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1 Introduction

In 1970 Isham, Salam, and Strathdee hypothesized the existence of a spin-2 f -meson in-

teracting with the spacetime metric g, and with a kinetic term of the Einstein-Hilbert

form [1]. This theory is variously known as bigravity, bimetric gravity, or f–g gravity,

and consists of two mutually interacting dynamical metrics. The authors of this seminal

paper noted that such a theory could have significant consequences in many different fields

of theoretical physics, leading to many interesting questions. For example, whether the

gravity associated with this new f metric could be repulsive for short distances and, in this

case, what would be the implications for black hole physics [1].

The problem with bimetric gravity was that it is generally affected by the same ghost

instability appearing in massive gravity [2], a circumstance which had severely constrained

interest in the model. However, a ghost-free bimetric gravity theory has recently been

presented by Hassan and Rosen in reference [3]. The construction of such a theory has

been possible due to a quickly developing research programme. This programme started

by first showing that there is a massive gravity theory which is ghost-free in the decoupling

limit [4], and even up to fourth order in non-linearities [5]. Second, the theory considered

in references [4, 5] was generalized to allow general background metrics [6]. Later on, it was

shown that this massive gravity theory in a general background is in fact ghost-free beyond

the decoupling limit [7–10]. (See also [11] and references therein.) The consistency of the

theory is maintained when one gives dynamics to the background metric f [3], although

the underlying philosophy of the theory is completely changed [12].
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In this context, collectively we find ourselves retracing the route of Isham, Salam,

and Strathdee, in some sense coming back to propose the same type of questions they

considered. In fact, from a cosmological point of view, the scientific community has now

gone further, not only trying to understand possible repulsive effects related to the new

metric, but even asking whether such effects could affect large-distance physics in our own

gravitational sector. Thus, bimetric gravity cosmologies [12–15] have been considered in an

attempt to explain the apparent accelerated expansion of our universe in the current epoch.

On the other hand, effects in black hole physics have also been studied [16–18], though it

should be noted that some conclusions can also be extracted from general considerations

and basic symmetry assumptions [19].

We shall demonstrate that there is a general way to in some sense classify the nature of

the foreground-background gravitational interaction that we are facing. As is well known,

the classical energy conditions [20–23] establish the gravitational properties that one would

expect to be fulfilled by common classical materials. Thus, one could usefully propose that

one way to understand the gravitational properties of a given theory which modifies gen-

eral relativity, is to consider whether the effects associated to the modifications might be

equivalent to the presence of some matter content fulfilling (or violating) the classical en-

ergy conditions. In the particular context of bimetric gravity one could pose the question:

Does the fulfillment or violation of the null energy condition (NEC), the least restrictive

(and hence the most powerful) of the classical energy conditions, in one gravitational sector

imply fulfillment or violation of this condition in the other sector? In this paper, we will

give a full answer to this question.

The paper is organized as follows: In section 2 we briefly summarize some previous

results, fixing the notation used through the paper. In section 3 we include some formal

considerations about the symmetries of the theory and their consequences. We show that

the null energy conditions of both spaces are strongly anti-correlated in section 4. In sec-

tion 5 we discuss our results. Some purely mathematical computations are then relegated

to appendices A and B, whereas we generalize our results to a n-dimensional theory in

appendix C.

2 Bimetric gravity

The action of bimetric gravity [3], can be re-expressed quite generally as [12]:

S = − 1

16πG

∫

d4x
√−g

{

R(g) + 2Λ− 2m2Lint(g, f)
}

+ S(m)

− κ

16πG

∫

d4x
√

−f
{

R(f) + 2Λ
}

+ ǫ S(m), (2.1)

with S(m) and S(m) the usual matter actions, with foreground and background matter

fields coupled only to the foreground and background metrics gµν and fµν , respectively.

All interactions between these two sectors are confined to the term Lint(g, f), which is an
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algebraic function of g and f .1 The action (2.1) is ghost-free if the interaction term can be

written as a linear combination of the elementary symmetric polynomials of the eigenvalues

of the matrix γ [3], where this matrix and the associated polynomials are defined through

γµσγ
σ
ν = gµσfσν , that is γµν =

{

√

g−1f
}µ

ν , (2.2)

and
4

∑

i=0

λi ei(γ) = det(I+ λγ). (2.3)

We can then, in 3+1 dimensions, express the interaction Lagrangian as [12]

Lint = β1 e1(γ) + β2 e2(γ) + β3 e3(γ), (2.4)

where

e1(γ) = tr[γ]; (2.5)

e2(γ) =
1

2

(

tr[γ]2 − tr[γ2]
)

; (2.6)

e3(γ) =
1

6

(

tr[γ]3 − 3 tr[γ] tr[γ2] + 2 tr[γ3]
)

. (2.7)

The two remaining non-vanishing polynomials, e0(γ) = 1 and e4(γ) = det(γ), have been

absorbed into the kinetic terms of gµν and fµν , respectively — because they lead to an

effect on the equations of motion which is equivalent to a cosmological constant associated

with each respective metric. If one additionally requires that the coefficient of the mass

term, which would appear multiplying e2(I − γ), should be of the canonical Fierz-Pauli

form, then, using the expressions of reference [6], which relate the coefficients appearing in

the interaction term written as a function of I − γ to the coefficients of Lint as expressed

in terms of γ; or, equivalently, using the shifting theorem of reference [12], one has

β1 + 2β2 + β3 = −1. (2.8)

It must be emphasized that in this theory both metrics have exactly the same status.

Although the interaction term could naively seem to favor one of the metrics over the

other, this is not really the case, as it fulfills the reciprocity relation [3, 12]

√−g Lint(γ) =
√−g

4
∑

i=0

βi ei(γ) =
√

−f

4
∑

i=0

β4−i ei(γ
−1) =

√

−f Lint(γ
−1). (2.9)

That is, the entire theory could be equivalently re-expressed using f as the foreground met-

ric and g as the background. We will use the terminology f -space and g-space throughout

the paper to emphasize this equivalence.

1We can recover the action of massive gravity by considering κ = ǫ = 0 [12]. In this case, we would

have an aether theory in which the dynamics of the physical metric gµν depends on a now non-dynamical

background metric fµν .
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By varying the action (2.1) with respect to the two metrics, we obtain two sets of

equations of motion. These are [12]

Gµ
ν − Λ δµν = m2 Tµ

ν + 8πG T (m)µ
ν , (2.10)

and

κ
(

G
µ
ν − Λ δµν

)

= m2 T
µ
ν + ǫ 8πGT

(m)µ
ν , (2.11)

where

Tµ
ν = τµν − δµν Lint, (2.12)

with

τµν = γµρ
∂Lint

∂γνρ
, (2.13)

and

T
µ
ν = −

√−g√
−f

τµν . (2.14)

The indices of equation (2.10) and (2.11) must be raised and lowered using g and f , respec-

tively. Thus, the equations of motion of the g-space (f -space) are modified with respect to

those of general relativity by the introduction of an effective stress-energy tensor associated

to the interaction between the two geometries (and the quantity κ/ǫ). Due to the invari-

ance under diffeomorphisms of both matter actions in (2.1), both effective stress-energy

tensors should fulfill the Bianchi-inspired constraints

∇µT
µ
ν = 0; ∇µT

µ
ν = 0. (2.15)

As has been pointed out in [13, 14], once one constraint is enforced, for example∇µT
µ
ν = 0,

then the other is also automatically fulfilled.

Note that the modifications to the two equations of motion are very closely related.

In fact everything can be expressed in terms of a single mixed-index tensor τµν . Taking

into account equations (2.4) and (2.13), and the explicit expressions for the derivatives of

e1(γ), e2(γ), and e3(γ), (either obtained by brute force or as deduced in appendix B), we

see that τµν can be written as a polynomial in the matrix γ. Specifically

τµν = (β1 + β2 e1(γ) + β3 e2(γ)) γ
µ
ν − (β2 + β3 e1(γ)) {γ2}µν + β3{γ3}µν . (2.16)

3 The two gravitational sectors

As already emphasized, in bimetric gravity the choice of f as the background and g as

foreground metric, or vice versa, is a matter of taste, since the action can be written

equivalently (2.9). Such a symmetry between both gravitational sectors must still be

present when one considers physical quantities as the effective stress-energy tensor. In fact,

one can make the symmetry explicit by considering equations (2.12) and (2.14) and writing

√−g Tµ
ν +

√

−f T
µ
ν = −√−g Lint(γ) δ

µ
ν = −

√

−f Lint(γ
−1) δµν . (3.1)
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On the other hand, the dependence of the interaction Lagrangian on the two metrics

only through the square root matrix γ ensures the fulfillment of other symmetries. In

particular, the properties of matrix square roots (see appendix A for details) allow us to

note that the quantities

gµρ{(
√

g−1f)n}ρν ; and fµρ{(
√

g−1f)n}ρν , (3.2)

are necessarily symmetric. In fact, this property is precisely what is guaranteeing that

the effective stress-energy tensors are symmetric. That can be noted lowering the indices

of (2.12) and (2.14),

Tµν = gµστ
σ
ν − gµν Lint, (3.3)

Tµν = −
√−g√
−f

fµστ
σ
ν , (3.4)

and taking into account that equation (2.16) implies Tµν ∝ ∑

gµρ{(
√

g−1f)n}ρν and

Tµν ∝ ∑

fµρ{(
√

g−1f)n}ρν .
Moreover, we can also easily relate the null vectors of f to those of g. Let us consider

a null vector with respect to g, so gµν k
µkν = 0. One can then define

k
µ
= {γ−1}µσkσ. (3.5)

Contracting the indices of f with k
µ
,

fµν k̄µ k̄ν = kσ {γ−1}µσfµν{γ−1}νρ kρ. (3.6)

But, the symmetry of the quantities (3.2) implies

fµν = γσµ gσρ γρν , (3.7)

which can be inserted in (3.6), leading to

fµν k̄
µk̄ν = gµνk

µkν = 0. (3.8)

Therefore, k
µ
is a null vector with respect to f . Thus, by using γ there is a 1-to-1 mapping

between null vectors of f and those of g. As we show in the next section, this relation is

extremely powerful.

4 Null Energy Condition

Let us now consider whether the modification of general relativity due to bimetric gravity

would lead to effective stress-energy tensors, Tµ
ν or T

µ
ν , with characteristics similar to

those describing classical common forms of matter — or might they violate the null energy

condition instead? In the first place, we will consider the effects in g-space. In this space,

the NEC is the statement

Tµν kµkν ≥ 0, (4.1)

– 5 –
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where kµ is a null vector with respect to gµν . The cosmological constant contribution to

this stress energy tensor (2.12) will, of course, not affect the results regarding the NEC.

Thus, we can express the NEC as

kµ (gµσ τ
σ
ν) k

ν ≥ 0; that is kµ(τ
µ
ν) k

ν ≥ 0. (4.2)

Taking into account equation (2.16) the NEC would be fulfilled in g-space if

(β1 + β2 e1(γ) + β3 e2(γ)) [kµγ
µ
νk

ν ]− (β2 + β3 e1(γ)) [kµ{γ2}µνkν ] + β3[kµ{γ3}µνkν ] ≥ 0.

(4.3)

It must be emphasized that we are applying this condition to an effective stress-energy

tensor and not to any physical source of matter. This effect is produced by the presence

of the interaction with a second dynamical space.

In the second place, we can also study whether the NEC would be fulfilled in f -space.

Thus, considering a null vector k, now null with respect to fµν , the NEC in f -space can

be written as

Tµν k
µ
k
ν ≥ 0. (4.4)

Taking into account equation (2.14), and noting that we are interested only in the sign of

this quantity (and not in its value), this inequality leads to

k
µ
(fµσ τ

σ
ν) k

ν ≤ 0. (4.5)

Replacing equation (2.16), this is

(β1+β2 e1(γ)+β3 e2(γ)) [kµγ
µ
νk

ν
]−(β2+β3 e1(γ)) [kµ{γ2}µνk

ν
]+β3[kµ{γ3}µνk

ν
]≤0, (4.6)

On the other hand, as we have proven in the previous section, given a null vector

with respect to the metric g, kµ, we can always write a null vector with respect to f , k
µ

by equation (3.5). Therefore, we can write the terms appearing in equation (4.6) using

expression (3.5) as

kµ{γn}µνk
ν
= kα{γ−1}µαfµσ{γn−1}σνkν , (4.7)

which, taking into account equation (3.7), leads to

k̄µ{γn}µν k̄ν = kµ{γn}µνkν . (4.8)

In view of expressions (4.3) and (4.6), equation (4.8) implies that for every k such that (4.3)

is strictly satisfied, there is a k such that (4.6) is violated, and vice versa. (The exceptional

case is where both NECs are saturated.)

It can be noted, from equations (4.2), that the NEC in the g-space only saturates if

τµν ∝ δµν , which is equivalent to the contribution of a cosmological constant; but, through

equation (4.5), this implies that the NEC in the f -space also saturates. Therefore, the

fulfillment of both NECs is only possible if the contribution of the effective stress-energy

tensors is equivalent to that of foreground and background cosmological constants.
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5 Discussion

We have considered bimetric gravity, that is, the theory which modifies general relativity

by introducing a second dynamical metric with the same status as that which governs the

observable gravitational phenomena of “our universe”, and have studied the nature of the

gravitational effects due to the existence of this second metric.

In the first place, we have gone into the implications of the existence of this equally

preferred metric on the form of the effective stress-energy tensors which can be defined by

gathering together the new terms appearing in the equations of motion. Moreover, we have

shown how the null vectors in both spaces can be easily related.

Nevertheless, the principal result of this paper refers to the NEC. As in this theory

there are two spacetime geometries, g-space and f -space, the NEC associated with the

respective effective stress-energy tensors can be studied in both spaces. We have shown

that the expressions can be greatly simplified until arriving to one surprising conclusion:

both NECs can be simultaneously satisfied if and only if the effect of the modification of

general relativity is equivalent to foreground and background cosmological constants. In any

other situation the NEC is violated in one space or the other. Even more, as shown in

appendix C, this conclusion can be obtained independently of the dimension of spacetime.

We want to emphasize that we are considering the NEC associated to an effective

stress-energy tensor, not to real physical matter. The understanding of the violation of the

NEC associated to real physical matter or to modified theories of gravity is very different,

although they can lead to the occurrence of similar phenomena. In a cosmological context,

it could lead to some kind of phantom cosmologies, opening the door to the associated

possible doomsdays, as the big rip [24] or big freeze [25, 26] future singularities [27]. In an

astrophysical framework, it would potentially allow the existence of wormholes in one of

the gravitational sectors [20, 21], although one should carefully study what would be the

implications of one multiply connected metric for the other metric.

Moreover, since we are in a scenario where two different spaces are coexisting and

interacting only through gravitational effects, a bi-universe, one could wonder whether the

impossibility of the simultaneous fulfillment of the NEC for both effective stress-energy

tensors in non-trivial cases is suggesting something deeper. In particular, it might be inter-

esting to consider that the physical matter coupled to one gravitational sectors fulfills the

energy conditions, whereas the physical matter coupled to the other sector might violate

them (or fulfill their antithesis). In this case, it could be interesting to study if it would

be possible to formulate some kind of generalized quantum inequalities [28] in the second

space, or even to consider whether the cosmic interest conjecture [29] may be reversed in

one space with respect to the other, with the “quantum altruism” conjecture being satisfied

in the second universe [30].
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A Some mathematical results regarding matrix square roots

The matrix square root is defined through
√
A
√
A = A. Therefore, they fulfill

(
√
A)−1 =

√
A−1; (

√
A)T =

√
AT . (A.1)

Noting that

√
ABB−1 =

√
ABB−1A−1A =

√
AB(

√
B−1A−1)2A = (

√
AB)−1A, (A.2)

one can write √
ABB−1 = (

√
AB)−1A =

√
B−1A−1 A. (A.3)

Following a similar procedure, we also have

A−1
√
AB = B(

√
AB)−1 = B

√
B−1A−1. (A.4)

Now, combining equations (A.3) and (A.4), one has

A−1
√
ABA = B

√
ABB−1. (A.5)

This result can be made even stronger by noting that

(A−1
√
ABA)2 = A−1(

√
AB)2A = A−1ABA = BA, (A.6)

and

(B
√
ABB−1)2 = B(

√
AB)2B−1 = BABB−1 = BA. (A.7)

This leads to

A−1
√
ABA =

√
BA = B

√
ABB−1. (A.8)

From (A.8)

A−1
√
AB =

√
BAA−1, and B

√
AB =

√
BAB. (A.9)

Re-naming A → A−1

A
√
A−1B =

√
BA−1A, and B

√
A−1B =

√
BA−1B. (A.10)

which leads to

(A
√
A−1B)T = AT

√

(A−1)TBT , and (B
√
A−1B)T = BT

√

(A−1)TBT . (A.11)

These are purely mathematical results holding for arbitrary not necessarily symmetric ma-

trices A and B.

Relabeling A → g and B → f , by iterating equations (A.10) one can obtain

g(
√

g−1f)n = (
√

fg−1)ng, and f(
√

g−1f)n = (
√

fg−1)nf. (A.12)

– 8 –
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If we now take f and g to be symmetric tensors, then we have

(g(
√

g−1f)n)T = ((
√

fg−1)ng)T = g(
√

g−1f)n, (A.13)

and

(f(
√

g−1f)n)T = ((
√

fg−1)nf)T = f(
√

g−1f)n. (A.14)

The symmetry of these terms is what we have used to prove that both effective stress-energy

tensors are automatically symmetric.

As a side effect we also see

γT g γ =
(

√

g−1f
)T (

g
√

g−1f
)

=
√

fg−1
(

√

fg−1g
)

= f. (A.15)

That is

f = γT g γ; and g = (γ−1)T f γ−1. (A.16)

Furthermore, defining

Sµν = gµσ γσν , (A.17)

which by the above is manifestly symmetric, we see

fµν = Sµσ gσρ Sρν , that is f = S g−1 S, and g = S f−1 S. (A.18)

This observation makes the f ↔ g interchange symmetry between foreground and back-

ground very clear and explicit.

B Derivatives of the elementary symmetric polynomials

Let us consider the symmetric polynomials appearing in the interaction Lagrangian appro-

priate to 3+1 dimensions:

Lint = β1 e1(γ) + β2 e2(γ) + β3 e3(γ). (B.1)

These are

e1(X) = tr[X]; (B.2)

e2(X) =
1

2

(

tr[X]2 − tr[X2]
)

; (B.3)

e3(X) =
1

6

(

tr[X]3 − 3 tr[X] tr[X2] + 2 tr[X3]
)

. (B.4)

It can be seen that
∂ tr[γn]

∂γνµ
= n {γn−1}µν , (B.5)

with {γ0}µν = δµν , {γ1}µν = γµν , {γ2}µν = γµσγ
σ
ν , and so on. Therefore, we have

∂e1(γ)

∂γνµ
= δµν ; (B.6)

– 9 –
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∂e2(γ)

∂γνµ
= tr[γ]δµν − γµν ; (B.7)

∂e3(γ)

∂γνµ
=

1

2

(

tr[γ]2 − tr[γ2]
)

δµν − tr[γ]γµν + γµσγ
σ
ν . (B.8)

Note that equations (B.6)–(B.8) can be written in a compact way as

∂ei(γ)

∂γνµ
=

i
∑

m=1

(−1)m−1 ei−m(γ) {γm−1}µν , (B.9)

although (at this stage of the argument) this expression would only be justified for i =

{1, 2, 3}. We now prove that equation (B.9) holds for arbitrary n. This is a necessary tech-

nical step in ultimately extending our argument to a n-dimensional Kaluza-Klein context.

Let our inductive hypothesis be that ∀j ∈ {1, 2, 3, . . . , k} we assume

∂ei−j(X)

∂X
=

i−j
∑

m=1

(−1)m−1 ei−j−m(X) Xm−1, (B.10)

where we have omitted the indices for simplicity. Differentiating the Newton identity

i ei(X) =
i

∑

j=1

(−1)j−1 ei−j(X) tr[Xj ], (B.11)

one obtains

i
∂ei(X)

∂X
=

i
∑

j=1

(−1)j−1

{

∂ei−j(X)

∂X
tr[Xj ] + j ei−j(X) Xj−1

}

. (B.12)

The consideration of the inductive hypothesis (B.10) in this expression leads to

i
∂ei(X)

∂X
=

i
∑

j=1

i−j
∑

m=1

(−1)j−1(−1)m−1 ei−j−m(X) Xm−1 tr[Xj ]+
i

∑

j=1

(−1)j−1j ei−j(X) Xj−1.

(B.13)

Note that the elementary symmetric polynomials are defined for positive subscript. So,

defining e−1 = e−2 = e−3 · · · = 0, we can write

i
∂ei(X)

∂X
=

i
∑

j=1

i
∑

m=1

(−1)j−1(−1)m−1 ei−j−m(X) Xm−1 tr[Xj ]+
i

∑

j=1

(−1)j−1j ei−j(X) Xj−1.

(B.14)

Taking the Newton identities (B.11) into account, we can recognize the definition of

ei−m(X) appearing in the first term of the r.h.s. . Thus, making this substitution and

relabeling the sum of the second term, we have

i
∂ei(X)

∂X
=

i
∑

m=1

(−1)m−1 (i−m)ei−m(X) Xm−1 +
i

∑

m=1

(−1)m−1m ei−m(X) Xm−1, (B.15)

which clearly leads to

∂ei(X)

∂X
=

i
∑

m=1

(−1)m−1 ei−m(X) Xm−1. (B.16)

This proves the inductive step. Therefore, expression (B.9) is true for arbitrary n.
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C NEC in the n-dimensional theory

We now consider the ghost-free interaction term for a n-dimensional bimetric gravity the-

ory [31]. Since e0(γ) = 1 and en(γ) = det(γ), those two terms would correspond to a

cosmological constant for g-space and f -space, respectively. Therefore, we can absorb each

cosmological constant in the kinetic term of the corresponding metric and write

Lint =
n−1
∑

i=1

βi ei(γ). (C.1)

Following a procedure similar to that in the 3+1 dimensional case, we write

τµν =

n−1
∑

i=1

βi γ
µ
σ

∂ei(γ)

∂γνσ
. (C.2)

As we prove in appendix B, the derivative terms fulfill

∂ei(γ)

∂γνµ
=

i
∑

m=1

(−1)m−1 ei−m(γ) {γm−1}µν . (C.3)

Thus we can re-write equation (C.2) as

τµν =
n−1
∑

i=1

i
∑

m=1

βi(−1)m−1ei−m(γ) {γm}µν . (C.4)

The generalization of the NEC for n-dimensional g-space can now be expressed as

n−1
∑

i=1

i
∑

m=1

βi (−1)m−1ei−m(γ) {kµ{γm}µνkν} ≥ 0, (C.5)

where k is a null vector with respect to g. Taking a null vector with respect to f , k, the

NEC in f -space can be written as

n−1
∑

i=1

i
∑

m=1

βi (−1)m−1ei−m(γ) {kµ{γm}µνk
ν} ≤ 0. (C.6)

Therefore, the NECs can be expressed in a very simple form even when considering a

n-dimensional theory. Now, noting that equation (4.8), that is

k̄µ {γm}µν k̄ν = kµ {γm}µν kν , (C.7)

has been obtained without specifying the dimension of the matrices involved, one can arrive

to the same conclusion regarding the simultaneous fulfillment of the NEC in both spaces.

Therefore, the NEC is fulfilled in one and only one gravitational sector, if it is not saturated.

– 11 –
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