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1 Introduction

As the early universe evolved a transition occured at temperatures T ≈ 150–200MeV,

which is related to the spontaneous breaking of chiral symmetry in QCD. The nature of

the QCD transition [1] affects our understanding of the history of the universe; see e.g. [2].

Extensive experimental work is currently being done with heavy ion collisions to study

the QCD transition, most recently at the Relativistic Heavy Ion Collider, RHIC and at

the Large Hadron Collider, LHC. Both for the cosmological transition and for RHIC/LHC,

the net baryon densities are quite small, thus the baryonic chemical potentials µ are much

less than the typical hadron masses, µ is below 50MeV at RHIC, even smaller at LHC

and negligible in the early universe. Thus, a calculation at µ = 0 is directly applicable

to the cosmological transition and most probably also determines the nature and absolute

temperature of the transition at RHIC/LHC. Therefore, we carry out our analysis at µ =

0. Given the far-reaching implications, it is desirable to perform this calculations in a

framework that is conceptually clean. For a pedagogical review on the QCD transition at

µ = 0 and µ > 0 see e.g. [3] and for the first continuum result at µ > 0 — namely, for the

curvature on the chemical potential vs. temperature plane, see [4].

When we analyze the absolute scale or any other question related to the T > 0 QCD

transition for the physically relevant case two ingredients are quite important.
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First of all, one should use physical quark masses. The nature of the transition strongly

depends on the quark mass. Lattice studies and effective models showed that in the three

flavor theory for small or large quark masses the transition is a first order phase transition,

whereas for intermediate quark masses it is an analytic crossover. Since the nature of the

transition influences the absolute scale Tc of the transition — its value, mass dependence,

uniqueness etc. — the use of physical quark masses is essential for the determination of

Tc, too. The absolute scale then goes into all observables. Whereas it is relatively easy to

reach the physical value of the strange quark mass ms in present day lattice simulations, it

is much more difficult to work with physical up and down quark masses mud, because they

are much smaller: ms/mud ≈ 28. In calculations with ms/mud smaller than 28 the strange

quark mass is usually tuned to its approximate physical value, whereas the average up and

down quark masses are larger than the physical value.

Secondly, the nature and other characteristics of the T > 0 QCD transition are known

to suffer from discretization errors [5, 6]. Let us mention one example which underlines the

importance of removing these discretization effects by performing a controlled continuum

extrapolation. The three flavor theory with a large, a ≈ 0.3 fm lattice spacing and standard

staggered action predicts a critical pseudoscalar mass of about 300MeV [7]. This point

separates the first order and cross-over regions. If we took another discretization, with

another discretization error, the critical pseudoscalar mass turns out to be much smaller,

well below the physical pion mass of 135MeV. The only way to determine the physical

features of the transition is to carry out a careful continuum limit analysis. It can be

safely done only in the so-called scaling regime. This regime is reached when the lattice

spacing a is sufficiently small, smaller than some amax. Dimensionless combinations of

observables approach their continuum limit value (within their error bars) in the scaling

regime with a correction term c · an. Here c, n and amax depend on the action and on the

dimensionless combination. The values of c and amax are typically unknown, whereas the

form of the action and the observables provide the value for n, usually without performing

any simulations. To carry out a controlled continuum extrapolation at least three lattice

spacings in the scaling regime are needed. Two points will always lie on a two parameter

c · an curve, independently whether the lattice spacings are smaller than amax or not; the

third point indicates if one reached the scaling regime.

It is numerically very demanding to fulfill both conditions. There are only a few cases,

for which this has been achieved. Within the staggered formalism there are full results such

as the nature of the transition [1], the transition temperature [8–10], equation of state [9]

and fluctuations [11].

At µ > 0 lattice computations are more costly, see e.g. [12]. However the curvature

of the phase line separating the hadronic and quark-gluon phases is already determined in

the continuum limit [4]. Results for the possible critical point only simulations on coarse

lattices are available; see e.g. [13].

It is important to note that fulfilling the second condition without fulfilling the first

one still leads to universal results. In other words continuum extrapolated results with

non-physical quark masses are universal. Independently of the action, simulation algo-

rithm, scale setting procedure, they provide the same answer once the quark mass is fixed
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which is a non-trivial issue, but can be done e.g. by fixing the pion to Omega and kaon to

Omega mass ratios: Mπ/MΩ and MK/MΩ. These results are not the same as they are for

physical quark masses, but they are well defined and unique. Contrary to this universality,

fulfilling the first condition (physical quark mass) but not the second one (continuum ex-

trapolation) leads to non-universal, non-physical results. These results still have unknown

discretization errors.

Once the available computational resources are not enough to fulfill both conditions

it is more advisable to carry out calculations with non-physical quark masses but perform

the continuum limit extrapolation. As we have seen such results are universal and can

be cross-checked with other results obtained by other fermion formalisms, actions etc. For

some recent Wilson thermodynamics results see [14–20].

In this paper we determine the temperature dependencies of a couple of observables

(chiral condensate, strange susceptibility, Polyakov loop) in 2+1 flavor QCD.We use Wilson

fermions with six steps of stout smearing and tree level clover improvement in the quark

sector and a tree level improved action in the gauge sector; for the details of the action

see [21]. Our pion is non-physical, its mass is about 545MeV, see later for a detailed

discussion for the mass.

The structure of the paper can be summarized as follows. After this brief introductory

section 1 a discussion on the advantages and disadvantages of Wilson thermodynamics is

presented in section 2. The main features of the action and run parameters are listed in

section 3. Our choice of renormalization procedures for the various measured quantities

are summarized in section 4. The results are given in section 5. In section 6 we summarize

and provide an outlook.

2 Choice of the fermion formalism

This paper presents the first of a series, which deals with lattice QCD thermodynamics

using Wilson fermions. The final goal is to describe several bulk observables as a function

of the temperature all the way to the continuum limit with physical quark masses or in

other words by approaching pion masses of 135MeV and kaon masses of 495MeV. While

the framework has the advantage of the sound conceptual status of the Wilson fermion

formulation (a), and we are already able to reach the continuum limit (b), the present

work suffers from the large computational cost (c) and is therefore confined to larger than

physical pion masses (d). Let us discuss these aspects in some detail.

ad a. The vast majority of the large scale lattice QCD thermodynamics projects has

been carried out with staggered fermions. Staggered fermions are the cheapest formulation

of lattice QCD and working with them turned out to be quite successful and provided

many interesting results both at T = 0 and T > 0. In their original form they describe

four degenerate fermions — tastes — and one has to take the square root or the fourth

root of the fermion determinant to describe two fermions or one fermion, respectively.

This procedure is somewhat unattractive and there has been an ongoing debate in the

literature whether it leads to the proper universality class. Wilson fermions do not raise
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such theoretical questions. Furthermore, staggered fermions suffer from the so-called taste

symmetry violation. It means that instead of the physical pseudo-Goldston bosons there

is a tower of pseudoscalars whose masses are typically well beyond the physical pion or

kaon masses. The physical spectrum is expected to be restored only in the continuum

limit. In the last five years some of the authors of the present paper have carried out a

large scale staggered thermodynamics program, nevertheless it is desirable to cross check

those results by repeating the analyses with Wilson fermions. Its theoretical cleanness is

the most important reason to perform a systematic study with Wilson fermions.

ad b. As we discussed earlier lattice results are unambiguous only in the continuum limit.

To this end we carry out our analysis at four lattice spacings. As we will see the results

scale quite nicely and the continuum behavior can be extracted. The results are in good

agreement with the results obtained with another fermion discretization, stout smeared

staggered fermions. There is, however, one important conceptual difference between Wilson

and staggered thermodynamics. In the staggered case the standard procedure is to take a

given temporal extent Nt to control the lattice spacing and use various gauge couplings,

light and strange quark masses β, mud and ms to change the temperature. The set of

parameters β, mud and ms, for which the physical content is the same (e.g. the ratio of the

kaon decay constant and the pseudoscalar masses: fK/Mπ and fK/MK) are called lines of

constant physics (LCP). The fixed scale approach of Wilson thermodynamics [14] is in some

sense the opposite. One takes a given β to fix the lattice spacing and uses several Nt values

to scan the temperature. The reason for this choice is the difficulty with the additive mass

renormalization within the Wilson formalism. This additive term makes it particularly

difficult to give the LCPs with good numerical precision. The fixed scale approach ensures

by definition that the physical content remains the same (same bare parameters) even if

we change the temperature.

ad c. Wilson fermions are usually more expensive than staggered fermions. There are at

least two reasons for that. First of all the basic calculational step, fermion matrix × spinor

multiplication, has four times as many floating point operations for Wilson fermions as

for staggered fermions. Secondly, the computational costs for the inversion of the fermion

matrix strongly depends on its condition number. The condition number for the fermion

matrix has a strict bound given by the quark mass for the staggered case, whereas for

the same quark mass with Wilson fermions the condition number can be much larger. It

depends not only on the mass but also on the gauge configuration and thus fluctuates more.

ad d. Today, the large computational costs allow to study only systems with larger

than physical pion masses; larger mass means smaller condition number, thus smaller

computational costs. As we discussed earlier it is more reasonable to carry out a study

with larger than physical mass and extrapolate to the continuum limit than use smaller or

even physical quark masses at one or two lattice spacings only. The reason for that is simple:

continuum extrapolated results can be compared with those of other groups and/or lattice

actions. A non-continuum result has still an unknown uncertainty due to cutoff effects. As

we mentioned we compare our findings in this paper using Wilson fermions with our earlier

results using staggered fermions. A nice agreement is found.
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3 Simulation points and techniques

In this section the details of the Wilson simulations are outlined. We also performed

staggered simulations in order to compare the continuum results of the two formulations.

The techniques of the staggered simulations follow [8, 9] and are shortly summarized too.

3.1 Action

The gauge action used for the calculations was the Symanzik tree level improved gauge

action [22, 23]

SSym
G = β

[

c0
3

∑

plaq

ReTr (1− Uplaq) +
c1
3

∑

rect

ReTr (1− Urect)

]

, (3.1)

with the parameters c0 = 5/3 and c1 = −1/12. The action for the femionic sector was the

clover improved [24] Wilson action

SSW
F = SW

F − cSW
4

∑

x

∑

µ,ν

ψx σµνFµν,x ψx , (3.2)

where SW
F is the Wilson fermion action. Six steps of stout smearing [25] with smearing pa-

rameter ̺ = 0.11 were used. The clover coefficient was set to its tree level value, cSW = 1.0,

which, for this type of smeared fermions, essentially leads to an O(a) improved action [26]

with improved chiral properties [27].

3.2 Simulation algorithm

The bare masses of the u and d quarks were taken to be degenerate, therefore the configu-

rations were generated using an Nf = 2+1 flavor algorithm. The light quarks were imple-

mented via the Hybrid Monte Carlo (HMC) algorithm [28], whereas the strange quark was

implemented using the Rational Hybrid Monte Carlo (RHMC) algorithm [29]. In order to

speed up the molecular dynamics calculations, the Sexton-Weingarten multiple time-scale

integration scheme [30] combined with the Omelyan integrator [31] was employed. When

all four extents of the lattice were even, the usage of even-odd preconditioning [32] gave an

additional speed up factor of 2. For further details on the algorithm see [21].

3.3 Simulation points

The calculations were performed at four different gauge couplings, β = 3.30, 3.57, 3.70

and 3.85. Only dimensionless ratios are measured and every dimensionful quantity is

made dimensionless by appropriate powers of mΩ or mπ. The lattice spacing is also set

by the physical value mΩ = 1672MeV and the four gauge couplings correspond to a =

0.139(1), 0.093(1), 0.070(1) and 0.057(1) fm, respectively. At all four gauge couplings the

bare masses are tuned such that mπ/mΩ = 0.326(4) and mK/mΩ = 0.366(4) are constant,

which means that mπ ≈ 545MeV and mK ≈ 614MeV. We tried to tune the ms/mud ratio

to the same value ms/mud = 1.5 as used in the staggered reference runs. We achieved this

within 2% accuracy: the ratio (2m2
K −m2

π)/m
2
π which in leading order chiral perturbation

– 5 –
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β amud ams Ns Nt

3.30 -0.0985 -0.0710 32 4–16, 32

3.57 -0.0260 -0.0115 32 4–16, 64

3.70 -0.0111 0.0 48 8–28, 48

3.85 -0.00336 0.0050 64 12–28, 64

Table 1. Simulation parameters. The Nt values used for the finite temperature runs and the values

used for the zero temperature runs are separated by a comma.

theory equals ms/mud is 1.530(7) for all four gauge couplings. All four values of ms are

such that if mud is lowered to the physical point mK also becomes the physical kaon mass.

The bare quark masses, spatial and temporal lattice extents are shown in table 1 while

the measured masses are shown in table 2. In all four cases mπLs ∼> 8. At each finite

temperature point around 1000 equilibrated trajectories were generated while around 500

at zero temperature points.

3.4 Staggered simulations

The goal of the staggered simulations detailed below was to provide a basis of comparison

for the Wilson data. We used the staggered action with two steps of stout smearings

(̺ = 0.15) as in most our thermodynamics studies e.g. [8]. The line of constant physics

used there was extended to the fine lattices in [9, 33, 34]. We used the bare strange masses

for each given beta as were determined there. The light quark mass was simply set to

2/3 of the strange mass to achieve the desired pion/kaon mass ratio. The lattice spacing

in these staggered thermodynamics papers was set through the kaon decay constant. For

each used gauge coupling we determined the scale directly with zero temperature runs at

the light/strange mass ratio 2/3. Using the most precise scale setting observable we had

access to, the w0 scale [35], we checked that our original scale function was still correct.

We proceeded to compute the mass ratios mπ/mΩ ≃ 0.32 and MK/mΩ ≃ 0.36 that turned

out to agree with the Wilson values at the level of 3% in both cases.

For the renormalization we used dedicated zero temperature runs with parameters pre-

cisely matching those in the finite temperature simulations. We determined the vacuum

condensate 〈ψ̄ψ〉0 and the static potential V (r), which we needed for obtaining the mul-

tiplicative renormalization of the Polyakov loop: Z = exp(V (x)/2). The obtained finite

renormalized Polyakov loop is then further transformed to our scheme (see section 4.4) by a

finite renormalization factor. One can select any physical scale x to remove all divergences.

Since w0 is our most accurately known scale, we used x =
√
8w0, which is approximately

0.5 fm. We found that in the continuum, at this mass ratio we have mΩw0 = 1.466(15).

Our finite temperature staggered simulations were performed on 183×6, 243×8, 323×10

and 363×12 lattices. After performing the necessary steps of renormalization a continuum

extrapolation was carried out. For this extrapolation we used a cubic spline interpolation

(using roughly every second temperatures as node points). Then for every temperature we

– 6 –
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β mπ/mΩ mK/mΩ ms/mud amPCAC amΩ a [fm] ZA

3.30 0.332(3) 0.373(3) 1.529(2) 0.0428(2) 1.16(1) 0.139(1) 0.892(7)

3.57 0.319(6) 0.359(4) 1.531(2) 0.02649(4) 0.777(9) 0.093(1) 0.951(2)

3.70 0.326(5) 0.369(5) 1.531(3) 0.01994(4) 0.586(8) 0.070(1) 0.966(2)

3.85 0.314(7) 0.358(6) 1.528(4) 0.01559(2) 0.480(8) 0.057(1) 0.976(5)

Table 2. Spectroscopy and ZA renormalization constant results from zero temperature simulations.

The ms/mud column refers to (2m2

K −m2
π)/m

2
π. The lattice spacings are set by mΩ = 1672MeV.

evaluated several possible extrapolations (linear in a2). The choices included using all four

lattice spacings or just three of them, and also making the extrapolation for the reciprocal

observable. The width of the weighted histogram of the continuum extrapolations define a

systematic error, which we added to the statistical error in quadrature. The final continuum

extrapolation includes an additional overall percent-level error in the temperature axis.

4 Renormalization

The bare chiral condensate is divergent in the continuum limit and both additive (power-

like) and multiplicative (logarithmic) divergences need to be removed. The resulting finite

chiral condensate in the continuum limit can be compared with results obtained using other

regularizations for instance the staggered formulation since finite continuum quantities

should not depend on the regulator.

The additive and multiplicative renormalizations are treated separately in the following

two subsections. We follow [36] which is based on [37]. The measurement of the finite

renormalization constant ZA is outlined in subsection 4.3. The Polyakov loop also needs

to be renormalized and our scheme is defined below in subsection 4.4.

4.1 Additive renormalization of the condensate

On dimensional grounds the bare chiral condensate contains additive divergences of the type

〈ψ̄0ψ0〉
Nf

= c0 + c1(m0 −mc) + c2(m0 −mc)
2 + . . . (4.1)

where m0 is the dimensionful bare mass, mc is its critical value and c0 is cubically, c1
is quadratically and c2 is linearly divergent. The coefficients ci do not depend on the

temperature hence they cancel in the quantity

∆ψ̄ψ(T )

Nf

=
〈ψ̄0ψ0〉(T )− 〈ψ̄0ψ0〉(T = 0)

Nf

(4.2)

just like in the staggered case. The cancellation is of order O(a−3).

However the O(a−3) term in (4.1) can be explicitly removed and the following quantity

is free of cubic divergences [36],

〈ψ̄0ψ0〉
Nf

− c0 = 2mPCACZA

∫

d4x〈P0(x)P0(0)〉+ · · · , (4.3)

– 7 –
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but of course quadratically and linearly divergent pieces are still present. Here P0(x)

is the bare pseudo-scalar condensate, mPCAC is the PCAC mass and ZA(g0) is a finite

renormalization constant [36]. Our conventions for the definition of P0(x) and 〈ψ̄0ψ0〉 are
the same as in [36]. Hence for the subtracted condensate we have,

∆ψ̄ψ(T )

Nf
= 2mPCACZA∆PP (T ) + · · · , (4.4)

where the short hand notation

∆PP (T ) =

∫

d4x〈P0(x)P0(0)〉(T )−
∫

d4x〈P0(x)P0(0)〉(T = 0) (4.5)

was introduced. In (4.5) the cancellation between the finite and zero temperature terms is

only O(a−2) however all additive divergences are still removed.

4.2 Multiplicative renormalization of the condensate

Multiplicative logarithmic divergences are still present in both (4.2) and (4.4). Multiplying

both expressions by first ZP and then by a renormalized mass mR = mPCACZA/ZP leads

to a renormalization group invariant quantity mR〈ψ̄ψ〉R. Hence using (4.2), (4.4) and (4.5)

we arrive at the expressions,

mR〈ψ̄ψ〉R(T ) = 2Nfm
2
PCACZ

2
A∆PP (T ) (4.6)

mR〈ψ̄ψ〉R(T ) = mPCACZA∆ψ̄ψ(T ) + · · · , (4.7)

where the former may be taken as the definition of 〈ψ̄ψ〉R(T ) and the latter agrees with

it in the continuum limit. Both are of course also finite. The finite cut-off corrections

for (4.6) is O(a2) at tree level provided the action is O(a)-improved, because the tree level

improvement factors for mR and 〈ψ̄ψ〉R cancel in the product. The full non-perturbative

improvement of mR and 〈ψ̄ψ〉R we expect to be close to tree level improvement because

our smeared action with tree level improvement coefficient cSW = 1.0 is very close to being

non-perturbatively O(a)-improved [26, 27]. The quantities ∆ψ̄ψ(T ) and ∆PP (T ) on the

right hand sides are easy to measure on the lattice and knowing mPCAC and ZA from zero

temperature simulations allows one to define the finite and renormalization group invariant

continuum quantity mR〈ψ̄ψ〉R(T ) in two different ways. In the continuum limit the two

definitions should agree within errors.

On the other hand, using the first expression in (4.7) to solve for mPCACZA and

substituting it into the second expression leads to,

mR〈ψ̄ψ〉R(T ) =
∆2
ψ̄ψ

(T )

2Nf∆PP (T )
+ · · · , (4.8)

which can directly be measured from the bare quantities ∆ψ̄ψ(T ) and ∆PP (T ) without

any need for measuring mPCAC or the ZA renormalization factor. In [38] the above ratio

was used to define the chiral condensate, in the present study we will use (4.6) because we

have found that this definition of the renormalized condensate scales best among the three

possible choices (4.6), (4.7) and (4.8).

– 8 –
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4.3 Computation of ZA

We compute the renormalization constant of the local axial vector current ZA along the

lines presented in [39, 40]. We generated independent sets of Nf = 3 ensembles at four

quark masses in the range ms/3 < mq < ms and approximately equal physical volume

V ≃ (2 fm)4 at every β.

In a first step, we compute the local vector current renormalization constant ZV from

the ratio

ξ(t) =
〈P0(Nt/2)V0(t)P0(0)〉

〈P0(Nt/2)P0(0)〉
(4.9)

where

P0(t) =

∫

d3xP0(t, ~x) , V0(t) =

∫

d3x (ψ̄1γ0ψ1)(t, ~x) , (4.10)

are the zero 3-momentum projected bare pseudo-scalar and vector densities. With tree

level improvement one has [41, 42]

ZV (β,m)(1 + am) = (ξ(t1)− ξ(t2))
−1 for 0 < t1 < Nt/2 < t2 < Nt (4.11)

We obtain ZA by using the standard RI-MOM procedure [43] with the improvement tech-

nique of [44] to determine the ratio

ZA(β,m)

ZV (β,m)
=

ΓV (p)

ΓA(p)
(4.12)

from the off-shell amputated Greens functions ΓΓ(p). The dependence of the ratio (4.12)

on the external quark momenta p is very mild and enters into our estimate of the sys-

tematic error. We linearly extrapolate the resulting ZA(β,m) to m = 0 to obtain the

renormalization constant ZA(β), see table 2.

4.4 Polyakov loop

The real part of the bare Polyakov loop also needs to be renormalized [8] in order to have

a quantity with a finite continuum limit. Since there is an additive divergence in the free

energy, a convenient choice of renormalization prescription is demanding a fixed value L∗

for the renormalized Polyakov loop at a fixed but arbitrary temperature T∗ > Tc. Then

the renormalized Polyakov loop LR is given by

LR(T ) =

(

L∗

L0(T∗)

)
T∗

T

L0(T ) (4.13)

in terms of the bare Polyakov loop L0(T ). We choose T∗ = 0.143mΩ and L∗ = 1.2. Other

choices would simply correspond to other renormalization schemes.

We imposed the same renormalization condition on the central value of our continuum

extrapolated staggered data so they can be meaningfully compared.
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Figure 1. Renormalized chiral condensate. The top left panel shows the Wilson results using

the definition (4.6) at the four lattice spacings corresponding to four β values. The continuum

extrapolated result is also shown by the solid band. The top right panel shows the staggered results

in the fixed-Nt approach also together with the continuum extrapolated result. The bottom panel

compares the two continuum results.

5 Results

We have measured three quantities at each lattice spacing. The renormalized chiral conden-

sate is sensitive to the remnant of the chiral transition whereas the renormalized Polyakov

loop and the strange quark number susceptibility are sensitive to the remnant of the

confinement-deconfinement transition.

Each quantity is renormalized properly so that in the continuum limit finite and reg-

ularization scheme independent values are obtained. The Wilson continuum extrapolation

is based on a cubic spline interpolation to temperatures not reachable by the discrete range

of Nt and extrapolation a→ 0. We perform global fits to all our data points including lat-

tice spacing dependence in the fit parameters as follows. Spline node points are randomly

distributed along the temperature axis. The parameters of our fit are the values of the ob-
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Nt 8 10 12 14 16 18 20 22 24 26

SB 1.522 1.265 1.161 1.110 1.081 1.062 1.049 1.040 1.034 1.028

Table 3. The tree level improvement factors of the strange quark number susceptibility for Wilson

fermions. The values shown are the free, infinite volume, massless Stefan-Boltzmann limits at given

Nt. For β = 3.30 and 3.57 only Nt ≥ 8, for β = 3.70 only Nt ≥ 12 and for β = 3.85 only Nt ≥ 14

is used.

servable at the node points together with their lattice spacing dependence, i.e. o1i+ c(a)o2i
for the ith node point. For the leading correction c(a) we used two choices, c(a) = a2

and c(a) = αa. We had 4-6 nodepoints with 1000 different random node point sets each,

resulting in 2 · 3 · 1000 = 6000 fits alltogether. The results of the fits are weighted with

the fit qualities. For each temperature the median of these fits is used as our final result

and the systematic error comes from the central 68% of the distribution and the statistical

error from a jackknife analysis. The simulations were performed at 4 lattice spacings but

not every observable is measured in the full temperature range. For the temperature range

where our final results are presented we had at least 3 lattice spacings available in other

words at least 3 lattice spacings are used for the continuum extrapolation. The obtained

continuum results can then be compared with results from other regularizations such as

the staggered formulation.

Figure 1 shows the renormalized chiral condensate. The left panel contains the Wilson

simulation results at four lattice spacings together with the continuum extrapolated result.

The right panel shows the chiral condensate result for the staggered calculation at 4 fixed

Nt values 6, 8, 10 and 12 corresponding to four lattice spacings. Cubic spline is used to

interpolate at fixed Nt and these are then extrapolated to the continuum. The middle

panel shows the two continuum extrapolated results. They are in perfect agreement.

In an earlier exploratory work we used the definition (4.8) for the renormalized chiral

condensate resulting in much larger cut-off effects [38]. The reason for using (4.6) this time

is exactly because the cut-off effects are smaller as is visible from figure 1 compared to

figure 1 in [38].

The strange quark number susceptibility χs = T/V ∂2 log(Z)/∂µ2s is a sum of two

contributions, the connected and disconnected terms. The disconnected part is a very noisy

quantity (as usual) and a large number of random vectors, 1200, were needed in order to

evaluate it precisely. It is advantageous to generate the random vectors in the 12 diagonal

spin-color blocks separately [15]. Cut-off effects may be reduced by tree level improvement.

The measured susceptibility is divided by its infinite volume, massless Stefan-Boltzmann

limit at the given finite Nt temporal extent. The continuum limit is unchanged by this

improvement since the Stefan-Boltzmann limits are 1 for Nt → ∞; see table 3.

The results for the four lattice spacings are shown on figure 2 together with the stag-

gered results. What is plotted in both cases is the aforementioned tree level improved

quark number susceptibility.

The number of data points is less for the quark number susceptibility than for the

chiral condensate because for the condensate odd Nt values are used as well. In such a
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Figure 2. Strange quark number susceptibility. The top left panel shows the Wilson results at

the four lattice spacings corresponding to four β values. The continuum extrapolated result is

also shown by the solid band. The top right panel shows the staggered results in the fixed-Nt

approach also together with the continuum extrapolated result. The bottom panel compares the

two continuum results.

setup even-odd preconditioning can not be used resulting in a much slower simulation and

measurement. The large number of random vectors needed also forced us to also skip some

even Nt values in some cases only having those that are divisible by 4.

Discretization errors are comparable to the chiral condensate. The results are shown

on figure 2 again with the Wilson results on the left, staggered results on the right and the

comparison of the two continuum results in the middle. Again the agreement between the

two continuum extrapolated results is perfect.

The third quantity we measured is the renormalized Polyakov loop which is sensitive

to the confinement-deconfinement transition similarly to the quark number susceptibility.

The results are shown on figure 3 in the same format as before; Wilson results on the left,

staggered results on the right with the comparison of the two continuum extrapolated curves
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Figure 3. Renormalized Polyakov loop. The top left panel shows the Wilson results at the four lat-

tice spacings corresponding to four β values. The continuum extrapolated result is also shown by the

solid band. The top right panel shows the staggered results in the fixed-Nt approach also together

with the continuum extrapolated result. The bottom panel compares the two continuum results.

in the middle. The bare Polyakov loop can be measured quite precisely but renormalization

in our scheme at low temperatures causes the errors to increase because of the division and

high power in equation (4.13). For higher temperatures the errors are smaller where the

renormalization condition (4.13) does not introduce large uncertainties.

6 Summary and outlook

In this work finite temperature QCD was studied using Wilson discretization for 2 + 1

flavors of dynamical fermions. The unique aspect of our work is the continuum extrap-

olation of all three renormalized quantities we have measured, chiral condensate, strange

quark number susceptibility and Polyakov loop, which is especially difficult with Wilson

fermions. The difficulty lies in the fact that the explicit chiral symmetry breaking of the

Wilson formulation necessitates fine lattice spacings and consequently large lattice volumes.
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The continuum extrapolation has been carried out for all temperatures and by using four

lattice spacings.

The motivation for our work is twofold. First, it is desirable to obtain continuum

QCD results from first principles which do not contain theoretically not fully justified

operations such as the fourth root trick of rooted staggered fermions. The Wilson fermion

formulation is theoretically sound and is known to be in the right universality class for

QCD. Second, since a large body of simulation results for both zero and finite temperatures

exist with the staggered formulation it is a worthwhile task to compare some of these

continuum results with the continuum Wilson results. The expectation is of course that if

the staggered formulation is also in the right universality class the continuum results will

agree within errors.

The Wilson formulation is more expensive than the staggered formulation hence low-

ering the light quark masses towards their physical value is much more difficult. In this

work the pion mass has been set to 545MeV , heavier than physical, but it is important to

note that at arbitrary quark masses the continuum results are universal. Hence provided

the same renormalization prescription is used for two discretizations the results should still

agree in the continuum for arbitrary quark masses. We have carried out staggered simu-

lations using the same renormalization prescription as we did for the Wilson simulations

and have compared the continuum extrapolated results. Nice agreement was found for all

three quantities.

In the future we plan to lower the light quark masses towards their physical value.

With an unimproved fermion action this would be almost hopeless however the use of

stout improvement makes the fluctuation of low lying Dirac eigenvalues much less allowing

for a smaller pion mass at a given volume.

We also plan to compare the continuum extrapolated staggered and Wilson results with

a formulation which combines the key advantages of the two: chiral symmetry (staggered)

and theoretical soundness (Wilson). Such a lattice chiral discretization is the overlap for-

malism. Results at two lattice spacings are already available in the fixed-Nt approach [45].

Once completed with a third or fourth lattice spacing a continuum extrapolation will

be possible allowing for the comparison of three continuum results from three discretiza-

tions of QCD.
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[21] S. Dürr et al., Scaling study of dynamical smeared-link clover fermions,

Phys. Rev. D 79 (2009) 014501 [arXiv:0802.2706] [INSPIRE].

[22] K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and φ4

theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].
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[45] S. Borsányi et al., QCD thermodynamics with dynamical overlap fermions,

Phys. Lett. B 713 (2012) 342 [arXiv:1204.4089] [INSPIRE].

[46] G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631

[hep-lat/0611022] [INSPIRE].

– 17 –

http://dx.doi.org/10.1007/JHEP08(2011)148
http://arxiv.org/abs/1011.2711
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2711
http://dx.doi.org/10.1016/j.physletb.2003.11.050
http://arxiv.org/abs/hep-lat/0305014
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0305014
http://dx.doi.org/10.1103/PhysRevD.73.034504
http://arxiv.org/abs/hep-lat/0511014
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0511014
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://arxiv.org/abs/hep-lat/9411010
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9411010
http://arxiv.org/abs/0807.0030
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0030
http://dx.doi.org/10.1016/j.physletb.2012.06.022
http://arxiv.org/abs/1204.4089
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4089
http://dx.doi.org/10.1016/j.cpc.2007.06.005
http://arxiv.org/abs/hep-lat/0611022
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0611022

	Introduction
	Choice of the fermion formalism
	Simulation points and techniques
	Action
	Simulation algorithm
	Simulation points
	Staggered simulations

	Renormalization
	Additive renormalization of the condensate
	Multiplicative renormalization of the condensate
	Computation of Z(A)
	Polyakov loop

	Results
	Summary and outlook

