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1 Introduction

Entanglement entropy has emerged as a remarkable theoretical tool providing new insights

into a variety of topics in physics. For example, in condensed matter theory, it can be used

to distinguish new topological phases or different critical points [1–5]. In the context of

quantum field theory (QFT), entanglement entropy has been proposed as a useful probe

of phase transitions in gauge theories [6–9]. Further, it has provided new insights on the

structure of renormalization group flows [10, 11]. In particular, it was instrumental in es-

tablishing new c-theorems in three and higher dimensions [12–14]. Of course, entanglement

entropy has long been proposed as the origin of black hole entropy [15–20]. More recently,

considerations of entanglement have led to an exciting new discussion on the nature of

Hawking radiation and black hole evaporation [21–23]. At a more fundamental level, it has

been suggested that entanglement entropy may play an important role in understanding

the quantum structure of spacetime, e.g., [24–28].

Entanglement entropy has also figured in many recent discussions of gauge/gravity

duality. The entanglement entropy in the boundary QFT is determined with an elegant

geometric calculation in the dual gravity theory [29–32]. In particular, the entanglement

entropy between a (spatial) region V and its complement V̄ in the boundary is computed by

S(V ) =
2π

`d−1
P

ext
v∼V

[A(v)] (1.1)

where one extremizes over all surfaces v in the bulk spacetime which are homologous to

the boundary region V . Here, we have adopted the convention `d−1
P = 8πGN where d is the

spacetime dimension of the boundary. This prescription (1.1) was found to pass wide range

of consistency tests, e.g., see [29–34]. However, a derivation was provided for the special

case of a spherical entangling surface in [35] and quite remarkably, [36] recently extended

this derivation to general (smooth) entangling surfaces.

Quantum information theory provides a variety of other tools with which we might

refine our understanding of entanglement in holographic theories. For example, Rényi

entropies are an infinite family of measures of entanglement [37–40], which in principle

provide a full description of the density matrix spectrum, e.g., [41]. Unfortunately, progress

towards understanding holographic Rényi entropies has been more limited [33, 42–44].

In particular, a good understanding of Rényi entropies has been developed for a two-

dimensional boundary CFT and further, these quantities are easily computed for a spherical

entangling surface in any number of dimensions [44]. However, an effective and efficient

approach to calculate holographic Rényi entropy for more general situations is still lacking.

In the present paper, we will consider another quantity known as the relative entropy

in the context of holography. The relative entropy between two states in the same Hilbert

space yields a fundamental statistical measure of the distance between these states. Given

two density matrices ρ1 and ρ0, the relative entropy S(ρ1|ρ0) is defined as

S(ρ1|ρ0) = tr(ρ1 log ρ1)− tr(ρ1 log ρ0) . (1.2)

In general, S(ρ1|ρ0) ≥ 0 where it vanishes if and only if the states are equal. Further, if ρ1

and ρ0 describe reduced states on some region V , the relative entropy always increases with
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the size of V , i.e., S(ρ1|ρ0) increases under inclusion (for a review see, e.g., [45, 46]). When

the set is small, both states should approach the vacuum state on the operator algebra of

the region, and then the relative entropy tends to zero.

The positivity of S(ρ1|ρ0) can be given a physical interpretation in terms of thermody-

namics. If the state ρ0 is thermal with respect to the Hamiltonian H, i.e., ρ0 = e−H/T

tr(e−H/T )
,

then the relative entropy with any other state ρ1 can be expressed as

S(ρ1|ρ0) =
1

T
(F (ρ1)− F (ρ0)) , (1.3)

where F (ρ) is the free energy given by

F (ρ) = tr(ρH)− T S(ρ) . (1.4)

We emphasize that ρ1 can be any other state and need not be thermal. Hence the tem-

perature used to define F (ρ1) is that of the initial state ρ0. Now given the expression in

eq (1.3), the positivity of the relative entropy is equivalent to the fact that the free energy

at a fixed temperature T is minimized by the thermal equilibrium state.

Now consider the reduced density matrices describing states of a QFT on a region

V . Since any such density matrix is both Hermitian and positive semidefinite, it can be

expressed as

ρ =
e−H

tr(e−H)
(1.5)

for some Hermitian operator H. The latter is known as the modular Hamiltonian in the

literature on axiomatic quantum field theory, e.g., [47],1 while it is referred to as the

entanglement Hamiltonian in the condensed matter theory literature, e.g., [41, 48–51].

The denominator is included in the above expression to ensure the normalization tr(ρ) = 1

and it could instead be absorbed with an additive constant in H. However, it will be

convenient to maintain this form below. While H plays an important role in addressing

certain questions, we emphasize that generically the modular Hamiltonian is not a local

operator and the evolution generated byH would not correspond to a local (geometric) flow.

Returning to our considerations of the relative entropy and given eq. (1.5), formally

we can say the state ρ0 is thermal with a temperature T = 1. Hence we can apply eq. (1.3)

to express the relative entropy as

S(ρ1|ρ0) = ∆〈H〉 −∆S (1.6)

where

∆〈H〉 = tr(ρ1H)− tr(ρ0H) and ∆S = S(ρ1)− S(ρ0) . (1.7)

Now the positivity of the relative entropy requires2

∆〈H〉 ≥ ∆S . (1.8)

1The precise definition of the modular Hamiltonian for a region V in algebraic QFT also includes an

extension of H in eq. (1.5) to the algebra of operators outside the region V .
2This inequality can be regarded as a generalized statement of the Bekenstein bound which holds for

any region in QFT. This is explained in more detail in the appendix A.4.
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That is, in comparing two states, the variation of the entanglement entropy is bounded by

the variation of the expectation value of the modular Hamiltonian. Much of our analysis in

this paper will focus on examining this inequality in a holographic setting. The holographic

prescription (1.1) allows us to calculate the necessary entanglement entropies and hence

∆S. Further if the modular Hamiltonian is known, we can also evaluate ∆〈H〉, e.g.,

after evaluating the expectation value of the stress energy 〈Tab〉 using standard methods.

Unfortunately there are only few simple cases where the modular Hamiltonian is explicitly

known, as we describe below.

The cases where the precise form of H is known correspond to special situations, in

which the modular Hamiltonian (and the corresponding internal time flow generated by H)

are local.3 Let us enumerate a few of these cases here: one well-known example is given by

the vacuum state in any QFT restricted to the half space x > 0. In this case, the modular

Hamiltonian is proportional to K, the boost generator in the x direction [52, 53],

H = 2πK = 2π

∫
x>0

dd−1xxT00(~x) . (1.9)

In this case, H generates a geometric flow along the boost orbits in the Rindler wedge. Of

course, the density matrix then has a thermal interpretation with respect to time transla-

tions along these orbits [54]. A second example corresponds to the vacuum of a conformal

field theory and a spherical entangling surface, which yields

H = 2π

∫
|x|<R

dd−1x
R2 − r2

2R
T00(~x) . (1.10)

This result is easily derived from eq. (1.9) since there is a special conformal transformation

(and translation) which maps the Rindler wedge to the causal development of the ball

|x| < R — e.g., see [47, 55]. Another situation where the modular Hamiltonian is known

to be local is the case of a two-dimensional CFT in a thermal state (with temperature T )

on the Rindler wedge [56]. In this case, the modular Hamiltonian can be expressed as

H =
1

T

∫
x>0

dx
(
1− e−2πTx

)
T00(~x) . (1.11)

In the following, we focus primarily on the case of a spherical entangling surface with H

given by eq. (1.10). As described above, our strategy will be to use holographic techniques

to calculate both ∆〈H〉 and ∆S and to test whether the inequality (1.8) is satisfied. We

will find that eq. (1.8) is always satisfied but further, that in many of our examples,

the inequality is in fact saturated to linear order in the perturbations of the state. The

appearance of an equality in these cases can be understood because we are examining the

relative entropy of two nearby states. Consider choosing a fixed reference state ρ0 and then

moving through a family of states ρ1(λ) with a parameter λ such that ρ1(λ = 0) = ρ0.

Since the two states coincide for λ = 0, we have that S(ρ1(0)|ρ0) = 0 but S(ρ1(λ)|ρ0) > 0

3The simplest example is given by considering a global thermal state, with temperature T , and taking V

to be the whole space. Then, the modular Hamiltonian is simply the ordinary (local) Hamiltonian divided

by T , as is evident from eq. (1.5), and so H simply generates ordinary time translations.
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for both positive and negative λ. Therefore if S(ρ1(λ)|ρ0) is a smooth function of λ, its

first derivative must vanish at λ = 0. Of course, this vanishing implies

∆〈H〉 = ∆S (1.12)

to first order in λ (at λ = 0) — see further discussion in the appendix A. In thermody-

namical terms of eq. (1.3) this is the well known equation dE = TdS holding for nearby

equilibrium states.

While the above approach tests the positivity of the relative entropy, we can also use

our holographic results to examine the monotonicity constraint mentioned below eq. (1.2).

That is, the relative entropy should increase as the radius of the spherical entangling surface

increases. Of course, this property can only be tested in the cases where ∆〈H〉 6= ∆S, where

we should find

∂RS(ρ1|ρ0) = ∂R [∆〈H〉 −∆S] ≥ 0 . (1.13)

The remainder of the paper is organized as follows: in section 2, we test relative entropy

bounds and the linear equality (1.12) for simple examples containing black branes in the

bulk. In section 3 we analyze general linear perturbations of the vacuum finding agreement

with eq. (1.12). We also compute quadratic perturbations and find in all our examples

that relative entropy is positive and increasing. In section 4 we analyze some examples in

d = 2 which allow for exact analytic calculations of the entropy. We discuss some puzzles

about localizations of contributions to ∆〈H〉 in section 5. We conclude with a summary of

the results and further comments on section 6. In particular, we discuss the potential of

eq. (1.12) to make vacuum state tomography using entanglement entropy, and argue the

results of section 3 are powerful enough to reconstruct the full density matrix in a sphere

from the minimal area prescription for the entropy, in perfect accord with the CFT result.

Finally, in appendix A we review several issues related to relative entropy, including its

relation to the strong subadditivity property of entanglement entropy, the second law of

thermodynamics, and the Bekenstein bound.

2 Simple examples testing holographic entanglement entropy

As commented above, our strategy will be to test the inequality (1.8) in a holographic

setting for the case of a spherical entangling surface, for which the modular Hamiltonian

(1.10) is known. The RT prescription [29–32] allows us to calculate the entanglement en-

tropies and hence ∆S. But in these cases, we can also evaluate ∆〈H〉 given the expectation

value of the stress energy 〈Tab〉. In this section, while our reference state (defining ρ0) is

the vacuum of the CFT, our second state (defining ρ1) will be the holographic dual of a

black hole. This is a warm-up exercise to give us some insight before proceeding with a

more general analysis in the next section.

The bulk solution dual to the vacuum of the d-dimensional boundary CFT is simply

empty AdSd+1 space, which we write in the Poincaré coordinates:

ds2 =
L2

z2

(
−dt2 + d~x2

d−1 + dz2
)
. (2.1)
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Now we are considering a spherical entangling surface in the boundary theory, i.e., the

region V is the ball {t = 0, r ≤ R}. Now the stress tensor has vanishing expectation

value in the vacuum state and so the expectation value of the modular Hamiltonian (1.10)

vanishes for this state, i.e., 〈H〉0 = tr(ρ0H) = 0. Applying the holographic prescription

(1.1) to evaluate the entanglement entropy, one finds that the minimal area surface v is

given by [29–32]

z = z0(r) ≡
√
R2 − r2 . (2.2)

Hence the entanglement entropy takes the form

S0 = 2π
A(v)

`d−1
P

= 2π
Ld−1

`d−1
P

Ωd−2

∫ R

0
dr
rd−2

zd−1

√
1 + ∂rz 2 , (2.3)

where Ωd−2 denotes the area of a unit (d− 2)-sphere, i.e.,

Ωd−2 =
2π(d−1)/2

Γ((d− 1)/2)
. (2.4)

We will not need to explicitly evaluate eq. (2.3) for the following, however, the interested

reader may find the result in [29–32, 35].

For our second state defining ρ1, we take the holographic dual of a bulk black brane

solution, i.e., a planar AdS black hole. In general, the (expectation value of the) stress

tensor dual to a stationary black brane takes the form of that for an ideal fluid,

〈Tµν〉 = (ε+ P )uµuν + P ηµν , (2.5)

where ε, P and uµ correspond to the energy density, pressure and d-velocity of the fluid,

respectively. Since the boundary theory is a CFT, we also have 〈Tµµ〉 = 0 which imposes

P = ε/(d− 1).

As our first example, we consider a static planar AdS black hole, for which the metric

may be written as

ds2 =
L2

z2

(
−f(z) dt2 + d~x2

d−1 +
dz2

f(z)

)
with f(z) = 1− zd

zdh
. (2.6)

In this case, the dual plasma is at rest, i.e., uµ = (1,~0d−1), and so eq. (2.5) reduces to

〈Tµν〉 = ε diag(1, 1/(d− 1), 1/(d− 1), · · · ) . (2.7)

Now the usual holographic dictionary [57–59] gives the energy density as

ε =
d− 1

2

Ld−1

`d−1
P

1

zdh
. (2.8)

The latter can be interpreted as ε = c T d using the expression for the black hole tempera-

ture:

T =
d

4πzh
. (2.9)
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With these expressions, it is straightforward to evaluate the expectation of the modular

Hamiltonian (1.10) for this state,

〈H〉1 = πΩd−2
ε

R

∫ R

0
dr rd−2

(
R2 − r2

)
=

2πΩd−2

d2 − 1
Rd ε . (2.10)

Hence we arrive at

∆〈H〉 = 〈H〉1 − 〈H〉0 =
πΩd−2

d+ 1

Ld−1

`d−1
P

Rd

zdh
(2.11)

after replacing ε using eq. (2.8).

Now to complete our comparison in eq. (1.8), we need to evaluate the entanglement

entropy for a spherical entangling surface in the black brane background. Applying the

holographic prescription (1.1), the entropy functional in this new background becomes

S1 = 2π
Ld−1

`d−1
P

Ωd−2

∫ R

0
dr
rd−2

zd−1

√
1 +

(∂rz)2

f(z)
, (2.12)

where f(z) is the metric function given in eq. (2.6). In principle, we could extremize the

above expression, i.e., solve for z(r), and evaluate the entropy at an arbitrary temperature,

but this would require a numerical evaluation.4 To make progress analytically, we will

carry out a perturbative calculation for ‘small’ spheres or low temperatures, in which we

consider the limit R/zh � 1 (or alternatively, RT � 1). In this case, the minimal surface

is only probing the asymptotic region of the black brane geometry (2.6) and so the solution

deviates only slightly from the AdS solution (2.2), i.e., z(r) = z0(r) + δz(r). Now since

z0(r) extremizes the entropy functional for the AdS background in eq. (2.3), the deviation

δz(r) will not modify the result at first order in our perturbative calculation.5 Hence, the

leading order change in the entropy comes from evaluating eq. (2.12) with z = z0(r) and

determining the leading contribution in R/zh. Expanding eq. (2.12) to leading order in

1/zdh yields

∆S = π
Ld−1

`d−1
P

Ωd−2

∫ R

0
dr

rd−2 z (∂rz)
2

zdh
√

1 + (∂rz)2

∣∣∣∣∣
z=z0(r)

= π
Ld−1

`d−1
P

Ωd−2

∫ R

0
dr

rd

zdh R

=
πΩd−2

d+ 1

Ld−1

`d−1
P

Rd

zdh
(2.13)

Hence comparing to eq. (2.11), we see that to leading order

∆〈H〉 = ∆S (2.14)

4The interested reader is referred to [60] for various interesting analytic approximations.
5As well as a bulk term proportional to the equations of motion, the first order variation by δz(r) will

also generate a total derivative and so one may worry that there is a nonvanishing boundary term at the

cut-off surface. However, a careful examination shows that this boundary term actually vanishes. The

simplest approach is to simply define the entangling surface directly at the cut-off surface and then δz

vanishes there.
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and so we have saturated the inequality in eq. (1.8)! Of course, this equality is perhaps

not so surprising given the discussion around eq. (1.12).6 Here we are looking at a family

of density matrices characterized by the temperature T and our perturbative calculation is

evaluating the leading order change in 〈H〉 and S, which appears linearly at order (RT )d.

Of course, it would be interesting to evaluate both sides of eq. (1.8) at next order in the

perturbative expansion, but we leave this exercise to our general analysis in section 3. Of

course, given the equality in eq. (2.14), we can not test the monotonicity inequality (1.13)

at this order. We should add that calculations similar to those above has also been done

in [61], without any reference to relative entropy.

2.1 Boosted black brane

We now repeat these calculations for a boosted AdS black brane. That is, the second

state defining ρ1 is a thermal plasma which is uniformly boosted in a certain direction.

Hence this new state ρ1 is characterized by the temperature T and the velocity v. Our

calculations will be to leading order in the temperature and all orders in the velocity.

The stress tensor takes the form given in eq. (2.5) now with uµ = (γ, γv,~0d−2) where

γ = 1/
√

1− v2, as well as P = ε/(d− 1). In particular, we have

〈T00〉 = ε

(
1 +

d

d− 1
γ2 v2

)
. (2.15)

The corresponding bulk black brane solution is simply derived by applying a boost along,

say, the direction of x1 ≡ x directly to the metric in eq. (2.6). It is convenient to write the

resulting metric as

ds2 =
L2

z2

−dt2 + dx2 + γ2 z
d

zdh
(dt+ vdx)2 + d~x2

d−2 +
dz2

1− zd

zdh

 . (2.16)

With the usual holographic approach [57–59], one can verify eq. (2.15) with ε given by

eq. (2.8), as before. Now we wish to evaluate the change in the (expectation value of

the) modular Hamiltonian (1.10) for the boosted plasma. Since the energy density is still

uniform the calculation of 〈H〉1 is the same as before, up to the additional overall pre-factor

in eq. (2.15). Hence, we arrive at

∆〈H ′〉 = ∆〈H〉
(

1 +
d

d− 1
γ2 v2

)
, (2.17)

where ∆〈H〉 is the variation of the modular Hamiltonian given in eq. (2.11).

Now in principle, because the background (2.16) is stationary (but not static), we must

apply the covariant prescription suggested by [62] to evaluate the holographic entanglement

entropy. In fact, the holographic prescription presented in eq. (1.1) already accommodates

6Actually the discussion there does not apply directly to the present example since one would not consider

the energy density of the fluid dual to the black hole taking negative values. However, one might consider

a state where stress tensor locally takes the form in eq. (2.8) but with ε < 0 in a small region around the

entangling sphere.
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this situation. In this new background, we would need to find the extremal surface with

a profile defined by z = z(x, y) and t = t(x, y) where y2 ≡
∑d−1

i=2 (xi)2 — in particular,

note that the extremal surface will not remain on a fixed time slice in the bulk. However,

our goal is to evaluate the change in the entanglement entropy ∆S′ and reasoning as in

the previous section, we deduce that the leading change will be determined by simply

evaluating the area in the new background geometry with the zero-temperature profile

(2.2). Hence we can ignore the deviations of the extremal surface away from the constant

time slice in the following.

With a profile z = z(x, y), it is straightforward to show that the entropy in the boosted

background (2.16) takes the form

S′1 = 2π
Ld−1

`d−1
P

Ωd−3

∫ R

−R
dx

∫ √R2−x2

0
dy

yd−3

zd−1

[(
1 + γ2v2 z

d

zdh

)(
1 +

∂yz
2

f(z)

)
+
∂xz

2

f(z)

]1/2

,

(2.18)

where again f(z) is given in eq. (2.6). While no approximations were made in evaluating

∆〈H ′〉 in eq. (2.17), as before, in evaluating the change in the entropy, we will work

to leading order in the limit R/zh � 1. Again, applying the same reasoning as in our

previous calculations, we conclude that the leading order change in the entropy comes

simply from evaluating eq. (2.18) with the zero-temperature profile (2.2), i.e., z = z0(r) =√
R2 − x2 − y2. We first expand the above expression to leading order in 1/zdh and then

subtract the zero’th order contribution (2.3), which yields

∆S′ = π
Ld−1

`d−1
P

Ωd−3

∫ R

−R
dx

∫ √R2−x2

0
dy

yd−3 z

zdh
√

1 + ∂rz 2

[
∂rz

2 + γ2v2
(
1 + ∂yz

2
)]
, (2.19)

where we have simplified ∂xz
2 +∂yz

2 = ∂rz
2 in anticipation of substituting z = z0(r). With

this substitution, the first term in the square brackets will yield precisely the ‘unboosted’

result ∆S, given in eq. (2.13). Hence we are left with

∆S′ = ∆S + π
Ld−1

`d−1
P

Ωd−3 γ
2v2

∫ R

−R
dx

∫ √R2−x2

0
dy

yd−3 z
(
1 + ∂yz

2
)

zdh
√

1 + ∂rz 2

∣∣∣∣∣
z=z0(r)

= ∆S + π
Ld−1

`d−1
P

Ωd−3 γ
2v2

∫ R

−R
dx

∫ √R2−x2

0
dy

yd−3
(
R2 − x2

)
zdh R

= ∆S + π
Ld−1

`d−1
P

Ωd−3 γ
2v2R

d

zdh

√
π

d− 2

Γ (d/2 + 1)

Γ (d/2 + 3/2)

= ∆S

(
1 +

d

d− 1
γ2 v2

)
, (2.20)

where we have used eqs. (2.4) and (2.13) to produce the simple expression in the final line.

Recall that we found ∆〈H〉 = ∆S in the previous section and hence in comparing to

eqs. (2.17) and (2.20), we again find that to leading order

∆〈H ′〉 = ∆S′ (2.21)

for the boosted plasma. While the expressions appearing in the calculations above are

somewhat more complicated, we may have still anticipated this equality from the discussion
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around eq. (1.12). In this case, we are considering a family of density matrices characterized

by the temperature T and the velocity v. While our calculations are valid to all orders in

the velocity, we are only evaluating ∆〈H ′〉 and ∆S′ to leading order in (RT )d.

2.2 Charged black brane

Continuing the analysis of section 2, another interesting background to consider as defining

ρ1 is a charged AdS black brane. In this case, the state in the boundary theory is charac-

terized by the chemical potential µ, as well as the temperature T . Our calculations will be

to leading order in RT , however, we allow µ/T to be order one.

In this case, we consider the bulk gravity action

I =
1

2`d−1
P

∫
dd+1x

√
−g

(
d(d− 1)

L2
+R− L2

4
FµνF

µν

)
(2.22)

with d ≥ 3.7 The metric for a planar charged black hole can be written as

ds2 =
L2

z2

(
−h(z) dt2 + d~x2

d−1 +
dz2

h

)
(2.23)

where

h = 1−
(
1 + z2

h q
2
) zd
zdh

+ q2 z
2d−2

z2d−4
h

, (2.24)

and the corresponding gauge potential has only a single nonvanishing component

A0(z) =

√
2(d− 1)

d− 2
q

(
1− zd−2

zd−2
h

)
. (2.25)

Here, z = zh corresponds to the position of the horizon and q is related to the charge

density carried by the horizon. The temperature of the dual plasma is given by

T =
d

4πzh

(
1− d− 2

d
z2
h q

2

)
(2.26)

and the chemical potential is given by the asymptotic value of the gauge potential, i.e.,

µ = lim
z→0

A0 =

√
2(d− 1)

d− 2
q . (2.27)

Since the CFT plasma is at rest, eq. (2.5) reduces to 〈Tµν〉 = ε diag(1, 1/(d−1), 1/(d−
1), · · · ) and the usual holographic prescription yields [57–59]

ε =
d− 1

2

Ld−1

`d−1
P

1

zdh

(
1 + z2

h q
2
)
. (2.28)

Now we wish to evaluate the change in the expectation value of the modular Hamiltonian

produced by going to this new state. Since the energy density is again uniform, evaluating

7The normalization of the gauge field term is typically determined by the microscopic details of the

holographic construction — see discussion in [63]. Here, we simply chose the factor of L2 for convenience.

Further we note that in the case d = 2, the following solution is modified by logarithmic terms.
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〈H〉1 is precisely the same calculation as in eq. (2.10), up to the additional overall factor

appearing in eq. (2.28). Hence, we arrive at

∆〈H ′′〉 = ∆〈H〉
(
1 + z2

h q
2
)
, (2.29)

where ∆〈H〉 is the result given in eq. (2.11).

Further since the black brane is static, the extremal surface appearing in the holo-

graphic entanglement entropy (1.1) again has a spherically symmetric profile z = z(r) for a

spherical entangling surface. Hence with the metric (2.23), the entropy functional becomes

S′′1 = 2π
Ld−1

`d−1
P

Ωd−2

∫ R

0
dr
rd−2

zd−1

√
1 +

(∂rz)2

h(z)
, (2.30)

where h(z) is given in eq. (2.24). In proceeding, we again limit our analysis to a perturbative

calculation with R/zh � 1 but we treat zhq = O(1). Further, as before, the leading

contribution to the change in the entropy comes from simply evaluating eq. (2.30) with

the vacuum profile z = z0(r) and expanding in R/zh. However, we would like to refine

our previous arguments. Here as in the previous examples, the leading changes to the

asymptotic metric are O(zd/zdh ) and so we will find the leading change in the entropy

is ∆S′′ = O(Rd/zdh ). The leading change of the profile of the extremal surface, δz, is

also controlled by these leading changes in the metric. However, as we argued before,

the entropy is only changed at quadratic order in δz and hence we will find that this

contribution produces a change in the entropy ∆S′′(δz2) = O(R2d/z2d
h ) — see section 3.2

for an explicit calculation. Hence at this point, we note that the next-to-leading order

changes in the above metric 2.23 are O(z2d−2/z2d−2
h ) since we consider zhq to be order 1.

If we calculate with these changes in the metric and the original profile, there will be an

additional contribution to the change in the entropy at O(R2d−2/z2d−2
h ) — this is verified

by our calculation below. This contribution is still lower order in the R/zh expansion

compared to those arising from the change in the profile. Hence it is legitimate to consider

this contribution without concerning ourselves with the change in the profile of the extremal

surface. Therefore we expand eq. (2.30) as

∆S′′ = π
Ld−1

`d−1
P

Ωd−2

∫ R

0
dr

rd−2 z (∂rz)
2

zdh
√

1 + (∂rz)2

[(
1 + z2

h q
2
)
− q2 z

d−2

zd−4
h

]∣∣∣∣∣
z=z0(r)

= ∆S
(
1 + z2

h q
2
)
− πL

d−1

`d−1
P

Ωd−2
q2

z2d−4
h R

∫ R

0
dr rd

(
R2 − r2

) d−2
2

= ∆S
(
1 + z2

h q
2
)
− d− 1

2
π
d+1
2

Γ(d/2)

Γ
(
d+ 1

2

) Ld−1

`d−1
P

(zhq)
2R

2d−2

z2d−2
h

(2.31)

where ∆S corresponds to the variation given in eq. (2.13).

Recall that we found ∆〈H〉 = ∆S in eq. (2.14). Hence in comparing to eqs. (2.29)

and (2.31), we find that the leading order terms are again equal, however, including the

contribution at O(R2d−2/z2d−2
0 ) yields

∆〈H ′′〉 > ∆S′′ . (2.32)
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Hence we find that adding the chemical potential introduces a next-to-leading contribution

which ensures that the relative entropy is positive. Using the above expressions, we have

S(ρ1|ρ0) ' π

2

Ld−1

`d−1
P

Ωd−2
Γ(d/2)Γ((d+ 1)/2)

Γ
(
d+ 1

2

) (zhq)
2R

2d−2

z2d−2
h

(2.33)

Since S(ρ1|ρ0) ∝ R2d−2, we can trivially verify that the relative entropy also satisfies the

monotonicity property (1.13), i.e., ∂RS(ρ1|ρ0) > 0. Using eqs. (2.26) and (2.27), it is

straightforward to re-express the right-hand side as a function of the temperature and

chemical potential. While the full expression is not particularly insightful, note that in

the regime 1 � µ/T � RT , we have S(ρ1|ρ0) ∼ (RT )2d−2(µ/T )2 and so, in particular,

we observe that this nonvanishing contribution begins at quadratic order in the chemical

potential.

In closing, we note that the result in eq. (2.31) was generated by a first-order deforma-

tion in the asymptotic metric, however, the latter is produced by the back-reaction of the

gauge field on the geometry and so the leading change in the relative entropy is quadratic

in the corresponding coefficient q.

3 General analysis

In this section, we would like to generalize the previous analysis to examine the inequality

(1.8) for more general holographic states. As long as we focus our attention on a spherical

entangling surface, it is straightforward to evaluate ∆〈H〉 using eq. (1.10) since a standard

holographic prescription allows us to determine 〈Tµν〉 [57–59]. In principle, the calculation

of the entanglement entropy using eq. (1.1) is more challenging because we must determine

the extremal surface in the bulk geometry describing the second state ρ1. However, as we

saw above, if this state describes a ‘small’ perturbation of the initial vacuum state ρ0, our

calculations are restricted to considering asymptotic perturbations of the AdS geometry.

Hence, our analysis of the holographic entanglement entropy was greatly simplified in this

perturbative context. It also suggests that it is natural to formulate these calculations

in the framework of the asymptotic Fefferman-Graham (FG) expansion [64, 65] — see

also [57, 58]. In particular, such an approach will allow us to consider a much broader class

of perturbed states without concerning ourselves with the details of the bulk geometry in

the far infrared.

Using the FG expansion, we consider three distinct calculations in the following: we

begin by considering states described by purely gravitational excitations in the AdS bulk.

That is, the stress tensor is the only operator that has a nonvanishing expectation value

in these states. Now let us introduce a small perturbative parameter α which controls

the magnitude of 〈Tµν〉. Our first result is to demonstrate that we always saturate the

inequality (1.8), i.e., ∆〈H〉 = ∆S, when working to linear order in α. We emphasize

that this equality holds even when 〈Tµν〉 varies on scales comparable to R, the size of the

spherical entangling surface. Secondly, we extend these calculations to second order in α

in section 3.2. There while ∆〈H〉 is unchanged, we show that the additional contributions

to the entanglement entropy have a definite sign ensuring that ∆〈H〉 > ∆S. The third
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case, which we consider in section 3.3, involves states in which additional matter fields

are excited in the dual AdS spacetime and hence additional operators acquire expectation

values. As we saw in section 2.2, it is relatively easy to determine quadratic corrections to

the entanglement entropy coming from such perturbations. Below, we extend this analysis

to a much broader class of states and verify that the quadratic contributions again ensure

that ∆〈H〉 > ∆S.

As commented above, our general analysis will be formulated in the context of the

Fefferman-Graham expansion of the asymptotic bulk solutions [57, 58, 64, 65]. Hence we

begin by considering a general bulk metric written in FG coordinates

ds2 =
L2

z2

(
dz2 + gµν(z, xµ)dxµdxν

)
. (3.1)

We are considering the asymptotic geometry where z ' 0. We will always choose the

asymptotic metric (on which the boundary CFT is defined) to be flat and so we may write

gµν(z, xµ) = ηµν + δgµν(z, xµ) (3.2)

where δgµν begins with terms of order zd. We are interested in calculations of holographic

entanglement entropy (1.1) and so we will want to evaluate the area of various extremal

surfaces in the bulk. In principle, for situations where the background geometry is not

static, the profile of these (d − 1)-dimensional surfaces would be specified by giving both

the radial position and time in the bulk as functions of the remaining spatial coordinates,

i.e., z = z(xi) and t = t(xi). However, our goal is to evaluate the change in the entanglement

entropy ∆S and discussed in section 2.1, it will suffice to consider bulk surfaces that live

in a constant time slice. Hence with a radial profile z = z(xi) alone, the induced metric

hij on this surface is given by

hijdx
idxj =

L2

z2
(gij + ∂iz∂jz) dx

idxj (3.3)

and the corresponding area is then

A = Ld−1

∫
dd−1x

√
h = Ld−1

∫
dd−1x

√
detgij

√
1 + gij ∂iz ∂jz . (3.4)

In principle, eq. (3.4) can now be used as an effective action to determine the extremal

profile z = z(xi). However, as before, to determine the leading change ∆S, we will be

evaluating the area in the new background geometry with the original profile (2.2).

3.1 Linear corrections to relative entropy

We begin by considering states ρ1 whose small deviation of the vacuum state ρ0 is char-

acterized by an expectation value of stress tensor T 0
µν in the boundary CFT.8 We suppose

the latter is ‘very small’ and that the smallness is characterized by a (dimensionless) pa-

rameter α� 1. As before, we will limit our attention to a spherical entangling surface for

8For simplicity, we drop the angle brackets in denoting this expectation value throughout our calculations

here.
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which the (vacuum) modular Hamiltonian (1.10) is linear in the stress tensor and so ∆〈H〉
is linear in α. However, in eq. (1.8), the change in the entanglement entropy will receive

contributions at all orders in α. In the present section, we will only evaluate ∆S to linear

order in α.

In general, using the FG expansion, the deviation of the bulk metric from pure AdS

in eq. (3.2) takes the form.

δgµν =
2

d

`d−1
P

Ld−1
zd
∑
n=0

z2n T (n)
µν . (3.5)

The bulk Einstein equations will determine T
(n)
µν for n > 0 in terms of expectation value

T
(0)
µν . Following the above discussion, our strategy will be to only solve for T

(n)
µν to leading

order in α (or to linear order in T
(0)
µν ).

Before we solve the Einstein equations, we let us recall that the goal is to evaluate the

change in the holographic entanglement entropy in the perturbed metric. Here, we may

apply the same reasoning as in section 2. In particular, in the vacuum AdS, there is an

analytic solution (2.2) for the extremal bulk surface corresponding to a spherical entangling

surface of radius R in the boundary

z2
0 + r2 = R2, where r2 =

d−1∑
i=1

x2
i . (3.6)

Now in the perturbed background, the bulk entangling surface can also be given as an

expansion in α, i.e., z(xi) = z0(xi) + αz1(xi) + · · · . However, as described in the previous

section, since the profile z0 is extremal to leading order, the perturbation z1 only contributes

at order α2. Hence we can evaluate the linear change in the area by simply evaluating the

area (3.4) with the original profile z0 in the perturbed background. Hence given (3.5), one

finds to linear order in α that

∆S = 2π
∆A

`d−1
P

=
2πR

d

∫
|x|≤R

dd−1x
∑
n=0

z2n
0

(
T (n)

i
i − T (n)

ij
xi xj

R2

)
. (3.7)

Now we return to solving the Einstein equations, which can be written as

R̂AB −
1

2
GAB

(
R̂+

d(d− 1)

L2

)
= 0 , (3.8)

where R̂AB is the bulk Ricci tensor evaluated on the bulk metric GAB given as in eq. (3.1).

Using the results from [66], we can write to linear order in α,

R̂ρρ = − d

4ρ2
− 1

2
∂2
ρδg

µ
µ ,

R̂µρ =
1

2
(∂ρ∂νδg

ν
µ − ∂µ∂ρδgνν) ,

R̂µν = Rµν − 2ρ∂2
ρδgµν + (d− 2)∂ρδgµν + ηµν∂ρδgγ

γ − d

ρ
(ηµν + δgµν) ,

R̂ = −d(d+ 1) + ρR+ 2(d− 1)ρ∂ρδgµ
µ − 4ρ2∂2

ρδgµ
µ , (3.9)
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where we have chosen a (dimensionless) radial coordinate ρ = z2/L2. Also, Rµν and R are

curvature tensors evaluated on gµν treating z (or ρ) as an external parameter. Explicitly,

then the linear order in α, we have

Rµν =
1

2
(∂ν∂γδg

γ
µ + ∂µ∂γδg

γ
ν −�δgµν − ∂µ∂νδgγγ) . (3.10)

Substituting eq. (3.5) and the above expression into the Einstein equations, we obtain

the following equations for T (n) using the ρρ and µρ components, respectively:

∂µ∂νT (n)
µν −�T (n)µ

µ + (d− 1)(d+ 2n+ 2)T (n+1)µ
µ = 0 , T (0)µ

µ = 0 , (3.11)

∂νT
(n)

µ
ν − ∂νT (n)µ

µ = 0 . (3.12)

Together, these two equations imply that

T (n)µ
µ = 0 , ∂νT

(n)
µ
ν = 0 , (3.13)

for all n. Hence we note that Einstein equations automatically ensure that T (n) is traceless

and conserved for all n. Finally, the µν components of Einstein equations then reduce to

T (n)
µν = − �T

(n−1)
µν

2n(d+ 2n)
, (3.14)

which implies

T (n)
µν =

(−1)nΓ[d/2 + 1]

22nn!Γ[d/2 + n+ 1]
�nT (0)

µν . (3.15)

Of course, we can substitute these results back into eq. (3.7) to express ∆S entirely in

terms of T
(0)
µν .

For the following, it will be more convenient to express the stress tensor in a Fourier

expansion

T (0)
µν (x) =

∫
ddp exp(−ip · x) T̂µν(p) . (3.16)

Using the previous results, the change in the entanglement entropy (3.7) then becomes

∆S =
2πR

d

∫
dd−1x

∫
ddp exp(−ip · x) × (3.17)

Γ[d/2 + 1]

(z0|p|/2)d/2

∑
n=0

[
1

n!Γ[d/2 + n+ 1]

(
|p|z0

2

)2n+d/2
](

T̂i
i(p)− T̂ij(p)

xixj

R2

)
,

where |p| = |√pµpµ|. Now we may recognize that the sum in the square brackets yields

precisely ∑
n=0

[
1

n!Γ[d/2 + n+ 1]

(
|p|z0

2

)2n+d/2
]

= Id/2(|p|z0) . (3.18)

For time-like momenta p in Lorentzian signature, it gives instead Jd/2(|p|z0). That is, we

recover an expression that is precisely proportional to the Green’s function of the graviton

in AdSd+1. However, note that the asymptotic boundary condition is taken to be one

where the leading constant term is set to zero — for example, see [98]. The latter can

be contrasted with the usual bulk-to-boundary Green’s function which is proportional to

Kd/2(|p|z0), where the boundary condition is chosen such that the leading term near the

AdS boundary is a constant.
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Saturating the inequality in eq. (1.8). Turning to eq. (1.8), we would like to establish

that this inequality is in fact saturated at linear order in α for the general class of states

considered here. Given the modular Hamiltonian (1.10) (for a spherical entangling surface),

we may write

∆〈H〉 =
π

R

∫
|x|≤R

dd−1x z2
0 T

(0)
00 . (3.19)

where z0 is the extremal profile in eq. (3.6). A priori, this expression bares no resemblance

to the expression for ∆S in eq. (3.7), even after we substitute in the results in eq. (3.15).

To prove the inequality (1.8) is saturated, we begin by examining eq. (3.17) for a

single momentum component with the corresponding quantity in δH above. We can set

the spatial direction of momentum in direction x1, i.e.,

T (0)
µν (x) = T̂µν e

−ip·x . (3.20)

We take the momentum to be time-like for definiteness. An analogous calculation holds

for space-like momentum.

Conservation and tracelessness of T
(0)
µν imply

T̂i
i = T̂00 , T̂10 = −p

0

p1
T̂00 and T̂11 =

(p0)2

(p1)2
T̂00 . (3.21)

Then we note that given the stress tensor chosen in eq. (3.20), the integral of eq. (3.17) is

symmetric under rotations leaving x1 fixed. This implies the integral containing the term

T̂ij x
ixj will vanish for i 6= j. Also for i = j = 2, · · · , (d − 2), all the integrals are equal.

Then inside the integral, we can replace

T̂i
i − T̂ij

xixj

R2
→ T̂00 − T̂11

(x1)2

R2
−

d−2∑
i=2

T̂ii
(xi)2

R2
(3.22)

→ T̂00 − T̂11
(x1)2

R2
−

d−2∑
i=2

T̂ii

∑d−2
j=2(xj)2

(d− 2)R2
→ T̂00 − T̂11

(x1)2

R2
−

d−2∑
i=2

T̂ii
r2 − (x1)2

(d− 2)R2

→ T̂00 − T̂11
(x1)2

R2
− (T̂i

i − T̂11)
r2 − (x1)2

(d− 2)R2
(3.23)

→ T̂00

1− (p0)2

(p1)2

(x1)2

R2
−

(
1− (p0)2

(p1)2

)
(r2 − (x1)2)

(d− 2)R2

 .

In the last transformation we have used (3.21). This final expression depends only on T̂00,

which is necessary for the equality with ∆〈H〉.
Then ∆S reads in polar coordinates

∆S =
2(d+2)/2πR

d|p|d/2
Γ[d/2 + 1]Ωd−3 T̂00e

ip0t

∫ R

0
dr rd−2

∫ π

0
dθ sind−3θ e−ip

1r cos(θ)

×
Jd/2(|p|

√
R2 − r2)

(R2 − r2)d/4

1− (p0)2

(p1)2

r2 cos2 θ

R2
−

(
1− (p0)2

(p1)2

)
r2 sin2 θ

(d− 2)R2

 . (3.24)

– 16 –



J
H
E
P
0
8
(
2
0
1
3
)
0
6
0

The integrals over θ can then be done explicitly using∫ π

0
dθ sinq(θ)e−ix cos(θ) = 2q/2

√
π Γ[(q + 1)/2]

Jq/2(|x|)
|x|q/2

. (3.25)

Now for the variation of the modular Hamiltonian, we substitute eq. (3.20) into the

eq. (3.19) which yields

∆〈H〉 = 2πΩd−3 T̂00e
ip0t

∫ R

0
dr rd−2

∫ π

0
dθ sind−3θ

R2 − r2

2R
e−ip1r cos(θ) (3.26)

= 2(d−1)/2π3/2Ωd−3 Γ[(d− 2)/2] T̂00e
ip0t R(d−1)/2

|p1|(d+1)/2
J(d+1)/2(|p1|R) .

Note the integral for ∆S in eq. (3.24) depends on an additional parameter |p| which is

not present in the integral in eq. (3.26). Then the equality between ∆S and ∆〈H〉 requires

that the expression in eq. (3.24) is miraculously independent of p for a given fixed value

of p1. One can check this actually happens by making an expansion in powers of p and p1

and also replacing (p0)2 = p2 +(p1)2 in the integral in eq. (3.24). Collecting the terms with

the same powers of p and p1, one arrives at expressions which are possible to integrate in

θ and r analytically. The result is that the coefficient of (p1)mpn in the expansion of ∆S

is zero for any n > 0. Hence, we may take the limit of p → 0 in the integrand to simplify

the calculation and eq. (3.24) becomes

δS =
4π

d
Ωd−3 T̂00e

ip0t

∫ R

0
dr rd−2

∫ π

0
dθ sind−3θ

R2 − r2 cos(θ)2

2R
e−ip1r cos(θ) (3.27)

= 2(d−1)/2π3/2Ωd−3 Γ[(d− 2)/2] T̂00e
ip0t R(d−1)/2

|p1|(d+1)/2
J(d+1)/2(|p1|R) .

Now comparing eqs. (3.26) and (3.27), we see

∆〈H〉 = ∆S . (3.28)

While this analysis was done for a single plane wave (3.20), since we are considering linear

perturbations, the same equality must hold for a general Fourier expansion (3.16). There-

fore, we conclude that eq. (3.28) holds for any first order perturbation of the stress tensor.

In particular, this equality still applies even when T
(0)
µν varies on scales comparable to R,

the size of the spherical entangling surface.

3.2 Quadratic corrections to relative entropy

While it was technically difficult to establish, the equality in eq. (3.28) should have been

expected given the discussion preceding eq. (1.12). Similarly, if we extend the previous

calculation of ∆S to second order in α, we should expect that the new contributions at this

order result in the required inequality (1.8). In this section, we verify that this expectation

is indeed correct. For simplicity, we will restrict our attention to constant stress tensors.

To obtain the quadratic correction to the relative entropy, we proceed in three steps:

first, we expand the bulk metric to quadratic order in the stress tensor. Then we expand the
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area functional (3.4) to quadratic order in the perturbation parameter α. In particular, we

obtain the equations of motion governing the deformation of the minimal surface to linear

order in the stress tensor. Then solving the equations of motion, we substitute the results

back into the area functional and collect the aggregate quadratic correction in the relative

entropy.

Step 1: bulk metric. In eq. (3.5) the bulk metric is expanded to linear order. To

quadratic order, the expansion will take the from

δgµν = ηµν + a zd Tµν + a2 z2d
(
n1 TµαT

α
ν + n2 ηµνTαβT

αβ
)

+ · · · , (3.29)

where

a =
2

d

`d−1
P

Ld−1
. (3.30)

The term, which is quadratic in the stress tensor, has the most general form allowed by

Lorentz invariance, symmetry between µ and ν, and that the trace of Tµν vanishes.9 Further

the power of z2d in this term is simply determined by dimensional grounds. It remains to

fix the coefficients n1,2, which can be done by comparing this expression to the black brane

metric (2.6) when the latter is re-expressed in FG coordinates (3.1). The latter requires

transforming to a new radial coordinate in the asymptotic AdS geometry

z̃ = z

(
1 +

1

2d

zd

zdh
+

2 + 3d

16d2

z2d

z2d
h

+ · · ·
)
. (3.31)

This new coordinate is chosen to produce Gzz = L2/z̃2, as required in eq. (3.1). With this

radial coordinate, the remaining metric components in the asymptotic expansion take the

form:

g00 = −1 +
d− 1

d

z̃d

zdh
− 4d2 − 9d+ 4

8d2

z̃2d

z2d
h

+ · · ·

gij = δij

(
1 +

1

d

z̃d

zdh
− d− 4

8d2

z̃2d

z2d
h

+ · · ·
)
. (3.32)

Recall that the stress tensor takes the form given in eqs. (2.7) and (2.8), as can be read off

from the leading terms above. Then comparing eqs. (3.29) and (3.32), we can read off n1

and n2 as

n1 =
1

2
and n2 = − 1

8(d− 1)
. (3.33)

Step 2: expansion of area functional and equations of motion. The profile of the

extremal surface receives corrections since the bulk is altered. Recall from the previous

section that the minimal surface in static gauge can be described by z(xi), i.e., the bulk

radial coordinate is specified as a function of the spatial coordinates xi. In the present

perturbative construction, we can expand

z(xi) = z0(xi) + α z1(xi) + α2z2(xi) + · · · , (3.34)

9Recall that we are limiting our attention to Tµν being a constant and hence the derivative terms (3.15),

which appeared at linear order in α above, vanish here.
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where z0 is given in eq. (3.6). Note that since we are only interested in quadratic corrections

to the entanglement entropy, z2 is not needed since it would appear linearly in the area

functional and hence would vanish by virtue of equations of motion.

The order α2 correction to the area functional (3.4) can be written as

A(2) = A2,0 +A2,1 +A2,2 , (3.35)

where we are separating the contributions into three terms, according to the power of z1

appearing in the expressions, which is denoted by the second index. Only A2,1 and A2,2

contribute to the linearized equations of motion for z1.

Carefully expanding, we find

A2,0 = Ld−1a2

∫
dd−1xRzd0

(
− 1

16

(
1− r2

(d− 1)R2

)
(T 2

00 + TijT
ij)

+
Ti0T

i0

8

(
1 +

r2

(d− 1)R2

)
+
xixk

4R2
TiαT

α
k +

1

8
(T 2 − T 2

x − 2TTx)

)
, (3.36)

where

T ≡ Tii and Tx ≡ Tij
xixj

R2
. (3.37)

Note that we have made use of z2
0 = R2 − r2 to simplify the above expression.10 Further,

we find:

A2,1 = Ld−1a

∫
dd−1x

R

2z0

(
T

(
z1 −

z2
0

R2
xi∂iz1

)

+Tij

(
2z2

0x
i∂jz1

R2
− z1x

ixj

R2
− z2

0x
ixjxk∂kz1

R4

))
, (3.38)

and

A2,2 = Ld−1

∫
dd−1x

R

zd0

(
d(d− 1)z2

1

2z2
0

+
z2

0(∂z1)2

2R2

−z
2
0(xi∂iz1)2

2R4
+

(d− 1)

2

xi∂iz
2
1

R2

)
. (3.39)

Note that in A2,1, we have already dropped terms that vanish upon evaluating them on the

minimal surface z0. We also remind the reader that the boundary terms do not contribute.

Now the equations of motion for z1 are derived by varying A2,1 +A2,2 and can be written as

1

zd−1
0 R

(
∂2(z0 z1)− xixj

R2
∂i∂j(z0 z1)

)
=

z0

2R
((d− 2)T + (d+ 2)Tx) . (3.40)

The perturbation z1 is expected to take the form Tf1(r)+Tijx
ixjf2(r). After some trial an

error to solve for f2, and setting the appropriate boundary conditions by adding suitable

choice of solutions to the homogeneous equation, we arrive at the following very simple

solution in general d:

z1 = −aR
2zd−1

0

2(d+ 1)
(T + Tx) . (3.41)

10We emphasize that the Greek indices µ, ν, · · · run through all the indices corresponding to the flat

boundary directions, whereas Latin indices i, j, · · · are restricted to the spatial directions.
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Step 3: substitution into the area functional. With all the ingredients in place, we

are ready to substitute everything back into the area functional. This amounts to some

more tedious algebra resulting in seven tensor structures:

A(2) = Ld−1a2

∫
dd−1x

(
c1T

2 + c2T
2
x + c3T

2
ij +

c4Ti0T
i0 + c5

xiTijT
j
kx

k

R2
+ c6

xiTi0T
0
jx
j

R2
+ c7TTx

)
. (3.42)

The coefficients are given by

c1 =
zd−4

0

16(d+ 1)2(d− 1)R

(
(d+ 1)2r6 + (3 + d(3d2 + d− 15))r4R2

+(d2(13− 8d) + 2d)− 3)r2R4 + (3d3 − 7d2 + d+ 3)R6

)
, (3.43)

c2 =
zd−4

0

8(d+ 1)2

(
(1− 5d2)r2R3 + (d(4d+ 3)− 3)R5

)
, (3.44)

c3 =
( r2

d−1 −R
2)zd0

16R
, (3.45)

c4 =
( r2

d−1 +R2)zd0
8R

, (3.46)

c5 = Rzd0
d(d− 2)− 1

4(d+ 1)2
, (3.47)

c6 =
R

4
zd0 , (3.48)

c7 = zd−4
0

R3(d− 1)

4(d+ 1)2

(
(1− 3d)r2 + (2d+ 1)R2

)
. (3.49)

Proceeding with the remaining integrals, it is useful to note that by symmetry, when-

ever an integral has the form
∫
dd−1x (xixjxkxl · · · )f(r), i.e., there are n pairs of xi’s in

the integrand, we can simply replace them by

N(δijδkl · · ·+ permutations)

∫
dd−1x r2n f(r) , (3.50)

with some appropriate normalization constant N . Using this fact, we are left with a final

result of the form

A(2) = a2Ld−1Ωd−2

(
C1T

2 + C2T
2
ij + C3T

2
0i

)
, (3.51)

where

C1 = − d
√
πR2dΓ[d+ 1]

2d+4(d+ 1)Γ[d+ 3
2 ]
,

C2 = C1 , (3.52)

C3 = −(d+ 2)
√
πR2dΓ[d+ 1]

2d+3(d− 1)Γ[d+ 3
2 ]

.
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Note that in the above expression, T 2
0i ≡ T0iT0jδ

ij ≥ 0. Therefore given that the three

coefficients are negative, we are assured that the second order perturbation to the area is

negative and hence the second order contribution to the holographic entanglement entropy

ensures that the inequality (1.8) is satisfied. Since at second order, we have ∆〈H〉 6= ∆S,

it is nontrivial to check the monotonicity property in eq. (1.13). However, from the above

result, we find that S(ρ1|ρ0) ∝ R2d and hence this inequality is simply satisfied, i.e.,

∂RS(ρ1|ρ0) > 0.

As an example, we might apply these general results to the static thermal gas described

by the planar AdS black hole. The corresponding stress tensor is given by eqs. (2.7) and

(2.8),11 i.e., we have T00 = ε and Tij = δijε/(d − 1). The solution of eq. (3.40) can be

written as

z1(r) =
k1√

R2 − r2
+ aε

(
((d− 1)Rd+2 − (R2 − r2)d/2(r2 + (d− 1)R2))

2(d2 − 1)
√
R2 − r2

)
, (3.53)

where k1 is an undetermined integration constant. To ensure that r → R as z → 0, which

is already satisfied by z0, we must choose

k1 = − aεR
d+2

2(d+ 1)
. (3.54)

This choice yields precisely the solution for z1 given in eq. (3.41). Substituting this solution

into the area functional, we find

∆S(2) = − π3/2dΩd−2 Γ[d− 1]

2d+1(d+ 1) Γ[d+ 3
2 ]

Ld−1

`d−1
P

R2dε2 . (3.55)

which as required is a negative contribution. One should appreciate the fact that the

integrand involves a complicated collection of polynomials in d. However, the final result

reduces to the above simple form.

3.3 Corrections from additional operators

To this point, we have only considered a special class of states that give rise to a nontrivial

expectation value for the stress tensor. For generic perturbations away from the vacuum,

we would expect that other operators will acquire nontrivial expectation values. Hence in

this section, we consider states in which certain operators beyond the stress tensor acquire

an expectation value. The dual description will involve bulk gravity solutions in which

additional matter fields are excited. As we saw with the charge black brane in section 2.2,

it is relatively easy to determine quadratic corrections to the entanglement entropy coming

from such matter field perturbations. Below, we evaluate the analogous contributions to

∆S for two types of states: the first will involve a scalar operator acquiring an expectation

value. The dual description involves adding a massive scalar field to the gravitational

11In keeping with the above analysis, we might introduce an explicit expansion parameter α to these

expressions. However, we adopt the simpler approach of formally setting α = 1 in the above expansion.

From our previous examination of the thermal bath, as well as the results here, we can infer that ∆S

appears as an expansion in the small parameter aRdε.
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theory. The second class will involve perturbations by a conserved current in the boundary

theory or a gauge field in the bulk. Hence analyzing these latter configurations is a simple

generalization of that for the charged black brane. For both families of states, we find that

the quadratic contributions again ensure that ∆〈H〉 > ∆S.

Perturbing with a scalar condensate. In our first class of states, a scalar operator O
of dimension ∆ acquires a non-trivial expectation value (in the absence of any sources). The

corresponding dual description is that a scalar field has been turned on and subsequently

back reacts on the geometry to change the entanglement entropy. We will limit ourselves

here to calculate only the leading contribution of this back reaction. The bulk action,

which we are considering here, is given by

I =
1

2`d−1
P

∫
dd+1x

√
G

[
R− 1

2
(∂φ)2 − V (φ)

]
. (3.56)

Since we are only solving perturbatively in φ, we need only to keep up to quadratic terms

in the scalar, and thus the potential can be taken simply as

V (φ) = −d(d− 1)

L2
+

1

2
m2φ2 , (3.57)

where the first term provides the negative cosmological constant.

A standard result [67] in the AdS/CFT correspondence is that to leading order in the

condensate, the scalar field φ of mass m = ∆(d−∆) behaves asymptotically as

φ = γO z∆ + · · · , (3.58)

with some normalization constant γ. This can be substituted into the Einstein equation

which, in the presence of the scalar, can be written as

R̂AB =
1

2
∂Aφ∂Bφ+

1

d− 1
GABV (φ) . (3.59)

In the presence of the scalar field, we expect that the boundary expansion of the metric is

altered [57, 58]. However, since we are only interested in the leading contribution of the

perturbation, cross terms between the boundary stress tensor and the scalar condensates

need not be included here. To linear order in the boundary stress tensor and quadratic

order in the operator, the expansion of the metric δgµν in eq. (3.2) takes the form

δgµν = azd
∑
n=0

z2nT (n)
µν + z2∆

∑
n=0

z2n σ(n)
µν + · · · , (3.60)

where, of course, terms in the first sum were analyzed in section 3.1. In both sums, the

superscript (n) indicates that the corresponding operator contains a total of 2n derivatives,

e.g., see eq. (3.15). Hence, for n = 0, the only possible contribution of the scalar is

σ
(0)
µν = α0 ηµνO2 where α0 is some constant. The latter is easily determined by substituting

the expansion of the metric and also that of the scalar field into the Einstein equations

(3.59), which yields

σ(0)
µν = − γ2

4(d− 1)
ηµν O2 . (3.61)
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Note that the coefficient here is negative definite, which will be crucial in evaluating the

change in the entanglement entropy below.

For the interested reader, we also consider the next term σ
(1)
µν , which carries two deriva-

tives acting on the condensate O. Demanding Lorentz invariance and symmetry in µ, ν,

lets one to write the general form

σ(1)
µν = α1∂µO∂νO + α2O∂µ∂νO + α3ηµνO�O + α4ηµν(∂O)2 , (3.62)

with some undetermined coefficients αi. Again using the equations of motion (3.59), we

arrive at:

σ(1)
µν =

γ2

4(d− 1)(∆ + 1)(2∆ + 2− d)

((
(d− 2)O∂µ∂νO + ∆ ηµνO�O

)
−
(
d ∂µO∂νO − ηµν(∂O)2

))
. (3.63)

For general O(x), we would have to consider the sums in eq. (3.60) to all orders in

derivatives. However, if O is slowly varying on the scale of R, σ(0) provides the leading

contribution to the change in the entanglement entropy and we focus on this scenario here.

As in our previous calculations, we determine this leading contribution by evaluating the

area functional (3.4) with the perturbed metric but the leading order profile (3.6) for the

extremal surface. The resulting change in the entanglement entropy is given simply by

∆S(O) =
πLd−1R

`d−1
P

∫
dd−1x

zd−2∆
0

(σ(0) i
i − σ0

ij

xixj

R2
)

= −πγ
2Ld−1R

4`d−1
P

O2

∫
dd−1x

zd−2∆
0

(
1− r2

(d− 1)R2

)

= −γ
2Ld−1

`d−1
P

π3/2
(

∆− (d−2)2

2(d−1)

)
Γ[∆− d

2 + 1]

8Γ[∆− d
2 + 5

2 ]
Ωd−2R

2∆O2 . (3.64)

Note that the unitarity bound ∆ > d
2 − 1 ensures that the numerical prefactor in the last

line is positive and hence the overall result for ∆S is negative. We note that this overall

minus sign descends directly from eq. (3.61). Hence it is interesting that at the level of

the FG expansion, the metric appears to know already about the positivity of the relative

entropy!

It is interesting to compare the above contribution of the scalar condensate O with

the leading order contribution coming from the stress tensor. In particular, one might

consider a scenario where the expectation value of both operators is set by a single scale

µ (e.g., the temperature), in which case, we would have O ∼ µ∆ and Tµν ∼ µd. Then

the corresponding contributions to the entropy would scale like ∆S(O) ∼ (Rµ)2∆ and

∆S(Tµν) ∼ (Rµ)d where our calculations would hold in a regime where Rµ� 1. Hence if

O is sufficiently relevant, i.e., d2 − 1 < ∆ < d
2 , then its contribution would be the dominant

contribution. Of course, with d
2 < ∆ < d, the stress energy would produce the dominant

contribution while for the special case ∆ = d
2 , the scaling of both contributions would be
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the same. In a more general situation where there are several scales in the problem, the

scale of Tµν would necessarily be related to that of O and then there would be no obvious

way to compare their respective contributions to ∆S.

It follows from the above expression (3.64) that relative entropy is proportional to R2∆

and hence it also satisfies the monotonicity inequality (1.13).

Perturbing with a current. Here we provide a brief description of the extension of the

analysis in section 2.2 to a state with a general boundary current Jµ. Recall first we wish

to construct a metric in the FG form, as given in eqs. (3.1) and (3.2). For simplicity, we

will assume that the expectation value of the current is constant and then to leading order

the metric perturbation takes the form

δgµν = a zd T (0)
µν + z2d−2 (b JµJν + c ηµνJ

2) , (3.65)

where the constants, a, b and c, are all dimensionless. Since we are working to linear

order in the metric perturbation, we can consider the contribution of each of the two

terms in eq. (3.65) independently, as above for the scalar operator. We know that the

T
(0)
µν contribution saturates the inequality (1.8) and hence the current perturbations must

produce a negative contribution to the change in the entanglement entropy.

Recall that a is given in eq. (3.30). To determine the remaining constants, we compare

to the charged black brane metric (2.23). It is convenient to write the metric function in

eq. (2.24) as simply

h = 1− γz̃d + βz̃2d−2 , (3.66)

with γ and β being positive constants. We have to change the radial coordinate z in order

to put the metric in the desired FG form (3.1). After this is done, we find to leading order

that the remaining metric components take the form

g00 = −
(

1− γ
(

1− 1

d

)
zd + β

(
1− 1

2d− 2

)
z2d−2

)
,

gij = δij

(
1 + γ

zd

d
− β z

2d−2

2d− 2

)
. (3.67)

Setting Ji = 0 in eq. (3.65), we may compare the resulting expression with the above and

find:

b = −2(d− 1) c , c =
β

2(d− 1)J2
0

. (3.68)

Further identifying J0 ≡ limz→0 z
d−3∂zA0 in the charged black brane solution we find that

c as a positive constant independent of the current, i.e.,

c =
1

4(d− 1)2(d− 2)
. (3.69)

Now the relevant part of the metric perturbation becomes

δgµν = c z2d−2(−2(d− 1)JµJν + ηµνJ
2) . (3.70)
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Inserting this expression into the area functional (3.4) yields

∆S =
πRLd−1

`d−1
P

∫
dd−1x

1

zd0

(
δgi

i − δgij
xixj

R2

)
. (3.71)

For a constant current, we then find that the integral yields

∆S = −π
3/2(d− 3)! Ωd−2

2d+1Γ[d+ 1
2 ]

Ld−1R2d−2

`d−1
P

( ~J2 + (J0)2) . (3.72)

Then from eq. (3.72), it follows that relative entropy ∆〈H〉 − ∆S is positive, and it also

increasing as R2d−2, satisfying the monotonicity inequality (1.13).

3.4 Corrections for general entangling surfaces

In this section, we consider extending our analysis to entangling surfaces, which are not

simply spheres. Let us begin by considering the area functional (3.4) with a generic entan-

gling surface in the boundary and a perturbation of the vacuum state in which the stress

tensor is excited. At linear order, the perturbation of the bulk geometry still takes the

form presented in eq. (3.5) where the coefficients T
(n)
µν are given by eq. (3.15). As in our

previous examples, the holographic calculation of the entanglement entropy in the AdS

vacuum will yield some extremal profile z0(xi) depending on the geometry of the entan-

gling surface. Now while this profile is perturbed in the excited state, the perturbation

will only contributes to the change in the area at second order. Hence we can evaluate

the linear change of the area by simply evaluating the area (3.4) with the original profile

z0 in the perturbed background. Therefore with a generic entangling surface, the linear

perturbation of the entanglement entropy becomes

∆S = 2π
∆A

`d−1
P

=
2π

d

∫
dd−1x

√
1 + (∂z0)2

∑
n=0

z2n+1
0

(
T (n)

i
i − T (n)

ij
∂iz0 ∂

jz0

1 + (∂z0)2

)
,

(3.73)

where (∂z0)2 = δij∂iz0∂jz0 and implicitly, the boundary geometry is simply flat space.

Previously we concluded in eq. (3.13) that all of the tensors T
(n)
µν are traceless and hence

we can replace T (n)
i
i = T

(n)
00 , which in turn are all related to the local energy density T

(0)
00 by

eq. (3.15). Hence the first term above is controlled entirely by the energy density. However,

there is no clear connection to the energy density in the second term. In section 3.1, the

rotational symmetry of the spherical entangling surface and the corresponding bulk profile

(3.6) was essential in reducing this expression to a contribution which again was controlled

by T
(0)
00 . Hence our observation here is simply that we should expect other components of

the stress tensor to contribute to ∆S, even at linear order, for entangling surfaces with a

less symmetric geometry.

To explicitly illustrate this behavior, we consider the well-studied case of a ‘slab’ ge-

ometry where the entangling surface is comprised of two flat planes at x = ±`/2 [29–32].

The extremal surface in the AdS vacuum has a profile z(x) and the area becomes

A = Ld−1Bd−2

∫ `/2

−`/2

dx

zd−1

√
1 + z′2 , (3.74)
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where B is an IR length scale that regulates the size of the two planes, i.e., Bd−2 is the area

of one plane. Further regarding this area as an action for z(x), the profile is constrained

by a conserved quantity [29–32]

zd−1
√

1 + z′2 = zd−1
∗ . (3.75)

Here z∗ is the maximum value of z which the extremal surface reaches in the bulk at x = 0,

z∗ =
Γ[ 1

2(d−1) ]

2
√
π Γ[ d

2(d−1) ]
` . (3.76)

The change in the entropy (3.73) then becomes

∆S =
2π

d
Bd−2zd−1

∗

∫ `/2

−`/2
dx
∑
n=0

z2n+2−d

[
T

(n)
00 − T

(n)
xx

(
1− z2(d−1)

z
2(d−1)
∗

)]
. (3.77)

Hence we see that both the energy density and the pressure along the x-axis are contributing

in this result. To produce a more explicit result, we can simplify the calculation by assuming

that the expectation value of the stress tensor is uniform, i.e., T (n)
µν = 0 for n ≥ 1. Then

eq. (3.77) becomes

∆S =
2π

d
Bd−2zd−1

∗

∫ `/2

−`/2

dx

zd−2

[
T00 − Txx

(
1− z2(d−1)

z
2(d−1)
∗

)]

=
π1/2Γ[ d

d−1 ]Γ[ 1
2(d−1) ]2

8dΓ[ 3d−1
2(d−1) ]Γ[ d

2(d−1) ]2
Bd−2`2

[(
d+ 1

d− 1

)
T00 − Txx

]
, (3.78)

where we have used eqs. (3.75) and (3.76) to evaluate the final expression above. Here

again, we see that the result contains a term proportional to Txx.

Then we observe that with the first order calculations described here, we expect that

the inequality (1.8) must be saturated, i.e., ∆〈H〉 = ∆S. Therefore from this result, we

can also infer that the modular Hamiltonian for the slab geometry also contains terms

which are linear in the operator Txx. Hence from these calculations, we can begin to see

the appearance of new operators, i.e., other components of the stress tensor beyond T00,

appearing in the modular Hamiltonian for regions with general entangling surfaces.

Let us add a few more observations about ∆S for general entangling surfaces. First,

we note that if we make a Fourier transform of the stress tensor, as in eq. (3.16), then

eq. (3.73) can be rewritten using eq. (3.18) as

∆S = π Γ[d/2]

∫
dd−1x

∫
ddp exp(−ip · x)

√
1 + (∂z0)2 (3.79)

Id/2(|p|z0)

(z0|p|/2)d/2

(
T̂00(p)− T̂ij(p)

∂iz0 ∂
jz0

1 + (∂z0)2

)
,

where |p| = |√pµpµ|. Hence the same Green’s function Id/2(|p|z0) appears in evaluating

this leading contribution to ∆S for general entangling surfaces. Unfortunately, without
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the symmetry of a spherical entangling surface, this expression does not simplify in any

obvious way.

In fact, eq. (3.73) makes an important assumption about the extremal surface in the

bulk. Namely, that it is single-valued as a function of the boundary coordinates xi or

alternatively, that the extremal surface does not extend to values of xi beyond the region

V . Unfortunately, this assumption can be shown not to apply in many cases. For example,

a standard FG-like expansion of the extremal surface describes the bulk surface as Xµ(ya, z)

where ya are coordinates along the entangling surface and z is the usual radial coordinate

in the bulk [68, 69]. Then near the AdS boundary, one finds

Xi = Xi
0(ya)− 1

2(d− 2)
Ki(ya) z2 + · · · (3.80)

where Xi
0(ya) describes the position of the entangling surface in the boundary and Ki is

the trace of the extrinsic curvature for the spatial normal to the entangling surface. Our

conventions are such that Xi < Xi
0(ya) corresponds to the region inside the entangling

surface and Ki = +(d − 2)Xi/R2 for a sphere of radius R, centered at Xi = 0. Hence

for a spherical entangling surface, the above expression shows how the extremal surface

begins towards the interior of V as it extends into the bulk geometry. However, if the

geometry is such that Ki < 0 on some portion of the entangling surface, then the extremal

surface actually extends to Xi > Xi
0(ya). Clearly, eq. (3.73) does not accommodate this

situation where the integration would include contributions from outside of the region V

— see section 5 for further discussion.

We can also use the above expansion (3.80) to make an interesting observation about

the contributions to ∆S from near the entangling surface. Let us assume that Ki is

positive everywhere and then use eq. (3.80) to evaluate ∂iz to leading order in small z, or

equivalently to leading order in Xi −Xi
0(ya),

∂iz = −d− 2

z

 1

Ki(ya)
−

∂Xi
0

∂yb
∂yb

∂Xi

Ki(ya)

+ · · · . (3.81)

We can choose coordinates ya to coincide with d− 2 of the coordinates Xi at linear order

in the vicinity of a point in the boundary, and we call r the remaining X coordinate,

orthogonal to the boundary. Substituting into eq. (3.73), we find to leading order

∆S = 2π
d− 2

d

∫
dd−1xK−1 (T00 − Trr) + · · · , (3.82)

where K =
√∑

(Ki)2. We have dropped the higher derivative contributions with T
(n)
µν in

the above expression. Further note the integrand is only well approximated above in the

vicinity of the entangling surface. Now as we noted above, in the special case of a sphere

of radius R, we have Kr = +(d− 2)/R. Then the general expression (3.82) reduces to

∆S =
2πR

d

∫
dd−1x

(
T00 − Trr

)
+ · · · , (3.83)
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which agrees with expanding (3.7) to leading order in (R − r). However, we note that

this does not appear a good approximation of ∆H as given in eq. (3.19), even for small

(R−r). This suggests that the infinite derivative expansion in (3.7) is crucial to the ultimate

agreement between ∆S and ∆〈H〉, if we want to introduce localized sources which test the

vicinity of the region boundary.

As explained in section 6.3, one expects quite generally that if Tµν was localized suf-

ficiently close to the entangling surface, then ∆〈H〉 should reduce to that of the Rindler

modular Hamiltonian (1.9). Further then, in the regime where ∆S = ∆〈H〉, one must

expect this form to be reflected in the result for ∆S. However, as demonstrated above,

this agreement cannot be obtained in our holographic calculations purely by expanding to

leading order in z near the boundary, no matter how close and sharply localized near the

entangling surface Tµν is. In fact, the more localized Tµν becomes, the more important

the higher derivative terms will be, which leads to a significant correction to the leading

z term. As concluded above therefore, knowledge of the infrared completion of the bulk

minimal surface is always important.

4 Two-dimensional boundary theories

For a two-dimensional boundary theory, we can describe a thermal state with the BTZ

black hole [70]. However, in this case, the bulk geometry is still locally AdS3 space. Fur-

ther, in calculations of holographic entanglement entropy, the extremal surfaces are simply

geodesics. Combining these two observations, we are able to determine the extremal sur-

faces analytically and hence we can extend our previous analysis beyond perturbation

theory. That is, in contrast with the results in section 2, in the following we can evaluate

∆〈H〉 and ∆S for arbitrary values of RT . The present analysis also allows us to see the

effect of compactifying the AdS boundary and also to check the validity of the inequality

(1.8) in a situation where the extremal surface exhibits a ‘phase transition.’

Eq. (2.6) already describes the appropriate three-dimensional black hole. However,

since we wish to consider the spatial direction as compact, we write the (Euclidean) BTZ

metric [70] in more familiar coordinates as

ds2
E =

r2 − r2
+

R2
dτ2 +

L2 dr2

r2 − r2
+

+ r2 dφ2 , (4.1)

where, as usual, L is the AdS radius and the period of φ is 2π. The above geometry is

smooth as long as τ is chosen with period β = 2πLR/r+ and so the temperature is given

by simply T = 1/β = r+/(2πLR). The coordinates in eq. (4.1) are normalized so that the

boundary metric is

ds2
boundary = dτ2 +R2 dφ2 . (4.2)

Hence the periodicity of the spatial direction is 2πR and the boundary is a cylinder with

a total area 2πRβ. We should note that because the spatial direction is compact, there is

a Hawking-Page phase transition [71, 72]. The above black hole geometry is the dominant

saddle-point in the gravity path integral for T > 1/(2πR), while for T < 1/(2πR), the
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dominant saddle-point is simply the thermal AdS3 geometry. We may write the metric for

the latter as

ds2
E =

r2 + L2

R2
dτ2 +

L2 dr2

r2 + L2
+ r2 dφ2 . (4.3)

Implicitly, τ and φ are chosen with the same periodicity as in the previous case and the

boundary metric is again given by eq. (4.2).

Let us begin with the high temperature phase for which eq. (4.1) describes the correct

bulk geometry. It is relatively straightforward to evaluate the entanglement entropy of

an interval with an angular width ∆φ (and on a constant τ surface). Of course following

eq. (1.1), it is given by the length of the geodesic connecting the endpoints of the interval

V on the boundary [29–32],

S(V ) =
c

3
log

[
β

πε
sinh

(
πR∆φ

β

)]
, (4.4)

where c = 12πL/`P is the central charge of the boundary CFT and ε is the short-distance

cut-off in the CFT.12

This expression precisely matches the known result previously derived for two-

dimensional CFT’s at finite temperature [4, 5, 73]. However, we should note that this

previous result was derived for the case where the spatial direction was noncompact. That

is, this same expression (4.4) was derived for any two-dimensional CFT but only in the

limit R → ∞ while holding ∆x = R∆φ fixed. Hence, we see here that in a holographic

d = 2 CFT, compactifying the spatial direction does not affect this finite temperature

entanglement entropy (4.4). Of course, this statement holds when the bulk physics is accu-

rately described by classical Einstein gravity and hence eq. (4.4) only represents the leading

contribution in an expansion for large c.

Implicitly, the above result also assumes that ∆φ is sufficiently small. In this high

temperature phase, one finds for large enough ∆φ, that the holographic entanglement

entropy experiences a ‘phase transition,’ as described in figure 1. For any value of ∆φ,

there are two geodesics connecting the endpoints of the interval on the boundary, which

pass on either side of the black hole, as shown in figure 1a. However, only one of these (the

green geodesic in the figure) is homologous to the boundary interval V and hence this one

must be chosen to evaluate the holographic entanglement entropy. The other (the dashed

red geodesic) can be used to evaluate the entanglement entropy for the complementary

region V̄ , with the result

S(V̄ ) =
c

3
log

[
β

πε
sinh

(
πR(2π −∆φ)

β

)]
. (4.5)

Of course, for ∆φ > π, the latter expression is smaller than S(V ) in eq. (4.4). While this

geodesic by itself is not homologous to the region of interest, it can be used to construct

another extremal surface with two disconnected components, as shown in figure 1b, which

is homologous to V . The second component consists of a closed (spatial) geodesic which

12The latter appears in the holographic calculation by terminating the geodesic at a UV regulator surface

positioned at r = rUV = LR/ε in the bulk geometry.
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(a) (b)

Figure 1. (Colour Online) Extremal surfaces in the high temperature phase. The figures show a

cross-section of the AdS3 black hole at constant t. (a) For sufficiently small ∆φ, the holographic

entanglement entropy (1.1) is evaluated with the red geodesic. The dashed green geodesic passing

on the other side of the black hole is not homologous to the interval V , however, it would yield the

entanglement entropy for the complementary interval V̄ . (b) For large ∆φ, the dominant saddle-

point (in green) has two disconnected components, i.e., the geodesic homologous to V̄ and the

geodesic wrapping around the horizon.

wraps around (the bifurcation surface of) the black hole horizon. The latter contributes

the standard horizon entropy, i.e.,

SBH =
2π

`P
A(r+) =

2π2r+

`P
=

2π2c

3

R

β
. (4.6)

Hence combining these results, the entropy for a general interval is given by

S =
c

3
min

[
log

(
β

πε
sinh

(
πR∆φ

β

))
, log

(
β

πε
sinh

(
πR(2π −∆φ)

β

))
+

2π2R

β

]
. (4.7)

For general values of R/β, it would require a numerical evaluation to determine the precise

value of ∆φ at which there is a phase transition between the two saddle-points occurs.

However, in the high temperature limit with R/β � 1, it is straightforward to show that

the phase transition occurs at13

∆φ ' 2π − log 2
β

2πR
+ · · · , (4.8)

where the · · · denotes corrections that are exponentially suppressed by e−2π2R/β.

Recall in the low temperature phase with R/β < 1/(2π), the bulk geometry is simply

the thermal AdS3 geometry (4.3). In this case, there is always a single geodesic joining the

endpoints of the boundary interval and we have

S =
c

3
log

(
2R

ε
sin(∆φ/2)

)
. (4.9)

13We thank Ian Morrison and Matt Roberts for pointing out an error in the result given here in our

original manuscript.
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Again this expression precisely matches a known result derived for general two-dimensional

CFT’s [4, 5, 74]. In this case, this expression (4.9) holds for any two-dimensional CFT but

only in the limit T = 0. Hence, we see here that in a holographic d = 2 CFT, turning on

a small temperature does not affect the entanglement entropy (4.4) to the leading order in

the large-c expansion.

Hence comparing the entropy of a low temperature state to that of the vacuum (i.e.,

T = 0) for a fixed interval, we find ∆S = 0. Rather the order c contributions cancel and

hence ∆S is only a quantity of order one. If instead, we compare the entropy of a state in

the high temperature phase to that of the vacuum, we find

∆S =
c

3
log

(
1

2πRT

sinh (πRT∆φ)

sin (∆φ/2)

)
(4.10)

=
π2

18
c

(
R2T 2 +

1

4π2

)
∆φ2 +O

(
∆φ4

)
. (4.11)

In the first line, we have assumed that ∆φ is small enough that the finite temperature

entropy is given by eq. (4.4). In the second line, we are expanding the result for ∆φ� 1.

Note that the two expressions in eqs. (4.4) and (4.9) are approximately equal in this limit

∆φ� 1 where the effects of compactification and finite temperature can be neglected.

The modular Hamiltonian of a d-dimensional CFT for the vacuum on the cylindrical

geometry R × Sd−1 can be obtained by conformally transforming the result (1.10) for the

sphere in Minkowski space [35]. Applying this transformation in the present case with

d = 2, we have

H = 2πR2

∫ ∆φ/2

−∆φ/2
dφ

cos(φ)− cos(∆φ/2)

sin(∆φ/2)
T00 . (4.12)

In the vacuum, on the cylinder, the energy density is given by T00 = − c
24πR2 [75]. In general

at finite temperature, the expression for the energy density will be quite complicated but to

leading order in the central charge the energy density does not change until the temperature

reaches the high temperature phase RT > (2π)−1 [76]. In this high temperature phase we

have T00 = π
6 c T

2, which is the standard result for any CFT in the high temperature limit

(or in decompactified space) [75].

Combining these results gives

∆〈H〉 =
2π2c

3

[
1− ∆φ/2

tan(∆φ/2)

] (
R2T 2 +

1

4π2

)
(4.13)

=
π2

18
c

(
R2T 2 +

1

4π2

)
∆φ2 +O

(
∆φ4

)
.

The second line gives an expansion of the result for ∆φ� 1. Comparing with the expansion

in eq. (4.10), we see the leading term in both cases agrees and so we saturate the inequality

(1.8) for small ∆φ.

Our results above apply for any value of ∆φ and so we may also examine the inequality

(1.8) for finite values. Figure 2a shows the difference ∆〈H〉−∆S as a function of ∆φ for the

high temperature phase. There we see that this difference is positive and increasing for all

angles. Hence the inequalities in both eqs. (1.8) and (1.13) are satisfied throughout the full
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Figure 2. Comparing ∆〈H〉 and ∆S in the high temperature phase. Panel (a) shows the log of the

relative entropy and panel (b), the ratio ∆S/∆〈H〉, both as functions of angular size ∆φ ∈ (0, 2π).

The different curves are for β/R = 2π i
10 with i = 1, . . . , 10. Curves corresponding to higher

temperature (smaller β) have greater relative entropy in (a) and lower ratios ∆S/∆〈H〉 in (b).

range of ∆φ. Note the phase transition at large angular sizes, which was discussed above,

contributes very little to the slope of the curves. Figure 2b shows the ratio ∆S/∆〈H〉.
This ratio decreases with size and the figure clearly shows that ∆S ' ∆〈H〉 for intervals

of small size, as noted above.

4.1 Thermal Rindler space

In this section, we consider a two-dimensional CFT in a thermal state in the Rindler wedge.

The modular Hamiltonian for this case is given in eq. (1.11). We will use this to compute

the relative entropy between states at different temperatures, i.e., both ρ0 and ρ1 will

describe thermal states with temperatures, T0 and T1, respectively. The expectation value

of the stress tensor for both of these states is T00(x) = π
6 cT

2
i , where Ti corresponds to the

appropriate temperature. Since Rindler space has infinite volume, we need to introduce a

long-distance infrared cut-off Λ, i.e., we integrate only over 0 ≤ x ≤ Λ. Given eq. (1.11),

we fix the modular Hamiltonian to be H0 = H(T = T0) corresponding to ρ0. Then the

change of the expectation value of modular Hamiltonian between ρ1 and ρ0 given by

∆〈H〉 = Tr (ρ1H0)− Tr (ρ0H0) =
π

6
cΛ

(
T 2

1

T0
− T0

)
− c

12

(
T 2

1

T 2
0

− 1

)
. (4.14)

Here, we have dropped terms proportional to exp(−2πT0Λ). The first term on the right

hand side is the purely thermal and extensive (∝ Λ) contribution, which comes from the

large part of the Rindler wedge which is at distances larger than T−1 from x = 0. One

can regard the second term as the contribution of the entanglement across the entangling

surface x = 0.

Turning to the holographic calculation of the entanglement entropy, we use the original

metric (2.6) with d = 2 to describe the black hole geometry. The appropriate extremal

surface with which to evaluate eq. (1.1) is the geodesic which begins at x = 0 on the AdS

boundary (z = 0) and extends out along the event horizon (z = zh) at large positive x.
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This geodesic is given by

x(s) =
1

2
zh log

(
4e2s/L + 1

)
, (4.15)

z(s) =
zh(

1
4e
−2s/L + 1

)1/2 ,
where s is the affine parameter along the geodesic. Note that the geodesic approaches the

AdS boundary as s → −∞ and extends out along the horizon as s → +∞. With d = 2,

eq. (2.9) yields T = 1/(2πzh), and we recall that c = 12πL/`P. Imposing an ultraviolet

cut-off z = ε and an infrared cut-off at x = Λ, the entropy at a generic temperature T

becomes

S(T ) =
2π

`P
(s(x = Λ)− s(z = ε)) =

c

12
log

(
e4πTΛ − 1

4π2ε2T 2

)
. (4.16)

Given this expression, it follows that

∆S = S(T1)− S(T0) =
π

3
cΛ(T1 − T0)− c

6
log

(
T1

T0

)
, (4.17)

where again we are dropping terms that are exponentially small in Λ.

Combining eqs. (4.14) and (4.17), the relative entropy is

S(ρ1|ρ0) = ∆〈H〉 −∆S =
π

6
cΛT0

(
T1

T0
− 1

)2

+
c

12

(
1 + 2 log

(
T1

T0

)
− T 2

1

T 2
0

)
. (4.18)

For generic T1, this result is always positive because it is dominated by the first term since

ΛT0,1 � 1. Of course, one must treat the region T1 ∼ T0 more carefully. With T1 = T0,

both S(ρ1|ρ0) and the first derivative ∂T1S(ρ1|ρ0) vanish. The second derivative yields

∂2
T1S(ρ1|ρ0) =

c

6

(
2π

Λ

T0
− 1

T 2
0

− 1

T 2
1

)
. (4.19)

This quantity is again positive given ΛT0,1 � 1 and so the relative entropy is positive in

the vicinity of T1 = T0. Because of the vanishing first derivative, we also have the equality

for small deviations δT = T1 − T0

∆S = ∆〈H〉 = c

(
π

3
Λ− 1

6T0

)
δT . (4.20)

In previous calculations, we compared the vacuum state and a thermal state. To

compare the thermal state with the vacuum on Rindler space, we can set T1 = 0 and ∆〈H〉
follows from eq. (4.14) as

∆〈H〉 = −π
6
cΛT0 +

c

12
. (4.21)

The vacuum in Rindler space has logarithmic entropy S ∼ c/6 log(Λ/ε). Hence the differ-

ence in entropies is

∆S = −π
3
cΛT0 +

c

6
log(ΛT0) +O(Λ0) . (4.22)
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Thus the inequality ∆〈H〉 > ∆S is always valid. Note that there is no meaningful way to

say that the relative entropy14 approaches zero, i.e., ∆〈H〉 → ∆S, for small temperatures

since we must keep ΛT0 � 1. In fact, the vacuum in Rindler space always remains at

an infinite statistical distance from a thermal state since far enough from the origin, i.e.,

x� 1/T0, the thermally excited modes are in presence of a nearly zero Unruh temperature

vacuum. This does not happen in comparing the vacuum and a thermal state over a finite

interval of size `. At sufficiently small temperatures, i.e., T0 . 1/`, the change in the

modular Hamiltonian will essentially match the change in the entanglement entropy. In

particular, in the previous section, we saw that ∆〈H〉 and ∆S were always nearly identical

for sufficiently small ∆φ, irrespective of the temperature.

5 Puzzles about localization

Most of our previous calculations only probed the asymptotic region in the bulk geometry

and in particular, the analysis in section 3 relied heavily on the asymptotic FG expansion.

With the latter approach, one can construct the asymptotic geometry for states with an

essentially arbitrary expectation value for the stress tensor and other operators. However,

one should be aware that in many cases, these expectation values will not correspond

to a physical state. In other words, if one really goes beyond the asymptotic expansion

to construct the full nonlinear gravity solution, one would find that in many cases, the

solution has a naked singularity somewhere in the infrared region. Of course, string theory

may be able to resolve some such singularities [77, 78], however, one should expect that

most of these singular solutions are simply unphysical. Certainly, our previous analysis

does not consider such issues which might arise in defining a global state from imposing

a ‘smoothness’ boundary condition in the infrared. In this section, we consider some

apparent paradoxes (and their resolution) which appear from localizing the expectation

values which contribute to ∆〈H〉 and ∆S. From this perspective, the relative entropy

provides interesting probe of the AdS/CFT correspondence, which reveals constraints on

the properties of physical states which would not be easily seen by other means.

5.1 Complementary regions in a pure state

Our general arguments from the previous sections indicate that under the conditions of a

small linear perturbation δTµν , the inequality in eq. (1.8) is saturated with ∆S = ∆〈H〉,
for a spherical entangling surface. Further it is clear from the holographic calculations that

if the perturbation δTµν was completely localized outside of the sphere, it would not change

the entanglement entropy, i.e., ∆S = 0. Further given the form of the modular Hamiltonian

(1.10), it is also clear that for this situation that we also have ∆〈H〉 = 0. Of course, this

is as it must be, since HV is a operator in the algebra generated by local operators in

the region V , i.e., the interior of the sphere.15 The latter would then also extend to more

14Note that in evaluating S(ρ1|ρ0) = ∆〈H〉 −∆S, ρ1 corresponds to the vacuum while ρ0 is the thermal

state. In our previous calculations, these roles were reversed.
15The full generator of modular flow is HV − H−V , while HV is the generator for the modular flow

inside V .
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general regions V , for which we also expect ∆〈HV 〉 to be given by contributions from the

expectation values of operators inside V .

Now our first apparent paradox arise from considering instead the case where δTµν is

entirely localized inside the sphere. Again we suppose that eq. (1.8) is saturated with

∆SV = ∆〈HV 〉 . (5.1)

The modular Hamiltonian of the vacuum state in the region V outside the sphere is given by

HV = 2π

∫
|x|>R

dd−1x
r2 −R2

2R
T00(x) . (5.2)

Our assumption is that the stress tensor vanishes in this complementary region. Hence

since 〈T00(x)〉 = 0 in V , we have

∆〈HV 〉 = 0 . (5.3)

However, if the perturbed state is pure, the entanglement entropy for the two comple-

mentary regions, the interior and the exterior of the sphere, must be equal. Holographically,

∆SV came from the changes in the corresponding extremal surface in the bulk. However,

assuming there are no additional horizons in the bulk, as should be the case for a pure

state, the same two extremal surfaces (i.e., the one for the vacuum and the one for the

perturbed state) also determine SV . Thus, in this case we have

∆SV = ∆SV . (5.4)

Now combining eqs. (5.1), (5.3) and (5.4), we see ∆〈HV 〉 6= ∆SV . In particular then,

the equality can not be achieved for V no matter how small δTµν is. In fact, assuming

we have injected a small positive energy inside the sphere, i.e., δT00 > 0, then ∆〈HV 〉 =

∆SV = ∆SV > 0. Then we have arrived at a clear contradiction with the positivity of

relative entropy since ∆〈HV 〉−∆SV < 0. Of course, the resolution to this apparent paradox

is that it is not possible to choose to inject (positive) energy only in V and not in V for a

pure state near the vacuum. There must be enough energy in both V and V to ensure the

equality of the expectation values of the modular Hamiltonians for the two complementary

regions. In the context of the AdS/CFT correspondence, this is a constraint that would

not be visible with the FG expansion but that one can imagine arises from global issues in

defining a smooth bulk geometry.

We can also make a field theory argument to directly demonstrate this conclusion that

the energy of the perturbed state cannot be strictly localized. To see this, we construct

the combination

H = HV −HV . (5.5)

This operator generates the conformal transformations which keep the sphere fixed [35]. It

annihilates the global vacuum state

H|0〉 = (HV −HV )|0〉 = 0 . (5.6)
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Now we can write an arbitrary pure state which approaches the vacuum as

|ψ〉 = |0〉+ ε|φ〉 (5.7)

with small ε. Then using eq. (5.6), we have

∆〈HV 〉 = 〈ψ|HV |ψ〉 ' ε(〈φ|HV |0〉+ 〈0|HV |φ〉)
= ε(〈φ|HV |0〉+ 〈0|HV |φ〉)
= ∆〈HV 〉 . (5.8)

For example then, |φ〉 might be generated by creation operators associated to wave packets

concentrated inside the sphere. However, the above equality indicates that there is also

some energy density built outside the sphere, to linear order in ε.

Moreover, the relation (5.6) is completely general, valid for the modular Hamiltonian

of any region. To see this note the vacuum state is a pure state belonging to the Hilbert

space HV ⊗HV , and hence can be written in a Schmidt decomposition [79]

|0〉 =
∑
i

√
λi |ψVi 〉 ⊗ |ψVi 〉 . (5.9)

One readily checks doing the partial traces of this state that the |ψVi 〉 are the eigenvectors

of ρV and |ψVi 〉 are those for ρV , while λi are the common eigenvalues of both density

matrices. Then a simple calculation shows

(ρV )iτ ⊗ (ρV )−iτ |0〉 = |0〉 . (5.10)

These unitary operators leave the vacuum invariant for any τ .16 Expanding for small τ ,

and taking into account that ρV ∼ e−HV , ρV ∼ e−HV , we obtain (5.6) for any region. In

the limit which we are considering, where a perturbed state is approaching the vacuum,

there is no way to make a pure state with localized modular energy. This guarantees once

∆〈HV 〉 = ∆SV we also have ∆〈HV 〉 = ∆SV for any region and any pure state in this

approximation.

Of course, the latter also represents a restriction that applies for holographic pure

states in the AdS/CFT correspondence. However, this observation has a limited utility

in general because, as we noted before, the precise form of the modular Hamiltonian is

not know except in certain special cases and in general, it is not even local (though it is

generated by local fields inside V ). However, in section 6.1, we consider if for holographic

CFT’s dual to Einstein gravity, expectation values of the modular Hamiltonian for any

region, to first order in pure state deviations from the vacuum state, are in fact given by

expressions linear in the expectation value of the stress tensor. Hence in this case, the

above observation becomes a constraint on the localization of the stress energy in pure

states for such a holographic theory.

16These unitary operators implement an evolution for an internal time τ . This time flow is called the

modular flow [47].
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5.2 An inequality for ∆〈H〉

We can use the previous result to relate boundary data in the FG expansion with the

formation of horizons or singularities in the infrared region. Suppose as before that we

have a global state for which the stress energy inside of a given sphere is small enough

that ∆SV = ∆〈HV 〉. Further, if this global state is pure, it is SV = SV . However, even if

the density matrix describing V is not near the vacuum and there is no equality between

∆〈HV 〉 and ∆SV , we still have from relative entropy in V that for a pure state

∆〈HV 〉 ≥ ∆〈HV 〉 , (5.11)

for any sphere V with small stress tensor 〈Tµν(x)〉. If this inequality is not maintained then

either the state is impure or the boundary data does not describe a consistent physical state.

In particular, as described above, we expect that the boundary data yields a full gravity

solution containing a naked singularity in the infrared region.

Let us consider further the case of an impure state, in which case we expect that

the bulk develops a horizon. The discussion in section 4 provides an explicit example of

the following considerations. A state near the vacuum inside the sphere V gives again

∆SV = ∆〈HV 〉. In this situation, we also know that generally ∆SV 6= ∆SV , because for a

global impure state the entropies of complementary regions do not coincide. We may still

ask what is the possible value of ∆SV . In the vacuum, the minimal surfaces determining the

entanglement entropy for V and V coincide, yielding SV = SV . In the perturbed state, ∆SV
comes from a small variation of this minimal surface. It seems reasonable to expect that

the minimal surfaces determining SV will contain as one component the same (perturbed)

minimal surface. Then this surface would contribute the quantity ∆SV to ∆SV . However,

there may also be a horizon contributing positively some SH to SV , which of course is not

present in the vacuum entropy. In this case, we have ∆SV = ∆SV +SH > ∆SV . Thus, from

the positivity of the relative entropy applied to V , we again find that the inequality (5.11)

is satisfied. It is a logical possibility that the extremal surface determining SV does not

contain the minimal surface yielding SV . In this case, we would expect that there is

again a horizon in the interior between the two extremal surfaces preventing one from

collapsing to the other. We think this possibility is not probable if we are in the regime

where ∆SV = ∆〈HV 〉. The area of any such putative minimal surface would be very large

compared to the two component surface comprised of the horizon and the surface in the

asymptotic region near V . However, even in this situation, the area of the minimal surface

determining SV would be much larger than that for SV and eq. (5.11) would still hold.

In conclusion, it seems that inequality (5.11) cannot be violated even for impure states.

Hence violations of this inequality should signal that the boundary data appearing in the

FG expansion does not correspond to a physical state. Recall that the modular Hamiltonian

for the interior and exterior of the sphere are explicitly given in eqs. (1.10) and (5.2). Hence

it is straightforward to explicitly evaluate ∆〈H〉 on both sides of eq. (5.11) and test this

inequality.

It would be interesting to have a purely QFT understanding on why 〈Tµν〉 not satisfying

this inequality is unphysical. Returning the QFT discussion above, eq. (5.8) need not apply
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R1

R2

Figure 3. The annular region on the AdS boundary is shown with the two solid lines. When the

radius R1 and R2 of the annulus approach each other the minimal surface has the shape of a half

torus connecting the two spheres (left panel). When R2/R1 is greater than a certain value the

minimal surface is formed by the two spherical caps ending at the spheres of radius R1 and R2 at

the boundary (right pannel).

in general because the order ε2 terms are important in V . Instead one would have ∆〈HV 〉 =

∆〈HV 〉 + ε2〈φ|HV |φ〉 and hence eq. (5.11) demands that 〈φ|HV |φ〉 ≥ 0. Examining HV

in eq. (5.2), this inequality seems to indicate that CFT states in Minkowski space cannot

support a negative energy density over large regions, which certainly seems an intuitive

conclusion.

5.3 Annular regions

Consider now an annular region A bounded by two concentric spheres with radii R1 < R2.

We denote the regions within the two spheres as V1 and V2. In the holographic context,

depending on the ratio R2/R1 and the dimension d, the minimal surface can have two

different topologies. In one regime where R2 ∼ R1, the minimal surface has the shape of a

half torus connecting the two spheres in the asymptotic boundary. In the opposite regime

where R2 � R1, the surface is formed by two separate spherical caps, each one attached

to one of the spheres on the boundary17 — see figure 3. We focus on the latter regime in

the following.

Now if we turn on a small expectation value for 〈Tµν〉 using the FG expansion, we

obtain a variation ∆SA for the annulus which is linear in 〈Tµν〉, and according to the

general arguments above, this variation will equal ∆〈HA〉. However, we note that ∆〈H〉 is

the expectation value of an operator with support entirely inside the annular region.

For the phase where the minimal surface has two disconnected components, one at-

tached to each spherical boundary of the annular region, we know the contribution to

∆〈H〉 for any linear 〈Tµν〉 exactly. The contribution from each cap can be evaluated inde-

pendently, and as shown in section 3.1, each of these contributions satisfies ∆〈H〉 = ∆S.

Hence we find

∆〈HA〉 =

∫
|x|<R1

dd−1x
R2

1 − r2

2R1
T00(x) +

∫
|x|<R2

dd−1x
R2

2 − r2

2R2
T00(x) . (5.12)

17Note that the inner sphere of radius R1 provides an example where a portion of the entangling surface

has Ki < 0 and so, as discussed below eq. (3.80), the extremal surface in the bulk bends away from the

interior of A. In fact, this behaviour also persists in the regime where R2 ∼ R1 and the minimal surface

has the topology of a half torus, as observed in [80].
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Clearly the expression on the right-hand side includes contributions of Tµν(x) from outside

of A, i.e., from x < R1, inside the smaller sphere. While we do not have a precise expression

for HA at this point, we re-iterate that it only has support inside of A. As such, eq. (5.12)

becomes a nonlocal constraint on small stress tensor perturbations of physical states in the

holographic framework.

We might also consider the exterior of the annulus, A = V1 ∪ V 2. Working again in

the regime with R2 � R1, holographic entanglement entropy is again determined by the

area of the two spherical caps in the bulk. In this case, we would have

∆〈HĀ〉 =

∫
|x|<R1

dd−1x
R2

1 − r2

2R1
T00(x) +

∫
|x|>R2

dd−1x
r2 −R2

2

2R2
T00(x) , (5.13)

where the contributions come entirely from the region external to the annulus or alterna-

tively from within A. Hence one might guess that HA = HV1 + HV 2
. In particular, this

structure would yield a density matrix with the product form ρA = ρV1 ⊗ ρV 2
.

6 Discussion

In this paper, we have examined relative entropy for some particular states and entangling

surfaces in the context of the AdS/CFT correspondence using the standard prescription

for holographic entanglement entropy (1.1). Our results here constitute a strong test of

this holographic entropy formula. A notable case is the sphere for which we have shown in

section 3.1 by direct calculation that holographic entanglement entropy yields the correct

entropy for any perturbation of the vacuum, to linear order. In the following, we comment

on various implications of these results.

6.1 Vacuum state tomography

It is remarkable the inequality (1.8) expressing the positivity of the relative entropy, is in

fact saturated at leading order and so this equality provides an equation that any first order

deviations of holographic entropy must satisfy. The equality ∆S = ∆〈H〉 then becomes an

interesting tool. In fact, we can think of reversing the logic of our tests and trying to obtain

information about the modular Hamiltonian, or equivalently the reduced density matrix,

from the holographic entanglement entropy. In this sense, the entanglement entropy has

the potential to provide a full ‘vacuum state tomography.’ Let us recall that any pure

perturbation of the vacuum can be written as

|ψ〉 = |0〉+ ε |φ〉 (6.1)

with some small ε. Then the expected change in the entropy and modular energy are

∆S = ∆〈HV 〉 = ε(〈0|HV |φ〉+ 〈φ|HV |0〉) . (6.2)

The knowledge of ∆S for any perturbation gives us the expectation values on the right

hand side. The knowledge of these expectation values for any |φ〉 and the fact that HV is

an operator localized in the region V imply we can in principle reconstruct the full density
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matrix from the entropy functional. To see this let us recall the expression for the Schmidt

decomposition of the vacuum: |0〉 =
∑

i

√
λi |ψVi 〉⊗ |ψVi 〉. In this basis, an arbitrary global

pure state writes

|φ〉 =
∑
i,j

βij |ψVi 〉 ⊗ |ψVj 〉 . (6.3)

Writing ρ0
V = e−HV , with the particular normalization Tr

[
e−HV

]
= 1, the modular Hamil-

tonian is simply

HV =
∑
i

− log(λi)|ψVi 〉〈ψVi | . (6.4)

Then, after a little algebra, eq. (6.2) gives

∆S = εTr
(

(β + β†)HV e
−HV /2

)
. (6.5)

If ∆S is known for any φ, represented by the arbitrary matrix β in this equation, we can

obtain the matrix HV e
−HV /2 as a solution of a set of linear equations.18 In other words,

there is a unique operator in V such that all linear entropy perturbations for pure state

deformations coincide with the value of ∆〈HV 〉.
In principle, this idea allows us to reconstruct the full density matrix of a region based

only in the entanglement entropy functional. In particular then, in the context of the

AdS/CFT correspondence, it seems that the latter is readily accessible using the standard

holographic prescription (1.1). For example, based on our results in section 3, we can

reconstruct the full modular Hamiltonian operator for the vacuum reduced to the region

within a sphere and the result coincides precisely with the standard expression (1.10) for a

CFT. In order to show this, we note we are doing an experiment devised to produce pure

deviations of the vacuum as in eq. (6.1) in the boundary theory. In the AdS/CFT context,

this excitation is translated to the bulk language by the effect which it has on expectation

values of operators. We can say the excitation will be defined by a series of expectation

values for certain operators on the boundary which are turned on linearly in ε,

∆〈O〉 ' 〈ψ|O|ψ〉 − 〈0|O|0〉 = ε (〈φ|O|0〉+ 〈0|O|φ〉) . (6.6)

Hence, the reasoning which leads to the vacuum state tomography for the sphere is given

by the following steps:

1. Since the holographic prescription (1.1) yields the entanglement entropy purely in

terms of the geometry, linear (order ε) perturbations in the entropy should depend

only on linear (order ε) perturbations of the bulk metric.

18Here all the eigenvalues λi are assumed to be different from zero, or equivalently the density matrix

ρV has inverse. Otherwise the modular Hamiltonian has infinite coefficient for |ψVi 〉〈ψVi |, and hence is

undefined under finite additions of this projector. This ambiguity for HV is seen clearly from 6.2 since

in this case 〈φVi |0〉 = 0 and then additions of |ψVi 〉〈ψVi | in HV do not change ∆S. In QFT these local

excitations in V completely orthogonal to the vaccum are not allowed as a consequence of the Reeh-Slieder

theorem [81].
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2. Linear perturbations in the bulk metric can be separated as having two different ori-

gins. The first one is due to order ε terms in the boundary data giving the expectation

value of the stress tensor, which modifies the boundary conditions. The second one

is due to perturbations of the bulk stress tensor which are also linear in ε. The latter

modify the source of Einstein equations.

3. The bulk stress tensor gets corrections from deviations of bulk matter fields and these

are in turn related to the boundary data for expectation values of dual operators.

However, the bulk stress tensor is quadratic in the matter fields and so does not yield

corrections linear in ε in the vacuum.19 Alternatively, one can argue the absence of

order ε corrections because if they did exist, changing the sign of ε would lead to an

unphysical bulk stress tensor, i.e., not satisfying the null energy condition.

4. Hence, correction to S linear in ε can only depend on the linear perturbations of the

boundary stress tensor for the minimal surface of any region.

5. For the case of the sphere, we have shown the linear terms on ∆S coincide with the

ones in the expectation value of the operator H = 2π
∫
dxd−1 R2−r2

2R T00(x).

6. This operator H is localized inside the sphere (i.e., belongs to the algebra of operators

generated by local fields on the sphere). Hence, it is the unique operator in the sphere

which does the job of satisfying the equation ∆〈H〉 = ∆S for any pure deviation of

the vacuum to linear order in ε. Hence it is the modular Hamiltonian of the sphere.

It is interesting to see what obstacles arise to reconstructing the modular Hamiltonian

for other regions. As above, we have that for a general region ∆S is linear in Tµν(x) to

first order in ε. However, here we find two related problems. First consider the case of

a minimal surface corresponding to a region V which in terms of the FG coordinate z is

single-valued, that is, for any x ∈ V we have a unique z(x) describing the surface (i.e., the

one corresponding to an ellipsoidal region with Ki > 0 everywhere along the entangling

surface). Using the FG expansion, the contribution to ∆S in eq. (3.73) involves time and

spatial derivatives of Tµν(x) of arbitrarily high order. Even if the spatial derivatives can

be eliminated by integration by parts, the time derivatives remain. In section 3.1, it was

a surprising result that for the sphere these time derivatives finally disappear from the

final expression. However, the result for a general surface cannot be considered as the

expectation value of an operator localized in V , because even if it depends only of Tµν(x)

for x ∈ V , it depends on arbitrary derivatives of the stress tensor. For a minimal surface

extending outside V , such as the annulus discussed in section 5, this nonlocality of the

contribution is seen more directly since ∆S involves Tµν outside V . In fact, these two

19We stress that this is only for variations around the vacuum, where the bulk stress tensor is given

by the cosmological constant alone. For other states, it is clear there will be linear terms in expectation

values of other operators, i.e., . charge density operator for a state with non zero chemical potential. The

argument fails in this case because the change of order ε in the stress tensor is infinitesimal with respect

to the stress tensor for ε = 0, which is non zero for non vacuum states. Hence we can change the sign of ε

without implying a failure of null energy condition.
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types of nonlocality can be put on the same basis by writing the variation of the metric

tensor in terms of the boundary-to-bulk Green’s function in coordinate representation.

That is, we can write eqs. (3.5) and (3.15) as

δgµν(y, z) =

∫
ddx G(x− y, z)Tµν(x) , (6.7)

where G(x − y, z) is proportional to the Fourier transform of the Green’s function of sec-

tion 3.1 in momentum space,20

G(x− y, z) =
ld−1
p

dLd−12d/2−1Γ[d/2 + 1]

∫
ddp

(2π)d
θ(−p2)

zd/2

pd/2
Jd/2(|p|z)e−ipx . (6.8)

Hence, generically, because this Green’s function is not of compact support, the contribu-

tion of Tµν(x) for any spacetime point x will not vanish in the variation of the area for a

given minimal surface. This is so unless some conspiracy between the particular minimal

surface and the tracelessness and conservation of Tµν occurs. This is the case of the sphere,

where the contribution is localized inside V , but we do not expect the latter property to

extend to the case of general surfaces.

The question is how is this possible. The expectation value of the modular Hamiltonian

should be localized in V . The answer to this apparent contradictions has to reside in the fact

that the expression of the result for ∆S in terms of operator expectation values suffer from

two different types of ambiguities. First, we do not have full control on which perturbations

for Tµν are generated by genuine pure deviations from the vacuum, as discussed in section 5.

Some of the constraints we know, for example, the expectation value of Tµν has to satisfy

∆〈HV 〉 = ∆〈HV 〉 for any sphere. The same equality holds for the (unknown) modular

Hamiltonian for any general region. The second source of ambiguities is due to the fact

that since operators obey time evolution laws the expectation values at different times

could in principle be rewritten as expectation values for other operators at a single time.

Hence, is its natural to suppose that the expression of ∆S for a general surface, given in

terms of Tµν in all spacetime, could be converted into one of some other operator inside V

once these constraints are fully understood.

6.2 Separated regions and Renyi entropies

For the case of two (or more) well separated spheres A and B, where the minimal surface

consists of the separate minimal surfaces for the spheres, it is evident ∆S is also the sum

of ∆S for both spheres separately. In this case, one has that the modular Hamiltonian

can be reconstructed again, and coincides with the sum of the those for separated spheres,

because ∆S depends on Tµν inside the region A ∪ B only. This is consistent with the

mutual information I(A,B) = S(A) + S(B) − S(A ∪ B) being zero in this case. Mutual

information is an upper bound to connected correlators, and if it is zero it means correlators

of operators in A and B factor out, to leading order in large N (or large central charge).21

20The integration is over time-like momentum since only time-like momentum appears in the contributions

〈0|Tµν(x)|ψ〉+ 〈ψ|Tµν(x)|0〉 because physical states have momentum inside the light cone.
21It is worthwhile to note that our discussion of the reconstruction of the modular Hamiltonian for

holographic theories relies on the geometric prescription (1.1) to calculate the entanglement entropy. Of
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It is intriguing that Renyi entropies [37–40] for these same configurations do not sepa-

rate into the contributions ofA andB to this same order inN , for d = 2 [33, 42, 43] or higher

dimensions [82]. However, recall that Renyi entropies are given by Sn = (1−n)−1 log [trρn]

and so depend on powers of the density matrix. These powers are very different from the

density matrix itself, as well as, very different from any finite energy density state in the

region. In contrast, the entanglement entropy is the limit n→ 1 and hence only feels states

near to ρ. Let us look at a simpler case which, while it is quite different to the specific

situation we are considering above, still exemplifies the relevant ideas. Hence we think of

a global thermal state with ρ = e−H/T /Z where H is the standard Hamiltonian. Then

Renyi entropies are quantities related to states at different temperatures. Now it is always

possible to have a phase transition at some critical temperature where the N dependence of

various physical quantities changes, e.g., section 4 described an example where the energy

density suffers a phase transition with different dependence on N .22 It follows then that

the corresponding Renyi entropies exhibit the same phase transition, since changing the

Renyi order n and the temperature T are the same thing in this case. However, we can

also expect similar behaviour for the Renyi entropies in a more general context. In partic-

ular, our discussion above indicates that the effective modular Hamiltonian, which is the

one relevant for computation of correlation functions, decouples for the two well separated

spheres. It does not include all information on higher order N corrections, which must still

play an important role in determining the Renyi entropies.

6.3 Rindler-like contributions

While in general the modular Hamiltonian for a generic region is not a local operator,

one expects that very close to the entangling surface of any region V , HV will approach

the simple local form given in eq. (1.9) for Rindler space. We readily see this behaviour

in eq. (1.10) as we approach r ∼ R for the spherical entangling surface. However, the

local Rindler expression should be the leading contribution in the modular Hamiltonian

independent of the shape of the surface. One approach [28] to understanding this general

result is this Rindler term provides short distance part of ρV that encodes the correlators

in the vicinity of the boundary of the causal domain defined by the entangling surface and

in the UV, these correlators have the same structure as in flat space, i.e., in the vicinity of

a Rindler horizon. Alternatively, as alluded to in various points in our discussion, one can

think of the Rindler Hamiltonian as defining a thermal density matrix with a local effective

temperature of Teff = 1/(2πx) where x is the (orthogonal) distance to the entangling

surface. Hence as we approach this boundary, the effective temperature diverges and this

Rindler term overwhelms any other fixed contributions to the density matrix. Hence along

course, this formula is only expected to yield the leading contribution in an expansion of large central

charge. In principle, this limitation represents another obstacle to recovering the full modular Hamiltonian.
22In the case of two decoupled regions in d = 2, Renyi entropies for integer n > 1 do not decouple. This

corresponds to lower “internal” temperature for the region. Hence, the phase transition is better described

as a screening phase transition, where the entropy, corresponding to a state of higher internal temperature

(the vacuum state in A∪B here), does not see correlations, while Renyi entropies detect these correlations

at lower internal temperatures. We owe this observation to Hong Liu.
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the lines of our discussion of vacuum state tomography, we might attempt to verify the

appearance of a Rindler-like contribution in the present holographic setting. In particular,

we are thinking here of evaluating ∆S for perturbations localized near the boundary of

the region. This independence of shape for the contribution of these localized sources

should then be associated to the surface being minimal — remember in this calculation

the contribution would depend on a localized δgµν near the boundary and the dependence

on the variation of the surface shape far from the source would not contribute precisely

because it is minimal. However, the results of section 3.4 suggest that to have a sufficiently

localized δgµν we might need to choose a gauge for the boundary-to-bulk Green’s function

which is different from the one in eq. (6.8). This reasoning would then lead us closer to

a purely thermodynamic understanding of the standard prescription (1.1) for holographic

entanglement entropy.

6.4 Bulk null energy condition

In our previous discussion, we argued that the expectation values of operators other than

Tµν only appear quadratically in ∆S and one form of this argument relies on the null energy

condition of the bulk stress tensor. Further, these quadratic order contributions must be

negative in order to preserve the positivity of the relative entropy. It seems natural the

sign of these contributions could be directly related to the null energy condition. In fact,

for the sake of the argument, we can think directly in terms of the change of entropy due to

the bulk stress tensor perturbation. This encodes all the information from the expectation

value of fields at the boundary which is relevant for the calculation of ∆S. The variation of

the metric due to perturbations on the bulk stress tensor can be written with an expression

similar to eq. (6.7), but where now the integration is over bulk spacetime, the boundary

stress tensor is replaced by the perturbation of the bulk stress tensor, and the Green’s

function is the bulk-to-bulk Green’s function [83, 84]. It would be interesting to find out

if null energy condition alone can ensure a definite sign for this contribution of δgµν to

the change in the area of the minimal surface in a general situation. In other words, the

area of the minimal surface of any boundary region V in presence of a bulk Tµν satisfying

the null energy condition has to be smaller than the one corresponding to V in pure AdS

spacetime.

6.5 Bekenstein bound

Bekenstein argued that all systems must satisfy an inequality of the form [85, 86]

S ≤ 2πRE , (6.9)

where S and E are the entropy and energy of a system confined to a region of size R — see

appendix A.4. While this bound was originally derived with a thought experiment involv-

ing dropping an object into a black hole, eq. (6.9) does not involve Newton’s constant and

so it should be possible to understand the bound entirely in terms of flat space physics.

Unfortunately, as presented, all of the physical quantities in eq. (6.9) are ambiguous. How-

ever, these ambiguities can be eliminated by re-interpreting the bound in terms of the
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inequality (1.8) expressing the positivity of the relative entropy [87–89] i.e., ∆S ≤ ∆〈H〉.
As described in the appendix, one can apply eq. (1.8) in Bekenstein’s thought experiment

where the region of interest is Rindler space and the result is precisely the inequality in

eq. (6.9). Relating eq. (6.9) to relative entropy makes clear that the physics behind the

Bekenstein bound is simply quantum mechanics and special relativity.

Of course, to make progress with this approach, we must know the modular Hamilto-

nian for a given situation. Therefore, let us turn to the example of a spherical entangling

surface for a CFT in which case the modular Hamiltonian is given by eq. (1.10). One

observation is that if the bound is expressed in terms of the total energy enclosed, as in

eq. (6.9), then the precise bound depends very much on how the energy is deposited within

the sphere. For example, for a smooth distribution of energy, analogous to those considered

in section 2, one finds ∆S ≤ 2π
d+1RE while if the energy is localized near the center of the

ball enclosed by the sphere ∆S ≤ πRE. Both of these inequalities have the same form

as that in eq. (6.9) and only the overall numerical factor changes on the right-hand side.

A more dramatic change arises if the energy is deposited in a spherical shell of roughly

radius R and width w with w � R. In this case, eq. (1.8) becomes ∆S ≤ 2πwE and

so the relevant length scale that emerges here is, in fact, the width of the shell. This be-

haviour is reminiscent of the result in [90], where it was argued that the Bekenstein bound

is controlled by the shortest dimension (rather than the largest) for matter confined to

an elongated region. Of course, the discussion there relied on considerations of how the

weakly gravitating matter focussed light rays passing through the region. A similar result

can be inferred from our holographic calculations for the strip geometry in section 3.4. To

linear order where eq. (1.8) is saturated, we find for a smooth energy distribution that

∆〈H〉 ∝ `E where ` is the width of the strip. Hence again it appears that the shortest

distance sets the geometric scale for the Bekenstein bound.

Of course, the example of the strip reminds us that in general the ‘modular energy’

in eq. (1.8) can be quite dissimilar to the energy appearing in eq. (6.9). Our holographic

result for ∆S in eq. (3.78) shows that the pressure Txx appears on a more or less equal

footing with the energy density T00. Hence using the saturation of eq. (1.8), we expect for

homogenous (CFT) matter distributions that the bound will be set by

∆〈H〉 ' ` V
[
d+ 1

d− 1
T00 − Txx

]
, (6.10)

where V = Bd−2` is the volume of the strip. The resulting bound is qualitatively different

from the Bekenstein bound in eq. (6.9) since we can not expect the quantity in eq. (6.10)

to be proportional to the energy in the strip. In principle, for quantum matter, T00 and

Txx do not need to satisfy any relation and are not even constrained by classical energy

conditions. So the bound set by eq. (6.10) can be much more (or less) constraining than

a bound set by T00 alone. In particular, if one could realize Txx ' d+1
d−1T00, we would have

the interesting conclusion that ∆S ≤ 0, i.e., the entropy in the perturbed state has to be

smaller than that in the vacuum state. Of course, these results are symptomatic of the fact

that in general, the modular Hamiltonian will contain contributions involving operators

other than the energy density and in fact, operators unrelated to the stress-energy tensor.
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Hence the bounds set by eq. (1.8) will generically be far more complicated than the simple

expression appearing in eq. (6.9). Further we must add that although the interpretation

of the Bekenstein bound in terms of eq. (1.8) gives a general prescription which is free of

ambiguities, unfortunately, without a clear understanding of the modular Hamiltonian for

a given situation, this interpretation is left somewhat lacking.

6.6 Entanglement thermodynamics

Some recent references [61, 91] also consider relations similar to the first law of thermody-

namics, i.e., dE = T dS, for entanglement entropy — see also [92–95]. In particular, the

discussion in [61] centers on the proportionality between the energy within a small region

and the entanglement entropy of the same region, which is seen in several examples. In the

present paper, we have seen the origin of this proportionality is the equation ∆〈H〉 = ∆S.

However, we must again remark that it is in general a different ‘type’ of energy, the modu-

lar ‘energy,’ that enters into a proper definition of the equation. For example, if this is not

taken into account, the proportionality factor between energy and entropy for a spherical

entangling surface depends on the distribution of the energy inside it — as was already

observed in [61]. For more general (i.e., non-spherical) geometries, ∆S is simply not pro-

portional to the energy, but rather other operators will appear in the modular Hamiltonian

and in the expression for ∆〈H〉.
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A Comments on relative entropy

Relative entropy provides a precise measure of the statistical distance between two states.

Given a state ρ1, the probability of confounding it with ρ0 after n trials of some measure-

ment is asymptotically exponentially decreasing for large n as

e−nS(ρ1|ρ0) . (A.1)

In this sense. relative entropy is commonly thought as a measure of the distinguishability

between states [96].

As mentioned, relative entropy is positive and increasing with system size,

S(ρV1 |ρV0 ) ≥ 0 , (A.2)

S(ρV1 |ρV0 ) ≤ S(ρW1 |ρW0 ) , V ⊆W . (A.3)
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The monotonicity property (A.3) is a particular case of monotonicity under general com-

pletely positive trace preserving maps (CPTP). These are linear maps of density matrices

in one space into density matrices in another one, which are physical in the sense they

are combinations of operations such as unitary evolution, partial tracing and enlarging the

system with a new subsystem. The general expression of a CPTP map is [79]

ρ′ =
∑
i

MiρM
†
i ,

∑
i

M †iMi = I , (A.4)

for matrices Mi with arbitrary dimension, i.e., not necessarily square matrices. Then, more

generally the relative entropy satisfies

S(ρ1|ρ0) ≥ S(ρ′1|ρ′0) . (A.5)

The partial trace over a subsystem as in (A.3) is one example of CPTP map. Such CPTP

maps then generally entail the loss of distinguishability between states.

A.1 ∆S = ∆〈H〉 for first order perturbations

Recall that the relative entropy only vanishes for identical states. Here we expand on the

discussion around eq. (1.12) to see what to expect for the relative entropy of nearby states.

Keeping our reference state ρ0 fixed, we move through a family of states ρ1(λ) with a

parameter λ such that ρ1(λ = 0) = ρ0, i.e., the states coincide for λ = 0. Hence we have

that S(ρ1(0)|ρ2) = 0 but S(ρ1(λ)|ρ2) > 0 for both λ > 0 and λ < 0. Therefore assuming

that S(ρ1(λ)|ρ2) describes a smooth curve, it must have zero first derivative at λ = 0. This

then implies

∆S = ∆〈H〉 (A.6)

to first order in λ at λ = 0. For nearby thermal equilibrium states, this relation is just the

well known thermodynamic equation ∆S = ∆E/T .

Another way to see the above equality is to evaluate the first order perturbation of

S(ρ) and H(ρ) for a density matrix

ρ =
e−(H+δH)

tr(e−(H+δH))
. (A.7)

Then to linear order in δH, we have that both coincide with

∆S = ∆〈H〉 =
tr(e−HH)tr(e−HδH)

(tr(e−H))2
− tr(e−HHδH)

tr(e−H)
= 〈H〉〈δH〉 − 〈HδH〉 , (A.8)

where in the last expression the expectation values are computed with the unperturbed

density matrix. In deriving eq. (A.8), we have treated δH as a numerical perturbation

rather than as an operator. This approach is justified here because we are manipulating

the operators under the trace and taking only terms which are functions of H with only a

single operator δH. Hence it is not necessary to keep track of the ordering of operators.

However, this formula assumes the perturbation of ρ is small with respect to ρ. At this

point, we have to be careful in QFT because density matrices have an infinite number of
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eigenvalues, which have to suffer small deviations. For example, inserting a pure particle

excitation, which is well localized inside the bulk of a large region A, should not change

very much the entropy with respect to the vacuum state. In particular, as the particle

is far from the boundary ∂A, where most of the entanglement is produced, the entropy

should be approximately the same as in the vacuum state. However ∆〈H〉 will measure the

energy of the particle wave packet. Of course, the reason for the discrepancy between ∆S

and ∆〈H〉 in this case is that the particle state never approaches the vacuum state while

the distance R between the wave packet and the boundary of the region is greater than

the wavelength λ of the wave packet. In fact, the global state with the particle excitation

is always orthogonal to the global vacuum and we expect the relative entropy to increase

to infinity in the limit of large R/λ, corresponding to perfect distinguishability. Further,

due to the uncertainty relations the energy of the particle scales as 1/λ and ∆〈H〉 ∼ R/λ.

We can formulate the following intuitive picture as to when the equality (A.6) is

applicable. Near the boundary of a region, the density matrices will have a Rindler form

(1.9), which suggests a thermal interpretation in the sense of Unruh [54]. In particular,

there is a high temperature near the boundary and the temperature decreases with 1/x

as we move into the bulk of the region, where x is the distance to the boundary. For a

finite region of size R then, there is a minimal temperature T ∼ 1/R [97]. Now we want to

change the state by adding some perturbation. Suppose then that we have a thermal state

and mix it with a state |E〉〈E| of energy E with some small probability p. In order that the

change in eigenvalues is small, we must take p� e−βE/Z = pE , i.e., p must be smaller than

the probability with which the same state appears in the thermal ensemble. The latter

is always be achieved if the change in energy is smaller than the typical average energy

for the same state in the thermal bath. Hence in our original problem, we require that

the energy density deposited at a location, where the local temperature is roughly T (x),

must be much smaller that T d. Then the change in the entropy satisfies ∆S ∼ ∆E/T � 1

and we are perturbing the thermal bath by our thermodynamical analogy. Otherwise, the

injection of excitations in the region produces a far-from-equilibrium state.

The conclusion is that we can probe the equality (A.6) for compact regions with any

state in the limit of small stress tensor expectation value. We can have small energy density

perturbations inside A by taking an admixture (pure or impure) of the wave packet with

the vacuum. For example |0〉+ε|φ〉 for small ε. In this case we can make the energy density

of the state as low as we want without requiring the state to be of large wavelength.

A.2 Strong subadditivity

Mutual information I(A,B) = S(A) + S(B) − S(AB) between two subsystems A and B

is a measure of the information shared by them. It can be written as a particular relative

entropy,

I(A,B) = S(ρAB|ρA ⊗ ρB) . (A.9)

Mutual information is positive and increasing with size as a consequence of the positivity

and monotonicity of relative entropy. The monotonicity of the mutual information gives

I(A,BC)− I(A,B) = S(AB) + S(BC)− S(ABC)− S(B) ≥ 0 . (A.10)
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Then, strong subadditivity, which is the last inequality, is implied by monotonicity of

relative entropy. Note that using other properties of the entropy, one can also prove the

monotonicity of relative entropy starting from strong subadditivity [45]. However, the

monotonicity of relative entropy that we discuss in this paper does not reduce to strong

subadditivity of entropy for different regions in space.23 Instead, if written in terms of

strong subadditivity, it would involve a different kind of partition of the global Hilbert

space, combined with the property that the entropy is concave.

A.3 Second law of thermodynamics

The oldest physical interpretation of the positivity of the relative entropy S(ρ1|ρ0) is in

terms of thermodynamics. As we described in the introduction, if ρ0 is the equilibrium state

at temperature T , then the relative entropy takes the form S(ρ1|ρ0) = (F (ρ1)−F (ρ0)/T ),

where F (ρ) = tr(ρE) − TS(ρ) is the free energy evaluated for a general state ρ but at a

fixed temperature T . Hence, the positivity of relative entropy has the meaning that the

free energy is minimal for the equilibrium state.

The thermodynamical version of this inequality is now a consequence of the second

law. In general, for a system held in contact with a thermal bath at temperature T , the

second law implies that the following the inequality holds in any process:

δF ≤ δW , (A.11)

where δW is the work done on the system. Hence it must be that for a spontaneous

transformation, in which no work is done, one must have δF ≤ 0. That is, the free energy

must decrease as the system evolves towards equilibrium.

The second law can be proved using properties of the relative entropy under certain

assumptions for the quantum time evolution [96, 101]. We also note that relative entropy

inequalities have been applied to prove the generalized second law in the context of black

hole evaporation [102–105].

In these proofs the second law is related to a generalized monotonicity property: the

relative entropy always decreases under completely positive trace preserving (CPTP) maps

between states. The CPTP maps are thought as very general class physical quantum

evolutions of states [79]. For example, the evolution a subsystem which is initially decoupled

from the rest, and where the global system undergoes unitary evolution, is CPTP.

The second law states that the entropy of an isolated system cannot decrease. Of course

a completely isolated system in quantum mechanics evolves unitarily and the entropy does

not change. We have to soften the condition of being completely isolated in order to

allow for some interchange of information with the ambient space. As a model for this

evolution consider the case of a quantum system with state ρ(t) evolving under CPTP

maps. Assume, in accordance with the idea of an “isolated” system, that the total energy

E is conserved. Also assume that time evolution preserves the thermal equilibrium state24

ρT = e−H/T /tr(e−H/T ) at some temperature T , which corresponds to the conserved energy

E, tr(ρTH) = E.

23The latter has been discussed previously in the AdS/CFT context by [99, 100].
24In fact it is only necessary that there is a state such that its entropy and energies are preserved.
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Then the relative entropy S(ρ(t), ρT ) is decreased by the CPTP evolution, and we have

for t1 < t2,

F (ρ(t2))− F (ρT ) < F (ρ(t1))− F (ρT ) , (A.12)

where we used that the thermal state is invariant under time evolution. Expressing this

relation in terms of entropy and energy, and considering all the involved energies are the

same by assumption, we have

S(t2) > S(t1) , (A.13)

as required by the second law of thermodynamics. Note that the difference in free energies

between the state and the thermal state is positive and decreases in time. As a consequence,

the state approaches the thermal equilibrium state during evolution. Eventually, if thermal

equilibrium is reached, this free energy difference goes to zero.

Another case where the relative entropy allows one to prove the second law is when the

totally random state ρ0 = I/n, where n is the dimension of the Hilbert space, is preserved

under a CPTP evolution. This state can be regarded as the microcanonical distribution.

The second law follows from the fact that the relative entropy is in this case

S(ρ(t)|ρ0) = log(n)− S(ρ(t)) . (A.14)

The increase in entropy then follows again by the decrease of relative entropy.

A.4 Bekenstein bound

The Bekenstein bound [85, 86] is a proposal that all systems in nature should satisfy an

inequality of the form

S ≤ 2πRE , (A.15)

where S and E are the entropy and energy of a system confined to a region of size R.

This proposed bound follows from considerations of thought experiments involving black

holes. However eq. (A.15) does not involve Newton’s constant and thus it should express

a general property that even applies outside of the context of gravity. In particular, it

should be possible to understand eq. (A.15) purely in terms of flat space physics. While

this inequality appears to have a rather simple form, discussions of its possible validity,

e.g., [88–90, 106–109], revealed a variety of subtleties in interpreting the various quantities

appearing in eq. (A.15). Eventually, it was realized that a well defined version of this bound

in QFT is given by the positivity of the relative entropy between two states reduced to a

given region [87–89]. The connection between relative entropy and the Bekenstein bound

is essentially established by eq. (1.8).

To better understand this connection between relative entropy and the Bekenstein

bound, let us re-visit Bekenstein’s original thought experiment [85, 86]. Imagine that a

small probe is released to fall into a large black hole, from a short distance R above the

horizon.25 The object then disappears behind the horizon carrying entropy S and energy

E, as measured by a local observer at the point from which it was released. The energy

25Implicitly, we assume that the size λ of the probe is smaller than the original distance above the horizon,

i.e., R & λ.
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swallowed by the black hole as measured asymptotically is red-shifted to E TBH/Trel '
2πRE TBH, where TBH and Trel are the Hawking temperature measured at infinity and the

local temperature measure at the release radius, respectively. Hence the variation of the

black hole’s mass is δM = 2πRE TBH and the corresponding variation in the horizon

entropy is given by δSBH = δM/TBH = 2πRE. Finally the generalized second law demands

that the increase in the horizon entropy must at least compensate for the loss of entropy

in the exterior region, i.e., δSBH ≥ S, and hence we have arrived at the bound (A.15).

A drawback of the expression (A.15) is that the entropy (and the energy) of a finite

region are not well defined quantities. In order to eliminate the ambiguities in the definition

of the entropy, it was argued in [88, 89] that the relevant quantity for Bekenstein’s thought

experiment was the difference of entropies between the state in the relevant region V and

the vacuum entropy in the same region ∆S = S(ρV ) − S(ρ0
V ). In Bekenstein’s thought

experiment, V is the near horizon region just outside of the black hole. In fact then,

there is a large entanglement entropy, which can be seen as the entropy in the thermal

atmosphere around the black hole, both for the object localized to the region outside the

event horizon and for the vacuum state localized in the same region. These are the initial

and final states of the process and so only the change in entropy, i.e., the difference between

the two entanglement entropies, enters into the inequality. That is, we should interpret S

appearing on the left-hand side of eq. (A.15) as ∆S, the same difference which appears on

the right-hand side of eq. (1.8).

Further, the quantity 2πRE appearing on the right-hand side of eq. (A.15) suffers

from similar ambiguities. However, this product can also be given a precise meaning as

∆〈H〉, the difference in expectation values of the modular Hamiltonian (for ρ0
V ) between

the two states [87]. To make this connection precise, we first note that in Bekenstein’s

thought experiment, the relevant physics for the near horizon region of a large black hole

is very nearly the same as that for Rindler space. Hence, recall the modular Hamiltonian

in Rindler space is given by eq. (1.9). Hence evaluating ∆〈H〉 between the state with

Bekenstein’s probe near the horizon and the vacuum state, we find

∆〈H〉 = 2π

∫
x>0

dd−1x x 〈T00(x)〉ρV ' 2πRE . (A.16)

Hence ∆〈H〉 reproduces the expression appearing on the right-hand side of eq. (A.15) in

Bekenstein’s thought experiment and the inequality (A.15) found there is nothing but the

inequality (1.8) expressing the positivity of the relative entropy (1.8). Of course, ∆〈H〉
also provides an unambiguous definition for the product of energy and size when applying

the Bekenstein bound to more general systems and more general regions.

This discussion shows a well-defined version of the Bekenstein bound in QFT is given

by the positivity of the relative entropy ∆S ≤ ∆〈H〉 between an arbitrary state and the

vacuum state, both reduced to some finite region V [87]. This relative entropy bound holds

automatically, implying, despite the use of black holes in Bekenstein’s thought experiment,

that the physics behind the Bekenstein bound is simply quantum mechanics and special

relativity. It also generalizes the Bekenstein bound to arbitrary regions, since the original

derivation by Bekenstein is limited to Rindler space.
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Relative entropy kills the species problem. Interestingly, the version of the Beken-

stein bound arising from relative entropy, i.e., eq. (1.8) does not suffer from the species

problem [88, 89]. That is, considering theories with a large number of species or different

quantum fields will not lead to violations of eq. (1.8). This is because as the number of

degrees of freedom is increased, the entropy of a localized excitation can be made bigger

for the same energy, but the entropy already present in the vacuum entanglement also gets

larger. Since ∆S is bounded by ∆〈H〉, the difference in the entropies must converge to

a fixed value as the number of species becomes arbitrarily large. In terms of the relative

entropy, adding more species makes the distinguishability between the localized object and

the localized vacuum poorer, reducing the relative entropy. However, the distinguishability

is always positive, only becoming zero for the identical states. That is, an increased num-

ber of species may mean that we will be closer to saturating the bound but it can never

produce violations of the inequality (1.8). The role of Hawking radiation and black hole

thermal atmosphere in preserving the bound in Bekenstein’s thought experiment is then

information theoretical and not mechanical, in the sense that radiation pressure on the

infalling object does not play a decisive role, as is sometimes considered, e.g., [106, 107].

To see how the species problem is solved in more detail, we start by describing the way

it was originally posed, i.e., let us look at a canonical case with many species. In particular,

let us consider a theory consisting N decoupled copies of some QFT. For a moment, let

us set aside the idea of bounded regions and consider global states. Let ρ̂0 = |0〉〈0| be

the global vacuum for a single species, and ρ̂1 = |ψ〉〈ψ| is any other orthogonal pure state

(e.g., a one-particle state). We start with the global vacuum |Ω〉 = |0〉 ⊗ · · · ⊗ |0〉 and the

corresponding density matrix

ρ0 = |Ω〉〈Ω| = ρ̂0 ⊗ · · · ⊗ ρ̂0 . (A.17)

Now we replace the vacuum by the excited state |ψ〉 in the i’th copy of the field theory,

i.e., |Ψi〉 = |0〉 ⊗ · · · ⊗ |ψ〉 ⊗ · · · ⊗ |0〉. Then the corresponding density matrix becomes

ρi = |Ψi〉〈Ψi| = ρ̂0 ⊗ · · · ⊗ ρ̂1 ⊗ · · · ⊗ ρ̂0 (A.18)

So the states ρi are pure and we also have they correspond to orthogonal vectors,

〈Ψi|Ψj〉 = 0 if i 6= j. Hence, the mixed density matrix obtained by combining these

particle excitations for the different species as

ρmix =
1

N
∑

ρi =
1

N
∑
|Ψi〉〈Ψi| (A.19)

is already diagonalized in the basis of the |Ψi〉. It has N non-zero eigenvalues with value

1/N . Hence it follows that S(ρmix) = log(N ) and

∆Stot = S(ρmix)− S(ρ0) = log(N ) . (A.20)

Here ∆S increases without bound as N grows, while the energy in ρmix is independent

of N .

Considerations of a similar nature have been used to produce contradictions with

Bekenstein bound e.g., [108, 109]. However, note that as we are considering global states
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here, it is natural to assume that R → ∞ and so our discussion leads to no contradiction

with eq. (A.15). The discussion is slightly different using the interpretation in terms of

relative entropy. In this case, one may note that the global orthogonal pure states ρ̂0 and

ρ̂1 within a single copy are perfectly distinguishable and hence their relative entropy is

infinite. The same holds for the states in eqs. (A.18) and (A.19), e.g., S(ρmix|ρ0) = ∞.

What allows ∆Stot in eq. (A.20) to increase without bound is the fact that ∆〈H〉 is already

divergent. Formally, this divergence can be seen as arising in writing |0〉〈0| as ∼ e−H , we

introduced an infinite coefficient for the orthogonal projector |ψ〉〈ψ| in in the modular

Hamiltonian H. For a more intuitive insight, let us instead consider a thermal ensemble

ρT ∼ e−H/T with H = H/T , where H is the usual Hamiltonian. Now, the vacuum density

matrix ρ0 can be seen as the zero temperature limit and hence given that |ψ〉 has a fixed

finite energy, one finds ∆H →∞ as T → 0.

However, these are global states, and a finite size R is necessary to formulate the

Bekenstein bound in a sensible way. For simplicity then, let us consider the case of reduced

states inside a ball V of radius R. The reduced state of the vacuum becomes

ρ0 = TrV̄ [|Ω〉〈Ω|] = ρ̂0 ⊗ · · · ⊗ ρ̂0 (A.21)

where now ρ̂0 = trV̄ [|0〉〈0|] is the ‘vacuum’ density matrix in each individual copy of the

field theory. Note that we are introducing Tr to denote tracing in the full Hilbert space,

i.e., over all copies of the field theory, and tr to denote a trace in a single copy of the

field theory. Now constructing the analogous density matrices for the excited states (A.19)

yields

ρi = TrV̄ [|Ψi〉〈Ψi|] = ρ̂0 ⊗ · · · ⊗ ρ̂1 ⊗ · · · ⊗ ρ̂0 (A.22)

where ρ̂1 = trV̄ [|ψ〉〈ψ|]. Further the corresponding mixed state is

ρmix =
1

N
∑

ρi . (A.23)

Now as the different copies are all decoupled, the modular Hamiltonian takes the form

Htot =
∑
Hi where

Hi = 11 ⊗ 12 ⊗ · · · ⊗H ⊗ · · · ⊗ 1N . (A.24)

In this expression, the H appearing as the i’th entry in the direct product is precisely the

modular Hamiltonian for a single copy of the QFT.

Now let consider a situation analogous to the one above, where we have a pure excita-

tion which is as different as possible from the vacuum. For global states, distinguishability

of vacuum and particle states is infinite. However, inside the sphere, this must be bounded.

In order for the excited state to be as different as possible from the vacuum in the sphere,

we should construct a wave packet with a very short wavelength λ far from the spherical

boundary (well inside where the effective temperature is low). Now if we specialize to

the case where the QFT’s under consideration are conformal field theories, the modular

Hamiltonian H is given by eq. (1.10) and we can make a precise statement. In particular,

placing the wave packet at the center of the sphere, we find

∆H = π
R

λ
� 1 . (A.25)
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Certainly this result can be very large and when R
λ � 1, we approach the that situation

the excited state is maximally distinguishable from ρ0. Note however, that while it can

be large, ∆H will never be divergent in the bounded region. Further, in this regime, the

entropy calculation is approximately same as described for the global states above and

we have

∆〈H〉 −∆S = π
R

λ
− log(N ) . (A.26)

As N increases the relative entropy decreases (the bound becomes tighter) as expected,

since relative entropy always decreases under mixing [45]

S
(∑

piρ
(1)
i |
∑

piρ
(2)
i

)
≤
∑

piS(ρ
(1)
i |ρ

(2)
i ) , (A.27)

for pi > 0 and
∑
pi = 1. However, since ∆〈H〉 is independent of N and relative entropy is

always positive, the log(N ) behavior of ∆S can not subsist for a very large number of species

N & eR/λ. Finally eq. (1.8) must be saturated with ∆S = ∆〈H〉. Clearly there must be a

change in the behavior ∆S away from the simple logarithmic growth found in eq. (A.20)

in the regime where N & eR/λ. Intuitively, the probability of finding an excited wave

packet from the i’th copy of the CFT in the vacuum density matrix (which has an effective

temperature of roughly 1/R at the wave packet location) is e−R/λ/Z independently of N .

For the excited state in ρmix, this probability becomes 1
N + e−R/λ

Z . Hence when N & eR/λ,

the vacuum and the mixed state are no longer very different and we are actually in a regime

where ∆S ' ∆〈H〉.
Hence, we see the importance both of expressing the original product 2πRE on the

right-hand side of the bound (A.15) as the change in the modular ‘energy’ ∆〈H〉, and

of considering the entropy difference ∆S, rather than simply the entropy S. This last

step ensures that ∆S saturates the bound in the case of large number of species. When

the number of species is sufficiently large, the particle excitation whose probability is

distributed amongst the various copies in the mixed state is hidden behind the cloud of

excitations produced simply localizing the vacuum to a finite region. Hence ρmix and ρ0

are no longer easily distinguished.

In general, the transition from the form in eq. (A.26) to zero for large enough N will be

some complicated function. However, let us determine the first nontrivial corrections for the

case of small deviations from vacuum state, i.e., the opposite regime to that just analyzed

above.26 Let us begin by considering the pure states (A.22). Within any individual copy

of the QFT, if ρ̂1 is a small perturbation of the vacuum density matrix ρ̂0, then we will

find as usual

∆〈H〉 = ∆S . (A.28)

Of course, for the copies containing no excitations, we find simply ∆〈H〉 = ∆S = 0. Hence

for these pure states, we find ∆〈Htot〉|ρi = ∆Stot|ρi , as expected.

26Note that the following analysis would apply for any finite region and for a tensor product of N copies

of any QFT.
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Now for the mixed state (A.23), we find

∆〈Htot〉|ρmix =
1

N
∑

(Tr[ρiHtot]− Tr[ρ0Htot])

=
1

N
∑

(tr[ρ̂1H]− tr[ρ̂0H])i

=
1

N
∑

∆〈H〉i = ∆〈H〉 (A.29)

where the subscript i in the second and third sums indicates that the corresponding ex-

pression is evaluated only in the i’th copy of the QFT. The final ∆〈H〉 can be evaluated in

any single copy of the field theory and so the shift in the expectation value of the modular

Hamiltonian is unchanged that would be found for any of the pure states ρi. Similarly,

following our standard reasoning, one also finds ∆Stot|ρmix = ∆〈H〉, as usual for small

deviations from the vacuum. That is, the new mixed state saturates the inequality (1.8)

with precisely the same values as the individual pure states ρi, to first order. That is, these

first order calculations do not distinguish the pure and mixed states.

However, the mixed state should have more entropy than the pure states and so we

must go to higher orders, we should see this difference. As in the holographic calculations

in section 3, going to higher orders means evaluating the change in entropy to higher orders

since the linear calculations of ∆〈Htot〉 are complete. To begin let us write the excited state

within a single copy of the field theory as

ρ̂1 = ρ̂0 + δρ̂ = ρ̂0 (1 + ρ̂−1
0 δρ̂) . (A.30)

Further note that since tr[ρ̂1] = 1 = tr[ρ̂0], we must have tr[δρ̂] = 0. To introduce some

more notation, let us write the i’th pure state as

ρi ≡ ρ0 [1 + δρ̃i] ≡ e−Htot e−δ̃Hi (A.31)

where

δρ̃i ≡ 11 ⊗ · · · ⊗ ρ̂−1
0 δρ̂⊗ · · · ⊗ 1N (A.32)

with ρ̂−1
0 δρ̂ appearing in the i’th factor of the tensor product. The ‘effective’ shift in the

modular Hamiltonian δ̃H i defined by eq. (A.31) is related to δρ̃i by

δ̃H i = − log (1 + δρ̃i) = −δρ̃i +
1

2
δρ̃2
i −

1

3
δρ̃3
i + · · · . (A.33)

Note that the definition of δ̃H i involves the product of two separate exponentials. So in

general, it does not precisely match the shift δHi appearing in the conventional definition:

ρi ≡ exp [−Htot − δHi] because δHi does not commute with Htot. That is, δ̃H i = δHi

requires [Htot, δHi] = 0.

Having established this notation, we would like to compare the shift in the entangle-

ment entropy for the perturbed pure states (A.22) with that for the perturbed mixed state

(A.23). Towards that end, it is convenient to use the Baker-Campbell-Hausdorff formula to
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expand the logarithm appearing in the entanglement entropy. For example, we encounter

log ρi = log
[
e−Htot e−δ̃Hi

]
(A.34)

= −Htot − δ̃H i +
1

2
[Htot, δ̃H i]−

1

12
[Htot, [Htot, δ̃H i]] +

1

12
[δ̃H i, [Htot, δ̃H i]]

− 1

24
[δ̃H i, [Htot, [Htot, δ̃H i]]] + · · · ,

where the terms denoted by the ellipsis will involve four and more commutators of Htot

and δ̃H i. Note that in the present calculation, we will only concern ourselves with the

terms with two or fewer δ̃H i’s, however, there are an infinite number of such contributions.

However, we will only need to understand the general form of these terms for the present

comparison.

Applying the above definitions, we find for the pure states

∆Stot|ρi =−Tr[ρi log ρi]+Tr[ρ0 log ρ0] (A.35)

= Tr

[
ρ0

(
δ̃H i−

1

2
[Htot, δ̃H i]+

1

12
[Htot, [Htot, δ̃H i]]−

1

12
[δ̃H i, [Htot, δ̃H i]]+· · ·

)]
+Tr

[
ρ0 δρ̃i

(
Htot+δ̃H i−

1

2
[Htot, δ̃H i]+

1

12
[Htot, [Htot, δ̃H i]]−· · ·

)]
.

Again, there is an infinite number of terms for each order in δ̃H i (or δρ̃i) in the above

expression. However, with the trace above, there is an enormous simplification with

Tr [ρ0[Htot, Z]] = Tr [ρ0Htot Z]− Tr [Htot ρ0 Z] = 0 (A.36)

for any matrix Z since Htot = − log ρ0 commutes with ρ0. Taking this simplification into

account, there are only two potential contributions at linear order,

∆Stot|ρi,linear = −Tr [ρ0 δρ̃i] + Tr [ρ0 δρ̃iHtot] (A.37)

= −tr [δρ̂] + tr [δρ̂H] = ∆〈H〉 ,

where the reduction between the first and second lines relies on the tensor product structure

of the various matrices and tr [δρ̂] = 0. Of course, this shift in the entropy at linear order

agrees with ∆〈Htot〉|ρi = ∆〈H〉, as in our previous discussion above. Now the quadratic

contributions take the form

∆Stot|ρi,quad = Tr

[
ρ0

(
1

2
δρ̃2
i −

1

12
[δρ̃i, [Htot, δρ̃i]] +

1

24
[δρ̃i, [Htot, [Htot, δρ̃i]]] + · · ·

)]
−Tr

[
ρ0 δρ̃i

(
δρ̃i −

1

2
[Htot, δρ̃i] +

1

12
[Htot, [Htot, δρ̃i]]− · · ·

)]
. (A.38)

Again there is an infinite number of terms in both lines above. We will not attempt to

simplify eq. (A.38) for the states ρi further. Rather we now turn to considering the mixed

state (A.23).

Hence, for the mixed state (A.23), we can define

ρmix = ρ0

[
1 +

1

N
∑

δρ̃i

]
≡ e−Htot e−δ̃Hmix (A.39)
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where δρ̃i is defined in eq. (A.32). Further, the effective shift in the modular Hamiltonian

δ̃Hmix defined above can be written as

δ̃Hmix = − log

(
1 +

1

N
∑

δρ̃i

)
= − 1

N
∑

δρ̃i +
1

2

1

N 2

∑
i,j

δρ̃iδρ̃j + · · · . (A.40)

Note that δ̃Hmix 6= 1
N
∑
δ̃H i since the latter sum would not contain all of the cross-terms

appearing in eq. (A.40).

Now it is a straightforward exercise to verify using the above expressions that to linear

order, we have: ∆Stot|ρmix,linear = ∆〈H〉 = 〈∆Htot〉|ρmix . Turning then to the quadratic

contributions, we have

∆Stot|ρmix,quad

=
1

N 2

∑
i,j

Tr

[
ρ0

(
1

2
δρ̃iδρ̃j −

1

12
[δρ̃i, [Htot, δρ̃j ]] +

1

24
[δρ̃i, [Htot, [Htot, δρ̃j ]]] + · · ·

)]

− 1

N 2

∑
i,j

Tr

[
ρ0 δρ̃i

(
δρ̃j −

1

2
[Htot, δρ̃j ] +

1

12
[Htot, [Htot, δρ̃j ]]− · · ·

)]
(A.41)

=
1

N 2

∑
i,j

Tr

[
ρ0

(
1

2
δρ̃iδρ̃j −

1

12
[δρ̃i, [Hj , δρ̃j ]] +

1

24
[δρ̃i, [Hj , [Hj , δρ̃j ]]] + · · ·

)]

− 1

N 2

∑
i,j

Tr

[
ρ0 δρ̃i

(
δρ̃j −

1

2
[Hj , δρ̃j ] +

1

12
[Hj , [Hj , δρ̃j ]]− · · ·

)]
.

In the second equality, we have emphasized that because of the tensor product structure

of δρ̃i given in eq. (A.32), only the corresponding terms of Htot =
∑
Hi contribute in

the commutators. Further combining this structure with tr[ρ̂] = 0, we have that all of

the terms with i 6= j above will vanish. Hence all of the double sums can be reduced as

follows, e.g.,

1

N 2

∑
i,j

Tr
[
ρ0δρ̃i[Hj , · · · [Hj , δρ̃j ]]

]
=

1

N 2

∑
i

Tr [ρ0δρ̃i[Hi, · · · [Hi, δρ̃i]]]

=
1

N
Tr [ρ0δρ̃1[H1, · · · [H1, δρ̃1]]] , (A.42)

where we have eliminated the sum in the last expression and chosen i = 1 as a representative

value, by using the fact that all of the terms in the previous diagonal sum are identical.

Hence the quadratic shift in the entropy simplifies to

∆Stot|ρmix,quad =
1

N
Tr

[
ρ0

(
1

2
δρ̃2

1−
1

12
[δρ̃1, [Htot, δρ̃1]]+

1

24
[δρ̃1, [Htot, [Htot, δρ̃1]]]+· · ·

)]
− 1

N
Tr

[
ρ0 δρ̃1

(
δρ̃1−

1

2
[Htot, δρ̃1]+

1

12
[Htot, [Htot, δρ̃1]]−· · ·

)]
. (A.43)

Here again, we have an infinite number of contributions above but comparing this result

with eq. (A.38), it is clear that we have ∆Stot|ρmix,quad = 1
N∆Stot|ρi,quad. That is, at

quadratic order, we have

(∆〈Htot〉 −∆Stot) |ρmix =
1

N
(∆〈Htot〉 −∆Stot) |ρi +O(δρ̃3

i ) . (A.44)
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Note that the above analysis did not reveal much about the structure of the quadratic

contributions and so we did not actually establish that the shifts in the entropy in

eqs. (A.38) and (A.43) are negative. However, the latter is easily shown by introducing the

standard representation of the logarithm in terms of the resolvent, as follows

log(ρ+ δρ) = −
∫ ∞

0
dβ

[
1

ρ+ δρ+ β
− 1

β + 1

]
. (A.45)

The advantage of this representation is that even when ρ and δρ do not commute, it is

straightforward to expand the above expression for small perturbations with

1

ρ+ δρ+ β
=

1

ρ+ β
− 1

ρ+ β
δρ

1

ρ+ β
+

1

ρ+ β
δρ

1

ρ+ β
δρ

1

ρ+ β
+ · · · . (A.46)

Now for any of the pure global states where the excitations appear in one copy of the

QFT, it is straightforward to show

∆Stot|ρi = −Tr[ρi log ρi] + Tr[ρ0 log ρ0] (A.47)

= −tr[ρ̂i log ρ̂i] + Tr[ρ̂0 log ρ̂0]

= −tr[(ρ̂0 + δρ̂) log(ρ̂0 + δρ̂)] + Tr[ρ̂0 log ρ̂0] .

That is, as before, the simple tensor product structure of ρi and ρ0 allows us to reduce

the calculation of ∆Stot to the single copy of the QFT carrying the excitation. Now we

can apply eqs. (A.45) and (A.46) to this expression. Examining the terms linear in δρ̂,

one again finds ∆Stot = ∆〈Htot〉. Hence to leading order, we recover the equality already

found twice above. Now also including the second order terms, we find

(∆〈Htot〉 −∆Stot) |ρi =

∫ ∞
0

dβ β tr

(
1

ρ̂0 + β
δρ̂

1

ρ̂0 + β
δρ̂

1

ρ̂0 + β

)
+ · · · . (A.48)

Note the second order term above is explicitly positive since the matrix (ρ̂0 + β)−1 in the

center of the integrand is positive definite. Further, this expression now captures all of the

second order terms and so as required the relative entropy is positive. Of course, given the

result in eq. (A.44), the same positivity applies for the mixed state.

As a final comment, let us note that Bekenstein’s thought experiment involves a dy-

namical process and the exchange of entropy and energy between two systems. Interpreting

the Bekenstein bound in terms of relative entropy, the same reasoning can also be applied

in flat space and for any region, in particular without referring to black holes. The flat

space experiment would involve an excitation with a modular energy difference ∆〈H〉 with

respect to the vacuum in a region V . Under some evolution this modular energy (the

Rindler energy in Bekenstein’s experiment) is assumed to be at the same time conserved

but passed to a thermal reservoir i.e., being converted into ‘heat’ in the thermodynamical

language (represented by the black hole in Bekenstein’s thought experiment).27 This gives

27Note that in Bekenstein’s experiment, the initial Rindler energy is conserved along ordinary time

evolution in the form of ordinary energy because it is proportional to the energy as meassured by asymptotic

observers.
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∆Sres = ∆〈H〉 because for the reservoir, with a large number of degree of freedom, we are

always in the small deviation scenario (note the temperature here is T = 1). The increase

of the entropy under this evolution requires ∆Sres − ∆S = ∆〈H〉 − ∆S ≥ 0. In fact, as

shown in section A.3, positivity of relative entropy can always be interpreted in this way as

a consequence of a second law for specific time evolutions which are CPTP but nonunitary

in the region. A simple example for the present case is given by an evolution which adds

identical and independent field species and mixes the state in such larger Hilbert space, as

described above in this section. This process may represent for our purposes, the evolu-

tion of the initial system which is finally absorbed by the reservoir. Implicitly, the above

discussion shows that this ‘evolution’ preserves the value of ∆〈H〉. Also in the limit of a

large number of species, we should get ∆Sres = ∆〈H〉. Here ∆Sres is the variation of the

entropy of the bath due to presence of the probe, which is now distributed among a large

number of field species. Hence, the relative entropy bound can also be considered a cons

equence of a second law under a CPTP evolution, in analogy with the derivation of the

Bekenstein bound using the generalized second law.
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