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1 Introduction

The AdS/CFT correspondence [1–3] is a remarkable framework for relating quantum gauge

and gravity theories. In certain, often highly (super-)symmetric, settings, underlying the

duality is an integrable structure.1 The presence of integrability gives a powerful tool

for finding the mass spectrum of all perturbative states in the gauge/gravity dual pair in

the planar limit. Initially, integrability was best understood in the case of N = 4 super-

Yang-Mills (SYM) and its type IIB string dual on AdS5 × S5 supported by RR fluxes,

as well as its orbifolds, orientifolds and deformations. Later, the integrability approach

1For a recent review and an extensive list of references see [4].
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was extended to the so-called ABJM super-Chern-Simons theory and its type IIA string

dual on AdS4 × CP3. This provided a second class of examples of a gauge/string dual

pair in which the spectral problem is very well understood. The AdS4/CFT3 dual pair

has less supersymmetry than the original AdS5/CFT4,
2 and has a number of new features,

such as Chern-Simons gauge fields, as well as scalars that transform in the bifundamental

representation of the gauge group. It is a remarkable fact that much of the integrability

machinery could be extended to this setting too.

Another interesting instance of the correspondence is the case of AdS3/CFT2, which

constitutes one of the earliest examples of holography, where the conformal symmetry

algebra is infinite dimensional [5]. The maximally supersymmetric string backgrounds

are AdS3 × S3 × T 4 and AdS3 × S3 × S3 × S1, both preserving 16 supercharges. Both

backgrounds can be supported by RR or NSNS fluxes. In the particular case of pure NSNS

background it was possible to effectively describe the theories using the NSR formalism [6–

8]. The CFT corresponding to the former background is expected to be a deformation of the

SymN (T 4) orbifold theory, and have small N = (4, 4) superconformal symmetry [9–11]; the

one corresponding to AdS3×S3×S3×S1 has largeN = (4, 4) superconformal symmetry but

is much less well understood [12–15]. Their finite dimensional sub-algebras are psu(1, 1|2)2
and d(2, 1;α)2 respectively, corresponding to the superisometries of each background.

The success of integrability in the more supersymmetric instances sparked new in-

terest in the AdS3/CFT2 correspondence. Even if integrability in the CFT side remains

challenging [16], it has been shown that the RR string non-linear sigma model is classi-

cally integrable [17, 18].3 As a result, one can make progress by discretising the string

world-sheet and reducing the integrable system to a set of Bethe Ansatz equations [17, 20].

However, this procedure keeps track only of the excitations which remain massive in the

BMN limit. Fully incorporating the massless modes remains an open issue.4

At weak coupling the Bethe equations yield the spectrum of an integrable spin-chain.

The symmetry algebra preserving the vacuum of the spin-chain can be extended by three

central charges [17, 22] and so one may attempt to construct an S-matrix by generalising

the bootstrap method presented in [23] for the S-matrix of fundamental particles of the

AdS5/CFT4 correspondence. In [24], this approach was applied to the alternating spin-

chain related to string theory on AdS3 × S3 × S3 × S1 constructed in [20], yielding a set

of all-loop Bethe equations [25].

One may be tempted to consider the AdS3 ×S3 × T 4 background as a limiting case of

the AdS3 × S3 × S3 × S1 one, where one of the spheres blows up. While this is certainly

true for the gauge fixed string Hamiltonian, such a limit (which amounts to sending α→ 1)

is quite subtle at the level of the symmetry algebra, of its representations, and therefore of

the invariant S-matrix. In particular, the notion of fundamental and composite excitations

is different in the two cases, so that one cannot simply send α → 1 in the S-matrix and

Bethe ansatz of [24, 25]. Instead, one should repeat the bootstrap procedure from scratch

for the psu(1, 1|2)2 chain of [20]. This is the main aim of this work.

2The AdS5/CFT4 and AdS4/CFT3 dual pairs have 32 and 24 real supercharges, respectively.
3This was later extended to backgrounds supported by a mixture of NSNS and RR fluxes, see [19].
4For recent progress on this, see [21].
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This paper is organised as follows. First, in section 2 we review the psu(1, 1|2)2 chain,

discuss the symmetry algebra of its vacuum, and its central extension. Out of these sym-

metries we write down the all-loop S-matrix in section 3, where we also show that it solves

the Yang-Baxter equation; the S-matrix is fixed up to two antisymmetric scalar factors,

which we constrain by imposing crossing symmetry. In section 4 we diagonalise the S-

matrix, write down the resulting Bethe ansatz, which describes the massive sector of the

corresponding string theory, and discuss its weak and strong coupling limits. Finally, in

section 5 we compare our results with perturbative calculations that have appeared in the

literature, and section 6 is devoted to some concluding remarks. In appendix A we work

out the dualities of the Bethe ansatz we found, and in the following two appendices we

discuss how integrability for the AdS3/CFT2 correspondence can be framed in the context

of Hopf algebras and Yangians.

2 The psu(1, 1|2)2 symmetric spin-chain

In this section we will review the psu(1, 1|2)2 homogeneous spin-chain originally constructed

in [20]. The two copies of the superalgebra psu(1, 1|2) describe the left- and right-moving

sectors5 of string theory in AdS3 × S3 × T 4. The weak coupling limit of this spin-chain

was analysed in [20]. In this limit, the left- and right-movers decouple. The spectrum is

then described by two homogeneous spin-chains with the sites of each transforming in the

representation (−1
2 ;

1
2) of psu(1, 1|2). At higher loops the two sectors couple to each other

through local interactions. The full spin-chain will be discussed in more detail below.

The algebra. The superalgebra psu(1, 1|2) has, in the relevant real form, a bosonic sub-

algebra sl(2) ⊗ su(2). The corresponding generators are denoted by J0, J± and L5, L±,

respectively. Additionally, there are eight supercharges Q±±±. The commutation relations

of psu(1, 1|2) algebra read

[J0, J±] = ±J±, [J+, J−] = 2J0, [J0,Q±ββ̇] = ±1

2
Q±ββ̇ , [J±,Q∓ββ̇] = Q±ββ̇,

[L5,L±] = ±L±, [L+,L−] = 2L5, [L5,Qb±β̇ ] = ±1

2
Qb±β̇ , [L±,Qb∓β̇] = Qb±β̇,

{Q±++,Q±−−} = ±J±, {Q±+−,Q±−+} = ∓J±, {Q+±±,Q−∓∓} = −J0 ± L5,

{Q+±+,Q−±−} = ∓L±, {Q+±−,Q−±+} = ±L±, {Q+±∓,Q−∓±} = +J0 ∓ L5.
(2.1)

The psu(1, 1|2) algebra admits a u(1) automorphism generated by R8 and acting on the

supercharges as6

[R8,Qbβ±] = ±1

2
Qbβ±, (2.2)

and commuting with the bosonic charges.

5We warn the reader that this terminology should not lead to the interpretation that the corresponding

excitations on the world-sheet are moving to the left and to the right respectively. These terms are used

instead to refer to the corresponding left- and right-movers in the dual CFT2.
6We denote the automorphism by R8 since it is related to one of the su(2) generators of the superalgebra

d(2, 1;α). In the limit α → 0, 1 the algebra d(2, 1;α) turns into psu(1, 1|2). This relation is described in

more detail in [20].
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Figure 1. Three Dynkin diagrams for psu(1, 1|2).

The full symmetry of the spin-chain is psu(1, 1|2) × psu(1, 1|2). When we need to

distinguish the left- and right-moving copies of the algebra we will add an additional

subscript, taking values L and R, to the generators.

Serre-Chevalley bases. For superalgebras there are in general several inequivalent

Dynkin diagrams, corresponding to different choices of simple roots. Each such choice

corresponds to a set of Cartan generators hi, and corresponding raising and lowering op-

erators ei and fi, where the index i takes values from 1 to the rank of the algebra, which is

3 for psu(1, 1|2). These generators satisfy an algebra of the form

[hi, hj ] = 0, [ei, fj ] = δijhj , [hi, ej ] = +Aijej , [hi, fj ] = −Aijfj , (2.3)

where Aij is the Cartan matrix.

In this paper we will mainly consider two gradings of psu(1, 1|2). In the su(2) grading

the simple roots are given by

h1 = −J0 − L5, e1 = +Q+−−, f1 = +Q−++,

h2 = +2L5, e2 = +L+, f2 = +L−,

h3 = −J0 − L5, e3 = +Q+−+, f3 = −Q−+−.

(2.4)

This leads to the Cartan matrix 


0 −1 0

−1 +2 −1

0 −1 0


 . (2.5)

The corresponding Dynkin diagram is shown in figure 1 (a).

In the sl(2) grading we have

ĥ1 = +J0 + L5, ê1 = −Q−++, f̂1 = +Q+−−,

ĥ2 = −2J0, ê2 = +J+, f̂2 = −J−,

ĥ3 = +J0 + L5, ê3 = −Q−+−, f̂3 = −Q+−+,

(2.6)

with the Cartan matrix 


0 +1 0

+1 −2 +1

0 +1 0


 . (2.7)

The Dynkin diagram for the sl(2) grading is shown in figure 1 (c).
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There are also fermionic gradings of psu(1, 1|2), in which all three raising operators ei
are odd. In particular we can choose them to be either

Q+−+, Q++−, Q−++ , or Q−+−, Q−−+, Q+−− .

This leads to the Cartan matrices



0 +1 0

+1 0 −1

0 −1 0


 , and




0 −1 0

−1 0 +1

0 +1 0


 , (2.8)

respectively, corresponding to the Dynkin diagram in figure 1 (b).

The spin-chain representation. The sites of the psu(1, 1|2) spin-chain transform in

the infinite dimensional representation (−1
2 ;

1
2), consisting of the bosonic su(2) doublet φ

(n)
±

and the two fermionic su(2) singlets ψ
(n)
± , where the index n indicates the sl(2) quantum

number. The action of the generators on these states is given by

L5 |φ(n)± 〉 = ±1

2
|φ(n)± 〉 , L+ |φ(n)− 〉 = |φ(n)+ 〉 , L− |φ(n)+ 〉 = |φ(n)− 〉 ,

J0 |φ(n)β 〉 = −
(
1
2 + n

)
|φ(n)β 〉 , J0 |ψ(n)

β̇
〉 = − (1 + n) |ψ(n)

β̇
〉 ,

J+ |φ(n)β 〉 = +n |φ(n−1)β 〉 , J+ |ψ(n)

β̇
〉 = +

√
(n+ 1)n |ψ(n−1)

β̇
〉 ,

J− |φ(n)β 〉 = −(n+ 1) |φ(n+1)
β 〉 , J− |ψ(n)

β̇
〉 = −

√
(n+ 2)(n+ 1) |ψ(n+1)

β̇
〉 ,

Q−±β̇ |φ
(n)
∓ 〉 = ±

√
n+ 1 |ψ(n)

β̇
〉 , Q+±β̇ |φ

(n)
∓ 〉 = ±√

n |ψ(n−1)

β̇
〉 ,

Q−β± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n+1)

β 〉 , Q+β± |ψ(n)
∓ 〉 = ∓

√
n+ 1 |φ(n)β 〉 .

(2.9)

The highest weight state |φ(0)+ 〉 is annihilated by the su(2) grading raising operators Q+±±,

as well as by the two generators Q−+±. Hence, the representation (−1
2 ;

1
2) is a short

representation, satisfying the shortening conditions

{Q+−∓,Q−+±} |φ(0)+ 〉 = ∓(J0 + L5) |φ(0)+ 〉 = 0. (2.10)

The ground state. The states of the left- and right-moving spin-chains of length7 L

transform in the L-fold tensor product of the above representation. The ground state of

the full spin-chain is given by

|0〉L =
∣∣∣(φ(0)+ )L

〉
⊗
∣∣∣(φ(0)+ )L

〉
. (2.11)

This is the highest weight state of the short 1/2-BPS representation (−L
2 ;

L
2 ) ⊗ (−L

2 ;
L
2 )

of psu(1, 1|2) × psu(1, 1|2). In each sector this state is constructed from the spin-chain

module discussed above. Hence, the ground state is preserved by eight supercharges QI
i

7The symbol L is used to denote the length and to denote left-moving generators and excitations.

Hopefully the meaning will be clear from the context.
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and SI
i , with i = 1, 2 and I = L,R, as well as two central charges HI , which in terms of

the psu(1, 1|2) generators are given by

QI
1 = +QI

−++, QI
2 = −QI

−+−, SI
1 = +QI

+−−, SI
2 = +QI

+−+,

HI = −SI
0 − LI

5,
(2.12)

This forms two psu(1|1)2 ×c.e. u(1) algebras

{QI
i ,S

J
j } = δijδ

IJHI , (2.13)

where we use ×c.e. to denote a central extension. The charges HL and HR are the left- and

right-moving spin-chain Hamiltonians. It is useful to introduce the combinations

H = HL + HR, M = HL − HR. (2.14)

The Hamiltonian H gives the energy of a spin-chain state, and depends on the momenta

of the spin-chain excitations. The central charge M measures an angular momentum in

AdS3 × S3 and should be independent of the spin-chain momentum.

We can introduce two additionally generators B1 and B2 acting as outer automor-

phisms on the above algebra. These can be constructed from the psu(1, 1|2) generators LI
5

and the automorphisms RI
8,

B1 = −(RL

8 −RR

8 )− (LL

5 − LR

5 ), B2 = +(RL

8 −RR

8 )− (LL

5 − LR

5 ). (2.15)

The above linear combinations are chosen so that B1 commutes with QI
2 and SI

2, while B2

commutes with QI
1 and SI

1. The commutation relations involving the supercharges then

read
[Bi,Q

L

j ] = −δijQL

i , [Bi,S
L

j ] = +δijS
L

i ,

[Bi,Q
R

j ] = +δijQ
R

i , [Bi,S
R

j ] = −δijSR

i .
(2.16)

Taking the generators Bi into account it is useful to regroup the symmetry algebra into

two copies of u(1)⋉ su(1|1)2, with the generators given by

{
QL

1,S
L

1,Q
R

1 ,S
R

1 ,H
L,HR,B1

}
, and

{
QL

2,S
L

2,Q
R

2 ,S
R

2 ,H
L,HR,B2

}
, (2.17)

respectively. Since the central charges HL and HR are shared between the two su(1|1)2
algebras, the full symmetry preserving the ground state can be written as

[
u(1)⋉ psu(1|1)2

]2 ×c.e. u(1)
2. (2.18)

Excitations. To construct excited spin-chain states we replace one or more of the ground

state sites by any other state in the same module. We can classify these excitations by

their eigenvalues under the left- and right-moving spin-chain Hamiltonians HL and HR at

zero coupling. Let us consider excitations in the left-moving sector. Replacing one of the

highest weight states φ
(0)
+ by the boson φ

(n)
+ or φ

(n)
− increases the eigenvalue of HL by n or

n + 1, respectively. Similarly, insertion of a fermion ψ
(n)
± also adds n to the energy. The

lightest excitations are therefore

φ
(0)
− , ψ

(0)
+ , ψ

(0)
− , and φ

(1)
+ .

– 6 –
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|φ(0)
−

〉

|ψ(0)
+ 〉 − |ψ(0)

−

〉

|φ(1)+ 〉

+Q1

+S1

+Q1

+S1

+Q2

+S2

−Q2

−S2

Figure 2. The action of the supercharges Qi and Si on the bi-fundamental representation (2.19).

These states form a four-dimensional bi-fundamental representation of the left-moving

psu(1|1)2 algebra (2.13), as illustrated in figure 2. To emphasize this we introduce the

notation

Φ++̇ = +φ
(0)
− , Φ−−̇ = +φ

(1)
+ , Φ−+̇ = +ψ

(0)
+ , Φ+−̇ = −ψ(0)

− . (2.19)

We also introduce the symbols ǫγ and ǫγ̇ to keep track of the grading

(−1)ǫ± = ±1, (−1)ǫ±̇ = ±1. (2.20)

The excitation Φγγ̇ then has statistics (−1)ǫγ+ǫγ̇ .

To make the bi-fundamental nature of the representation above more explicit, we intro-

duce an auxiliary fundamental su(1|1) representation with basis (φ|ψ), and the generators

Q, S and H acting as

Q |φ〉 = a |ψ〉 , S |ψ〉 = b |φ〉 , H |φ〉 = ab |φ〉 , H |ψ〉 = ab |ψ〉 . (2.21)

We can then identify

Φ++̇ = φ⊗ φ, Φ+−̇ = φ⊗ ψ, Φ−+̇ = ψ ⊗ φ, Φ−−̇ = ψ ⊗ ψ. (2.22)

The supercharges QL

1 and SL

1 only act on the first index of Φγγ̇ , while QL

2 and SL

2 act on

the second index. Hence the action on the tensor products (2.22) is given by

QL

1 = Q⊗ 1, SL

1 = S⊗ 1, QL

2 = 1⊗Q, SL

2 = 1⊗S. (2.23)

Note that we get a minus sign from commuting a supercharge through a fermion when we

act with the charges of the second type on a state with a fermion in the first part of the

tensor product. Hence, the left-moving generators act as

QL

1 |Φ++̇〉 = +a |Φ−+̇〉 , QL

1 |Φ+−̇〉 = +a |Φ−−̇〉 ,
SL

1 |Φ−+̇〉 = +b |Φ++̇〉 , SL

1 |Φ−−̇〉 = +b |Φ+−̇〉 ,
QL

2 |Φ++̇〉 = +a |Φ+−̇〉 , QL

2 |Φ−+̇〉 = −a |Φ−−̇〉 ,
SL

2 |Φ+−̇〉 = +b |Φ++̇〉 , SL

2 |Φ−−̇〉 = −b |Φ−+̇〉 ,

(2.24)

– 7 –
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with the right-moving charges acting trivially. Comparing the above representation

with (2.9) we find that the central charge HL has eigenvalue ab = 1.

Similarly, we introduce the right-moving excitations Φ̄±±̇, transforming in a

bi-fundamental representation of the right-moving psu(1|1)2 algebra.

The centrally extended algebra. When we take quantum corrections into account,

the spin-chain Hamiltonian H should depend on the coupling constant and on the

momentum of the excitations. This requires the bi-fundamental representations discussed

above to be deformed. However, this should be done in such a way that the angular

momentum M remains undeformed. This means that we need to consider a generalized

symmetry algebra in which the right-moving generators act nontrivially on the left-moving

excitations, and vice versa. Hence, we introduce two additional central charges P and P†

appearing in the anti-commutator between a left- and a right-moving supercharge

{QL

i ,Q
R

j } = δijP, {SL

i ,S
R

j } = δijP
†. (2.25)

Exactly like the central charges HL and HR, these charges are shared between the two

copies of u(1)⋉ su(1|1)2. Hence, the extended algebra can be written as8

[
u(1)⋉ psu(1|1)2

]2 ×c.e. u(1)
4. (2.26)

This is the maximal central extension of psu(1|1)4.
Since the charges in general are momentum dependent we will consider spin-chain

states in which the excitations carry specific momenta. A one-excitation state can then

be written as a plane wave

|Xp〉 =
L∑

n=1

eipn |Zn−1XZL−n〉 , (2.27)

where X is any left- or right-moving excitation, and we have introduced the shorthand no-

tation Z for a ground-state site. It is now straightforward to generalize this form to the case

of multiple excitations. Note that we always consider asymptotic states, where the spin-

chain is considered to be very long and the excitations are well separated. The interactions

are then described by the S-matrix permuting the order of excitations along the chain.

In order to construct nontrivial representations of the extended algebra we need to

allow the supercharges to have a length-changing action on the spin-chain excitations. We

therefore introduce two additional symbols Z± indicating the insertion or removal of a

vacuum site next to an excitation. Writing out the plane waves we can commute these

symbols through an excitation of momentum p by picking up an extra phase factor

|Z±Φββ̇
p 〉 = e∓ip |Φββ̇

p Z±〉 (2.28)

8The role of the central extensions for psu(1|1)2 was originally discussed in [26], in the context of

AdS5/CFT4 duality, and in the case of AdS3/CFT2 in [17, 22]. The same symmetry algebra was found

in the analysis of the Pohlmeyer reduced sigma model of the AdS3 × S3 in [27], and more recently in the

world-sheet analysis of string theory in AdS3 × S3 × T 4 in [28].
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Using these relations we can always shift any insertions of Z± through all excitations and

collect them at the right end of the state.

A centrally extended su(1|1)2 algebra with dynamic spin-chain representations was

considered in [24]. The supercharges act on the left-moving excitations by

QL |φp〉 = ap |ψp〉 , QL |ψp〉 = 0,

SL |φp〉 = 0, SL |ψp〉 = bp |φp〉 ,
QR |φp〉 = 0, QR |ψp〉 = cp |φp Z+〉 ,
SR |φp〉 = dp |ψp Z

−〉 , SR |ψp〉 = 0.

(2.29)

The left-moving charges in the above expressions act in the same way as in (2.21). Hence,

the bi-fundamental representations in (2.24) can be deformed to a representation of the

centrally extended algebra (2.26) by considering a tensor product of the representa-

tion (2.29). We find that the left-moving generators act on the left-movers Φ±±̇ in the

same way as in (2.24), but with the coefficients a and b depending on the momentum of

the excitation. The action of the right-moving supercharges is given by

QR

1 |Φ−−̇p 〉 = +cp |Φ+−̇
p Z+〉 , QR

1 |Φ−+̇p 〉 = +cp |Φ++̇
p Z+〉 ,

SR

1 |Φ++̇
p 〉 = +dp |Φ−+̇p Z−〉 , SR

1 |Φ+−̇
p 〉 = +dp |Φ−−̇p Z−〉 ,

QR

2 |Φ−−̇p 〉 = −cp |Φ−+̇p Z+〉 , QR

2 |Φ+−̇
p 〉 = +cp |Φ++̇

p Z+〉 ,
SR

2 |Φ++̇
p 〉 = +dp |Φ+−̇

p Z−〉 , SR

2 |Φ−+̇p 〉 = −dp |Φ−−̇p Z−〉 .

(2.30)

Closure of the algebra requires the central charges to act on the left-movers as

HL |Φ±±̇p 〉 = apbp |Φ±±̇p 〉 , P |Φ±±̇p 〉 = apcp |Φ±±̇p Z+〉 ,
HR |Φ±±̇p 〉 = cpdp |Φ±±̇p 〉 , P† |Φ±±̇p 〉 = bpdp |Φ±±̇p Z−〉 .

(2.31)

The central charges P and P† are not part of the symmetries of the psu(1, 1|2)2 spin-

chain. They therefore need to vanish on a physical state. Acting with P on a spin-chain

state with two left-moving excitations, we obtain

P |Φββ̇
p Φγγ̇

q 〉 = (e−iqapcp + aqcq) |Φββ̇
p Φγγ̇

q 〉 . (2.32)

Setting

apcp = h(e−ip − 1), (2.33)

we find

e−iqapcp + aqcq = h(e−i(p+q) − 1), (2.34)

which vanishes provided the excitations satisfy the momentum constraint ei(p+q) = 1.

Similarly, requiring the charge P† to vanish on a physical state leads us to

bpdp = h(e+ip − 1), (2.35)

We furthermore require that the generator M remains undeformed when the central exci-

tations are turned on, which gives

apbp − cpdp = 1. (2.36)
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The above conditions on the coefficients of the representation together uniquely determines

the dispersion relation

E(p) = apbp + cpdp =

√
1 + 16h2 sin2

p

2
. (2.37)

To write down the explicit form of the coefficients ap, . . . , dp it is useful to introduce

the spectral parameters x± satisfying [23]

x+p

x−p
= eip,

(
x+p +

1

x+p

)
−
(
x−p +

1

x−p

)
=
i

h
. (2.38)

The coefficients can then be written as

ap = +
√
h ηp, bp = +

√
h ηp, cp = −

√
h
iηp

x+p
, dp = +

√
h
iηp

x−p
, (2.39)

where

ηp =
√
i(x−p − x+p ). (2.40)

The above expressions are essentially the same as those given in [24], apart from a rescal-

ing of the coupling constant h by a factor 2 and setting the parameter s labeling the

representations there to s = 1 as appropriate in AdS3 × S3 × T 4.

The right-movers again transform in a similar representation in which the roles of the

left- and right-moving generators have been interchanged.

3 S-matrix

In order to derive the S-matrix S for the excitations discussed above we will follow closely

the procedure of [24]. We focus on the two-particle S-matrix,

|Y(out)
q X (out)

p 〉 = S |X (in)
p Y(in)

q 〉 . (3.1)

where S acts on the spin-chain state by permuting the excitations. First of all, we require

that S commutes with the whole centrally extended symmetry algebra, i.e., for any

generator J

[J1 + J2,S12] = 0. (3.2)

Furthermore, the S-matrix should satisfy the unitarity condition

S12 S12 = 1, (3.3)

and physical unitarity, which means that the S-matrix should be unitary as a matrix, so

that if S is the matrix form of S on a basis of asymptotic two-particle states, we have

Spq · (Spq)† = (Spq)
† · Spq = 1⊗ 1. (3.4)

On top of this we will also require that there is a Z2 left-right symmetry, so that matrix

elements that differ by interchanging left and right chiralities should be equal.
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In this way we find two solutions, corresponding to pure transmission and pure reflec-

tion of the “left” and “right” flavors. Consistence with the string theory results [29, 30]

forces us to choose the pure transmission S-matrix, like in [24]. The similarity with those

results is not accidental, and in fact much deeper, since the excitations of the psu(1, 1|2)2
chain transform under two copies of the centrally extended su(1|1)2 algebra discussed

in [24]. In fact this makes the whole S-matrix factorize into two copies of the su(1|1)2
invariant one,

S = Ssu(1|1)2 ⊗̂ Ssu(1|1)2 , (3.5)

where the hat denotes a graded tensor product, so that in components we have

S
kl
mn ≡ S

KK̇,LL̇

MṀ,NṄ
= (−1)ǫṀ ǫN+ǫK̇ǫL

(
Ssu(1|1)2

)KL

MN

(
Ssu(1|1)2

)ṀL̇

ṀṄ
, (3.6)

where the ǫ symbol is 0 for bosons and 1 for fermions. This tensor product structure is very

similar to the one coming from the centrally extended psu(2|2)×psu(2|2) symmetry of [23].

It is convenient to rewrite here the explicit form of Ssu(1|1)2 , in a slightly different

normalization with respect to [24]. We have

Ssu(1|1)2 |φpφq 〉 = ALL

pq |φqφp 〉 , Ssu(1|1)2 |φpψq 〉 = BLL

pq |ψqφp〉+ CLL

pq |φqψp〉 ,
Ssu(1|1)2 |ψpψq〉 = F LL

pq |ψqψp〉 , Ssu(1|1)2 |ψpφq 〉 = DLL

pq |φqψp〉+ ELL

pq |ψqφp〉 ,
(3.7)

where the coefficients take the form

ALL

pq = Spq, BLL

pq = Spq
x+q − x+p

x+q − x−p
, CLL

pq = Spq
x+q − x−q

x+q − x−p

ηp
ηq
,

F LL

pq = −Spq
x−q − x+p

x+q − x−p
, DLL

pq = Spq
x−q − x−p

x+q − x−p
, ELL

pq = Spq
x+p − x−p

x+q − x−p

ηq
ηp
,

(3.8)

and Spq is an antisymmetric phase that cannot be fixed by symmetries and unitarity

alone. Then we have, e.g.,

S |Φ++̇
p Φ++̇

q 〉 = ALL

pqA
LL

pq |Φ++̇
q Φ++̇

p 〉 ,
S |Φ++̇

p Φ−−̇q 〉 = BLL

pqB
LL

pq |Φ−−̇q Φ++̇
p 〉+ CLL

pqC
LL

pq |Φ++̇
q Φ−−̇p 〉

+BLL

pqC
LL

pq

(
|Φ−+̇q Φ+−̇

p 〉 − |Φ+−̇
q Φ−+̇p 〉

)
,

(3.9)

and so on.

In the LR-sector the scattering is reflectionless and we have

Ssu(1|1)2 |φpφ̄q 〉 = ALR

pq |φ̄qφp 〉+BLR

pq |ψ̄qψpZ
−〉 , Ssu(1|1)2 |φpψ̄q 〉 = CLR

pq |ψ̄qφp〉 ,
Ssu(1|1)2 |ψpψ̄q〉 = ELR

pq |ψ̄qψp〉+F LR

pq |φ̄qφpZ+〉 , Ssu(1|1)2 |ψpφ̄q 〉 =DLR

pq |φ̄qψp〉 .
(3.10)

We normalize the S-matrix so that the elements are

ALR

pq = +τLR

pq

1− 1
x+
p x−

q

1− 1
x−
p x−

q

, BLR

pq = −τLR

pq

ηpηq

x−p x
−
q

1

1− 1
x−
p x−

q

, CLR

pq = τLR

pq ,

ELR

pq = −τLR

pq

1− 1
x−
p x+

q

1− 1
x−
p x−

q

, F LR

pq = −τLR

pq

ηpηq

x+p x
+
q

1

1− 1
x−
p x−

q

, DLR

pq = τLR

pq

1− 1
x+
p x+

q

1− 1
x−
p x−

q

.

(3.11)
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where

τLR

pq = ζpq S̃pq, ζpq =

√√√√√
1− 1

x−
p x−

q

1− 1
x+
p x+

q

, (3.12)

and S̃pq is an undetermined antisymmetric phase. Using (3.5) it is easy to work out the

scattering in the LR-sector of the psu(1, 1|2)2 chain, finding, e.g.,

S |Φ++̇
p Φ̄++̇

q 〉 = ALR

pqA
LR

pq |Φ̄++̇
q Φ++̇

p 〉 −BLR

pq B
LR

pq |Φ̄−−̇q Φ−−̇p Z−Z−〉
+ALR

pqB
LR

pq

(
|Φ̄+−̇

q Φ+−̇
p Z−〉+ |Φ̄−+̇q Φ−+̇p Z−〉

)
,

S |Φ++̇
p Φ̄−−̇q 〉 = CLR

pq C
LR

pq |Φ̄−−̇q Φ++̇
p 〉 ,

(3.13)

where we explicitly wrote down the length-changing effects.

Due to the discrete LR-symmetry, the S-matrix in the RL and RR sectors can be

easily found from the previous expressions, again just like in [24]. Due to this symmetry,

the only unknown scalar factors in the S-matrix are Spq and S̃pq.

An early attempt of deriving the S-matrix for the AdS3 × S3 × T 4 massive modes was

made in [31]. However, there the interaction between left- and right-moving sectors was

not analyzed in full detail, and as a result the S-matrix contained only one dressing phase.

More recently another proposal was made for the AdS3×S3×T 4 S-matrix [32]. This has

not used the central extensions we discussed in section 2 above. The resulting S-matrix and

Bethe ansatz therefore differ from the ones presented here, in particular in the LR-sector.

3.1 The Yang-Baxter equation

For an integrable theory, an N -body scattering process can be broken down into a

sequence of two-body scattering events. The condition that ensures that this can be done

in a consistent way is the Yang-Baxter equation, which amounts to requiring that the two

ways in which a 3-body scattering can be decomposed are equivalent. In terms of the

operator S this reads

S23 S12 S23 = S12 S23 S12, (3.14)

where we recall that S permutes the excitations.

Our S-matrix satisfies the Yang-Baxter equation (3.14). However, to check this we

must not forget that in our spin-chain picture S may add or remove vacuum sites after

a two particle excitiation, as in (3.13). If we want to rewrite the Yang-Baxter equation

on a basis of asymptotic excitations, we must take into account these vacuum sites by

shifting them to the far right of the spin chain, as explained in section 2. This results in

additional factors of e±ip where p is the momentum of the rightmost excitation. Therefore

the Yang-Baxter equation reads, in matrix form,

1⊗ Spq ·
(
FqSprF

−1
q

)
⊗ 1 · 1⊗ Sqr =

(
FpSqrF

−1
p

)
⊗ 1 · 1⊗ Spr ·

(
FrSpqF

−1
r

)
⊗ 1, (3.15)

where the transformation F implements a twist depending on the momentum of the third

excitation. It is convenient to introduce a new S-matrix Ŝ that, unlike S, obeys the un-

twisted Yang-Baxter equation [24, 33]

1⊗ Ŝpq · Ŝpr ⊗ 1 · 1⊗ Ŝqr = Ŝqr ⊗ 1 · 1⊗ Ŝpr · Ŝpq ⊗ 1 . (3.16)
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This can be done by means of a nonlocal transformation on the two-particle basis in terms

of a twist operator U(p) defined as

Ŝpq = U
†(p)⊗ 1 · Spq · U(q)⊗ 1. (3.17)

The factor Fp in (3.15) is then related to U(p) by

Fp = U(p)⊗ U(p) . (3.18)

More specifically, if we let our one-particle basis be given by

(
Φ++̇, Φ+−̇, Φ−+̇, Φ−−̇, Φ̄++̇, Φ̄+−̇, Φ̄−+̇, Φ̄−−̇

)
, (3.19)

the operator U(p) is given by9

U(p) = diag
(
e−i p, e−i p/2, e−i p/2, 1, e−i p, e−i p/2, e−i p/2, 1

)
. (3.20)

It is now easy to check that our spin chain S-matrix S satisfies (3.15) or equivalently that

Ŝ, which is sometimes called the “string frame” S-matrix, satisfies (3.16). This points to

the integrability of the underlying theory.

3.2 Crossing symmetry

The integrable S-matrix that we have found depends on two undetermined antisymmetric

phases Spq and S̃pq, which we now want to constrain. One way to do so is, as in [24],

to exploit the fact that there exists two-particle configurations (“singlets”) that are

annihilated by the whole symmetry algebra,

J |1pq〉 = 0. (3.21)

This feature was first noticed for AdS5 strings [23] and also there it can be employed to

find constraints on the S-matrix [34, 35]. In fact, since |1pq〉 is completely neutral, its

scattering with any excitation should be trivial (see equation (3.24) below). This yields a

constraint on the product of pairs of S-matrix elements. Furthermore, since |1pq〉 should

have zero energy, it follows that either p or q cannot be physical. In fact it turns out that

they must be related by crossing, that is in term of the Zhukovski variables

x±(p) = x±(q̄) =
1

x±(q)
. (3.22)

As discussed in [34] for AdS5 strings, it is indeed possible to relate the triviality of scattering

by a singlet with the requirement of crossing symmetry. In what follows we will obtain the

crossing equations for Spq and S̃pq first by considering the scattering of a singlet with an ar-

bitrary excitation, and later by requiring crossing invariance for the (string frame) S-matrix.

9We have fixed the twist matrix by requiring that also in the string frame it is true that Ŝ =

Ŝ
su(1|1)2 ⊗̂ Ŝ

su(1|1)2 , where Ŝ
su(1|1)2 is the string frame S-matrix of [24].
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Solving (3.21) yields two singlets, related to each other by LR-symmetry. These can

be constructed by tensoring two copies of singlet discussed in [24]. They are10

|1LRp̄p 〉 = |Φ++̇
p̄ Φ̄++̇

p Z+Z+〉+ Ξp̄p |Φ−+̇p̄ Φ̄−+̇p Z+〉+ Ξp̄p |Φ+−̇
p̄ Φ̄+−̇

p Z+〉 − (Ξp̄p)
2 |Φ−−̇p̄ Φ̄−−̇p 〉 ,

|1RL
p̄p 〉 = |Φ̄++̇

p̄ Φ++̇
p Z+Z+〉+ Ξp̄p |Φ̄−+̇p̄ Φ−+̇p Z+〉+ Ξp̄p |Φ̄+−̇

p̄ Φ+−̇
p̄ Z+〉 − (Ξp̄p)

2 |Φ̄−−̇p̄ Φ−−̇p 〉 ,

where

Ξp̄p = i x+p
ηp̄
ηp
, x±p̄ =

1

x±p
. (3.23)

Requiring that the scattering with any excitation |Xp〉 is trivial

S23 S12 |Xp1
LR
q̄q 〉 = |1LRq̄q Xp〉 , S23 S12 |Xp1

RL
q̄q 〉 = |1RL

q̄q Xp〉 , (3.24)

gives the crossing equations.

In order for the S-matrices to have the standard su(2) and sl(2) form we rewrite the

scalar factors as

S−2pq =
x+p − x−q

x−p − x+q

1− 1
x+
p x−

q

1− 1
x−
p x+

q

σ2pq, S̃−2pq =
1− 1

x+
p x−

q

1− 1
x−
p x+

q

σ̃2pq, (3.25)

where σ2pq and σ̃2pq are two new phases, which we will refer to as the “dressing phases”.11

They satisfy the crossing equations

σ2pq σ̃
2
pq̄ =

(
x+p

x−p

)2
(x−p − x+q )

2

(x−p − x−q )(x
+
p − x+q )

1− 1
x−
p x+

q

1− 1
x+
p x−

q

,

σ2pq̄ σ̃
2
pq =

(
x+p

x−p

)2
(
1− 1

x−
p x−

q

)(
1− 1

x+
p x+

q

)

(
1− 1

x+
p x−

q

)2
x−p − x+q

x+p − x−q
.

(3.26)

It is easy to check that, in both the finite-gap and near-BMN limits, these equations are

satisfied if we take both phases to be equal to the AFS one [38] at leading order,

σ(p, q) = σAFS(p, q) +O

(
1

h2

)
, σ̃(p, q) = σAFS(p, q) +O

(
1

h2

)
, (3.27)

where

σAFS(xp, xq) =



1− 1

x−
p x+

q

1− 1
x+
p x−

q





1− 1

x+
p x−

q

1− 1
x+
p x+

q

1− 1
x−
p x+

q

1− 1
x−
p x−

q




ih(xp+1/xp−xq−1/xq)

. (3.28)

10In what follows we write them taking the momenta p, q to be in the physical region. Crossing is

indicated by p̄, q̄, which corresponds to a shift on the rapidity torus by half of its imaginary period [36].

Antisymmetry requires shift in the first and second variable to be performed in opposite directions, see

appendix B, which leaves us with two seemingly equivalent prescriptions. The preferred choice can be fixed

by comparing perturbative results with the dressing phases that solve the crossing equations [37].
11The appearance of two independent dressing phase factors was previously observed in [27] for the case

of Pohlmeyer reduced strings on AdS3 × S3.
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We plan to discuss an all-loop solution to these crossing equations in an upcoming

publication [37].

The same set of equations can be found also by the usual field-theoretic consid-

erations [34]. It is convenient to work in the string frame, and for this purpose let us

transform the charges of the symmetry algebra as

Ĵpq = U
†
q ⊗ 1 · Jpq · Uq ⊗ 1, (3.29)

where Jpq is the matrix representation of the generator J on a two-particle state and Ĵpq is

its string frame counterpart. Then the action on a two-particle states can be understood

in terms of a nontrivial coproduct

Ĵpq = Jp ⊗ e±i q/2 +Σ⊗ Jq, (3.30)

where one should pick the positive sign in the exponent for the supercharges SI
i and the

negative one for QI
i , and Σ takes into account the fermion signs. In particular, in the

basis (3.19), we have

Σ = diag ( 1,−1,−1, 1, 1,−1,−1, 1) . (3.31)

By taking the supertranspose of the charges J we find another representation related to

the original one by charge conjugation as

C−1 · J(z + ω)st · C = −e∓i p/2 J(z), (3.32)

where C is the charge conjugation matrix which in our basis reads12

C =

(
0 −i
i 0

)
⊗




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (3.33)

To simplify our notation it is useful to rewrite the S-matrix in terms of an operator that

does not permute the excitations. To this end we introduce

Rpq = Π · Spq, (3.34)

where Π is the permutation matrix. In terms of Rpq the fundamental invariance

property (3.2) becomes

Rpq ·
(
Jp ⊗ e±iq/2 +Σ⊗ Jq

)
=
(
Jp ⊗ Σ+ e±ip/2 ⊗ Jq

)
· Rpq . (3.35)

We can now follow a standard route [34] to derive the crossing equations for Rpq, taking

the transpose of (3.35) with respect to either factor of the tensor product, and exploiting

the charge conjugation (3.32).13 The crossing equations then read

C−1 ⊗ 1 · Rt1
q̄p · C ⊗ 1 · Rqp = 1⊗ 1, 1⊗ C−1 · Rt2

pq̄ · 1⊗ C · Rpq = 1⊗ 1, (3.36)

12There are more general solutions to (3.32). We fixed our choice by picking C · C† = C† · C = 1

and C · C = 1. The crossing equations do not depend on this choice.
13To this end it is useful to rewrite (3.32) as J(z)t = −e±ip/2C · J(z − ω) ·C−1 ·Σ, where ω is half of the

imaginary period of the rapidity torus, and use that [Σ⊗ Σ,Rpq] = 0.
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where the superscript t1,2 denotes transposition in the first or second factor, or

ΣC−1 ⊗1 ·Rt1
q̄p ·C Σ⊗1 ·Rqp = 1⊗1, 1⊗ΣC−1 ·Rt2

pq̄ ·1⊗C Σ ·Rpq = 1⊗1, (3.37)

depending on whether we shift down or up the first variable of the S-matrix under crossing,

see footnote 10. We can take e.g. the second equation in (3.36) and evaluate it in terms

of the S-matrix elements in the string frame finding that it is satisfied if, e.g.,

Apq Ãpq̄ = 1, Bpq̄ C̃pq = 1, (3.38)

where

Apq = 〈Φ++̇
q Φ++̇

p | Ŝpq |Φ++̇
p Φ++̇

q 〉 , Ãpq = 〈Φ̄++̇
q Φ++̇

p | Ŝpq |Φ++̇
p Φ̄++̇

q 〉 ,
Bpq = 〈Φ−−̇q Φ++̇

p | Ŝpq |Φ++̇
p Φ−−̇q 〉 , C̃pq = 〈Φ̄−−̇q Φ++̇

p | Ŝpq |Φ++̇
p Φ̄−−̇q 〉 .

(3.39)

Using the explicit form of the S-matrix elements yields (3.26). The first equation in (3.36)

gives similar equations where the crossed momentum is in the first argument of the

S-matrix; these can also be found from considering scattering with a singlet, but with a

particle incoming from the right.

Let us remark that, up to a different choice of normalization, the crossing equations

are the square of the ones found in [24] for Ssu(1|1)2 , see also appendix B. In section 4.4

we will discuss the solutions at strong coupling of these crossing equations and further

constraints on the scalar factors.

It is also interesting to notice that the action of the charges on the two-particle

states (3.30) takes the form of a nontrivial coproduct, similar to the one appearing in

other instances of AdS/CFT integrability [39, 40]. This suggests an alternative route

to obtain the all-loop S-matrix: rather than bootstrapping it out of its symmetries, and

obtaining an integrable S-matrix as a result, we could have postulated the existence of

an underlying Hopf algebra structure. This is yet another route to obtain the crossing

equations (3.26), which we discuss in appendix B. Furthermore, and in contrast with what

happens in the case of AdS5, here we could have in principle obtained the whole S-matrix

from a universal R-matrix (the one of gl(1|1)) by imposing Yangian symmetry. We refer

the reader to appendix C for details on this construction.

4 S-matrix diagonalisation and Bethe ansatz

Since the all-loop S-matrix Spq obtained in the previous section satisfies the Yang-Baxter

equation, we can use it to obtain the asymptotic Bethe ansatz for the spin chain.

4.1 Diagonalising the S-matrix

In this section we show how to construct asymptotic eigenstates of the spin-chain Hamil-

tonian H. We will follow closely the procedure used in [25] to diagonalise the S-matrix of

the d(2, 1;α)2 spin-chain. This procedure is standard [23, 41–43] and we will only present

the key steps.
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QL

1 QL

2 SR

1 SR

2

Φ++̇ Φ−+̇ Φ+−̇ Φ−+̇Z− Φ+−̇Z−

Φ̄−−̇ Φ̄+−̇Z+ Φ̄−+̇Z+ Φ̄+−̇ Φ̄−+̇

Table 1. Action of the lowering operators on the states of the level-II vacuum V II
A .

We will construct asymptotic eigenstates (i.e. eigenstates for a chain of infinite length)

out of the two-particle S-matrix. One such eigenstate containing K excitations will be of

the form

|Ψ〉 =
∑

π∈SK

Sπ |Ψ〉I , Sπ =
∏

(k,l)∈π

Skl, (4.1)

where π ∈ SK is a permutation, |Ψ〉I is a wavefunction and we used the fact that the scat-

tering factorizes to write the K-body S-matrix as a product of two-body ones, which act by

Sπ |Ψ〉 = Sπ |Ψ〉π . (4.2)

Since not all of the quantum numbers scatter by pure transmission we need to employ the

so-called nesting procedure to perform the diagonalisation.

The idea is to introduce a level-I vacuum |0〉I, which is just given by |ZL〉. Then,

rather than considering all of its possible excitations at once, we restrict to the maximal

set of excitations that scatter diagonally. This will give the level-II vacuum |0〉II. The

remaining fields are then considered as level-II excitations on top of such a vacuum. This

will be enough to diagonalise the whole S-matrix in our case.

Level-I vacuum. The level-I vacuum is just |0〉I ≡ |ZL〉. The S-matrix S given in the

previous section can be thought of as the level-I S-matrix, and we will call it SI in this

section.

Level-II vacuum. We need to choose a maximal set of excitations that scatter with pure

transmission among each other. An N -particle state made out of only this kind of excita-

tions will be automatically an eigenstate. The structure of SI leads to four possible choices

V II
A = {Φ++̇, Φ̄−−̇}, V II

B = {Φ−−̇, Φ̄++̇},
V II
C = {Φ+−̇, Φ̄−+̇}, V II

D = {Φ−+̇, Φ̄+−̇}.
(4.3)

Each candidate level-II vacuum is composed of one left and one right excitation, that are

either both bosonic or both fermionic.

In the following we will choose the set V II
A to construct the level-II vacuum. In ap-

pendix A we will show how the other possible choices are related by fermionic dualities,

allowing us to write all-loop Bethe equations in four different gradings.

Propagation. To consider also the other types of fields, we can view them as level-II

excitations on the level-II vacuum. We have four supercharges at our disposal to create

other types of fields, starting from the ones of V II
A (see table 1 for their explicit action).
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Note that the fields Φ−−̇, Φ̄++̇ do not explicitly appear in the Bethe ansatz, since from

that point of view they are considered as composite excitations (i.e., one can respectively

create them by consecutively applying QL

1 and QL

2 on Φ++̇ and SR

1 and SR

2 on Φ̄−−̇).

As in [25], we can derive the level-II S-matrix by requiring compatibility of the level-I

S-matrix with the states in which we allow for one level-II excitation. In the following we

consider two-particle states and we write the wave function that solves the compatibility

condition with SI. The factorization of scattering allows us to extend these results to

N-particle excitations, when one level-II excitation is allowed.

Starting from a level-II vacuum defined as |0〉II22 = |Φ++̇
p Φ++̇

q 〉 we can consider level-II

excitations created by the action of QL

1 as14

|Yy〉II(22) = f2(y, p) |Φ−+̇p Φ++̇
q 〉+ f2(y, q)S

II,I
22 (y, p) |Φ++̇

p Φ−+̇q 〉 ,
|Yy〉II(22),π = f2(y, q) |Φ−+̇q Φ++̇

p 〉+ f2(y, p)S
II,I
22 (y, q) |Φ++̇

q Φ−+̇p 〉 .
(4.4)

The compatibility equation15

SI
π |Yy〉II(22) = ALL

pqA
LL

pq |Yy〉II(22),π (4.5)

is solved by

f2(y, p) = g2(y)
ηp

h2(y)− x+p
, SII,I

22 (y, p) =
h2(y)− x−p

h2(y)− x+p
, (4.6)

where h1(y), g1(y) are arbitrary functions of y. Starting instead from a level-II vacuum de-

fined as |0〉II2̄2̄ = |Φ̄−−̇p Φ̄−−̇q 〉 we can consider level-II excitations created by the action ofQL

1 as

|Yy〉II(2̄2̄) = f2̄(y, p) |Φ̄+−̇
p Z+Φ̄−−̇q 〉+ f2̄(y, q)S

II,I
2̄2̄

(y, p) |Φ̄−−̇p Φ̄+−̇
q Z+〉 ,

|Yy〉II(2̄2̄),π = f2̄(y, q) |Φ̄+−̇
q Z+Φ̄−−̇p 〉+ f2̄(y, p)S

II,I
2̄2̄

(y, q) |Φ̄−−̇q Φ̄+−̇
p Z+〉 .

(4.7)

The compatibility equation

SI
π |Yy〉II(2̄2̄) = FRR

pq F
RR

pq |Yy〉II(2̄2̄),π (4.8)

is solved by

f2̄(y, p) =
−ig2̄(y)
x+p

ηp

1− 1
h2̄(y) x−

p

, SII,I
2̄2̄

(y, p) =
1− 1

h2̄(y) x+
p

1− 1
h2̄(y) x−

p

. (4.9)

As before h2̄(y), g2̄(y) are generic functions of y. The last step is to start from the level-II

vacuum |0〉II22̄ = |Φ++̇
p Φ̄−−̇q 〉. For the level-II excitation we can write

|Yy〉II(22̄) = f2(y, p) |Φ−+̇p Φ̄−−̇q 〉+ f2̄(y, q)S
II,I
2̄2

(y, p) |Φ++̇
p Φ̄+−̇

q Z+〉 ,
|Yy〉II(22̄),π = f2̄(y, q) |Φ̄+−̇

q Z+Φ++̇
p 〉+ f2(y, p)S

II,I
22̄

(y, q) |Φ̄−−̇q Φ−+̇p 〉 .
(4.10)

14We use the index 2 when we consider level-II excitations on the field Φ++̇, while the index 2̄ for level-II

excitations on the field Φ̄−−̇.
15One can understand the origin of this equation as coming from the requirement [S,QL

1] |0〉
II
22 = 0. We

thank one of the referees for suggesting to write this explicitly.
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and we can solve the equation

SI
π |Yy〉II(22̄) = CLR

pq C
LR

pq |Yy〉II(22̄),π (4.11)

by

h2̄(y) = h2(y) ≡ y, g2̄(y) = − g2(y)
h2(y)

,

SII,I
2̄2

(y, p) = SII,I
22 (y, p), SII,I

22̄
(y, p) = SII,I

2̄2̄
(y, p).

(4.12)

These calculations are exactly equivalent to the ones already performed in [25]. This is

not surprising, since in the diagonalisation procedure we have to consider doublets of

su(1|1) (e.g. (Φ++̇|Φ−+̇) in the present case and (φ1|ψ1) in [25]). This makes clear that

the diagonalisation procedure works in a similar way for the other level-II excitations.

Scattering. All the level-II excitations scatter trivially amongst each other. We show

the explicit example in which we start from the level-II vacuum |0〉II22 = |Φ++̇
p Φ++̇

q 〉 and we

create two level-II excitations by acting with the charge QL

1. The two-particle states are

|Yy1Yy2〉II(22) = f2(y1, p)f2(y2, q)S
II,I
22 (y2, p) |Φ−+̇p Φ−+̇q 〉

+ f2(y2, p)f2(y1, q)S
II,I
22 (y1, p)S

II,II
22 (y1, y2) |Φ−+̇p Φ−+̇q 〉 ,

|Yy1Yy2〉II(22),π = f2(y1, q)f2(y2, p)S
II,I
22 (y2, q) |Φ−+̇q Φ−+̇p 〉

+ f2(y2, q)f2(y1, p)S
II,I
22 (y1, q)S

II,II
22 (y1, y2) |Φ−+̇q Φ−+̇p 〉 .

(4.13)

Requiring the equation

SI
π |Yy1Yy2〉II(22) = ALL

pqA
LL

pq |Yy1Yy2〉II(22),π (4.14)

and using the previous results, we find that

SII,II
22 (y1, y2) = −1, (4.15)

which confirms the trivial scattering. One can repeat the calculation by starting with a

different level-II vacuum and by acting with different supercharges to create the level-II

excitations and still find trivial scattering.

4.2 Bethe equations

To obtain the Bethe ansatz equations we impose periodic boundary conditions on a

spin-chain of finite length L and use the S-matrix in its diagonal form. The central

nodes of the two Dynkin diagrams 1 (a) and 1 (c) correspond to the positive roots

of su(2) ⊂ psu(1, 1|2)L and sl(2) ⊂ psu(1, 1|2)R, respectively, and give the momentum

carrying nodes. We denote the corresponding variables by x± and x̄±, respectively. The

number of the corresponding excitations is denoted by K2, K2̄. We have two auxiliary

“left” roots denoted by y1, y3, corresponding respectively to the action of the supercharges

QL

1, QL

2. The two auxiliary “right” roots are denoted by y1̄, y3̄ and they correspond
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+1 −1

Dynkin links

Fermionic inversion symmetry links

Dressing phase σpq

Dressing phase σ̃pq

Figure 3. The Dynkin diagram for psu(1, 1|2)2 with the various interaction terms appearing in

the Bethe ansatz indicated. The label ±1 inside the middle Dynkin nodes indicate the su(2) and

sl(2) gradings of the left- and right-moving sectors.

respectively to the action of the supercharges SR

1 , S
R

2 . The number of the corresponding

excitations is denoted by K1, K3, K1̄, and K3̄. The Bethe equations then read

1 =

K2∏

j=1

y1,k − x+j

y1,k − x−j

K2̄∏

j=1

1− 1
y1,kx̄

−
j

1− 1
y1,kx̄

+
j

, (4.16)

(
x+k
x−k

)L

=

K2∏

j=1
j 6=k

x+k − x−j

x−k − x+j

1− 1
x+
k x−

j

1− 1
x−
k x+

j

σ2(xk, xj)

K1∏

j=1

x−k − y1,j

x+k − y1,j

K3∏

j=1

x−k − y3,j

x+k − y3,j

×
K2̄∏

j=1

1− 1
x+
k x̄+

j

1− 1
x−
k x̄−

j

1− 1
x+
k x̄−

j

1− 1
x−
k x̄+

j

σ̃2(xk, x̄j)

K1̄∏

j=1

1− 1
x−
k y1̄,j

1− 1
x+
k y1̄,j

K3̄∏

j=1

1− 1
x−
k y3̄,j

1− 1
x+
k y3̄,j

,

(4.17)

1 =

K2∏

j=1

y3,k − x+j

y3,k − x−j

K2̄∏

j=1

1− 1
y3,kx̄

−
j

1− 1
y3,kx̄

+
j

, (4.18)

1 =

K2̄∏

j=1

y1̄,k − x̄−j

y1̄,k − x̄+j

K2∏

j=1

1− 1
y1̄,kx

+
j

1− 1
y1̄,kx

−
j

, (4.19)

(
x̄+k
x̄−k

)L

=

K2̄∏

j=1
j 6=k

x̄−k − x̄+j

x̄+k − x̄−j

1− 1
x̄+
k x̄−

j

1− 1
x̄−
k x̄+

j

σ2(x̄k, x̄j)

K1̄∏

j=1

x̄+k − y1̄,j

x̄−k − y1̄,j

K3̄∏

j=1

x̄+k − y3̄,j

x̄−k − y3̄,j

×
K2∏

j=1

1− 1
x̄−
k x−

j

1− 1
x̄+
k x+

j

1− 1
x̄+
k x−

j

1− 1
x̄−
k x+

j

σ̃2(x̄k, xj)

K1∏

j=1

1− 1
x̄+
k y1,j

1− 1
x̄−
k y1,j

K3∏

j=1

1− 1
x̄+
k y3,j

1− 1
x̄−
k y3,j

,

(4.20)

1 =

K2̄∏

j=1

y3̄,k − x̄−j

y3̄,k − x̄+j

K2∏

j=1

1− 1
y3̄,kx

+
j

1− 1
y3̄,kx

−
j

. (4.21)

The couplings appearing in the Bethe equations are graphically summarized in figure 3.

The level matching condition is equivalent to the requirement that the total momentum

of the system must vanish
K2∏

j

x+j

x−j

K2̄∏

j

x̄+j

x̄−j
= 1. (4.22)
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The total energy of a multi-excitation state that satisfies the Bethe equations and the level

matching condition is given by

E = E2 + E2̄, Ej =

Kj∑

k=1

√
1 + 16h2 sin2

pk
2
. (4.23)

We note that the Bethe equations above differ from the ones conjectured in [17] in two

respects. Firstly the Bethe ansatz above contains symmetric phases that couple interactions

of excitations with opposite chirality. In particular, equation (4.17) contains an interaction

between roots of type 2 and 2̄ of the form

1− 1
x+
k x̄+

j

1− 1
x−
k x̄−

j

(4.24)

which is symmetric under the exchange of the momenta pk and p̄j corresponding to the

roots in the two sectors. Furthermore, equation (4.20) contains a factor that is the inverse

of the above. These phases cannot be easily conjectured from the finite gap limit, but are

necessary to ensure unitarity of the underlying S-matrix.

Secondly, we have seen that within our construction it is not possible to choose the

grading used in [17] at the level of the all-loop Bethe equations. On the other hand the

grading there was chosen arbitrarily from the finite gap equation, where there is complete

freedom to do so. Indeed we will see in section 4.5 that the finite gap limit of our equation

coincides with the construction of [17] for an appropriate Cartan matrix, as we will see later.

Here we have constructed the Bethe equations in a particular grading, corresponding

to choosing the first level-II vacuum in (4.3). Bethe equations corresponding to the three

other choices can be obtained through a set of duality transformations. This is further

discussed in appendix A.

4.3 Small h limit and Cartan matrix

In the weak coupling limit we expect the BA equation for the l-th node to take the form

(
ul,i +

i
2wl

ul,i − i
2wl

)L

=

Kl∏

k=1
k 6=i

ul,i − ul,k +
i
2All

ul,i − ul,k − i
2All

∏

l′ 6=l

Kl′∏

k=1

ul,i − ul′,k +
i
2All′

ul,i − ul,k − i
2All′

, (4.25)

where wl are weights and All′ is an element of the Cartan matrix of psu(1, 1|2)2. When

h≪ 1, let us expand

x± ≈ ux ± i/2

h
, y ≈ uy

h
, (4.26)

in the left sector, where ui are finite as h→ 0, and similarly in the right sector.

If we assume that the dressing phases σ and σ̃ expand trivially in this limit, we indeed

find that the Bethe ansatz takes the form (4.25) and we can read off the resulting Cartan
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matrix

A =




0 −1 0 0 0 0

−1 +2 −1 0 0 0

0 −1 0 0 0 0

0 0 0 0 +1 0

0 0 0 +1 −2 +1

0 0 0 0 +1 0




. (4.27)

Comparing this with the Cartan matrices in (2.5) and (2.7), we see that this indeed

corresponds to psu(1, 1|2)2, with different gradings for the two factors of the algebra.

After dualization of the nodes 1 and 1̄ the Bethe equations are written in a different

grading, where all the nodes of the Dynkin diagrams are fermionic. From the weak

coupling expansion we get the Cartan matrix

Ã =




0 1 0 0 0 0

1 0 −1 0 0 0

0 −1 0 0 0 0

0 0 0 0 −1 0

0 0 0 −1 0 1

0 0 0 0 1 0




, (4.28)

corresponding to the fermionic gradings in (2.8). If we had dualized the nodes 3 and 3̄

instead we would have found the Cartan matrix −Ã. The consecutive dualization of 1, 1̄

and 3, 3̄ gives the Cartan matrix −A.

4.4 Global charges

By expanding the Bethe equations around large values of the spectral parameter we should

obtain the global charges of the symmetry algebra [20, 42]. In doing so we will assume

that the phases σpq and σ̃pq do not contribute to the charges. This is consistent with the

phases being given at the leading order by the AFS phase in (3.27).

As we have seen above, the left- and right-moving sectors of the Bethe equations are

naturally written using different gradings of the psu(1, 1|2) algebra. The Dynkin labels r1,

r2 and r3 for the left-movers therefore give the eigenvalues of the Cartan generators hi given

in (2.4), while the labels r1̄, r2̄ and r3̄ for the right-movers correspond to the generators ĥi
in (2.6). Expanding the Bethe equations we find

r1 = r3 = +K2 +
1
2δD, r2 = L+K1 − 2K2 +K3,

r1̄ = r3̄ = −K2̄ − 1
2δD, r2̄ = L−K1̄ + 2K2̄ −K3̄ + δD,

(4.29)

where the anomalous dimension δD is given by

δD = E2 + E2̄ −K2 −K2̄ = 2ih

K2∑

k=1

(
1

x−k
− 1

x+k

)
+ 2ih

K2̄∑

k=1

(
1

x̄−k
− 1

x̄+k

)
. (4.30)
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A representation of psu(1, 1|2)2 can be labeled by the eigenvalues of the highest weight

state under the four generators JL0 , J
R
0 , L

L
5 and LR

5 . It is useful to combine them into the

charges16

D = −(JL0 + JR0 ), J = LL
5 + LR

5 ,

S = −(JL0 − JR0 ), K = LL
5 − LR

5 .
(4.31)

The spin-chain Hamiltonian can then be written as

H = D− J. (4.32)

We can now express the eigenvalues of the generators (4.31) in terms of the excitation

numbers Ki as

D = +K2̄ +
1
2(K1 +K3 −K1̄ −K3̄) + L+ δD,

S = −K2̄ +
1
2(K1 +K3 +K1̄ +K3̄),

J = −K2 +
1
2(K1 +K3 −K1̄ −K3̄) + L,

K = −K2 +
1
2(K1 +K3 +K1̄ +K3̄).

(4.33)

Note that the anomalous dimension δD only contributes to the eigenvalue D of the

dilatation operator. The eigenvalue of the Hamiltonian now takes the form

E = K2 +K2̄ + δD, (4.34)

as expected from equation (4.30).

4.5 Finite gap limit

We are now interested in the finite gap limit of the Bethe equations. We consider the

case of a long spin chain and large number of excitations Ki with L ≈ Ki ≫ 1. The

semiclassical limit is achieved by requiring also large values of h. In this limit the Bethe

roots condense on the cuts that appear in the finite gap equations [44]. In terms of the

Bethe roots, we define the densities by

ρi(x) =

Ki∑

k=1

x2

x2 − 1
δ(x− xi,k), i = 1, 2, 3, 1̄, 2̄, 3̄. (4.35)

where the excitation numbers are large Ki ≫ 1 and we make use of the expansion

x±i ≈ xi ±
i

2h

x2

x2 − 1
. (4.36)

16In analogy with the conventional notation in AdS5 we denote the angular momentum on the sphere by

J and that in AdS by S. The latter is expressed in terms of the sl(2) generators JL
0 and JR

0 .
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With this prescription, we find the following finite gap equations

2πn1 = −
∫

ρ2(y)

x− y
dy −

∫
ρ2̄(y)

x− 1/y

dy

y2

2πn2 = − x

x2 − 1
2πE −

∫
ρ1(y)

x− y
dy + 2−

∫
ρ2(y)

x− y
dy −

∫
ρ3(y)

x− y
dy

+

∫
ρ1̄(y)

x− 1/y

dy

y2
+

∫
ρ3̄(y)

x− 1/y

dy

y2
+

1

x2 − 1
M,

2πn3 = −
∫

ρ2(y)

x− y
dy −

∫
ρ2̄(y)

x− 1/y

dy

y2

2πn1̄ =

∫
ρ2(y)

x− 1/y

dy

y2
+

∫
ρ2̄(y)

x− y
dy

2πn2̄ = − x

x2 − 1
2πE −

∫
ρ1(y)

x− 1/y

dy

y2
−
∫

ρ3(y)

x− 1/y

dy

y2

+

∫
ρ1̄(y)

x− y
dy − 2−

∫
ρ2̄(y)

x− y
dy +

∫
ρ3̄(y)

x− y
dy +

1

x2 − 1
M,

2πn3̄ =

∫
ρ2(y)

x− 1/y

dy

y2
+

∫
ρ2̄(y)

x− y
dy.

(4.37)

Here E corresponds to the residue of the quasi-momentum and it is given by

E =
1

2π
(L− ǫ1 + 2ǫ2 − ǫ3 + ǫ1̄ + ǫ3̄), (4.38)

where

ǫi =

∫
ρi(x)

x2
dx. (4.39)

The quantity M has the meaning of winding of the corresponding solutions and it is given

by

M = P1 + P3 − P1̄ + 2P2̄ − P3̄ = P1 − P2 + P3 − P1̄ + P2̄ − P3̄, (4.40)

where

Pi =

∫
ρi(x)

x
dx. (4.41)

The last equality in (4.40) is possible thanks to the level matching condition that reads

P2 + P2̄ = 0. (4.42)

The finite gap equations that we derived are apparently different but equivalent to the

ones in [17, 45], and indeed the same construction performed there with a different choice

of the grading, such as (4.27), would have given precisely (4.37).

The incompatibility between the coset construction of the finite gap equations for

AdS3 × S3 × S3 × S1 proposed in [17] and the near-BMN expansion performed in [29]

was highlighted in [25]. In the discussion there it was clear that the problem is related to

the presence of modes of mass α and 1 − α at the same time. In the α → 1 limit all the

massive excitations have the same mass and we find no mismatch between the finite gap

and the near-BMN descriptions for AdS3 × S3 × T 4.
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5 Comparison with perturbative results

Recently several perturbative computations for the AdS3 × S3 × T 4 superstring have

been performed [28–31, 46, 47]. In particular, in [47] by Beccaria, Levkovich-Maslyuk,

Macorini and Tseytlin (BLMMT) a prediction for the scalar factors was derived from

finite gap calculations, up to O(1/h2). In [30] Sundin and Wulff (SW) worked out several

S-matrix elements at tree level in the near-BMN limit, and some at one-loop O(1/h2) in

the near-flat-space (or Maldacena-Swanson) limit [48]. In [28] Hoare and Tseytlin (HT)

wrote down, among other things, the whole near-BMN tree-level S-matrix.

Here we will discuss how our results compare with these.

5.1 The HT tree-level near-BMN S-matrix

It is immediate to see that the scattering processes allowed in the HT S-matrix17 are those

that are non-zero in the one we derived in section 3. In particular, both S-matrices are

reflectionless, and both come from the tensor product of two su(1|1)2 S-matrices.

In fact we can compare both with the full S-matrix (4.1) and with each factor (4.8).

To do so, we identify the fundamental fields of [28] with the ones of our φ, ψ, φ̄, ψ̄ as follows

|φ〉 = |φ+〉 , |ψ〉 = eiπ/4 |ψ+〉 , |φ̄〉 = |φ−〉 , |ψ̄〉 = eiπ/4 |ψ−〉 , (5.1)

and (consistently with the tensor product structure) we identify the composite fields as

|Φ++̇〉 = |y+〉 , |Φ+−̇〉 = eiπ/4 |ζ+〉 , |Φ−+̇〉 = eiπ/4 |χ+〉 , |Φ−−̇〉 = eiπ/2 |z+〉 ,
|Φ̄++̇〉 = |y−〉 , |Φ̄+−̇〉 = eiπ/4 |ζ−〉 , |Φ̄−+̇〉 = eiπ/4 |χ−〉 , |Φ̄−−̇〉 = eiπ/2 |z−〉 .

(5.2)

Furthermore, we should take into account fermion signs arising from permuting the

final states.

We can now expand our string frame S-matrix in the near-BMN limit where the mo-

mentum of the excitation scales as p ∼ p/h and the Zhukovsky variables expand as

x±
p
=

(
1± ip

4h

)
(1 + ωp)

p
+O(1/h2), ωp =

√
1 + p2, (5.3)

consistently with the conditions in (2.38).

Then, up to a rescaling of the expansion parameter h → h/2 and fixing the gauge

parameter at a = 0,18 we reproduce perfectly the elements in (4.8) of [28], and consequently

the ones of (4.1) there.

5.2 The SW tree level and one-loop results

At tree-level, the comparison with [30] follows the one of the previous section. Since in SW

some computations are performed for the more general AdS3 ×S3 ×S3 ×S1 string theory,

17Since we compare with the pure RR flux S-matrix, we need to set the parameter q used in [28] to

interpolate between pure RR and pure NSNS to the value q = 0.
18We can match our results with the general general a-gauge if allow for an additional (crossing invariant)

factor ei (pEq−q Ep)
a

2 in our S-matrix.
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we should take α = 1 everywhere to recover the T 4 background. Here the identifications

necessary are,

|Φ++̇〉 = |y2〉 , |Φ+−̇〉 = e−iπ/4 |χ2〉 , |Φ−+̇〉 = eiπ/4 |χ1〉 , |Φ−−̇〉 = |y1〉 ,
|Φ̄++̇〉 = |ȳ2〉 , |Φ̄+−̇〉 = e−iπ/4 |χ̄2〉 , |Φ̄−+̇〉 = eiπ/4 |χ̄1〉 , |Φ̄−−̇〉 = |ȳ1〉 .

(5.4)

Then, up to the redefinition h → −h/2, we match the results presented there in the

gauge a = 0.

Sundin and Wulff [30] also computed certain one-loop elements in the near-flat-space

limit. They correspond to the elements A, Ã,B, C̃ of (3.39), and read19

Apq = 1− i

4h

p−q−(p− + q−)

p− − q−
(5.5)

+
1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− + q−)

2 − 2i

π

q−p−(q− + p−)

q− − p−
log

q−
p−

− (q− + p−)
3

q− − p−

)

Ãpq = 1− i

4h

p−q−(p− − q−)

p− + q−
(5.6)

− 1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− − q−)

2 +
2i

π

q−p−(q− − p−)

q− + p−
log

q−
p−

+
(q2− + p2−)(q− − p−)

q− + p−

)

Bpq = 1− i

4h
p−q− (5.7)

+
1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− + q−)

2 − 2i

π

q−p−(q− + p−)

q− − p−
log

q−
p−

− (q2− + p2−)(q− + p−)

q− − p−

)

C̃pq = 1− i

4h
p−q− (5.8)

− 1

32h2
p2−q

2
−

q2− − p2−

(
i

π
(p− − q−)

2 +
2i

π

q−p−(q− − p−)

q− + p−
log

q−
p−

+ (q2− − p2−)

)
,

where we explicitly used the coupling constant h as a loop-counting parameter. A first

nontrivial requirement of our construction is that these elements satisfy the crossing

equations (3.38). It is easy to check that this is actually the case, recalling that in

lightcone coordinate crossing p → p̄ amounts to p− → p̄− = −p−, and taking everywhere

the upper branch of the logarithm.

As a further check, we can explicitly expand our S-matrix elements at one-loop in the

near-flat-space limit to match the results of [30]. To do this we need to specify what the

dressing factors σpq and σ̃pq are in that limit.20 Following SW, we use the near-flat-space

expansion of the BLMMT factors [47], and in this way we find perfect agreement with all

of (5.5)–(5.8).

5.3 The BLMMT dressing factors

In [47] a proposal for the one-loop dressing factors σpq and σ̃pq was put forward, which

we have checked to be compatible with our crossing equations in the near-flat-space limit

19The tree level expression for B and C̃ was not given in [30]. We thank the authors for communicating

it to us privately.
20The dressing factors contribute to the imaginary part of the one loop terms in (5.5)–(5.8), as discussed

in [30].
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in the previous section. However, the expressions (6.8) and (6.9) in [47] are written in

the finite-gap limit, which contains more information than the near-flat-space one. We

can check whether these phases satisfy our crossing equations (3.26) in the finite gap limit

using the expansion (4.36) and the crossing transformation x→ x̄ = 1/x.

When we plug in ϑ(x, y) and ϑ̃(x, y) from [47] in our crossing relations we find a

mismatch, as the two phases match the imaginary part of the crossing equation, but not

the real one. This discrepancy is not entirely surprising, since in [47] the phases were

computed by first working out the semiclassical energy shifts and then comparing with

the Bethe ansatz of [17] which differs from ours.21

It is interesting to notice that one can trace the mismatch to the fact that the rational

parts of ϑ(x, y) and ϑ̃(x, y) do not satisfy

ϑrational(x, y) + ϑ̃rational(x, 1/y) = 0, (5.9)

which is also a natural generalization of what happens, e.g., in the AdS5 case, where the

rational part of the Hernandez-Lopez phase is crossing-symmetric [49].22

6 Conclusions

We have constructed the all-loop S-matrix for a psu(1, 1|2)2 spin-chain dual to strings

on AdS3 × S3 × T 4 out of bootstrap. Due to its centrally extended (psu(1|1)2 × u(1))2

symmetry, the resulting S-matrix is the (graded) tensor product of two copies of the

su(1|1)2 invariant S-matrix discussed in [24]. It is completely determined up to antisym-

metric “dressing phases” and we determined the crossing relations that these phases have

to satisfy. Furthermore, the S-matrix satisfies the Yang-Baxter equation. This points

to integrability of the underlying theory and allowed us to write down a set of Bethe

ansatz equations for the asymptotic energy spectrum. These modify the ones originally

conjectured in [17] based on a discretisation of the finite-gap equations.

We have shown that at leading order in the strongly coupled regime the crossing

equations are solved by setting both phases to be the same as the AFS phase [38]. This

allowed us to successfully compare our proposal with several independent perturbative

calculations. First, we reproduce the finite-gap equations of [17], up to a different choice of

grading. Furthermore, we reproduce the near-BMN tree-level results of [28–30] and the one-

loop near-flat-space results of [30]. Beyond the near-flat-space limit, our crossing equations

are not compatible with the one-loop phases constructed in [47]. However, such phases

were found from matching with the Bethe ansatz of [17] with a semiclassical calculation

of the energy shifts for certain solutions, and the mismatch may just reflect the fact that

the BA we constructed out of bootstrap does not coincide with that one. It would be very

interesting to repeat that calculation for our BA and see whether the mismatch is resolved.

There are still several questions left to investigate, on which we hope to return soon.

The most obvious one is finding an all-loop expression for the dressing phases that satisfies

21Recall that there the interaction terms between particles of type 2 and 2̄ did not include the symmetric

phase present in (4.17).
22We thank Arkady Tseytlin for discussions on the one-loop dressing phases.
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crossing, both in this theory23 and in the case of the d(2, 1;α)2 chain corresponding to

AdS3 ×S3 ×S3 ×S1 strings [24, 25]. Recall that such backgrounds are related to the ones

considered here by blowing up one of the spheres (which amounts to α → 1). Even if this

limit is singular at the level of the symmetry algebra and the S-matrix, it should not be so on

the physical observables, e.g., the spectrum. Indeed this should be made evident when com-

paring the BA of [25] with the one proposed here, once the dressing factors are established.

Additionally, let us stress again that both here and in [17, 20, 24, 25] the integrability

machinery has been applied only to the massive excitations of the spectrum. The two

massless modes of AdS3×S3×S3×S1 and the four of AdS3×S3×T 4 are still missing from

the picture. Following the results of [21], investigating the decompactification limit (α→ 1)

may provide important insights. Once the massless modes are included in the fundamental

particle spectrum, the S-matrix should be extended to allow for scattering of all possible

bound states, see e.g. [50], thus completing the bootstrap program in the spirit of [51].

In [19], it has been shown that classical integrability holds also when both mentioned

backgrounds are supported by a mixture of RR and NSNS fluxes. Recently, for such a

mixed AdS3 × S3 × T 4 background the near-BMN S-matrix was put forward [28], and it

displayed a surprisingly simple form. It would be very interesting to understand the spin-

chain and S-matrix of the backgrounds with mixed NS-NS and R-R fluxes away from the

near-BMN limit. If possible, this would provide an intriguing bridge between integrable

models and the CFT current algebra techniques used to solve the pure NS-NS theory
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A Fermionic duality

As argued in section 4.1, there are four different possible gradings in which we can write

the all-loop Bethe equations. A way to relate them is to perform fermionic dualities on

23We plan to present an all-loop solution for the crossing equations presented here in an upcoming

publication [37].
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the nodes corresponding to auxiliary roots. In order to do that, let us define the following

polynomial of degree n = K2 +K2̄ − 1

P (ξ) =

K2∏

j=1

(ξ − x+j )

K2̄∏

j=1

(
ξ − 1

x̄−j

)
−

K2∏

j=1

(ξ − x−j )

K2̄∏

j=1

(
ξ − 1

x̄+j

)
. (A.1)

The Bethe equations for auxiliary roots y1, y3, y1̄, y3̄ can be written respectively as

P (y1) = 0, P (y3) = 0, P (1/y1̄) = 0, P (1/y3̄) = 0. (A.2)

We can choose to dualize either the auxiliary roots y1, y1̄ or y3, y3̄. In the first case we

consider a set of dual K̃1, K̃1̄ roots such that K1 + K̃1 = K2 − 1 and K1̄ + K̃1̄ = K2̄ − 1.

The polynomial can thus be rewritten as

P (ξ) = ξ

K1∏

j=1

(ξ − y1,j)

K̃1∏

j=1

(ξ − ỹ1,j)

K1̄∏

j=1

(
ξ − 1

y1̄,j

) K̃1̄∏

j=1

(
ξ − 1

ỹ1̄,j

)
(A.3)

Evaluating the quantity
P (x+

k )

P (x−
k )

we get the identity

(
x+k
x−k

)K2̄−K1̄−K̃1̄−1 K2∏

j=1
j 6=k

x+k − x−j

x−k − x+j

K2̄∏

j=1

1− 1
x+
k x̄+

j

1− 1
x−
k x̄−

j

K1∏

j=1

x−k − y1,j

x+k − y1,j

K1̄∏

j=1

1− 1
x−
k y1̄,j

1− 1
x+
k y1̄,j

=

=

K̃1∏

j=1

x+k − ỹ1,j

x−k − ỹ1,j

K̃1̄∏

j=1

1− 1
x+
k ỹ1̄,j

1− 1
x−
k ỹ1̄,j

(A.4)

Similarly, considering
P (1/x̄−

k )

P (1/x̄+
k )

we get

(
x̄+k
x̄−k

)K2̄−K1̄−K̃1̄−1 K2∏

j=1

x−j

x+j

K2̄∏

j=1

x̄−j

x̄+j

K2∏

j=1

1− 1
x̄−
k x−

j

1− 1
x̄+
k x+

j

K2̄∏

j=1
j 6=k

x̄−k − x̄+j

x̄+k − x̄−j

×
K1∏

j=1

1− 1
x̄+
k y1,j

1− 1
x̄−
k y1,j

K1̄∏

j=1

x̄+k − y1̄,j

x̄−k − y1̄,j
=

K̃1∏

j=1

1− 1
x̄−
k ỹ1,j

1− 1
x̄+
k ỹ1,j

K̃1̄∏

j=1

x̄−k − ỹ1̄,j

x̄+k − ỹ1̄,j
(A.5)

With the help of these identities we can write the dualized Bethe equations

1 =

K2∏

j=1

ỹ1,k − x−j

ỹ1,k − x+j

K2̄∏

j=1

1− 1
ỹ1,kx̄

+
j

1− 1
ỹ1,kx̄

−
j

, (A.6)

(
x+k
x−k

)L

=

K2∏

j=1
j 6=k

1− 1
x+
k x−

j

1− 1
x−
k x+

j

σ2(xk, xj)

K̃1∏

j=1

x+k − ỹ1,j

x−k − ỹ1,j

K3∏

j=1

x−k − y3,j

x+k − y3,j

×
K2̄∏

j=1

1− 1
x+
k x̄−

j

1− 1
x−
k x̄+

j

σ̃2(xk, x̄j)

K̃1̄∏

j=1

1− 1
x+
k ỹ1̄,j

1− 1
x−
k ỹ1̄,j

K3̄∏

j=1

1− 1
x−
k y3̄,j

1− 1
x+
k y3̄,j

,

(A.7)
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1 =

K2∏

j=1

y3,k − x+j

y3,k − x−j

K2̄∏

j=1

1− 1
y3,kx̄

−
j

1− 1
y3,kx̄

+
j

, (A.8)

1 =

K2̄∏

j=1

ỹ1̄,k − x̄+j

ỹ1̄,k − x̄−j

K2∏

j=1

1− 1
ỹ1̄,kx

−
j

1− 1
ỹ1̄,kx

+
j

, (A.9)

(
x̄+k
x̄−k

)L

=

K2̄∏

j=1
j 6=k

1− 1
x̄+
k x̄−

j

1− 1
x̄−
k x̄+

j

σ2(x̄k, x̄j)

K̃1̄∏

j=1

x̄−k − ỹ1̄,j

x̄+k − ỹ1̄,j

K3̄∏

j=1

x̄+k − y3̄,j

x̄−k − y3̄,j

×
K2∏

j=1

1− 1
x̄+
k x−

j

1− 1
x̄−
k x+

j

σ̃2(x̄k, xj)

K̃1∏

j=1

1− 1
x̄−
k ỹ1,j

1− 1
x̄+
k ỹ1,j

K3∏

j=1

1− 1
x̄+
k y3,j

1− 1
x̄−
k y3,j

,

(A.10)

1 =

K2̄∏

j=1

y3̄,k − x̄−j

y3̄,k − x̄+j

K2∏

j=1

1− 1
y3̄,kx

+
j

1− 1
y3̄,kx

−
j

. (A.11)

The above equations are the ones that can be obtained by choosing Φ−+̇, Φ̄+−̇ to be the

fields that compose the level-II vacuum. Similarly, one could have started by dualizing the

auxiliary roots y3, y3̄ and obtain Bethe equations corresponding to the choice of Φ+−̇, Φ̄−+̇

in the level-II vacuum. We do not write them, since they are equal to the ones written

above after exchanging 1 and 3. Two consecutive dualizations of first y1, y1̄ and then y3, y3̄
(or the opposite order) give Bethe equations corresponding to the choice of Φ−−̇, Φ̄++̇ in

the level-II vacuum. They are equal to the Bethe equations derived in section 4.2 after

exchanging left and right.

B Hopf algebra

In this section, we construct a Hopf algebra for the AdS3 scattering problem, following [40].

Hopf algebras are a very convenient framework where to express several properties of inte-

grable systems and their scattering problems. For reviews of the AdS5 treatment containing

references to the relevant quantum group literature we refer to [52, 53]. The main object

in question is the so-called coproduct map on the Hopf algebra A

∆ : A→ A⊗A, (B.1)

which can be thought of as the symmetry action on two-particle in states. The oppo-

site coproduct ∆op ≡ Πg ∆, with Πg the graded permutation,24 acts then on out states,

with the S-matrix (R-matrix in the Mathematics literature) there to provide a canonical

transformation between the asymptotic scattering bases.

As it is the case for the AdS5 superstring, the coproduct can assume different forms

according to the frame (choice of basis) one uses, and different frames are related by

(possibly non-local) field redefinitions. A few of the forms which one encounters correspond

to the following pictures:

24In the main text we need the permutation, that we denote by Π. Here we use a different symbol Πg

because we need the graded permutation.
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• String frame. This gives rise to the form of the coproduct reported in the main text,

see section 3.2.

• Spin-chain frame. This is closer in nature to the expression of the symmetry

generators as operators on a spin-chain [24]. A nontrivial braiding of the coproduct

originates from the length-changing nature of the symmetry. By the mechanism

described in [39, 40, 52, 53] applied to the left-moving representation in section 4

of [24], one begins by deducing

∆(P) = P⊗ e−ip + 1⊗P, ∆(P†) = P† ⊗ eip + 1⊗P†,

∆(HL) = HL ⊗ 1+ 1⊗ HL, ∆(HR) = HR ⊗ 1+ 1⊗ HR,

∆(QL) = QL ⊗ 1+ 1⊗QL, ∆(SL) = SL ⊗ 1+ 1⊗SL,

∆(QR) = QR ⊗ e−ip + 1⊗QR, ∆(SR) = SR ⊗ eip + 1⊗SR.

(B.2)

from which by standard means - see equation (B.8) below - one obtains

S (P) = −eipP, S (P†) = −e−ipP†,
S (HL) = −HL, S (HR) = −HR,

S (QL) = −QL, S (SL) = −SL,

S (QR) = −eipQR, S (SR) = −e−ipSR.

(B.3)

where S denotes the antipode. Notice that the right-hand side of (3.32) corresponds

to the analog of (B.3) calculated in the string frame (cf. equation (B.13) below).

One can check that, due to the centrality of the elements eip ≡ U and e−ip ≡ U−1, the

coproduct described above is a Lie algebra homomorphism. As described in the main

text, the antiparticle representation is the same as the right-moving representation

in [24], were it not for a different length-changing action. However, by the simple

state redefinition |χ〉 = |φ̄ Z+〉 [23, 36, 54] the coproduct on the right movers can be

made coincide with (B.2), which makes the Hopf algebra completely consistent. The

R-matrices one finds reproduce the transmission matrices in [24], decorated with

suitable momentum-dependent phases to account for the above state-redefinition.

A similar coproduct has recently appeared in [28] (see appendix B in that article)

starting from a world-sheet perspective. As noticed in [28] and in analogy with the

AdS5 case [40], cocommutativity of the central charges is satisfied if one accounts

for the dependence on p of the central charges’ eigenvalues.

• Most symmetric frame. This frame exactly matches the one used in [34]. To this

purpose, we choose the parameters γ and δ in [24], formula (4.21) and (4.22), to satisfy

γ + δ = 0, γ − δ = −π. (B.4)
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We then perform a twist of the coproduct and a rescaling of the generators:

T ≡
2∑

i,j=1

λij Eii ⊗ Ejj , ∆ → T−1∆T,

λ11 = e−i
q
4 , λ12 = e−i

(p+q)
4 , λ21 = 1, λ22 = e−i

p
4 ,

QL → QL, QR → ei
p
2QR, SL → SL, SR → e−i

p
2SR.

(B.5)

Recalling that ∆(eip) = eip ⊗ eip, we obtain

∆(QL) = QL ⊗ e−i
p
4 + ei

p
4 ⊗QL, ∆(SL) = SL ⊗ ei

p
4 + e−i

p
4 ⊗SL,

∆(QR) = QR ⊗ e−i
p
4 + ei

p
4 ⊗QR, ∆(SR) = SR ⊗ ei

p
4 + e−i

p
4 ⊗SR.

(B.6)

The new coproduct on the bosonic generators can be calculated by anti-commuting

the supercharges’ coproducts. With the choices made above, our generators and

coproducts exactly coincide with the ones reported in [34], for the choice ξ = −p
4 and

g = h. We also set s = 1 for the rest of this section to achieve perfect matching. The

new R-matrix is unaffected by the rescaling (since ∆(eip) = eip ⊗ eip is a symmetry)

but picks up the twist in the following fashion [55]:

RLL → T−121 RLL T. (B.7)

The other R-matrices (RL, LR and RR) are then directly derived by imposing

invariance under the same form of the coproduct (B.6) in all mixed and non-mixed

representations. Twists similar to (B.7) can then be shown to connect the R-matrices

found in this way to those in the spin-chain frame.

As these are simply different manifestations of a same underlying quantum group structure,

we will from the rest of this section focus on the most symmetric frame. Let us also

remark that, because of the factorized nature of the symmetry algebra (3.5), we can focus

on one copy of the su(1|1)2 R-matrix, as this is enough to recover the entire T 4 scattering

problem. The antipode S is easily found, as it needs to respect

µ (S ⊗ 1)∆ = η ǫ (B.8)

where µ : A⊗A→ A is the multiplication on the Hopf algebra A, ǫ : A→ C is the counit

and η : C→ A the unit. In our case

ǫ(J) = 0 ∀ J ∈ su(1|1)2, ǫ(1) = 1, (B.9)

hence one straightforwardly obtains

S (QL) = −QL, S (SL) = −SL, S (QR) = −QR, S (SR) = −SR. (B.10)

Let us now impose the antiparticle relation [36] on a generator J

S
(
J(p)

)
= C

−1
(
J(p̄)

)str
C , (B.11)
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where C is a charge-conjugation matrix, the apex str denotes supertransposition, the

upper bar the particle-to-antiparticle transformation in the representation parameters and

J is generator in the antiparticle representation,

Q
L
= QR, S

L
= SR, Q

R
= QL, S

R
= SL, (B.12)

so that the particle-to-antiparticle transformation is, for instance

S
(
QL(p)

)
= C

−1
(
QR(p̄)

)str
C , (B.13)

and so on. By solving the resulting equation for the four generators we obtain that25

C =

(
1 0

0 i

)
, (B.14)

and that the particle-to-antiparticle transformation can be obtained by crossing the

rapidities of all representation parameters, i.e. by sending

x± → 1

x±
. (B.15)

in term of the Zhukovski variables. The R-matrices for LL, RR, and mixed RL and LR

scattering are then obtained by imposing

∆op(J)R = R∆(J) ∀ J ∈ su(1|1)2. (B.16)

In the above formula, R is the universal R-matrix of (the Yangian of) su(1|1) (see next

section). According to whether we project the coproduct and its opposite in the I ⊗ J

representation, with I and J each assuming values L or R, we obtain four specific 4 × 4

R-matrices RIJ . One finds for LL

RLL
pq |φ〉 ⊗ |φ〉 = κLLpq

x+q − x−p

x−q − x+p
ei

p−q
4 |φ〉 ⊗ |φ〉 ,

RLL
pq |φ〉 ⊗ |ψ〉 = κLLpq

x+q − x+p

x−q − x+p
e−i

p+q
4 |φ〉 ⊗ |ψ〉+ κLLpq

x+q − x−q

x−q − x+p

ηp
ηq

|ψ〉 ⊗ |φ〉 ,

RLL
pq |ψ〉 ⊗ |φ〉 = κLLpq

x−q − x−p

x−q − x+p
ei

p+q
4 |ψ〉 ⊗ |φ〉+ κLLpq

x+p − x−p

x−q − x+p

ηq
ηp

|φ〉 ⊗ |ψ〉 ,

RLL
pq |ψ〉 ⊗ |ψ〉 = κLLpq e

−i p−q
4 |ψ〉 ⊗ |ψ〉 ,

(B.17)

while the mixed RL R-matrix reads

RRL
pq |φ̄〉 ⊗ |φ〉 = Apq |φ̄〉 ⊗ |φ〉+Bpq |ψ̄〉 ⊗ |ψ〉 , RRL

pq |φ̄〉 ⊗ |ψ〉 = Cpq |φ̄〉 ⊗ |ψ〉 ,
RRL

pq |ψ̄〉 ⊗ |ψ〉 = Epq |ψ̄〉 ⊗ |ψ〉+ Fpq |φ̄〉 ⊗ |φ〉 , RRL
pq |ψ̄〉 ⊗ |φ〉 = Dpq |ψ̄〉 ⊗ |φ〉 ,

(B.18)

25The charge conjugation matrix transforms the left moving basis into the right moving one. The ma-

trix (B.14) is written in the basis (φ, ψ) → (φ̄, ψ̄) where we denote, with an abuse of notation, the antiboson

|χ〉 = |φ̄Z+〉 again by the symbol |φ̄〉, and the antifermion by |ψ̄〉.
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Apq = κRL
pq

x−q x
+
p − 1

x+q x
+
p − 1

ei
p+q
4 , Bpq = κRL

pq

iηpηq

(x+q x
+
p − 1)

ei
p
2 , Cpq = κRL

pq

x−q x
−
p − 1

x+q x
+
p − 1

ei
3p+q

4 ,

Epq = κRL
pq

x+q x
−
p − 1

x+q x
+
p − 1

ei
3p−q

4 , Fpq = κRL
pq

iηpηq

x+q x
+
p − 1

ei
p
2 , Dpq = κRL

pq e
i p−q

4 .

The phase factors κLLpq and κRL
pq are overall scalar functions undetermined by the invariance

relations (similarly will be for the factors κLRpq and κRR
pq to be introduced below), while

ηp =
√
i(x−p − x+p ). (B.19)

The crossing relations for an invertible antipode are given by

(S ⊗ 1)R = R−1 = (1⊗ S
−1)R, (B.20)

where R is the (invertible) R-matrix. If we use the antiparticle representation we have

equipped ourselves with, we find for the first of the above equations

(C−1 ⊗ 1)
[
RRL

]str1( 1

x±1
, x±2

)
(C ⊗ 1)RLL(x±1 , x

±
2 ) = 1⊗ 1, (B.21)

where the apex str1 denotes supertransposition in the first factor. Denoting by p and q

the momenta of the first and second particle, respectively, one obtains that the crossing

equation in matrix form (B.21) is satisfied provided one imposes

κLLpq κ
RL
p̄q =

x+q − x+p

x+q − x−p
, (B.22)

where p̄ denotes the map (B.15) We can obtain another equation by directly starting from

a mixed R-matrix, and crossing one of the L representations, namely

(C−1 ⊗ 1)
[
RRR

]str1( 1

x±1
, x±2

)
(C ⊗ 1)RLR(x±1 , x

±
2 ) = 1⊗ 1. (B.23)

For the mixed representation LR one calculates

RLR
pq |φ〉 ⊗ |φ̄〉 = A′pq |φ〉 ⊗ |φ̄〉+B′pq |ψ〉 ⊗ |ψ̄〉 , RLR

pq |φ〉 ⊗ |ψ̄〉 = C ′pq |φ〉 ⊗ |ψ̄〉 ,
RLR

pq |ψ〉 ⊗ |ψ̄〉 = E′pq |ψ〉 ⊗ |ψ̄〉+ F ′pq |φ〉 ⊗ |φ̄〉 , RLR
pq |ψ〉 ⊗ |φ̄〉 = D′pq |ψ〉 ⊗ |φ̄〉 ,

(B.24)

with

A′pq = κLRpq
x−q x

+
p − 1

x−q x
−
p − 1

e−i
p+q
4 , B′pq = κLRpq

iηpηq

x−q x
−
p − 1

e−i
q
2 , C ′pq = κLRpq e

i p−q
4 ,

E′pq = κLRpq
x+q x

−
p − 1

x−q x
−
p − 1

ei
p−3q

4 , F ′pq = κLRpq
iηpηqe

−i q
2

x−q x
−
p − 1

, D′pq = κLRpq
x+p x

+
q − 1

x−p x
−
q − 1

e−i
p+3q

4 .

Crossing symmetry on the first factor of the tensor product reads

(C−1 ⊗ 1)
[
RRR

]str1( 1

x±p
, x±q

)
(C ⊗ 1)RLR(x±p , x

±
q ) = 1⊗ 1, (B.25)
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The R-matrix RRR
pq reads

RRR
pq |φ̄〉 ⊗ |φ̄〉 = κRR

pq

x+q − x−p

x−q − x+p
e3i

p−q
4 |φ̄〉 ⊗ |φ̄〉 ,

RRR
pq |φ̄〉 ⊗ |ψ̄〉 = κRR

pq

x+q − x+p

x−q − x+p
ei

p−3q
4 |φ̄〉 ⊗ |ψ̄〉+ κRR

pq

iηpηqe
i p−q

2

x−q − x+p
|ψ̄〉 ⊗ |φ̄〉 ,

RRR
pq |ψ̄〉 ⊗ |φ̄〉 = κRR

pq

x−q − x−p

x−q − x+p
ei

3p−q
4 |ψ̄〉 ⊗ |φ̄〉+ κRR

pq

iηpηqe
i p−q

2

x−q − x+p
|φ̄〉 ⊗ |ψ̄〉 ,

RRR
pq |ψ̄〉 ⊗ |ψ̄〉 = κRR

pq e
i p−q

4 |ψ̄〉 ⊗ |ψ̄〉 ,

(B.26)

from which we deduce

κLRpq κRR
p̄q =

x+p − 1
x−
q

x+p − 1
x+
q

. (B.27)

The antipode (B.10) is obviously idempotent on the Lie algebra su(1|1)2, from which we

can straightforwardly write the second crossing equation as

(1⊗ C
−1)

[
RLR

]str2(
x±p ,

1

x±q

)
(1⊗ C )RLL(x±p , x

±
q ) = 1⊗ 1. (B.28)

(1⊗ C
−1)

[
RRR

]str2(
x±p ,

1

x±q

)
(1⊗ C )RRL(x±p , x

±
q ) = 1⊗ 1. (B.29)

These equations give

κLLpq κ
LR
pq̄ =

x−q − x−p

x+q − x−p
, and κRL

pq κRR
pq̄ =

x−q − 1
x+
p

x−q − 1
x−
p

, (B.30)

where q̄ means x±q → 1
x±
q
. Braiding unitarity

ŘIJ RJI = 1⊗ 1, (B.31)

with Řpq = (Πg R)IJqp , implies

κLLqp κ
LL
pq = 1, κRR

qp κRR
pq = 1, κRL

qp κLRpq = 1, κLRqp κRL
pq = 1. (B.32)

Let us now make contact with the formulation in the main text, where the LR-

symmetry is implemented. To this purpose, we define

κLLpq = κRR
pq = SLL

pq , κRL
pq =

1

ζpq
e−i

p−q
4 SLR

pq , κLRpq = ζpqe
−i p−q

4 SLR
pq , (B.33)

where

ζpq =

√√√√√
1− 1

x−
p x−

q

1− 1
x+
p x+

q

. (B.34)
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Unitarity (B.32) is then solved by imposing

SLL
qp SLL

pq = 1, SLR
qp SLR

pq = 1, (B.35)

while the four crossing relations (B.22), (B.27) and (B.30) reduce to

SLR
p̄q SLL

pq = SLR
pq̄ SLL

pq =
x−q − x−p

x+q − x−p

√
x+q − x+p

x−q − x−p
e−i

p−q
4 = f(xp, xq),

SLL
pq̄ SLR

pq = SLL
p̄q SLR

pq =
x−q x

+
p − 1

x+q x
+
p − 1

√
x+q x

+
p − 1

x−q x
−
p − 1

e−i
p−q
4 = g(xp, xq).

(B.36)

It is worth noticing that these equations are compatible with antisymmetry of SLL, SLR,

provided that crossing amounts to shifts of the torus rapidity in opposite direction in

either argument of the S-matrix. For instance, denoting by ω half of the imaginary period

of the z-torus, we have that from

SLR
p1 p̄2 S

LL
p1 p2 = SLR(z1, z2 ± ω)SLL(z1, z2) = f(x1, x2) , (B.37)

we use antisymmetry to find

SLR(z1 ± ω, z2)S
LL(z1, z2) =

1

f(x2, x1)
, (B.38)

and analytic continuation in z1 gives

SLL(z1 ∓ ω, z2)S
LR(z1, z2) = SLL

p̄1 p2 S
LR
p1 p2 =

1

f(x2, 1/x1)
= g(x1, x2) , (B.39)

where the last equality is manifestly a property of f, g. Similar relations can be found

starting from any of the four equations in (B.36).

Finally, by means of the redefinition

SLL
pq = Spq

x−q − x+p

x+q − x−p
, SLR

pq = S̃pq e
i p−q

4 , (B.40)

we see that the relations (B.36) take the same form as (3.26) in the main text.

C The S-matrix from the universal R-matrix of the gl(1|1) Yangian

In this section, we show how to formulate the AdS3 scattering problem in terms of

Yangians, following [41, 56–58]. We will work in the spin-chain frame for simplicity, as it

has a gl(1|1) subsector (the left-moving) which is un-braided, hence it does not introduce

additional complications when comparing with the Yangian.

The super-Yangian double DY (gl(1|1)) is generated by en, fn, hn, kn, with n ∈ Z,

satisfying the following relations typical of Drinfeld’s second realization [59],

[h0, en] = −2en, [h0, fn] = +2fn, {em, fn} = −km+n,

[hm, hn] = [hm, kn] = [km, kn] = [km, en] = [km, fn] = {em, en} = {fm, fn} = 0,

[hm+1, en]−[hm, en+1]+{hm, en} = 0, [hm+1, fn]−[hm, fn+1]−{hm, fn} = 0.

(C.1)
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Drinfeld’s currents are given by

E±(t) = ±
∑

n≥0
n<0

ent
−n−1, K±(t) = 1±

∑

n≥0
n<0

knt
−n−1,

F±(t) = ±
∑

n≥0
n<0

fnt
−n−1, H±(t) = 1±

∑

n≥0
n<0

hnt
−n−1.

(C.2)

The universal R-matrix reads

R = R+R1R2R−, (C.3)

where one defines

R+ =
→∏

n≥0

exp(−en ⊗ f−n−1), R− =
←∏

n≥0

exp(fn ⊗ e−n−1),

R1 =
∏

n≥0

exp

{
Res
t=z

[
(−1)

d

dt
(logH+(t))⊗ logK−(z + 2n+ 1)

]}
,

R2 =
∏

n≥0

exp

{
Res
t=z

[
(−1)

d

dt
(logK+(t))⊗ logH−(z + 2n+ 1)

]}
,

(C.4)

and the residue is given by the following formula,

Res
t=z

[A(t)⊗B(z)] =
∑

k

ak ⊗ b−k−1, (C.5)

after achieving for the currents the expansions A(t) =
∑

k akt
−k−1, B(z) =

∑
k bkz

−k−1.

The following representation satisfies the whole of (C.1) for the left-moving represen-

tation, in terms of an evaluation parameter λ:

en = λnQL, fn = λnSL, kn = −λn {QL,SL}, hn = λn(−)F , (C.6)

with F the fermionic number. Because of the fermionic nature of the generators, one

readily obtains

R− = 1 +
∑

n≥0

fn ⊗ e−n−1 = 1− SL ⊗QL

λp − λq
,

R+ = 1−
∑

n≥0

en ⊗ f−n−1 = 1 +
QL ⊗SL

λp − λq
.

(C.7)

Concerning the Cartan generators, in suitable convergency domains we have [58]

− d

dt
logH+ =

∞∑

m=1

{λm − (λ− h0)
m} t−m−1 (C.8)

and

logK−(z + 2n+ 1) = logK−(2n+ 1)+
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+

∞∑

m=1

{
1

(λ− 1− 2n)m
− 1

(λ− 1− 2n− k0)m

}
zm

m
. (C.9)

and similarly for R2. By applying the procedure of [58] one then immediately obtains, in

the basis {φ⊗ φ, ψ ⊗ φ, φ⊗ ψ, ψ ⊗ ψ},

R =




1 0 0 0

0 1− a2b2
δλ+a1b1

a1b2
δλ+a1b1

0

0 a2b1
δλ+a1b1

δλ
δλ+a1b1

0

0 0 0 δλ−a2b2
δλ+a1b1



, (C.10)

where we have disregarded an overall scalar factor. As already noticed in [41, 58], one has

to choose δλ = ih
2 (x

+
p − x+q ) to reproduce the LL R-matrix (up to an overall normalization

factor).

Similarly, the mixed RL R-matrix can be shown to originate from the same universal

R-matrix we just described, in the mixed left-right representation, provided one requests

for the left mover

λ2 =
ih

2
x+2 + c (C.11)

as expected from the above LL analysis (with c a constant independent on the represen-

tation), and

λ1 =
ih

2

1

x−1
+ c (C.12)

for the right mover (for the same constant c). This curious observation was a puzzle

in [58], however we will provide an explanation of this fact in the following section.

C.1 Level 1 crossing

The Yangian algebra is uniquely determined when one knows the level 0 and 1 generators.

In the previous appendix we have focussed our attention on the level 0. Because of the

peculiar level 0 coproduct (nontrivially braided on one of the two su(1|1)’s of su(1|1)2) the
level 0 symmetry fixes the matricial form of the scattering matrix in these representations.

However, one can ask what the level 1 Yangian has to say in this respect. It turns out

that one can fix the crossing transformation of the Yangian evaluation parameter λ by

studying the level 1 coproduct, in a way that makes the Yangian symmetry completely

consistent with what found purely by exploring the level 0 algebra.

One can show that the following level 1 Yangian coproduct satisfies the algebra defining

relations and is also a symmetry of the S-matrix:

∆(e1) = e1 ⊗ 1+ 1⊗ e1 + k0 ⊗ e0,

∆(f1) = f1 ⊗ 1+ 1⊗ f1 + f0 ⊗ k0,

∆(k1) = k1 ⊗ 1+ 1⊗ k1 + k0 ⊗ k0.

(C.13)

From (B.8) we obtain

S (e1) = −e1 + e0 k0, S (f1) = −f1 + f0 k0, S (k1) = −k1 + k20, (C.14)
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which we can feed into (B.11), where J is any of e1, f1 and k1. What we still need to

specify is what value of the evaluation parameter λ̄ one has to choose for the right moving

representation. Evaluation parameters appear in the above formula as e1 = λ e0, etc. and,

respectively, ē1 = λ̄ ē0, etc. We find that it must be

λ = i
h

2
x+ + c, λ̄ = i

h

2
x− + c, (C.15)

with c a constant independent of the representation, for (B.11) to be satisfied, consistently

with the result (C.12) found from matching the universal R-matrix.
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