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1 Introduction and summary

There is by now overwhelming evidence that planar N = 4 super-Yang Mills theory is

a completely integrable model (see [1] for a comprehensive review). To which extent in-

tegrability survives in less symmetric (and more realistic) gauge theories is an important

question, both because integrability is a very useful computational tool, and because ex-

ploring a larger set of examples should shed light on its conceptual origin, which is still

mysterious. In fact, the first instances of integrability in a four-dimensional gauge theory

were found in QCD itself [2–7]. However, with hindsight, the integrability properties of

large Nc QCD discovered so far can be understood as being “inherited” from the maxi-

mally supersymmetric theory. For example, a large sector of QCD composite operators

has identical one-loop renormalization as the analogous sector in N = 4 SYM.1 At higher

loops, the analysis of the QCD dilation operator is complicated by the breaking of confor-

mal invariance and by the (non-universal) dependence on the regulator. A parallel story

holds for N = 1 and N = 2 supersymmetric Yang-Mills theories in the usual ’t Hooft

limit (large Nc, fixed Nf ), see [9–13] and references therein. This motivates us to explore

integrability in the cleaner theoretical laboratory of theories that remain exactly conformal

at the quantum level. The main question one would like to answer is whether integrability

in less symmetric conformal gauge theories is always an “accidental” remnant of the N = 4

integrability (and under which conditions do such accidents occur), or whether genuinely

new structures are also possible.

A large class of four-dimensional conformal theories are the N = 2 supersymmetric

theories with vanishing one-loop beta function. A well-known non-renormalization theorem

1The maximal one-loop integrable sector in QCD is the SU(2, 2) sector described in [8]. It contains the

SL(2,R) sector of maximal helicity “quasipartonic” lightcone operators. In this latter sector, the planar

dilation operator has been shown to coincide with that of N = 4 SYM also at two loops [9, 10], up to

overall factors that capture the non-vanishing beta function and the non-universal regulator dependence.
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guarantees that the beta function remains zero in the full quantum theory. Perhaps the

simplest example (beyond N = 4 SYM itself) is N = 2 superconformal QCD (SCQCD),

the theory with gauge group SU(Nc) and 2Nc fundamental hypermultiplets. Integrability

is at best expected in the planar Veneziano limit of large Nc and large Nf ≡ 2Nc, with

fixed ’t Hooft coupling λ = g2YMNc.

The dilation operator of planar SCQCD defines, as usual, the Hamiltonian of a spin

chain.2 We review its symmetry structure in section 2. Closed chains correspond to flavor

singlet gauge-invariant operators of the schematic form [24, 25] Tr
(

ϕk1Mk2ϕk3Mk4 . . .
)

.

Here ϕ denotes any of the color-adjoint elementary “letters”, for example ϕ = (Dnλ)ab,

where D is a gauge-covariant derivative, λ a gaugino field, and a, b = 1, . . . Nc color indices.

The symbol M stands for any of the gauge-adjoint composite dimers obtained by the flavor

contraction of a fundamental and a antifundamental letter, for example Ma
b = QaiQ̄bi,

where Q is the squark field and i = 1, . . . Nf a flavor index. One can also consider open

chains with open flavor indices at the endpoints.

The one-loop Hamiltonian of N = 2 SCQCD was evaluated in the sector of com-

posite operators made of elementary scalar fields in [25], and for the full theory in [26].

The question of its integrability is still not completely settled. Despite some early in-

triguing hints [25], the spectrum of anomalous dimensions does not exhibit [27] the sys-

tematic pairing of opposite-parity eigenvalues that is one of the hallmarks of integrabil-

ity [15, 17, 18, 28]. It is often easy to disprove integrability by setting up a position-space

Bethe ansatz and showing that the n-body magnon S-matrix does not factorize. In our

case, this is not straightforward because the S-matrix of external dimeric magnons (M’s

moving on the chain) is hard to calculate. On the other hand, the S-matrix of the elemen-

tary (single-letter) magnons is unaffected at one loop by the presence of the dimers, and

trivially coincides with a restriction of the N = 4 S-matrix — an instance of “accidental”

one-loop integrability inherited from N = 4 SYM.

As it turns out, it is easier to test integrability at two loops. In section 3 we consider a

simple closed SU(2|1) sector, and fix its two-loop Hamiltonian using symmetry, up to a few

undetermined parameters. This sector is particularly interesting because it is structurally

different from any subsector of N = 4 SYM, as the dimers play a crucial role. The

asymptotic excitations on the SU(2|1) chain are gauginos λα, where α is an SU(2) Lorentz

index. In section 4 we evaluate their two-body scattering matrix and find that it fails to

satisfy the Yang-Baxter equation, which conclusively shows that the Hamiltonian of N = 2

SCQCD is not completely integrable at higher loops. This would have required a novel

integrability structure (not present in N = 4 SYM), which fails to materialize.

There is however still hope for all-loop integrability in other closed subsectors. As we

have mentioned, one can identify sectors for which the one-loop dilation operator is identical

to a restriction of the N = 4 dilation operator. The largest such sector that remains closed

to all orders is the SU(2, 1|2) sector, which consists entirely of letters belonging to theN = 2

vector multiplet, and it is thus a universal sector present in all N = 2 superconformal gauge

2See e.g. [14–20] and the reviews [21, 22] for a very partial list of references on the evaluation of the

dilation operator in N = 4 SYM. See also [23] for a review of the dilation operator in deformations of

N = 4 SYM.
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theories with a Lagrangian description. Of course, in any given theory, all the other fields

(such as the fundamental hypermultiplets of SCQCD) do affect the renormalization of the

SU(2, 1|2) sector, so at sufficiently high order the dilation operator will differ from the

one of N = 4 SYM. Nevertheless, consideration of the symmetry structure of the magnon

S-matrix and of the holographic sigma model (when available) lead us to conjecture in

section 5 that the SU(2, 1|2) sector may remain integrable to all orders. The simplest

scenario is that, in any given theory, the dilation operator in this sector coincides with the

one in N = 4 SYM, up to a model-dependent redefinition of the ’t Hooft coupling [29] —

a mild but still non-trivial deformation. Analogous (though less compelling) speculations

apply to the universal SU(2, 1|1) sector that is present in any N = 1 superconformal gauge

theory, and even to the purely bosonic SU(2, 1) sector of QCD, near the Banks-Zaks fixed

point at the upper edge of the conformal window.

2 Preliminaries: symmetry structure of the N = 2 SCQCD spin chain

The field content of N = 2 superconformal QCD comprises an N = 2 vector multiplet

{φ, λ I
α ,Fαβ} and its conjugate, in the adjoint representation of the SU(Nc) gauge group,

and Nf = 2Nc hypermultiplets {QI , ψα,
¯̃
ψα̇ ; Q̄I , ψ̃α, ψ̄α̇}, in the (anti)fundamental repre-

sentation of SU(Nc). Here α = ± and α̇ = ±̇ are Lorentz indices, and I = ± an SU(2)R
R-symmetry index. We have suppressed color and flavor indices.

States of the spin chain are constructed by stringing together color-adjoint single letters

from the vector multiplet, and color-adjoint two-letter “dimers” from the hypermultiplets,

e.g. ψiQ̄
i, where i = 1, . . . Nf is a contracted flavor index. Furthermore, each letter can be

acted upon by an arbitrary number of covariant derivatives.

The N = 2 superconformal group is SU(2α, 2α̇|2I), where the subscripts serve to em-

phasize the Lorentz and R-symmetry subgroups: SU(2α) × SU(2α̇) × SU(2I) × U(1)R ⊂

SU(2α, 2α̇|2I). The spin chain vacuum is the chiral state Trφk. It breaks the superconfor-

mal group to the subgroup PSU(2α̇|2I)× SU(2α)⋉R, where R is a central generator that

gets identified with the spin chain Hamiltonian. In accordance with Goldstone’s theorem,

broken symmetry generators are manifested as gapless excitations of the spin chain called

magnons. Table 1 shows the symmetry generators of the N = 2 superconformal algebra.

The diagonal boxed generators correspond to the symmetry preserved by the vacuum while

the off-diagonal ones are broken and correspond to Goldstone magnons, which transform

in the bifundamental representation of PSU(2α̇|2I)× SU(2α).

A priori, the two-body magnon S-matrix when decomposed according to SU(2α̇|2I)×

SU(2α) quantum numbers will take the form

SSU(2α̇,2α|2I) = SSU(2α̇|2I) × S1

SU(2α)
+ S′

SU(2α̇|2I)
× S3

SU(2α)
, (2.1)

where the superscripts 1 and 3 denote the singlet and triplet SU(2α) representations.

Remarkably, the product of two fundamental SU(2|2) representations consists of a single

irreducible representation, which implies that the SU(2|2) two-body S-matrix is completely

fixed by symmetry, up to an overall phase [30]. Thus, the total two-body S-matrix of our
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SU(2β̇) SU(2J ) SU(2β)

SU(2α̇) L̇ β̇
α̇ Q̄J α̇ D†

βα̇

SU(2I) S̄I β̇ R I
J λ† Iβ

SU(2α) Dαβ̇ λ α
J L α

β

Table 1. The N = 2 superconformal generators. The boxed generators are preserved by the

choice of the spin chain vacuum while the unboxed ones are broken and correspond to Goldstone

excitations. The broken generators are identified with the corresponding magnon: the upper-right

column contains magnon creation operators while the lower-left row contains magnon annihilation

operators.

model factorizes as

SSU(2α,2α̇|2I) = SSU(2α̇|2I) × SSU(2α) . (2.2)

The SSU(2α̇|2I) factor is the two-body S-matrix of the magnons in the SU(2α) highest weight

state, namely {λ I
+ ,D+α̇ }, while SSU(2α) is the two-body S-matrix of the magnons in the

SU(2α̇|2I) highest weight state, namely {λ +
α }.

The symmetry analysis also helps us organize the calculation of the dilation genera-

tor. We can identify two “orthogonal” all-order closed subsectors, associated with either

factor of the two-body S-matrix. Exciting an arbitrary number of SU(2α) highest weight

magnons {λ I
+ ,D+α̇} above the spin chain vacuum Trφk, and demanding closure of the

dilation operator, we obtain a subsector with enhanced SU(2, 1|2) symmetry, spanned by

the following letters:

SU(2, 1|2) sector: (D+α̇)
n{φ, λ I

+ ,F++ } . (2.3)

Here the covariant derivatives are understood to be totally symmetrized at each site, so

for example (D+α̇)
nφ is shorthand for D+{α̇1

D+α̇2
. . .D+α̇n}φ. The introduction of the

self-dual field strength F++ = [D++̇,D+−̇] is necessary to achieve closure of the dilation

operator because of the transition ǫIJ λ
I

+ λ J
+ ↔ φF++.

Similarly, considering the SU(2α̇|2I) highest weight magnons {λ +
α }, and demanding

closure we obtain a sector with SU(2|1) symmetry:

SU(2|1) sector: {φ, λ +
α ,M++ } , (2.4)

where we have introduced the notation MIJ ≡ QI
i Q̄

iJ . Inclusion of the M++ dimer is

forced at two loops by the transition ǫαβλ +
α λ +

β ↔ φM++.

In the rest of the paper we will consider separately these two subsectors. The SU(2, 1|2)

sector exists in any N = 2 gauge theory, including N = 4 SYM, while the SU(2|1) sector

is special to N = 2 SCQCD and has the potential to reveal a new integrability structure.

3 The two-loop Hamiltonian in the SU(2|1) sector

In this section we will use symmetry arguments to fix the two-loop Hamiltonian of the

SU(2|1) sectors, up to a few arbitrary coefficients. With this result at hand, we will
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proceed in the following section to calculate the two-body scattering of magnons and test

integrability of the sector. To avoid cluttering we will suppress the “+” SU(2)R index and

write the letters as

{φ, λα,M} . (3.1)

At one loop the sector decomposes into {φ, λα} and {φ,M}. Each of these subsectors is

separately integrable: the first one, because it is identical to the corresponding sector in

N = 4 SYM. The second one, because its Hamiltonian turns out to be trivial [25] — the

dimer M does not move on the φ chain so each string of φ’s and M’s is already an exact

eigenstate. The SU(2|1) sector becomes interesting at two loops, where interaction with

M affects the scattering of the asymptotic λα magnons.

To avoid an explicit Feynman diagram calculation we will use the approach of [17],

where the symmetry algebra was used to restrict the form of the spin chain Hamiltonian

in the SU(2|3) subsector of N = 4 SYM. In that case, the two-loop Hamiltonian turned

out to be completely fixed by symmetry.

Parity. It will be useful to define a “parity” operation on the states of the chain. As

explained in [27], N = 2 SCQCD admits a parity transformation that commutes with

the Hamiltonian at all loops. The transformations relevant for the fields in the SU(2|1)

subsector are

φab ↔ −φba , λab ↔ −λba , Ma
b ↔ −Mb

a . (3.2)

This is just transposition of adjoint indices with an extra minus sign. The action on a

single trace state is then (using a ket notation for the states of the chain):

P |A1 . . . AL〉 = (−1)L+f(f+1)/2|AL . . . A1〉 , (3.3)

where f is the number of fermionic fields and L is the length of the state considering M

as a single-site object.

3.1 Symmetry analysis

The states of the sector furnish a representation of the SU(2|1) algebra. In the interacting

theory, the symmetry generators can be written as a perturbation series in the coupling

constant [17, 28],

J (g) =
∞
∑

k=0

gkJk . (3.4)

As usual when working with spin chains we will focus in the local action of the generators,

the complete action being a sum of local terms. Following [17] we will represent the action

of a generator by the symbol

Jk ∼
{

a1...an
b1...bm

}

. (3.5)

– 5 –
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This replaces the string of fields a1 . . . an by b1 . . . bm and gives zero otherwise. To obtain

the total action we apply this transformation at each site of the closed chain. For example,

{

AB
CD

}

|ABEABF 〉 = |CDEABF 〉+ 0 + 0 + |ABECDF 〉+ 0 + 0 . (3.6)

Of course, we will pick up an extra minus sign each time a fermionic generator (Q or

S) hops a fermionic field. An interaction with n +m entries will be said to have n +m

legs. Because corrections to the generators have their origin in planar perturbation theory,

the number of legs is restricted by the order of the coupling constant we are considering.

The counting is easier if we forget for a moment our definition of M and consider Q as

fundamental field of our sector. The number of legs is then restricted by,

n+m = k + 2 , (3.7)

where k is the order of the coupling.3 Now, if a Q field sits at the far right in the upper or

lower row of (3.5), we know that the next field to its right will be a Q̄, in order to have a

flavor singlet. An analogous analysis holds for a Q̄ sitting in the far left. This means that

after writing the J generators using the Q and Q̄ fields, we can replace all the Q’s(Q̄’s) in

the far right(left) with an M symbol, in addition to the explicit QQ̄ = M replacement.

The SU(2|1) algebra. To obtain the SU(2|1) algebra we start from the full SU(2, 2|2)

generators:4

{L β
α , L̇ β̇

α̇ ,R J
I ,Pαβ̇ ,K

αβ̇, D, r,Q I
α ,S α

I , Q̄α̇ I , S̄
α̇ I } , (3.8)

where L and L̇ are the Lorentz generators, R and r correspond to SU(2)R and the U(1)

r-charge, D is the dilation operator and Q and S are the supercharges. We now define

Qα ≡ Q +
α , (3.9)

Sα ≡ S α
+ , (3.10)

U ≡ R +
+ + 1

2 (D0 − r) , (3.11)

δH ≡ δD . (3.12)

We have split the interacting dilation generator as

D = D0 + δD , (3.13)

where D0 measures the classical conformal dimension and δD its quantum corrections.5

The SU(2|1) generators are then:

J = {L β
α ,U , δH,Qα,S

α} . (3.14)

3As in [17], we use gauge invariance of cyclic states to increase the legs of the generators to its maximum

value, i.e. k + 2 at order k in the coupling.
4We follow the conventions of [26].
5To be consistent with (3.12) we also define H0 ≡ D0, although H0 is not an SU(2|1) generator.
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As in [17], we enhanced the algebra by the extra central U(1) generator δH. The commu-

tation relations are easy to obtain from the original SU(2, 2|2) commutators. Generators

carrying SU(2) Lorentz indices transform canonically according to:

[L β
α ,Jγ ] = δβγJα − 1

2δ
β
αJγ , [L β

α ,J γ ] = −δγαJβ + 1
2δ

β
αJ

γ . (3.15)

The only non-zero anti-commutator is:

{Sβ ,Qα} = L β
α + δβα(U + 1

2δH) (3.16)

and the non-zero U -charges are:

[U ,Qα] = −1
2Qα , [U ,Sα] = 1

2S
α . (3.17)

Also,

[J , δH] = 0 , (3.18)

confirming that δH is indeed a central element.

Note that U is defined in terms of generators that do not receive quantum corrections

and therefore it will not be modified in the interacting theory. The same applies to L β
α if

we choose a regularization scheme consistent with Lorentz symmetry. In general, different

regularization schemes can differ in which generators will be quantum deformed, but the

physical outcome (in this case, the eigenvalues of the dilation operator) must of course

be the same in all schemes. Our algebraic analysis takes the simplest form in a scheme

where the Lorentz generators maintain the tree level form. An example of such a scheme

is dimensional regularization, where Lorentz invariance is manifest at each step.

3.2 The interacting generators

The tree-level representation of the SU(2|1) algebra reads

U =
{

φ
φ

}

+ 1
2

{

α
α

}

,

L β
α =

{

α
β

}

− 1
2δ

α
β

{

γ
γ

}

,

(Qα)0 = eiβ1

{

φ
α

}

,

(Sα)0 = e−iβ1

{

α
φ

}

, (3.19)

where the subscript “0” indicates that we are working at tree level. The idea is to consider

perturbative deformations of these generators and restrict their form using the SU(2|1)

algebra. In principle, there should be fluctuations in the length, but because we consider

the dimeric impurity M as a single-site object, the length always stays constant. For H2

we have:

H2 = c0
{

φφ
φφ

}

+ c1
{

φM
φM

}

+ c2
{

Mφ
Mφ

}

+ c3
{

M
M

}

+ c4
{

φα
φα

}

+ c5
{

αφ
αφ

}

+c6
{

φα
αφ

}

+ c7
{

αφ
φα

}

+ c8
{

αM
αM

}

+ c9
{

Mα
Mα

}

+ c10
{

αβ
αβ

}

+ c11
{

αβ
βα

}

. (3.20)
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Imposing invariance under parity we obtain:

c1 = c2 , c4 = c5 , c6 = c7 , c8 = c9 . (3.21)

In addition, protection of φφ implies c0 = 0.6 This still leaves seven independent co-

efficients. Imposing that the algebra commutation relations are satisfied perturbatively

eliminates six of them, leaving us with one undetermined parameter, c1 ≡ α2
1, which is

associated with a rescaling of the coupling and cannot be fixed by algebraic means. The

procedure is now completely algorithmic and it was described in detail in [17]. For each

perturbative correction we consider the most general ansatz consistent with conservation

of classical energy, r-charge and equation (3.7). Consistency of the algebra commutations

relations significantly reduces the number of independent parameters. As extra input we

use the fact that in the SU(1|1) subsector spanned by {φ, λ+ } the two-loop Hamiltonian of

N = 2 SCQCD should be identical to the corresponding Hamiltonian in N = 4 SYM [31].

We present our results in tables 2 and 3. At first sight, there seems to be a high number

of independent coefficients, however most of them are unphysical. The two coefficients

{α1, α3 } can be reabsorbed by a redefinition of the coupling,7

g → α1g + α3g
3 . (3.22)

The six coefficients {β1, β2, δ1, δ2, δ3, δ4 } correspond to similarity transformations and

never show up in physical quantities like anomalous dimensions or S-matrix elements.

We are then left with { η, χ } which do show up in physical quantities and therefore cannot

be ignored. However, the S-matrix elements that we will study in the next section happen

to be independent of { η, χ }.

4 The magnon S-matrix in the SU(2|1) sector

We now proceed to calculate the magnon two-body S-matrix in the SU(2|1) sector, and to

check whether it satisfies the Yang-Baxter equation. Let us start by defining the momentum

eigenstate of a single excitation,

|λα(p)〉 =
∑

k

eipk|αk〉 , (4.1)

where k labels the position of the particle,

|αk〉 = | . . . φ
k
↓λαφ . . .〉 . (4.2)

Its dispersion relation is easily obtained by acting with the Hamiltonian:

H|λα(p)〉 = g2α2
1

[

(2− eip − e−ip) + g2α2
1(−3 + 2(eip + e−ip)−

1

2
(e2ip + e−2ip))

]

|λα(p)〉 ,

(4.3)

6In [17] this condition was obtained using the algebra constraints, in our case we have to give it as extra

input.
7Note of course that α1 6= 0, otherwise the whole one-loop Hamiltonian H2 would vanish. The actual

value of α1 could be fixed by comparison with the explicit perturbative calculation [26]: Hhere = Dthere,

and α2

1 = 2.
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H0 =
{

φ
φ

}

+2
{

M
M

}

+
3
2

{

α
α

}

,

H2 =α2
1

({

φM
φM

}

+
{

Mφ
Mφ

})

+ 2α2
1

{

M
M

}

+ α2
1

({

φα
φα

}

+
{

αφ
αφ

})

− α2
1

({

φα
αφ

}

+
{

αφ
φα

})

+ α2
1

({

αM
αM

}

+
{

Mα
Mα

})

+ α2
1

{

αβ
αβ

}

+ α2
1

{

αβ
βα

}

,

H3 = − α3
1 e

iβ2 εαβ
({

αβ
φM

}

+
{

αβ
Mφ

})

− α3
1 e

−iβ2 εαβ
({

φM
αβ

}

+
{

Mφ
αβ

})

,

H4 =(−3
2α

4
1 + 2α1α3)

({

φφα
φφα

}

+
{

αφφ
αφφ

})

+ (α4
1 − α1α3)

({

φφα
φαφ

}

+
{

αφφ
φαφ

})

− 1
2α

2
1

({

φφα
αφφ

}

+
{

αφφ
φφα

})

+ (α4
1 − α1α3)

({

φαφ
αφφ

}

+
{

φαφ
φφα

})

+ (−5
4α

2
1 + α1α3 − η + χ)

({

φφM
φφM

}

+
{

Mφφ
Mφφ

})

+ (−31
4 α

2
1 + 7α1α3 + χ)

({

φM
φM

}

+
{

Mφ
Mφ

})

+ (α4
1 − 2α1α3 + η)

({

φM
Mφ

}

+
{

Mφ
φM

})

+ (192 α
4
1 − 10α1α3 + 2η − 2χ)

{

MφM
MφM

}

+ 2η
{

MM
MM

}

+ (−2α4
1 + 2α1α3 − η + χ+ iα2

1(δ1 + δ2))
({

αφM
φαM

}

+
{

Mφα
Mαφ

})

+ (−2α4
1 + 2α1α3 − η + χ− iα2

1(δ1 + δ2))
({

φαM
αφM

}

+
{

Mαφ
Mφα

})

+ (−13
4 α

4
1 + 3α1α3 − η + χ)

({

φαM
φαM

}

+
{

Mαφ
Mαφ

})

+ (−2α4
1 + 2α1α3 + η)

({

αM
αM

}

+
{

Mα
Mα

})

+ (2α4
1 − 2α1α3 + η)

({

αM
Mα

}

+
{

Mα
αM

})

+ (−1
4α

4
1 + α1α3)

({

φαβ
φαβ

}

+
{

βαφ
βαφ

})

+ (−7
4α

4
1 + α1α3)

({

φαβ
φβα

}

+
{

βαφ
αβφ

})

+ (α4
1 − α1α3 − iα2

1δ1)
({

φαβ
αφβ

}

+
{

βαφ
βφα

})

+(α4
1 − α1α3 + iα2

1δ1)
({

αφβ
φαβ

}

+
{

βφα
βαφ

})

+ (14α
4
1 + iα2

1δ3)
({

φαβ
βφα

}

+
{

βαφ
αφβ

})

+ (14α
4
1 − iα2

1δ3)
({

βφα
φαβ

}

+
{

αφβ
βαφ

})

+ (−7
2α

4
1 + 4α1α3)

{

αφβ
αφβ

}

+ 1
2α

2
1

{

αφβ
βφα

}

+ (−7
2α

4
1 + 4α1α3 − η + χ)

({

Mαβ
Mαβ

}

+
{

βαM
βαM

})

+ (32α
4
1 − 2α1α3 + η − χ)

({

Mαβ
Mβα

}

+
{

βαM
αβM

})

+ (−9
4α

4
1 + 3α1α3)

({

αβγ
αγβ

}

+
{

γβα
βγα

})

+ (12α
4
1 − 2α1α3)

({

αβγ
βγα

}

+
{

γβα
αγβ

})

+ (−1
2α

4
1 + 2α1α3)

{

αβγ
γβα

}

.

Table 2. The Hamiltonian up to order g4.

hence,

Eλ(p) = 4(g2α2
1 − 2g4α4

1) sin
2 p

2
+ 2g4α4

1 sin
2 p+O(g6) . (4.4)

To extract the S-matrix we will use the familiar perturbative asymptotic Bethe ansatz, see

e.g. [32]. For the SU(2α) singlet two-body state we define:

|λ[αλβ]〉 =
∑

k<l−1

Ψ1(k, l)| . . . φ
k
↓λ[αφ . . . φ

l
↓λβ]φ . . .〉

+
∑

k

Ψn(k)| . . . φ
k
↓λ[α

k+1
↓λβ]φ . . .〉+

∑

k

ΨM(k)| . . . φ
k
↓Mφ . . .〉 ,

(4.5)

valid up to order g2. The Ψ’s correspond Schrödinger wave functions and k and l label the

positions of the particles in the φ vacuum. At this order in perturbation theory a transition
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(Qα)0 = eiβ1

{

φ
α

}

,

(Qα)1 = α1 e
i(β1+β2)εαβ

{

β
M

}

,

(Qα)2 = ieiβ1(δ1 + δ2 + δ4)
({

φφ
φα

}

+
{

φφ
αφ

})

+ eiβ1(14α
2
1 + iδ4)

({

φM
αM

}

+
{

Mφ
Mα

})

+ eiβ1(14α
2
1 + iδ3)

({

φβ
βα

}

−
{

βφ
αβ

})

+ ieiβ1(δ2 + δ4)
({

φβ
αβ

}

−
{

βφ
βα

})

,

(Sα)0 = e−iβ1

{

α
φ

}

,

(Sα)1 = α1 e
−i(β1+β2)εαβ

{

M
β

}

,

(Sα)2 = − ie−iβ1(δ1 + δ2 + δ4)
({

φα
φφ

}

+
{

αφ
φφ

})

+ e−iβ1(14α
2
1 − iδ4)

({

αM
φM

}

+
{

Mα
Mφ

})

+ e−iβ1(14α
2
1 − iδ3)

({

βα
φβ

}

−
{

αβ
βφ

})

− ie−iβ1(δ2 + δ4)
({

αβ
φβ

}

−
{

βα
βφ

})

.

Table 3. Fermionic SU(2|1) generators up to order g2.

λ[αλβ] → M is possible and this is taken into account by the last term in (4.5). In order

to solve the scattering problem we consider the following ansatz:

Ψ1(k, l) = ei(p1k+p2l) + S1(p2, p1)e
i(p1l+p2k) ,

Ψn(k) = Sn(p2, p1)e
i(p1+p2)k ,

ΨM(k) = SM(p2, p1)e
i(p1+p2)k .

(4.6)

Here S1(p2, p1), Sn(p2, p1) and SM(p2, p1) are functions of g and represent the different

scattering amplitudes. Imposing the Schrödinger equation

H|λ[αλβ]〉 = E(p1, p2)|λ[αλβ]〉 , (4.7)

for the separate cases l > k + 2, l = k + 2 and l = k + 1 we can solve for the scattering

amplitudes to order g2. The interesting term is S1(p2, p1), which governs the asymptotic

magnon scattering,

S1(p2, p1) = −
1− 2eip2 + ei(p1+p2)

1− 2eip1 + ei(p1+p2)
(4.8)

×

(

1+2ig2α2
1

(cos p1−2 cos(p1−p2)+cos p2) sin
p1
2 sin p2

2 (sin p1−sin p2)

cos(p1−p2
2 )(3− 2 cos p1 − 2 cos p2 + cos(p1 + p2))

+O(g4)

)

.

In the triplet sector the ansatz is simpler since λ{αλβ} does not mix with M,

|λ{αλβ}〉 =
∑

k<l−1

Ψ3(k, l)| . . . φ
k
↓λ{αφ . . . φ

l
↓λβ}φ . . .〉+

∑

k

Ψ3n(k)| . . . φ
k
↓λ{α

k+1
↓λβ}φ . . .〉 , (4.9)

where

Ψ3(k, l) = ei(p1k+p2l) + S3(p2, p1)e
i(p1l+p2k) ,

Ψ3n(k) = S3n(p2, p1)e
i(p1+p2)k .

(4.10)

We find

S3(p2, p1) =− 1− ig2α2
1(sin p1 − sin (p1 − p2)− sin p2) +O(g4) . (4.11)

– 10 –
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α

p1

β

p2

γ

p3

ǫ

τ

δ

α′ β′ γ′

=

α

p1

β

p2

γ

p3

τ

ǫ

δ

α′ β′ γ′

Figure 1. Diagrammatic representation of the Yang-Baxter equation.

Checking the Yang-Baxter equation. We are finally ready to check the Yang-Baxter

equation for the two-body magnon S-matrix. The equation reads (see figure 1 for the

index flow)

Sδǫ
αβ(p1, p2)S

τγ′

ǫγ (p1, p3)S
α′β′

δτ (p2, p3) = Sβ′γ′

ǫδ (p1, p2)S
α′ǫ
ατ (p1, p3)S

τδ
βγ(p2, p3) . (4.12)

Defining:

A(p1, p2) = S3(p1, p2) , (4.13)

B(p1, p2) =
1

2
(S1(p1, p2)− S3(p1, p2)) , (4.14)

we can rewrite the S-matrix in terms of the identity operator I and the trace operator K,

S(p1, p2) = A(p1, p2)I+B(p1, p2)K . (4.15)

As explained e.g. in [25], the Yang-Baxter equation is equivalent to the single constraint

0
?
= 2B(p1, p2)A(p1, p3)B(p2, p3)+A(p1, p2)A(p1, p3)B(p2, p3)+B(p1, p2)A(p1, p3)A(p2, p3)

+B(p1, p2)B(p1, p3)B(p2, p3)−A(p1, p2)B(p1, p3)A(p2, p3) . (4.16)

A necessary condition for factorization of many-body scattering is the vanishing of the

right-hand side. However, working at order g2 we obtain

64iα2
1e

i(p1+p2+p3)
sin (p12 )

2 sin (p22 )
2 sin (p32 )

2 tan (p1−p2
2 ) tan (p1−p3

2 ) tan (p2−p3
2 )

(1 + ei(p1+p2) − 2eip2)(1 + ei(p1+p3) − 2eip3)(1 + ei(p2+p3) − 2eip3)
, (4.17)

which is certainly non-zero.8 Failure of the Yang-Baxter equation conclusively shows that

the SU(2|1) sector is not integrable at two loops.

8The only solution is the trivial solution α1 ≡ 0, which sets to zero the whole interacting Hamiltonian,

see table 2.

– 11 –



J
H
E
P
0
8
(
2
0
1
3
)
0
1
5

5 The universal SU(2, 1|2) sector

The SU(2, 1|2) sector (2.3) consists entirely of letters that belong to the N = 2 vector

multiplet, and it is then present in any N = 2 gauge theory. Diagrammatic arguments [31]

show that the planar dilation operator in this sector is the same up to two loops in any

N = 2 superconformal theory, as it coincides to that order with a restriction of the N = 4

SYM dilation operator. The model dependence kicks in at three loops.9

Choosing the usual chiral vacuum Trφk, the Goldstone magnons {λ I
+ ,D+α̇} trans-

form in the fundamental representation of SU(2α̇|2I). Their two-body S-matrix SSU(2α̇|2I)

is uniquely determined up to an overall phase by the SU(2|2) symmetry [30], and thus,

just as is the case in N = 4 SYM, it automatically satisfies the Yang-Baxter equation.

This is a first hint to suspect that this sector may be generically integrable, at least in the

sense of the asymptotic Bethe ansatz on the infinite chain.10 Of course, factorization of

the n-body S-matrix into two-body S-matrices is a stronger condition than Yang-Baxter,

and an explicit test at three loops will be required. A three-loop diagrammatic analysis is

in progress [29]. The strongest conjecture [29] suggested by this perturbative study is that

the SU(2, 1|2) Hamiltonian of any N = 2 superconformal gauge theory can be mapped to

that of N = 4 SYM by a redefinition of the ’t Hooft coupling, g2 → f(g2) = g2 + O(g6).

This would be a trivial operation from the viewpoint of the integrable structure. Indeed

recall that it is still somewhat of a mystery why the dispersion relation of the N = 4 SYM

magnons takes the exact form

∆− |r| =

√

1 + 8g2 sin2
p

2
, (5.1)

while integrability alone would be compatible with the replacement g2 → f(g2) (which

is indeed what happens in the ABJM model [33]). However a redefinition of g can have

drastic dynamical consequences, for example it may radically change the strong coupling

behavior of anomalous dimensions (ABJM is again a case in point.)

A second indication in favor of integrability of the SU(2, 1|2) sector comes from the

AdS/CFT correspondence — at least, that is, for the subset of models that admit a string

dual. The simplest N = 2 theories with a known string description are the orbifolds of

N = 4 SYM by a discrete subgroup Γ ⊂ SU(2) ⊂ SU(4)R, which are dual to the IIB

backgrounds AdS5 × S5/Γ [34, 35]. These are quiver gauge theories with product gauge

group SU(N)k, where k is the order of Γ. The k gauge couplings are exactly marginal

parameters. If all gauge couplings are equal, the spin chain (and the dual sigma model) is

completely integrable [36, 37], but when they are different, integrability of the full chain

9In the context of N = 4 SYM, the SU(2, 1|2) sector can be regarded as a non-compact cousin of

the SU(2|3) sector, whose Hamiltonian was determined up to three loops by Beisert [17] using symmetry

arguments. The Hamiltonian of non-compact sectors is much harder to fix. Zwiebel’s paper [18] represents

the state of the art.
10We are postponing at this stage the harder questions about finite-size effects.
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is broken.11 However, the situation is much better in the SU(2, 1|2) sector.12 At strong

coupling one can study the S-matrix of the SU(2|2) excitations using the dual sigma model.

Changing the relative gauge couplings is dual to twisted-sector deformations in the sigma

model: to leading order in α′ (tree level in the sigma model) they do not change the

scattering of the SU(2|2) excitations, which live in directions of the target space unaffected

by the orbifold. So the n-body S-matrix still factorizes into two-body S-matrices. To be

more precise, the only effect of the twisted deformation felt by the SU(2|2) excitations is

a renormalization of the string tension. For example, in the Z2 case, the relation between

α′ and the AdS radius R reads

R4

α′
=

2λλ̌

λ+ λ̌
, (5.2)

where λ and λ̌ are the two ’t Hooft couplings. It would be very interesting to confirm this

picture to next order in α′, where the effect of the twisted deformation is non-trivial, by

an explicit one-loop calculation of the sigma-model S-matrix. Recall that the two-body

SU(2|2) S-matrix is completely fixed by symmetry, so to really probe integrability one

would have to study factorization of the n-body S-matrix or devise some other test.

In summary, the SU(2, 1|2) sector(s) of N = 2 superconformal gauge theories have

the same Hamiltonian as in N = 4 SYM for small λ (to two-loop order, O(λ2)); and

in theories with AdS duals, the large λ limit of the Hamiltonian is also the same as in

N = 4 SYM, modulo a renormalization of the coupling. For example, in the Z2 quiver

theory, it follows from (5.2) that for large λ and large λ̌ (with λ/λ̌ fixed) the dilation

operator in the SU(2, 1|2) sector coincides with the one in N = 4 SYM if one replaces

λ → 2λλ̌/(λ + λ̌).13 We are led to conjecture that this remains true for all intermediate

values of the coupling, with the appropriate redefinition λ → f(λ) that matches the weak

and strong coupling behaviors.

SU(2, 1|1) and SU(2, 1). In closing, it is tempting to entertain the natural extrapo-

lations of this conjecture to N = 1 and N = 0 conformal gauge theories. Every N = 1

superconformal gauge theory contains a closed SU(2, 1|1) sector, with letters belonging

entirely to the N = 1 vector multiplet,

SU(2, 1|1) sector: (D+α̇)
n{λ+,F++ } . (5.3)

The diagrammatic arguments of [31] show again that in any N = 1 superconformal theory

the dilation operator in this sector coincides up to two loops with the restriction of the

N = 4 SYM dilation operator. (Of course this is a meaningful statement only for N = 1

11For the simplest example of the Z2 orbifold, this phenomenon was studied in detail in [25, 31, 38], which

focussed on the magnons transforming in the bifundamental representation of the SU(Nc)× SU(Nč) gauge

group, with Nc ≡ Nč. For λ 6= λ̌ their dispersion relation develops a gap. The form of their two-body

S-matrix is fixed by symmetry, and fails to satisfy the Yang-Baxter equation except when λ = λ̌.
12There are actually k separate SU(2, 1|2) sectors, one for each of the SU(N) vector multiplets.
13This correspondence is also precisely confirmed [39] by considering the strong coupling limit of the

matrix model [40] that calculates the expectation value of the 1/2 BPS circular Wilson loop in the Z2

quiver theory, following [41, 42].
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SCFTs that have a weak coupling limit). Choosing the chiral vacuum Trλk+, the asymptotic

excitations on the chain are the massless magnons {D+α̇}, transforming as a doublet of

SU(2α̇). This is not enough symmetry to completely fix the form of the two-body magnon

S-matrix, which makes integrability of the SU(2, 1|1) sector somewhat less compelling as

a general conjecture. For models that admit string duals, some evidence for integrability

comes again from the AdS/CFT correspondence. For example, while the generic Leigh-

Strassler deformation of N = 4 SYM is not fully integrable (see [23] for a review), there is

still hope for integrability in the SU(2, 1|1) sector. Indeed, one can argue for integrability

at strong coupling (to leading order): the deformation of the AdS5 × S5 background that

corresponds to the Leigh-Strassler deformation (whatever its explicit form may be) is not

expected to affect the tree-level scattering of excitations in the SU(2, 1|1) subsector, since

those excitations live entirely in AdS5.

It would be particularly interesting to explore this conjecture in N = 1 super QCD, in

the conformal window 3
2Nc < Nf < 3Nc. For fixed number of colors Nc and fixed number

of flavors Nf , the theory flows in the IR to an isolated superconformal fixed point. It is

possible however to define a systematic perturbative expansion near the upper edge of the

conformal window, taking the Veneziano limit Nc → ∞, Nf → ∞ with Nf/Nc = 3 − ǫ.

The dilation operator can be evaluated order by order in ǫ, and was indeed completely

determined to leading order (one loop) in [27] following [43]. Similarly one can set up an

expansion for the dilation operator of the magnetic Seiberg-dual theory, near the lower

edge of the conformal window, with Nf/Nc = 3
2 + ǫ̃. Seiberg duality implies that the

resummation of the ǫ expansion in the electric theory must coincide with the resummation

of the ǫ̃ expansion in the magnetic theory. In the SU(2, 1|1) sector, the dilation operator

is the same as in N = 4 SYM, and thus obviously integrable, up to two loops in both

expansions. The optimistic scenario is for the sector to remain integrable throughout the

conformal window. It will be interesting to perform higher order checks in both ǫ and ǫ̃.

Integrability would offer the exciting prospect of much more quantitative tests of Seiberg

duality than presently possible.

Finally, one may even consider purely bosonic conformal gauge theories, and hope for

integrability of the SU(2, 1) sector,

SU(2, 1) sector: (D+α̇)
nF++ . (5.4)

Only isolated fixed points are known for non-supersymmetric theories in four dimensions.

The simplest and most interesting case is QCD itself, in the Veneziano limit near the

upper edge of the conformal window, Nf/Nc = 11/2− ǫ. To leading order in ǫ (one loop)

the dilation operator in the SU(2, 1) sector is trivially the same as in N = 4 SYM, but

unlike the supersymmetric cases, we are not aware of a diagrammatic argument that this

agreement should persist to two loops. It would be very interesting to perform an explicit

two-loop calculation and check integrability.

If our N = 1 and N = 0 speculations turn out to be valid, at least in some models, it

will be because the integrability structures of N = 4 SYM, while generically broken, are

sufficiently robust to survive deformations and RG flows in the special universal sectors

that we have isolated. On the dual string side (when available) these sectors are captured
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entirely by the AdS5 factor of the sigma model. Our conjectures may be phrased as “best

case scenarios”. It will be worth investigating them further.
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