the relativistic solutions (2.8). In fact, we generally find that

θlif > θrel (3.6)

for all p cases. The physically interesting cases are with p = 2, 3, 4, and they all satisfy

a ≥ θ
d + 1. The corresponding boundary nonrelativistic CFTs do have spatial dimensions

d = 1, 2, 3 respectively. These systems could hopefully be realized in nature.

3.1 The thermal entropy of a Lifshitz system

The thermal behavior of the entropy at the Lifshitz fixed points could be studied if we

consider black holes in the Lifshitz solutions (3.1). It is described by the following type of

black hole solutions [13]

ds2Lif = R2
pz

p−3
p−5

[{

− f(dx+)2

4z2g
+

d~x2(p−1)

z2
+

4

(5− p)2
dz2

fz2

}

+
g

z2

(

dx− − 1 + f

4g
dx+

)2

+ dΩ2
(8−p)

]

(3.7)

where functions

f = 1−
(

z

z0

)
2p−14
p−5

while g(z) ≡ 1
4(

z
zIR

)
2(p−7)
p−5 , where zIR > 0 is some an intermediate IR scale. Also z0 > zIR is

the black hole horizon. Note that, the dilaton and the (p+ 2)-form field strengths remain

same as in the relativistic solutions.

The thermal entropy of the system (not the entanglement entropy) is obtained by

estimating the area of the black hole horizon, It can be summarised by the same type of

expression as in the relativistic case, namely

s ∼ (2πr−)T
d−θlif
alif , T ∼ z−alif

0 . (3.8)

While the chemical potential and the charge density is given by

µ
N
∼ 1

r−

(

zIR
z0

)
2p−14
p−5

, ρ ∼ r2−zIR
2p−14
5−p (3.9)

where d ≡ p − 1 is the number of spatial dimensions of the CFT. Note, the thermal

behaviour of the system, particularly in very low temperature limit T → 0 (as rh ≡

– 6 –
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Dp-brane d alif θlif s

D1 0 5
2

−1
2 T

1
5

D2 1 8
3

1
3 T

1
4

D3 2 3 1 T
1
3

D4 3 4 1 T
1
2

D5 4 1 3 T 1

Table 2. Dynamical scaling exponents of the Lifshitz solutions.

1/z0 → 0) can be determined at a fixed charge density (zIR = fixed) when the chemical

potential is taken as µ
N
→ 0 in a specific manner. From (3.8) and (3.9) it is

s ∼ T
d−θlif
alif , T ∼ ralifh ∼ 0 , µ

N
∼ r

2p−14
p−5

h ∼ 0 , ρ = fixed (3.10)

Especially for p = 3 case we have

s ∼ T
1
3 , T ∼ r3h , µ

N
∼ r4h , ρ = fixed (3.11)

which matches with the result [9]. Since horizon size vanishes in this limit this is an

extremal limit.

It is useful to note from the table 2 that the dynamical exponents of time, alif , for

these Lifshitz geometries are all positive definite and generally alif > arel. But also a very

interesting observation follows. For a given Lifshitz Dp-brane type (electric or magnetic)

the exponent of T in entropy expression (3.8) is universally fixed by the unique fraction
1
p̃ , see the table 2, where p̃ is the number of spatial directions of the corresponding elec-

tric/magnetic dual Dp̃-brane. This distinct Hodge-dual behavior of the thermal entropy

of the Lifshitz system at low temperatures is remarkably present for all the Dp solutions.

Therefore the entropy of the thermal Lifshitz system given in (3.8) can also be written as

a simple expression

s(p) ∼ T
1
p̃ . (3.12)

Thus for example if p = 1, we would take p̃ = 5, for p = 2, we should take p̃ = 4, for p = 3

(self-dual), we should take p̃ = 3, and for p = 4, we should take p̃ = 2, and so on. We get

the empirical identity

p̃ = 6− p =
alif

d− θlif
(3.13)

which is indeed true.

The same behaviour as (3.12) is also seen in the case of M-theory Lifshitz type solutions

in the next section.

3.2 Lifshitz solutions in eleven dimensions

There do exist Lifshitz solution in M-theory as well, obtainable from ‘vanishing horizon

double limits’ of corresponding ‘boosted black M2-branes’ [9],

ds2lifM2
= r2

(

− dx+dx− +
β2

4r3
(dx−)2 + dy2

)

+
1

4

dr2

r2
+ dΩ2

7 , (3.14)

– 7 –
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Mp-brane d alif θlif s ∼ Tα

M2 1 5
2

1
2 T

1
5

M5 4 4 2 T
1
2

Table 3. Dynamical scaling exponents of the Lifshitz M2 and M5 solutions.

with 4-form field strength F4 being an ‘electric type flux’. We should call them electrically

charged Lifshitz membrane solutions. These solutions have dynamical exponent of time as

alif =
5
2 . Note that x

− should be taken to be compact and one could take it to be the 11-th

circle of M-theory. The boundary theory would be a 1+ 1 dimensional CFT. The value of

θ can be determined by going to the Einstein frame in noncompact directions spanned by

the coordinates (x+, y, r), and it is given in the table 3.

Similarly double limits of boosted black M5-branes give us following ‘magnetically

charged’ Lifshitz M5 solution

ds2lifM5
= r2

(

− dx+dx− +
β2

4r6
(dx−)2 + dy21 + · · ·+ dy24

)

+ 4
dr2

r2
+ dΩ2

4 (3.15)

where the F4 flux is taken along S4. These M5-brane Lifshitz vacua have dynamical

exponent alif = 4 and the boundary theory is (1 + 4)-dimensional CFT.

Of course, the two Lifshitz vacua (3.14) and (3.15) in M-theory ought to be rightfully

seen as electric-magnetic (Hodge) dual of each other. These 1/4 BPS (extremal) solutions

describe boundary theories at respective Lifshitz fixed points. Making these solutions

slightly off-extremal, that is including black holes in the IR region of the solutions, we

could study the behaviour of their thermal CFTs. The respective thermal entropies are

summarised in the table 3.

As discussed above that M2 and M5 Lifshitz vacua are electric-magnetic dual of each

other in the same sense as ordinary relativistic M2-brane is Hodge-dual to M5-brane and

vice versa. As a curious observation we find that for M-theory Lifshitz solutions the

expressions of the entropy are

slifM2
∼ T

1
5 for M2

slifM5
∼ T

1
2 for M5 (3.16)

If we pair them up, the expressions could then be summarised simply by an expression

slifM(p)
∼ T

1
p̃ (3.17)

where p̃ is to be taken as the integer number counting the spatial world-volume directions

of dual Mp̃-brane. For example, for M2-brane, p = 2, p̃ = 5 and vice versa. Not only this,

we can see this effect of Hodge-duality in the case of Dp-brane Lifshitz vacua too.

On the other hand at the (relativistic) UV fixed point, the thermal entropy of the

CFTs goes as

s(p) ∼ Tαp (3.18)

where αp ≥ 2 and is usually a growing number as p increases, generally for all p-branes in

ten or eleven dimensions.

– 8 –
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4 Interpolating solutions

In this section we first take up the issue of bad UV behaviour of our Lifshitz geometries of

the last sections. Then we propose a remedy so as to regularise these solutions in order to

include proper AdS metric in the UV region.

4.1 Problem with Lifshitz solutions in the UV region

As we noted, once lightcone coordinate x− is compactified, i.e. x− ∼ x− + 2πr−, the

Lifshitz geometries (3.1) do provide a valid holographic description of a p-dimensional

nonrelativistic CFT, but only in a finite z (energy) range. These solutions cannot be

trusted in the far UV region. For example, let us take the D3 case, the string metric in

this case cannot be trusted near the boundary (UV region) because the physical size of x−

circle
R−

phys

ls
=

R3

ls
βr−z (4.1)

becomes sub-stringy when z → 0. This is true for all other Lifshitz like solutions given

in (3.1), (3.14) and (3.15). Thus this UV problem exists whenever x− is a circle! There

are a few possible ways to tackle this problem however.

1. Of course, standard thing we could do is to include higher derivative (world-sheet)

corrections to the IR Lifshitz solutions when the size of x− starts becoming sub-

stringy.

2. Alternatively, as suggested in ref. [5] for the Schrödinger type solutions, it will be

appropriate to go over to a T-dual type II string picture where the T-dualised x−

circle will have a finite size.

3. The third possibility could be that, it is quite plausible, to regularize the Lifshitz

solutions so as to include appropriate boundary (UV) configuration, such as discussed

in [11] for the D3 case.

In general, we naively expect a boundary Lifshitz theory to flow towards becoming a rel-

ativistic theory at high energies. Hence, we can think of attaching suitable boundary

configuration, like the conformally AdS geometry such as in eq. (2.5), to the Lifshitz solu-

tions (3.1). This we can do for all p cases.1 Such D3 brane solutions with regularized UV

behaviour become [11]

ds2D3 = R2
3

[

(
1

z2
+ β2z2)(dx−)2 +

−dx+dx− + d~x2(2)

z2
+

dz2

z2
+ dΩ2

(5)

]

eφ = (2π)−1g2YM , F(5) = 4R4
3(1 + ⋆)ω5 (4.2)

It should be noted that the solutions (4.2) no longer have the asymmetric scaling properties

possessed by the purely Lifshitz solutions (3.1). These interpolating solutions (4.2) behave

like solitons which interpolate between the IR Lifshitz and the UV relativistic fixed points.

1This can be achieved by making a shift x+
→ x

+
− x

− in the above Lifshitz solutions.

– 9 –
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Namely, in the deep IR region (z ∼ ∞) it flows towards a Lifshitz fixed point described by

a = 3, θ = 1. The thermal entropy of the 2+1 boundary CFT at IR fixed point behaves as

s ∼ v2(2πr
−)T

1
3 , (4.3)

see the table 2. This is an entirely expected behaviour. For example, this behaviour

automatically emerges when vanishing horizon double limits are employed on the thermal

quantities in thermal CFT [9, 13]. While in the deep UV region, as z ∼ 0, the solution (4.2)

tends to become a conformally AdS configuration with a = 1, θ = −1. The thermal entropy

of the 2 + 1-dimensional CFT at the UV fixed point behaves as

S ∼ v2(2πr
−)T 3 (4.4)

which is an expected behaviour of a relativistic 3D CFT, see the table 1. (Note that we

have r− in the above expressions because the coordinate x− is compact having radius r−.)

Thus we have an interpolating soliton solution of type II string theory which takes us from

a Lifshitz solution in IR to a relativistic solution in UV. That is, the Lifshitz theory at the

IR fixed point also has a needed UV completion in terms of relativistic fixed point. This

appears to be true at least in the supersymmetric examples considered here, although it

may not be entirely true when there is no supersymmetry in the system.2

4.2 Interpolating Dp solutions

It is worth while to write down the interpolating solutions for all p-branes, which behave

like a Lifshitz solution eq. (3.1) in the extreme IR and as a relativistic solution eq. (2.1) in

the far UV region. The interpolating soliton solutions can be written as (for p 6= 5)

ds2Int = R2
pz

p−3
p−5

[{(

1

z2
+

β2

z4/(p−5)

)

(dx−)2 +
−dx+dx−+d~x2(p−1)

z2
+

4

(5−p)2
dz2

z2

}

+dΩ2
(8−p)

]

= R2
pz

p−3
p−5

[{

K

z2
(dx−)2 +

−dx+dx−+d~x2(p−1)

z2
+

4

(5−p)2
dz2

z2

}

+dΩ2
(8−p)

]

eφ = (2π)2−pg2YMR3−p
p z

(7−p)(p−3)
2p−10 (4.5)

with the (p+ 2)-form flux. Where the new function

K(z) = 1 +
1

4

(

z

zIR

)
2p−14
p−5

(4.6)

is also an harmonic function and plays the role of the interpolating function. The parameter

zIR > 0 is an intermediate IR scale and can be related to β. It is being called interpolating

solution because the metric (4.5) smoothly connects Lifshitz and AdS regions, even when x−

is compact. It is much like a ‘wormhole’ geometry, the size of x− circle stays finite. In the

asymptotic UV region (z ≪ zIR) where K ≈ 1, it starts behaving relativistically, while for

2The flows from Lifshitz solutions have been studied earlier in suitable phenomenological settings by [36–

38]. We thank the anonymous referee for the information.
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Lifshitz Region

AdS Region

Z ~Infinity
Z IR

Z    Z=0

Figure 1. In zero temperature solutions the Lifshitz window (the shaded region) starts at z ∼ ∞
(r ∼ 0) and ends at zIR.

z ≫ zIR where K ≈ ( z
zIR

)
2(p−7)
p−5 it behaves like a Lifshitz spacetime. Note that, since these

solutions are interpolating solitonic configurations any scaling symmetry of the metric (4.5)

is explicitly broken. The scaling or dilatation symmetry of the metric becomes explicit in

extreme IR or UV regions only. This interpolating geometry is depicted schematically in

the figure 1.

The explicit compactification of the metric (4.5) gives a (p+1) dimensional spacetime

ds2p+1 = L2z
2(p2−7p+14)
(p−1)(p−5) K

1
p−1

[

− (dx+)2

4z2K
+

d~x2(p−1)

z2
+

4

(5− p)2
dz2

z2

]

(4.7)

where K is given above in (4.6). There is a running (p+ 1)-dimensional dilaton field

e−2φ(p+1) ∼ z
p−5
2

√
K

A(1) = − 1

2K
dx+ (4.8)

where L2 is an specific size factor which follows from compactification.

It is also plausible to include black holes in these interpolating solutions (4.5). This

can be done systematically by employing the boost, see [13], and only changes occur in the

spacetime metric

ds2Lif = R2
pz

p−3
p−5

[{

− f(dx+)2

4z2K
+

d~x2(p−1)

z2
+

4

(5−p)2
dz2

fz2

}

+
K

z2
(dx−−A)2+dΩ2

(8−p)

]

(4.9)

where 1-form

A ≡ (1 + f) + λ−2(1− f)

4K
dx+

and the harmonic functions

f(z) = 1−
(

z

z0

)
2p−14
p−5

K(z) = 1 +
λ2 − 1

4λ

(

z

z0

)
2p−14
p−5

≡ 1 +
1

4

(

z

zIR

)
2p−14
p−5

(4.10)
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AdS region

Z

Z=Z0

Z=0 Boundary

Singularity Z=Z   IRLifshitz   Region

Figure 2. The Lifshitz window appears as the shaded region. It starts at z0 and ends at zIR.

The dilaton and other form fields remain unchanged. The z = z0 is the location of the

black hole horizon. Note that λ is the boost parameter in the above. In the absence of

boost, λ = 1, then K = 1. Since the Lifshitz region for many physical applications would

be some intermediate (IR) region, it would be worth while to take z0 > zIR > 0, and this

is always guaranteed from (4.10). In this way, the black hole singularity is capped by its

horizon. We call the intermediate region z0 ≥ z ≥ zIR as the Lifshitz window region where

parameter zIR provides the effective width of the window beyond the horizon. While in the

deep UV region, z ≪ zIR the solutions become asymptotically conformally AdS, see the

figure 2. Note that the size of Lifshitz window depends on the boost, it can be widened

if we take λ sufficiently large. Specially if λ = 1 the Lifshitz region altogether disappears

and we get ordinary AdS black hole solutions. The Lifshitz BH solutions (4.9) with an

intermediate Lifshitz region should present a good IR description (at finite temperature)

of a boundary Lifshitz theory. The black hole horizon provides an effective IR (thermal)

cut-off scale in the dual CFT.

4.3 Entanglement entropy

In order to find the entanglement entropy of the CFT, we shall use the interpolating zero

temperature solutions like (4.5) or (4.7). According to Ryu-Takayanagi proposal [34, 35],

if we pick up a subsystem A (with its boundary ∂A), the subsystem has an entanglement

of its states with its parent system. Then the entanglement entropy of the subsystem A

can be given geometrically in terms of the area of an extremal surface X(p−1) (space like

(p− 1)-dimensional surface) ending on to the boundary ∂A. Thus we have

SEnt(A) =
1

4Gp+1
[Area]X (4.11)

The extremal surface X extends well inside the bulk geometry. We pick up the subsystem

A to be a rectangular strip along x1(z), x
−(y) at any fixed time. Note that, x+ is identified

with boundary time coordinate and it does not depend upon y. Also as per our study

we have to take x− being a compact coordinate. The range of the coordinates is −l/2 ≤
x1 ≤ l/2 and the regulated size of other coordinates is 0 ≤ xi ≤ li. (For noncompact x−

the subsystem A must be thought off as a strip of finite width l stretched along spatial

direction x−.) For our calculations we shall consider the (p+1)-dimensional Einstein metric

– 12 –
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as in (4.7). Then

SEnt =
1

4Gp+1

∫ √
gX (4.12)

where gX is the induced metric on the (p − 1)-dimensional extremal surface X. Note

after the compactification along x− the strip becomes just an interval along x1. Using the

compactified metric (4.7), we find that

SEnt =
Vp−2L

d

2Gp+1

∫ z∞

z∗

dz z
9−p

p−5
√
K

√

4

(5− p)2
+ (x′1)

2 (4.13)

where z∞ ≈ 0 is the UV cut-off and z∗ is the turning point. Vp−2 is the size of the ensemble

box stretched along rest of the spatial directions, x2, · · · , xp−1. K is as given in (4.6). The

extremal surface satisfies the first order equation

dx1
dz

=
2

5− p

Cz
p−9
p−5

√

1 + 1
4

(

z
zIR

)

2(p−7)
p−5 − C2z

2(p−9)
p−5

(4.14)

where C is the integration constant. The turning point arises where x′1|z∗ = ∞. While near

the boundary point x′1|z∞ ∼ 0. Finding solutions of first order differential equation (4.14) is

much like solving a classical orbit in the central force problem with given boundary (initial)

conditions. The term C2z
2(p−9)
p−5 plays the role of a repulsive centrifugal type force, while

the term −1
4(

z
zIR

)
2(p−7)
p−5 behaves like an attractive central force. Thus Lifshitz deformation

in the IR region is of attractive nature while the repulsive forces mainly come from the

curvature of AdS spacetime. This gives finally the entropy formula

SEnt =
Vp−2L

d

2Gp+1

∫ z∞

z∗

dz z
9−p

p−5
2

(5− p)

1 + 1
4

(

z
zIR

)

2(p−7)
p−5

√

1 + 1
4

(

z
zIR

)

2(p−7)
p−5 − C2z

2(p−9)
p−5

(4.15)

This expression matches with other calculations in the literature [32, 33]. If we set 1/zIR to

be zero, the expression (4.15) reduces to the entanglement entropy in the relativistic CFT

system. It can be seen that the turning point of the extremal surface in the purely AdS

case appears at the value z = zc ≡ C
5−p

p−9 . Thus we always have z∗ > zc for the Lifshitz

system. Thus the area of the entremal surface is larger in the Lifshitz case. Hence the

entanglement entropy of the Lifshitz system is generally larger compared to the relativistic

(AdS) case. That is

SLifshitz
Ent > SAdS

Ent . (4.16)

At the finite temperature, looking at eqs. (4.9) and (4.10), we find that

SEnt =
Vp−2L

d

2Gp+1

∫ z∞

z∗

dz z
9−p

p−5
√
K

√

4

(5− p)2f
+ (x′1)

2 (4.17)
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where f(z) is given earlier in (4.10). We always have z0 > zIR. The extremal surface

satisfies the first order equation

dx1
dz

=
2

5− p

1√
f

Cz
p−9
p−5

√

1 + 1
4

(

z
zIR

)

2(p−7)
p−5 − C2z

2(p−9)
p−5

(4.18)

This gives finally the entanglement entropy formula (at finite temperature)

SEnt =
Vp−2L

d

2Gp+1

∫ z∞

z∗

dz z
9−p

p−5
2

(5− p)

1√
f

1 + 1
4(

z
zIR

)
2(p−7)
p−5

√

1 + 1
4

(

z
zIR

)

2(p−7)
p−5 − C2z

2(p−9)
p−5

. (4.19)

5 Conclusion

We have presented quarter BPS Lifshitz Dp-brane vacua and obtained explicit expressions

for their thermal quantities at finite temperature. We studied how various quantities behave

if the low temperature limit is taken, at fixed charge density. We also studied how Lifshitz

Dp-brane systems are mapped under electric-magnetic duality. For example the entropy of

the near extremal Lifshitz Dp-brane goes as

S(p) ∼ T
1
p̃ (5.1)

where p̃ is an integer giving us the number of spatial world-volume directions of the mag-

netic dual Lifshitz Dp̃-brane. Thus

p̃ = 6− p =
alif

d− θlif
. (5.2)

Surprisingly, the same behaviour persists also for the extremal Lifshitz M2 and M5-brane

vacua, which are electric-magnetic duals of each other in M-theory. Thus the Lifshitz

systems though being inherently nonrelativistic do encode deep quantum relationships

such as electric-magnetic duality. Any measurement of these Lifshitz thermal exponents,

say s ∼ T
1
4 , s ∼ T

1
3 or s ∼ T

1
2 in condensed matter systems with 1, 2 or 3 spatial

dimensions, respectively, could be taken as a signature test of electric-magnetic (Hodge)

duality in nonrelativistic string systems. It would also be useful to further understand the

basic reason behind it.

We have written down the interpolating solutions as well. These class of solutions

are well behaved and can be trusted for the classical analysis in the UV region also. The

entanglement entropy is calculated by using these interpolating solutions and its expression

matches with the recent works of [32, 33]. We also find that the entanglement entropy of

the Lifshitz system is generally larger compared to the relativistic (AdS) case.
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