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Abstract: We study theoretically the effects of finite volume for ππ scattering in order

to extract physical observables for infinite volume from lattice QCD. We compare three

different approaches for ππ scattering (lowest order Bethe-Salpeter approach, N/D and

inverse amplitude methods) with the aim of studying the effects of the finite size of the box

in the potential of the different theories, specially the left-hand cut contribution through

loops in the crossed t, u−channels. We quantify the error made by neglecting these effects

in usual extractions of physical observables from lattice QCD spectrum. We conclude that

for ππ phase-shifts in the scalar-isoscalar channel up to 800 MeV this effect is negligible

for box sizes bigger than 2.5m−1
π and of the order of 5% at around 1.5− 2m−1

π . For isospin

2 the finite size effects can reach up to 10% for that energy. We also quantify the error

made when using the standard Lüscher method to extract physical observables from lattice

QCD, which is widely used in the literature but is an approximation of the one used in the

present work.
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1 Introduction

One of the aims in present lattice QCD calculations is the determination of the hadron

spectrum and many efforts are devoted to this task [1–25]. A recent review on the different

methods used and results can be seen in [26]. Since one evaluates the spectrum for particles

in a finite box, one must use a link from this spectrum to the physical one in infinite space.

Sometimes, when it rarely happens, an energy level in a finite box rather independent of

the volume is taken as a proof that this is the energy of a state in the infinite volume

space. In other works the “avoided level crossing”, with lines of spectrum that get close to

each other and then separate, is usually taken as a signal of a resonance, but this criterion

has been shown insufficient for resonances with a large width [27–29]. A more accurate

method consists in the use of Lüscher’s approach, but this works for resonances with only

one decay channel. The method allows to reproduce the phase-shifts for the particles of

this decay channel starting from the discrete energy levels in the box [30, 31]. This method

has been recently simplified and improved in [29] by keeping the fully relativistic two-

body propagator (Lüscher’s approach makes approximations on the real part, cf. eqs. (3.1)

and (3.2) below). The work of [29] also extends the method to two or more coupled channels.

The extension to coupled channels has also been worked out in [32–34]. The work of [29]

presents an independent method, which is rather practical, and has been tested and proved

to work in realistic cases of likely lattice results. The method has been extended in [35] to

obtain finite volume results from the Jülich model for the meson-baryon interaction and

in [36] to study the interaction of theDK and ηDs system where theD∗
s0(2317) resonance is

dynamically generated from the interaction of these particles. The case of the κ resonance

in the Kπ channel is also addressed in [37] following the approach of ref. [29]. It has also

been extended to the case of interaction of unstable particles in [38], to the study of the DN

interaction [39], the ππ interaction in the ρ channel [40] and to find strategies to determine

the two Λ(1405) states from lattice results [41].
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In ref. [29] the problem of getting phase-shifts and resonances from lattice QCD results

(“inverse problem”) using two coupled channels was addressed. Special attention was given

to the evaluation of errors and the precision needed on the lattice QCD calculations to

obtain phase-shifts and resonance properties with a desired accuracy. The derivation of

the basic formula of [29] is done using the method of the chiral unitary approach [42] to

obtain the scattering matrix from a potential. This method uses a dispersion relation for the

inverse of the amplitude, taking the imaginary part of T−1 in the physical region and using

unitarity in coupled channels [43, 44]. The method does not integrate explicitly over the

left-hand cut singularity. Nevertheless, the latter might lead to interesting problems in finite

volume calculations because in field theory, loops in the t− or u−channel that contribute

to crossed cuts, are volume dependent. There is no problem to incorporate these extra

terms into the chiral unitary approach by putting them properly in the interaction kernel

of the Bethe Salpeter equation or N/D method [43, 45], or using the inverse amplitude

method (IAM) [46–51]. However, the method of [29] to analyze lattice spectrum and

obtain phase-shifts explicitly relies upon having a kernel in the Bethe Salpeter equation

which is volume independent. The same handicap occurs in the use of the standard Lüscher

approach, where contributions from possible volume dependence in the potential are shown

to be “exponentially suppressed” in the box volume. Yet, there is no way, unless one knows

precisely the source of the volume dependent terms, to estimate these effects and determine

for which volumes the “exponentially suppressed” corrections have become smaller than a

desired quantity. This is however an important information in realistic calculations. The

purpose of the present paper is to address this problem in a practical case, the scattering

of pions in s-wave. For that we determine the strength of these volume dependent terms

as a function of the size of the box and the impact of these effects in the determination of

the phase-shifts in the infinite volume case.

The problem of ππ interaction in the lattice using the Lüscher approach has been

studied for the case of I = 2, where one has no coupled channels and is technically easier

for lattice calculations [52–54]. Along these lines in [55] a pioneer work is done of the

problem that we address here performing a perturbative calculation at threshold for the

cases of I = 2. Our approach is technically different, non perturbative, can be used for

scattering energies and to evaluate phase shifts and is done for I = 0 and I = 2.

The contents of the paper are as follows. After this introduction, we summarize in

section 2 the three models used to evaluate ππ scattering in the infinite and finite volume

case. We then follow by studying the dependence on the lattice size of the box L of the

resulting phase shifts in section 3. Conclusions are collected in section 4.

2 The ππ scattering in the finite box

In this section we explain the three models that we are going to consider in the present

work to evaluate the ππ scattering within the chiral unitary approach: lowest order Bethe-

Salpeter (BS), N/D and IAM. The latter two provide contributions to the left-hand cut

of the scattering amplitude while the BS does not. After summarizing the models for the

infinite volume, we explain for each of them how to evaluate the scattering in a box of finite
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size L. We study the scalar channel up to total energies of about 800 MeV for both isospin

(I) 0 and 2. The isoscalar case is relevant for the lattice QCD studies of σ (or f0(500) [56])

meson resonance, while for the isotensor case the left-hand cut is more relevant (see below).

Up to those energies theKK̄ and ηη channels in the I = 0 case are negligible, hence, we deal

here only with the ππ channel. The 4π channel, although open at lower energies around

555MeV, is also neglected. Its effects were included in ref. [57] and the resulting inelasticity

was negligible up to energies above 900MeV. This extra intermediate state gives rise to L

dependence that is not exponentially suppressed but, since phenomenologically is negligible

in the energy range considered here, we do not expect any significant effects from this side.

This channel was also neglected in the previous study of ππ scattering at threshold in

finite volume [55] and its calculation is beyond our present aim. The 4π channel gives

rise to a three-loop or O(p8) contribution to the interaction kernel in Chiral Perturbation

Theory (ChPT), while here we restrict ourselves to the one-loop or O(p4) calculation of

the interaction kernel. Indeed, any other volume dependence effect not considered by us

in our present research is at least part of a two-loop calculation of the interaction kernel

in ChPT.

2.1 Lowest order Bethe-Salpeter approach

In the chiral unitary approach the scattering matrix can be given by the Bethe-Salpeter

equation in its factorized form [61]

T = [1− V G]−1V = [V −1 −G]−1 , (2.1)

where V is the ππ potential, V = − 1

f2
π

(s− m2

2
) for I = 0 and V = 1

2f2
π

(s− 2m2) for I = 2,

which are obtained from the lowest order chiral Lagrangians [62], with m the pion mass

and fπ = 92.4 MeV. In eq. (2.1) G is the loop function of two meson propagators, which

is defined as

G = i

∫
d4p

(2π)4
1

(P − p)2 −m2 + iǫ

1

p2 −m2 + iǫ
, (2.2)

with P the four-momentum of the global meson-meson system. Note that eq. (2.1) only

has right-hand cut, unlike the other two approaches discussed in the next subsections.

The loop function in eq. (2.2) can be regularized either with dimensional regularization

or with a three-momentum cutoff. The connection between both methods was shown in

refs. [44, 51]. In dimensional regularization1 the integral of eq. (2.2), GD, is evaluated and

gives for the ππ system [44, 63]

GD(E) =
1

(4π)2

{
a(µ) + log

m2

µ2
+ σ log

σ + 1

σ − 1

}
, (2.3)

where σ =
√
1− 4m2

s
, s = E2, with E the energy of the system in the center of mass

frame, µ is a renormalization scale and a(µ) is a subtraction constant (note that only

1In our context we refer to the G function given in eq. (2.3) as calculated in “dimensional regularization”.

Of course, with the latter procedure the result is infinite. The infinite is removed by the subtraction constant

a(µ). A more accurate formulation can be given in terms of dispersion relations, the interested reader on

this point can consult refs. [43, 44], though the final result is the same.
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the combination a(µ) − log µ2 is the relevant degree of freedom, that is, there is only one

independent parameter).

The loop function G can also be regularized with a three momentum cutoff pmax and,

after the p0 integration is performed [61], it results

G(s) =

∫

|~p|<pmax

d3~p

(2π)3
1

ω(~p)

1

s− 4ω(~p)2 + iǫ
,

ω(~p) =
√

m2 + ~p 2 . (2.4)

Let us now address the modifications in order to evaluate the ππ scattering in a finite

box following the procedure explained in ref. [29]. The main difference with respect to the

infinite volume case is that instead of integrating over the energy states of the continuum

with ~p being a continuous variable as in eq. (2.4), one must sum over the discrete momenta

allowed in a finite box of side L with periodic boundary conditions. We then have to replace

G by G̃, where

G̃ =
1

L3

|~p|<pmax∑

~p

1

ω(~p)

1

s− 4ω(~p)2
,

~p =
2π

L
~n , ~n ∈ Z

3 (2.5)

For the sake of comparison with the other models considered in the present work, where

dimensional regularization is always done, we use the procedure of [36] in order to write

the finite volume loop function G̃ in terms of the infinite volume one GD evaluated in

dimensional regularization:

G̃D = GD + lim
pmax→∞

[
1

L3

pmax∑

~pi

I(~pi, s)−
∫

p<pmax

d3~p

(2π)3
I(~p, s)

]
, (2.6)

where I(~p, s) is the integrand of eq. (2.4),

I(~p, s) =
1

ω(~p)

1

s− 4ω(~p)2
. (2.7)

Note that G̃D of eq. (2.6) depends on the subtraction constant a instead of the three-

momentum cutoff pmax. The dependence on the latter cancels in the difference between

the two terms in the square brackets of eq. (2.6).

In the box the scattering matrix reads

T̃ =
1

V −1 − G̃D
. (2.8)

The eigenenergies of the box correspond to energies that produce poles in the T̃ matrix,

which corresponds to the condition G̃D(E) = V −1(E). Therefore for those values of the

energies, the T matrix for infinite volume can be obtained by

T (E) =
(
V −1(E)−GD(E)

)−1
=

(
G̃D(E)−GD(E)

)−1

. (2.9)
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The amplitude is related to the phase-shifts by

T (E) = −8πE

p

1

cot δ − i
, (2.10)

where p = E
2

√
1− 4m2

s
is the CM momentum.

Eq. (2.9) is nothing but Lüscher formula [30, 31] except that, as shown in ref. [29],

eq. (2.9) keeps all the terms of the relativistic two-body propagator, while Lüscher’s ap-

proach neglects terms in Re I(p) which are exponentially suppressed in the physical region,

but can become sizable below threshold, or in other cases when small volumes are used or

large energies are involved.

We would like to make the following observation here. Let us consider eq. (2.9) in the

cutoff regularization procedure. We would obtain

T (E) = (G̃−G)−1 (2.11)

with G and G̃ given by eqs. (2.4) and (2.5) respectively. In the application to Quantum

Mechanics of Lüscher formalism, the cutoff would be playing the effect of a finite range.

However, one should note that the difference G̃−G has a finite limit when the cutoff goes

to infinity and this is what the Lüscher formalism assumes. Note that the difference of the

part of the sum and integral from pmax to infinity goes rapidly to zero as pmax increases,

leading to terms exponentially suppressed in L. So, to make the limit of pmax infinite in

eq. (2.11) is within the usual assumptions in the derivation of Lüscher formula and makes

the results cutoff independent. Then eq. (2.11) in the limit of pmax → ∞ is exactly Lüscher

formula, up to the relativistic corrections that we have mentioned. On the other hand, in

lattice QCD calculations the information on pmax does not exist since the cutoff is implicitly

infinite and divergences of the theory are reabsorbed in some physical observable. In this

sense a rederivation of the improved Lüscher formula, eq. (2.9), without invoking cutoffs is

advisable and this is done in [36] (eqs. (11) to (17) of that paper), with the dimensional

regularized G functions. This is what we have used in eq. (2.6) and throughout the paper.

2.2 The IAM approach

The next approach considered is the elastic IAM [46–50], which we briefly review in this

section and describe how to extend it to consider scattering in a finite box.

The elastic IAM makes use of elastic unitarity and ChPT [62] to evaluate a dispersion

relation for the inverse of the ππ scattering partial wave of definite isospin I and angular

momentum J , T IJ (in the following we drop the superscript IJ to simplify notation). The

advantage of using the inverse of a partial wave stems from the fact that its imaginary part

is fixed by unitarity,

ImT = − σ

16π
|T |2 ⇒ ImT−1 =

σ

16π
. (2.12)

Thus, the right-hand cut integral can be evaluated exactly in the elastic regime and the

obtained partial wave satisfies unitarity exactly. The partial wave amplitudes calculated in

ChPT cannot satisfy unitarity exactly since they are obtained in a perturbative expansion

– 5 –
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T = T2 + T4 + O(p6), where T2 = O(p2) and T4 = O(p4) are the Leading Order and

Next-to-Leading Order contributions in the chiral expansion of T , respectively. However,

unitarity is satisfied in a perturbative way,

ImT2 = 0, ImT4 = − σ

16π
T 2
2 , · · · . (2.13)

These equations allow us to evaluate the dispersion relation and obtain a compact form for

the partial wave as we show below.

We write then a dispersion relation for an auxiliary function F ≡ T 2
2 /T , whose analytic

structure consists on a right-hand cut (RC) from 4m2
π to ∞, a left-hand cut (LC) from

−∞ to 0, and possible poles coming from zeros of T ,

F (s) = F (0) + F ′(0)s+
1

2
F ′′(0)s2 +

s3

π

∫

RC

ds′
ImF (s′)

s′3(s′ − s)
+ LC(F ) + PC , (2.14)

where we have performed three subtractions to ensure convergence. In the above equation

LC(F ) stands for the integral over the left-hand cut, and PC stands for possible poles

contributions, which are present in the scalar waves due to the Adler zeros. Using eqs. (2.12)

and (2.13) we can evaluate exactly in the RC integral ImF = −ImT4, and obtain for the

right-hand cut RC(F ) = −RC(T4). The subtraction constants can be evaluated with

ChPT since they only involve amplitudes or their derivatives evaluated at s = 0, F (0) ≃
T2(0)−T4(0), F

′(0) ≃ T ′
2(0)−T ′

4(0), F
′′(0) ≃ −T ′′

4 (0). The left-hand cut can be considered

to be dominated by its low energy part, since we have three subtractions, and it is also

dumped by an extra 1/(s′ − s) when considering physical values of s. Then, we evaluate

it using ChPT to obtain LC(F ) ≃ −LC(T4). The pole contribution is formally O(p6) and

we neglect it (this causes some technical problems in the subthreshold region around the

Adler zeros which can be easily solved, but they do not affect the description of scattering

or resonances, for details see [64]). Taking into account all the above considerations we

arrive at

T 2
2 (s)

T (s)
≃ T2(0)+T ′

2(0)s−T4(0)−T ′
4(0)s−

1

2
T ′′
4 (0)s

2 −RC(T4)−LC(T4) = T2(s)−T4(s) ,

(2.15)

where in the last step we have taken into account that T2(s) is just a first order polynomial

in s so that T2(s) = T2(0) + T ′
2(0)s, and that the remaining piece in the middle member of

eq. (2.15) is a dispersion relation for −T4(s). Then one obtains the simple IAM formula,

T IAM =
T 2
2

T2 − T4

. (2.16)

This formula can be systematically extended to higher orders by evaluating the subtraction

constants and the left-hand cut in the dispersion relation to higher orders. Note that the

full one-loop ChPT calculation is used, so the IAM partial waves depend on the chiral Low

Energy Constants (LECs), that absorb the loop divergences through their renormalization

and depend on a renormalization scale µ. Of course, this µ dependence is canceled out in

physical observables. In the case of ππ scattering there appear four LECs, denoted lri (µ),

– 6 –
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i = 1 . . . 4. These LECs are not fixed from symmetry considerations and their value has

to be determined from experiment. For the IAM calculations here we take the values used

in [65]: 103lr1 = −3.7 ± 0.2, 103lr2 = 5.0 ± 0.4, 103lr3 = 0.8 ± 3.8, 103lr4 = 6.2 ± 5.7, at

µ = 770MeV, which give a good description of phase-shift data. Note that in the present

work we are not interested in a detailed description of scattering data, but on the effects

of ignoring the exponentially suppressed dependence on the box size when using Lüscher’s

or the chiral unitary approach to obtain the scattering phase-shifts from the energy levels

in finite volume.

Both in the IAM and the N/D method (explained below) the dependence with the finite

size of the box enters through the chiral amplitude A4(s, t, u), which is used to calculate

the partial waves at O(p4), denoted by T4. This amplitude receives contributions from

loop diagrams, whose momentum integrals should be replaced by discrete sums over the

allowed momenta in the finite box. In particular, these contributions come from s-, t- and

u-channel loop diagrams, figure 1(b), (c) and (d), respectively, and from tadpole diagrams,

figure 1(a). Note also that we write the amplitudes in terms of the physical pion mass mπ

and decay constant fπ, so that the NLO contributions to them are included as O(p4) terms

in the amplitude T4. The O(p4) ππ scattering amplitude A4(s, t, u) can be generically

written, both for I = 0 and I = 2, in terms of only two one-loop functions G and H:

A4(s, t, u) = PL + PHH(m2) + PG,sG(s) + PG,tG(t) + PG,uG(u) , (2.17)

where PX are polynomials of the Mandelstam variables. In particular, the LECs appear

only in PL. In the above equation, H and G(P 2) are the one- and two-point one loop

functions, respectively:

G(P 2) =

∫
d3~q

(2π)3

ω~q + ω~P−~q

2ω~q ω~P−~q

1

(P 0 − ω~q − ω~P−~q
)(P 0 + ω~q + ω~P−~q

)
, (2.18)

H =

∫
d3~q

(2π)3
1

2ω~q

, (2.19)

and P is the four-momentum entering the loop so that G(s), G(t) and G(u) in eq. (2.17)

arise from the s-, t- and u-channel loops (2.18) with P 2 = s, t and u respectively. In

dimensional regularization and after the divergences and scale dependencies are absorbed

in the LECs [62], the loop functions then read

GR(P 2) =
1

16π2

(
−1 + σ(P 2)log

1 + σ(P 2)

1− σ(P 2)

)
, (2.20)

with σ(P 2) =
√
1− 4m2

π/P
2. On the other hand, because of the regularization approach

followed, we have HR = 0 (see e.g. ref. [66]). The partial waves T4 are then obtained by

projecting the I = 0 or I = 2 amplitude A4 on angular momentum J .

The s-channel loops are responsible for the right unitarity cut, and contain the most

important L dependence of the amplitude. This L dependence coming from the unitarity

cut is the one used by the Lüscher/chiral unitary approach method to obtain the phase-shift

from the energy levels in a finite volume. However, the t- and u-channel loops (which give

– 7 –
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(a) (b)

(c) (d)

Figure 1. Loop contributions to the O(p4) chiral ππ scattering amplitude T4. The s-channel loop

(b) gives rise to the right unitarity cut, whereas the t- and u-channel loops, (c) and (d), contribute

to the left-hand cut. Diagram (a) gives rise to the tadpole contributions.

rise to the left-hand cut when projecting into partial waves) and the tadpoles, give an extra

dependence on L (polarization corrections in the terminology of ref. [31]) that is neglected

in the Lüscher/chiral unitary approach method since it is exponentially suppressed.

Then, the IAM amplitudes in finite volume are calculated replacing T4(s) in eq. (2.16)

with T̃4(s), which is the s-wave projection of the I = 0 or I = 2 ππ scattering amplitude

in finite volume Ã4(s, t, u). The latter is obtained from eq. (2.17), but replacing the loop

functions in eqs. (2.18) and (2.19) with their finite volume counterparts, G̃R and H̃R.

Following again the procedure in [36] (see also the discussion at the end of subsection 2.1),

we obtain the finite volume loop functions from the infinite volume ones as

G̃R(P ) = GR(P 2) + lim
qmax→∞

[
1

L3

qmax∑

~qi

I(~qi, P )−
∫

q<qmax

d3~q

(2π)3
I(~q, P )

]
, (2.21)

H̃R = HR + lim
qmax→∞

[
1

L3

qmax∑

qi

1

2ω~q

−
∫

q<qmax

d3~q

(2π)3
1

2ω~q

]
, (2.22)

where I(~q, P ) is the integrand of eq. (2.18),

I(~q, P ) =
ω~q + ω~P−~q

2ω~q ω~P−~q

1

(P 0 − ω~q − ω~P−~q
)(P 0 + ω~q + ω~P−~q

)
. (2.23)

Note that the box breaks Lorentz symmetry and fixes the reference frame to the center of

mass frame of the initial pions. For this reason we have used P as the argument of G̃R in

eq. (2.21) instead of P 2.

In the case of the s-channel loop, where ~P = 0 so that (P 0)2 = P 2 = s, we obtain

G̃R(P ) as in eqs. (2.6) and (2.7), but with GD replaced by GR. Note that G̃R(P ) in this

case only depends on P 2 = s. For the t-channel loop, where P 0 = 0 so that P 2 = −~P 2 = t,

the integrand I(~q, P ) reduces to

I(~q, P ) = − 1

2ω~q ω~P−~q
(ω~q + ω~P−~q

)
, (2.24)
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but now, contrary to the s-channel case, G(P ) not only depends on P 2 = t, but also on
~P and its relative orientation respect to the cubic lattice of allowed momenta in the box,

{~qi}. In the end this translates into a dependence on the scattering angle θ, already present

in t = −2(s/4−m2
π)(1− cos θ), but also on the azimuthal angle φ, and this also happens

with the u-channel case. Thus, when projecting into s-wave, T (s) = 1

2

∫
d(cos θ)A(s, cos θ),

we should now also integrate on φ, T (s) = 1

4π

∫
dφ

∫
d(cos θ)A(s, cos θ, φ), where θ and φ

are the polar and azimutal angles of the final three-momentum entering in ~P . The scalar

product ~P ·~q in eq. (2.24) can be expressed in spherical coordinates in an standard way and

then inserted in the equation above for the angular projection, including the φ integration.

Finally, H̃R can be evaluated using the Poisson resummation formula (see e.g. [55]) and

taking into account that HR = 0 we obtain

H̃R =
mπ

4π2L

∑

06=~n∈Z3

1

|~n|K1(|~n|mπL), (2.25)

where K1 is the Bessel function.

Now, the energy levels in the box are obtained from the poles in the scattering partial

wave, eq. (2.16), or equivalently, the zeros of T2(s) − T̃4(s). From these energy levels

at several values of L one can re-obtain the phase-shifts for the infinite volume with the

Lüscher/chiral unitary approach method, and compare them with the exact infinite volume

result to quantify the effect of neglecting the L dependence coming from the crossed channel

loops and tadpoles.

2.3 The N/D method

The case presented in subsection 2.1 can be put in the more general framework of the

N/D method [43, 44, 57–60, 67]. The amplitude was denoted by T (s) in eq. (2.1). This

master formula is obtained by solving algebraically the N/D method [43, 44, 67, 68], with

the crossed cuts treated perturbatively, while the right-hand cut is resummed exactly. The

different chiral orders of V (s) = V2(s) + V4(s) + . . . are calculated by matching T (s) with

the perturbative amplitudes Tn(s). In this way, up to O(p4),

T (s) =
V (s)

1− V (s)GD(s)

= T2(s) + T4(s) + . . .

= V2(s) + V4(s) + V2(s)
2GD(s) + . . . , (2.26)

where the ellipsis indicates O(p6) and higher orders in the expansion. It results then:

V2(s) = T2(s) ,

V4(s) = T4(s)− T2(s)
2GD(s) . (2.27)

The finite piece of the unitarity term in the ππ chiral amplitude is given by:

TU
4 (s) = T2(s)

2GR(s) , (2.28)
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with GR(s) given in eq. (2.20). In this way, the kernel V (s) = V2(s)+V4(s) has no unitarity

cut because:

TU
4 (s)− T2(s)

2GD(s) = T2(s)
2(GR(s)−GD(s)) , (2.29)

and the cut is cancelled in the r.h.s. of the previous equation. The full right-hand cut stems

then from the denominator 1− V (s)GD(s) in eq. (2.1).

In the infinite volume case, the LECs are fixed to experiment, as well as the subtraction

constant a. We use here the central values of the fit given in [66], for which the values

of the finite and scale independent LECs l̄i are l̄1 = 0.8 ± 0.9, l̄2 = 4.6 ± 0.4, l̄3 = 2 ± 4,

l̄4 = 3.9±0.5. In terms of the latter, the so-called renormalized LECs, which depend on the

renormalization scale, are 103lr1 = −2.8±0.9, 103lr2 = 2.5±0.8, 103lr3 = 2±6, 103lr4 = 3±3,

where the renormalization scale is chosen at µ = 770 MeV. The subtraction constant

a takes the value a = −1.2 ± 0.4. We additionally note here that the same subtraction

constant is used for both channels, as required by isospin symmetry [69].

In order to study the finite volume scattering, the same replacements as in the IAM

and BS methods must be done. In particular, in the kernel V (s) → Ṽ (s) no change is

needed in V2(s), whereas V4(s) is changed to Ṽ4(s),

Ṽ4(s) = T̃4(s)− T2(s)
2G̃D(s) . (2.30)

Notice that, in view of eq. (2.29), there is no finite volume effect in the s-channel contri-

butions to the kernel Ṽ (s). The volume dependence enters then in the kernel through the

t- and u-channel loop functions and tadpoles evaluated as discussed in section 2.2. The

s-channel volume dependence enters then at the denominator of the amplitude

T̃ (s) =
Ṽ (s)

1− Ṽ (s)G̃D(s)
(2.31)

through the function G̃D(s) in its version of eq. (2.6), which gives the most important

contribution to the aforementioned dependence, as in the case of the IAM method. The

change in the values of the subtraction constant a with L is not considered because this is

accounted for by employing G̃D(s), eq. (2.6).

3 Results

As already explained, the main aim of the present work is to quantify the effect of the

dependence of the different potentials considered on the size of the box, L. Hence, we are

going to compare the L dependence of the N/D and the IAM methods with that of the

BS, the kernel of which does not depend on L.

First we show in figure 2 the results for the ππ phase-shifts in s-wave and I = 0 for the

three different models in infinite volume. The IAM and N/D results (solid and dashed lines,

respectively) are the fits explained in the previous section and the BS (dot-dashed line) is

fitted in this work to the experimental data [70–75] shown in the figure up to 800 MeV. The

IAM and N/D approaches are essentially equivalent at low energies but differ slightly as

the energy increases. Thus the difference between the IAM and N/D phase shifts is mainly

– 10 –
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Figure 2. Isospin I=0, s-wave, ππ → ππ phase-shifts for the three different models considered:

solid, dashed and dot-dashed lines correspond to IAM, N/D and BS, respectively. The experimental

data are from refs. [70–75].

due to the different set of data used in the fit and it also gives an idea of the theoretical

uncertainty. The BS approach produces a curve in between the other two, closer to the

N/D at low energies and to the IAM at higher energies. In any case, the different models

are compatible within the experimental uncertainties. Let us note that what matters for

the discussions in the present work is not the actual values of the phase-shifts at infinite

volume but the relative change when going to the finite box.

In figure 3 we show the energy levels for different values of the cubic box size, L, for the

different models which have been obtained from the zeroes of the scattering amplitudes in

the finite box as explained in the previous section. The dotted lines represent the free ππ

energies in the box, while the other lines correspond to IAM, N/D and BS as in figure 2.

The differences are very small for the largest values of L shown in the plot but are more

important for smaller L, specially between the N/D and IAM methods. The BS approach

produces a curve in between the other two, closer to the N/D. The IAM and BS are more

similar for larger values of energies as can also be seen in the phase shifts, figure 2. As an

example of small L, we note that for L = 1.7m−1
π the difference between N/D and IAM is

about 30 MeV.

An actual lattice calculation would provide some points over analogous trajectories in

the E vs. L plots. The “inverse problem” is the problem of getting the actual scattering

amplitudes (and hence by-product magnitudes like phase-shifts) in the infinite space from

data produced by lattice QCD consisting of points in plots of E vs. L over the energy

levels in the box. For points in these levels the amplitude in the infinite volume can be

extracted from the generalization of the Lüscher formula, as explained in the previous

sections, see eq. (2.9).
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Figure 3. The first energy levels as a function of the cubic box size L for the three different models

considered for I = 0. The dotted lines indicate the free ππ energies in the box. The rest of the

lines correspond to IAM, N/D and BS as in figure 2.
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Figure 4. Solution of the inverse problem for I = 0 for the IAM and N/D methods. The BS result

is the same as in the infinite volume case and thus we do not show it in the figure. We show the

results obtained only from level 2 of figure 3 since the results with levels > 2 almost overlap with

the infinite volume line. For the meaning of each line consult the inset in the figure.

In figure 4 we show the phase-shifts obtained for the different methods implementing

the “inverse problem” analysis (or “reconstructed” results) with eq. (2.9) and from the

E vs. L plot. For the BS model the results are independent of the level used for a given E,

since the potential does not depend on L, and they are equal to the infinite volume result.
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Figure 5. Isospin I=2, s-wave, ππ → ππ phase-shifts for the three different models considered.

The experimental data are from refs. [76, 77]. See the inset in the figure for the correspondence

between the different lines and the approach used.

Therefore we do not show the BS result since it is the same as in figure 2. For the IAM

and N/D methods the results depend on the level chosen for a given E since the potentials

depend on L as explained in the previous sections. Actually, for levels > 2 of figure 3 the

results are almost equal to the infinite volume results and hence we do not show them in

the figure since they would almost overlap with the infinite volume line. This is because,

as seen in figure 3, for the higher energies these levels imply large values of L. Indeed, for

energies below 800 MeV this implies values of L higher than about 3m−1
π . For the results

obtained with level 2, the phase-shifts differ in about 5% of the result in the infinite volume

at the higher energies considered. For E ∼ 800 MeV this implies L values slightly smaller

than 2m−1
π , as can be seen in figure 3. It is worth noting that the effect of the dependence

on L of the models with left-hand cut go in the same direction and are of similar size in

spite of the different models used. This gives us confidence that the actual L dependence

of the left-hand cut is properly considered and the real effect of any realistic model would

be of the order obtained in the present work. An analysis with eq. (2.9) applied to actual

lattice results of E versus L levels would neglect the possible L dependence of the potential

and hence the errors from the L dependence of the left-hand cut would be of the order

of the differences shown in the figure. Note also that the L dependence of the results are

smaller than the initial difference between the N/D and IAM themselves and also lower

than the experimental uncertainties. Therefore, an actual lattice calculation should care

about this L dependence only if it aims at getting errors smaller than the effect obtained

in the present work.

In figures 5, 6 and 7 we show for the I = 2 case the same results as in figures 2 to 4

for I = 0. In figure 5 we see that the IAM and N/D methods provide very similar results

and compatible with the experimental data while the BS approach gets worse phase-shifts.
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Figure 6. The first energy levels as a function of the cubic box size L for the three different models

considered for I = 2. The meaning of the different lines is as in figure 3.
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Figure 7. Solution of the inverse scattering problem with I = 2 for the IAM and N/D methods.

The BS result is the same as in the infinite volume case and thus we do not show it in the figure. We

show the results obtained only from level 1 and 2 of figure 6 since the results with levels > 2 almost

overlap with the infinite volume line. For the meaning of the lines consult the inset in the figure.

This is because in the IAM and N/D the left-hand cut is included perturbatively order

by order, unlike the BS model, and in this channel the left-hand cut is more relevant. In

figure 6 we show the energy levels in the box for this channel.

Now both IAM and N/D provide similar results. In figure 7 we show the solution of

the inverse problem for the phase-shifts. We see that the N/D method provides a higher
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Figure 8. Difference between the inverse method formula, eq. (2.9), and the approximated Lüscher

formula. The approach corresponding to each line is given in the inset in the figure.

L dependence for large values of the energies, unlike IAM. At 800 MeV the difference is

about 10% for the N/D and 2% for the IAM. The difference in the phase-shifts between the

two approaches is large in spite of the energy levels being very similar. This is because the

energy levels are very close to the free case, unlike the I = 0 case, and then the G̃ function

is very steep. This makes that small variations in E provide large variations in G̃.

In usual inverse problem analysis from actual lattice results, it is common to use the

Lüscher formula [30, 31] which, as explained in section 2.1, is an approximation to that used

in the present work, eq. (2.9). Therefore it is worth studying what is the error made in the

reconstructed phase-shifts if one uses the Lüscher equation instead of eq. (2.9). In ref. [29]

it was shown that the Lüscher method can be reproduced if in eq. (2.7) one substitutes

I(p, s) =
1

ω(~p)

1

s− 4ω(~p)2
. (3.1)

by

I(p, s) =
1

2
√
s

1

p2
ON

− ~p 2
. (3.2)

where pON = E
2

√
1− 4m2

s
.

In figure 8 we show the effect in the I = 0 phase-shifts of using the pure Lüscher

method, eq. (3.2), instead of eq. (3.1). (For the isospin 2 case the effect is small and thus

we do not show any plot.) The difference is significant only for phase-shifts extracted from

level 2 of figure 3 since the difference is only relevant for small values of L. Therefore

we only plot results extracted from level 2. The difference between our method and the

Lüscher one is similar for all the three different models for the potential. The size of the

difference is similar to the one from the L dependence of the potential discussed above but

goes in the opposite direction. Therefore they tend to compensate each other by chance.
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4 Summary

In this paper we have faced the problem of the presence of the left-hand cut of the ππ

amplitude for the evaluation of phase-shifts from lattice QCD results using Lüscher’s ap-

proach. The nonperturbative approach, the study for energies different than threshold and

the study of the I = 0 ππ system are done in the present work for the first time in the

literature. The t− and u−channel terms can be taken into account in a field theoretical

approach by means of the IAM, or NLO N/D methods, leading to good reproductions of

the scattering data. Results from lattice QCD should contain all the dynamics and, as a

consequence, should account for these effects too. However, the method to go from the

discrete energy level in a box from lattice simulations to the phase shifts for scattering in

the infinite volume case requires the use of Lüscher’s approach, or its improved version

of [29], both of which rely upon the existence of a volume independent potential. Yet,

the terms contributing to the left-hand cut, containing loops in the t− and u−channels,

are explicitly volume dependent. In this work we have investigated the errors induced by

making use of [30] or [29] in the reproduction of phase-shifts from the energy spectrum of

lattice calculations in the finite box by evaluating the volume dependence of the ππ scat-

tering amplitude in one-loop ChPT. The latter is then implemented in non-perturbative

methods to extract the final partial wave amplitudes. We have found that in the case of

ππ scattering in s-wave, both for I = 0 and I = 2, the effect of the L dependence in the

potential is smaller than the typical errors from the experimental phase-shifts or the differ-

ences between the three models that we have used, the IAM, NLO N/D and LO BS. This

is good news for lattice calculations since one of the warnings not to go to small values of

L was the possible L dependence of the potential which in some cases, like in the present

one, we know that it exists. We found that it is quite safe to ignore this dependence for

L > 2.5m−1
π , and even with values of L around 1.5 − 2m−1

π the errors induced are of the

order of 5%.

On the other hand we have quantified the error made by using the pure Lüscher

formula instead of the more accurate one of eq. (2.9). The effect in the phase-shifts of this

approximation tends to compensate, by chance, the effect of neglecting the L dependence

in the potential discussed so far.

All these findings, together with the use of the approach of [29] that also eliminates

L depended terms (exponentially suppressed) from the Lüscher’s approach, can encourage

the performance of lattice calculations with smaller size boxes with the consequent economy

in the computing time.
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[35] M. Döring, J. Haidenbauer, U.-G. Meissner and A. Rusetsky, Dynamical coupled-channel

approaches on a momentum lattice, Eur. Phys. J. A 47 (2011) 163 [arXiv:1108.0676]

[INSPIRE].

[36] A. Martinez Torres, L. Dai, C. Koren, D. Jido and E. Oset, The KD, ηDs interaction in

finite volume and the nature of the D∗
s0
(2317) resonance, Phys. Rev. D 85 (2012) 014027

[arXiv:1109.0396] [INSPIRE].

– 18 –

http://dx.doi.org/10.1103/PhysRevD.79.034502
http://arxiv.org/abs/0810.3588
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.3588
http://dx.doi.org/10.1103/PhysRevD.79.054501
http://arxiv.org/abs/0812.1681
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1681
http://dx.doi.org/10.1103/PhysRevD.82.034505
http://arxiv.org/abs/1005.1748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1748
http://dx.doi.org/10.1016/j.physletb.2010.08.049
http://arxiv.org/abs/1007.4871
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4871
http://dx.doi.org/10.1103/PhysRevD.84.074508
http://arxiv.org/abs/1104.5152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5152
http://dx.doi.org/10.1103/PhysRevD.84.054503
http://arxiv.org/abs/1105.5636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5636
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2011)137
http://dx.doi.org/10.1103/RevModPhys.84.449
http://arxiv.org/abs/1203.4789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4789
http://dx.doi.org/10.1016/j.nuclphysb.2007.07.030
http://arxiv.org/abs/hep-lat/0702012
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0702012
http://dx.doi.org/10.1088/1126-6708/2008/08/024
http://arxiv.org/abs/0806.4495
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4495
http://dx.doi.org/10.1140/epja/i2011-11139-7
http://arxiv.org/abs/1107.3988
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3988
http://dx.doi.org/10.1007/BF01211097
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,105,153
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B354,531
http://dx.doi.org/10.1142/S0217751X06032150
http://arxiv.org/abs/hep-lat/0508022
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0508022
http://dx.doi.org/10.1016/j.physletb.2009.10.055
http://arxiv.org/abs/0905.0069
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0069
http://dx.doi.org/10.1007/JHEP01(2011)019
http://arxiv.org/abs/1010.6018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.6018
http://dx.doi.org/10.1140/epja/i2011-11163-7
http://arxiv.org/abs/1108.0676
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,A47,163
http://dx.doi.org/10.1103/PhysRevD.85.014027
http://arxiv.org/abs/1109.0396
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0396


J
H
E
P
0
8
(
2
0
1
2
)
0
7
1
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