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1 Introduction

In quantum field theory containing scalars, it may occur that there are more than one local

minima in configuration space. In such cases, a system trapped in a metastable vacuum

will decay towards a vacuum with lower energy through quantum tunneling. Semiclassical

methods can be used to describe the procedure [1, 2]. In this approach, the theory is

studied in Euclidean space and a classical tunneling solution that matches the appropriate

boundary conditions is constructed. This solution describes a bubble, which separates the

true vacuum from the false vacuum and after its emission starts expanding asymptotically

with the speed of light.

Typically, it is very difficult to find analytic solutions for any given potential that

contains a metastable vacuum. The original papers [1, 2] focus on a limit, in which the

energy difference between the true and false vacua is small. In this limit, the radius

of the emitted bubble is large in comparison to its width, thus the name “Thin Wall

Approximation” for this approach. This limit allows for analytical expressions of the bubble

emission rates. However, such a limit destroys all other potentially interesting features of

the solution, especially in the interior of the bubble.

In order to describe potential barriers that are not appropriate for the thin wall ap-

proximation, one can either make a numerical computation, or approximate the potential

with another one that is exactly solvable. This approach is used in [3], where a triangular

and a rectangular potential are analytically solved and the relevant decay rates are calcu-

lated. However, if the actual potential is smooth, such potentials are clearly not a very

good approximation for the regions of the two vacua and the top of the barrier, so several

qualitative features of the solution, related with these regions of the potential barrier, may

be lost. For example, the discontinuity of the potential in the rectangular approximation

removes all dynamics as the field rolls towards the true vacuum. Smoother, exactly solvable

potentials are studied in [4, 5], where the bounce solutions are calculated.

In this paper, we will extend the study of the triangular model and moreover solve some

more realistic, still analytically solvable potentials, and try to extract qualitative features of

the related physics, and possible cosmological implications. It is going to turn out that the

triangular model with parameters of Planck scale can provide an elegant explanation for the

order of magnitude of the measured dark energy density in our universe, failing, however, to

provide the appropriate equation of state. Other options based on more singular potentials

also exist, predicting the correct order of magnitude for the dark energy.

2 Framework

We are going to study exact tunneling solutions in the simple case of a single scalar field and

a potential containing a unique false vacuum. We are particularly interested in analytically

continuing our solutions to imaginary Euclidean radius in order to study the evolution of

the field profile inside the bubble. The Lagrangian describing our system is

L =
1

2
(∂µφ)

2 − V (φ) , (2.1)
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where the scalar potential V (φ) contains the true and a unique false vacuum. From now

on, we name the positions of the top of the potential barrier and of the true and false vacua

as φT , φ− and φ+ respectively and the relevant values of the potential VT , V− and V+.

It has been proven that in scalar field theory the spherically symmetric solutions are

favoured [6]. Since the interior of the bubble lies in the true vacuum, it corresponds to an

energy gain by the emission of the bubble proportional to the volume of the bubble. On the

other hand, the bubble wall has to lie at the potential barrier corresponding to an energy

loss by the emission of the bubble proportional to the surface of the bubble. Thus, the

fact that spherical bubbles are favoured is intuitively expected, as the sphere maximizes

the ratio of volume to surface. So, from now on, we assume that the tunneling solution

depends only on the Euclidean radius ρ.

Under the assumption that the solution depends only on the Euclidean radius, the

Euclidean field equation is reduced to

φ̈+
3

ρ
φ̇ = V ′(φ) , (2.2)

where the dot implies differentiation with respect to ρ and the prime implies differentiation

with respect to the field φ. The solution has to obey the following boundary conditions

lim
ρ→∞

φ(ρ) = φ+ , φ̇(0) = 0 . (2.3)

In the following sections, we are going to make assumptions for the form of the potential,

that are going to allow us to find analytic solutions.

2.1 Two kinds of solutions

Before we proceed to solve the equation of motion, we would like to make a comment on

the general form of the solutions. Typically we are going to assume that the potential is

described by different formulas before and after the top of the barrier. One would expect

that we would result in a solution of the form

φ =



























φ− , ρ < R−

φ1(ρ) , R− < ρ < RT

φ2(ρ) , RT < ρ < R+

φ+ , ρ > R+ .

(2.4)

This describes a bubble whose profile can be described as following: outside a certain

radius R+ the field rests in the false vacuum. Inside this radius the field climbs the barrier

between R+ and RT and then rolls down to the true vacuum between RT and R− and

then stays there. In such cases the analytic continuation to imaginary Euclidean radius is

trivially φ = φ−. In [3] we see that in the rectangular approximation, tunneling solutions

always look like that, however in the triangular approximation we may get a solution of this

kind or not depending on the parameters of the potential. In the triangular approximation,

and as we will show later on in other cases, it may be true that the field never reaches the

true vacuum in Euclidean space. The conditions leading to such a result in the triangular
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Figure 1. The volcanic approximation.

approximation are not very restricting on the parameters of the potential. In such cases

the solution is of the following form

φ =















φ1(ρ) , ρ < RT

φ2(ρ) , RT < ρ < R+

φ+ , ρ > R+

(2.5)

and the analytic continuation to imaginary proper time is non trivial. We will show that

actually the field in such cases never reaches the true vacuum, but performs a damped

oscillation around it. The rest of the paper focuses in this class of solutions.

3 A volcanic potential and the field in the interior of the bubble

3.1 The approximation

The only selections of potential that preserve the linearity of the equation of motion is a

linear and a quadratic one. The quadratic is naturally the most obvious selection to ap-

proximate the region around a vacuum, thus we will start our analysis studying a potential

barrier built out of quadratics. The simplest possible barrier potential built by quadratics

is described by

V (φ) =















1

2
m2

+(φ− φ+)
2 + V+ , φ < φT

1

2
m2

−(φ− φ−)
2 + V− , φ > φT

(3.1)

and looks like in figure 1. Because of the shape of such a potential, we will call this the

volcanic approximation.

3.2 The instanton solution

In order to find the tunneling solution we need to find the general solution to the equation

φ̈+
3

ρ
φ̇ = m2(φ− φ0) . (3.2)
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If we make the substitution

φ− φ0 =
y

ρ
, (3.3)

the equation is written as

ρ2ÿ + ρẏ − (m2ρ2 + 1)y = 0 , (3.4)

which is exactly the modified Bessel equation, x2y′′+xy′− (x2 + α2)y = 0 for x = mρ and

α = 1. Thus, the general solution is

φ = φ0 +
c1I1(mρ) + c2K1(mρ)

ρ
, (3.5)

where In is the modified Bessel function of the first kind and Kn the modified Bessel

function of the second kind. During the construction of the instanton solution, we are

going to need the derivative of the solution. This is given by

φ̇ = m
c1I2(mρ)− c2K2(mρ)

ρ
. (3.6)

Using the above result, it is clear that a solution that does not reach the true vacuum

in Euclidean space will look like

φ =



























φ− +
c1−I1(m−ρ) + c2−K1(m−ρ)

ρ
, ρ < RT

φ+ +
c1+I1(m+ρ) + c2+K1(m+ρ)

ρ
, RT < ρ < R+

φ+ , ρ > R+ .

(3.7)

Let’s now apply the boundary and matching conditions to specify the undetermined con-

stants c1−, c2−, c1+, c2+ and the radii RT and R+. The solution has to be stationary at

the origin. As K1 diverges at the origin, and I1 is stationary, we get

c2− = 0 . (3.8)

Demanding continuity of the solution and its derivative at ρ = R+ gives us the following

two equations

c1+I1(m+R+) + c2+K1(m+R+) = 0 , (3.9)

c1+I2(m+R+)− c2+K2(m+R+) = 0 . (3.10)

As both modified Bessel functions of the first and second kind are positive, the only solution

to this problem for any finite R+ is c1+ = c2+ = 0. However, as modified Bessel functions

of the second kind decrease exponentially at infinity, we have the option that actually R+

is infinite and

c1+ = 0 . (3.11)

Demanding that lim
ρ→RT

−

φ(ρ) = lim
ρ→RT

+
φ(ρ) = φT gives us

c1− = − φ− − φT

I1(m−RT )
RT , (3.12)

c2+ =
φT − φ+

K1(m+RT )
RT . (3.13)
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Figure 2. The numerical part of the solution.

We have managed to express all parameters in terms of RT . Finally demanding continuity

of the derivative at ρ = RT , specifies this last unknown parameter. This results in

K1(m+RT )

K2(m+RT )

I2(m−RT )

I1(m−RT )
=

m+

m−

φT − φ+

φ− − φT

. (3.14)

This equation is not analytically solvable, so we cannot acquire an analytic expression

for RT .

To sum up the tunneling solution is

φ =



















φ− −
RT (φ− − φT )

ρ

I1(m−ρ)

I1(m−RT )
, ρ < RT

φ+ +
RT (φT − φ+)

ρ

K1(m+ρ)

K1(m+RT )
, ρ > RT ,

(3.15)

where RT is given by (3.14).

3.3 Condition for not reaching the true vacuum in Euclidean space

We expect that in analogy to the triangular approximation [3], if equation (3.14) does not

have a solution, the solution reaches the true vacuum in Euclidean space. Functions K1(x)
K2(x)

and I2(x)
I1(x)

are both monotonically increasing and take values between zero and one, as one

can see in figure 2. Thus there is exactly one bounce solution, as long as

m+

m−

φT − φ+

φ− − φT

< 1 , (3.16)

otherwise we should expect a bounce solution that reaches the true vacuum in Euclidean

space. However, such a solution will look like

φ =







































φ− , ρ < R−

φ− +
c1−I1(m−ρ) + c2−K1(m−ρ)

ρ
, R− < ρ < RT

φ+ +
c1+I1(m+ρ) + c2+K1(m+ρ)

ρ
, RT < ρ < R+

φ+ , ρ > R+ .

(3.17)
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Demanding continuity and smoothness at ρ = R−, gives us

c1−I1(m−R−) + c2−K1(m−R−) = 0 , (3.18)

c1−I2(m−R−)− c2−K2(m−R−) = 0 . (3.19)

As the modified Bessel function are positive, the only solution to the above system of

equations for any R− > 0 is c1− = c2− = 0. The only way to save this is to set R− to zero.

Then smoothness at ρ = R− gives us c2− = 0. However then the field has not reached the

true vacuum at ρ = R−, as lim
x→0

I1(x)
x

= 1
2 6= 0.

Thus, it looks like finding a solution that reaches the true vacuum in Euclidean space

is problematic. Indeed we can see that condition (3.16) is always satisfied. From the

expression of the potential (3.1) we can find

m+

m−

φT − φ+

φ− − φT

=

√

VT − V+

VT − V−
, (3.20)

which is always positive and smaller than one since VT > V+ > V−

That means that condition (3.16) always holds. Thus, in the volcanic approximation,

there is always exactly one tunneling solution, that never reaches the true vacuum in

Euclidean space. This implies that we should expect to find some non trivial field profile

in the interior of the growing bubble.

3.4 The analytical continuation to Lorentzian spacetime

The solution of the volcanic potential is very easy to analytically continue to imaginary

proper time. The modified Bessel functions are analytic functions having the property

I1(x) = −iJ1(ix), where Jn is the Bessel function of the first kind. Thus, for ρ = iτ we get

φ(τ) = φ− − RT (φ− − φT )

τ

J1(m−τ)

I1(m−RT )
, (3.21)

which clearly describes a damped oscillation of the field around the true vacuum in the

interior of the bubble. For large τ we can use the asymptotic formula for the Bessel function

to get

φ(τ) ≃ φ− +

√

2

π

RT (φ− − φT )

I1(m−RT )

cos
(

m−τ + π
4

)

τ
3

2

. (3.22)

The solution is plotted in figure 3.

In the previous subsection we showed that in the case of the volcanic approximation

the field never reaches the true vacuum in Euclidean space. This means that this kind of

damped oscillations of the field around the true vacuum in the interior of the bubble, which

we discovered by analytically continuing to imaginary Euclidean radius, are present for any

parameters of the volcanic potential. As this behaviour is determined by the potential at

the region of the true vacuum, the fact that the solution in the case of the triangular or

rectangular approximation may be constant for imaginary Euclidean distance [3], is an

effect because of the non-smoothness of the potential in the region of the true vacuum.

We expect that any smooth potential produces a tunneling solution with the characteristic

behaviour of the damped oscillation around the true vacuum in the interior of the bubble.

– 7 –
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Figure 3. The instanton solution.

3.5 The stress-energy tensor in the interior of the bubble

Under the scope of possible applications in cosmology, it would be interesting to calculate

the stress-energy tensor in the interior of the bubble. Unlike traditional treatment, where

the stress energy tensor contains only the vacuum energy of the true vacuum, here the

damped oscillation around it is going to contribute too.

The stress-energy tensor is given by

Tµ
ν =

∂L
∂(∂µφ)

∂νφ− Lδµν . (3.23)

Substituting our Lagrangian we get

Tµ
ν = ∂µφ∂νφ− Lδµν . (3.24)

Our solution depends only on proper time, thus

∂νφ = φ̇(τ)
xν√−xµxµ

. (3.25)

Using the above we get

Tµ
ν = φ̇2x

µxν

xλxλ
− Lδµν . (3.26)

The first term of the stress-energy tensor is the kinetic energy of the remnant of the bubble

wall inside the bubble. Far away from the bubble wall, it contributes only to the time-time

component of the stress-energy tensor, thus it behaves as dark matter. The second term

is identical to vacuum energy, that does not only originate from the energy of the true

vacuum, but also on the oscillation of the field. We can define

ρvac =
1

2

(

−φ̇2 +m2
−(φ− φ−)

2
)

+ V− , (3.27)

ρwall = φ̇2. (3.28)

– 8 –
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Using our solution we get

ρvac =
m2

−R
2
T (φ− − φT )

2

2I1(m−RT )2τ2
(

−J1(m−τ)
2 + J2(m−τ)

2
)

+ V− , (3.29)

ρwall =
m2

−R
2
T (φ− − φT )

2

I1(m−RT )2τ2
J2(m−τ)

2. (3.30)

For large τ we can use the asymptotic formula for the Bessel function to get

ρvac =
m−R

2
T (φ− − φT )

2

πI1(m−RT )2τ3

[

− sin

(

m−τ − π

4

)2

+ cos

(

m−τ − π

4

)2]

+ V− , (3.31)

ρwall =
2m−R

2
T (φ− − φT )

2

πI1(m−RT )2τ3
cos

(

m−τ − π

4

)2

. (3.32)

As expected from virial theorem, the average of kinetic and potential energy terms in the

Lagrangian cancel out, because of the quadratic form of the potential around the true

vacuum. However, this kind of ideas can in general provide a cosmological constant that

depends on the size of the bubble. It could be a promising candidate for the explanation

of the small size of the observed dark energy density.

3.6 The decay rate

The volcanic potential may be used to approximate decay rates of metastable vacua, in the

case of a potential that does not fit the requirements for the thin wall approximation. Thus,

it is interesting to calculate the decay rate. The decay rate per unit volume is given by

Γ

V
= Ae−

B
~ [1 +O(~)] , (3.33)

where coefficient B is given by the Euclidean action of the tunneling solution

B = SE [φ(ρ)]− SE [φ+] . (3.34)

Spherical symmetry of the tunneling solution implies

SE [φ(ρ)] = 2π2

∫ ∞

0
δρρ3

(

1

2
φ̇(ρ)2 + V [φ(ρ)]

)

. (3.35)

Using the formula of our solution we get

B = SE [φ(ρ)]−SE [φ+] = 2π2(V−−V+)

∫ RT

0
δρρ3

+
π2m2

−R
2
T (φ−−φT )

2

I1(m−RT )2

∫ RT

0
δρρ

[

I1(m−ρ)
2+I2(m−ρ)

2
]

+
π2m2

+R
2
T (φT−φ+)

2

K1(m+RT )2

∫ ∞

RT

δρρ
[

K1(m−ρ)
2+K2(m−ρ)

2
]

. (3.36)

Applying properties of modified Bessel functions, we find

B =
π2(V− − V+)R

4
T

2

+ π2m−R
3
T (φ− − φT )

2 I2(m−RT )

I1(m−RT )
+ π2m+R

3
T (φT − φ+)

2K2(m+RT )

K1(m+RT )
. (3.37)
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Finally, using equation (3.14) we find

B =
π2(V− − V+)R

4
T

2
+ π2m+R

3
T (φ− − φ+)(φT − φ+)

K2(m+RT )

K1(m+RT )
. (3.38)

The first term corresponds to the vacuum energy gained in the volume of the bubble, while

the second term corresponds to the energy spent on the bubble wall.

It would be interesting to study whether the decay rate that we just calculated reduces

to the known formula in the thin wall limit. In the limit where the energy difference between

the true and false vacuum is small, we can derive from the form of the potential that

φT =
m−φ− +m+φ+

m− +m+
+

ε

m−m+(φ− − φ+)
+O(ε2) , (3.39)

where ε ≡ V+ − V−. We can use the above to find

m+

m−

φT − φ+

φ− − φT

= 1− ε

µ2(φ− − φ+)2
+O(ε2) . (3.40)

That means that the right hand side of equation (3.14) is very close to one, thus RT has

to be large, as expected for the thin wall limit. This allows us to use asymptotic formulas

for the modified Bessel functions to approximate the left hand side of (3.14) as

K1(m+RT )

K2(m+RT )

I2(m−RT )

I1(m−RT )
= 1− 3

2µRT

+O
(

1

R2
T

)

, (3.41)

where

µ ≡ m−m+

m− +m+
. (3.42)

So, we can calculate the size of the emitted bubble to be equal to

RT =
3µ(φ− − φ+)

2

2ε
+O(ε0) (3.43)

and finally substituting to formula (3.38) we result in the desired decay rate

B =
27π2µ4(φ− − φ+)

8

32ε3
+O

(

1

ε2

)

. (3.44)

In the thin wall approximation, as described in [1], the B factor equals

B =
27π2S4

1

2ε3
, (3.45)

where

S1 =

∫ φ
−

φ+

dφ
√

2V (φ)− V− . (3.46)

In our case it is not difficult to calculate S1, when the vacua energies are close

S1 =

∫

m
−

φ
−

+m+φ+
m

−
+m+

φ+

dφm+(φ− φ+) +

∫ φ
−

m
−

φ
−

+m+φ+
m

−
+m+

dφm−(φ− − φ) +O(ε) (3.47)

– 10 –
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and after some algebra

S1 =
µ(φ− − φ+)

2

2
+O(ε) . (3.48)

Substituting the latter to (3.45) gives us exactly the same result as (3.44).

Another interesting limit to check is the tunneling without barrier limit, which is

discussed in [7]. In our case, this clearly corresponds to the limit m+ → 0. In this limit,

we can use asymptotic formulas for the modified Bessel functions of the second kind to

approximate
K1(m+RT )

K2(m+RT )
=

m+RT

2
+O(m2

+) . (3.49)

This allows us to write equation (3.14) as

m−RT

2

I2(m−RT )

I1(m−RT )
=

φT − φ+

φ− − φT

. (3.50)

The same asymptotic expansions allow us to write equation (3.38) as

B =
π2(V− − V+)R

4
T

2
+ 2π2R2

T (φ− − φ+)(φT − φ+) . (3.51)

Now we distinguish two cases. If φT −φ+ ≪ φ−−φT we can use asymptotic expansions

of modified bessel functions for small arguments and equation (3.14) can be written as

(m−RT )
2

8
+

(m−RT )
4

192
+O(m6

−R
6
T ) =

φT − φ+

φ− − φT

. (3.52)

We can solve for RT

R2
T =

8

m2
−

φT − φ+

φ− − φT

+
8

3m2
−

(

φT − φ+

φ− − φT

)2

+O
[(

φT − φ+

φ− − φT

)3]

. (3.53)

Substituting in (3.38) and using V− − V+ = 1
2m

2
−(φ− − φT )

2 we find

B =
16π2(φT − φ+)

3(φ− − φT )

3(V− − V+)
+O

[

(φT − φ+)
4
]

. (3.54)

This agrees with the results in [7] up to a factor of 2 that occurs because in our case the

rolling region of the potential is quadratic instead of linear.

If φT − φ+ ≫ φ− − φT we can use asymptotic expansions of modified bessel functions

for large arguments and equation (3.14) can be written as

m−RT

2
+O(m0

−R
0
T ) =

φT − φ+

φ− − φT

. (3.55)

Again we solve for RT

R2
T =

4

m2
−

(

φT − φ+

φ− − φT

)2

+O
[(

φT − φ+

φ− − φT

)0]

(3.56)

and substitute in (3.38) to find

B =
2π2(φT − φ+)

4

(V− − V+)
+O

[

(φT − φ+)
2
]

, (3.57)

which agrees with the results of [7].
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Figure 4. The smooth quadratic approximation.

4 A smooth quadratic potential and the size of the emitted bubble

4.1 The approximation

The volcanic approximation is a bad non-smooth description of the barrier top. We can

use the fact that quadratic potentials are solvable, in order to improve our approximation,

and search for new qualitative properties of the solutions that originate from the form of

the potential at the barrier top. An appropriate approximation is

V (φ) =































1

2
m2

+(φ− φ+)
2 + V+ , φ < φ1

−
1

2
m2

T (φ− φT )
2 + VT , φ1 < φ < φ2

1

2
m2

−(φ− φ−)
2 + V− , φ > φ2 ,

(4.1)

which is plotted in figure 4. Such an approximation provides quite a large flexibility in

fitting an arbitrary potential. We can select the above potential in such a way that matches

the actual potential in positions and energies of the true and false vacuum, as well as the top

of barrier, and moreover the curvature of the potential in these positions or alternatively

select it so that it matches the positions and energies of the vacua, as well as one the three

aforementioned curvatures and simultaneously be smooth at φ1 and φ2. The latter case is

also studied in [4] in a different context focusing on particle creation at the background off

the bounce solution generated by the smooth quadratic potential.

4.2 Two classes of bounce solutions

First we note that at the region between φ1 and φ2 the equation of motion can be solved in

exactly the same way as we did in the volcano potential, with the only deference of getting

the Bessel functions instead of the modified Bessel function. The equation of motion is

φ̈+
3

ρ
φ̇ = m2(φ− φ0) (4.2)
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and the general solution can be written as

φ = φ0 +
c1J1(mρ) + c2Y1(mρ)

ρ
. (4.3)

For later use, we also calculate the derivative of the solution

φ̇ = −m
c1J2(mρ) + c2K2(mρ)

ρ
. (4.4)

Similarly to the volcanic potential, we expect that there are no solutions that reach

the true vacuum in Euclidean space. We separate two classes of bounce solutions in the

same way as in [4]. In the first class, the solution does not reach φ2 inside Euclidean space

and in the second it does.1 Here we will study the first class, as it is simpler and it is

characterized by interesting qualitative features. Such a solution will look like

φ =



























φT +
c1TJ1(mTρ) + c2TY1(mTρ)

ρ
, ρ < R1

φ+ +
c1+I1(m+ρ) + c2+K1(m+ρ)

ρ
, R1 < ρ < R+

φ+ , ρ > R+ .

(4.5)

Exactly as in the volcano potential case, R+ has to be infinite, and the boundary conditions

for the solution imply

c2T = 0 , (4.6)

c1+ = 0 . (4.7)

Demanding that lim
ρ→R1

−

φ(ρ) = lim
ρ→R1

+
φ(ρ) = φ1 gives us

c1T =
φ1 − φT

J1(mTR1)
R1 , (4.8)

c2+ =
φ1 − φ+

K1(m+R1)
R1 . (4.9)

Finally, smoothness at ρ = R1 implies

K1(m+R1)

K2(m+R1)

J2(mTR1)

J1(mTR1)
= −m+

mT

φ1 − φ+

φT − φ1
. (4.10)

Thus, the instanton solution is given by

φ =



















φT −
R1(φT − φ1)

ρ

J1(mTρ)

J1(mTR1)
, ρ < R1

φ+ +
R1(φ1 − φ+)

ρ

K1(m+ρ)

K1(m+R1)
, ρ > R1 ,

(4.11)

where R1 is given by (4.10). Our result agrees with the results of [4].

1In [4], the first class is described as a bounce solution where the bubble wall does not lie entirely in

Euclidean space, while the second class of solutions is described as bounce solutions where the entire bubble

wall lies in Euclidean space. In this terminology, the bubble wall is considered to be the region of the bubble

where the scalar field takes values in the region where the scalar potential has negative curvature.
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Figure 5. The numerical part of the solution.

R1,1 R1,2 R1,3 R1,4

Ρ

j+

jT
j1

j

Figure 6. The first solutions in the smooth quadratic approximation.

4.3 Uniqueness of the solution and the radius of the emitted bubble

As in previous cases, the existence or non-existence of a solution is decided by the last equa-

tion, that occurs by the demand of smoothness of the solution, in our case equation (4.10).

In figure 5, we plot K1(x)
K2(x)

and J2(x)
J1(x)

. The first graph suggests that we are going to have

infinite solutions.

In figure 6, we plot the first solutions. Actually, any other solution except for the first

one is not valid, since for all other solutions it is true that in some region of ρ with ρ < R1

region, it holds that φ < φ1, on the contrary to what equation (4.11) requires. Let’ sketch

a proof for that.

The function J1(mT ρ)
ρ

describes an oscillation whose amplitude decreases monotonically,

as it can be seen in figure 6. Based on that and using properties of Bessel functions, one

can show that if ρS is a stationary point of this function, then

∣

∣

∣

∣

J1(mTρS)

ρS

∣

∣

∣

∣

>
J1(mTρ)

ρ
, (4.12)

for any ρ > ρS . Applying this for ρ = R1 in equation (4.11) it is easy to find that for any
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stationary point ρS , with ρS < R1 it is true that

|φS − φT | > φT − φ1 . (4.13)

For any solution except for the first one, there are at least two stationary points in the

region ρ < R1, including the one at the origin of the Euclidean space. Because of the

oscillatory nature of the solution, for at least one of them, φS is going to be smaller than

φT . For this point, the above inequality is written as

φS < φ1 . (4.14)

For φS < φ1, the oscillatory solution in terms of Bessel functions is not valid any more,

but a solution in terms of modified Bessel functions is required, thus our solution is not

valid. This means that any solution except for the first one is not valid and the solution is

unique.

This is not a general proof of the uniqueness of the solution for a general potential,

however, in this case the oscillatory behaviour of the solution in the region of the barrier top

resembles exactly the general behaviour that could produce multiple solutions in general.

So, the only solution it may hold is the first solution, which is valid if φ(0) < φ2, or else

2J1(mTR1)

mTR1
< −φT − φ1

φ2 − φT

. (4.15)

If this condition does not hold, we should search for a solution of the second class.

Figure 5 implies that the curvature of the potential at the top is strongly related with

the size of the emitted bubble. As we stated above, the only valid solution is the one

corresponding to the smallest solution of equation (4.10). From figure 5, we can see that

this solution always satisfies
ρ1,1

mT

< R1 <
ρ2,1

mT

, (4.16)

where ρα,n is the n’th root of Jα. We note that ρ1,1 ≃ 3.83 and ρ2,1 ≃ 5.14. This result is

identical to the findings of [4].

So the characteristic radius of the emitted bubble is always of the order 1
mT

. As

this class of solutions is the one that actually lies as far as possible from the thin wall

approximation, in which the radius of the bubble tends to infinity, we expect that actually
ρ1,1
mT

serves as a general lower bound for the radius of the emitted bubble.

4.4 The decay rate

As we did in the volcanic approximation, we can calculate the B factor of decay rate from

the Euclidean action. Using the form of our solution we find

B = SE [φ(ρ)]−SE [φ+] = 2π2(VT−V+)

∫ RT

0
δρρ3

+
π2m2

TR
2
1(φT−φ1)

2

J1(mTR1)2

∫ R1

0
δρρ

[

−J1(mTρ)
2+J2(mTρ)

2
]

+
π2m2

+R
2
1(φ1−φ+)

2

K1(m+R1)2

∫ ∞

R1

δρρ
[

K1(m−ρ)
2+K2(m−ρ)

2
]

. (4.17)
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Applying properties of Bessel functions and modified Bessel functions we find

B =
π2(VT − V+)R

4
1

2

− π2mTR
3
1(φT − φ1)

2J2(mTR1)

J1(mTR1)
+ π2m+R

3
1(φ1 − φ+)

2K2(m+R1)

K1(m+R1)
. (4.18)

Finally using equation (4.10) we find

B =
π2(VT − V+)R

4
1

2
+ π2m+R

3
1(φT − φ+)(φ1 − φ+)

K2(m+R1)

K1(m+R1)
. (4.19)

As in the volcanic potential, the first term corresponds to the vacuum energy gained in

the volume of the bubble, while the second term corresponds to the energy spent on the

bubble wall.

4.5 The second class of solutions for the smooth quadratic potential

An instanton belonging in the second class will be of the form

φ =



































φ− +
c1−I1(m−ρ)

ρ
, ρ < R2

φT +
c1TJ1(mTρ) + c2TY1(mTρ)

ρ
, R2 < ρ < R1

φ+ +
c2+K1(m+ρ)

ρ
, ρ > R1 ,

(4.20)

where we have already embodied the necessary boundary conditions. Demanding that

φ(R1) = φ1 and φ(R2) = φ2 and continuity results in

c1− =
φ2 − φ−

I1(m−R2)
R2 , (4.21)

c2+ =
φ1 − φ+

K1(m+R1)
R1 (4.22)

and

c1T = −Y1(mTR2)(φT − φ1)R1 − Y1(mTR1)(φ2 − φT )R2

J1(mTR1)Y1(mTR2)− J1(mTR2)Y1(mTR1)
, (4.23)

c2T = −J1(mTR1)(φ2 − φT )R2 − J1(mTR2)(φT − φ1)R1

J1(mTR1)Y1(mTR2)− J1(mTR2)Y1(mTR1)
. (4.24)

Finally demanding smoothness results in the following set of equations

mT

[

c1TJ2(mTR1) + c2TY2(mTR1)
]

= −m−c1−I2(m−R2) , (4.25)

mT

[

c1TJ2(mTR2) + c2TY2(mTR2)
]

= m+c2+K2(m+R1) . (4.26)

These two equations provide a solution for R1 and R2. Unfortunately the problem is very

complicated, and has to be numerically solved. In figure 7, we show how a solution to this

problem looks like.
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Figure 7. The solution for the smooth quadratic potential.
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Figure 8. The triangular approximation.

5 A triangular potential and a candidate for dark energy

5.1 The approximation

We will now study the case of a potential barrier approximated by segments of linear

potentials. Such a potential looks like in figure 8. This approximation has been analysed

in [3]. We review this derivation and then analytically continue to negative proper time.

In the following we use the definitions

∆V± ≡ VT − V± , ∆φ± ≡ ±(φT − φ±) , (5.1)

λ± ≡ ∆V±

∆φ±
, c ≡ λ−

λ+
. (5.2)

Using the above definitions, the potential barrier is described by

V (φ) =

{

λ+(φ− φ+) + V+ , φ+ < φ < φT

−λ−(φ− φ−) + V− , φT < φ < φ− .
(5.3)
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5.2 The bounce solution

In order to find the appropriate solution we need to solve the equation

φ̈+
3

ρ
φ̇ = λ . (5.4)

It is not difficult to show that the general solution is

φ =
λ

8
ρ2 +

c

ρ2
+K . (5.5)

Using the above, an instanton that does not reach the true vacuum in Euclidean space

will look like

φ =



























−
λ−

8
ρ2 +

c−

ρ2
+K− , ρ < RT

λ+

8
ρ2 +

c+

ρ2
+K+ , RT < ρ < R+

φ+ , ρ > R+ .

(5.6)

Let’s now apply the appropriate boundary and matching conditions to determine the

constants c−, c+, K−, K+, as well as the radii RT and R+. The field must be stationary

at the origin. This implies that

c− = 0 . (5.7)

Demanding continuity of the derivative of the field at R = R+ gives us

c+ =
λ+

8
R4

+ . (5.8)

Then we demand continuity at R = R+ and R = RT and we find

K+ = φ+ − λ+

4
R2

+ , (5.9)

K− = φ+ +
λ+

8R2
T

(R2
+ −R2

T )
2 +

λ−

8
R2

T = φT +
λ−

8
R2

T ≡ φ0 . (5.10)

Continuity of the derivative at R = RT gives us

R4
+ = (1 + c)R4

T . (5.11)

So far we have expressed all unknowns in terms of the unknown radius RT . In order to

determine this final unknown parameter, we demand that φ(RT ) = φT . We result in

φT − φ+ =
λ+

8

(√
1 + c− 1

)2
R2

T . (5.12)

Now we have completely determined the tunneling solution. To sum up

φ =



























φ0 −
λ−

8
ρ2, ρ < RT

φ+ +
λ+

8

1

ρ2
(ρ2 −R2

+)
2 , RT < ρ < R+

φ+ , ρ > R+ ,

(5.13)
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where the two radii are given by (5.11) and (5.12) and the value of the field at the origin

φ0 is given by (5.10).

If we want our solution to make sense it has to be that φ0 < φ−. Otherwise the field

has already reached the true vacuum in Euclidean space. The above condition implies that

φ− − φT

φT − φ+
>

c
(√

1 + c− 1
)2 . (5.14)

If this condition holds, the field never reaches the true vacuum in Euclidean space and

thus, we expect to perform a damped oscillation around the true vacuum in the interior

of the bubble. Otherwise, the field equals exactly to φ− inside a sphere of finite radius in

Euclidean space, thus, the analytical continuation for imaginary Euclidean time is trivially

φ = φ−. Such a solution is well analyzed in [3] and we will not study it here.

5.3 The analytical continuation to Lorentzian spacetime

We are interested in studying the solution for imaginary Euclidean radius. As we com-

mended in section 2.1, this is interesting only if condition (5.14) holds. In such case the

solution is given by (5.13). We substitute ρ = iτ in the formula for the solution that is

valid for ρ < RT to get

φ0 +
λ−

8
τ2. (5.15)

This grows indefinitely as τ decreases. This means that at some finite τ it reaches the

true vacuum. After that point, the solution we have is not valid anymore and we need to

find an appropriate solution for φ > φ−. We approximate the potential around the true

vacuum as

V (φ) =

{

−λ−(φ− φ−) + V− , φ < φ−

λ+(φ− φ−) + V− , φ > φ− ,
(5.16)

where obviously λ− = λ−. So, after the τ where the solution reaches the true vacuum, we

have to fit a solution of the form

φ = −λ+

8
τ2 +

c

τ2
+K . (5.17)

However this solution will reach a maximum and return to the true vacuum, with some

non-vanishing derivative, thus enforcing us to fit again a solution of the form

φ =
λ−

8
τ2 +

c

τ2
+K , (5.18)

and so on. So we are going to get an infinite sequence of segments describing a damped

oscillation around the true vacuum. So, we need to solve the general problem of fitting a

solution of the form (5.17) or (5.18) to the boundary conditions

φ(T0) = φ− , φ̇(T0) = Φ̇0 , (5.19)
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or else solve the matching conditions

φ− = ±λ∓

8
T 2
0 +

c

T 2
0

+K , (5.20)

Φ̇0 = ±λ∓

4
T0 −

2c

T 3
0

. (5.21)

It is not difficult to find that the solution is

c = ±λ∓

8
T 4
0 − Φ̇0T

3
0

2
, (5.22)

K = φ− ∓ λ∓

4
T 2
0 +

Φ̇0T0

2
. (5.23)

Once we find the right expression, we need to find the new point where the solution reaches

the true vacuum. Demanding that φ(T1) = φ−, we take

T 2
1 = T 2

0 ∓ 4Φ̇0T0

λ∓
, (5.24)

φ̇(T1) ≡ Φ̇1 = −Φ̇0
T0

T1
. (5.25)

Thus, we can express the solution inductively as

φ =















−
λ+

8
τ2 +

c2n+1

τ2
+K2n+1 , T2n+1 < τ < T2n

λ−

8
τ2 +

c2n

τ2
+K2n , T2n < τ < T2n−1 ,

(5.26)

where the constants in solution are given by

c2n+1 = −λ+

8
T 4
2n − Φ̇2nT

3
2n

2
, c2n =

λ−

8
T 4
2n−1 −

Φ̇2n−1T
3
2n−1

2
, (5.27)

K2n+1 = φ− +
λ+

4
T 2
2n +

Φ̇2nT2n

2
, K2n = φ− − λ−

4
T 2
2n−1 +

Φ̇2n−1T2n−1

2
, (5.28)

and the Tn’s and Φ̇n’s can be calculated inductively by

T 2
2n = T 2

2n−1 +
4Φ̇2n−1T2n−1

λ+
, T 2

2n+1 = T 2
2n − 4Φ̇2nT2n

λ−
, (5.29)

Φ̇2n = −Φ̇2n−1
T2n−1

T2n
, Φ̇2n+1 = −Φ̇2n

T2n

T2n+1
. (5.30)

Finally, the initial values for T and Φ̇ can be easily calculated by equation (5.15), which

also defines c0 and K0,

T 2
0 =

8

λ−
(φ− − φ0) (5.31)

Φ̇0 =
λ−

4
T0 . (5.32)

The solution is plotted in figure 9.

– 20 –



J
H
E
P
0
8
(
2
0
1
3
)
0
7
5

RT R+
signHΤ2LÈΤÈ

j+

j-

j

Figure 9. The bounce solution.

5.4 Asymptotic behavior of the solution

For large τ , expressions (5.29) and (5.30) can be approximated by

T2n+1 ≃ T2n − 2Φ̇2n

λ−
, T2n ≃ T2n−1 +

2Φ̇2n−1

λ+
, (5.33)

Φ̇2n+1 ≃ −Φ̇2n

(

1 +
2Φ̇2n

λ−T2n

)

, Φ̇2n ≃ −Φ̇2n−1

(

1− 2Φ̇2n−1

λ+T2n−1

)

. (5.34)

In order to avoid the alternation of signs in Φ̇, we find recursive relations with step two

T2n+2 ≃ T2n − 2cΦ̇2n , (5.35)

Φ̇2n+2 ≃ Φ̇2n + 2c
Φ̇2
2n

T2n
, (5.36)

where c = 1
λ−

+ 1
λ+ . We are interested in finding the asymptotic behavior of T2n and Φ̇2n.

We try a solution of the form

T2n ≃ ans, (5.37)

Φ̇2n ≃ bnt. (5.38)

The recursive relations at leading order become

asns−1 = −2cbnt, (5.39)

btnt−1 =
2cb2n2t−s

a
, (5.40)

which imply that

s− t = 1 , (5.41)

−as = 2cb , (5.42)

at = 2cb . (5.43)
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The solution is

s = −t =
1

2
, (5.44)

a = −4cb . (5.45)

b is undetermined and depends on the initial values for the series, or else in the parameters

of the potential. Thus, the asymptotic behaviour of the bounce solution is

T2n = −4cb
√
n , (5.46)

Φ̇2n =
b√
n
. (5.47)

Using the above equations, we can find asymptotic expressions for any element of the

solution. Combining them, we get

Φ̇2n = −4cb2

T2n
. (5.48)

5.5 The stress-energy tensor in the interior of the bubble

Now we know the asymptotic form of the solution, thus we can calculate the asymptotic

form of the stress-energy tensor in the interior of the bubble. Equation (5.48) implies

〈

1

2
φ̇2

〉

∼ A

τ2
. (5.49)

Now the potential is not quadratic, which means that kinetic and potential energy do not

average at the same value. Virial theorem implies

〈V (φ)〉 − V− = 2

〈

1

2
φ̇2

〉

. (5.50)

This means that the average value of the Lagrangian does not wash out, but asymptotically

behaves as

− 〈L〉 ∼ A

τ2
+ V− . (5.51)

If we calculate the stress-energy tensor

Tµ
ν = φ̇2 xµxν

−xλxλ
− Lδµν , (5.52)

it is now going to contain except for the kinetic energy of the wall, a cosmological constant

like term that depends on the size of the bubble like

Λ ∼ A

τ2
+ V− , (5.53)

where c depends on the specific parameters of our potential.
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5.6 A candidate for dark energy

Let’s now take a wild guess. Let’s suppose that big bang was the emission of a bubble,

so we are actually living inside a bubble with the size of the universe. Let’ also suppose

that the potential of the phase transition is well fit by the triangular approximation. It

actually suffices that the potential in the region of the true vacuum is triangular. The

natural selection of the potential parameters is that they are of Planck scale. Finally, let’s

suppose that the energy of the true vacuum is exactly zero.

Under these assumptions, we should today observe an effective cosmological constant

of the order

Λ ∼ M2
Pl

R2
universe

, (5.54)

which obviously depends on the age of the universe. The size of the observable universe

today is about 1060 in Planck units. Thus, the cosmological constant we should observe in

our scenario, would be

Λ ∼ 10−120M4
Pl . (5.55)

This is the right order of magnitude that we measure today [8–11].

With this model, we do not solve the original cosmological constant problem [12],

namely why the vacuum energy of SM does not gravitate. Most probably we need more

information on quantum gravity to resolve this. However, it resolves the cosmological

constant problems that occurred after the recent measurement of it [13]. It explains its

order of magnitude and if we assume that matter originates from the kinetic energy of

bubble walls, then our model also explain why the matter content and dark energy content

of our universe are of the same order of magnitude.

The idea of relating physical constants with cosmological quantities is not new at

all. Paul Dirac in the 1930’s observed that ratios of orders of magnitudes of cosmological

quantities are similar to ratios of orders of magnitudes concerning the fundamental inter-

actions. Conjecturing that this cannot be a coincidence, he expressed the large number

hypothesis [14–16], according to which fundamental constants of nature, such as Newton’s

gravitational constant, depend on the age of the universe. The recent discovery of another

large number, namely the ratio of the theoretical and observed vacuum energy densities,

led to similar tries to connect the energy density of the vacuum with the age of the uni-

verse [17], as we do in this paper.

Additionally, the idea of the dark energy originating from a scalar is not new, too.

Quintessence models can describe the dark energy content of the universe. In this approach,

the dark energy is the effect of a slow rolling scalar field instead of one that performs a

dumped oscillation, as in our case. The subject of quintessence is quite broad. A nice

review is given in [18].

One critical objection about our model is the singular form of the potential at the

position of the true vacuum. One should be able to find a model which predicts the

existence of such a vacuum and moreover develop quantum field theory in the region of

such a vacuum to show that the low energy effective description is also singular. However,
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Figure 10. The form of the potential.

linear potential can occur by brane interactions in an orbifold like in the ekpyrotic scenario

for the big bang [19–21]. Definitely further study is required on this field.

6 The asymptotic damped oscillation inside the bubble

6.1 The asymptotic solution for potential V = a(φ− φ0)
n

It is interesting that the Stress-Energy tensor in the interior of the bubble has a direct

dependency on the size of the bubble. It is also interesting that depending on the potential,

this Stress-Energy tensor may represent a substance with negative pressure, thus providing

a candidate for dark energy. Although it is impossible to find exact solutions for general

form of the potential, we will try to calculate the asymptotic form of this damped oscillation

for a potential of the form V = a(φ− φ0)
n. In order to simplify things, we assume that the

potential is infinite for φ < φ0, or else φ0 is the boundary of the configuration space. Thus,

the solution gets reflected when it reaches φ0. This may represent an effective field theory,

where the scalar is a moduli describing geometry of some brane configuration living in an

orbifold.

We are interested in the damped oscillations a field performs around the area of the

vacuum of a potential of the form

V (φ) =

{

∞ , φ < φ0

a(φ− φ0)
n, φ > φ0 .

(6.1)

The potential is sketched in figure 10.

Assuming a spherically symmetric solution, the equation of motion is

φ̈+
3

τ
φ̇ = −V ′(φ) , (6.2)

where dot represents differentiation with respect to τ . If we define

1

2
φ̇2 + V (φ) ≡ E , (6.3)
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the equation of motion can be written as

Ė = −3

τ
φ̇2. (6.4)

This form of equation gives us a better point of view about how the system dissipates. We

cannot find an exact solution to the above, but we expect that when τ is large, the losses

are small in one period and thus, we can express the above equation as

〈Ė〉 = −6

τ
〈T 〉 , (6.5)

where T ≡ 1
2 φ̇

2. Now we can use the explicit form for our potential

V = a(φ− φ0)
n (6.6)

and the virial theorem. The latter instructs us that

〈T 〉 = n

n+ 2
〈E〉 , 〈V 〉 = 2

n+ 2
〈E〉 . (6.7)

Using the above, equation (6.5) can be written

〈Ė〉 = − 6n

n+ 2

〈E〉
τ

, (6.8)

whose solution trivially is

〈E〉 = cτ
− 6n

n+2 . (6.9)

The parameter c depends on the potential. If we assume that a characteristic mass scale

of the potential is MV , then the above solution behaves as

〈E〉 ∼ M
−2n−4

n+2

V

τ
6n
n+2

. (6.10)

If we are about to explain the dark energy content of the universe as this energy stored

in the damped oscillation of the scalar field, we should check what is the appropriate value

for the potential mass scale MV . In such case, 〈E〉 has to equal the dark energy density

measured today, and τ should equal the size of the observable universe RU . Then, MV

must be

MV ∼ 〈E〉−
1

2

n+2

n−4R
3n
n−4

U . (6.11)

If we use 〈E〉 ≡ 10−120M4
p and RU = 1061lp, we get the behaviour shown figure 11.

Here we would like to notice three interesting cases.

1. n = 1. This case has already been studied in section 5. The scale of the potential

turns out to be the Planck scale, which obviously is a natural choice. Our result

obviously agree with the results of the previous section.

2. n = 1
2 . In this case it turns out that MV = 10−17Mp, thus it is about 100GeV, the

electroweak scale. It could provide a connection to other known physics.

3. n → 0. In this case the size of the universe does not help us at all to solve the

hierarchy problem between the potential scale and the cosmological scale. We just

convert the cosmological constant problem to a classical fine tuning problem, as we

need a potential with characteristic scale the cosmological one.
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Figure 11. The scale of the potential as function of n.

6.2 The stress-energy tensor and the equation of state of the dark matter

candidate

The stress-energy tensor is given by

Tµ
ν = ∂µφ∂νφ− Lδµν . (6.12)

Our solution depends only on proper time, thus

∂νφ = φ̇(τ)
xν√
xµxµ

. (6.13)

Using the above, we get

Tµ
ν = φ̇2 xµxν

−xλxλ
− Lδµν . (6.14)

〈Tµ
ν〉 = 2

xµxν

τ2
〈T 〉 − δµν

(

〈T 〉 − 〈V 〉
)

. (6.15)

In the far future or in local coordinates, this is diagonal and describes an average

energy density and pressure

ρ = 〈T 〉+ 〈V 〉 , (6.16)

p = 〈T 〉 − 〈V 〉 . (6.17)

Use of virial theorem is adequate to calculate

w ≡ p

ρ
=

n− 2

n+ 2
, (6.18)

which is plotted in figure 12.

In the previous section we distinguished three interesting cases. It turns out that the

calculated w for those is also interesting.

1. n = 1. In the case of a linear potential it turns out that w = −1
3 . This is exactly the

boundary case between an accelerating expanding universe and a decelerating one.
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Figure 12. w as function of n.

2. n = 1
2 . In this case we find w = −3

5 . This is not the most favoured value experimen-

tally, however, it corresponds to an accelerating expanding universe.

3. n → 0. This gives us w = −1 which is the most favourable value for the dark energy

as measured today, and indistinguishable from a cosmological constant term, as long

as the equation of state is considered.

We would like to notice here that although the equation of state does not agree for

all selected cases with the measured one, there may be other resolutions to this problem.

The stress energy tensor is made of two parts, one that obeys a matter equation of state

corresponding to the kinetic energy of the wall and one, proportional to the Lagrangian

density, that obeys the equation of state of a cosmological constant term. A possibility

resolving the aforementioned problem is that the energy corresponding to the first term is

wasted in particle creation leaving only the cosmological constant like term. More research

is required in order to study this kind of scenarios.

6.3 Inhomogeneities in the dark content

We should not forget that actually the field performs an oscillation around the vacuum.

That means that a fair question is whether the period of this oscillation is large enough

in order to allow for measurable phenomena. If we neglect the dissipation term, we can

estimate the period of the oscillation, just using conservation of E.

T =
√
2

∫ φ0+(E
a )

1
n

φ0

1
√

E − a(φ− φ0)n
dφ =

√
2πΓ

(

n+1
n

)

Γ
(

n+2
2n

)

1√
E

(

E

a

)
1

n

. (6.19)

As the period depends on E like E
1

n
− 1

2 , for any n smaller than 2, it turns out that as

universe grows, the period of the oscillations is getting smaller and smaller. If we use the

experimental values for dark energy density and the radius of the universe, we result in a

period of oscillations at our age, that is even smaller than the Planck time, thus making

these oscillations experimentally unmeasurable.
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Having such high frequency of oscillations seems peculiar, however, we study a strange

field theory, where the potential around the vacuum is not harmonic. Further study on

such field theories is required.

7 Discussion

We analysed tunneling solutions for some potentials that can provide us with analytic

solutions. We learned several qualitative facts about phase transitions in field theory, as

well as we acquired some useful tools.

The volcanic and ever better the smooth quadratic potential, can provide tools for

calculating decay rates in several problems, where the thin wall approximation [1] does not

apply. Of course, we already have the tools of rectangular and triangular approximation [3],

however, as the decay rate per unit volume depends on the Euclidean action exponentially,

a calculation of greater accuracy may be useful.

As the volcanic potential model teaches us, it is typical for such bubble solutions

that the field never reaches the true vacuum in the interior of the bubble. Instead, it is

performing a damped oscillation around it, whose amplitude is some kind of function of

time that depends on the form of the potential around the true vacuum. This phenomenon

may be of significant interest depending on the form of the potential.

The description of the barrier between the true and false vacuum by a non-convex

potential generates questions about the uniqueness of the tunneling solution. Naively, such

a potential corresponds to an oscillatory behaviour of the field at the region of the top of

the barrier that could result in multiple solutions. Although we do not have a proof, the

smooth quadratic potential example shows that this is not the case.

The smooth quadratic potential teaches us another interesting lesson. The size of

the emitted bubble strongly depends on the curvature of the potential at the top of the

barrier. In this toy example the size of the bubble is of the same order of magnitude of the

inverse of the aforementioned curvature or at least the latter serves as a lower bound for the

radius of the bubble. This has an interesting implication in the case of an asymptotically

expanding universe. Typically, phase transitions in field theory occur at temperatures of

the order of characteristic quantities of the potential describing the system. Masses are

such quantities. Thus, according to our previous arguments, the size of emitted bubbles is

going to be of the order of inverse temperature. Depending on the cosmological model, the

radius of the universe is also a function of temperature, thus resulting in an upper bound

for the possible number of bubbles emitted. This restricts the number of bubble collisions

resulting in several cosmological predictions. Of course this is not going to be the case in

a post-inflationary universe.

The most interesting result of our study is the fact that in a triangular potential, we

observe an effective cosmological constant in the interior of the bubble that decreases as

the bubble expands, in such a way that its scale asymptotically equals the geometric mean

of the size of the bubble and the scale of the potential. Assuming that the parameters of

the potential are of Planck scale and that the true vacuum energy vanishes, we make a

very good prediction for the cosmological constant order of magnitude, which agrees with
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what we measure today. Of course, this effective cosmological constant term is not the

only contribution to the stress-energy tensor, resulting in the ratio of pressure to energy

density in the interior of the bubble being larger than the experimentally favoured value

−1. However, the model we use contains only one scalar and is very simplistic. The idea

may be useful in the construction of a more realistic model.

Later we extend our analysis to study the damped oscillation for a more general poten-

tial. It turns out that other interesting options also exist. If the potential is proportional

to the square root of the field, then a potential with characteristic parameters of the

electroweak scale predicts a dark energy content of the right order of magnitude and an

accelerating universe.

Of course such a model for the cosmological constant predicts a vacuum energy that

depends on the distance from the bubble wall, thus, on the position inside the bubble.

Current experiments do not rule out such a dependence, thus, this is a direct experimental

prediction of our model.

Such a time dependent cosmological constant is also predicted by quintessence models.

The advantage of our approach is that the value of the observed cosmological constant is

related with the size of the universe in a more direct way.

Moreover, even in the case of a quadratic potential there is still some non-trivial form

for the stress-energy tensor that could have interesting cosmological implications in the

expansion of the universe. In the case of more singular potentials, a connection with

inflation could also be interesting. Finally, there is the open direction of generalizing to

different potentials, or greater number of fields. Interesting behaviour, like the one we

discovered in the triangular model, may appear in different cases. We believe that the

most interesting future direction would be the inclusion of gravity into the problem. This

way, we would be able to directly observe the effects of the discovered phenomena in the

evolution of the universe.

Acknowledgments

I would like to especially thank D. Blas, L. Motl, K. Papadodimas and R. Rattazzi for

useful discussions.

References

[1] S.R. Coleman, Fate of the false vacuum. 1. Semiclassical theory,

Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

[2] C.G. Callan Jr. and S.R. Coleman, Fate of the false vacuum. 2. First quantum corrections,

Phys. Rev. D 16 (1977) 1762 [INSPIRE].

[3] M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory,

Phys. Lett. B 291 (1992) 109 [INSPIRE].

[4] T. Hamazaki, M. Sasaki, T. Tanaka and K. Yamamoto, Self-excitation of the tunneling scalar

field in false vacuum decay, Phys. Rev. D 53 (1996) 2045 [gr-qc/9507006] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.15.2929
http://inspirehep.net/search?p=find+J+Phys.Rev.,D15,2929
http://dx.doi.org/10.1103/PhysRevD.16.1762
http://inspirehep.net/search?p=find+J+Phys.Rev.,D16,1762
http://dx.doi.org/10.1016/0370-2693(92)90128-Q
http://inspirehep.net/search?p=find+J+Phys.Lett.,B291,109
http://dx.doi.org/10.1103/PhysRevD.53.2045
http://arxiv.org/abs/gr-qc/9507006
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9507006


J
H
E
P
0
8
(
2
0
1
3
)
0
7
5

[5] K. Koyama, K. Maeda and J. Soda, An open universe from valley bounce,

Nucl. Phys. B 580 (2000) 409 [hep-ph/9910556] [INSPIRE].

[6] S.R. Coleman, Spherical symmetry of action minima for Euclidean scalar fields,

HUTP-77-A020, Harvard University, Cambridge U.S.A. (1977) [INSPIRE].

[7] K.-M. Lee and E.J. Weinberg, Tunneling without barriers, Nucl. Phys. B 267 (1986) 181

[INSPIRE].

[8] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from

supernovae for an accelerating universe and a cosmological constant,

Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].

[9] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω

and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133]

[INSPIRE].

[10] J.C. Baker et al., Detection of cosmic microwave background structure in a second field with

the cosmic anisotropy telescope, Mon. Not. Roy. Astron. Soc. 308 (1999) 1173

[astro-ph/9904415] [INSPIRE].

[11] SDSS collaboration, M. Tegmark et al., Cosmological parameters from SDSS and WMAP,

Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [INSPIRE].

[12] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].

[13] S. Weinberg, The cosmological constant problems, astro-ph/0005265 [INSPIRE].

[14] P.A.M. Dirac, The cosmological constants, Nature 139 (1937) 323 [INSPIRE].

[15] P.A.M. Dirac, New basis for cosmology, Proc. Roy. Soc. Lond. A 165 (1938) 199 [INSPIRE].

[16] S. Ray, U. Mukhopadhyay and P. Pratim Ghosh, Large number hypothesis: a review,

arXiv:0705.1836 [INSPIRE].

[17] L. Nottale, Mach’s principle, Dirac’s large numbers and the cosmological constant problem

(1993).

[18] E.J. Copeland, Dynamics of dark energy, AIP Conf. Proc. 957 (2007) 21 [INSPIRE].

[19] G.W. Moore, G. Peradze and N. Saulina, Instabilities in heterotic M-theory induced by open

membrane instantons, Nucl. Phys. B 607 (2001) 117 [hep-th/0012104] [INSPIRE].

[20] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The ekpyrotic universe: colliding

branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239]

[INSPIRE].

[21] R. Brandenberger and F. Finelli, On the spectrum of fluctuations in an effective field theory

of the ekpyrotic universe, JHEP 11 (2001) 056 [hep-th/0109004] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/S0550-3213(00)00261-3
http://arxiv.org/abs/hep-ph/9910556
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9910556
http://inspirehep.net/search?p=find+IRN+SPIRES-503550
http://dx.doi.org/10.1016/0550-3213(86)90150-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B267,181
http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9805201
http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9812133
http://dx.doi.org/10.1046/j.1365-8711.1999.02829.x
http://arxiv.org/abs/astro-ph/9904415
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9904415
http://dx.doi.org/10.1103/PhysRevD.69.103501
http://arxiv.org/abs/astro-ph/0310723
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0310723
http://dx.doi.org/10.1103/RevModPhys.61.1
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,61,1
http://arxiv.org/abs/astro-ph/0005265
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0005265
http://inspirehep.net/search?p=find+J+Nature,139,323
http://inspirehep.net/search?p=find+J+Proc.Roy.Soc.Lond.,A165,199
http://arxiv.org/abs/0705.1836
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1836
http://dx.doi.org/10.1063/1.2823765
http://inspirehep.net/search?p=find+J+APCPC,957,21
http://dx.doi.org/10.1016/S0550-3213(01)00155-9
http://arxiv.org/abs/hep-th/0012104
http://inspirehep.net/search?p=find+EPRINT+hep-th/0012104
http://dx.doi.org/10.1103/PhysRevD.64.123522
http://arxiv.org/abs/hep-th/0103239
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103239
http://dx.doi.org/10.1088/1126-6708/2001/11/056
http://arxiv.org/abs/hep-th/0109004
http://inspirehep.net/search?p=find+EPRINT+hep-th/0109004

	Introduction
	Framework
	Two kinds of solutions

	A volcanic potential and the field in the interior of the bubble
	The approximation
	The instanton solution
	Condition for not reaching the true vacuum in Euclidean space
	The analytical continuation to Lorentzian spacetime
	The stress-energy tensor in the interior of the bubble
	The decay rate

	A smooth quadratic potential and the size of the emitted bubble
	The approximation
	Two classes of bounce solutions
	Uniqueness of the solution and the radius of the emitted bubble
	The decay rate
	The second class of solutions for the smooth quadratic potential

	A triangular potential and a candidate for dark energy
	The approximation
	The bounce solution
	The analytical continuation to Lorentzian spacetime
	Asymptotic behavior of the solution
	The stress-energy tensor in the interior of the bubble
	A candidate for dark energy

	The asymptotic damped oscillation inside the bubble
	The asymptotic solution for potential V = a(phi - phi(0))
	The stress-energy tensor and the equation of state of the dark matter candidate
	Inhomogeneities in the dark content

	Discussion

