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1 Introduction

With the discovery of the Higgs boson and the measurement of its mass, all the parameters

of the standard model are now determined by experimental data with reasonable accuracy.

Since the standard model is a renormalizable theory, its validity can be extended to any

energy scale. Although the theory, as it is, is certainly incomplete, most notably because

it does not account for the experimental evidence of neutrino masses and missing mass in

the universe, the time has come to ask whether the standard model is a valid description

of physical phenomena up to the scale where gravity becomes strongly coupled, i.e. the

Planck scale. For this possibility to be realized, it is necessary for the theory to possess a

stable (or long-lived metastable) vacuum through the entire energy range.

Intriguingly, the measured values of the standard model couplings at the electroweak

scale seem to lead to a peculiar situation near the Planck scale: the standard model is very

close to the boundary between a stable and an unstable vacuum. A precise determination

of the fate of the standard model relies, of course, on a precise knowledge of its couplings.

The most relevant of these, both in terms of impact and uncertainty, are the top-Yukawa

coupling, related to its mass measurement, and the Higgs self-coupling measured indirectly

via its mass [1]. At the same time, however, relevant uncertainties come also from the theory

side. For example, since the determination of the vacuum stability in the standard model

requires the running of its couplings over 16 orders of magnitude, theorists should provide

the most precise computations possible. Much effort has been put into this task, and

recently the three-loop β functions in the MS scheme have been obtained for the gauge [2, 3],

Yukawa [4] and Higgs quartic coupling [5–7]. At the same time, the determination of the MS

parameters at the electroweak scale has been upgraded to the next-to-leading order [8–11],

so that state-of-the-art computations are now possible using two-loop matching and three-

loop running of the coupling constants, together with a computation of the Higgs effective
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potential at two-loop order [8] and including resummation of logarithms [8, 10, 12]. The

results seem to indicate that the standard model lives in a tiny region of metastability.

In this paper we will argue that the running of the couplings should be determined,

together with its implication for the vacuum stability of the theory, via a more consistent

framework. While it is true that the three-loop β functions of the gauge, Yukawa and

quartic couplings describe the most accurate determination of the running for each coupling

separately, we will show that the correlated running of the different couplings requires a

different counting in loops. The starting point of our argument is the conformal symmetry

of the standard model. In the energy regime E � v ≈ 246 GeV, the only operator with

a dimensionful coupling, H†H, can be neglected and the theory possesses a conformal

symmetry at the classical level. This symmetry is, of course, broken at the quantum

level, even in the absence of an explicit mass term for the Higgs field. This leads to

a renormalization group (RG) flow. Nevertheless, not all consequences of the conformal

symmetry are lost in the quantum theory. Among the remnants of the conformal symmetry,

there exist a set of relations between the β functions of the different couplings, known as

the Weyl consistency conditions [13–15]. These relations are made explicit below, and

relate the coefficients of the β functions at different loop orders. The one-loop running

of the Higgs quartic coupling is, for instance, tightly related to the two-loop running of

the top Yukawa and the three-loop running of the gauge couplings. The state-of-the-

art computations, going to the three-loop order in gauge, Yukawa and quartic couplings

(which we shall denote by 3-3-3 counting), explicitly break the Weyl consistency conditions.

Establishing a precision running of the standard model couplings certainly requires that

the conformal symmetry of the model is respected.

A consistent counting of the different loops contributing to the various β functions

respecting the conformal symmetry is possible. As we shall show, one has to consider the

gauge β functions at one loop order above the Yukawa one, and two orders above the quartic

one. With the current knowledge of the β functions, this permits only a counting of the

type 3-2-1, i.e. at three-loop in gauge, two in Yukawa and one in the quartic coupling. If one

wants to consider the running of the Higgs self-interactions at the three-loop order, a 5-4-3

counting is required, and therefore the knowledge of the gauge and Yukawa β functions to

higher precision is needed.

The content of this work is organised as follows. In section 2, the Weyl consistency

conditions on the β functions are reviewed and they are shown to hold in the standard

model in section 3. A perturbative counting consistent with the conformal symmetry is

established in section 4. The explicit analysis of the vacuum stability according to the

consistent 3-2-1 counting scheme is then presented in section 5, where we also compare our

results to the existing ones. We offer our conclusions in section 6.

2 Conformal symmetry and Weyl consistency conditions

We first review briefly the derivation of the Weyl consistency conditions. For a complete

overview in two and four dimensions we refer to the seminal work of Osborn [15]. Consider

a conformal theory augmented by a set of dimension four marginal operators breaking the
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conformal symmetry at the quantum level. With each such operator Oi is associated a

coupling gi, so that the Lagrangian of the theory can be summarized as

L = LCFT + giOi , (2.1)

where LCFT contains the kinetic terms for the fields of the theory. If one disregards the mass

term operator of the Higgs field, the standard model belongs to this class of models. In this

case, the set of couplings {gi} consists of the hypercharge, weak and strong couplings, the

top-Yukawa and the Higgs quartic interaction, {g1, g2, g3, yt, λ}. The subleading Yukawa

interactions can safely be neglected for the purpose of this work.

Keeping track of the classical conformal symmetry after the theory has been renor-

malized is not straightforward. A convenient way to do so is to promote, at first, the

couplings to functions of space-time, i.e. gi = gi(x), and to work in an arbitrary curved

background. Under these assumptions, a conformal transformation of the space-time met-

ric γµν → e2σ(x)γµν is partially compensated by a change in the renormalized coupling as

gi(µ) → gi(e
−σ(x)µ), up to a number of terms that vanish in the limit of flat space-time

and constant couplings. This can be explicitly encoded in the infinitesimal variation of the

generating functional W = log
[ ∫
DΦ ei

∫
d4xL], parametrized as

∆σW ≡
∫

d4xσ(x)

(
2γµν

δW

δγµν
− βi

δW

δgi

)
= σ

(
aE(γ) + χij∂µgi∂νgjG

µν
)

+ ∂µσw
i ∂νgiG

µν + . . . (2.2)

where a, χij and ωi are functions of the renormalized couplings, βi denotes the β function

associated to the coupling gi, E(γ) = RµνρσRµνρσ−4RµνRµν +R2 is the Euler density and

Gµν = Rµν − 1
2γ

µνR is the Einstein tensor. The right-hand side of the equation contains

all possible dimension-four Lorentz scalars constructed out of the metric and derivatives of

the couplings, ∂µgi, and only the three terms relevant to our discussion have been shown

here. The functions a, χij and ωi are completely determined by the theory and can be

explicitly computed in a perturbative expansion in the couplings gi. The essence of the

Weyl consistency conditions is that these functions are not independent of each other. In

particular, the Weyl anomaly expressed by eq. (2.2) is of abelian nature, and therefore

must satisfy

∆σ∆τW = ∆τ∆σW. (2.3)

This equation gives a number of relations between the terms to the right-hand side of

eq. (2.2), among which1

∂ã

∂gi
=

(
−χij +

∂wi

∂gj
− ∂wj

∂gi

)
βj , (2.4)

where we have defined ã ≡ a−wiβi. From this equation it follows that d
dµ ã = −χijβiβj , so

that ã is monotonically decreasing along the RG flow, provided that χ is a positive definite

1In the presence of dimension-three currents in the theory, a few subtleties arise in the derivation of

the consistency condition (2.4), and the βi must be replaced by a different quantity denoted by Bi in

refs. [16, 17]. βi and Bi agree however at the lowest orders in perturbation theory and we will not make a

distinction between them in this work.
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matrix. χ is indeed positive definite at lowest order in perturbation theory [14], however

not necessarily beyond this order (see e.g. ref. [18]). Establishing the positivity of χ beyond

perturbation theory would immediately prove the a-theorem [19] and the irreversibility of

the RG flow in four dimensions.2 We stress that equation (2.4) relies neither on the space

dependence of the couplings nor the space-time metric. Henceforth we will work in ordinary

Minkowski background.

For a generic gauge-Yukawa theory, the function wi turns out to be an exact one-form

at the lowest orders in perturbation theory [14], so that the terms involving derivatives of

wi cancel out, and we will use in the following the simplified consistency condition

∂ã

∂gi
= −βi , βi ≡ χijβj . (2.5)

χij can be seen as a metric in the space of couplings, used in this case to raise and lower

latin-indices. The fact that all β functions can be derived from the same quantity ã has

profound implications. The flow generated by the modified β functions βi is a gradient

flow, implying in particular
∂βj

∂gi
=
∂βi

∂gj
, (2.6)

which gives relations between the β functions of different couplings. These consistency

conditions can be used as a check of a known computation, but could, in principle, also be

used to determine some unknown coefficients at a higher loop order in perturbation theory.

3 The Weyl consistency conditions in the standard model

We now specialize the above conditions to the important case of the standard model of

particle interactions. The couplings we consider are the gauge couplings, the top-Yukawa

and the quartic interaction of the Higgs field. Due to the nature of the perturbative

corrections it is convenient to redefine the coupling set {gi} as {α1, α2, α3, αt, αλ}, where

α1 =
g2

1

(4π)2
, α2 =

g2
2

(4π)2
, α3 =

g2
3

(4π)2
, αt =

y2
t

(4π)2
, αλ =

λ

(4π)2
. (3.1)

As explained above, g1, g2, g3 are the U(1)Y , SU(2)w and SU(3)c gauge couplings respec-

tively. Similarly, we denote by β1, β2, β3, βt and βλ their respective β function, defined as

βi ≡ µ2 dαi
dµ2

. At leading order in the couplings, the matrix χ is diagonal, and reads [14]

χ = diag

(
1

α2
1

,
3

α2
2

,
8

α2
3

,
2

αt
, 4

)
. (3.2)

One finds that any gauge βg compared to the original βg features two powers fewer in αg;

the Yukawa βt is related to βt with one less power of αt while βλ carries the same powers

in αλ as βλ.

2Using analyticity arguments, it was shown recently that the function ã in the UV is bigger than in the

IR [20, 21]. However, this method does not permit to draw any conclusions on the behaviour of ã along the

RG flow.
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The condition (2.6) therefore plays an important role, since it relates coefficients of dif-

ferent β functions at different loop order. Explicitly, the lowest order consistency conditions

that we obtain are

2
∂

∂αt
βλ =

∂

∂αλ

(
βt
αt

)
+O

(
α2
i

)
(3.3)

4
∂

∂α1
βλ =

∂

∂αλ

(
β1

α2
1

)
+O

(
α2
i

)
(3.4)

4

3

∂

∂α2
βλ =

∂

∂αλ

(
β2

α2
2

)
+O

(
α2
i

)
(3.5)

2
∂

∂α1

(
βt
αt

)
=

∂

∂αt

(
β1

α2
1

)
+O

(
α2
i

)
(3.6)

2

3

∂

∂α2

(
βt
αt

)
=

∂

∂αt

(
β2

α2
2

)
+O

(
α2
i

)
(3.7)

1

4

∂

∂α3

(
βt
αt

)
=

∂

∂αt

(
β3

α2
3

)
+O

(
α2
i

)
(3.8)

1

3

∂

∂α2

(
β1

α2
1

)
=

∂

∂α1

(
β2

α2
2

)
+O

(
α2
i

)
(3.9)

1

8

∂

∂α3

(
β1

α2
1

)
=

∂

∂α1

(
β3

α2
3

)
+O

(
α2
i

)
(3.10)

3

8

∂

∂α3

(
β2

α2
2

)
=

∂

∂α2

(
β3

α2
3

)
+O

(
α2
i

)
(3.11)

We can now proceed to test these relations for the standard model β functions. We

take them from ref. [2, 5, 22], without using the SU(5) normalisation for the hypercharge:

β1 = 2α2
1

{
1

12
+

10nG
9

+

(
1

4
+

95nG
54

)
α1 +

(
3

4
+
nG
2

)
α2︸ ︷︷ ︸

Eq. (3.9)

+
22nG

9
α3︸ ︷︷ ︸

Eq. (3.10)

+

(
163

1152
− 145nG

81
−

5225n2
G

1458

)
α2

1 +

(
87

64
− 7nG

72

)
α1α2 −

137nG
162

α1α3

+

(
3401

384
+

83nG
36
−

11n2
G

18

)
α2

2 +

(
1375nG

54
−

242n2
G

81

)
α2

3 −
nG
6
α2α3

+ αt

[
−17

12︸︷︷︸
Eq. (3.6)

−2827

576
α1 −

785

64
α2 −

29

6
α3 +

(
113

32
+

101nt
16

)
αt

]

+ αλ

(
3

4
α1 +

3

4
α2 −

3

2
αλ

)
︸ ︷︷ ︸

Eq. (3.4)

}
,
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β2 = 2α2
2

{
− 43

12
+

2nG
3

+

(
1

4
+
nG
6

)
α1︸ ︷︷ ︸

Eq. (3.9)

+

(
−259

12
+

49nG
6

)
α2 + 2nGα3︸ ︷︷ ︸

Eq. (3.11)

+

(
163

1152
− 35nG

54
−

55n2
G

162

)
α2

1 +

(
187

64
+

13nG
24

)
α1α2 −

nG
18
α1α3

+

(
−667111

3456
+

3206nG
27

−
415n2

G

54

)
α2

2 +
13nG

2
α2α3 +

(
125nG

6
−

22n2
G

9

)
α2

3

+ αt

[
−3

4︸︷︷︸
Eq. (3.7)

−593

192
α1 −

729

64
α2 −

7

2
α3 +

(
57

32
+

45nt
16

)
αt

]

+ αλ

(
1

4
α1 +

3

4
α2 −

3

2
αλ

)
︸ ︷︷ ︸

Eq. (3.5)

}
,

β3 = 2α2
3

{
− 11

2
+

2nG
3

+
11nG

36
α1︸ ︷︷ ︸

Eq. (3.10)

+
3nG

4
α2︸ ︷︷ ︸

Eq. (3.11)

+

(
−51 +

38nG
3

)
α3

+

(
−65nG

432
−

605n2
G

972

)
α2

1 −
nG
48
α1α2 +

77nG
54

α1α3 +

(
241nG

48
−

11n2
G

12

)
α2

2

+
7nG

2
α2α3 +

(
−2857

4
+

5033nG
18

−
325n2

G

27

)
α2

3

+ αt

[
−1︸︷︷︸

Eq. (3.8)

−101

48
α1 −

93

16
α2 − 20α3 +

(
9

4
+

21nt
4

)
αt

]}
,

βt = 2αt

{
9

4
αt − 4α3︸︷︷︸

Eq. (3.8)

− 17

24
α1︸ ︷︷ ︸

Eq. (3.6)

− 9

8
α2︸︷︷︸

Eq. (3.7)

+ 3α2
λ − 6αtαλ︸ ︷︷ ︸
Eq. (3.3)

−6α2
t + 18α3αt

+ α2
3

(
− 202

3
+

40nG
9

)
+ αt

(
131

32
α1 +

225

32
α2

)
+

1187

432
α2

1

− 3

8
α1α2 +

19

18
α1α3 −

23

8
α2

2 +
9

2
α3α2

}
,

βλ =
9

16
α2

2 −
9

2
αλα2︸ ︷︷ ︸

Eq. (3.5)

+
3

16
α2

1 −
3

2
αλα1︸ ︷︷ ︸

Eq. (3.4)

+
3

8
α1α2︸ ︷︷ ︸

Eqs. (3.4)−(3.5)

+12α2
λ + 6αλαt − 3α2

t︸ ︷︷ ︸
Eq. (3.3)

. (3.12)

Here nG is the number of generations which we set to 3 and nt is the number of top

quarks, i.e. one. Note that although we considered the gauge β functions to three loops,

we show only the two-loop top Yukawa and the one-loop Higgs quartic β functions. This,

as we will demonstrate momentarily, leads to a Weyl consistent expansion in the couplings

up to O(α3
i ).

To help the reader immediately identify the terms in the β functions that must satisfy

the Weyl consistency conditions given in eqs. (3.3)–(3.11), we have color-coded the con-

tributions. Furthermore, beneath each relevant term we have noted the equation number

– 6 –



J
H
E
P
0
8
(
2
0
1
3
)
0
3
4

of the Weyl consistency condition it refers to. Specifically, the red color is associated to

Eq (3.3), green to eq. (3.4), blue to eq. (3.5), cyan to eq. (3.6), magenta to eq. (3.7), orange

to eq. (3.8), purple to eq. (3.9), brown to eq. (3.10), and finally gray to eq. (3.11). Note

that the term 3
8α1α2 in βλ enters into both eq. (3.4) and eq. (3.5).

This illustrates that the one-loop coefficients of the quartic βλ-function is related to

the two-loop coefficient of the Yukawa βt-function, and to the three-loop β functions of

the electroweak gauge couplings. Restricting the computation to these orders, namely

adopting a 3-2-1 loop counting in the gauge, Yukawa and quartic β functions, corresponds

to a truncation of the function ã at order α3
i . For illustration, we show the terms in the

function ã which contribute to the one-loop quartic βλ-function:

− ã = . . .+
9

4
α2

2αλ − 9α2
λα2︸ ︷︷ ︸

Eq. (3.5)

+
3

4
α2

1αλ − 3α2
λα1︸ ︷︷ ︸

Eq. (3.4)

+
3

2
α1α2αλ︸ ︷︷ ︸

Eqs. (3.4)−(3.5)

+16α3
λ + 12α2

λαt − 12α2
tαλ︸ ︷︷ ︸

Eq. (3.3)

+ . . . (3.13)

4 A consistent perturbative expansion

When considering terms in the β functions of higher order than the ones present in

eq. (3.12), one implicitly includes in the function ã terms of order α4
i or higher. For

instance, let us study a typical two-loop term in the quartic β function,

βλ = . . .+
45

4
α2αtαλ + . . . . (4.1)

It originates from a term of the form α2αtα
2
λ in ã, whose presence demands a term of order

α2αtα
2
λ in βt, which only appears at the three-loop level, and another of order α2

2αtα
2
λ in

β2, which is a four-loop term.3 When truncating all β functions to three loops, the absence

of these terms explicitly violates the Weyl consistency conditions.

Our point in this paper is that for any analysis requiring the running of different cou-

plings, a consistent perturbative expansion must be adopted in the function ã, from which

the counting of couplings in the various β functions should then be derived. Truncating

ã to order α3
i corresponds to the 3-2-1 counting mentioned above. Similarly, truncations

at order α4
i or α5

i in ã yield respectively the 4-3-2 or 5-4-3 Weyl-consistent countings. If,

for instance, the NNLO effects are included for the quartic β function [10], then the 5-4-3

counting should be adopted. This requires an additional theoretical effort to compute the

gauge and Yukawa β functions to the corresponding order. The key point for any renor-

malization group analysis, as shown above, is that the β functions are linked through ã.

This implies that any perturbative truncation made at the level of ã will be consistent.

Conversely if the truncation is made at the level of the β functions unphysical features

may well appear [23].

3It is important to note, however, that one cannot simply infer the form of these terms directly from

eq. (4.1), since the metric χij contains corrections of higher order in αi, not shown in eq. (3.2). Some of

these corrections have been computed in ref. [14].

– 7 –
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Figure 1. The RG evolution of the standard model Higgs quartic coupling (a) and effective coupling

(b). In (a), λ333 (λ321) shows the evolution of λ according to the 3-3-3 (3-2-1) scheme, and in (b)

λ333
eff (λ321

eff ) shows the evolution of λeff according to the 3-3-3 (3-2-1) scheme.

5 Vacuum stability analysis

The analysis of the vacuum stability requires the knowledge of the effective potential of the

model at hand. The standard model effective potential is known up to two loops [8]. Its

explicit form is given in the appendix of ref. [8, 10]. For large field values φ� v = 246 GeV,

the potential is very well approximated by its RG-improved tree-level expression,

V tree
eff =

λ(µ)

4
φ4 . (5.1)

with µ = O(φ). Therefore if one is simply interested in the condition of absolute stability

of the potential, it is possible to study the RG evolution of λ and determine the largest

scale Λ < Mpl, with Mpl the Planck scale, above which the coupling becomes negative.

We now compare the RG evolution of the standard model Higgs quartic coupling

within the 3-2-1 Weyl consistent counting to the 3-3-3 counting.4 The RG evolution of

the standard model Higgs-self interaction coupling in both counting schemes is shown in

figure 1(a), where we used the PDG value for the top mass Mt = 173.5± 1.4 GeV [24] and

the CMS measurement of the Higgs mass, MH = 125.7 ± 0.6 GeV [25]. We observe that

in both counting schemes λ crosses zero at the scale Λ ≈ 1010 GeV, although the crossing

happens at a slightly lower scale in the 3-2-1 counting.

However, an accurate determination of the scale Λ has to take into account the full

structure of the Higgs potential. As was shown in [26, 27], one can always define an effective

coupling λeff such that for φ� v the effective potential assumes the form

Veff =
λeff(µ)

4
φ4 . (5.2)

The explicit expression for λeff, up to two-loop order, can be found in [8, 10]. Within the

3-2-1 counting scheme, we have to take into account λeff only to one-loop order, which

4 For the 3-3-3 counting scheme we use the state-of-the-art three-loop standard model β functions

refs. [2, 4–7, 22].
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Figure 2. Standard model stability analysis based on the effective standard model Higgs quartic

coupling. The red region indicates instability, the yellow metastability and the green absolute

stability following the 3-2-1 counting. For comparison, the black lines indicate the bounds from

the 3-3-3 counting. The point with error bars shows the experimental values of the top [24] and

Higgs [25] masses. The red dashed lines show the value in GeV at which λ321
eff crosses zero.

is consistent with the one-loop running of the quartic coupling. On the other hand for

the 3-3-3 scheme we keep the full two-loop expression. The direct comparison between

the running of the effective quartic couplings in the two schemes is shown in figure 1(b).

We note a pattern very similar to the one for λ given in figure 1(a). The difference is,

however, that the scale where λeff crosses zero is roughly one order of magnitude larger,

Λ ≈ 1011GeV.

We have also studied the possibility that the standard model is in a metastable vacuum

that may in principle decay at a later time. However, if the time it takes for the vacuum

to decay is longer than the lifetime of the universe, this is not of immediate concern. To

illustrate the situation we have plotted the stability of the standard model as a function

of the top and Higgs masses (see figure 2). The criterion for stability is that the quartic

coupling is positive at least all the way to the Planck scale. On the other hand, for

metastability we must require that the probability (with certain standard approximations,

see [28] for details) of the false vacuum decaying within the lifetime of the universe is less

than one. This can be expressed mathematically as

λ(φ) > − 8π2/3

4 log[φTUeγE/2]
, (5.3)

where TU is the age of the universe and γE is the Euler-Mascheroni constant.

In addition to the vacuum stability analysis, we consider the case where the electroweak

vacuum is the true ground state, but an unstable minimum exists at higher values of the

Higgs field. The condition for such a second vacuum close to the point when λeff vanishes is

the simultaneous vanishing of βeff = dλeff/d lnφ on the new minimum. Typically these two

conditions are met by lowering the value of the top mass. To verify this possibility we show
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Figure 3. RG evolution of the (effective) standard model Higgs quartic coupling. The mass of

the top is tuned such that for λ333
eff the potential develops a minimum at high energy, which is

degenerate with the electroweak one.

in the left and right panels of figures 3 the evolution of the quartic couplings, as done in

figures 1(a) and 1(b), but adopting a lower value of the top mass, i.e. Mt = 171.27 GeV. It

is clear from the picture, that for this value of the top mass and within the 3-3-3 counting

scheme, the conditions for the existence of a second vacuum, degenerate in energy with

the electroweak one, are met. Indeed, in the right panel of figure 3 we observe that λ333
eff

crosses zero at Λ ≈ 1019 GeV with a near zero slope, i.e. βeff ≈ 0. However, within

the 3-2-1 counting scheme, the situation differs as λ321
eff crosses zero about three orders of

magnitude earlier, with non-vanishing βeff, for the same value of the top mass. We have to

substantially lower the top mass to circa Mt ≈ 171.05 GeV in this Weyl consistent scheme

to accommodate the emergence of a degenerate minimum, giving a deviation of the order

2σ from the central value of the top mass.

6 Conclusions

We introduced a counting scheme for the organisation of the standard model perturbative

expansion preserving the Weyl consistency conditions. These important conditions stem

from conformal invariance which is a property of the standard model at energies higher

than the electroweak scale. They non-trivially relate the various β functions of the theory.

We briefly reviewed the derivation and relevance of these conditions and defined the proper

counting scheme.

As a phenomenologically relevant example we investigated the vacuum stability of the

standard model, by studying the running of its couplings up to the Planck scale within the

new counting scheme. We showed that while the effects on the absolute stability of the

model are small, sizeable effects appear when investigating the possible existence of a new

unstable Higgs vacuum at high energies.

Our results show that it is crucial for estimating theoretical uncertainties to consistently

go to the next-to-leading order in all of the couplings, corresponding to a 4-3-2 counting.

With the current state-of-the-art computations this only requires the derivation of the

four-loop gauge β functions.
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