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1 Introduction

The AdS/CFT correspondence [1, 2] has been instrumental in unravelling many facets

of certain types of strongly interacting field theories in the large-N limit. Within this

framework, the behaviour of matter at finite density has been intensely studied with a

view towards applications in condensed matter physics (see reviews [3–5] and references

therein). The physics of cold, dense QCD matter presents equally exciting challenges [6–

8] for holographic approaches involving flavour branes in both the probe limit [9–12] and

incorporating their backreaction [13].

The focus of this paper will be to study the effect of a sizeable, spatially homogeneous

number density of heavy quark “impurities” introduced as external sources into N = 4

supersymmetric Yang-Mills theory in the large-N limit and at strong ’t Hooft coupling.

The number density of such heavy quarks will be chosen to scale as N2, so that we may then

study the backreaction of these on the gauge theory. One of the motivations for considering

this setup is to obtain intuition for the finite density thermodynamics of holographic models

with a large number of flavours (with Nf/N fixed in the large-N limit).

According to the dictionary provided by gauge/string duality, a heavy quark trans-

forming in the fundamental representation of the SU(N) gauge group corresponds to a

macroscopic fundamental string stretching to the boundary of the dual geometry [14, 15].

The end-point of the string is anchored to the worldline of the quark in the boundary gauge

theory. For a single quark, it suffices to treat the string as a probe in the dual geometry.

It is natural to ask what happens when a large number of such quarks is introduced and,
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in particular, when this number scales as N2 in the large-N limit, so that the quark impu-

rities necessarily backreact on the gauge degrees of freedom. This is a difficult question to

answer in general, but it is conceivable that a configuration preserving sufficient amount

of global symmetries may render the problem tractable within the dual gravity description

at strong coupling.

For a single heavy quark, or a straight timelike Wilson line, the corresponding string

world-sheet is localized at a point on the transverse S5 in AdS5 × S5, breaking the SO(6)

global symmetry to SO(5). If we consider a large number of such string sources, we may dis-

tribute them uniformly along all transverse directions, thereby restoring both spatial trans-

lational invariance and the SO(6) global symmetry in the boundary theory. The energy

density associated to such smeared distributions1 scales as ∼ nF1/(2πα
′) = nF1

√
λ/2π,

where nF1 is the number density of macroscopic strings or heavy quarks and λ, the (large)

’t Hooft coupling. The heavy quark distribution then backreacts on the degrees of freedom

of the N = 4 theory when nF1 ∼ N2/
√
λ.

One might worry that a smearing of string sources along all transverse directions

would lead to violation of Gauss’ law applied to the sources. Indeed, the Chern-Simons

couplings of IIB supergavity require that such smearing is consistent provided that a cer-

tain three-form flux is also switched on. Intuitively, the resulting three-form flux may be

interpreted as a density of baryon vertices [17] which soak up the charge corresponding to

the string sources.

Our primary goal in this work is to understand the zero/low temperature behaviour

of this highly symmetric smeared system as a simplified model for a finite density state

in a theory with a known string dual. We further restrict attention to the N = 4 theory

on R
3,1. We postpone the study of the thermodynamics of the model, and specifically

its finite volume phase structure, to future work [18]. Since the quarks we consider are

infinitely heavy, quark number cannot fluctuate and therefore all thermodynamic questions

are restricted to the canonical ensemble. Related to this point is the absence of a global

U(1)B baryon number symmetry in this system. However, there is a natural embedding

of the above configuration into a holographic model with dynamical massive quarks and

a U(1)B symmetry - namely the D3/D7 system with a large number of smeared flavour

branes [13, 19].

The main result of this paper is that the backreaction of the heavy quark density on

N = 4 theory triggers a flow to an infrared regime which exhibits approximate dynamical

or Lifshitz scaling [20] i.e. invariance under the scale transformations t → az t and ~x → a ~x.

The dynamical critical exponent for the system under investigation has a fixed value, z = 7,

independent of any free parameters.2 Importantly, the Lifshitz scaling symmetry is only

approximate, due to logarithmic running of the dilaton in the gravity dual. This behaviour

closely resembles the scaling solutions found in [22–26] for charged dilaton black branes. As

in the latter systems, the running of the dilaton renders α′ corrections important deep in

1Recently, smeared string configurations have appeared in the study of finite density physics in a different

system [16].
2After this paper was released, we were made aware by the authors of [21] that this particular scaling

solution has appeared in that paper (see appendix C of [21]).
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the infrared (IR). By electric-magnetic duality of the N = 4 theory, and S-duality of type

IIB string theory, the same statements apply to magnetic sources (replacing the strings by

D1-branes), except that now the dilaton becomes large in the deep infrared, necessitating

the inclusion of string loop corrections.

We also find an exact black brane solution in the Lifshitz-like scaling regime, which,

by virtue of a small non-vanishing temperature, shields the system from the regime where

the classical supergravity approximation breaks down. Taken at face value this solution

has vanishing entropy density in the zero temperature limit, a physically appealing feature.

However, clearly, in the strict zero temperature limit the corrections mentioned above will

alter the conclusions somewhat (e.g. [27]). It is nevertheless extremely interesting to learn

that the effect of a finite heavy quark density is qualitatively different to the effect of a

finite R-charge density in the N = 4 theory. As is well known, the latter, for a specific

choice of R-symmetry chemical potentials yields the Reissner-Nordstrom solution [28] that

has a large entropy density at zero temperature. It is worth noting that the emergence of

Lifshitz-like scaling as a result of backreacting distributions of D-branes/baryons has also

been seen generally in [29].

It should be pointed out that the backreaction of heavy quarks or Wilson lines on

N = 4 SYM has been studied in two different contexts. The first of these are the bubbling

geometries dual to supersymmetric half-BPS Wilson lines in large representations (with

ranks of order N2) [30, 31]. The second context which is closely related to the discussion

in this paper is the work of Headrick in [32] where the effect of smeared Polyakov loops on

N = 4 SYM at finite temperature was investigated.

This paper is organized as follows. In section 2, we derive the reduced 5D action

describing the smeared system of strings. The features of the ultraviolet behaviour of the

resulting solutions are discussed and clarified in section 3. Sections 4 and 5 are respectively

devoted to the derivation of the IR scaling solution and the (numerical) construction of

the flow from AdS5 × S5 to the Lifshitz-like scaling regime. We discuss possible future

directions in the final section.

2 IIB plus strings

As explained above, we take a finite heavy quark density in the field theory to correspond

to a geometry sourced by a uniform distribution of fundamental strings, each stretching to

the conformal boundary of AdS5 ×S5. For simplicity the strings are chosen to be smeared

uniformly along the internal S5 directions. This preserves the SO(6) global R-symmetry of

N = 4 SYM, but breaks all supersymmetry. The coupled system of type IIB supergravity

and a uniform density of macroscopic fundamental strings is described by the action

S = SIIB + SF1 +
1

2πα′
nF1

∫

B2 ∧ dx1 ∧ dx2 ∧ dx3 ∧ ω5
1

π3
. (2.1)

Here SF1 is the Nambu-Goto action for the string sources, nF1 is the number density of

heavy quarks (or strings) in the boundary theory, ω5 the volume form on the unit five-sphere

while B2 is the Neveu-Schwarz two-form potential which couples to the string world-sheet

.
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We then look for a consistent solution to the supergravity equations which preserves

SO(6) global symmetry, the spatial translational and rotational invariance, and with the

correct fluxes turned on to account for the presence of a non-vanishing fundamental string

charge. The relevant field equations for the three-form and five-form fluxes H3, F3 and

F̃5 ≡ F5 +
1
2B2 ∧ F3 − 1

2H3 ∧ C2 in Einstein frame, are:

d ∗ F̃5 = H3 ∧ F3 , d (eφ̂ ∗ F3) = −gsH3 ∧ F5 , (2.2)

gs d (e
−φ̂ ∗H3) = −g2s F5 ∧ F3 +

nF1

2πα′

16πGN

π3
ω5 ∧ dx1 ∧ dx2 ∧ dx3 .

The asymptotic value of the dilaton eφ̂ is set to gs the string coupling, while GN is Newton’s

constant in ten dimensions, with 16πGN = (2π)7 g2s α
′ 4 . The field equations are then

solved by

gs F5 = 4 (1 + ∗)ω5 , H3 = 0 , (2.3)

F3 =
nF1

N

4π2

√
λ
dx1 ∧ dx2 ∧ dx3 .

We have used the standard AdS/CFT dictionary, namely that the ’t Hooft coupling λ =

R4
AdS/α

′2 = (4πgsN), and we have conveniently rescaled the AdS radius RAdS to unity.

The introduction of macroscopic fundamental strings stretching from the boundary of AdS5

to the origin, necessarily requires a non-zero three-form field strength.

A non-vanishing flux for F3 would suggest the presence of D5-brane sources. Although

there were no explicit D5-branes in the setup to begin with, we could interpret the source of

the three-form flux as a distribution of D5-branes wrapped on S5 with a number density,

n5 ∼ nF1

N . This is consistent with the well known fact that N quarks must be bound

into a gauge-invariant baryon operator which corresponds to a wrapped D5-brane with

N strings attached [17]. Below we want to obtain the backreacted geometry wherein

the fundamental string distribution and associated baryons can be replaced with smooth

backgrounds accompanied by corresponding fluxes, and no additional D-branes. Since the

fluxes are completely determined as above in terms of nF1 and N , the only ‘active’ fields

in the background are the dilaton and the metric components.

2.1 Metric ansatz

Given the symmetries of the problem, the metric and the dilaton have the form

ds2 = grr(r) dr
2 + gtt(r) dt

2 + e2σ(r) d~x 2 + e2η(r) dΩ2
5 , (2.4)

eφ ≡ eφ̂ g−1
s ,

where we have defined the shifted dilaton φ which vanishes at infinity. In this background,

the Nambu-Goto action for the smeared distribution of strings is,

SF1 =
nF1

√
λ

2π

∫

d4x

∫

dr
√−grr gtt e

φ/2 . (2.5)
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This is accompanied by a term quadratic in nF1, arising from the energy density in F3. We

will find it useful to work with the 5D effective action after appropriate rescaling of the

10D metric:

ĝαβ = e10 η/3 gαβ , α, β = 0, 1, . . . 4 , (2.6)

ds2(5) ≡ ĝαβ dx
αdxβ = ĝtt dt

2 + ĝrr dr2 + e2σ̂ d~x2 , σ̂ ≡ σ + 5
3η .

This ansatz along with eq.(2.3), when substituted into the type IIB supergravity action,

yields the reduced 5D system:

S = −N2

8π2

∫

d5x
√

ĝ

(

R̂ − 40

3
η′ 2 ĝ rr − 1

2
φ′ 2 ĝ rr+ (2.7)

+ 20 e−16η/3 − 1

2

(

Qeφ/2 e10η/3 e−3σ̂ + 4 e−20η/3
)2

)

.

The first of the potential energy terms is the scalar curvature of the S5. The contributions

from the F3 and F5 fluxes, and the smeared Nambu-Goto action for the strings can be

packaged neatly as a perfect square.3 The bulk action depends on the quark number

density via a single parameter Q defined as

Q ≡
√
λπ

nF1

N2
=

√
λπ

n5

N
. (2.8)

Q is a density and therefore a dimensionful parameter. With regard to its dependence on

the number of colours N , we will treat it as a number of order one in the large N limit, so

that the quark density is O(N2), or equivalently, the baryon number density n5 is O(N).

The system we are studying and the form of the action above is closely related to that

of [32] which did not need to include a non-zero F3.
4

3 UV AdS-hedgehog solution

The backreaction of a uniform distribution of string sources on pure gravity (in four dimen-

sions) was studied in [33] and termed a “hedgehog” black hole. This was then generalized

to asymptotically AdS spacetimes in [32]. The characteristic feature of the so-called hedge-

hog configurations in AdS5 is that the gravitational potential includes a term ∼ −Q/r for

large radial coordinate r, directly following from the linear dependence of the mass of a

stretched string on its length.

3Since this action actually describes a one-dimensional (radial) system, it may be possible to obtain a

superpotential for it to explain the perfect square structure, and to derive first order equations. I thank A.

Faedo for drawing attention to this point.
4In [32], the backreaction of a uniformly smeared configuration of strings connecting antipodal points of

the boundary S3 was analyzed (in global AdS5).
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In the present case, in the gauge ĝrr =
1
r2
, we obtain the following large r asymptotic

expansions for the metric functions and the dilaton,

ĝrr =
1

r2
, ĝtt = r2 − 8Q

9 r
− ε

r2
+

39233

158760

Q2

r4
+ . . . , (3.1)

e2 σ̂ = r2 +
4Q

9 r
+

ε

3 r2
− 877

158760

Q2

r4
+ . . . ,

eφ = 1− 2Q

3 r3
+

v4
r4

+
101

504

Q2

r6
+ . . . ,

e2 η = 1 +
Q

35 r3
− 5441

98000

Q2

r6
+

v4 − ε

22

Q

r7
+

v8
r8

+ . . .

We note that the leading correction to the AdS5 metric scales as ∼ −Q/r, which is due to

the macroscopic string source in the bulk. This breaks conformal invariance and Lorentz in-

variance of the boundary theory and the metric is not strictly asymptotically AdS. However

it is of the asymptotically locally AdS (AlAdS) form [34, 35] i.e. for large r,

R̂µνλσ = (ĝµσ ĝνλ − ĝµλ ĝνσ)

(

1 +O
(

Q

r3

))

. (3.2)

After fixing the asymptotic form of the metric, the solution space is characterized by three

integration constants ε, v4 and v8 corresponding to normalizable modes. The active fields

in the solution are the dilaton φ, the metric component gtt, and the s-wave components of

the volume scalars σ̂, η of the R
3 and S5 respectively. The volume scalar η is dual to the

irrelevant, dimension eight operator O8 = 1
N STr

[

F 4 − 1
4 (F

2)2
]

, where ‘STr’ denotes the

symmetrized trace [36, 37]. On the other hand the dilaton is dual to the marginal operator

O4 = 1
NTrF 2. The integration constants v4 and v8 are the expectation values of O4 and

O8 respectively, whilst ε is related to the energy density of the boundary field theory. Note

that we have taken the value of the dilaton φ to vanish asymptotically. In principle this is

a tunable (dimensionless) parameter in the solution corresponding to the marginal gauge

coupling of N = 4 theory.

In summary, the heavy quark density in the boundary gauge theory does not introduce

irrelevant operators/non-normalizable modes in the bulk. It does mildly alter the asymp-

totics. In the absence of dimensionful VEVs v4, v8 and ε, the background can be obtained

as an expansion in powers of Q
r3

since Q is a number density and has canonical scaling

dimension three (in the UV). In general, we have no reason to expect the VEVs to vanish.

The existence of a smooth infrared (IR) solution may well require the dimensionful VEVs

to be turned on (both at zero and non-zero temperatures). The possible values of these

can only be ascertained after the IR dynamics of the finite density state and the complete

flow towards it is understood.

Before turning to the putative IR behaviour of the model under consideration, we

briefly touch upon features of planar AdS-hedgehog geometries in Einstein gravity and

how holographic regularization of the action of so-called hedgehog configurations proceeds.

3.1 Holographic regularization

A potential subtlety associated with the background above concerns the definition of a

properly renormalized bulk action. This is an issue since the background contains sources

– 6 –
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which generate corrections (∼ −Q/r) to the bulk AdS5 metric. To clarify this, let us first

look at the divergent terms in the full 5D bulk (Euclidean) action, obtained by plugging

in the IIB hedgehog asymptotics (3.1),

Sbulk = −N2

8π2

∫

d4x

∫ Λ

rh

dr

(

− 8 r3 − 28

9
Q+ . . .

)

, (3.3)

where Λ is the UV cut off, which we treat as the boundary. Following the standard

approach towards holographic renormalization [38–40], we must also include the Gibbons-

Hawking (GH) boundary term and possible geometrical counterterms. In the situation

with a planar boundary the only non-vanishing counterterm arises from the boundary

cosmological constant. So we obtain,

SGH = −N2

8π2

∫

d4x
√
hTrK

∣

∣

r=Λ
= −N2

8π2

∫

d4x

(

8Λ4 +
4

9
QΛ + . . .

)

(3.4)

Sct =
N2

8π2

∫

d4x
√
h 6

∣

∣

r=Λ
=

N2

8π2

∫

d4x

(

6Λ4 +
4

3
QΛ + . . .

)

.

Here hαβ and K are the induced metric and the extrinsic curvature of the boundary at

r = Λ, respectively. Summing the bulk and boundary actions yields

Sbulk + SGH + Sct =
N2

8π2

∫

d4x 4QΛ + . . . (3.5)

The usual boundary terms are sufficient to cancel the leading divergences, leaving behind

a linear divergence proportional to the number density of strings/quarks. We will now

see that this term can also be removed by adding an appropriate counterterm for the

source action, namely a boundary term for the Nambu-Goto action of the macroscopic

strings that source the geometry. In particular, a string stretching to the boundary of

AdS space has to satisfy a Neumann boundary condition along the radial direction, and

four Dirichlet conditions along the directions parallel to the boundary. To this end, we

need to include a term in the F-string action which replaces the radial coordinate with its

conjugate momentum [41, 42],

SF1 → SF1 + δSF1 = SF1 −
∫

dt r
δSF1

δr′
∣

∣

r=Λ
. (3.6)

Here r′ denotes a derivative with respect to the world-sheet spatial coordinate. For the

smeared configuration of strings this is precisely given by

δSF1 = −N2

8π2

∫

d4x 4QΛ eφ/2−10η/3
√

ĝrr ĝtt
∣

∣

r=Λ
, (3.7)

which cancels the linear divergence of the bulk action. This divergence5 has a simple

physical interpretation — it corresponds to the bare mass of the heavy quark, which is

formally infinite and must naturally be subtracted to define a sensible energy density.

5 The prefactor N
2

8π2 × 4Q, in eq.(3.7) is equal to nF1

2πα′ .
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3.2 AdS-hedgehog black hole in pure gravity

In pure gravity in five dimensions with a negative cosmological constant, the backreaction

of a uniform distribution of strings gives rise to a background with metric (in Schwarzschild-

like coordinates),

ds2 = −f(r̃) dt2 +
dr̃2

f(r̃)
+ r̃2 d~x 2 , f(r̃) = r̃2 − 4Q

3 r̃
− r4h − 4

3Qrh

r̃2
. (3.8)

This has a horizon at r̃ = rh. In a Fefferman-Graham type expansion (where the boundary

is at r → ∞), the metric can be recast as

ds2 =
dr2

r2
+

(

r2 − 8Q

9 r
− ε

r
+ . . .

)

dt2 +

(

r2 +
4Q

9 r
+

ε

3 r
+ . . .

)

d~x 2 , (3.9)

ε =
3

4
r4h −Qrh ,

which agrees with the asymptotic behaviour eq.(3.1). The thermodynamics of such solu-

tions is non-trivial, particularly when the horizon is spherical [32]. In the planar case, it

is easily seen that the hedgehog black hole in GR has a smooth zero temperature limit

wherein f(r̃) has a double zero at r̃ = rh, resulting in a non-vanishing entropy density s,

s =
N2

2π

Q

3
, rh ≡

(

Q

3

)
1

3

. (3.10)

Thus the zero temperature system (in Einstein gravity) has a non-zero, large entropy

density and the IR physics is described by the near horizon AdS2 × R
3 geometry. This

feature, similar to the Reissner-Nordstrom black hole, seems unwanted and we may expect

the type IIB setup dual to N = 4 SYM with heavy quark density to have a different and

physically more appealing IR behaviour.

4 Exact (IR) scaling solution

The most interesting question about the system we are studying is with respect to its low

energy, long wavelength behaviour at low/zero temperature. We have seen that, in the

pure gravity case, the low energy physics is dictated by a near horizon AdS2 region. We

would now like to understand whether the type IIB hedgehog has a substantially different

IR behaviour leading to a zero entropy ground state at zero temperature.

We find that the system of “IIB plus strings” also admits an exact scaling solution. It

was not a priori clear that the system described by eq.(2.7) should possess such a solution.

In fact, one may have naively expected the UV AdS-hedgehog geometry to flow in the IR

to a background sourced by multiple D5-branes wrapped on S5 (corresponding to baryon

vertices located at the origin of the space). However, closer inspection reveals no clear

separation of scales (in terms of the radial coordinate r) wherein the energy density in

the three-form flux ∼ F 2
3 dominates over the cosmological constant and the string density.

This leads us to look for scaling solutions where all terms in the potential are comparable.

– 8 –



J
H
E
P
0
8
(
2
0
1
2
)
1
5
5

We find, using the same coordinate system as in the UV hedgehog asymptotics, namely

with ĝrr = 1/r2, an exact scaling solution to the equations of motion,

ds2(5) =
dr2

r2
− r14/ℓ dt2 + r2/ℓ d~x 2 , ℓ =

√
10

(

136

121

)1/3

, (4.1)

eφ =
11979

578
√
34 Q2

r6/ℓ , e2η =

(

136

121

)1/4

≃ 1.0297 .

This is a constant curvature spacetime, which we can cast in a more conventional form by

defining a new radial coordinate ρ ≡ r1/ℓ, and after a rescaling

ds2(5) = ℓ2
(

dρ2

ρ2
+ ρ2 d~x 2 − ρ14 dt2

)

, (4.2)

eφ =

√

2

17

144000

11Q2
ρ6 .

Therefore the scaling solution describes a regime with Lifshitz-like anisotropic scaling [20]

and dynamical critical exponent z = 7. The scaling symmetry is not exact due to the

logarithmic running of the dilaton with the radial coordinate ρ.

The first observation is that the dynamical exponent is independent of the heavy quark

density Q. It is also clear that the full ten dimensional metric is smooth in Einstein frame,

since the S5 has a constant radius eη = 8

√

136
121 ≃ 1.015 , while the Ricci scalar for the

Lifshitz metric with z = 7 is,

R̂ (5) = −2 (z2 + 3 z + 6) ℓ−2 ≃ −14.06 . (4.3)

However, as the coupling eφ runs to zero at ρ = 0, the string frame metric has a curvature

singularity in the deep infrared and the solution cannot be trusted since it will receive

large α′ corrections.6 Nevertheless, as we will see, we can always introduce a temperature

into the system and cloak the singularity behind a horizon, without spoiling the scaling

regime and therefore steer clear of the potential problems near ρ = 0. In this respect the

solution (4.2) is quite similar to the charged dilaton black brane metrics of [22–24].

Since the dilaton grows without bound for large r, in order to make sense of this

solution we must be able to embed the scaling regime within the flow originating from the

asymptotically (locally) AdS hedgehog background.

It is worth noting that any putative baryon vertices (wrapped D5-branes) which could

be regarded as sources of the F3 flux, are absent, possibly hidden by the “Lifshitz horizon”.

Hence, for any small non-zero temperature, the system of heavy quarks is in a deconfined

phase. Within the type IIB framework we can act on our system of smeared fundamental

strings with the SL(2,Z) duality group. The action of S-duality, for example, replaces the

F-strings with D-strings (corresponding to magnetic sources on the boundary) and simply

changes the sign of the dilaton, so that eφ diverges at ρ = 0, requiring the inclusion of

quantum (loop) corrections in the deep IR.

6Note that this string frame curvature singularity is completely distinct from the effect of divergent tidal

forces of backgrounds with exact Lifshitz scaling [20, 43–45].
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4.1 Effective potential

Let us now briefly explain the appearance of the Lifshitz solution by examining the equa-

tions of motion. The UV AdS-hedgehog solution nominally depends on two parameters: Q

and the asymptotic value of the dilaton. However, in the absence of a scale in N = 4 SYM,

bulk gravity solutions with different values of Q are related by a straightforward rescaling

of the radial coordinate, and therefore do not really represent new solutions. On the other

hand, the potential in the 5D action (2.7) depends on the combination Q2 eφ, so that UV

solutions with different asymptotic values of the dilaton are related by a rescaling of Q.

Given this, we may distinguish different UV solutions by the asymptotic value for the pa-

rameter Q2 eφ. Independently of this asymptotic value, in the scaling Lifshitz-like solution

eq.(4.2), the combination Q2 eφ is completely fixed and there are no free parameters (apart

from coordinate rescalings). This indicates an attractor behaviour along the lines of what

was found in [23, 24].

It is perhaps easiest to analyze the equations of motion in the gauge ĝtt = 1/ĝ̺̺ where

̺ is an appropriate radial coordinate. From eq.(2.7), one identifies the natural effective

potential for the one-dimensional (radial) problem,

V =
e3σ̂

2

(

Qeφ/2 e10η/3 e−3σ̂ + 4 e−20η/3
)2

− 20 e3σ̂−16η/3 . (4.4)

The equations of motion (one of which is a constraint) in this gauge are,

(

ĝtt

(

e3σ̂
)′
)′

+ V =0 ,
(

ĝtt e
3σ̂ η′

)′

− 3

80
∂ηV =0 , (4.5)

(

ĝtt e
3σ̂ φ′

)′

− ∂φV =0 , 3 e−σ̂
(

eσ̂
)′′

+
1

2
φ′ 2 +

40

3
η′ 2 =0 .

The effective potential has a runaway behaviour, with a critical point at infinity where the

dilaton eφ and the volume scalar eσ̂ vanish (and so does the potential itself). The equations

of motion then admit a scaling solution where this critical point is reached at the horizon

(̺ = 0) by logarithmic running of φ and σ̂. In this scaling regime the scalars η and the

combination eφ−6σ̂, both remain fixed at constant values. It is a straightforward excercise

to check in this gauge that the field equations are solved by

ĝtt =
72

ℓ2
̺2 , eη =

8

√

136

121
, (4.6)

eσ̂ = c0 ̺
1/7 , eφ = c60

11979

578
√
34Q2

̺6/7 ,

where ℓ is defined in eq.(4.1) The individual normalizations of eσ̂ and eφ can be changed

by a coordinate rescaling subject to the requirement that the combination eφ−6σ̂ is fixed.

After a coordinate transformation the background can be put in the Lifshitz-like form (4.2)

4.2 Black hole in scaling regime

We have already pointed out that the dilaton running to zero in the infrared implies large

string frame curvatures in the deep IR, requiring the inclusion of α′ corrections in the
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gravity dual. Introducing a finite temperature would shield the system from this regime

where the gravity description becomes inaccurate, and provide a consistent gravity dual

of the boundary field theory at strong coupling. We find that the field equations admit

an exact solution which is a simple deformation of the Lifshitz background, yielding the

following metric with a horizon in Schwarzschild-like coordinates:

ds2(5) = −ĝtt dt
2 +

d̺2

ĝtt
+ ̺2/7 d~x 2 , (4.7)

ĝtt =
72

ℓ2
̺2

[

1−
(

̺h
̺

)
10

7

]

,

while the dilaton and the S5 radius remain unchanged. We therefore deduce that the

Hawking temperature T and entropy density s for the black brane scale as

T =
70

ℓ2
̺h
4π

, s ∼ T 3/7Q6/7 . (4.8)

The dependence of the entropy density on Q is fixed by dimensional analysis. The scaling of

the entropy with temperature is also exactly as expected for a theory with Lifshitz scaling

symmetry (s ∼ T (d−1)/z in d spacetime dimensions). Taken at face value this implies

a vanishing entropy at zero temperature, although for vanishingly small T the classical

solution should not be trusted. At any non-zero temperature the dilaton runs down to a

non zero value ∝ T 6/7 at the horizon.

5 Flow from AdS to Lifshitz

Finally, we would like to obtain evidence indicating that the Lifshitz-like scaling solution

actually emerges as the infrared description of the N = 4 theory with heavy quark density.

To show this we would need to construct a flow connecting the AdS5 (hedgehog) background

to the Lifshitz scaling regime. There is a natural dimensionful scale r ∼ Q1/3, above which

the geometry should approach the hedgehog geometry. Below this scale, all terms in the

effective potential for the system compete with each other and the system should then

enter the Lifshitz-like scaling regime.

The natural way of constructing such a flow first requires the identification of relevant

and irrelevant deformations of the putative IR background. We have shown that the UV

AdS asymptotics (3.1) does not contain sources for any relevant deformations (preserving

the requisite symmetries), although it does allow VEVs for certain local operators. Per-

turbing the IR solution by an irrelevant deformation and applying a numerical ‘shooting’

method should enable one to reach the AdS5 asymptotics in the UV. We parametrize the

fluctuations δi(̺) about the Lifshitz solution as,

ĝtt =7ℓ−2 ̺2 (1 + δ1(̺)) , σ̂ =
1

7
ln ̺ + δ2(̺) , (5.1)

φ =
6

7
ln ̺+ ln

(

11979

578
√
34Q2

)

+ δ3(̺) , η =
1

8
ln

(

136

121

)

+ δ4(̺) .
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Η

Figure 1. Left: the 5D Ricci scalar changes from 152/ℓ2 ≃ −14.06 in the IR Lifshitz background

to −20 in the UV, the latter corresponding to AdS5 asymptotics. Right: the radius of the S5 flows

from unity for large r to 8

√

136

121
≃ 1.014 in the IR.

At the linearized level, the fluctuations satisfying the equations of motion can each be

expressed as a power series, with the leading terms given by,

δ1(̺) ≃ a1 ̺
n , δ2 ≃ a2 + a3 ̺

n , δ3 ≃ 6a2 + a4 ̺
n , δ4 ≃ a5 ̺

n . (5.2)

We find six possible values for n,

n1 = −10

7
, n2 = −1 , n±± = −5

7
± 1

7

√

5

17

(

917± 8
√
1279

)

, (5.3)

where all four sign combinations are allowed. Depending on the values of n, the coeffi-

cients in the series expansion satisfy special relations and can be identified as relevant and

irrelevant perturbations. For each allowed value of n, there is precisely one independent

coefficient. The perturbation with n = −10
7 is exactly the one that leads to the black brane

metric and is relevant in the IR. The n = −1 fluctuation corresponds to an additive shift of

the radial coordinate. The two perturbations that are irrelevant in the IR and can be used

to deform the Lifshitz background to alter the UV asymptotics are the ones corresponding

to n = n++ = 1.973 and n = n+− = 1.23. Using these perturbations, and adjusting their

coefficients suitably, we have numerically found a flow interpolating between the Lifshitz

scaling regime and AdS5 × S5 in the ultraviolet (see figures 1 and 2).

The numerical solutions depicted in figures 1 and 2 were obtained in the gauge ĝrr =

1/r2 in which the UV and IR asymptotics take the forms shown in (3.1) and (4.1), re-

spectively. The coordinates r and ̺ are related as r = ̺ℓ/7. All plots were obtained for

Q = 1.89 and φ → 0 as r → ∞.

In principle, given the numerical flow it should be possible to read off the VEVs, v4
and v8, of the dimension four and dimension eight operators, O4 and O8 respectively from

the UV asymptotics (3.1). However, we have been unable to accurately isolate these higher

order (∼ r−4 and r−8) terms numerically. There is no reason to expect them to vanish.

The fact that there are precisely two independent irrelevant deformations of the IR Lifshitz

point is consistent with the presence of the two VEVs in the UV solution. It should be

possible to find a relation between the IR deformation parameters and the values of the v4
and v8.

7

7I thank A. Faedo for remarks on this point.
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-1 1 2 3 4 5 lnHrL
-1

1

2

3

Σ

Figure 2. Working in the gauge ĝrr = 1/r2, the dilaton eφ ∼ r6/ℓ, the volume scalar eσ̂ ∼ r1/ℓ

and the metric ĝtt ∼ r14/ℓ in the scaling regime. Left: the dilaton runs according to the r6/ℓ power

law in the IR and vanishes in the UV. Right: eσ̂ obeys the r1/ℓ law in the IR and is linear in r, as

expected in the UV AdS region.

6 Discussion

The main focus of this work was to understand the influence of a finite density of heavy

quarks on the dynamics of a known gauge theory (namely N = 4 SYM) with a strong

coupling string dual. The fact that the system exhibits a flow to a Lifshitz-like scaling

regime appears interesting and there are certain aspects of this that deserve further study:

• Since the microscopic description of the dual field theory is available, it potentially

provides an opportunity to understand, in field theoretic terms, the emergence of the

IR scaling regime and the breaking of it by the running dilaton. The insertion of any

number of straight timelike Wilson lines, induces a shift in the Lagrangian density,

δL ∼
∑

k

δ3(~x− ~xk) Q̄k

(

∂t − i A0(~x, t)− i θI(k) φ
I(~x, t)

)

Qk , (6.1)

where θI(k) is a unit vector in R
6 fixing the coupling of the k-th quark “flavour” to

the six scalars in N = 4 SYM (equivalently, the position of a macroscopic string on

the S5). The Q(k) can be regarded as one-dimensional fermions living at ~x = ~xk
(see e.g. [51]). Utilizing this as the starting point, it might be possible to shed light

on the long-wavelength physics or the ground state of the system, by employing a

Hartree type approximation, as in [46], encoding the collective effect of the heavy

quark impurities.

• Perhaps the most natural question following from the gravity picture is whether the

IR scaling behaviour is in any sense generic, i.e. can also be shown to arise from

similar finite density configurations in other field theories with known string/gravity

duals (e.g. N = 2 and N = 1 SCFTs [47] in four dimensions with AdS5 ×X5 duals

and the ABJM model in three dimensions [48]). A related issue is how the value

of the scaling exponent z depends on the microscopic field theory in question, or

equivalently, on the corresponding active modes in the gravity dual.
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• The smeared configuration considered in this paper preserves the SO(6) internal

global symmetry, but possibly breaks supersymmetry.8 It should be possible to allow

the strings to be localized on S5 (breaking SO(6) to SO(5)) while smearing along

the spatial directions, and subsequently obtain backreacted geometries with some

unbroken supersymmetry, similarly to [30, 31].

• In the weakly coupled finite N D-brane picture, each individual heavy quark in our

setup can be viewed as an F1-string stretching between D3 and D5-branes, with 8

Dirichlet-Neumann boundary conditions. As is well known, such a string behaves

as a fermion [17, 52]. It remains to be seen if this fact makes the backreacted

smeared string setup relevant for fermion physics in general, at finite density and

strong coupling.

• In the context of the N = 4 theory, the system with smeared heavy quark sources

can also be formulated on S3 [18]. It is well known that N = 4 SYM on S3 exhibits

non-trivial large-N thermodynamics, both at strong and weak coupling [2, 49]. The

Hawking-Page deconfinement transition at infinite ’t Hooft coupling has its zero cou-

pling analogue which is driven by the Hagedorn growth of states. For theories with

fundamental flavours on S3, in the Veneziano large-N limit, continuous deconfine-

ment transitions have been shown to exist at finite quark density, and these are driven

by the exponentially large degeneracy (∼ eN ) of baryon-like states [50]. It would be

extremely interesting to understand if there is any sign of this physics within the

smeared string setup in global AdS5. The hedgehog configurations in global AdS5

in pure gravity, are already known to exhibit a very interesting phase structure in

the T − Q plane: a line of first order Hawking-Page transitions ending at a critical

point [32]. Furthermore, for all values of Q, there exist zero temperature black holes

with near horizion AdS2 region.

• Another motivation for investigating the above setup on S3 is provided by the IR

cutoff given by the radius L of the three-sphere. In the range LQ1/3 ≫ 1 we may

expect the theory to approach the IR Lifshitz-like scaling behaviour, but eventually

depart from it due to the finite infrared cutoff. This could be one way to regulate

the deep IR behaviour of the scaling solutions with running dilaton.

• It is not difficult to see that the configuration studied by Headrick in [32] also admits

a Lifshitz-like scaling solution in the planar case. The goal of that work was to obtain

the free energy of N = 4 SYM as a function of the Polyakov loop order parameter i.e.

an effective potential for the Polyakov loop at strong coupling. It would be interesting

to understand what role, if any, is played by the low temperature scaling regime in

obtaining a complete picture of this effective potential at strong coupling.

• A key missing ingredient in the heavy quark limit is a U(1)B global symmetry corre-

sponding to conserved baryon number. As pointed out earlier, this global symmetry

8We have not checked this, but it appears likely since the individual strings/Wilson lines have different

orientations along the internal R6 directions.
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and its associated gauge field in the gravity dual will make an appearance once the

system is embedded within the framework of N = 4 SYM coupled to a large number

of smeared flavour D7-branes giving rise to massive multiplets. For massive flavours,

the backreacted geometry in the smeared D7-brane setup of [53] (see also [19, 54, 55])

has an IR geometry (below the quark mass scale) which is simply AdS5×S5. Switch-

ing on an electric field on the D7-branes (corresponding to a chemical potential/quark

density) will result in a spike on the D7-branes behaving precisely like a bundle of

smeared strings in AdS5 × S5. Given the scaling behaviour seen above, it appears

likely that embedding the smeared string hedgehog configurations within the D3-D7

setup, will lead to the same IR physics. The presence of a conserved U(1)B current

would make it possible to define and compute transport properties of the IR theory.
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