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Abstract: We study membrane configurations in AdS7/4 × S4/7. The membranes are

wrapped around the compact manifold S4/7 and are dynamically equivalent to bosonic

strings in AdS5. We thus conveniently identify them as “stringy membranes”. For the

case of AdS7 × S4, their construction is carried out by embedding the Polyakov action for

classical bosonic strings in AdS5, into the corresponding membrane action. Therefore, every

string configuration in AdS5 can be realized by an appropriately chosen stringy membrane

in AdS7 × S4. We discuss the possibility of this being also the case for stringy membranes

in AdS4 × S7/Zk (k ≥ 1). By performing a stability analysis to the constructed solutions,

we find that the (membrane) fluctuations along their transverse directions are organized in

multiple Lamé stability bands and gaps in the space of parameters of the configurations.

In this membrane picture, strings exhibit a single band/gap structure.
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1 Introduction

Extended objects such as strings and membranes have played an important role in our un-

derstanding of fundamental interactions. Membranes first appeared in the early attempt of

Dirac [1] to model an electron by a charged closed membrane and underlay the development

of hadronic bag models [2, 3] (for a review see [4]). The emergence of Yang-Mills theory as

the conceptual foundation of the standard model of strong and electroweak interactions,

brought about the still unresolved puzzle of color confinement in QCD. That strings model

successfully the almost linear Regge trajectories, does not belittle the virtues of bosonic

membranes as effective bags of the QCD vacuum, which also recover successfully the string

limit. At this point we should also mention the striking equivalence between regularized

spherical bosonic membranes and SU(∞) classical Yang-Mills theory, first observed by

Goldstone and Hoppe [5].1 Moreover, let us also stress the analogies between the topolog-

ical structure of Yang-Mills theory (self-duality) and closed bosonic membranes [10, 11].

Besides offering a model for the description of elementary particles, quantum relativis-

tic membranes became widely known as 2-dimensional generalizations of strings [12]. In

contrast to strings however and due to their lacking a coupling constant, membranes are

notoriously non-perturbative objects. As a consequence, systematic perturbative methods

1This is due to the fact that the group of area-preserving diffeomorphisms (SDiff) of spherical

membranes can be approximated by SU(N) [6–8]. It also holds true for surfaces of any genus (see e.g. [9]

and references therein).
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have not been developed for membranes, making them less attractive than strings as fun-

damental building blocks of matter. Indeed, the first superstring revolution underlined the

prime role of superstrings as fundamental constituents. Despite that, the M-theory revolu-

tion [13, 14] and later the “Matrix Theory Conjecture” [15] (see [16] for a review), paved the

way for a more “democratic” framework [17] into which strings, membranes and p-branes

of various dimensionalities coexist [18]. Indeed, the web of 10-dimensional string theories

finds a unifying platform in a single 11-dimensional M-theory whose long-wavelength limit

is just 11-dimensional supergravity.

In all of these developments, flat Minkowski spacetimes provided the majority of back-

grounds for the study of membranes [19–22]. The spacetimes AdS4/5/7 × S7/5/4 were

known as (maximally supersymmetric) vacua of ten and eleven dimensional supergrav-

ity [23, 24] but they were only rarely used as membrane backgrounds [25], despite furnish-

ing them with exceptional features such as massless excitations and a discrete spectrum.2

Moreover, the “membrane at the end of the universe” [26–29], as the membrane at the

boundary of AdS4 × S7 spacetime came to be known, seemed to give rise to an OSp (8|4)

superconformal field theory. The 1997 AdS/CFT correspondence of Maldacena [30–32]

(see [33, 34] for reviews) grouped many of the deep ideas that were present in ’t Hooft’s

large-N expansion [35], the holographic principle [36, 37] or the geometrization of RG flow

(see e.g. [38, 39]) into a tractable model of gauge/gravity duality.

According to the standard dictionary of the AdS/CFT correspondence, the energy of

a state in the bulk of anti-de Sitter space, equals the scaling dimension of its dual CFT

operator. In 2002, Gubser, Klebanov and Polyakov (GKP) [41], introduced a method for

the calculation of the anomalous dimensions of certain local, gauge-invariant operators of

N = 4, super Yang-Mills theory, at strong ’t Hooft coupling, a regime which is classically

inaccessible by ordinary perturbation techniques. Their method consists in studying closed

strings that spin inside AdS5 × S5 and in calculating their energy in terms of their other

conserved charges, such as their spin or angular momentum, semiclassically. To every string

state is then assigned an operator of N = 4, SYM, the bare dimension of which is some

function of its spin and SU(4) quantum numbers.3 As the dimensions of the operators

typically receive quantum corrections, their renormalized values (anomalous dimensions)

at strong coupling are expected to coincide with the corresponding energies of their dual

bulk states, as obtained by the semiclassical treatment of GKP.

The GKP string serves as a benchmark of the Maldacena conjecture because it com-

pares the spectra on both sides of the correspondence [33, 34], beyond BPS or nearly BPS

(BMN) states. The proposal provoked a flurry of research activity (see e.g. [42]). In addi-

tion to the AdS5/CFT4 proposal, the role of M-theory in AdS/CFT has been investigated

in AdS7 × S4 [43–45] and AdS4 × S7/Zk backgrounds [46–48]. However, the existence of

precise formulations of boundary theories for the AdS4 class of backgrounds has no match

with the AdS7 ones. In the latter case potential interest arises through the work of Witten

[49] who showed that a model for large-N QCD4 can be obtained by toroidally compactify-

2Owing to the periodicity of the temporal coordinate.
3SU(4) ∼= SO(6) is a bosonic subgroup of PSU(2, 2|4), the full symmetry supergroup of N = 4, SYM

and IIB string theory on AdS5 × S5.
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ing the CFT dual of M-theory on AdS7× S4. In this sense, the investigation of membrane

solutions in these backgrounds gains in importance [51–62].

In our present work we construct membrane configurations in stringy disguise, which

we conveniently call “stringy membranes”. Their essential property is that they are par-

tially wrapped around a compact dimension and reproduce the action, equations of motion

and conserved charges of a string.4 The bonus of this is twofold: firstly, at the level of

classical quadratic fluctuations around stringy membrane solutions, we reveal the existence

of an infinite set of purely membrane modes, in addition to the expected purely stringy

ones. Secondly, just as the AdS5/CFT4 parameter matching affords to strings in the bulk

of AdS an effective string tension
√
λ, our stringy membranes are similarly endowed with

an effective tension
√
λ′ = R

√
λ/gs `s.

5

In order to construct configurations with the above properties, we embed the bosonic

Polyakov action for strings in AdS5 into the AdS7 × S4 membrane action. We demon-

strate that every AdS5 string solution corresponds to a properly constructed membrane

of AdS7 × S4 and every AdS4 ⊂ AdS5 string solution can be written as a membrane of

AdS4 × S7/Zk. An advantage of this construction can be seen through the quadratic

fluctuation analysis around our specific stringy membrane solutions, which we perform in

detail. We find that an independent subset of fluctuations, which is transverse to the di-

rection of the stringy membrane, admits a Lamé multi-band/multi-gap structure, which is

characteristic of their membrane nature. In our fluctuation analysis, string excitations are

represented by single-band/single-gap configurations, suggesting that our AdS7 membranes

are collective excitations of their AdS5 stringy counterparts.

Our paper is organized as follows. We begin in section 2 with a brief reminder of the

equations that determine the motion of a bosonic membrane in AdS7 × S4. In section 3

we demonstrate how some simple AdS7 × S4 membrane ansätze reproduce the action and

equations of motion of the following two spinning string configurations of [41]: (I) the AdS3
closed & folded string and (II) the string that pulsates in AdS5. This is not a mere coinci-

dence and we then proceed to prove (in conformity with [64]) that all bosonic string ansätze

in AdS5 that are consistent with the conformal gauge, can be generated by appropriate

membrane ansätze in AdS7×S4. The extension of these considerations to AdS4×S7/Zk is

discussed in sections 3.1 and 3.2. The stability of our solitons is examined in section 4. We

discuss our results in section 5. In appendix A we revisit the GKP string configurations (I)

and (II) that we use in our paper and in appendix B we briefly discuss Lamé’s equation.

4An interesting, yet questionable by many (since nonlinear sigma models in more than two dimensions

are not renormalizable by power counting), application of wrapping is the semiclassical quantization of an

11-dimensional supermembrane that is wrapped around a torus [63].
5R is the wrapping radius, gs the string coupling constant and `s the fundamental string length.
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2 Spinning membranes in AdS7 × S4

The bosonic part of the (Howe-Tucker-) Polyakov action [65] for a membrane in D spacetime

dimensions, in the presence of a Wess-Zumino flux term is:

S=−T2
2

∫
d3σ

{√
−γ
(
γabhab−1

)
+12 Ẋm ∂σX

n ∂δX
pAmnp(X)

}
, T2≡

1

(2π)2`3P
, (2.1)

where `P is the Planck length of D-dimensional spacetime, Xm the spacetime coordinates,

and σa = {τ, σ, δ} are the membrane/world-volume coordinates (σ, δ ∈ [0, 2π)). On the

other hand Amnp (X) is an antisymmetric 3-form tensor field, gmn (X) is the spacetime

metric, γab the membrane/world-volume (auxiliary) metric and hab is its induced metric

on the membrane world-volume (pull-back):

hab ≡ ∂aXm∂bX
n gmn (X) = γab, h ≡ dethab, (2.2)

where hab = γab is the equation of motion that is obtained by varying action (2.1) w.r.t.

the auxiliary metric γab. An especially convenient gauge choice is the following:

γ00 = h00 = −dethij , γ0i = h0i = 0 , γij = hij , i , j = 1, 2. (2.3)

The Polyakov action (2.1) then becomes:

S =
T2
2

∫
d3σ

{
gmnẊ

mẊn − 1

2
gmngpq{Xm, Xp}{Xn, Xq} − 12AmnpẊ

m ∂σX
n ∂δX

p

}
, (2.4)

where the Poisson bracket, { , } is defined as:

{f , g} ≡ ∂σf ∂δg − ∂δg ∂σf. (2.5)

The constraints that follow from fixing the gauge (2.3) are:

γ00 = −dethij ⇒ gmnẊ
mẊn +

1

2
gmngpq{Xm, Xp}{Xn, Xq} = 0 (2.6)

γ0i = gmnẊ
m∂iX

n = 0⇒
{
gmn Ẋ

m, Xn
}

= 0. (2.7)

Let us now briefly consider the general motion of a classical, uncharged (no WZ term)

bosonic membrane in AdS7×S4, as described in the global coordinate system of AdS7×S4

(for AdS7 × S4, it’s ` = 2R. Setting R = 1 implies that ` = 2):6

Y0 + i Y7 = 2 cosh ρ eit X1 + iX2 = cos θ1 e
iφ1

Y1 + i Y2 = 2 sinh ρ cos θ1 e
iφ1 & X3 + iX4 = sin θ1 cos θ2 e

iφ2 (2.8)

Y3 + i Y4 = 2 sinh ρ sin θ1 cos θ2 e
iφ2 X5 = sin θ1 sin θ2

Y5 + i Y6 = 2 sinh ρ sin θ1 sin θ2 e
iφ3 ,

6Our results are also valid for general R and `, proviso δ 7→ δ/R and δ ∈ [0, 2πR).
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where Y µ and Xi are the embedding coordinates of AdS7 × S4 (see (4.1)–(4.2)) and

ρ ≥ 0, t ∈ [0, 2π) , 7 θ1, θ1 ∈ [0, π], and θ2, φ1, φ2, φ3, θ2, φ1, φ2 ∈ [0, 2π). The corre-

sponding line element (for ym ≡ (t, ρ, θ1, θ2, φ1, φ2, φ3), x
m ≡

(
θ1, θ2, φ1, φ2

)
) is:

ds2 =GAdS
mn (y)dymdyn +GSmn(x)dxmdxn =

=4
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ

(
dθ21 + cos2 θ1 dφ

2
1 + sin2 θ1

(
dθ22 + cos2 θ2dφ

2
2+

+ sin2 θ2dφ
2
3

))]
+
[
dθ

2
1 + cos2 θ1 dφ

2
1 + sin2 θ1

(
dθ

2
2 + cos2 θ2 dφ

2
2

) ]
. (2.9)

Action (2.4) becomes:

S =
T2
2

∫ [
GAdS
mn (y)ẏmẏn +GSmn(x)ẋmẋn − 1

2
GAdS
mn (y)GAdS

pq (y){ym, yp}{yn, yq}− (2.10)

−1

2
GSmn(x)GSpq(x){xm, xp}{xn, xq} −GAdS

mn (y)GSpq(x){ym, xp}{yn, xq}
]
dτ dσ dδ,

while the constraints that follow from fixing the gauge (2.6), (2.7) are (i, j = 1, 2):

γ00 = −dethij ⇒ GAdS
mn (y)ẏmẏn +GSmn(x)ẋmẋn +

1

2
GAdS
mn (y)GAdS

pq (y){ym, yp}{yn, yq}+

+
1

2
GSmn(x)GSpq(x){xm, xp}{xn, xq}+GAdS

mn (y)GSpq(x){ym, xp}{yn, xq} = 0 (2.11)

γ0i = GAdS
mn (y) ẏm∂iy

n +GSmn(x) ẋm∂ix
n = 0⇒

⇒
{
GAdS
mn (y) ẏm, yn

}
+
{
GSmn(x) ẋm, xn

}
= 0. (2.12)

Action (2.10), and its constraints (2.11)–(2.12), are invariant under the global isometry

SO(6, 2)×SO(5) of AdS7×S4. The following 28+10 Noether charges are conserved on-shell:

Sµν = T2

∫ 2π

0

(
Y µẎ ν − Y ν Ẏ µ

)
dσdδ, µ , ν = 0, 1, . . . , 7 (2.13)

J ij = T2

∫ 2π

0

(
XiẊj −XjẊi

)
dσdδ, i, j = 1, 2, . . . , 5. (2.14)

The charges that correspond to the cyclic coordinates of the action (2.10),

t, φ1, φ2, φ3, φ1, φ2, are simpler in form and can be directly read off from (2.9)–(2.10):

E =

∣∣∣∣∂L∂ṫ
∣∣∣∣ = 4T2

∫ 2π

0
ṫ cosh2 ρ dσdδ = S07 (2.15)

S1 =
∂L

∂φ̇1
= 4T2

∫ 2π

0
φ̇1 sinh2 ρ cos2 θ1 dσdδ = S12 (2.16)

S2 =
∂L

∂φ̇2
= 4T2

∫ 2π

0
φ̇2 sinh2 ρ sin2 θ1 cos2 θ2 dσdδ = S34 (2.17)

S3 =
∂L

∂φ̇3
= 4T2

∫ 2π

0
φ̇3 sinh2 ρ sin2 θ1 sin2 θ2 dσdδ = S56 (2.18)

7Time periodicity is customarily avoided in all relevant anti-de Sitter space applications by considering

the universal covering space, in which t ∈ R.
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J1 =
∂L

∂φ̇1

= 4T2

∫ 2π

0
φ̇1 cos2 θ1 dσdδ = J12 (2.19)

J2 =
∂L

∂φ̇2

= 4T2

∫ 2π

0
φ̇2 sin2 θ1 cos2 θ2 dσdδ = J34, (2.20)

where L stands for the Lagrangian of the system that is defined as S =
∫
Ldτ .

3 Spinning membranes and spinning strings

We shall now show that the folded closed string of [41], rotating in AdS3 ⊂ AdS5, has

the same action and equations of motion as a specific membrane soliton that spins in

AdS3 ⊂ AdS7 × S4. This result will later be generalized to any string soliton that lives in

pure8 AdS5, for which an equivalent AdS7 × S4 membrane soliton will be found. Let us

start from the following ansatz for a membrane that rotates in AdS3 × S1 ⊂ AdS7 × S4:{
t = κτ, ρ = ρ(σ), φ1 = κωτ, φ2 = φ3 = θ1 = θ2 = 0

}
×

×
{
φ1 = δ, θ1 = θ2 = φ2 = 0

}
.

(3.1)

It reads, in embedding coordinates (R = 1, ` = 2),

Y0 = 2 cosh ρ(σ) cosκτ , Y3 = Y4 = Y5 = Y6 = 0 , X1 = cos δ

Y1 = 2 sinh ρ(σ) cosκωτ X2 = sin δ (3.2)

Y2 = 2 sinh ρ(σ) sinκωτ X3 = X4 = X5 = 0

Y7 = 2 cosh ρ(σ) sinκτ.

The Polyakov action (2.10) and the constraint equation (2.11) become:9

S= 2T2

∫ (
−ṫ2 cosh2 ρ+ φ̇21 sinh2 ρ cos2 θ1 − cos2 θ1 ρ

′2 φ
′2
1 {σ, δ}

2
)
dτdσdδ = (3.3)

=
2T1
`sgs

∫ (
−κ2 cosh2 ρ+ κ2ω2 sinh2 ρ− ρ′ 2

)
dτdσ (3.4)

ρ′ 2 − κ2
(
cosh2 ρ− ω2 sinh2 ρ

)
= 0 (constraint). (3.5)

Action (3.4) and constraint (3.5) are identical to the on-shell string Polyakov action

(written in the conformal gauge) and the Virasoro constraint of the AdS3 folded closed

string configuration of [41]. Were it not for a factor of cos2 θ1 φ
′2
1 , the off-shell action (3.3)

8I.e. a soliton with no components in S5 whatsoever.
9In D = 11 dimensions, a simple relation between the Planck length `11, the string coupling constant gs

and the string fundamental length can be deduced by dimensionally reducing 11-dimensional supergravity

to 10 dimensions,

gs =

(
Rc

l11

)3/2

, `2s =
l311
Rc

−→ gs =

(
`11
`s

)3

(Rc being the compactification radius) so that the membrane tension in 11 dimensions becomes,

T2 =
[
(2π)2gs`

3
s

]−1
[66].
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would also coincide with the corresponding off-shell stringy action. However — in

action (3.3) — it is only ρ that has a nonzero equation of motion and that equation of

motion is identical to the stringy one, (A.5):

ρ′′ + κ2
(
ω2 − 1

)
sinh ρ cosh ρ = 0. (3.6)

The conserved charges of the membrane action (3.3) are also identical to the ones obtained

for strings, (A.11)–(A.12) (for ω2 > 1):

E(ω) =
16T1
gs`s

· ω

ω2 − 1
E
(

1

ω2

)
(3.7)

S(ω) =
16T1
gs`s

·
(

ω2

ω2 − 1
E
(

1

ω2

)
−K

(
1

ω2

))
= S1. (3.8)

Therefore the two systems are dynamically equivalent. Another (string) solution of [41]

consists of a closed string that oscillates around the center of AdS5. It can also be written

in terms of a pulsating, AdS7 × S4 membrane as follows:{
t = t (τ) , ρ = ρ (τ) , θ1 = π

2 , θ2 = σ, φ1 = φ2 = φ3 = 0
}
×

×
{
φ1 = δ, θ1 = θ2 = φ2 = 0

}
.

(3.9)

In embedding coordinates, the ansatz reads:

Y0 = 2 cosh ρ(τ) cos t (τ), Y1 = Y2 = Y4 = Y6 = 0 , X1 = cos δ

Y3 = 2 sinh ρ(τ) cosσ X2 = sin δ (3.10)

Y5 = 2 sinh ρ(τ) sinσ X3 = X4 = X5 = 0

Y7 = 2 cosh ρ(τ) sin t (τ)

and has the following membrane/string Polyakov action and constraint equation:

S= 2T2

∫ (
−ṫ2 cosh2 ρ+ ρ̇2 − sinh2 ρ sin2 θ1 cos2 θ1 θ

′2
2 φ
′2
1 {σ, δ}

2
)
dτdσdδ = (3.11)

=
2T1
`sgs

∫ (
−ṫ2 cosh2 ρ+ ρ̇2 − sinh2 ρ

)
dτdσ (3.12)

ρ̇2 − ṫ2 cosh2 ρ+ sinh2 ρ = 0 (constraint). (3.13)

The same comments that were made in the previous case can be repeated here as well.

Our stringy membrane is dynamically equivalent to the pulsating string of [41] with

identical equations of motion, (A.18), (A.19) (with w = 1):

ẗ cosh2 ρ+ 2 ṫ ρ̇ cosh ρ sinh ρ = 0 (3.14)

ρ̈+ sinh ρ cosh ρ
(
ṫ2 + 1

)
= 0. (3.15)

Now, all of the previous results can be generalized to any10 string soliton that rotates in

AdS5 and has no rotating counterpart in S5 (dubbed “pure” solitons for convenience).

We thus prove:

10A word of caution is due here. Not all ansätze are consistent with the conformal gauge. The statements

herein presented concern string solitons that are compatible with the choice of the conformal gauge in

Polyakov action. It would be interesting to be able to generalize them to the case of the Nambu-Goto

action as well, i.e. independently of the gauge choice.
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Proposition 1. Every pure AdS5 string soliton has an equivalent AdS7 × S4 membrane

soliton (and not vice versa).

Proof. Start with (2.10) and (2.11)–(2.12), the membrane Polyakov action in AdS7 × S4

(in the gauge, γ00 = −dethij , γ0i = 0, γij = hij) and its constraint equations:

S2 =
T2
2

∫ [
GAdS
mn (y)ẏmẏn +GSmn(x)ẋmẋn − 1

2
GAdS
mn (y)GAdS

pq (y){ym, yp}{yn, yq}− (3.16)

−1

2
GSmn(x)GSpq(x){xm, xp}{xn, xq}−GAdS

mn (y)GSpq(x){ym, xp}{yn, xq}
]
dτ dσ dδ

GAdS
mn (y)ẏmẏn +GSmn(x)ẋmẋn +

1

2
GAdS
mn (y)GAdS

pq (y){ym, yp}{yn, yq}+

+
1

2
GSmn(x)GSpq(x){xm, xp}{xn, xq}+GAdS

mn (y)GSpq(x){ym, xp}{yn, xq} = 0 (3.17)

GAdS
mn (y) ẏm∂iy

n +GSmn(x) ẋm∂ix
n =

{
GAdS
mn (y) ẏm, yn

}
+
{
GSmn(x) ẋm, xn

}
= 0, (3.18)

where ym ≡ (t, ρ, θ1, θ2, φ1, φ2, φ3) and xm ≡
(
θ1, θ2, φ1, φ2

)
. Gmn (y, x) are the com-

ponents of the metric (2.9). Taking σ as the string world-sheet coordinate,

ym = ym (τ , σ) & xm = xm (τ , δ) , (3.19)

immediately gives:

S2 =
T2
2

∫ [
GAdS
mn (y)ẏmẏn +GSmn(x)ẋmẋn −GAdS

mn (y)GSpq(x)y′ my′ nx′ px′ q
]
dτ dσ dδ (3.20)

GAdS
mn (y)ẏmẏn +GSmn(x)ẋmẋn +GAdS

mn (y)GSpq(x)y′ my′ nx′ px′ q = 0 (3.21)

GAdS
mn (y) ẏmy′ n = GSmn(x) ẋmx′ n = 0. (3.22)

Choosing x3 = φ1 = δ for the coordinate of S4 with metric component GS33 = cos2 θ1,

S2 =
T2
2

∫ [
GAdS
mn (y)

(
ẏmẏn − cos2 θ1 φ1

′2
y′ my′ n

)
+GSmn 6=3(x)ẋmẋn−

−GAdS
mn (y)GSpq 6=3(x)y′ my′ nx′ px′ q

]
dτ dσ dδ (3.23)

GAdS
mn (y)

(
ẏmẏn + cos2 θ1 y

′ my′ n
)

+GSmn 6=3(x)ẋmẋn+

+GAdS
mn (y)GSpq 6=3(x)y′ my′ nx′ px′ q = 0 (3.24)

GAdS
mn (y) ẏmy′ n =GSmn6=3(x) ẋmx′ n = 0. (3.25)

Proposition 1 follows upon setting xm 6=3 = 0, ym>5 = 0, and performing the δ-integration:

S2 =
T2
2

∫
GAdS
mn≤5(y

p≤5)
(
ẏmẏn − cos2 θ1 φ1

′2
y′ my′ n

)
dτ dσ = (3.26)

=
T1

2gs`s

∫
GAdS
mn≤5(y

p≤5)
(
ẏmẏn − y′ my′ n

)
dτ dσ =

S1
gs`s

(3.27)

GAdS
mn≤5(y

p≤5)
(
ẏmẏn + y′ my′ n

)
= GAdS

mn≤5(y
p≤5) ẏmy′ n = 0, (3.28)
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i.e. a pure AdS5 string soliton. For comparison, we juxtapose the corresponding AdS5×S5

string Polyakov action in the conformal gauge (γab = ηab) and the corresponding Virasoro

constraints:

S1 =
T1
2

∫ [
GAdS
mn (y)

(
ẏmẏn − y′ my′ n

)
+GSmn(x)

(
ẋmẋn − x′ mx′ n

) ]
dτ dσ (3.29)

T00 = T11 =
1

2

[
GAdS
mn (y)

(
ẏmẏn + y′ my′ n

)
+GSmn(x)

(
ẋmẋn + x′ mx′ n

) ]
= 0 (3.30)

T01 = T10 = GAdS
mn (y) ẏmy′ n +GSmn(x) ẋmx′ n = 0. (3.31)

The equations of motion that correspond to θ1 and φ1 in (3.26) are trivially satisfied and

the remaining equations of motion of (3.26) will be identical to the ones that are obtained

by varying the string action (3.29). Thus the two systems are dynamically equivalent.

The not vice versa part in proposition 1 follows from the fact that we may construct

many inequivalent membrane actions with dependence on both σ and δ.

3.1 Stringy membranes in AdS4 × S7

Going over to the AdS4 × S7 case, proposition 1 has to be modified in the following way.

Assuming complete dependence of the string’s spacetime coordinates on the world-sheet

coordinates {τ , σ},

ym = (t = t (τ , σ) , ρ = ρ (τ , σ) , θ = θ (τ , σ) , φ1 = φ1 (τ , σ) , φ2 = φ2 (τ , σ)) , (3.32)

it is only a subset of all possible AdS5 string solitons that can be obtained from an

appropriate membrane ansatz on AdS4 × S7 — namely all string solitons that live in

AdS4 ⊂ AdS5. For example, both stringy anti-de Sitter solitons encountered in this

paper ((3.1), (3.9)) are of this genre, living in AdS3 ⊂ AdS4 ⊂ AdS5. Thus, they can be

reproduced by an AdS4 × S7 membrane:

Proposition 2. Every pure string soliton of AdS4 ⊂ AdS511 has an equivalent AdS4×S7

membrane soliton (and not vice versa).

Dropping the condition of full dependence on the world-sheet coordinates (3.32), it

should be possible to apply this method and find, (i) AdS4,7 × S7,4 membrane equivalents

to special string configurations that live in AdS5 × S5 and (ii) AdS4 × S7 membranes that

are equivalent to strings that live in AdS5.

3.2 Stringy membranes in AdS4 × S7/Zk

We can also consider stringy membranes in more general backgrounds, such as AdS4 ×
S7/Zk. For k = 1, this is just AdS4 × S7. On the other hand, AdS4 × S7/Zk geometries

provide the gravitational backgrounds of the ABJM correspondence [47]:{
N = 6, U (N)k×U (N)−k, Super C-S Theory12

} N→∞−−−−→
{

M-Theory on AdS4×S7/Zk
}

.

11AdS4 ⊂ AdS5 means that one of the two azimuthal angles of S3 of AdS5 is set to zero.
12Super Chern-Simons theory.
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For k = 1, the dual gauge theory reduces to N = 8 SCFT. In the case of the SU (2)×SU (2)

gauge group, it becomes the N = 8 Bagger-Lambert-Gustavsson (BLG) theory, [46, 67].

Now, the question has been posed, whether a logarithmic type behavior for the anomalous

dimensions of either theory’s states is possible within this correspondence as well. Based on

what has been said above, the answer is affirmative, from the point of view of membranes.

To see this, consider the metric of AdS4 × S7/Zk [28]:

ds2 = GAdS
mn (y)dymdyn +GS/Zmn (x)dxmdxn =

= `2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ · dΩ2

2

)
+R2dΩ

2
7/Zk

(3.33)

dΩ
2
7/Zk

=

(
dy

k
+ Ã

)2

+ ds2
CP3 , (3.34)

Ã ≡ 1

2

(
cos2 ξ − sin2 ξ

)
dψ +

1

2
cos2 ξ cos θ1 dφ1 +

1

2
sin2 ξ cos θ2 dφ2

ds2
CP3 = dξ

2
+ cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1 dφ1 −

1

2
cos θ2 dφ2

)2

+

+
1

4
cos2 ξ

(
dθ

2
1 + sin2 θ1 dφ

2
1

)
+

1

4
sin2 ξ

(
dθ

2
2 + sin2 θ2 dφ

2
2

)
. (3.35)

It is easy to obtain solutions (3.1) and (3.9) from this metric. All that is needed is to

supplement the AdS ansätze with y = kδ (R = 1, ` = 1/2) and set the six remaining

angles of S7 equal to zero. In fact, one could formulate the following proposition:

Proposition 3. Every pure string soliton of AdS4 ⊂ AdS5 has an equivalent AdS4×S7/Zk
membrane soliton (and not vice versa).

Of course, more general statements than proposition 3 exist, since type IIA string

theory action on AdS4 ×CP3 is obtainable from the supermembrane action on AdS4 × S7

by double dimensional reduction [68–70].

This concludes our presentation of anti-de Sitter space stringy membranes. In the

following section we shall examine their stability properties.

4 Membrane fluctuations

Are stringy membranes stable? Intuitively, one would expect that the δ-component of a

stringy membrane, that is wound around a great circle of S4/7, would be unstable towards

a lower energy configuration that is obtained by its collapsing to a point on either pole.

This would indeed be the case for the simplest string extending along a great circle of a

sphere and no other dynamical parts [71]. Besides, since stringy membranes share a com-

mon Lagrangian and equations of motion with their equivalent strings, they are expected

to inherit many of their stabilities/instabilities. Now, unstable strings may be stabilized

in a multitude of ways, e.g. by adding more angular momenta [71, 72], stable AdS com-

ponents [73, 74], pulsation [75], by orientifold projections [76], or even flux terms [77, 78].

Surprisingly enough, even those stringy configurations that are known to possess unstable

modes, have been studied and have been proven very useful in the context of AdS/CFT [71,
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74], as their instabilities are sometimes unseen in the dual gauge sector [80, 81]. One pos-

sible explanation for this state of affairs is that these solutions can be easily extended to

more stable configurations, while preserving their wanted dual gauge theory properties.

Generalized, rigorous results (even numerical) concerning stability are however missing at

the moment, mainly due to the difficulties that the corresponding analysis presents [82].

Stringy membranes are on the other hand membranes, not strings. We believe that

this property may sometimes enhance the stability of the resulting system. For example,

a single membrane component that is wound around a sphere has zero surface tension

and is thus expected to be stable, in contrast to the similarly wound string that we saw

above. Since we are actually proposing a model that attempts to reproduce the behavior

of classical strings in AdS5, it would be interesting to be able to make concrete statements

about its advantages/disadvantages in the domain of stability. Membrane fluctuations in

various backgrounds have been studied in [83–91].

Interestingly, we shall find that our systems are governed by the Lamé equation. Lamé

equations arise when one separates variables in Laplace’s equation using an ellipsoidal

coordinate system [92]. They belong to the class of the so-called quasi-exactly solvable

(QES) systems [93, 94], because their solutions may be determined algebraically in some

cases [95–99]. Owing to the fact that their stabilities and instabilities are organized in bands

and gaps, Lamé systems enjoy a wide range of physical applications: (a) they provide an

alternative to the Kronig-Penney model for the motion of electrons in one-dimensional crys-

tals [95, 100]; (b) they govern explosive particle production (preheating) due to parametric

resonance in post-inflationary cosmology [101–103]; (c) they arise in the study of sphaleron

fluctuations in the φ4 [104, 105] and 1+1 dimensional abelian Higgs model [106, 107]; (d)

they are closely related to the spectral curve of SU(2) BPS monopoles [108, 109]; (e) they

come up in many occasions in supersymmetric quantum mechanics [110–113], etc. [114–

118]. They have also appeared in string fluctuations in anti-de Sitter space [75, 119, 120].

The examination of stringy membranes in the present work, is suggestive of a much richer

Lamé band/gap structure for their fluctuations. We will have more to say about the

stabilities and instabilities of stringy membranes at the end of this section.

Our analysis will be carried out in the embedding coordinates of AdSp+2×Sq, for which,

ds2 = ηµνdY
µdY ν + δijdX

idXj = −dY 2
0 +

p+1∑
i=1

dY 2
i − dY 2

p+2 +

q+1∑
i=1

dX2
i (4.1)

−ηµνY µY ν = Y 2
0 −

p+1∑
i=1

Y 2
i + Y 2

p+2 = `2 , δijX
iXj =

q+1∑
i=1

X2
i = R2, (4.2)

where ηµν = (−,+,+, . . . ,+,−), δij = (+,+, . . . ,+), µ, ν = 0, 1, . . . , p + 2 and

i, j = 1, 2, . . . , q + 1. Including the constraints (4.2) with the aid of two Lagrange

multipliers Λ, Λ̃, the gauge-fixed action (2.4) becomes:

S =
T2
2

∫
d3σ

[
Ẏ µẎµ + ẊiẊi − 1

2
{Y µ, Y ν}{Yµ, Yν} −

1

2
{Xi, Xj}{Xi, Xj}−
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−{Y µ, Xi}{Yµ, Xi}+ Λ
(
Y µYµ + `2

)
+ Λ̃

(
XiXi −R2

) ]
. (4.3)

It gives rise to the following equations of motion:

Ÿ µ = {{Y µ, Y ν} , Yν}+
{{
Y µ, Xi

}
, Xi

}
+ ΛY µ (4.4)

Ẍi =
{{
Xi, Xj

}
, Xj

}
+
{{
Xi, Y µ

}
, Yµ
}

+ Λ̃Xi, (4.5)

the AdSp+2 × Sq constraints,

Y µYµ = −`2 , XiXi = R2 (4.6)

and the constraints that follow from gauge-fixing,

Ẏ µ∂σYµ + Ẋi∂σX
i = Ẏ µ∂δYµ + Ẋi∂δX

i = 0 (4.7)

Ẏ µẎµ + ẊiẊi +
1

2
{Y µ, Y ν}{Yµ, Yν}+

1

2
{Xi, Xj}{Xi, Xj}+ {Y µ, Xi}{Yµ, Xi} = 0. (4.8)

The Hamiltonian is identically equal to zero and it is given by:

H =
T2
2

∫
d2σ

[
Ẏ µẎµ + ẊiẊi +

1

2
{Y µ, Y ν}{Yµ, Yν}+

1

2
{Xi, Xj}{Xi, Xj}+

+{Y µ, Xi}{Yµ, Xi} − Λ
(
Y µYµ + `2

)
− Λ̃

(
XiXi −R2

) ]
= 0. (4.9)

We now consider the following perturbations:13

Y µ = Y µ
0 + δY µ , Xi = Xi

0 + δXi , Λ = Λ0 + δΛ , Λ̃ = Λ̃0 + δΛ̃, (4.10)

where
{
Y0, X0,Λ0, Λ̃0

}
is a classical solution that satisfies the equations of motion and

constraints (4.4)–(4.8). The (quadratic) action for the fluctuations is:

δS =
T2
2

∫
d3σ

[
δẎ µ δẎµ + δẊi δẊi − {Y µ

0 , Y
ν
0 }{δYµ, δYν} − {δY µ, Y ν

0 }{δYµ, Y0 ν}−

−{δY µ, Y ν
0 }{Y0µ, δYν} − {Xi

0, X
j
0}{δX

i, δXj} − {δXi, Xj
0}{δX

i, Xj
0}−

−{δXi, Xj
0}{X

i
0, δX

j} − 2{Y µ
0 , X

i
0}{δYµ, δXi} − {δY µ, Xi

0}{δYµ, Xi
0}−

−2{δY µ, Xi
0}{Y0µ, δXi} − {Y µ

0 , δX
i}{Y0µ, δXi}+ 2Y µ

0 δYµ δΛ+

+2Xi
0 δX

i δΛ̃

]
. (4.11)

To lowest order, these fluctuations obey the following equations:

δŸ µ= {{Y µ
0 , Y

ν
0 } , δYν}+ {{δY µ, Y ν

0 } , Y0 ν}+ {{Y µ
0 , δY

ν} , Y0 ν}+
{{
Y µ
0 , X

i
0

}
, δXi

}
+

+
{{
δY µ, Xi

0

}
, Xi

0

}
+
{{
Y µ
0 , δX

i
}
, Xi

}
+ Λ0δY

µ + Y µ
0 δΛ (4.12)

13In this section, due care should be taken in order not to confuse δ ≡ σ2, the world-volume coordinate,

with the δ’s that appear in δS, δX, δY , δΛ, δΛ̃ and denote the fluctuations of S, X, Y, Λ and Λ̃.
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δẌi=
{{

Xi
0, X

j
0

}
, δXj

}
+
{{

δXi, Xj
0

}
, Xj

0

}
+
{{
Xi

0, δX
j
}
, Xj

0

}
+
{{
Xi

0, Y
µ
0

}
, δYµ

}
+

+
{{
δXi, Y µ

0

}
, Y0µ

}
+
{{
Xi

0, δY
µ
}
, Y0µ

}
+ Λ̃0δX

i +Xi
0 δΛ̃ (4.13)

and the following constraints (note that our fluctuations live in tangent space):

Y µ
0 δYµ = Xi

0 δX
i = 0 , Ẏ µ

0 ∂σδYµ + δẎ µ ∂σY0µ + Ẋi
0 ∂σδX

i + δẊi ∂σX
i
0 = 0

Ẏ µ
0 ∂δδYµ + δẎ µ ∂δY0µ + Ẋi

0 ∂δδX
i + δẊi ∂δX

i
0 = 0 (4.14)

Ẏ µ
0 δẎµ + Ẋi

0 δẊ
i + {Y µ

0 , Y
ν
0 }{δYµ, Y0 ν}+ {Xi

0, X
j
0}{δX

i, Xj
0}+ {Y µ

0 , X
i
0}{δYµ, Xi

0}+
+{Y µ

0 , X
i
0}{Y0µ, δXi} = 0. (4.15)

In order to pass from the general case of an M2-brane in AdSp+2×Sq to the general case of

a stringy membrane in AdSp+2×Sq (i.e. before considering any particular ansatz) we plug,

Y µ
0 = Y µ

0 (τ, σ) (4.16)

Xi
0 = (cos δ , sin δ , 0 , . . . , 0) −→ Xi

0X
i
0 = 1 (4.17)

Xi
0
′
= (− sin δ , cos δ , 0 , . . . , 0) −→ Xi

0
′
Xi

0
′
= 1 (4.18)

Xi
0
′′
= − (cos δ , sin δ , 0 , . . . , 0) = −Xi

0 −→ Xi′′Xi′′ = 1, (4.19)

into the equations of the solutions (4.4)–(4.8) and those of the fluctuations (4.12)–(4.15),

setting also R = 1. This leads to the following equations of motion,

Ÿ µ
0 = Y µ

0
′′

+ Λ0 Y
µ
0 , Y µ

0
′
Y ′0µ = −Ẏ µ

0 Ẏ0µ = Λ̃0 = −`2/2 Λ0 (4.20)

Y µ
0 Y0µ = −`2 , Ẏ µ

0 Y
′
0µ = 0, (4.21)

fluctuation equations,

δŸ µ =∂2σδY
µ + Λ̃0 ∂

2
δ δY

µ −
(
Xi

0
′′
∂σδX

i −Xi
0
′
∂2σ,δδX

i + Y ν
0
′ ∂2δ δYν

)
Y µ
0
′
+

+2
(
Xi

0
′
∂δδX

i
)
Y µ
0
′′

+ Λ0 δY
µ + Y µ

0 δΛ (4.22)

δẌi =∂2σδX
i + Λ̃0 ∂

2
δ δX

i −
(
Xj

0

′
∂2σδX

j + Y µ
0
′′
∂δδYµ − Y µ

0
′
∂2σ,δδYµ

)
Xi

0
′
+

+2
(
Y µ
0
′
∂σδYµ

)
Xi

0
′′

+ Λ̃0 δX
i +Xi

0 δΛ̃ (4.23)

and constraints:

Y µ
0 δYµ = Xi

0 δX
i = 0 , Ẏ µ

0 ∂σδYµ + δẎ µ Y ′0µ = Ẏ µ
0 ∂δδYµ + δẊiXi

0
′
= 0 (4.24)

Ẏ µ
0 δẎµ + Y µ

0
′
∂σδYµ + Λ̃0

(
Xi

0
′
∂δδX

i
)

= 0. (4.25)

Note that, although the equations of motion (4.20)–(4.21) are completely independent

of the second world-volume coordinate δ (they are string equations), the fluctuation

equations (4.22)–(4.25) depend explicitly on δ, through the S4 coordinates Xi (δ) and their

derivatives. We could not come up with any coordinate transformation that eliminates

this dependence on δ. It seems therefore that the equivalence between stringy membranes

and strings cannot be extended beyond leading order.
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Figure 1. Lamé potential (4.33) of stringy membrane (3.1)–(4.31).

In order to facilitate further analysis, we shall only study fluctuations along the directions

that are transverse to the membrane, i.e. directions for which Y µ
0 = Xi

0 = 0. We see

from equations (4.22)–(4.25) that these fluctuations decouple from the ones that take place

parallel to the stringy membrane. Having said this, the corresponding equations become:

δŸ µ = ∂2σδY
µ + Λ̃0 ∂

2
δ δY

µ + Λ0 δY
µ (4.26)

δẌi = ∂2σδX
i + Λ̃0 ∂

2
δ δX

i + Λ̃0 δX
i. (4.27)

4.1 Rotating stringy membranes

To study the fluctuations of spinning stringy membranes we set:

δY µ =
∑
r,m

eirτ+imδ ỹ µr,m (σ) , δXi =
∑
r,m

eirτ+imδ x̃ ir,m (σ) , m ∈ Z. (4.28)

In this case, equations (4.26)–(4.27) along the transverse directions Y µ
0 = Xi

0 = 0, take

the following form (omitting, for simplicity, the dependencies of ỹ µr,m (σ) and x̃ ir,m (σ) on

r, m and σ):

(ỹ µ)′′ +
(
r2 −m2Λ̃0 + Λ0

)
ỹ µ= 0 (4.29)(

x̃ i
)′′

+
(
r2 −m2Λ̃0 + Λ̃0

)
x̃ i = 0. (4.30)

For the AdS7 × S4 stringy membranes (3.1) we have (` = 2):14

Y µ0 =2 (cosh ρ (σ) cosκτ , sinh ρ (σ) cosκωτ , sinh ρ (σ) sinκωτ , 0 , 0 , 0 , 0 , cosh ρ (σ) sinκτ) .(4.31)

The equations of motion (4.20)–(4.21) for this configuration are satisfied for15

Λ0 = −2ρ′2 & Λ̃0 = 4ρ′2, (4.32)

14With slight modifications, all the results of this section are also valid in AdS4 × S7/Zk. See table 1.
15Due care should be taken in this subsection, in order to distinguish the elliptic modulus k, from the

parameter κ of ansatz (4.31) and the complete elliptic integral of the first kind K.
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Figure 2. Lamé potential (4.39) of stringy membrane (3.9)–(4.38).

where ρ′ (σ)2 is the σ-periodic and even function16 (displayed for various ω, in figure 1),

ρ′2 = κ2
(
cosh2 ρ− ω2 sinh2 ρ

)
= κ2 · sn2

[
κω
(
σ +

π

2

) ∣∣∣ 1

ω2

]
(4.33)

ω · κ (ω) =
2

π
·K
(

1

ω2

)
, ω2 > 1.

We thus find that the fluctuation equations for all the transverse directions Y µ = Xi =

0, (4.29)–(4.30), can be transformed to the Jacobi form of Lamé’s equation [121–125]:

d2z

du2
+
[
h− ν (ν + 1) k2sn2

(
u|k2

)]
z = 0, (4.34)

so long as we set,

z = ỹµ(σ) , u = κω
(
σ+

π

2

)
, h =

( r

κω

)2
, ν (ν+1) = 2

(
2m2+1

)
, k =

1

ω

z = x̃i(σ) , u = κω
(
σ+

π

2

)
, h =

( r

κω

)2
, ν (ν+1) = 4

(
m2−1

)
, k =

1

ω
.

4.2 Pulsating stringy membranes

In order to study the fluctuations of pulsating stringy membranes we set in (4.26)–(4.27):

δY µ =
∑
m,n

einσ+imδ ỹ µm,n (τ) , δXi =
∑
m,n

einσ+imδ x̃ im,n (τ) , m ∈ Z. (4.35)

The transverse fluctuation equations (4.26)–(4.27) then take the following form (again we

omit, for simplicity, the dependencies of ỹ µn,m (τ) and x̃ in,m (τ) on n, m and τ):

¨̃y
µ

+
(
n2 +m2Λ̃0 − Λ0

)
ỹ µ= 0 (4.36)

¨̃x
i
+
(
n2 +m2Λ̃0 − Λ̃0

)
x̃ i = 0. (4.37)

16For large enough ω, it turns out that we may approximate, ρ′2 = κ2 · cd2
[
κωσ

∣∣∣1/ω2
]
∼ κ2 cos2 σ.
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Figure 3. Stability bands (colored) of Lamé equation (4.34) for ν = 1 (left) and ν = 5 (right).

For the AdS7 × S4 pulsating configuration (3.9) (` = 2),

Y µ0 = 2 (cosh ρ(τ) cos t (τ) , 0 , 0 , sinh ρ(τ) cosσ , 0 , sinh ρ(τ) sinσ , 0 , cosh ρ(τ) sin t (τ)) , (4.38)

we obtain the following Lamé potential, by solving the equations of motion (4.20)–(4.21):

sinh2 ρ (τ) = sinh2 ρ0 · sn2
[
τ · cosh ρ0

∣∣∣ − tanh2 ρ0

]
, (4.39)

where ρ0 is given by 4e2 = sinh2 2ρ0 and e is a constant of motion (see equation (A.23)).

In figure 2 we have plotted the potential (4.39) for various values of ρ0. The corresponding

Lagrange multipliers are given by,

Λ0 = −2 sinh2 ρ & Λ̃0 = 4 sinh2 ρ. (4.40)

The fluctuations along the transverse directions Y µ = Xi = 0, (4.36)–(4.37), can again be

seen to obey Lamé’s equation (4.34). In order to obtain the Jacobi form of the latter we

write the potential (4.39) as,

sinh2 ρ (τ) = sinh2 ρ0 ·
(

1− sn2
[
τ ·
√

cosh 2ρ0 + K
(

sinh2 ρ0
cosh 2ρ0

) ∣∣∣ sinh2 ρ0
cosh 2ρ0

])
(4.41)

and make the following substitutions in (4.34): u = τ ·
√

cosh 2ρ0 + K
(
k2
)

and

z = ỹµ(τ) , h =
n2

cosh 2ρ0
+ 2k2

(
2m2 + 1

)
, ν (ν + 1) = 4m2 + 2 , k =

sinh ρ0√
cosh 2ρ0

z = x̃i(τ) , h =
n2

cosh 2ρ0
+ 4k2

(
m2 − 1

)
, ν (ν + 1) = 4m2 − 4 , k =

sinh ρ0√
cosh 2ρ0

.

Let us now summarize and discuss our results: we have analyzed the fluctuations of the

AdS7 × S4 stringy membranes (3.1), (3.9) along their transverse directions Y µ
0 = Xi

0 =

0 and have found that they fall under Lamé’s equation (4.34). For ν (ν + 1) ∈ R and

0 < k < 1, equation (4.34) always has an infinite set of real eigenvalues asν
(
k2
)

and
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Ansatz u k h z ν (ν + 1)

3.1

AdS7 × S4
κω
(
σ + π

2

)
1
ω

(
r
κω

)2 ỹ

x̃

4m2 + 2

4
(
m2 − 1

)
3.1

AdS4 × S7
κω
(
σ + π

2

)
1
ω

(
r
κω

)2 ỹ

x̃

m2/4 + 2
1
4

(
m2 − 1

)
3.9

AdS7 × S4
τ ·
√

cosh 2ρ0 + K
(
k2
)

sinh ρ0√
cosh 2ρ0

n2

cosh 2ρ0
+ k2

(
4m2 + 2

)
n2

cosh 2ρ0
+ 4k2

(
m2 − 1

) ỹ

x̃

4m2 + 2

4
(
m2 − 1

)
3.9

AdS4 × S7
τ ·
√

cosh 2ρ0 + K
(
k2
)

sinh ρ0√
cosh 2ρ0

n2

cosh 2ρ0
+ k2

(
m2/4 + 2

)
n2

cosh 2ρ0
+ k2

4

(
m2 − 1

) ỹ

x̃

m2/4 + 2
1
4

(
m2 − 1

)

Table 1. Lamé fluctuation parameters (4.34) for stringy membranes (3.1) and (3.9) in AdS7/4×S4/7.

bsν
(
k2
)

that correspond to periodic eigenfunctions.17 These eigenvalues can be classified

into four groups, according to the parity (even or odd) and period (equal to 2K or 4K)

of their corresponding eigenfunctions (see appendix B). For a generic eigenvalue h (not

necessarily of a periodic eigenfunction), Lamé’s equation (4.34) is stable iff all corresponding

eigenfunctions z (u, h) are bounded, otherwise it is unstable. It turns out that the intervals

of stability are determined by the eigenvalues of periodic solutions:

(a0ν , a
1
ν) ∪ (b1ν , b

2
ν) ∪ (a2ν , a

3
ν) ∪ (b3ν , b

4
ν) ∪ . . . (4.42)

Solutions of Lamé’s equations are stable within the above intervals and unstable outside

them. The contractions imply that the relative order of the corresponding endpoints is not

a priori known and may thus be reversed, for different values of ν ∈ R, s = 0 , 1 , 2 , . . . and

k ∈ (0 , 1). Another interesting property of Lamé eigenvalues is known as “coexistence”.

In short, coexistence implies that ν ∈ N iff Lamé’s equation has exactly ν + 1 intervals of

stability (bands), following exactly ν + 1 intervals of instability (gaps). See figure 3 for

plots of the Lamé bands (colored) and gaps (white) for ν = 1 and ν = 5.

We thus see that the stability of Lamé solutions is organized in (stable) bands and

(unstable) gaps. The parameters of Lamé’s equation (4.34) for each of the examined

ansätze, are given in table 1 (the definitions of m, r and n can be found in (4.28) and (4.35)).

The AdS7 × S4 results may be easily extended to the AdS4 × S7 case (where R = 2` = 1

and Λ0 = −8Λ̃0) and we have included these as well. The first row of each entry in

table 1 corresponds to the AdS7/4 fluctuations ỹ ≡ {ỹ µr,m (σ) , ỹ µm,n (τ)} and the second

row to the fluctuations on the S4/7, x̃ ≡
{
x̃ ir,m (σ) , x̃ im,n (τ)

}
. Given ω, ρ0, and m ∈ Z

(κ = κ (ω) = 2/πω · K
(
1/ω2

)
), the allowed values of r, n ∈ R can be determined in each

case by the overlap of the ỹ- and x̃-bands, the lowest endpoint of which satisfies:

hmin≥0, in ansatz (3.1) & hmin≥
(
4m2+2

) sinh2 ρ0
cosh 2ρ0

, in ansatz (3.9) (AdS7×S
4)

hmin≥
(
m2/4+2

) sinh2 ρ0
cosh 2ρ0

, in ansatz (3.9) (AdS4×S
7). (4.43)

17Note also that Lamé’s equation (4.34) is symmetric under the exchange ν ↔ −ν − 1, so that we only

need to consider ν > −1/2 and ν(ν + 1) > −1/4.
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5 Discussion

In this paper, we have studied the stringy properties of uncharged bosonic membranes

in AdS7 × S4 and AdS4 × S7/Zk. We have examined the conditions under which the

string sigma model in AdS5 × S5 may be embedded in the membrane sigma model in

AdS4,7 × S7,4. Specifically, we have found that all string configurations of AdS5 may be

reproduced by membranes living in AdS7 × S4. Moreover, all string solitons that live in

AdS4 ⊂ AdS5 may be reproduced by membranes of AdS4 × S7. We have also shown how

logarithmic scaling violations (i.e. E − S ∼ lnS) for membranes living in AdS4 × S7/Zk
may be obtained, generalizing the work of Hartnoll and Nuñez [54].

There’s absolutely no magic in obtaining stringy behavior from membranes on AdSm×
Sn. The corresponding setups are essentially one-dimensional in each of the two product

spaces, having no dynamics in one of them (the n-sphere). Viewed together as an ensemble,

they have two independent dimensions. Hence their membrane nature. Our treatment is

very similar to that of Duff-Howe-Inami-Stelle [64], albeit with a different motivation [54,

56, 126]. Compared to [64], and apart from considering only bosonic membranes in an

AdSm×Sn background (i.e. a product of two manifolds), we haven’t actually performed a

double dimensional reduction (as e.g. in [56]), although it may have seemed so. In this work,

we have been primarily interested in the applications of the GKP method. A posteriori,

analogous string-membrane reductions could be found in [127–129].

Secondly, we have analyzed the stability of stringy membranes in the linearized ap-

proximation. We have demonstrated that the similarities between stringy membranes and

strings cannot be extended beyond leading order, since the perturbation equations depend

on the second world-volume coordinate δ, which cannot be eliminated from the equations

themselves. By studying the stability of stringy membranes along their transverse direc-

tions we have found that they are governed by Lamé’s equation. Therefore, they typically

exhibit the standard stability/instability pattern of bands and gaps. Interestingly, our anal-

ysis recovers the single-band/single-gap structure of the AdS3 string case [119, 120]. At this

point, important issues of interpretation arise for both strings and membranes. Firstly, does

the Lamé band/gap structure that anti-de Sitter strings and membranes possess, admit a

particle interpretation? Moreover, what is the holographic dual of the Lamé instability phe-

nomenon in question? In what follows, we conclude our work with a detailed exposition of

our results as well as some prospects for further work on open issues that emerge from them.

• Scaling dimensions and stringy membranes. Solution (3.1) essentially coincides

with the AdS4 × S7, “type-I” solution of Hartnoll and Nuñez [54], although it is written

in terms of the Polyakov action on AdS7 × S4 (see section 3.1, for AdS4 × S7). As it

is well-known, the folded closed string of AdS3 is dual to the operator Tr
[
Z DS+Z

]
+ . . .

of the SL(2) sector of N = 4, SYM.18 Therefore, as postulated in [54] and in complete

analogy with the stringy case [41], this membrane configuration is expected to correspond

18Z, W, Y are the three complex scalars of N = 4, SYM, composed out of its six real scalars Φ. Also

D+ = D0 + D3, D− = D1 + D2, denote the light-cone derivatives. The dots in a trace operator generally

stand for terms that are built by permuting trace fields Z and impurities, W, Y, D±.
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to twist-2 gauge theory operators, with anomalous scaling dimensions given, at strong

coupling, by the equations of the corresponding leading Regge trajectories (writing S for

the charge S1 = S12 in (2.16) and defining
√
λ′ ≡ R`2/gs`3s):

E2 = 2
√
λ′ S + . . .

(
Short Stringy Membranes, S �

√
λ′
)

(5.1)

E − S = f
(
λ′
)

ln
S√
λ′

+ . . .
(

Long Stringy Membranes, S �
√
λ′
)
. (5.2)

At the classical level, it is rather easy to obtain the full “short” series whereas finding

the “long” series presents more challenges. A method that potentially generates all of

the subleading “long” terms was presented in [130], along with the proof of a formula

that links the expressions for the anomalous dimensions, in the “short” and the “long”

regimes (see also appendix A). What is more, the long series was found to satisfy the

Moch-Vermaseren-Vogt (MVV) constraints that follow from a “reciprocity”, aka “parity-

preserving” relation. Originally proposed by Gribov and Lipatov [131] in the context of

deep inelastic scattering (DIS), the so-called “strong” reciprocity relation has been verified

for twist-two operators, up to three loops in perturbative QCD [132] and up to four loops

in weakly coupled, N = 4, SYM [133, 134]. It was claimed in [130] that reciprocity is very

likely satisfied by twist-two operators in string perturbation theory as well. As we have

just seen, all of these statements naturally carry over to stringy membranes.

On the other hand it is known that the “cusp anomalous dimension” f(λ) receives

quantum corrections that are calculated in superstring theory by evaluating the Lamé

fluctuation determinants [119]. Since the quadratic supermembrane sigma model on

AdS7/4 × S4/7 is completely different from the corresponding model of superstrings (we

have seen an instance of this in the fluctuations of stringy membranes), we expect that

the quantum corrections to the anomalous dimensions of twist-2 operators, as calculated

from AdS7/4 × S4/7 supermembranes, will differ from the purely stringy ones.

• Integrability. The equations of motion and all constraint equations of stringy mem-

branes (4.20)–(4.21) are identical to the corresponding equations of strings that rotate in

anti-de Sitter space. As such, they may be shown to be equivalent to the generalized sinh-

Gordon equation through a reduction of the Pohlmeyer type [135]. In complete analogy

with AdS strings, stringy membranes in AdS(2,3,4) thus turn out to be equivalent to the

Liouville, sinh-Gordon and B2-Toda model respectively (cf. [136–138]).

Another outcome of our analysis concerns the dual gauge theories. The generalization

of the GKP method to theories which contain extended objects other than strings, offers a

method to compare their dual CFTs by means of studying the integrable sectors that they

probably share in the bulk. That is, useful insights about the behavior of one theory can

be extracted by studying a similar sector of the other, despite the fact that the theories

might significantly differ or even have different dimensionalities. In the present work, the

following dualities that contain states/operators for which ∆− S ∼ lnS were examined:
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Gauge Theory dual Gravity Theory

N = 4, SU (N), Super Y-M Theory IIB String Theory on AdS5 × S5

N = 8 SCFT
/
AN−1 (2, 0) SCFT M-Theory on AdS4/7 × S7/4

N = 6, U (N)k × U (N)−k, Super C-S Theory

N →∞ M-Theory on AdS4 × S7/Zk

k5 � N →∞, λ ≡ 2π2N/k = const. IIA String Theory on AdS4 × CP3

We believe that our study of stringy membranes strengthens the conjecture put

forward by Bozhilov in [60] that (a) N = 4, SU(N) SYM theory (dual to IIB String

Theory on AdS5 × S5), (b) AN−1(2, 0), SCFT (dual to M-theory on AdS7 × S4) and (c)

N = 8, SCFT (dual to M-theory on AdS4 × S7) all possess common integrable sectors,

and we would also like to guess that this “AdS family” could contain more members (e.g.

QCD, N = 6, quiver Super Chern-Simons [47], N = 1, SYM [54, 139–143], etc.). In

another — yet similar — direction, it has been shown in [144] that N = 0 , 1 , 2 , 4, SYM

theories all possess a common universal one-loop dilatation operator.

• Possible generalizations. We couldn’t think of a more general argument showing that

all (super-) string theories that can be formulated on AdS5 and their dual gauge sectors,

are included in an AdS7 × S4 (super-) membrane theory and its dual SCFT respectively.

Moreover, double dimensional reduction [64], doesn’t generally work in the case,{
membranes/AdS4,7 × S7,4

}
−→

{
strings/AdS5 × S5

}
,

thus we have no a priori reason to expect that string theory on AdS5 × S5 is contained

in M-theory on AdS4,7 × S7,4. It would, nevertheless, be extremely interesting to

investigate the extent up to which the results of Duff-Howe-Inami-Stelle [64] can be

applied to the AdS4,7 × S7,4 case as well. That is find out which embeddings of the full

Green-Schwarz action on AdS5 × S5 [145–150], into the full, supermembrane action on

AdS4,7 × S7,4 [151–154] are allowed, much along the (bosonic) lines of the present paper.

Going further, one could attempt to study the difference of the membrane and string

Polyakov actions, S2 − S1, in more complex setups. Similarly, one could prove that any

membrane soliton may be obtained by going to higher-dimensional extended objects (e.g.

a 3- or a 5-brane), living in more spacetime dimensions. In general one could claim that

any p-brane soliton, living in pure AdSm, may be obtained from a (p+ 1)-brane, living in

AdSm′ × Sm+n+1−m′ , or a (p+ q)-brane living in an adequately generalized spacetime.
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A Spinning strings in AdS5 × S5

In this appendix we will sketch the rudiments of the Gubser-Klebanov-Polyakov (GKP)

string configurations [41] that we used in our paper. First consider a closed and uncharged

bosonic string in AdS5 × S5, in the global coordinate system:

Y0 + iY5 = ` cosh ρ eit X1 + iX2 = R cos θ1 e
iφ1

Y1 + iY2 = ` sinh ρ cos θ eiφ1 & X3 + iX4 = R sin θ1 cos θ2 e
iφ2 (A.1)

Y3 + iY4 = ` sinh ρ sin θ eiφ2 X5 + iX6 = R sin θ1 sin θ2 e
iφ3 ,

where Y µ and Xi are the embedding coordinates of AdS5 × S5 (see (4.1)–(4.2)) and ρ ≥
0, t ∈ [0, 2π) , θ1 ∈ [0, π] , θ, φ1, φ2, θ2, φ1, φ2, φ3 ∈ [0, 2π). The string Polyakov action

in the conformal gauge (γab = ηab) is given by:19

S= −T1
2

∫ √
−γ γab

[
GAdS
mn (y)∂aym∂byn + GSmn(x)∂axm∂bxn

]
dτ dσ =

=
T1
2

∫ [
GAdS
mn (y)

(
ẏmẏn − y′ my′ n

)
+GSmn(x)

(
ẋmẋn − x′ mx′ n

) ]
dτ dσ, (A.2)

where ym ≡ (t, ρ, θ, φ1, φ2) and xm ≡
(
θ1, θ2, φ1, φ2, φ3

)
. Our first configuration consists

of a folded closed string that rotates at the equator of S3 of AdS5:{
t = κτ, ρ = ρ(σ), θ = κωτ, φ1 = φ2 = 0

}
×
{
θ1 = θ2 = φ1 = φ2 = φ3 = 0

}
. (A.3)

In embedding coordinates this ansatz reads:

Y0 = ` cosh ρ(σ) cosκτ , X1 = R = `

Y1 = ` sinh ρ(σ) cosκωτ X2 = X3 = X4 = X5 = X6 = 0

Y2 = ` sinh ρ(σ) sinκωτ (A.4)

Y3 = Y4 = 0

Y5 = ` cosh ρ(σ) sinκτ.

Its equations of motion and Virasoro constraints become:

ρ′′ + κ2
(
ω2 − 1

)
sinh ρ cosh ρ = 0 (A.5)

ρ′ 2 − κ2
(
cosh2 ρ− ω2 sinh2 ρ

)
= 0. (A.6)

Depending on the value of the angular velocity ω, two basic cases are obtained:

19T1 is the string tension, T1 ≡ 1/2πα′.
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Figure 4. ρ = ρ (σ) of the folded closed string (A.3), when ω2 > 1.

(i). ω2 > 1: a folded closed rigidly rotating string, with cusps at dσ/dρ
∣∣∣
ρ0

=∞,

0 ≤ sinh2 ρ ≤ sinh2 ρ0 =
1

ω2 − 1
= q <∞.

a. “Short” Strings: ω →∞ , ρ0 ∼ 1/ω.

b. “Long” Strings: ω = 1 + 2η → 1+ , ρ0 ∼ ln 1/n→∞.

(ii). ω2 < 1 : two oppositely oriented rigidly rotating Wilson loops, with

0 ≤ sinh2 ρ ≤ sinh2 ρ0 =∞.

This system has two cyclic coordinates — namely t and θ — so that the conservation laws

are the following:

E =

∣∣∣∣∂L∂ṫ
∣∣∣∣ =

`2

2πα′

∫ 2π

0
κ cosh2 ρ dσ = 4 · `2

2πα′

∫ ρ0

0

cosh2 ρ dρ√
1− (ω2 − 1) sinh2 ρ

(A.7)

S =
∂L

∂θ̇
=

`2

2πα′

∫ 2π

0
κω sinh2 ρ dσ = 4 · `2

2πα′

∫ ρ0

0

ω sinh2 ρ dρ√
1− (ω2 − 1) sinh2 ρ

. (A.8)

The string essentially contains four segments extending between ρ = 0 and ρ = ρ0 and this

accounts for the factor 4 in front of the ρ-integrals. One also has to calculate the length of

the string,

σ · κ =

∫ ρ

0

dρ√
1− (ω2 − 1) sinh2 ρ

, (A.9)

where κ is a factor needed to fix ρ(σ = π/2) = ρ0.

� ω2 > 1. For the case (i) of the closed and folded string with ω2 > 1, it’s ω·tanh ρ0 =

1 so that the integrals (A.7)–(A.9) take simpler forms and can be expressed in terms of

complete elliptic functions:20

ρ(σ) = arctanh

[
1

ω
sn

(
κωσ

∣∣∣∣∣ 1

ω2

)]
, κ =

2

πω
K
(

1

ω2

)
, ω = coth ρ0 (A.10)

20Our conventions for the elliptic integrals and elliptic functions follow Abramowitz-Stegun [155].
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Figure 5. Energy and spin of the folded closed string (A.3), for ω2 > 1.

E(ω) =
2`2

πα′
· ω

ω2 − 1
E
(

1

ω2

)
(A.11)

S(ω) =
2`2

πα′
·
(

ω2

ω2 − 1
E
(

1

ω2

)
−K

(
1

ω2

))
. (A.12)

We have plotted ρ (σ) for various values of ω in figure 4. In figure 5 we have plotted the

energy of the string as a function of its spin, E = E(S).

Following [130] we may also establish a kind of duality between short and long folded

closed strings in AdS3. To begin, there’s a known formula between the complete elliptic

integrals of the first and second kinds, namely Legendre’s relation (see e.g. [155]):

E(k)K(k′) + K(k)E(k′)−K(k)K(k′) =
π

2
, (A.13)

where the arguments of the elliptic integrals k = 1/ω2 and k′ = 1/ω′ 2 satisfy k+k′ = 1. We

thus see that large values of ω′ →∞ (“short” strings) correspond to values of ω → 1+ near

unity (“long” strings) and (A.13) then provides a map between the corresponding energies

and spins. Solving (A.11) and (A.12) for E(k) and K(k) and substituting in (A.13), we get

the following duality relation between classical folded short and long strings:

1

ω
ES′ +

1

ω′
E′S − SS′ = 2λ

π
, (A.14)

where the value of the ’t Hooft coupling, λ = `4/α′ 2 has also been used. There’s yet

another useful expression of (A.14) in terms of the anomalous dimension γ ≡ E − S,

1

ω
γS′ +

1

ω′
γ′S +

(
1

ω2
+

1

ω′ 2
− 1

)
SS′ =

2λ

π
. (A.15)

The second string configuration that we will examine, consists of a closed string that

pulsates at the equator of S3 of AdS5:{
t = t (τ) , ρ = ρ(τ), θ = 0, φ1 = wσ, φ2 = 0

}
×
{
θ1 = θ2 = φ1 = φ2 = φ3 = 0

}
. (A.16)
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Figure 6. ρ = ρ (τ) of the pulsating closed string (A.16).

In AdS5 × S5 embedding coordinates the solution reads:

Y0 = ` cosh ρ(τ) cos t(τ) X1 = R = `

Y1 = ` sinh ρ(τ) coswσ , X2 = X3 = X4 = X5 = X6 = 0

Y2 = ` sinh ρ(τ) sinwσ (A.17)

Y3 = Y4 = 0

Y5 = ` cosh ρ(τ) sin t(τ).

The equations of motion and the Virasoro constraints become:

ẗ cosh2 ρ+ 2 ṫ ρ̇ cosh ρ sinh ρ = 0 (A.18)

ρ̈+ sinh ρ cosh ρ
(
ṫ2 + w2

)
= 0 (A.19)

ρ̇2 − ṫ2 cosh2 ρ+ w2 sinh2 ρ = 0. (A.20)

The conserved energy, as well as the string length are given by:

E =

∣∣∣∣∂L∂ṫ
∣∣∣∣ =

`2

2πα′

∫ 2π

0
ṫ cosh2 ρ dσ =

`2

α′
· ṫ cosh2 ρ =

w e `2

α′
= w
√
λ e (A.21)

τ (ρ) =

∫ ρ

0

cosh ρ dρ

w
√
e2 − cosh2 ρ sinh2 ρ

=

∫ sinh ρ

0

dx

w
√
e2 − x2 − x4

. (A.22)

In addition, ρ < ρ0 must hold with ρ0 satisfying

e =
ṫ

w
· cosh2 ρ (τ) ≡ sinh ρ0 cosh ρ0 = const. (A.23)

Performing the integral (A.22) we obtain τ (ρ) and, by inversion, ρ (τ):

ρ (τ) = arcsinh
[
sinh ρ0 · sn

(
wτ cosh ρ0

∣∣∣− tanh2 ρ0

)]
. (A.24)

This is an oscillatory time-periodic solution that we have plotted for various ρ0 in figure 6.
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Figure 7. Real and imaginary parts of the Lamé potential, sn2 (u|1/2).

B Lamé’s equation

We saw in section 4 that the fluctuation equations of stringy membranes (3.1)–(3.9), can

be reduced to the Jacobian form of Lamé’s equation, namely,

d2z

du2
+
[
h− ν (ν + 1) k2sn2

(
u|k2

)]
z = 0, (B.1)

where ν (ν + 1) ∈ R and 0 < k < 1 [123, 125]. The potential of Lamé’s equation, sn2
(
u|k2

)
is a doubly periodic function with (primitive) real and imaginary periods equal to 2K

(
k2
)

and 2iK′
(
k2
)

respectively. It is depicted in figure 7. The eigenfunctions of Lamé’s equation

(Lamé functions), that have real periods are:

eigenfunction z (u) eigenvalue h parity of z (u) parity of z (u−K) period of z (u)
Ec2nν

(
u, k2

)
a2nν

(
k2
)

even even 2K
Ec2n+1

ν

(
u, k2

)
a2n+1
ν

(
k2
)

odd even 4K
Es2n+1

ν

(
u, k2

)
b2n+1
ν

(
k2
)

even odd 4K
Es2n+2

ν

(
u, k2

)
b2n+2
ν

(
k2
)

odd odd 2K

where n = 0 , 1 , 2 , . . .. The eigenvalues have the following ordering properties [123, 125]:

a0ν < a1ν < a2ν < a3ν . . . , anν →∞ as n→∞
b1ν < b2ν < b3ν < b4ν . . . , bnν →∞ as n→∞
a0ν < b1ν < a2ν < b3ν . . .

a1ν < b2ν < a3ν < b4ν . . .

The intervals of stability of (B.1) follow from a theorem known as oscillation theorem [124]:

(a0ν , a
1
ν) ∪ (b1ν , b

2
ν) ∪ (a2ν , a

3
ν) ∪ (b3ν , b

4
ν) ∪ . . . (B.2)

where the contractions have been included to signify that the relative order of the contracted

terms is not generally known and can therefore be reversed, for given values of ν and k2.

For ν ∈ R, the expression ν (ν + 1) ∈ R is symmetric under ν ↔ −ν−1 so that, without

loss of generality, we may take ν ≥ −1/2 and ν (ν + 1) ≥ −1/4. If further ν ∈ N, then

– 25 –
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the first 2ν + 1 Lamé functions are polynomials (Lamé polynomials), while the remaining,

transcendental solutions coexist, i.e.,

anν = bnν , for n, ν ∈ N and n ≥ ν + 1. (B.3)

These results are nicely summarized in the following theorem [124]:

Theorem 1. Lamé’s equation (B.1), displays coexistence iff ν ∈ Z. It has exactly ν + 1

instabilities, if ν ∈ N, and exactly |ν| instabilities, if ν ∈ Z−.

The stability intervals in this case are [125]:

(a0ν , b
1
ν) ∪ (a1ν , b

2
ν) ∪ (a2ν , b

3
ν) ∪ . . . ∪ (aν−1ν , bνν) ∪ (aνν , +∞) , ν ∈ N. (B.4)

Finally, we will say a few things about the Lamé functions of imaginary periods. We first

observe that (B.1) has the following symmetry [117, 118, 123, 125]:

u′ = i
(
u−K

(
k2
)
− iK′

(
k2
))

h′ = ν (ν + 1)− h, k′ 2 = 1− k2, (B.5)

so that, when z (u) has a real period of 2 pK (p = 1, 2) and satisfies (B.1), z′ (u′) ≡ z (u)

will have an imaginary period 2 i pK and will satisfy the transformed equation:

d2z

du′2
+
[
h′ − ν (ν + 1) k′ 2sn2

(
u′|k′ 2

)]
z = 0. (B.6)

It turns out that the duality (B.5), interchanges the bands of stability with the gaps of

instability, in (B.2) [117, 118].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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