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1 Introduction

When it was first introduced in its modern form [1], the question “Does unitarity and

scale invariance imply conformal invariance?” was mostly of academic interest. Recent

work [2, 3] showed that scale-invariant theories display renormalization group (RG) flow re-

current behaviors and have novel implications for beyond the standard model phenomenol-

ogy [4].1 Thus, the existence of scale-invariant theories has deep consequences, especially

with respect to the intuitive understanding of RG flows as the integrating out of degrees

of freedom, and the c-theorem. “Does unitarity and scale invariance imply conformal in-

variance?” is therefore not simply a question of academic interest, and to answer it is of

utmost importance.

1For other explorations of scale without conformal invariance see refs. [5–16].

– 1 –



J
H
E
P
0
8
(
2
0
1
2
)
0
8
5

In refs. [2, 3] it was shown that scale does not necessarily imply conformal invariance

in a unitary quantum field theory (QFT) with enough scalars and fermions at two loops.

However, no completely trustworthy examples have been discovered at this order. The

failure to find concrete examples at two loops can be understood using the results of

Osborn [17, 18] and Jack & Osborn [19]. In ref. [19] it is argued that, in the weak-coupling

regime, RG flows are gradient flows at two loops. Hence, even though scale does not

necessarily imply conformal invariance at two loops, the beta function monomials which

could lead to concrete scale-invariant theories have coefficients that conspire to make all

solutions conformal. Nothing forbids this from occurring order by order in perturbation

theory. Therefore, either scale implies conformal invariance — and the coefficients of

the beta function monomials are tightly constrained, forcing all would-be scale-invariant

solutions to be conformal — or it does not — and recurrent behaviors exist. Either way,

the answer to the original question leads to important implications (unexpected structure

in the beta functions or the existence of recurrent behaviors) and the question deserves to

be fully investigated.

In this paper we compute the necessary three-loop contributions to the beta functions

to determine if the plausible scale-invariant solutions found in d = 4 − ε are eliminated

at three loops in the MS scheme, i.e., within a well-defined renormalization scheme. Our

results show that the scale-invariant solutions are robust at three loops, and thus open the

door for a d = 4 scale-invariant example. Indeed, since scale implies conformal invariance

in pure gauge theories at weak coupling [1, 19], the addition of gauge bosons in d = 4 should

not qualitatively change the d = 4− ε results. For example, the beta function monomials

exhibited below, which lead to an obstruction to the gradient flow interpretation of the RG

flow, are not modified in any way by the introduction of gauge bosons. However, to fully

answer the question in d = 4, one needs the complete three-loop beta functions of theories

with matter and gauge fields, a computation we hope to undertake soon.

It is important to point out that the c-theorem discussed in refs. [17–19], which leads

to dc/dt = −GIJβIβJ with GIJ positive-definite in the weak coupling regime, is too re-

strictive. Indeed, following Osborn [18], the all-loop proof of the c-theorem, which implies

the existence of a monotonically decreasing c-function which is constant only at confor-

mal fixed points, must be modified once spin-one operators of dimension three are taken

into account. This is exactly the case for non-conformal scale-invariant theories, since the

virial current is such an operator. Taking into account the virial current, the analysis is

modified as described in ref. [18, section 3], and leads to dc/dt = −(GIJ + · · · )βIBJ where

BI = βI − QI and βI = QI for non-conformal scale-invariant theories. Thus, in its most

general form the work of Osborn [17, 18] and Jack & Osborn [19] implies the existence of a

c-function which is constant at conformal fixed points (βI = 0) as well as on scale-invariant

trajectories (BI = 0). This is in accord with our three-loop results.

The paper is organized as follows: In section 2, we discuss the ε expansion in more

detail, showing why the scale-invariant solutions can be destabilized at three loops. We then

generate the most general three-loop beta function for the Yukawa coupling and determine

which diagrams contribute to the virial current. We finally compute the beta function

coefficients of the relevant diagrams and verify that the virial current does not vanish at

– 2 –
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three loops, thus demonstrating the existence of scale-invariant theories in d = 4 − ε in

a well-defined renormalization scheme. Other plausible examples in d = 4 − ε spacetime

dimensions exhibiting limit cycles are discussed and it is conjectured that limit cycles and

ergodicity are generic in more general theories. In section 4, we examine scheme changes

in theories with many couplings and also on scale-invariant solutions, showing that, as

expected, physical parameters in d = 4 do not depend on the renormalization scheme. In

section 5 we elucidate the stability properties of scale-invariant solutions and explicitly

verify that the example of section 2 exhibits both attractive and repulsive directions. In

section 6 we return to the arguments of Osborn [17, 18] and Jack & Osborn [19] and

show that they are not in contradiction with our results. Finally, in section 7 we contrast

our cyclic trajectories with the trajectories of ref. [20] which were recently discussed in

connection with the c-theorem in ref. [21] (see also ref. [22]).

2 Establishing scale invariance

The results of refs. [2] were presented in an expansion in ε, similar in spirit to the expansion

that reveals the Wilson-Fisher fixed point. Let us recall here how that works. We consider

a model with real scalar fields φa and Weyl spinors ψi with quartic scalar self-couplings

λabcd and Yukawa couplings ya|ij . The equations for scale invariance are

βabcd(λ, y) = Qabcd ≡ −Qa′aλa′bcd −Qb′bλab′cd −Qc′cλabc′d −Qd′dλabcd′ , (2.1a)

βa|ij(λ, y) = Pa|ij ≡ −Qa′aya′|ij − Pi′iya|i′j − Pj′jya|ij′ , (2.1b)

where βabcd = −dλabcd/dt and βa|ij = −dya|ij/dt are the beta functions for the coupling

constants,2 Qab is antisymmetric and Pij anti-Hermitian. To proceed, we solve eqs. (2.1)

for the coefficients of λ, y,Q and P in an ε expansion,

λabcd =
∑
n≥1

λ
(n)
abcdε

n, ya|ij =
∑
n≥1

y
(n)
a|ijε

n− 1
2 , Qab =

∑
n≥2

Q
(n)
ab ε

n, Pij =
∑
n≥2

P
(n)
ij εn . (2.2)

Scale-invariant solutions are solutions of eqs. (2.1) with non-vanishing Q and/or P .

2.1 Limit cycle in d = 4 − ε: model with 2 scalars and 2 fermions

For the remainder of this section we will work with a theory of two real scalars and two

Weyl fermions, canonical kinetic terms and interactions described by

V =
1

24
λ1φ

4
1 +

1

24
λ2φ

4
2 +

1

4
λ3φ

2
1φ

2
2 +

1

6
λ4φ

3
1φ2 +

1

6
λ5φ1φ

3
2 +

(
1

2
y1φ1ψ1ψ1

+
1

2
y2φ2ψ1ψ1 +

1

2
y3φ1ψ2ψ2 +

1

2
y4φ2ψ2ψ2 + y5φ1ψ1ψ2 + y6φ2ψ1ψ2 + h.c.

)
. (2.3)

This is the simplest weakly-coupled unitary example in d = 4 − ε with a well-behaved

bounded-from-below scalar potential. For this model Q is 2× 2 antisymmetric and P 2× 2

2With our conventions RG time increases as we flow to the IR, t = ln(µ0/µ).
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anti-Hermitian:

Q =

(
0 q

−q 0

)
and P =

(
ip1 p3 + ip4

−p3 + ip4 ip2

)
, (2.4)

where q and p1,...,4 are real. The two-loop beta functions for this model, formatted for use

with Mathematica, can be found at http://het.ucsd.edu/misc/betas2s2f_D=4-eps.m.

2.1.1 The two-loop computation

To start our computation we solve eq. (2.1b) at order ε3/2. The result is used in eq. (2.1a)

which is then solved at order ε2. This is a system of coupled nonlinear equations and,

as such, it has many solutions y
(1)
a|ij and λ

(1)
abcd, some of them consistent with unitarity and

boundedness of the scalar potential, while others not. Additionally, some of these solutions

lead to conformal fixed points, while others allow for nonzero q, at least in principle.

At two-loop order solutions y
(1)
a|ij and λ

(1)
abcd of the previous order are used to solve

eq. (2.1b) at order ε5/2, and eq. (2.1a) at order ε3. This is now a system of coupled linear

equations,3 from which the unknowns y
(2)
a|ij and λ

(2)
abcd are determined. At this same order

one can compute q(2). If the lower-order solution y
(1)
a|ij and λ

(1)
abcd corresponds to a fixed

point, then the unknown q(2) is equal to zero. Surprisingly, this is also true at this order

for solutions that correspond to scale-invariant trajectories (for which q(3) 6= 0). This is

somewhat of an accident. Suppose we replace the two-loop contribution to the actual beta

functions, β
(2-loop)
a|ij , by a linear combination of the same monomials that appear in β

(2-loop)
a|ij ,

but with arbitrary coefficients. If we now use these in the computation of the second

order corrections y
(2)
a|ij and λ

(2)
abcd and of q(2), then we find that only two terms in β

(2-loop)
a|ij

contribute to q(2), namely,

(16π2)2β
(2-loop)
a|ij ⊃ b1yb|iky

∗
c|k`yd|`jλabcd + b2yb|ijλbcdeλacde, (2.5)

and that these give (we omit the prefactor here since it is not relevant for the discussion),

q(2) ∝ b1 + 24b2. (2.6)

The accident we referred to above is the fact that the actual values of the coefficients are

b1 = −2 and b2 = 1
12 , and hence q(2) = 0. Moreover, for fixed points the proportionality

constant in eq. (2.6) vanishes, so for fixed points the vanishing of q(2) is not the result of

this particular cancelation. We also find that p
(2)
4 is undetermined, while p

(2)
1,2,3 = 0. The

freedom in the fermion part of the virial current is related to the enhanced symmetry(
ψ1

ψ2

)
→

(
cos θ i sin θ

i sin θ cos θ

)(
ψ1

ψ2

)
. (2.7)

It may be worth noting that, when using the generic form of couplings ya|ij and λabcd,

there is a one-to-one correspondence between monomials in the beta functions βa|ij and

3For all higher orders in ε one only gets systems of coupled linear equations.
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Figure 1. Diagrams that contribute to q at two-loop order.

βabcd and multi-loop Feynman graphs. For example, the monomials in (2.5) correspond

to the two loop Feynman diagrams in figure 1. This can be seen as follows. For a given

topology we associate a coupling ya|ij or λabcd with each vertex. The indices correspond

to each of the lines coming out of the vertex. Vertices are joined by internal propagators,

which carry factors of δik if joining two vertices with fermion lines labeled by i and k, or

δae if joining two vertices with scalar lines labeled by a and e. Finally, the free indices in

the monomial (a, i and j for βa|ij , or a, b, c and d for λabcd) correspond to external legs in

the Feynman graph. This correspondence between graphs and monomials will prove useful

in our three-loop analysis below.

As we already mentioned, the failure to find trustworthy non-conformal scale-invariant

solutions at two loops can be explained by the gradient flow property of the RG flow at

weak coupling described in ref. [19]. Note that here, contrary to the case of conformal

fixed points, q(3) 6= 0 at two-loop order. However, the three-loop contributions to the beta

functions can very well conspire to set q(3) = 0, and thus restore conformal invariance. (As

we will demonstrate in the next subsection, this does not happen. Again, the fact that

q(2) = 0 is merely an accident.)

An interesting observation at this point is that if q(2) = 0 were not an accident, then,

as seen from eq. (2.6), that would directly imply that conformal symmetry somehow relates

coefficients of beta-function monomials coming from vertex corrections and coefficients of

beta-function monomials coming from wavefunction renormalizations. This is obvious from

the fact that the first diagram in figure 1 contributes to the residue of the 1/ε pole of Zy,

while the second to the residue of the 1/ε pole of Zφ. This would be reminiscent, e.g., of

the Ward identity for charge conservation in QED.

A point on the candidate scale-invariant trajectory is given by

λ1 =
8(7087 + 357

√
52953)

102885
π2ε+

2(490537743519 + 468277825
√

52953)

408605205375
π2ε2 + · · · ,

λ2 =
64(6346 + 9

√
52953)

102885
π2ε+

17(11340943081 + 57223077
√

52953)

136201735125
π2ε2 + · · · ,

λ3 = −272(
√

52953− 57)

102885
π2ε+

291302437755− 3043364867
√

52953

817210410750
π2ε2 + · · · ,
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λ4 =
32
√

323(757− 3
√

52953)

102885
π2ε+

13

√
190447787(13924269796644128925781

−49509459494439826531)
√
52953

55843528611660750
π2ε2 + · · · ,

λ5 =
272
√

323(757− 3
√

52953)

102885
π2ε+

√
571343361(652474762867234518381407

−663663219013252691017)
√
52953

19709480686468500
π2ε2 + · · · ,

y1 = −y3 =
2
√

10

5
πε1/2 +

√
10(175503 + 442

√
52953)

3249000
πε3/2 + · · · , (2.8)

where the remaining couplings vanish at this point, and only the real part of y2 and y4 are

generated on the scale-invariant trajectory, with Re y2 = −Re y4. The fact that Re y2 and

Re y4 run through zero, see figure 3, is what allows us to determine q(2) as in eq. (2.6).

One can check that eqs. (2.1) are satisfied on this scale-invariant trajectory with the

help of the two-loop beta functions of ref. [23]. Since q = O(ε3) we need the three-loop

Yukawa beta functions in order to establish that this solution is indeed a scale-invariant

trajectory in dimensional regularization.

2.1.2 The three-loop computation

There is a large number of diagrams that contribute to βa|ij at three loops. (We use the

Mathematica package FeynArts to automatically generate all required diagrams.) As we

explained above, each diagram corresponds to a unique monomial in the beta function.

From the diagrams we have generated we construct a linear combination of all the mono-

mials that may appear in the three-loop beta function, with coefficients that remain to be

computed. Using this representation of the beta function we compute q(3) (by inserting

the two previous orders into eqs. (2.1)). We find that only a small fraction of monomials

contribute to q(3). This is similar to the case at one lower order, where only two monomials

contribute to q(2); cf. eq. (2.6). The monomials that contribute to q(3) are the ones that

correspond to the Feynman graphs in figure 2.

Note that the diagrams in figure 2 are specific to the example of this subsection. More

complicated models might involve more diagrams. However, we have checked that precisely

the same diagrams contribute to q(3) in the model with two scalars and one Weyl spinor

of ref. [2]. It is interesting to point out that very few of the ∼ 200 diagrams in βa|ij
contribute to q(3), and that the ones that do involve both Yukawa and quartic vertices.

The same situation is encountered at two loops, and we conjecture that it holds to all

orders in perturbation theory. This is also motivated by comments in ref. [24] regarding

the “interference” between successive loop orders in the calculation of a potential for a

gradient flow (see also section 6 below). It is also curious that the diagrams of figure 2

have an (obvious) topological relation to the diagrams of figure 1. Let us remark here that

although only the diagrams of figure 2 contribute to scale without conformal invariance in

the example of this section, we nevertheless have no clear physical understanding as to why

this is the case. We have not succeeded in understanding why so few specific monomials

(and corresponding diagrams) contribute to q(3). In particular we do not understand why,

say, graphs with wave-function renormalization on external fermion legs or graphs whose

computation gives Apéry’s constant do not contribute to q(3).

– 6 –
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Figure 2. Diagrams that contribute to q at three-loop order.

The diagrams of figure 2 have simple poles in ε and so they contribute to the Yukawa

beta function at three loops:

(16π2)3β
(3-loop)
a|ij ⊃ c1yb|iky

∗
c|k`yd|`my

∗
c|mnye|njλabde + · · ·+ c12yb|ijλbcdeλcdfgλaefg. (2.9)

The three-loop analog of eq. (2.6) is then (again omitting the prefactor)4

q(3) ∝ −71+3(c1+2c2+2c3+c4+2c5+4c6+8c7)+4(c8+2c9+3c10+4c11+58c12), (2.11)

4For the model of two scalars and one Weyl spinor of ref. [2] the expression for q(3) is

q(3) ∝ −219 + 12(4c1 + 2c2 + 2c3 + c4 + 2c5 + 2c6 + 4c7) + 4(5c8 + 10c9 + 6c10 + 10c11 + 187c12). (2.10)
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where the constant piece comes from contributions to q(3) from the previous order.

To compute these three-loop diagrams we implemented the algorithm of ref. [25].5

There, IR divergences are regulated by introducing a spurious mass parameter through an

exact decomposition of the massless propagator, and the calculation proceeds with properly

choosing a loop momentum, regarding it as large, and expanding with respect to it the

remaining two-loop subintegral, for which the chosen momentum is external. Remarkably,

the authors of ref. [25] manage to construct explicit formulas for the pole parts of all three-

loop scalar integrals. The implementation of their algorithm is straightforward, e.g., in

Mathematica, but one must be very careful to take into account all required counterterms,

including the ones introduced by the IR regulator. To test our implementation, we verified

the two-loop result of ref. [23] for βa|ij , and also part of the three-loop result for the beta

function of the quartic coupling in a multi-flavor theory of scalars found in ref. [19]. We

also performed explicit computations of a couple of diagrams.

From the diagrams of figure 2 we find

c1 = 3, c2 = −1, c3 = 2, c4 = 5, c5 =
1

2
, c6 =

3

2
, (2.12)

c7 =
1

2
, c8 =

3

2
, c9 =

1

2
, c10 =

5

8
, c11 = − 5

32
, c12 = − 1

16
. (2.13)

Restoring the prefactor, then, eq. (2.11) gives6

q(3) =

√
323(757− 3

√
52953)

2057700
≈ 7× 10−5. (2.15)

Since q(3) 6= 0 we have established the existence of theories that are scale but not confor-

mally invariant! We expect that theories in d = 4 can also display scale without confor-

mal invariance.

To summarize, it is important to emphasize that the distinction between scale-invariant

and conformal solutions of eqs. (2.1) at the two-loop level is that, for the latter, q(≥3) = 0

already at two loops. Higher loops are expected to slightly modify the critical values of

the couplings, while preserving q = 0. But there are solutions for which q(≥3) 6= 0 already

at two loops. As a result, the nature of these solutions is uncertain, and a higher-loop

calculation is needed. Even without that calculation, though, it should be clear that not

all solutions to eqs. (2.1) can be declared conformal with the same confidence and the

three-loop computation we present here shows that indeed non-conformal scale-invariant

solutions exist.

Since there is only one oscillation frequency the scale-invariant trajectory is a limit

cycle. The RG evolution of the couplings along the limit cycle is easily determined from

eqs. (2.1) and is shown in figure 3 for ε = 0.01. Notice that all phases can be rotated away

5We would like to thank M. Misiak for pointing us to this reference.
6For the model of two scalars and one Weyl spinor of ref. [2] we find

q(3) =
35

√
34706(3601 + 6

√
419802)

2489696256
≈ 2× 10−4. (2.14)

– 8 –
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Figure 3. RG evolution of the couplings in the model with two real scalars and two Weyl fermions

on a scale-invariant limit cycle as a function of RG time. Here ε = 0.01.

and thus the model does not violate CP. Moreover the minimum of the scalar potential

is located at the origin of field space. As expected, these statements (boundedness of the

scalar potential, CP conservation, location of the vacuum in field space) are invariant along

the limit cycle.

3 Other plausible examples

3.1 Limit cycle in d = 4 − ε: model with 3 scalars and 2 fermions

The next simplest example in d = 4 − ε with a scalar potential which is bounded from

below is described by a theory of three real scalars and two Weyl fermions, with canonical

kinetic terms and interactions described by

V =
1

24
λ1φ

4
1 +

1

24
λ2φ

4
2 +

1

24
λ3φ

4
3 +

1

4
λ4φ

2
1φ

2
2 +

1

4
λ5φ

2
1φ

2
3 +

1

4
λ6φ

2
2φ

2
3 +

1

6
λ7φ

3
1φ2 (3.1)

+
1

6
λ8φ

3
1φ3 +

1

6
λ9φ1φ

3
2 +

1

6
λ10φ

3
2φ3 +

1

6
λ11φ1φ

3
3 +

1

6
λ12φ2φ

3
3 +

1

2
λ13φ

2
1φ2φ3

+
1

2
λ14φ1φ

2
2φ3 +

1

2
λ15φ1φ2φ

2
3 +

(
1

2
y1φ1ψ1ψ1 +

1

2
y2φ2ψ1ψ1 +

1

2
y3φ3ψ1ψ1

+
1

2
y4φ1ψ2ψ2 +

1

2
y5φ2ψ2ψ2 +

1

2
y6φ3ψ2ψ2+y7φ1ψ1ψ2+y8φ2ψ1ψ2+y9φ3ψ1ψ2 + h.c.

)
.

Here the unknown parameters Qab and Pij in the virial current are given by

Q =

 0 q1 q2
−q1 0 q3
−q2 −q3 0

 , P =

(
ip1 p3 + ip4

−p3 + ip4 ip2

)
, (3.2)

– 9 –
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where qi=1,...,3 and pi=1,...,4 are real. All the scalar quartic couplings, λ1,...,15, and two of

the Yukawa couplings, y1 and y4, do not vanish on the scale-invariant trajectory. Due to

its lengthy form we do not give here the explicit ε-expansion. Its exact knowledge does not

lead to a better understanding of the physics and, moreover, the ε-expansion can easily be

determined from the two-loop beta functions of ref. [23] and our new three-loop results.

The non-vanishing virial current parameters on this scale-invariant trajectory are q1, q2
and p4. The ε-expansion for q1 and q2 are distinct while, again, p4 is undetermined and

corresponds to the enhanced symmetry(
ψ1

ψ2

)
→

(
cos θ i sin θ

i sin θ cos θ

)(
ψ1

ψ2

)
(3.3)

of the scale-invariant trajectory.

Since on this scale-invariant trajectory the oscillation frequencies are ±
√
q21 + q22 + q23

and 0, the scale-invariant trajectory is also a limit cycle. Again, the model has a bounded-

from-below scalar potential, does not violate CP and has a minimum at the origin of

field space.

3.2 Limit cycle and ergodicity in d = 4 − ε: model with NS > 3 scalars and

NF > 2 fermions

Up to now the models in d = 4−ε spacetime dimensions display scale-invariant trajectories

that are limit cycles. Although the virial current has enough freedom to lead to several

oscillation frequencies, in both models the non-trivial part of Pij vanishes and thus the

oscillation frequencies are solely obtained from Qab. For two and three real scalars it

is thus impossible to get scale-invariant trajectories that exhibit ergodicity. Indeed, the

eigenvalues of Qab are {±iq1} and {0,±i
√
q21 + q22 + q23} for two and three real scalars

respectively, implying limit cycles. Eigenvalues of antisymmetric matrices with real entries

always come in pairs ±iω, except in the case where the dimensionality of the matrix is odd,

where, in addition, there is a zero eigenvalue. Therefore, assuming Pij = 0, four or more

real scalars are necessary to obtain ergodic behaviors. For example, since the ε-expansion

for the qi are generically distinct it is expected that the model with four real scalars and

two Weyl fermions will display both limit cycles and ergodic behavior as a function of ε.

We therefore conjecture that ergodic behavior in d = 4−ε spacetime dimensions occurs

in models with NS > 3 real scalars and NF > 1 Weyl fermions. Unfortunately, due to the

large number of couplings (for example the model with four real scalars and two Weyl

fermions has NS(NS+1)(NS+2)(NS+3)
4! + 2×NS

NF (NF+1)
2 = 59 real couplings) the computing

time necessary to generate the three-loop beta functions becomes excessive and we have

not pursued this direction further.

4 Renormalization-scheme changes

4.1 Scheme changes and conformal fixed points: the one-coupling case

Let us first review the effects of scheme changes in conformal theories. The simple case of

a theory with only one coupling has been investigated long ago in ref. [26]. Under a scheme
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change, the coupling g and the wavefunction renormalization Z(g) become

g → g̃(g) = g +O(g3),

Z1/2(g)→ Z̃1/2(g̃) = Z1/2(g)F (g),
(4.1)

where F (g) = 1 +O(g2) and F 6= 0 for all g. In the new scheme g̃ is equal to g at lowest

order since the coupling is unambiguous at the classical level. The same is true for the

wavefunction renormalization as well. Therefore, since7

β(g) = −dg
dt
,

γ(g) = −Z−1/2(g)
dZ1/2(g)

dt
,

(4.2)

the new beta function and anomalous dimension are related to the old beta function and

anomalous dimension through

β̃(g̃) = β(g)
∂g̃

∂g
,

γ̃(g̃) = γ(g) + F−1(g)β(g)
∂F (g)

∂g
.

(4.3)

Although the RG functions depend strongly on the renormalization scheme, properties that

have physical consequences must be independent of the scheme. Such properties are:

(I) The existence of a conformal fixed point;

(II) The anomalous dimension at a conformal fixed point, which determines the scaling

behavior of Green functions;

(III) The first derivative of the beta function at a conformal fixed point, which determines

the sign8 and rate of approach of the coupling to the conformal fixed point and thus

modifies asymptotic formulae;

(IV) The first two coefficients in the beta function, which govern the UV or IR asymptotics

of the coupling;

(V) The first coefficient in the anomalous dimension, which controls the scale factor of

the field in the far UV or IR.

These properties all follow from eqs. (4.3) and the form of g̃(g) and F (g).

4.2 Scheme changes and conformal fixed points: the multi-coupling case

When the theory has more than one coupling, a scheme change still transforms the coupling

vector9 gI and the wavefunction renormalization matrix Z J
I (g) as in (4.1) but, due to the

7We use φB = Z1/2(g)φR.
8Note that the sign determines the character (attractive or repulsive) of the conformal fixed point.
9Capitalized indices run through all couplings. For matrices we use, e.g., Q J

I for both Qab and Pij .
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vector and matrix character of the coupling and wavefunction renormalization respectively,

the new wavefunction renormalization is modified by a matrix F J
I (g) through

Z1/2(g)→ Z̃1/2(g̃) = Z1/2(g)F (g). (4.4)

Thus, under a scheme change, one has

β̃I(g̃) = βJ(g)
∂g̃I

∂gJ
, (4.5a)

γ̃ J
I (g̃) =

[
F−1(g)γ(g)F (g)

] J
I

+

[
F−1(g)βK(g)

∂F (g)

∂gK

] J
I

. (4.5b)

It is easy to see that, in the multi-coupling case, properties (I) and (V) are still scheme-

independent. Property (II) is of course modified so that only tr γ and det γ, and so the

eigenvalues of γ, are scheme-independent. Property (III) is also modified since

∂β̃J(g̃)

∂g̃I
=
∂gK

∂g̃I
∂βL(g)

∂gK
∂g̃J

∂gL
+
∂gK

∂g̃I
βL(g)

∂

∂gL

(
∂g̃J

∂gK

)
, (4.6)

such that at a conformal fixed point the eigenvalues of ∂βJ(g)/∂gI are independent of the

scheme. This is expected because ∂βJ/∂gI = γ J
I , where γ J

I is the anomalous-dimension

matrix of the operators sourced by the appropriate couplings. Therefore, eq. (4.6) can be

seen as an extension of eq. (4.5b) with F = ∂g̃/∂g.

Finally, if the one-loop beta function for one coupling depends on other couplings,

property (IV) is no longer true [3] — only the first coefficient in the beta function is

scheme-independent, although the UV or IR asymptotics of the couplings are the same in

any scheme.

4.3 Natural scheme changes and scale-invariant trajectories

It is interesting to see how scale-invariant solutions behave under scheme changes.10 Here

we will distinguish between two types of scheme changes, which we dub natural and un-

natural. A natural scheme change transforms the couplings as

λabcd → λ̃abcd = λabcd + ηabcd,

ya|ij → ỹa|ij = ya|ij + ξa|ij ,

y∗a|ij → ỹ∗a|ij = y∗a|ij + ξ∗a|ij ,

(4.7)

such that all couplings transform covariantly with respect to the symmetry group of the

kinetic terms. MS and variants are examples of this — it occurs, e.g., every time one

dresses a Feynman diagram topology with couplings. Unnatural scheme changes spoil the

covariance of equations.

We can now show that entries of Q and P , which determine, e.g., the frequency on

a cyclic trajectory, are scheme-independent for natural scheme changes. Indeed, if the

10The discussion of this subsection applies to scheme changes under which eqs. (2.1) transform covariantly.

Since the analysis for gauge fields is straightforward, gauge fields are omitted for simplicity.
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scheme change is natural, then the time evolution of η and ξ on a scale-invariant trajectory

is given by

ηabcd(t) = (eQt)a′a(e
Qt)b′b(e

Qt)c′c(e
Qt)d′d ηa′b′c′d′(0),

ξa|ij(t) = (eQt)a′a(e
Pt)i′i(e

Pt)j′j ξa′|i′j′(0),
(4.8)

and so

dηabcd
dt

= Qa′aηa′bcd + permutations,
dξa|ij

dt
= Qa′aξa′|ij + Pi′iξa|i′j + Pj′jξa|ij′ . (4.9)

On a scale-invariant trajectory eqs. (4.7) give

β̃abcd = Qabcd −
dηabcd
dt

, β̃a|ij = Pa|ij −
dξa|ij

dt
, (4.10)

and we can use eqs. (4.9) to obtain

β̃abcd = −Qa′aλ̃a′bcd + permutations,

β̃a|ij = −Qa′aỹa′|ij − Pi′iỹa|i′j − Pj′j ỹa|ij′ .
(4.11)

Hence, Q and P are scheme-independent for natural scheme changes.

As a result of our analysis the existence of scale-invariant trajectories does not depend

on the renormalization scheme. As expected, then, property (I) is easily extended to include

non-conformal scale-invariant trajectories.

Focusing on scalar anomalous dimensions (the argument can be easily repeated for

fermion anomalous dimensions), property (II) can also be generalized to scale-invariant the-

ories. Indeed, for natural scheme changes on a scale-invariant trajectory eq. (4.5b) becomes

γ̃ab(g̃) =
[
F−1(g)γ(g)F (g)

]
ab

+
{
F−1(g)[Q,F (g)]

}
ab

(4.12)

since −dF (g)/dt = [Q,F (g)]. One can then immediately see that (using matrix notation)

γ̃(g̃) +Q = F−1(g)[γ(g) +Q]F (g), (4.13)

so that the eigenvalues of γ +Q are scheme-independent. This is in accord with expecta-

tions: in ref. [4] it was shown that the behavior of two-point functions is determined by

the eigenvalues of γ +Q, which are therefore expected to be scheme-independent.

Since property (II) can be generalized to scale-invariant theories, the same is expected

for property (III) due to ∂βJ/∂gI = γ J
I . Indeed, eq. (4.6) becomes

∂β̃J

∂g̃I
=

[
F−1(g)

∂β

∂g
F (g)

] J
I

+
{
F−1(g)[Q,F (g)]

} J

I
, (4.14)

where F = ∂g̃/∂g, which gives (again using matrix notation)

∂β̃

∂g̃
+Q = F−1(g)

[
∂β

∂g
+Q

]
F (g). (4.15)
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Therefore, the eigenvalues of ∂β/∂g + Q = ∂(β − Q)/∂g (since Q = −gQ) are scheme-

independent. It is interesting to note that the eigenvalues of ∂β/∂g + Q are expected to

determine the character (attractive, repulsive, etc.) of scale-invariant trajectories, and so

one of them should be zero — that is indeed the eigenvalue corresponding to the (left)

eigenvector βI = QI . This is because βI = QI generates a motion along the scale-invariant

trajectory, not away from it, as can be seen directly from

βI
[
∂βJ

∂gI
+Q J

I

]
βI=QI

= −dQ
I

dt
+QIQ J

I = 0. (4.16)

Finally, properties (IV) and (V) in the multi-coupling case are trivially extended to

scale-invariant theories since they do not rely on the existence of scale-invariant trajectories

(or conformal fixed points).

To summarize, the scheme-independent properties (I–V) can be generalized to:

(I’) The existence of conformal fixed points and scale-invariant trajectories;

(II’) The eigenvalues of γ+Q at conformal fixed points and scale-invariant trajectories;

(III’) The eigenvalues of ∂β/∂g + Q at conformal fixed points and scale-invariant tra-

jectories;

(IV’) The first coefficient in the beta functions;

(V’) The first coefficient in the anomalous-dimension matrix.

5 Stability properties

5.1 General discussion

It is of interest to study the stability of scale-invariant solutions under small deformations.

Such an analysis determines the character of a particular scale-invariant solution, which

can have (IR) attractive and/or repulsive deformations. In this section we will describe the

properties of all possible scale-invariant solutions. The corresponding results for conformal

fixed points are recovered by setting Q = 0 in the equations below. To simplify the

equations, matrix notation is used throughout this section.

Since non-conformal scale-invariant solutions exhibit non-trivial RG flows, it is natural

to disentangle the two contributions to the flow of the deformations, i.e., the expected

contribution from the non-conformal scale-invariant solution, and the actual contribution

from the deformations which we want to analyze. The appropriate quantity to study

is thus δg(t) = [g(t) − g∗(t)]e
−Qt, where g∗(t) = g∗(0)eQt is a scale-invariant solution,

β|g=g∗(t) = Q(t). The quantity δg(t) determines the behavior of the deformations as a

function of RG time in a “comoving frame”, i.e., modulo the expected non-conformal scale-

invariant solution RG flow. Note that, although for non-conformal scale-invariant solutions

the choice of g∗(0) in δg(t) = g(t)e−Qt− g∗(0) is arbitrary,11 in order to study the behavior

of small deformations one should first fix a g∗(0).

11Any two points on a non-conformal scale-invariant trajectory are physically equivalent due to scale

invariance.
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To proceed further it is necessary to Taylor expand the beta functions around the

appropriate scale-invariant solution g∗(t):

β(t) = β|g=g∗(t) + [g(t)− g∗(t)]
∂β

∂g

∣∣∣∣
g=g∗(t)

+ · · · = Q(t) + δg(t)
∂β

∂g

∣∣∣∣
g=g∗(0)

eQt + · · · , (5.1)

where the last equality follows since −d(∂β/∂g)/dt = [Q, ∂β/∂g] on the scale-invariant

solution. Note that in order to disentangle the two contributions to the flow, the above

Taylor expansion is RG-time dependent. It is now straightforward to write down, at lowest

non-trivial order, the system of (linear) differential equations that the deformations must

satisfy:

− d δg(t)

dt
= [β(t)−Q(t)]e−Qt + δg(t)Q = δg(t)S + · · · , (5.2)

where

S =

(
∂β

∂g

∣∣∣∣
g=g∗(0)

+Q

)
(5.3)

is the stability matrix. It is obvious that δg(t) is the appropriate choice of variable that

allows a separation of the RG flow contributions, for all RG-time dependence in eq. (5.2)

comes solely from δg(t). Note, moreover, that eq. (5.2) implies that the behavior of the

deformations δg(t) is dictated by the eigenvalues of S which, as we showed in the previous

section, are scheme-independent (property (III’)). The solution to the system of differential

equations (5.2) is simply

δg(t) = δg(0)e−St + · · · (5.4)

and one can easily see that positive (respectively, negative) eigenvalues of the stability

matrix S correspond to IR attractive (respectively, repulsive) deformations. As usual, the

fate of deformations related to vanishing eigenvalues cannot be determined from eq. (5.4) —

for vanishing eigenvalues it is necessary to go to higher order in the Taylor expansion (5.2).

However, as already mentioned, non-conformal scale-invariant solutions exhibit one special

(left) eigenvector δg(0) ∝ Q(0) with vanishing eigenvalue which represents a deformation

along the scale-invariant solution. For this special deformation the full solution δg(t) =

[g∗(t ± δt) − g∗(t)]e−Qt = g∗(0)[e±Qδt − 1] = ∓Q(0) δt + · · · is RG-time independent as

expected, since it corresponds to a flow along the RG scale-invariant trajectory.

The previous analysis is a generalization of the similar analysis done for conformal

solutions where Q = 0. Note that the special (left) eigenvector δg(0) ∝ Q(0) does not

exist for conformal fixed points, as expected since conformal solutions do not exhibit any

non-trivial RG flow.

5.2 The example

We can now use the results discussed above to investigate the behavior of small deforma-

tions away from scale-invariant solutions. To this end it is natural to use an ε expansion

for the stability matrix S and its eigenvalues xm,

S =
∑
n≥2

S(n
2
)ε

n
2 , xm =

∑
n≥2

x
(n
2
)

m ε
n
2 . (5.5)
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The form of the expansion is dictated by the form of the beta functions in the

stability matrix.

The eigenvalues of the stability matrix are the roots of the characteristic polynomial

det(x1−S) which can also be expanded in ε. To lowest order the characteristic polynomial

simplifies and the eigenvalues are solutions of

det(x(1)1− S(1)) = 0. (5.6)

Since there are only seven non-vanishing independent couplings (λ1,...,5, y1,2 in (2.3)) at a

generic point on the non-conformal scale-invariant solution described in section 2, eq. (5.6)

for the corresponding couplings is

z(z − 1)

(
z5 −

√
52953

57
z4 +

1894 +
√

52953

475
z3 − 240768− 335

√
52953

135375
z2

−421203− 1573
√

52953

225625
z +

136(757
√

52953− 158859)

64303125

)
= 0

which cannot be solved by factorization into radicals. (To avoid clutter we define z = x(1).)

A numerical solution gives five positive, one negative and one vanishing eigenvalue:

z ≈ 2.4, z = 1, z ≈ 0.99, z ≈ 0.74, z ≈ 0.095, z ≈ −0.19, z = 0. (5.7)

The positive eigenvalues show that the scale-invariant solution is IR attractive in several

directions. We thus expect that the limit cycle can be reached by an appropriate defor-

mation of a theory defined at a UV conformal fixed point, although, to be certain, a more

thorough analysis is necessary.

6 On the proof of the c-theorem at weak coupling

As discussed in the introduction, our three-loop results do not contradict the work of

Osborn [17, 18] and Jack & Osborn [19]. Focusing on ref. [18], Osborn proved that RG

flows are gradient flows at two loops in the weak coupling regime. Lifting the theory to

curved space with spacetime-dependent couplings, Osborn showed that Weyl consistency

conditions lead to
dc

dt
= −βI ∂c

∂gI
= −GIJβIβJ , (6.1)

with GIJ positive-definite in the weak coupling regime, thus forbidding the existence of

recurrent behaviors at all loops. From the analysis of ref. [18] it would thus seem that

scale-invariant trajectories are forbidden to all orders in perturbation theory. However,

the analysis of ref. [18] leading to eq. (6.1) is too restrictive — it does not allow for spin-

one operators of dimension three, i.e., it does not include the possibility of non-conformal

scale-invariant theories.

The more general analysis, also performed by Osborn in ref. [18], includes possible

spin-one operators of dimension three, which are related to the symmetry group of the
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kinetic terms. Such an analysis is done by promoting the related symmetry of the kinetic

terms — for example the symmetry of the kinetic terms generated by the virial current, the

natural spin-one operator of dimension three for scale-invariant theories — to a symmetry

of the interacting theory. This is implemented by allowing the couplings to transform

appropriately under a change generated by the spin-one operators of dimension three and

by introducing background gauge fields to render the symmetry local. Then, assuming that

the regularization procedure preserves local gauge invariance, Osborn’s Weyl consistency

conditions and current conservation show that

dc

dt
= −βI ∂c

∂gI
= −(GIJ + · · · )βIBJ , (6.2)

where BI = βI−QI . Note that BI = 0 is precisely the condition for scale invariance. Thus,

by allowing non-conformal scale-invariant theories from the start, the work of refs. [17–19]

implies the existence of a c-function whose RG-time derivative vanishes at conformal fixed

points as well as on scale-invariant trajectories. Note, moreover, that the c-function might

not be monotonically decreasing due to the extra contributions to dc/dt represented by the

ellipsis in eq. (6.2).

Note that, by promoting the symmetry of the spin-one operators of dimension three to

a symmetry of the interacting theory, it is natural to demand regularization and renormal-

ization schemes that satisfy the newly promoted symmetry. This also explains the special

status of the natural renormalization schemes defined in the previous section.

Finally, it is interesting to see why the interference between quartic coupling one-loop

beta functions and Yukawa coupling two-loop beta functions proposed by Wallace & Zia [24]

as a possible obstruction to the gradient flow interpretation of the RG flow is circumvented

by the introduction of the metric. Focusing on the problematic monomials in a possible

c-function,

c ⊃ d1 tr(y∗ayby
∗
cyd)λabcd + d2 tr(y∗ayb )λacdeλbcde, (6.3)

the related contributions to the beta functions at one and two loops respectively are

∂c

∂λabcd
⊃ d1 tr(y∗ayby

∗
cyd) + 2d2 tr(y∗dye)λabce + permutations,

∂c

∂ya
⊃ 2d1yby

∗
cydλabcd + d2ybλacdeλbcde.

(6.4)

Comparing with the true beta functions,

β
(1-loop)
abcd ⊃ − 1

16π2
tr(y∗ayby

∗
cyd) +

1

16π2
1

6
tr(y∗dye)λabce + permutations,

β(2-loop)a ⊃ − 2

(16π2)2
yby
∗
cydλabcd +

1

(16π2)2
1

12
ybλacdeλbcde,

(6.5)

it is straightforward to see that the metric can account for the loop mismatch since d2/d1 =

−1/12 for both beta functions, as pointed out in ref. [19]. Note that the conditions for a

gradient flow interpretation of the RG flow introduced at higher orders are ever more

constraining due to the large number of diagrams12 and it is plausible that they are not

12This was already noticed in ref. [27].
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satisfied, as our three-loop computation shows. The interference argument of Wallace

& Zia [24] prevails at three loops, although for a complete investigation the knowledge

of the full three-loop beta functions is necessary. Interestingly, the interference between

the (n− 1)-loop quartic-coupling beta function and the n-loop Yukawa beta function also

explains why the n-loop quartic-coupling beta function is not necessary to argue for the

existence of scale-invariant theories at n-th order in perturbation theory.

7 Cyclic trajectories and the c-theorem

It is important to note that the existence of recurrent behaviors in RG flows in d = 4

does not contradict all versions of the c-theorem.13 In particular, the weak version of the

c-theorem, where two conformal fixed points connected by an RG flow satisfy the inequality

aUV − aIR > 0 (7.1)

with a the conformal anomaly (see, for example, ref. [28]),14 is consistent with scale without

conformal invariance. Even the stronger version of the c-theorem, where there exists a local

function which is monotonically decreasing along non-trivial RG flows, is compatible with

recurrent behaviors as long as the c-function is constant on scale-invariant trajectories.

Only the strongest version of the c-theorem is violated by the existence of limit cycles and

ergodicity; a gradient flow interpretation of RG flows is impossible for theories in which

scale does not imply conformal invariance.

Since theories exhibiting limit cycles or ergodicity are scale-invariant, it is reasonable

to expect the interpolating c-function to be constant on scale-invariant trajectories. Any

such interpolating function is invariant under the symmetry group of the kinetic terms,

i.e., it does not carry scalar or fermion indices. Thus, in a natural scheme, all the explicit

RG-time dependence disappears on a scale-invariant trajectory. This is the behavior that

is intuitively expected of the c-function, which should be some measure of the number of

massless degrees of freedom of the theory. Therefore it must be constant on scale-invariant

trajectories since any two points on such trajectories are physically equivalent.

This behavior is very different from that encountered on cyclic flows described in

ref. [20] and recently discussed in association with the c-theorem in ref. [21] (see also

ref. [22]). In ref. [21], the authors argue that monotonic RG flows can be simultaneously

cyclic if one allows for a multi-valued interpolating c-function. This is fundamentally

different from recurrent behavior with continuous scale invariance. As mentioned above,

the interpolating c-function must be constant on scale-invariant trajectories. Moreover, the

examples cited in ref. [21] exhibit one feature, turning points, which does not appear on

continuously scale-invariant trajectories. Turning points are peculiar locations in coupling

space: the beta functions vanish there, but the first derivative of the beta functions diverges.

Consequently, RG flows can overshoot turning points. In contrast, all existing continuously

scale-invariant examples are well-defined smooth weakly-coupled theories, and thus do not

13For a more extensive discussion see ref. [3].
14A claim for the proof of the inequality (7.1) appeared recently in ref. [29] (see also ref. [30]).
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display turning points. The existence of turning points on cyclic flows is a reflection of the

possibility of multi-valued c-functions which are monotonically decreasing along the flow.

Here we want to stress that the physics of cyclic flows with turning points as described in

ref. [21] is very different from that of recurrent behaviors with continuous scale invariance.

It is therefore very unlikely that monotonically decreasing multi-valued c-functions exist

on scale-invariant recurrent behaviors as suggested in ref. [21].

8 Conclusion

Does scale imply conformal invariance in unitary relativistic QFTs? The answer is negative

in d = 4−ε. Although a similarly conclusive statement in the d = 4 case cannot yet be made,

we strongly believe that the answer there is also negative. There are no physical arguments

on which one can rely to forbid non-conformal scale-invariant theories. Instead, one simply

needs to compute the beta functions and explore the different regions in coupling space.

That an example of a scale-invariant theory which is not conformal eluded the physics

community for so long is easily explained by the complexity of the problem: to see non-

conformal scale-invariant theories, one must go to three loops, and the beta functions at

three loops in the most general QFT are not known.
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