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1 Introduction

Supersymmetry (SUSY) remains a compelling framework for addressing the naturalness

problem of electroweak symmetry breaking [1–3]. The recent evidence for a 125GeV Higgs

boson at the LHC [4, 5] motivates us to ask whether such a Higgs mass is compatible with

naturalness in the context of supersymmetry.

A 125GeV Higgs requires significant tuning in the minimal supersymmetric standard

model (MSSM). The reason is that we need a significant radiative correction to the Higgs

quartic from top and stops, the particles most strongly coupled to the Higgs:

∆λH ∼ y4tNc

16π2
ln

mt̃

mt
, (1.1)

where Nc = 3. The stop mass is generally lighter than the other squark masses due

to renormalization group effects, so this tends to push much or all of the superpartner

spectrum is out of reach of the LHC. However, there is a good reason to think that this is
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not how nature works: such models are highly fine-tuned. The reason is that the large stop

mass also generates a large quadratic term in the Higgs potential that must be tuned away:

∆m2
H ∼ y2tNc

16π2
m2

t̃
ln

M2

m2
t̃

, (1.2)

where M is a UV mass scale where the stop mass is generated. We note that such quadratic

dependence of the Higgs mass parameter on large mass scales is precisely the naturalness

problem that SUSY is supposed to address. Numerically, the tuning is of order a percent,

even if the logarithm in eq. (1.2) is not large. It is therefore well-motivated to consider

possible mechanisms to reduce this tuning and study their experimental implications.

In order to generate a large quartic without fine-tuning, what is required are Higgs

interactions that are stronger than typical perturbative interactions. We can see this from

eqs. (1.1) and (1.2): if we could increase yt, then ∆λH increases as y4t while ∆m2
H only in-

creases as y2t . In this paper, we consider the possibility that the Higgs is coupled to a strong

sector, so the light Higgs is partially composite. This arises naturally in a supersymmetric

model if the Higgs is coupled to a strong superconformal sector via operators

W = λuHuOd + λdHdOu, (1.3)

where Ou,d are operators in the conformal sector with the electroweak quantum numbers of

Hu,d. The dimension d of the operators Ou,d can be smaller than 2, so that the couplings

above are relevant. This means that there is no UV problem with the interactions in

eq. (1.3) being stronger than perturbative interactions at the TeV scale. This theory can

therefore easily accommodate heavy Higgs masses without fine tuning or UV problems.

This is the primary motivation for considering such models.

On the other hand, the fact that these couplings are relevant introduces a new co-

incidence problem similar to the µ-problem of the MSSM, namely why the scale of the

SUSY-preserving terms eq. (1.3) is near the weak scale. We will discuss a generalization

of the Giudice-Masiero mechanism that can address this problem.

Ref. [6, 7] studied the phenomenology of such models in the case where SUSY breaking

at the TeV scale triggers confinement and dynamical electroweak symmetry breaking in the

strong sector, which in turn induces VEVs for the elementary Higgs fields. (Such models

were called “superconformal technicolor.”) In this paper, we consider a different limit where

the strong sector does not break electroweak symmetry in the limit λu,d → 0. We assume

that the dominant contribution to conformal symmetry breaking in the strong sector comes

from the Higgs VEVs. The strong sector then gives important contributions to the effective

potential of the elementary Higgs, so the model is a kind of Higgs bootstrap. These models

have a very different phenomenology from superconformal technicolor models, as we will see

below. Holographic 5D models with Higgs couplings of form eq. (1.3) were studied in ref. [8],

assuming that SUSY is broken in the strong sector near the TeV scale. Models similar to

ours were studied in ref. [9] with particular attention to the case where the operators Ou,d

have dimension near 2. See also ref. [10] for a semi-perturbative model which appears as a

dual description of a strongly coupled theory. Ref. [11], which appeared while this paper
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was being completed, also considers semi-perturbative conformal sectors, and is closely

related to the present work.

In the presence of the interactions eq. (1.3), electroweak symmetry breaking in the

weakly-coupled sector induces breaking of conformal and electroweak symmetry in the

strong sector at the TeV scale, in addition to explicit conformal symmetry breaking by

soft SUSY breaking. We also consider the next-to-minimal supersymmetric standard mo-

del (NMSSM), where the VEV of the singlet is an important contribution to conformal

symmetry breaking in the strong sector. These models eliminate a potential problem in

superconformal technicolor, namely the presence of unstable potential in the strong sec-

tor [6, 7]. In the absence of any tuning, we will see that the electroweak symmetry breaking

masses in the strong sector are of the same size as the electroweak preserving masses, and

the precision electroweak corrections are quite large. However, we will show that ∼ 10%

tuning is sufficient to reduce the precision electroweak corrections, so the model is much

less tuned than the MSSM.

This paper is organized as follows. In section 2, we describe specific models to set the

stage for the more general discussion that follows. We consider the case where the dominant

breaking of conformal symmetry in the strong sector comes from electroweak doublet or

singlet Higgs fields. In section 3, we give a general discussion of this class of models

and estimate the corrections to the effective potential for the elementary Higgs fields. In

section 4, we give estimates for the precision electroweak corrections. In section 5, we

consider the phenomenology, and section 6 gives our conclusions. In appendix, we discuss

the contribution of soft SUSY breaking terms in the strong sector to the Higgs potential.

2 Models

We begin by presenting some specific models that illustrate the general ideas.

2.1 Models with custodial symmetry

The minimal model is based on an SU(2) strong gauge group with 4 flavors (8 fundamen-

tals). This theory is in the middle of the conformal window, and has no known weakly

coupled description. The lowest-dimension chiral primary field (a meson) has dimension
3
2 . The fact that this is not close to the free-field dimension 1 is an indication that this is

a truly strongly-coupled theory.

The gauge group of the model is

SU(2)S × SU(2)L × SU(2)R ×U(1)B−L, (2.1)

where the electroweak gauge group is embedded into SU(2)L × SU(2)R × U(1)B−L in the

standard way, i.e. SU(2)L = SU(2)W and Y = T3R +B − L. The MSSM Higgs fields Hu,d

are therefore contained in the field

H ∼ (1, 2, 2)0. (2.2)

This embedding of electroweak gauge group allows a natural custodial symmetry to act on

the fields of the strong sector, namely the diagonal subgroup of SU(2)L × SU(2)R. On the
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other hand, multiplets of SU(2)L×SU(2)R are not complete GUT multiplets, so automatic

gauge coupling constant unification is lost in these models.

There are various possibilities for the fields. One simple possibility is

Ψi ∼ (2, 2, 1)b, (2.3)

Ψ̃i ∼ (2, 1, 2)−b, (2.4)

where i = 1, 2 and b is the B − L charge. In the custodial symmetry limit, we can write

the Higgs coupling to this sector as

W = λijHΨiΨ̃j . (2.5)

The “meson” fields ΨΨ̃ have scaling dimension 3
2 , so the couplings λ have dimension +1

2 ,

i.e. they are relevant.

The Higgs VEVs break the conformal symmetry in the strong sector, giving positive

supersymmetric masses to all matter fields in the strong sector. The SU(2)S gauge fields

(and gauginos) are massless and confine, generating a dynamical superpotential

Wdyn ∼ λ2HuHd. (2.6)

The model therefore generates a µ term dynamically.

There are also contributions to the Higgs potential arising from SUSY breaking scalar

and gaugino masses in the strong sector. However, if SUSY breaking is transmitted to the

strong sector at a high scale, large anomalous dimensions suppress the gaugino mass and

universal scalar masses [12–14]. The result is that the soft masses at low energies must

satisfy

∑

i

(m2
i + m̃2

i ) = 0 (2.7)

wherem2
i (m̃

2
i ) are the scalar masses for field Ψi (Ψ̃i). Such mass terms generally destabilize

the vacuum of the strong sector [6, 7], so we will assume that the strong sector masses

generated by the Higgs VEVs dominate. These always give positive scalar masses, and

there is no stability problem in these theories.

Even though SUSY breaking is subleading in the strong sector it can give important

contributions to the Higgs potential, which in turn determines the scale Λ of the strong

sector. This is therefore a kind of “Higgs bootstrap.”

To see whether this model is realistic, we need to estimate the size of these effects.

Because the fixed point gauge coupling is strong at all scales, we expect that there is

no hierarchy between the confinement scale Λ and the scale of the masses induced by

the VEVs. We can therefore estimate the terms in the effective Lagrangian using näıve

dimensional analysis (NDA) [15].1 This will be done in section 3 below, after we have

discussed several additional models to illustrate the range of possibilities. We will see

that the contributions to the Higgs potential can be large enough to get a Higgs mass of

1Exact results for N = 2 theories suggest that NDA is accurate in SUSY theories [14].
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125 GeV without tuning, but the model requires tuning of order 10% to satsify precision

electroweak constraints. This situation is more general than this specific model, and we

will present a general analysis in section 4 below.

A variation of this model is to allow electroweak preserving masses for the strong

sector. These can be generated by adding a singlet Higgs field S to the theory and writing

the new superpotential terms

∆W ∼ SΨΨ+ SΨ̃Ψ̃. (2.8)

This is allowed only if we choose the B − L charge b to vanish. We can have electroweak

preserving masses without introducing a singlet by adding “µ terms” to the superpotential,

i.e. ∆W ∼ ΨΨ + Ψ̃Ψ̃. However, such terms have a different dimension from the Higgs

couplings eq. (2.5), and therefore have no reason to be of the same order.

The importance of adding electroweak-preserving masses is that the corrections to

precision electroweak observables from the strong sector can be reduced if the electroweak-

preserving masses are larger than the electroweak-breaking ones. We will see that this

requires parametrically larger tuning than tuning toward a custodial symmetry limit, but

it may work. Again, we will give a general analysis after we have presented several models.

Yet another variation is to have some of the strong fields be electroweak singlets. These

can get a mass from coupling to S. This can somewhat reduce the precision electroweak

corrections, and also the corrections to h → γγ, which we discuss in section 5.1 below.

2.2 Models with unification

It is natural to consider models where the strong fields come in complete SU(5) multiplets,

so that the theory unifies. A simple example of such a model is based on a strong SU(3)

gauge group with 6 flavors. This is again in the middle of the conformal window, and is a

strongly-coupled theory.

The gauge group is

SU(3)S × SU(5)SM, (2.9)

where the standard model gauge group is embedded in SU(5)SM in the standard way. The

matter fields transform as

Ψ ∼ (3, 5), (2.10)

Ψ̃ ∼ (3̄, 5̄), (2.11)

Σ ∼ (3, 1), (2.12)

Σ̃ ∼ (3̄, 1). (2.13)

The 5 and 5̄ fields decompose into doublet and triplet fields

Ψ = (D,T ), Ψ̃ = (D̃, T̃ ), (2.14)

and we can write superpotential couplings between the strong fields and Higgs fields as

W = λuHuD̃Σ+ λdHdDΣ̃ + λΣSΣ̃Σ + λDSD̃D + λTST̃T. (2.15)
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Note that we need a singlet field S to give masses to all the strong fields that are naturally

the same size as those generated by Higgs VEVs.

One difficulty with this model is that the electroweak breaking masses in the strong

sector cannot preserve custodial symmetry. This is because the electrically neutral com-

ponent of the doublets can get an electroweak-breaking mass with the Σ and Σ̃ fields, but

there is no partner for the charged component of the doublets. As we will see below, these

models require parametrically more tuning to satisfy precision electroweak constraints, but

may still be viable.

3 Partially composite Higgs potential

In this section we give a general discussion of the contributions to the Higgs potential from

the strong sector. Our discussion is valid for a general strong sector, but it is helpful to

have the examples of the previous section in mind to understand the discussion.

We write the superpotential coupling as

W = κ2−d
u HuOd + κ2−d

d HdOu, (3.1)

where d is the dimension of Ou,d, so that κ has dimensions of mass. We must have d > 1

by unitarity. We assume d < 2, so that these couplings are relevant, and normalize the

operators so that the theory gets strong at the scale κ. These couplings introduce a new

coincidence problem similar to the µ-problem of the MSSM. We will discuss a generalization

of the Giudice-Masiero mechanism that can address this problem in section 3.3. The case

d ≃ 2 is special, since the couplings are nearly dimensionless [9]. We will comment on this

case below, but will focus mainly on the case where 2 − d is not a small parameter. The

strength of the couplings is then measured by

ǫu,d ∼
(κu,d

Λ

)2−d
(3.2)

where Λ is the scale of conformal symmetry breaking in the strong sector (see below).

These interactions cause the Higgs fields Hu,d to mix with the strong conformal sector,

which can give important contributions to the Higgs potential as we will see below.

Λ is determined by conformal symmetry breaking mass terms in the strong sector.

(By mass terms, we mean relevant terms in the Lagrangian involving only strong sector

fields.) We will focus on the possibility that the mass terms in the strong sector induced by

the Higgs VEVs via the coupling eq. (3.1) are the largest breaking of conformal symmetry

and trigger the exit from the CFT fixed point. Because the Higgs VEVs preserve SUSY,

the strong sector is approximately supersymmetric. The strong sector then in turn gives

important contributions to the Higgs potential, this is a kind of Higgs bootstrap.

It is also possible to have conformal symmetry breaking that does not violate elec-

troweak symmetry from explicit µ-like terms, or from the VEV of a perturbative singlet

field. There is an interesting class of models where this is the dominant source of conformal

symmetry breaking in the strong sector. Again, the strong sector is naturally approximately

supersymmetric in this case.
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Finally, there is soft SUSY breaking in the strong sector. As discussed in section 2.1,

if this is the dominant source of conformal symmetry breaking in the strong sector, then

there are difficulties with vacuum stability. These can be overcome with some additional

structure [6, 7] but we will focus on the case where the dominant source of conformal

symmetry breaking is supersymmetric.

3.1 Higgs bootstrap

We first consider the situation where electroweak breaking Higgs VEVs trigger the exit

from the CFT. This occurs in the first model of section 2.1 above, but may also occur in

models with singlet fields if their VEVs are subdominant. In this case we have

ǫ ∼ Λ

4πv
, (3.3)

where ǫ ∼ ǫu,d and we assume vu ∼ vd. We can understand this from the fact that in

the double limit ǫ ∼ 1 and 4πv ∼ Λ both the relevant interactions and the Higgs mass

contributions are strong at the scale Λ.

Note that the Higgs VEV is a SUSY-preserving mass in the strong sector. We there-

fore first consider the dynamics of the strong sector in the SUSY limit. The scale of strong

dynamics is determined by the Higgs VEV, and can be parameterized by a holomorphic

superfield Λ. These models will generally generate a dynamical superpotential. We ex-

pect a dynamical superpotential to be generated if there is a holomorphic candidate that

is invariant under all symmetries, in particular the conformal U(1)R. Note that we are

assuming that the Higgs couplings give mass to all matter fields in the strong sector. This

means that there is a holomorphic mass scale Λ(H) for the theory that depends on the

Higgs fields. For holomorphic quantities, U(1)R invariance is equivalent to dimensional

analysis, so there is always an allowed dynamical superpotential of the form

∆Wdyn ∼ Λ3(H)

16π2
. (3.4)

The most general form of the dynamical scale compatible with all symmetries is

Λ6−2d(H) ∼ 16π2κ2−d
u κ2−d

d HuHd. (3.5)

In the explicit models of section 2.1 we can verify that the usual dynamical superpotential

is indeed generated and has this form. The factors of 4π in eqs. (3.4) and (3.5) follow from

NDA. We can understand them by noting that the interactions eq. (3.1) are strong at the

scale Λ in the limit ǫu,d → 1, 4πv → Λ.

If we replace the Higgs fields by their VEVs, we get a simpler and more intuitive

expression in terms of ǫu,d:

Λ ∼ 4π(ǫuǫd)
1/2(vuvd)

1/2 ∼ 4πǫv, (3.6)

which is consistent with eq. (3.3). However, eq. (3.5) must be used to get the correct form

of the Hu,d dependence.
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The superpotential eq. (3.4) is non-analytic for at Hu,d = 0, corresponding to the fact

that it is obtained by integrating out particles that get a mass from the Higgs VEVs. An

interesting special case is d = 3
2 , for which we have

Wdyn(d =
3

2
) ∼ κ1/2u κ

1/2
d HuHd, (3.7)

i.e. the superpotential is a pure µ-term. Note that this is what happens in the first model

of section 2.1 above. For general d the superpotential eq. (3.4) generates a Higgsino mass

of order

µdyn ∼ ∂2W

∂H2
∼ Λ3

(4πv)2
∼ ǫ2Λ. (3.8)

We will see below that this gives a Higgsino mass term of order the Higgs mass, giv-

ing a viable solution to the µ-problem. This is certainly an attractive feature of this

class of models.

The supersymmetric contribution to the Higgs potential from the dynamical superpo-

tential has the form

Vdyn ∼ |Λ(H)|6
(4π)4

H†
uHu +H†

dHd

|HuHd|2
∼ H2d/(3−d). (3.9)

The potential is positive-definite, and for d > 3
2 the potential grows faster than H2 so we

can obtain a stable electroweak breaking minimum by adding negative Higgs quadratic

terms. We will be considering several different contributions to the Higgs potential that

can balance each other in various combinations. A good way to understand the relative

sizes of the various contributions is to look at the second derivative of the potential. All

of the contributions to the potential we will study go as a power of the Higgs fields. The

minimization is in general dominated by balancing two different power-law contributions

to the potential, so the second derivative of each of them at the minimum will be the same

up to factors of order 1. This is also equal to the physical Higgs mass (again up to factors

of order 1), so this allows us to estimate the physical parameters associated with a given

contribution to the potential, assuming it is important for determining the Higgs VEVs.

In the present case, we have

V ′′
dyn ∼ 1

(4π)4
(4πκ2−d)6/(3−d)v(4d−6)/(3−d) ∼ Λ6

(4πv)4
∼ ǫ4Λ2, (3.10)

where we have used the relations eqs. (3.5) and (3.6) in the last steps. If this contribution

to the potential is important for stabilizing the Higgs mass, we have

ǫ ∼
(mh

4πv

)1/3
. (3.11)

For numerical estimates, we use 4πv ≃ 2 TeV, which is the value of the technirho mass

in scaled-up QCD. For mh ≃ 125 GeV we then obtain ǫ ∼ 0.4 and Λ ∼ 800 GeV. In any
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stabilization where this contribution is important, the Higgsino mass eq. (3.8) is related to

the Higgs mass by

µdyn

mh
∼ 1. (3.12)

In other words, the dynamical superpotential gives a perfect parametric solution to the

µ-problem.

The interactions in eq. (3.1) are rather close to becoming strong at the scale Λ. This

coincidence problem will be addressed in section 3.3. One may also worry about performing

an expansion for small ǫu,d for such large values. However, observables are suppressed by

large powers of this suppression, making the estimates more plausible. However, these

estimates clearly have large uncertainties, and should be regarded as enlightened order-of-

magnitude estimates.

We now consider the contributions to the Higgs potential from SUSY breaking in the

strong sector. There can be A terms associated with the interaction eq. (3.1) of the form

∆L = κ2−d
u AuHuOd + κ2−d

d AdHdOu + h.c. (3.13)

These A terms are not strongly renormalized by the strong sector, since they are pro-

portional to a relevant coupling that is small in the UV. It is therefore natural to have

Au,d ∼ TeV. The A terms give a contribution to the Higgs potential

VA ∼ Λ3(H)

16π2
(Au +Ad) + h.c. ∼ H3/(3−d). (3.14)

Potential terms that are real parts of holomorphic functions such as this always have

unstable directions. For d < 3
2 , eq. (3.14) grows slower than H2 and we can get a stable

electroweak breaking minimum by balancing this against positive SUSY-breaking H2 terms

in the potential. We have

V ′′
A ∼ A

(4π)2
(4πκ2−d)3/(3−d)v(2d−3)/(3−d) ∼ AΛ3

(4πv)2
∼ ǫ2AΛ. (3.15)

If this contribution to the potential is important for stabilizing the Higgs mass, we have

ǫ ∼
(

Λ

A

)1/4
(mh

4πv

)1/2
. (3.16)

Note that A <∼ Λ, otherwise conformal symmetry breaking in the strong sector is dominated

by the A terms. The Higgsino mass eq. (3.8) is now related to the Higgs mass as

µdyn

mh
∼ ǫ

(

Λ

A

)1/2

. (3.17)

The Higgsino mass is not parametrically of order the Higgs mass, but the values of ǫ are

not very large, and we can easily get a viable model without an additional contribution to

the Higgsino mass.

– 9 –



J
H
E
P
0
8
(
2
0
1
2
)
1
1
1

Other types of SUSY breaking terms in the strong sector generally have large anoma-

lous dimensions. An exception are scalar mass-squared terms proportional to flavor gener-

ators (not including U(1)R), which are not renormalized. If we assume that SUSY breaking

originates at scales far above the TeV scale, these are the only SUSY breaking terms in

the strong sector that are naturally of order the TeV scale. (Other soft mass terms are

generally suppressed at an IR attractive fixed point, so this is a natural scenario.)

The non-renormalization of scalar mass-squared terms proportional to flavor generators

can be understood from the fact that these mass terms can be written as the D-term for

a flavor gauge superfield. Under conformal transformations, the flavor gauge fields have

dimension 0, so the soft mass-squared term have dimension 2. Similarly, the combination

κ2−dH is a chiral primary field of dimension 3 − d. This constraints how these fields

can appear in the effective theory below the scale Λ. (This is discussed in detail in the

appendix.) The resulting potential can be expanded in powers of the soft masses if these

are a subleading contribution to conformal symmetry breaking in the strong sector, and

we get

Vsoft ∼
1

16π2
m2

soft(4πκ
2−dH)2/(3−d). (3.18)

This contribution to the potential is not directly expressible in terms of the holomorphic

scale Λ(H), and the functional form is not calculable (see appendix).

In the models that we construct, the symmetries do not prevent a nontrivial potential

of this form. We can choose this potential to stabilize or destabilize H = 0 by choosing the

sign of m2
soft. Because we are assuming that the soft mass-squared terms are a subleading

contribution to conformal symmetry breaking in the strong sector, negative mass-squared

terms will not induce a vacuum instability in the strong sector. Eq. (3.18) grows more

slowly than H2 for d < 2, so we can obtain a stable electroweak breaking minimum by

m2
soft < 0 so that this contribution destabilizes H = 0 and balancing it against a positive

quadratic term for H. The Higgs mass scale is then

V ′′
soft ∼ m2

soft

Λ2

(4πv)2
∼ ǫ2m2

soft. (3.19)

To summarize, the contributions to the Higgs potential from the strong sector are given

by Vdyn, VA, Vsoft. In the above we briefly discussed balancing each of these with tree-level

Higgs mass terms

Vtree = m2
Hu|Hu|2 +m2

Hd|Hd|2 +Bµ(HuHd + h.c.) ∼ m2
HH2. (3.20)

However, other combinations are possible, and we will summarize all possibilities. We

neglect the Higgs quartic terms from the standard model gauge interactions, since these

are far too small to give mh ≃ 125 GeV.

• Vdyn and Vtree : This can work for 3
2 < d < 2. We obtain

ǫ ∼
(mh

4πv

)1/3
∼ 0.4, (3.21)
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which gives Λ ∼ 800 GeV for mh ≃ 125 GeV. The dynamically generated Higgsino

mass is related to the Higgs mass by

µdyn

mh
∼ 1, (3.22)

so this gives a perfect parametric solution to the µ-problem.

• VA and Vtree : This can work for 1 < d < 3
2 . We obtain

ǫ ∼
(mh

4πv

)1/2
(

A

Λ

)−1/4

∼ 0.25

(

A

Λ

)−1/4

, (3.23)

which gives Λ ∼ 500 GeV × (A/Λ)−1/4. We must have A/Λ <∼ 1, since A ∼ Λ

corresponds to conformal symmetry breaking dominated by A. Consistency requires

that Vdyn is subdominant, which occurs for

A

Λ
>∼
(mh

4πv

)2/3
∼ 0.16. (3.24)

The dynamically generated µ-term is given by

µdyn

mh
∼
(mh

4πv

)1/2
(

A

Λ

)−3/4

<∼ 1 (3.25)

where the bound follows from eq. (3.24). The dynamically generated µ-term is there-

fore parametrically too small in this limit. However, the suppression factors are not

large, and it is possible that the numerical value is sufficiently large.

• Vsoft and Vtree : This can work for any 1 < d < 2. We obtain

ǫ ∼
(mh

4πv

)1/2 (msoft

Λ

)−1/2
∼ 0.25

(msoft

Λ

)−1/2
. (3.26)

We must have msoft/Λ <∼ 1, since msoft ∼ Λ corresponds to conformal symmetry

breaking dominated by msoft. Consistency requires that Vdyn is subdominant, which

occurs for

msoft

Λ
>∼
(mh

4πv

)1/3
∼ 0.4. (3.27)

The dynamically generated µ-term is given by

µdyn

mh
∼
(mh

4πv

)1/2 (msoft

Λ

)−3/2
<∼ 1, (3.28)

where the bound follows from eq. (3.27).

• Vdyn and VA : This can work for 3
2 < d < 2. We obtain

ǫ ∼
(

A

Λ

)1/2

∼
(mh

4πv

)1/3
∼ 0.4. (3.29)

Because Vdyn is part of the stabilization of the potential, we have µdyn ∼ mh.
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• Vdyn and Vsoft : This can work for any 1 < d < 2. We choose m2
soft < 0 to destabilize

H = 0, and Vdyn provides the stabilizing potential. We obtain

ǫ ∼ msoft

Λ
∼
(mh

4πv

)1/3
∼ 0.4. (3.30)

We also have µdyn ∼ mh.

• VA and Vsoft : This combination is not expected to work because VA is always desta-

bilizing and grows as a larger power of H than Vsoft.

The spectrum of the strong sector is approximately supersymmetric in all of these cases,

even the ones in which the Higgs VEVs are determined by SUSY breaking interactions.

The reason is that we are always choosing parameters so that the Higgs VEVs are the

dominant source of conformal breaking in the strong sector. This is motivated by the

fact that supersymmetric masses in the strong sector naturally give a stable vacuum for

the strong sector. If SUSY breaking dominates the breaking of conformal invariance in

the strong sector, this stability is lost in the simplest models (recall the discussion in

section 2.1).

3.2 Electroweak preserving masses

We now consider the case where there is an electroweak-preserving contribution to the mass

scale in the strong sector that is the dominant source of conformal symmetry breaking.

This can arise naturally from the VEV of a singlet Higgs field S coupled to the CFT via a

superpotential interaction similar to eq. (3.1):

∆W = κ2−d
S SOS , (3.31)

where OS is a CFT operator with the same dimension d as Ou,d. Soft SUSY breaking

naturally generates a VEV for S that can be somewhat larger than v. It is also possible

to have a µ-like term ∆W ∼ OS , but in general this would not be expected to give mass

terms with the same order of magnitude as the contribution from the Higgs VEVs from

eq. (3.1).

In the limit where we neglect 〈Hu,d〉 the strong scale is given by

Λ3−d
0 ∼ 4πκ2−d

S 〈S〉. (3.32)

This is an arbitrary parameter of the theory.

The dominant source of conformal symmetry breaking in the strong sector is assumed

to come from the singlet VEV, which is supersymmetric. We therefore begin by analyzing

the strong sector in the SUSY limit. The holomorphic strong scale is

Λ(H) = Λ0

[

1 + c1ǫuǫd
16π2HuHd

Λ2
0

+ c2

(

ǫuǫd
16π2HuHd

Λ2
0

)2

+ · · ·
]

. (3.33)
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where c1,2 are order-1 numbers calculable in specific models. The condition that the Higgs

contribution to the dynamical scale is subleading is then

δH ∼
(

ǫ
4πv

Λ0

)2

<∼ 1. (3.34)

This is the (square of) the expansion parameter in eq. (3.33). Note that having δH < 1

always requires some parametric tuning, since minimizing the potential with c1,2 ∼ 1 gives

δH ∼ 1. To get δH ≪ 1 we need a smaller quadratic term, which requires unnatural

cancellations. In fact, δH is precisely the measure of fine tuning in these models. Just as

in composite Higgs models, we are accepting a mild tuning as the price for a model that

has a light Higgs particle and good precision electroweak fit.

We again have a dynamical superpotential of the form eq. (3.4). The corresponding

supersymmetric contribution to the Higgs potential is

Vdyn =

∣

∣

∣

∣

1

16π2

∂Λ3(H)

∂H

∣

∣

∣

∣

2

∼ (ǫuǫd)
2
[

Λ2
0(H

†
uHu +H†

dHd)

+ 16π2ǫuǫd(H
†
uHu +H†

dHd)(HuHd + h.c.) + · · ·
]

. (3.35)

Note that we know the functional form of the potential because we know the functional

form of the holomorphic scale Λ(H). There are corrections to the H Kähler potential, but

they are smaller than the tree-level H kinetic term.

We would like to consider the possibility that eq. (3.35) gives the leading contribution

to the Higgs quartic. This scenario always requires some tuning, because it requires the

H2 terms to be somewhat smaller than in eq. (3.35) so that the Higgs VEV is a subleading

contribution to Vdyn. However, the model can work with only very mild tuning. If this

potential is part of the stabilization of the Higgs VEVs, the Higgs mass parameter is

V ′′
dyn ∼ (ǫuǫd)

3 (4πv)2 . (3.36)

For a Higgs mass of 125 GeV this gives (ǫuǫd)
1/2 ∼ 0.4 as above. The measure of tuning

is precisely the expansion parameter δH in eq. (3.34). There is a trade-off between natu-

ralness and predictability, but we get a plausible scenario for moderately small values of

δH , e.g. δH ∼ 0.2.

The quartic Higgs interaction in eq. (3.35) is not positive definite. The full dynami-

cally generated potential is positive definite, so the question is whether there is a stable

electroweak-breaking minimum with VEVs sufficiently small that the quartic term domi-

nates. It is easy to see there is such a local minimum even in the limit where the SUSY

quartic vanishes, for a sufficiently large Bµ term of the correct sign. Specifically, for

the potential

V = m2
HuH

†
uHu +m2

HdH
†
dHd −Bµ(HuHd + h.c.) (3.37)

+ λ(H†
uHu +H†

dHd)(HuHd + h.c.) (3.38)
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we find a local stable electroweak breaking minimum for HuHd > 0 provided that

Bµ >
5λv2

8

[

1 +
1

5
cos(4β)

]

. (3.39)

This solution is in general only a local minimum, since there is an unstable D-flat direction

|Hu| = |Hd|, HuHd < 0. The global minimum can be far away in field space, so at least

some of these solutions are expected to be cosmologically acceptable. We will not explore

this issue further here.

The dynamical superpotential also generates a Higgsino mass

µdyn ∼ ǫuǫdΛ0. (3.40)

Eq. (3.36) then implies that

µdyn

mh
∼ 1

δ
1/2
H

. (3.41)

The dynamically generated µ-term is somewhat larger than the Higgs mass, which still

gives a good solution to the µ-problem.

We now turn to SUSY breaking contributions to the potential. Because we are as-

suming that the Higgs VEVs are a subleading contribution to the potential, the potential

can always be expanded in terms of gauge-invariant combinations of Higgs fields, so the

dominant contributions will be qualitatively similar to Vdyn discussed above. In particular,

we always require a tuning of order δH given by eq. (3.34) to make the Higgs contribu-

tion subleading.

Specifically, we concerned with A terms of the form

∆L = κ2−d
S ASSOS + h.c. (3.42)

and scalar mass-squared terms m2
soft proportional to flavor generators. These give rise to

a potential of the form

VA,soft ∼ ξA,soft
Λ4
0

16π2

[

1 +

(

4πǫH

Λ0

)2

+

(

4πǫH

Λ0

)4

+ · · ·
]

. (3.43)

We assume that the SUSY breaking terms are a subleading contribution to conformal

symmetry breaking in the strong sector, so we can expand the suppression factor in powers

of the SUSY breaking masses:

ξA ∼ AS

Λ0
, (3.44)

ξsoft ∼
m2

soft

Λ2
0

. (3.45)

VA is the real part of a holomorphic function, and therefore cannot stabilize the Higgs

VEV. (The H2 terms in VA are proportional to HuHd + h.c. and the quartic terms are
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proportional to (HuHd)
2+h.c.) As with Vdyn, we need parametric tuning of order δH given

by eq. (3.34) to make the Higgs VEV contribution subleading.

We will assume that either Vdyn or Vsoft dominates the Higgs quartic. We then have

m2
h ∼ λv2 ∼ 16π2ξdyn,softǫ

4v2 (3.46)

where ξsoft is given in eq. (3.45) and

ξdyn ∼ ǫ2. (3.47)

The two possible origins for the Higgs quartic are then as follows.

• Vdyn : This requires

ǫ ∼
(mh

4πv

)1/3
∼ 0.4. (3.48)

The scale Λ0 depends on the degree of fine-tuning:

Λ0 ∼ δ
−1/2
H ǫ4πv ∼ 800 GeV × δ

−1/2
H . (3.49)

• Vsoft : This requires

ǫ ∼
(mh

4πv

)1/2
(

msoft

Λ0

)−1/2

∼ 0.25

(

msoft

Λ0

)−1/2

. (3.50)

Requiring that the soft mass contribution dominates Vdyn, we obtain

msoft

Λ0

>∼
(mh

4πv

)1/3
∼ 0.4. (3.51)

We then have

Λ0 ∼ 500 GeV × δ
−1/2
H

(

msoft

Λ0

)−1/2

<∼ 800 GeV × δ
−1/2
H . (3.52)

3.3 Coincidence problem

A potential problem with this framework is that κu,d in eq. (3.1) are dimensionful parame-

ters that must be near the TeV scale in order to have a successful model. This is analogous

to the µ-problem in the MSSM, where a SUSY-preserving mass must be of order the SUSY

breaking masses. We have seen that in our models a Higgsino mass of the correct size

can be dynamically generated, so there is no need for a µ-term, so we have traded one

coincidence problem for another.

Here we point out that the mass scale κu,d can naturally be near the TeV scale by a

generalization of the Giudice-Masiero mechanism [6, 7]. We focus on the minimal model

discussed in section 2.1 and let us consider a SUSY breaking field X with a nonzero F -term

〈FX〉 in the hidden sector. The visible sector SUSY breaking including msoft and mH is

given by

MSUSY ∼ 〈FX〉
Mmed

, (3.53)
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where Mmed is the mediation scale. In addition, we assume that the hidden sector contains

a field Y with the following expectation values:

〈Y 〉 ∼ 〈FX〉1/2, (3.54)

and 〈FY 〉 sufficiently small. Then the interaction eq. (3.1) can be generated by the super-

potential

Weff ∼ 1

M
1/2
med

Y HΨiΨ̃j , (3.55)

and we have κ ∼ MSUSY. The correct size of 〈Y 〉 can be realized with the hidden sector

superpotential:

Whid = c1X +
c2

Mmed
Y 4, (3.56)

where c1,2 are order-1 coupling constants.

Another possibility to solve the coincidence problem is to consider strong sectors where

the operators Ou,d have dimension d ≃ 2 [9]. This does not occur in strongly-coupled SUSY

QCD models, but is perfectly allowed in more general strong theories. In such models,

the couplings κu,d are nearly dimensionless, requiring a milder coincidence. However, we

have seen that we need this coupling to be rather strong at the strong scale Λ: ǫ ∼ 0.4,

meaning that the coupling is about half its strong-coupling value. This means that in

general the coupling is running fast at the scale Λ, and we still have a coincidence problem.

Alternatively, we could assume that the couplings κu,d are slightly relevant and approach

a strong fixed point, giving a robust explanation for the large value of the coupling. At

this fixed point the Higgs fields Hu,d become conformal operators with dimension near 1.

This implies that they are nearly decoupled from the CFT, in contradiction with what is

required for phenomenology. We conclude that it is not clear whether d ≃ 2 really gives a

viable theory without a coincidence problem.

4 Precision electroweak tests

We now consider the constraints on this scenario from precision electroweak tests. Our

strong sector does not couple directly to the quarks and leptons, and therefore the only

important corrections are the S and T parameters [16, 17]. (In particular, the correction to

Z → b̄b is negligible.) These are simply effective operators that arise from integrating out

the strong sector. We cannot perform a precise computation, but we can estimate them

using NDA.

4.1 T parameter

We now estimate the T parameter, which gives the strongest constraint on this class

of models.

We first consider models without electroweak-preserving masses in the strong sector,

as discussed in section 3.1. We assume that the strong sector has a custodial symmetry

in the limit where the Higgs couplings are turned off, as in the models of section 2.1. In

general, the Higgs couplings do not preserve the custodial symmetry (κu 6= κd), and it is
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not natural to have vu = vd. This means that custodial symmetry is generically broken

in the strong sector. This leads to large corrections to the T parameter, but these can be

made sufficiently small with mild tuning. The strong sector will have custodial symmetry

if accidentally κ2−d
u vu ≃ κ2−d

d vd. The tuning required is measured by

δC =
1

2

κ2−d
u vu − κ2−d

d vd

κ2−d
u vu + κ2−d

d vd
. (4.1)

The contribution to the T parameter from the strong sector is estimated by the contribution

of N doublets of fermions with electroweak breaking masses of order Λ, with custodial

breaking mass splitting of order ∆m ∼ δCΛ. This is similar in spirit to estimating the short-

distance contribution to the S parameter in technicolor models using the contribution from

“constituent techniquarks,” which is known to give an accurate answer both parametrically

and numerically. In the present case, this gives

∆T ≃ N(∆m)2

12πs2W c2Wm2
Z

∼ 0.4

(

N

4

)

( ǫ

0.4

)2
(

δC
0.1

)2

. (4.2)

We see that the corrections to the T parameter are moderate at the price of roughly 10%

tuning barring possible order-1 corrections to the above estimate from the strong dynamics.

We next consider the case where the electroweak-preserving masses in the strong sector

dominate. The important parameter in this case is δH , the square of the ratio of the

electroweak-preserving and electroweak breaking masses (see eq. (3.34)). This ratio can

only be made small by tuning, and δH is a measure of this tuning. In this case, we estimate

the tuning by N doublets of fermions with electroweak breaking mass ∆m ∼ δ
1/2
H Λ0 [18]:

∆T ≃ 13

480πs2W c2Wm2
Z

N∆m4

Λ2
0

∼ 1.2

(

N

4

)(

ǫ

0.4

)2( δH
0.1

)

, (4.3)

where we have used

(∆m)4

Λ2
0

∼ δ2HΛ2
0 ∼ δHǫ2(4πv)2. (4.4)

Note that the reduction in ∆T is only linear in δH , so it parametrically more tuning is

required to get a sufficiently small T parameter in this case. Of course, all of these estimates

have order-1 uncertainties, but the tuning required to get a phenomenologically viable T

parameter is significantly less than the 1% (or less) tuning of the MSSM.

4.2 S parameter

We estimate the contribution to the S parameter from N doublets of fermions with elec-

troweak breaking masses. We then obtain

∆S ∼ N

6π
∼ 0.2

(

N

4

)

. (4.5)

In the case where electroweak preserving masses dominate, the S parameter is suppressed

by a factor of δH compared to the above estimate.
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We expect the strong sector contributions to both the S and T parameters to be

positive. This is true for perturbative contribution from electroweak breaking multiplets,

and also holds for holographic theories where S and T are calculable. This direction allows

the largest deviation from the standard model in the S-T plane. It is also worth keeping

in mind that it is quite possible that the estimates for the S and T parameters above are

too large, either because our estimate for ǫ is too large or because the order-1 factors are

small. We conclude that it is very plausible that a good fit can be obtained in these models

at cost of a moderate tuning.

5 LHC signatures

In this subsection we consider the signatures of this model at the LHC.

5.1 h → γγ decay

The strong sector contains charged particles with a substantial coupling to the Higgs boson,

and therefore gives an important contribution to h → γγ. This is one of the important

channels in which the 125 GeV Higgs signal is present, and will be probed in the coming

year of LHC running. Because the strong sector is approximately supersymmetric, the

leading correction to h → γγ is in fact calculable [19]. This is because in the low-energy

effective theory below the scale Λ, the strong sector contribution can be parameterized by

the effective interaction

Leff = − 1

4e2
FµνFµν , (5.1)

The low-energy effective coupling depends logarithmically on Λ(H) due to the renormal-

ization group. Above the scale Λ(H), the renormalization group equation is given by the

NSVZ beta function

µ
d

dµ

(

1

e2

)

= − 1

16π2

∑

r

Q2
r(1 + γr), (5.2)

where

γr = µ
d

dµ
lnZr (5.3)

is the anomalous dimension of the chiral superfield r. The anomalous dimension term

is negligible except for the strongly coupled fields. Assuming that the operators Ou,d in

eq. (3.1) are bilinear “meson” operators of a SUSY QCD theory, the anomalous dimension

is related to the dimension of the operators by

d = 2− γ. (5.4)

The beta function is therefore a constant above and below the threshold Λ, and the low-

energy coupling depends on the scale Λ(H) via the difference in the beta functions above

and below the scale Λ(H):

1

e2
= −3− d

16π2

(

∑

r

Q2
r

)

ln Λ(H) + · · · . (5.5)
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For example, in the minimal model of section 2.1 we have

∑

r

Q2
r = 8(1 + 4b2), d =

3

2
, (5.6)

where b is the B − L charge.

In models where the dynamical scale is determined entirely by the Higgs VEVs, we

have (see eq. (3.5))

Λ6−2d(H) = Λ6−2d
0

H0
uH

0
d

vuvd
, (5.7)

where Λ0 is the value of the dynamical scale when the Higgs fields are replaced by their

VEVs. For models where the masses in the strong sector are dominantly electroweak

singlet, we have

Λ(H) = Λ0

[

1 + δH
H0

uH
0
d

vuvd
+ · · ·

]

. (5.8)

For the first type of model we have

Leff =
e2

16π2

1

4

(

∑

r

Q2
r

)

cos(α+ β)

sin 2β
× h

v
FµνFµν , (5.9)

where we have canonically normalized the photon fields and used the standard definitions

H0
u =

1√
2
(v sinβ + h cosα+ · · · ) , (5.10)

H0
d =

1√
2
(v cosβ − h sinα+ · · · ) . (5.11)

The decay width is then given by (see e.g. ref. [20])

Γ(h → γγ) ∝
∣

∣

∣

∣

∣

ASM +
1

2

(

∑

r

Q2
r

)

cos(α+ β)

sin 2β

∣

∣

∣

∣

∣

2

, (5.12)

where ASM ≃ −6.5. For the second type of model, we obtain the same effective coupling

multiplied by an additional factor of 2(3− d)δH .

For the minimal model with b = 0 and cos(α + β)/ sin 2β ∼ 1, the width is reduced

by 1
7 . On the other hand, with b = 1, there is an enhancement by a factor of 4. The

charge assignments in the strong sector are rather restricted if we impose the requirement

that there are no states with fractional electromagnetic charges, which would give rise to

cosmologically dangerous stable charged particles. For example, having only one pair of

electroweak doublets in the SU(2) model, the smallest B − L charge we can have for the

electroweak singlets is ±1/2, and we obtain the same value for h → γγ. However, in models

with singlets, the correction to h → γγ may be significantly reduced at the cost of a mild

tuning. We conclude that generically we expect a significant deviation from the standard

model rate for h → γγ, and either an increase or decrease is possible.
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5.2 TeV resonances

The strong sector has hadronic resonances at the scale Λ ∼ 800 GeV. This scale is signifi-

cantly smaller than the scale 4πv ∼ 2 TeV we expect for a technicolor theory because the

Higgs is weakly coupled to the strong sector. In this section, we outline some promising

LHC signals of these resonances.

The strong sector is approximately supersymmetric, so the heavy resonances will ap-

pear in approximately degenerate supermultiplets. For example, the vector multiplet will

also contain a scalar and a fermion. If R-parity is a symmetry, there will be R-parity even

and odd resonances. The R-parity even resonances can be singly produced, and we will

focus on their phenomenology here.

We focus on models where the strong sector has an SU(2)L×SU(2)R global symmetry

that is weakly gauged by the standard model. To get a good precision electroweak fit, the

masses induced by the Higgs VEVs must be chosen to be approximately invariant under the

custodial SU(2)C , the diagonal subgroup of SU(2)L × SU(2)R. The full SU(2)L × SU(2)R
is nonlinearly realized by the Higgs fields Hu,d at the strong scale Λ. In fact, since we are

considering a supersymmetric theory, we have a nonlinear realization of the complexified

group [21]. Couplings to matter fields in arbitrary representations of the (complexified)

SU(2)C are discussed in ref. [22].

In models with unification (but no custodial symmetry), the strong fields come in

complete SU(5) multiplets. A good precision electroweak fit requires that the masses in

the strong sector be approximately electroweak singlet, but the doublet and triplet masses

need not be approximately the same. The resonances in the strong sector therefore come

in complete multiplets of the standard model gauge group SU(3)C × SU(2)W ×U(1)Y .

We will focus our discussion in this section on the models with custodial symmetry,

since these require less tuning. A natural candidate for the lightest resonance would be

a vector supermultiplet in the 1 + 3 representation of SU(2)C , which would contain the

singlet scalar σ, the triplet scalar a0 and the analog of the QCD ω and ρ mesons. We will

not make the group theory structure explicit in the formulas below, since we are interested

only in order-of-magnitude estimates.

Symmetries allow a presence of a kinetic mixing term between the Higgs fields and the

singlet scalar component σ of the resonance multiplet:

∆L ∼ Λ

4πv
∂µh∂µσ ∼ ǫ∂µh∂µσ. (5.13)

Electrically neutral scalar resonances can therefore be produced by gluon fusion with a cross

section of order ǫ2 ∼ 0.1 times the gluon fusion cross section for producing a standard-

model Higgs of the same mass. Through a similar mixing term for the charged Higgs boson,

charged scalar resonances a±0 can be produced by gb → a−0 t with a cross section of order

ǫ2 times the cross section for a reference charged elementary Higgs of the same mass [25].

For vector resonances, there can be a mixing term between standard model vector bosons

Vµ (Zµ, or Wµ) and the vector component ρµ of the resonance of the form

∆L ∼ gΛ2

4π
V µρµ (5.14)
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where g is the Vµ coupling constant. This allows single production of vector resonances

via Drell-Yan processes with a mixing suppression of order g/4π. The production rate is

therefore g2/(4π)2 ∼ 10−2 times that of a sequential W ′ or Z ′ of the same mass.

We now discuss decays. The largest couplings are to the Higgs fields, and longitudinal

W and Z particles which are equal to those of the corresponding Goldstone fields by the

equivalence theorem. The matrix elements of the decays of either the scalar or vector

mesons to pairs of Higgs fields or Goldstones are all given by

M ∼ Λ3

4πv2
∼ 4πǫ2Λ. (5.15)

The width of the heavy resonances is therefore suppressed by ǫ4 ∼ 10−2, and we expect them

to be narrow. If we can neglect phase space suppression, we expect the decays to different

Higgs particles and Goldstones to be comparable. A particularly interesting final states

include AA followed by A → Zh followed by either h → WW or h → b̄b. ButWLWL, ZLZL,

hh, and H+H− are all worth further study. The decay to photons is highly suppressed

because photons do not have longitudinal polarizations: Γγγ/m ∼ (e/4π)4 ∼ 10−4.

We note that this class of models is another case where a stronger Higgs sector leads

to resonant production of heavy standard-model particles. The 2-Higgs doublet model is

a good simplified model for many of these searches [26, 27].

The LHC experiments have already put constraints on such resonances from resonant

WZ production followed by decays into 3 leptons [28, 29]. The bound on the cross section

times the branching ratio obtained there can be translated into the constraints on the ρ-like

vector resonance. This has been done in, for example, refs. [30, 31]. By comparing with the

corresponding parameter points (gρ ∼ 4π and gρππ ∼ 4πǫ2 in ref. [30], or mρ ∼ 800GeV

and aρ ∼ ǫ in ref. [31]), we can see that the point is close to the current LHC bound.

Therefore, the discovery of such a resonance could happen soon in these models.

6 Conclusions

In this paper we have proposed models that address the naturalness problem of super-

symmetric models by partial Higgs compositeness. The models consist of the MSSM or

NMSSM coupled to a strong conformal sector via standard model gauge interactions and

Higgs couplings of the form eq. (3.1). The strong superconformal sector allows large Higgs

couplings without Landau poles in the UV. Vacuum expectation values of the elementary

Higgs fields Hu,d and/or singlet Higgs fields break conformal symmetry in the strong sec-

tor. The strong sector has a mass scale of order 800 GeV, and generates corrections to the

Higgs potential that can explain a 125GeV Higgs mass without any fine-tuning. The Higgs

coupling also generates a Higgsino mass of order the Higgs mass, so there is no need for a

µ-term. On the other hand, the Higgs couplings are dimensionful relevant couplings, and

the fact that they are near the TeV scale requires an explanation. As an example, we show

that a generalization of the Giudice-Masiero mechanism can give a natural explanation.

Unlike technicolor theories, the Higgs fields are only partially composite so that we

can naturally have a top-quark Yukawa coupling that is order 1. Even though electroweak
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symmetry is broken by the VEVs of weakly-coupled Higgs fields, there are in general large

corrections to the T parameter coming from the Higgs VEVs, which must be tuned away

to get a good precision electroweak fit. The tuning is of order 10%, significantly better

than the 1% (or worse) tuning in typical supersymmetric models.

The models predict a rich phenomenology that differs in interesting ways from that of

the MSSM. There are generally large corrections to the h → γγ width, either suppression

or enhancement depending on the charge assignments of the strong sector. There is also an

approximately supersymmetric spectrum of hadrons at the scale ∼ 800 GeV that decay to

pairs of MSSM Higgs particles or longitudinally polarized W and Zs. We believe that this

is a plausible framework for natural supersymmetry that is well worth further exploration.
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A SUSY breaking in the conformal sector

In this appendix, we discuss the contribution of soft SUSY breaking terms in the strong

sector to the Higgs potential. Specifically, we consider mass-squared terms proportional

to generators of the flavor group and exhibit the conditions under which these lead to a

contribution to the Higgs potential of the form eqs. (3.18) and (3.43).

We consider SU(N) SUSY QCD in the conformal window, i.e. 3
2N ≤ F < 3N , where

F is the number of flavors. We begin with the case N ≥ 3, and discuss N = 2 separately

below. We add mass terms for all quarks:

W = Q̃TMQ. (A.1)

In our models, M is proportional to Higgs and/or singlet fields, and the scale of conformal

symmetry breaking will be determined self-consistently by the VEVs of these fields.

A straightforward way to see that the symmetries of the problem do not prevent a

potential of the form eqs. (3.18) and (3.43) is to compute the 1-loop potential in the

perturbative case. To be concrete, we consider a model with custodial symmetry:

W =
∑

i

yiHQ̃iQi. (A.2)

The chiral superfields Q and Q̃ are fundamental and anti-fundamental representation of

the SU(N) gauge group, and i runs from one to F/2. The one-loop effective potential is
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given by

V1−loop =
N

(4π)2

∑

i

[

tr

{

1

2
(y2iH

†H +m2
i )

2

(

ln
y2iH

†H +m2
i

µ2
− 3

2

)}

+ tr

{

1

2
(y2iH

†H + m̃2
i )

2

(

ln
y2iH

†H + m̃2
i

µ2
− 3

2

)}

− tr

{

(y2iH
†H)2

(

ln
y2iH

†H

µ2
− 3

2

)}]

. (A.3)

Here we added soft masses m2
i and m̃2

i for Qi and Q̃i, respectively. The scale µ can take

an arbitrary value. The contribution at the linear order in m2
i or m̃2

i is given by

V1−loop =
∑

i

tr

{

y2iN

(4π)2
(m2

i + m̃2
i )|H|2

(

ln
y2i |H|2
µ2

− 1

)}

+O(m4). (A.4)

One can see that the potential is generically non-vanishing even when the soft masses are

proportional to generators of the flavor group. In particular, it survives when
∑

i

(m2
i + m̃2

i ) = 0, (A.5)

for a generic set of yi.

We can get a better understanding of this with a non-perturbative analysis based on

symmetries, as follows. Below the scale M , all the quarks get massive, and the low-energy

theory is pure SUSY Yang-Mills. This theory confines, generating a dynamical scale Λ.

We have

d = dim(Q̃Q) = 3

(

1− N

F

)

(A.6)

and therefore

Λ ∝ (detM)1/F (3−d) = (detM)1/3N . (A.7)

In a strongly coupled theory (F ≃ 2N) the proportionality constant will be order 1.

We now consider the effects of soft SUSY breaking in the strong sector. The only soft

SUSY breaking terms that are not renormalized are mass-squared terms proportional to

generators of the flavor group SU(F )× SU(F )×U(1). These can be parameterized by the

D-term of SU(F )× SU(F )×U(1) gauge superfields X, X̃

X = θ4m2, X̃ = θ4m̃2. (A.8)

The flavor gauge fields must satisfy

tr(X + X̃) = 0 (A.9)

to project out the anomalous U(1). We write the kinetic term as

Lkin =

∫

d4θ
[

Q†eXQ+ Q̃†eX̃Q̃
]

, (A.10)
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where we suppress the gauge fields. The theory is therefore invariant under the flavor gauge

transformations

Q 7→ UQ, Q̃ 7→ ŨQ̃ (A.11)

and

e−X 7→ Ue−XU †, e−X̃ 7→ Ũe−X̃ Ũ † (A.12)

provided we let M transform as

M 7→ ŨT−1MU−1. (A.13)

Here U, Ũ are complexified flavor transformations, so U † 6= U−1.

We are interested in the effective Kähler potential below the scale Λ. This must be

invariant under the flavor gauge transformations above. Note that

S = e−XM †e−X̃T

M 7→ USU−1. (A.14)

We can use this to construct the invariants

tr(Sn) = tr[(M †M)n]− n tr[X(M †M)n + X̃T (MM †)n] +O(X2). (A.15)

The most general dynamical Kähler potential is a homogeneous function of these variables

with the degree of homogeneity fixed by dimensional analysis. As long as the symmetries

of the mass terms m2, m̃2 and the mass term M do not force the O(X) term in eq. (A.15)

to vanish, we expect a nonzero potential of the form eqs. (3.18) and (3.43).

We also need to take into account the constraints of superconformal invariance. The

mass M in eq. (A.1) is a chiral primary field with dimension 3 − d. We can write a

superconformal invariant kinetic term for a chiral primary field Φ with dimension 1 as
∫

d4θΦ†Φ. However, we cannot define Φ as a power of the matrix M because this does not

have a well-defined transformation under flavor gauge symmetries. The holomorphic scale

Λ is a chiral superfield of dimension 1 (see eq. (A.7)), but it is a singlet under the flavor

symmetry, and
∫

d4θΛ†Λ does not depend on the flavor gauge fields X, X̃. However, we

can define the quantity

∆a
b =

∂ det(M)

∂Mãa
Mãb, (A.16)

where a, b, . . . and ã, b̃, . . . are U(F ) × U(F ) flavor indices. ∆ ∼ MF is a chiral superfield

that transforms under flavor in the adjoint representation, i.e. ∆ 7→ U∆U−1. The field

Φ = ∆1/F (3−d) ∼ ∆1/3N (A.17)

is therefore a chiral primary field of dimension 1, and we can write the conformally invariant

and flavor gauge invariant kinetic term

Keff = tr(Φ†eXΦe−X). (A.18)
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Note that in 4D the kinetic term for a complex scalar with gauge interactions is conformally

invariant, with the gauge fields dimensionless. Note that Keff can be written in terms of

the invariants eq. (A.15) by writing the flavor epsilon tensors in the definition of ∆ in terms

of sums of Kronecker deltas. Keff is not the unique term invariant under all symmetries,

but this is sufficient to show that the symmetries do not force the effective Kähler term to

be independent of X.

It is straightforward to repeat the above discussion for the case of a strong SU(2) gauge

group. The superpotential has the form

W = QTMQ (A.19)

where MT = −M . The theory with F favors (2F fundamentals) has flavor group is

SU(2F ). Denoting the flavor gauge superfield by X, we can again define S as in eq. (A.14),

which transforms as shown with U a complexified SU(2F ) transformation. We therefore

have the invariants

tr(Sn) = tr[(M †M)n]− 2n tr[X(M †M)n] +O(X2). (A.20)

It is straightforward to write X-dependent Kähler terms that are conformally invariant as

well as flavor gauge invariant.
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