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1 Introduction

Conformal blocks (CB) naturally arise in consideration of multi-point correlation functions

in CFT [1, 2]. They provide the holomorphic factorization of correlation functions. Note

that anomaly free symmetries of the correlation functions are lost after the holomorphic

factorization. Instead, under the modular transformation the CB are linearly transformed

with the help of matrix of the Racah-Wiegner coefficients, which relates different ways to

rearrange the brackets in associative tensor product [3, 4]. A straightforward computation

of these fusion relations from basic principles of CFT is still available only for degenerate
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representations. Study of this problem in a general context might reveal some hidden

integrable structures in related theories.

Another possible approach [5–8] is based on a similar construction for alternative

“conformal blocks” for Uq(sl2). This problem is technically simpler, and surprisingly the

additional deformation parameter q turns to be related to the central charge c of the

Virasoro algebra.

In fact, the Racah-Wiegner coefficients, being a basic notion of representation theory,

are important for quite different subjects. The recently discovered AGT conjecture [9–12]

seems to be especially interesting in this context, since it relates modular properties of the

conformal block with a weak-strong coupling S-duality in N = 2 SUSY gauge (SYM) theo-

ries. The problem is that the S-duality [13–16] is rather well-understood for the low-energy

effective action in the Seiberg-Witten (SW) theory [17–27], while the conformal block is

AGT-related with the Nekrasov functions [28, 29] (which describe the Ω-background de-

formation of the original SYM theory [30]) with two non-vanishing parameters ε1, ε2 6= 0,

where the S-duality transformations remain unknown. Therefore, the equivalence between

the S- and modular dualities, which has to be an essential part of the AGT relation,

still lacks any kind of quantitative description. The purpose of this paper is to initiate

consideration of this non-trivial problem.

We begin with the simple and nice functional interpretation of the S-duality in the

limit of ε1 = ε2 = 0, i.e. with the SW theory. In this case, the SW prepotential F (a)

depending on the scalar vacuum expectation value (v.e.v.) of the SYM theory, and its

S-dual F ∗(b) are related by a simple Legendre transform

F ∗(b) = sup
a

(F (a)− ab), (1.1)

what can be considered as a saddle point approximation to the Fourier integral transform

exp

{
2πi

ε1ε2
F ∗(b)

}
=

∫
da exp

{
−2πiab

ε1ε2

}
exp

{
2πi

ε1ε2
F (a)

}
, ε1,2 → 0 (1.2)

The question is how the Fourier transform is deformed when ε1, ε2 6= 0. Technically, the

simplest way to calculate corrections is to use the matrix model description [31–39] of

the conformal blocks and the Nekrasov functions. Here the Seiberg-Witten limit and the

Fourier transform are just properties of the spherical limit (the leading order in the genus

expansion), and the higher order corrections can be restored by well-prescribed procedures

like the topological recursion [40–49]. Surprisingly, the Fourier transform does not acquire

corrections in the case of β = 1, at least, in the lowest orders, though there are non-trivial

corrections in the case of β 6= 1. It would be nice to develop some technique that would

allow one to reproduce these corrections in other approaches.

Another interesting research direction is impled by the fact of appearance of the Racah

coefficients in the modular transformations and in description of the HOMFLY polynomi-

als [50–56]. This is a road to the most interesting versions of the 3d AGT relations [57–61],

but it is beyond the scope of the present paper.

The paper is organized as follows. We briefly describe in section 2 what are the

Racah-Wiegner coefficients for the Virasoro algebra and their simulation due to [5–8]. In
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section 3 we review the AGT relation in the form we need in our further consideration.

Formulas for the Racah-Wiegner coefficients in particular cases, when they are given by

the Fourier transform are discussed in section 4. At last, in section 5 we develop the

general technique based on matrix model representation and, as an illustration, calculate

a few first corrections to the Fourier transform. Section 6 contains comments on S-duality

transformations in the limit of ε2 → 0.

2 Racah-Wiegner coefficients for the Virasoro algebra [62]

2.1 Some definitions

As is well-known, 2d conformal field theories can be interpreted in terms of representation

theory of the Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m (2.1)

with a non-trivial co-multiplication rule [62]

∆(Ln) = I ⊗ Ln +
∞∑

k=−1

xn−k
(
n+ 1

k + 1

)
Lk ⊗ I (2.2)

which preserves the central charge of the algebra (the central charge of the naive co-

multiplication ∆̃(Ln) = I ⊗ Ln + Ln ⊗ I is twice as large as that of Ln). We denote

the co-multiplication with the bold letter in order to distinguish it from the dimensions of

conformal fields. The primary fields correspond to the highest weight vectors LY V∆ = 0,

L0V∆ = ∆V∆, which generate representations (Verma modules) R∆ =
{
L−Y V∆

}
. The

chiral part of the associative operator product expansion

L−Y1V∆1(0)⊗ L−Y2V∆2(x) =
∑
∆,Y

C∆,Y
∆1,Y1|∆2,Y2

L−Y V∆(0)x∆+|Y |−∆1−|Y1|−∆2−|Y2| (2.3)

has to be compatible with (2.2), which severely restricts (almost fixes) the coefficients

C∆,Y
∆1,Y1|∆2,Y2

.

However, there is more than just the associative algebra structure. The four-point

conformal block is given by the scalar product of a triple product of representations with

fixed representation in the intermediate channel and the representation associated with the

infinity point (further we associate it with the fourth point of the CB). More exactly, one

considers the product of two intertwining operators, Φ3
12 : R1 ⊗ R2 −→ R3 which can be

combined in two different ways: Φ∆
∆1,∆2

Φ∆4
∆,∆3

and Φ∆4
∆1,∆

Φ∆
∆2,∆3

, where the intermediate

representation R∆ labels different representations emerging in the tensor product of two

representations. As usual in representation theory, one demands the co-multiplication to

be associative, which means that the two different products of intertwining operators give

just two different bases of conformal blocks related by an orthogonal x-independent matrix

M∆∆′ which is called the Racah-Wiegner matrix, i.e. by a linear map

Φ∆
∆1,∆2

Φ∆4
∆,∆3

=
∑
∆′

M∆∆′Φ
∆4
∆1,∆′

Φ∆′
∆2,∆3

(2.4)
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Instead of considering these products of intertwining operators, one can calculate their

value on the highest weight vectors. Since the dual of R∆4 enters the answer, it can be

written using the scalar product. This product is called the conformal block and, thus,

there are two essentially different conformal blocks. They can be presented pictorially as

B∆(x) =
〈(
V∆1(0)⊗ V∆2(x)

)
∆
⊗ V∆3(1), V∆4(∞)

〉
KS

B∆=
∑
∆′
M∆∆′B∆′

��

〈
V∆1(0)V∆2(x)V∆3(1)V∆4(∞)

〉 I
22

II ,,

B∆′(1− x) =
〈
V∆1(0)⊗

(
V∆2(x)⊗ V∆3(1)

)
∆′
, V∆4(∞)

〉

(2.5)

In terms of the conformal blocks relation (2.4) can be rewritten as

B∆(x) =
∑
∆′

M∆∆′B∆′(1− x) (2.6)

Our goal is to study this map within the context of AGT. On one side, M∆∆′ describes

modular transformations of the conformal block. On another side, it is a deformation of

the Legendre transform (1.1) to ε1, ε2 6= 0.

2.2 Various modular transformations

It is worth noticing that relation (2.6) does not exhaust all possible relations between

different types of conformal blocks. Indeed, one could change the order of vertex operators

inside the brackets and rearrange the brackets in different way in the final scalar product.

In fact, one can construct all possible different relation by two independent transformations

Ŝ : x→ 1− x, T̂ : x→ x

x− 1
(2.7)

The first transformation connects the following two conformal blocks

0,∆1

x,∆2

∆

1,∆3

∞,∆4 Ŝ−→ 1,∆3

x,∆2

∆′

0,∆1

∞,∆4 (2.8)

This S-duality transformation looks especially simple in terms of the “the effective coupling

constant” T (see s.3.1 below for the explanation of the terminology) in the SW limit:

Ŝ : T → − 1

T
(2.9)

The second generator, T̂ which describes the second modular transformation (the two being

enough to give rise to the whole modular group), in this case looks like

T̂ : T → T + 1 (2.10)
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This transformation connects the following conformal blocks

0,∆1

x,∆2

∆

1,∆3

∞,∆4 T̂−→ 0,∆1

x,∆2

∆′

∞,∆4

1,∆3 (2.11)

One can also use “the bare coupling constant” τ0: x = e2πiτ0 (see s.3.1), though in

these terms the same transformations look quite ugly:

Ŝ : e2πiτ0 → 1− e2πiτ0 , T̂ : e2πiτ0 → e2πiτ0

e2πiτ0 − 1
(2.12)

In the generic Ω-background the conformal block transforms non-trivially only w.r.t.

the first transformation, Ŝ, while the T̂ -transformation just gives rise to a trivial factor:

B∆

(
∆1,∆2,∆3,∆4|x

)
= (−1)∆(1− x)2∆2B∆

(
∆1,∆2,∆4,∆3|x

)
(2.13)

This is because T̂ interchanges the points 1 and ∞ and does not affect the point x. At the

same time, (2.6) is absolutely non-trivial transformation, so we mostly concentrate on it.

We shall also consider modular transformations of the one-point conformal block on a

torus which depends on the modular parameter of the torus τ0. These modular transfor-

mations are generated by two independent transformations

Ŝ : τ0 → −
1

τ0
, T̂ : τ0 → τ0 + 1 (2.14)

In this case also only the Ŝ-transformation is non-trivial, while the T̂ -transformation just

gives rise to a phase factor:

B∆

(
∆ext|τ0 + 1

)
= exp

{
2πi
(

∆− c

24

)}
B∆

(
∆ext|τ0

)
(2.15)

We return to discussion of the whole modular (S-duality) group in s.6.

2.3 Racah-Wiegner coefficients for Virasoro from Uq(sl2)-representations

The problem of constructing the Racah-Wiegner matrix for the Virasoro algebra was solved

in the case of degenerate representations [62], though in generic situation it is quite involved.

Instead, in [5–8] B.Ponsot and J.Teschner studied the Racah-Wiegner matrix for specific

infinite-dimensional representations of the algebra Uq(sl2) and suggested that it is equal to

that for the Virasoro case.

In fact, the modular transformation was explicitly described in [5–8] in two cases,

AGT-related to SU(2) SYM theory with Nf = 2Nc = 4 matter hypermultiplets or with one

adjoint matter multiplet. The first case is the spherical four-point conformal block [5–8]:

Bp

(
p1 p2

p3 p4

∣∣∣∣∣x
)

=

∫
dµ(p′)Mpp′

(
p1 p2

p3 p4

)
Bp′

(
p2 p3

p4 p1

∣∣∣∣∣ 1− x
)

(2.16)
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where

∆(p) =
ε2/4 + p2

ε1ε2
, dµ(p) = 4 sinh

(
2π

p

ε1

)
sinh

(
2π

p

ε2

)
dp, ε = ε1 + ε2 (2.17)

and

Mpp′

(
p1 p2

p3 p4

)
=
s(u1)s(w1)

s(u2)s(w2)

∫
R

dt

4∏
i=1

s(t− ri)
s(t− qi)

(2.18)

r1 = p2 − p1 q1 = ε/2− p4 + p2 − p′ u1 = p+ p2 − p1

r2 = p2 + p1 q2 = ε/2− p4 + p2 + p′ u2 = p+ p3 + p4

r3 = −p4 − p3 q3 = ε/2 + p w1 = p′ + p1 + p4

r4 = −p4 + p3 q4 = ε/2− p w2 = p′ + p2 − p3

(2.19)

while the second case is the one-point toric conformal block

Bp(p0|T ) =

∫
dµ(p′)Mpp′(p0)Bp′(p0| − 1/T ) (2.20)

Mpp′(p0) =
2

3
2

s(p0)

∫
R

dt
s
(
p′ + 1

2(p0 + ε) + t
)
s
(
p′ + 1

2(p0 + ε)− t
)

s
(
p′ − 1

2(p0 + ε) + t
)
s
(
p′ − 1

2(p0 + ε)− t
)e4πipt (2.21)

where we used “the quantum dilogarithm” [63–73], the ratio of two digamma-

functions [74–76],

log s(z|ε1, ε2) =
1

i

∞∫
0

dt

t

(
sin 2xt

2 sinh ε1t sinh ε2t
− x

ε1ε2t

)
=

=
∏

m,n≥0

(
m+ 1

2

)
ε1 +

(
n+ 1

2

)
ε2 − iz(

m+ 1
2

)
ε1 +

(
n+ 1

2

)
ε2 + iz

=
Γ2(ε/2 + iz|ε1, ε2)

Γ2(ε/2− iz|ε1, ε2)
(2.22)

which possesses a number of periodicity properties

s

(
z − iε2

2

∣∣∣ε1, ε2) = 2 cosh

(
πz

ε1

)
s

(
z +

iε2
2

∣∣∣ε1, ε2) (2.23)

s

(
z − iε1

2

∣∣∣ε1, ε2) = 2 cosh

(
πz

ε2

)
s

(
z +

iε1
2

∣∣∣ε1, ε2) (2.24)

s

(
z − iε

2

∣∣∣ε1, ε2) = 4 sinh

(
πz

ε1

)
sinh

(
πz

ε2

)
s

(
z +

iε

2

∣∣∣ε1, ε2) (2.25)

Formulas (2.16), (2.20) and (2.21) should be considered as contour integrals around poles

and zeroes of the quantum dilogarithms and they are quite difficult to use. They can be

simplified in some particular cases.
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3 AGT representation for conformal block

3.1 Nekrasov partition function

The complex coupling constant in the Yang-Mills theory is defined in terms of the standard

coupling constant g and the θ-angle as

T =
4πi

g2
+

θ

2π
(3.1)

The internal symmetry transformation of the theory T 7→ T + 1 and the duality map

(S-duality) defined by N.Seiberg and E.Witten [17], form the modular group SL(2,Z). It is

important to distinguish between the bare coupling constant τ0 arising in the fundamental

SYM theory and the effective one, T arising in the low-energy effective action of the general

form

Seff =
1

4π

∫
d4x=m

[∫
d2θ

∂F(A)

∂A
Ā+

1

2

∫
d4θ

∂2F(A)

∂A2
WαW

α

]
(3.2)

as T (a) = ∂2F(a)/∂a2, where the modulus a is essentially the scalar field v.e.v. We are

interested in action of S-duality on both T and τ0. The SW prepotential can be simply

related [28, 29] to the LMNS integral [77–80]

F = lim
ε1,2→0

ε1ε2
2πi

logZLMNS

The LMNS integral is defined for theN = 2 SYM theory on the so called Ω-background

parameterized by two parameters ε1 and ε2. The simplest is the theory with the gauge

group SU(2) and four fundamental matter hypermultiplets with masses µi (the β-function

in this theory is vanishing). In this case, the LMNS integral is represented [28, 29] by a

power series in exponential of the bare coupling constant τ0 parameterized by pairs of the

Young diagrams Y1, Y2

ZNek =
∑
Y1,Y2

Nε1,2(Y1, Y2, µ1, µ2, µ3, µ4, a)e2πiτ0(|Y1|+|Y2|) (3.3)

The coefficients Nε1,2(Y1, Y2, µ1, µ2, µ3, µ4, a) (the Nekrasov functions) are rational func-

tions in ε’s, the scalar v.e.v. a, and the matter hypermultiplet masses µi’s.

This series is known to coincide [9–12, 81–83] with the four-point conformal block up

to a so called U(1)-factor under the following identification of the CFT and SYM data:

∆(α) =
α(ε1 + ε2 − α)

ε1ε2
, c = 1 + 6

(ε1 + ε2)2

ε1ε2
(3.4)

µ1 = −ε/2+α1+α2, µ2 = ε/2+α2−α1, µ3 = −ε/2+α3+α4, µ4 = ε/2+α3−α4

(3.5)

a = α− ε/2, x = e2πiτ0 (3.6)

where αi corresponds to the four external dimensions and α to the intermediate dimension

in (2.5).

– 7 –
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It is remarkable that these Nekrasov functions do not possess any specific symmetry,

though the Seiberg-Witten theory does [17, 18]. Indeed, the Seiberg-Witten theory is

symmetric under the transformations

T̂ : T → T + 1 (3.7)

Ŝ : T → − 1

T
This symmetry reflects the freedom in choosing the A- and B-cycles on the spectral curve.

As we shall see, these symmetries can be lifted to the level of the ε-deformed prepotential

or the Nekrasov functions. The idea of this identification was presented in [84]. It is also

supported by the fact that the description in terms of the SW equations with contour

integrals remains true for ε1, ε2 6= 0 [36–39].

3.2 Matrix models

As is shown in [36–39] the conformal block and, hence, the Nekrasov functions can be

defined in terms of the β-ensemble (later on, we often call it just matrix model, though it

is literally a matrix model only at c = 1, i.e. at ε1 = −ε2):

Z =
∏
a<b

(qq − qb)
2αaαb
g

∫
γi

dzi

∏
j>i

z2β
ij

∏
a

(zi − qa)
2bαa
g , g =

√
−ε1ε2, β = b2 = −ε1

ε2

(3.8)

Here a, b = 1, 2, 3, q1 = 0, q2 = x, q3 = 1 and among the integration contours γi there are

N1 =
1

b

(
α− α1 − α2

)
(3.9)

segments [0, q] and

N2 =
1

b

(
b− 1

b
− α− α3 − α4

)
(3.10)

segments [0, 1]. This partition function satisfies the Seiberg-Witten equations: the prepo-

tential F = g2 logZ can be restored from

a =

∮
A

Ωg,β,
∂F (a)

∂a
=

∮
B

Ωg,β (3.11)

where Ωg,β is the full (all genus) one-point resolvent of the matrix model, see the next

section. This allows one to lift the SW construction to the level of the Nekrasov functions

and extend the S-duality transformation to the conformal block. As we shall see further,

this transformation provides exactly the modular transformation.

4 Modular transformation as Fourier transform

4.1 The simplest case and strategy

To see how the modular transformation can be interpreted in terms of Seiberg -Witten

theory note that, due to the AGT correspondence, the conformal block behaves similarly

– 8 –
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to the Nekrasov functions, in particular, in the limit of both ε1 and ε2 going to zero:

B
ε1,2→0
∼ exp

{ 2πi

ε1ε2
FSW (a)

}
(4.1)

Here FSW is the Seiberg-Witten prepotential defined for the effective curve∮
A

ΩSW = a,

∮
B

ΩSW =
∂FSW (a)

∂a
(4.2)

At the same time, one can make another choice of contours and define another prepotential∮
A

ΩSW = −
∂F ∗SW (b)

∂b
,

∮
B

ΩSW = b (4.3)

Consider the simplest example of this construction corresponding to the four-point confor-

mal block with external fields of zero conformal dimensions, or, in terms of N = 2 SYM

theory, with four massless matter hypermultiplets (note that in the deformed case these

masses become proportional to ε = ε1 + ε2 if the conformal dimensions are still zero). The

corresponding SW differential reads

ΩSW =
udz√

z(z − x)(z − 1)
(4.4)

The cycles are chosen as shown in figure 1. One can directly compute both the periods

and the corresponding prepotential to obtain∮
A

ΩSW =
1

πi
K(x),

∮
B

ΩSW =
1

π
K(1− x), F (a) =

ia2

2

K(1− x)

K(x)
(4.5)

It is immediate to observe that the rational transformation z 7→ 1−z permutes the contours

(A,B) 7→ (−B,A), so that one obtains the conjugated prepotential with the variable x

replaced with 1− x. In other words,

F ∗(a, x) = F (a, 1− x) (4.6)

This relation works equally well in the generic case even if the masses or the deformation

parameters ε1,2 are non-zero. Since the prepotential is directly related to the conformal

block, one naturally associates this permutation of contours with the modular transforma-

tion x→ 1− x of the prepotential, i.e.

F
M∆,∆′−→ F ∗ (4.7)

This statement allows one to construct the corresponding modular matrix in an explicit way.

Indeed, the S-duality transformation that relates the SW prepotential and its conjugated

is known to be nothing but the Legendre transformation

F ∗(a, x) = sup
b

(
F (b, x)− ab

)
= F (a, 1− x) (4.8)

– 9 –
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Figure 1. Cycles for the 4-point conformal block

This relation can be understood as the leading (semiclassical) approximation to

exp

{
2πi

ε1ε2
F ∗(a)

}
=

∫
db exp

{
2πi

ε1ε2
ab

}
exp

{
2πi

ε1ε2
F ∗(b)

}
(4.9)

at small deformation parameters ε1,2. In other words, the asymptotic behavior of the

modular matrix is

Ma,b ∼ exp

{
2πi

ε1ε2
ab

}
(4.10)

Thus, one obtains that the S-duality acts as the Fourier transform. Let us note that

it may come not as a surprise, due to a similar conclusion of [85] in a slightly different but

related context.1 Indeed, the discussion in [85] is within the framework of the B-model

topological string theory which is a natural setup to study the Seiberg-Witten theory,

since the Seiberg-Witten curve becomes a part of the compactification manifold. More

specifically, the authors of [85] studied the topological B-model on a special class of non-

compact Calabi-Yau threefolds that can be viewed as a hypersurface

uv + Σ(x, y) = 0 (4.11)

One can construct fermions (related to the observables) which are not globally defined on

the Riemann surface (SW curve) Σ(x, y), and they are related in different patches just

by the Fourier transform. This phenomenon was also studied in a greater detail in the

topological strings on the deformed conifold geometry (which is dual to the c = 1 string)

in [86].

4.2 Exactly solvable cases

We are going to consider now the cases when the SW approximation turns out to be almost
exact. It happens when the coefficients in the Zamolodchikov recursive formula [87, 88]2

which are in charge of the “non-classical” part are equal to zero:

B(∆1,∆2,∆3,∆4; ∆|x) =
(
eπiT

)∆− c−1
24 x

c−1
24 −∆1−∆2(1−x)

c−1
24 −∆2−∆3θ3(T )

c−1
2 −4(∆1+∆2+∆3+∆4)×

×
(

1+Hnon−classical(∆1,∆2,∆3,∆4; ∆|x)
)
, T = i

K(1− x)

K(x)
(4.12)

1We are grateful to the referee of our paper for this comment.
2It was considered within the AGT context in [89, 90].
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This is well-known to be the case for the SU(2) theory with Nf = 4 matter fundamen-

tals with the masses such that ∆i = 1
16 , ∆ = a2

g2 and the deformation parameters such that

c = 1. Then:

B (a|x) =
e
πi
g2
T a2

[x(1− x)]
1
8 θ3(T )

(4.13)

B (a|x) =

∫
db

g
e

2πiab
g2 B (b|1− x) (4.14)

The second exactly solvable case is the SU(2) theory with the adjoint matter field with

the adjoint mass and the deformation parameters such that ∆ext = 0 and c = 1. This

theory corresponds to the toric conformal block (with ∆ = a2

g2 ) and

B (a|T ) =
e

2πi
g2
T a2

η(T )
(4.15)

B (a|T ) =

∫
db

g
e

4πiab
g2 B

(
b

∣∣∣∣− 1

T

)
(4.16)

in this case.

As one can see, in these both examples the asymptotic form of the modular matrix is

exact. In fact, these two cases are basically equivalent due to the correspondence between

the one-point conformal block on a torus and a conformal block on a sphere, see [90] and

s.6.1.

4.3 Fourier transform from Uq(sl2) algebra

These exact formulas can be compared with those obtained for the Ponsot-Teschner ker-

nel (2.21). For instance, when the external dimension in the toric conformal block goes to

zero, the complicated kernel (2.21) is drastically simplified. Naively one would expect from

eq. (2.21) and using (2.23) that, in this case,

M = 23/2

∫
e4πia′rdr

16 sinh
(
π(a+r)
ε1

)
sinh

(
π(a+r)
ε2

)
sinh

(
π(a−r)
ε1

)
sinh

(
π(a−r)
ε2

) (4.17)

In fact, the denominator in the integrand of (2.21) has double poles, which merge in the

limit of p0 → i ε2 , and the integration contour is pinched between these two poles. Hence,

one has to deal with this limit more carefully:

M(a, a′|0) =

∮
r=−a

s(a+ r + iε/2 + iλ)

s(a+ r − iε/2− iλ)

e4πia′rdr

4 sinh
(
π(a−r)
ε1

)
sinh

(
π(a−r)
ε2

) +

+

∮
r=a

s(a− r + iε/2 + iλ)

s(a− r − iε/2− iλ)

e4πia′rdr

4 sinh
(
π(a+r)
ε1

)
sinh

(
π(a+r)
ε2

) (4.18)
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Since

s(a+ r + iε/2 + iλ)

s(a+ r − iε/2− iλ)
=

∏
m,n≥0

(m+ 1/2)ε1 + (n+ 1/2)ε2 − i(a+ r + iε/2 + iλ)

(m+ 1/2)ε1 + (n+ 1/2)ε2 + i(a+ r + iε/2 + iλ)
×

× (m+ 1/2)ε1 + (n+ 1/2)ε2 + i(a+ r − iε/2− iλ)

(m+ 1/2)ε1 + (n+ 1/2)ε2 − i(a+ r − iε/2− iλ)
=

=
∏

m,n≥0

(m+ 1)ε1 + (n+ 1)ε2 − i(a+ r + iλ)

mε1 + nε2 + i(a+ r + iλ)

(m+ 1)ε1 + (n+ 1)ε2 + i(a+ r − iλ)

mε1 + nε2 − i(a+ r − iλ)
∼

∼
m,n=0

1

(a+ r)2 − λ2
∼
λ→0

δ(a+ r) (4.19)

one finally obtains

M(a, a′|0)→

√
2 cos

(
4πi aa

′

ε1ε2

)
µ′(a)

(4.20)

Thus, indeed, in this limit the modular transformation reduces just to the simple Fourier

transform as we already saw in s. 4.2.

The Fourier transform can be also derived in the limit of ε1,2 → 0. Assume that

=m
(
ε1
ε2

)
> 0, then the asymptotics of the quantum dilogarithm has different signs depend-

ing on the direction

s(z|ε1, ε2) ∼

{
e
πi
2
z2
, arg ε1 − π

2 < arg z < arg ε2 + π
2

e−
πi
2
z2
, arg ε2 − 3π

2 < arg z < arg ε1 − π
2

(4.21)

This leads to the limit for the modular kernel for ε1,2 → 0

M(a, aD) ∼
∫
dt exp

{
πi

2ε1ε2

(
2t2 − (t− aD)2 + (t+ aD)2 − (t− a)2 + (t+ a)2

)}
∼ e

2πi
ε1ε2

aaD

(4.22)

Unfortunately, this approach does not allow one to find the next corrections to the modular

matrix, since in the asymptotics ε1,2 → 0 there is only quadratic term in the exponen-

tial (4.21), so further corrections look exponentially small and are not obtained within the

asymptotic perturbation theory [91]. At the same time, as we demonstrate in the next sec-

tion, the actual corrections are not like this (not exponentially small), and it is a question

(not answered in the present paper), how (4.17) should be effectively treated in order to

reproduce them.

5 Genus expansion in matrix models and corrections to the modular

kernel

5.1 Loop equations

In order to obtain a way to effectively generate manifest formulas for the S-duality, we

are going to apply the technique of matrix models which, in accordance with the AGT

conjecture, describe the conformal blocks and Nekrasov functions, see s. 3.2. This technique

– 12 –
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allows one to calculate the modular kernel, i.e. to construct the S-duality transformations

iteratively using the matrix model loop equations.

Thus, we consider the multiple integral (3.8). The standard way to deal with matrix

integrals is to construct loop equations for the k-point resolvents [40–49, 92–95]

rk(ξ1, . . . , ξk) =

〈∑
i

1

ξ1 − zi

∑
i

1

ξ2 − zi
. . .

∑
i

1

ξk − zi

〉
(5.1)

where the brackets denote the average w.r.t. to the measure (3.8)∫
γi

dzi

∏
j>i

z2β
ij

∏
a

(zi − qa)
2bαa
g (5.2)

We also use the connected correlators and denote them through ρk(ξ1, . . . , ξk). For k = 1

we additionally shift

ρ1(z) =
√
β

(
gr1(z) +

∑
a

αa
z − qa

)
(5.3)

The loop equations for the unconnected resolvents form the following set of equations

βrk+1(ζ, ζ, x1, . . . , xk+1) + (β − 1)∂ζrk(ζ, x1, . . . , xk−1)+∑
a

2
√
βαa
g

rk(ζ, x1, . . . , xk−1)− rk(qa, x1, . . . , xk−1)

ζ − qa
+

+
∑
j

∂xj
rk−1(x1, . . . , xk−1)− rk−1(x1, . . . , xk−1)|xj=ζ

xj − ζ
= 0 (5.4)

One can reformulate it in terms of the connected resolvents which admits “the genus

expansion” in powers of the coupling constant g. These equations are a bit more involved.

The first few of them are

g2βρ2(z) + g

(√
β − 1√

β

)
(∂ρ1(z)+

+
√
β
∑
a

αa
(z − qa)2

)
+ ρ2

1(z)−
∑
a

∂qaF
z − qa

− β

(∑
a

αa
z − qa

)2

= 0

g2βρ3(z) +
1

2
g(β − 1)∂ρ2(z) + 2ρ1(z)ρ2(z)−

∑
a

∂qaρ1(z)

z − qa
+

1

2
∂2ρ1(z) = 0

2ρ1(z)ρ3(z) + 2ρ2
2(z)−

∑
a

∂qaρ2(z)

z − qa
+ (L̂ρ2)(z) = 0

2∂2ρ1(z)ρ2(z) + 2∂ρ1(z)∂ρ2(z) + 2ρ1(z)(L̂ρ2)(z)− 2
∑
a

∂qaρ1(z)

(z − qa)3
+

1

12
∂4ρ1(z) = 0

(5.5)

where

(L̂ρ2)(z) = ∂z∂wρ2(z, w)|w=z (5.6)

and F differs from F by omitting the normalization factor
∏
a<b(qq− qb)2αaαb/g from (3.8).
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The matrix model (β-ensemble) partition function can be calculated using the SW

equations (3.11) for its logarithm. The complex spectral curve is determined from the genus

zero contribution to the first equation of (5.5) which involves only the 1-point resolvent

ρ
(0)
1 (z) (5.3)

y2(z) = ρ
(0)
1 (z)2 =

∑
a

∂qaF
z − qa

+ β

(∑
a

αa
z − qa

)2

(5.7)

while the differential is

Ωg,β = ρ1(z)dz (5.8)

5.2 Modular kernel construction

Similarly to the expansion of the prepotential into powers of the string coupling constant

g, one can perform this expansion for the modular matrix. Thus, we assume the following

expansions

F (a, x) =

∞∑
k=0

g2kFk(a, x) (5.9)

M(a, b) = exp

(
2πiab

g2
+
∞∑
k=0

g2kmk(a, b)

)
(5.10)

which should be inserted into the definition of the modular kernel M(a, b)

e
2πi
g2
F (b,1−x)

=

∫
da

g
M(a, b)e

2πi
g2
F (a,x)

(5.11)

Then, a simple computation leads to the following relation

F (b, 1− x) = (F (a0, x) + a0b) + g2

(
m0(a0, b) + F1(a0|x)− 1

4πi
logF ′′0 (a0|x)

)
+

+g4

(
m1(a0, b) + F2(a0|x) +

i

4π

F ′′1 (a0|x)

F ′′0 (a0|x)
+

i

4π

m′′0(a0, b)

F ′′0 (a0|x)
− 1

2

(m′0(a0, b))
2

F ′′0 (a0|x)
− 1

2

(F ′1(a0|x))2

F ′′0 (a0|x)
+

−m′0(a0, b)F
′
1(a0|x)

F ′′0 (a0|x)
− 1

32π2

F
(IV )
0 (a0|x)

(F ′′0 (a0|x))2
− i

4π

F ′′′0 (a0|x)F ′1(a0|x)

(F ′′0 (a0|x))2
+

5

96π2

(F ′′′0 (a0|x))2

(F ′′0 (a0|x))3

)
+ . . . ,

(5.12)

where a0 is determined from the equation F ′0(a0|x) + b = 0 and the prime means the

derivative w.r.t. a0. This relation can be also viewed as defining the function x(a, b) in an

implicit way

F ′0(a|x(a, b)) = −b (5.13)

Using this formula, one can eliminate the x-dependence from the modular kernel. For

instance, in the first order one has

m0(a, b) = F1(b, 1− x(a, b))− F1(a|x(a, b)) +
1

4πi
logF ′′0 (a|x(a, b)) (5.14)
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5.3 First few terms of expansion

Here we present some explicit expressions for the first few terms of expansion of the pre-

potential calculated on the lines of s.5.1. Then, following s.5.2, we find the corresponding

genus expansion of the modular kernel.

Example 1: ε1 = −ε2 = g or β = 1 with µ1 = 2tm1, µ2,4 = 0, µ3 = 2tm3. In

this case, the prepotential has the following expansion

F (µ1 = 2tm1, µ2 = 0, µ3 = 2tm3, µ4 = 0|x) =

∞∑
k,m=0

Ik,2m(x)g2kt2m (5.15)

Several first terms in this expansion are given by the following expressions

I00 = −πa
2K(1− x)

K(x)
(5.16)

I02 = 2(m2
1 +m2

3) log a (5.17)

I04 = −2(m4
1 +m4

3)

3π2a2
((x− 2)K(x) + 3E(x))− 4m2

1m
2
3

π2a2
K(x) ((x− 1)K(x) + E(x)) (5.18)

I10 = −1

2
log a (5.19)

I12 =
2(m2

1 +m2
3)

3π2a2
K(x) ((x− 2)K(x) + E(x)) (5.20)

I14 =
4(m4

1 +m4
3)

3π2a4
K2(x)

[
(x2 − 3x+ 3)K2(x) + 4(x− 2)K(x)E(x) + 6E2(x)

]
+

+
8m2

1m
2
3

3π4a4

[
(3x2 − 7x+ 4)K2(x) + 2(4x− 5)K(x)E(x) + 6E2(x)

]
(5.21)

I20 = −K(x)

8π2a2
((x− 2)K(x)− 3E(x)) (5.22)

I22 = −m
2
1 +m2

3

60π4a4
K2(x)

(
(48x2 − 143x+ 143)K2(x) + 190(x− 2)K(x)E(x) + 285E2(x)

)
(5.23)

I24 = −K
3(x)(m4

1 +m4
3)

90π6a6

(
− 1646K3(x) + 4350E3(x) + 2469xK3(x)− 8700K(x)E2(x) +

+6476K2(x)E(x)− 1783K3(x)3x2 + 480x3K3(x) +

+4350K(x)E2(x)x+ 2126K2(x)x2E(x)− 6476K2(x)xE(x)
)
−

−K
3(x)m2

1m
2
3

45π6a6

(
− 1646K3(x) + 4350E3(x) + 2469K3(x)x− 8700K(x)E2(x) +

+6476K2(x)E(x)− 1783K3(x)x2 + +480x3K3(x) + 4350K(x)E2(x)x+

+2126K2(x)x2E(x)− 6476K2(x)E(x)x
)

(5.24)

Surprisingly, in this case of only two zero masses the modular matrix does not seem to

differ from the Fourier transform:

e
1
g2
F (x|a)

=

∫
db

g
e

2πiab
g2

+O(t6,g4)
e

1
g2
F (1−x|b)

(5.25)
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Even more surprisingly, this seems to remain true for arbitrary masses: corrections are

absent whenever β = 1 (though we do not possess yet a complete evidence in favor of this

conjecture).

Example 2: Double deformation β 6= 1 with µ1 = µ2 = −µ3 = −µ4 = ε/2. In

the case of the arbitrary double deformation the modular kernel is no longer the Fourier

transform. We demonstrate this in the simplest case of masses µ1 = µ2 = −µ3 = −µ4 =

ε/2. Then, the prepotential is

F = −πa
2K(1− x)

K(x)
+
g2

2

(
3β − 7 +

3

β

)
log a−

− g4

8a2

(
3β − 7 + 3

β

)(
β − 3 + 1

β

)
π2

K(x) ((x− 2)K(x) + 3E(x)) + . . . (5.26)

The modular matrix in this case reads

M(a, b) = exp

(
2πiab

g2
+

3(β − 1)2

2β
log

a

b
− 3ig2

16πβ2

(β − 3)(3β − 1)(β − 1)2

ab
+ . . .

)
(5.27)

Thus, for β 6= 1 corrections to the Fourier transform are non-vanishing.

6 S-duality in the NS limit: comments and remarks

In the previous section we used the matrix model technique in order to manifestly construct

the S-duality kernel as a series in powers of β−1, i.e. around the line β = 1. In this section

we briefly discuss peculiarities of another important line ε2 = 0 (the NS limit [96, 97])

which are essential for further studies, since in the NS limit the modular properties are

much simpler than in the generic case, and there is a hope to understand them in much

more details. This limit is also interesting from the point of view of integrable systems,

because there the remaining ε1 can be treated as a quantization parameter.

6.1 Modular transformation on torus

So far using the matrix model technique we discussed how to obtain the S-duality kernel

of conformal blocks on a sphere. One can similarly deal with the conformal blocks on

a torus, though the matrix model is somewhat more involved [98, 99]. In practice, it is

simpler to use an equivalence of the one-point toric conformal block and a special four-point

spherical conformal block [90]. However, in [90] this equivalence is established through a

sophisticated recursion procedure which is still not very well understood. Here we describe

this equivalence in a much more explicit way, but only in the limit ε2 → 0, i.e. when there

is an underlying quantum integrable system (the elliptic Calogero model [100–109]) and a

“quantized” SW curve. In order to completely describe the conformal block in this limit,

one has to insert an additional field, degenerate at the second level [110–115], and consider

the equation for the conformal block that emerge after this [1, 2]. This Schrödinger-Baxter

equation is exactly what one calls the “quantized” SW curve, and the logarithmic derivative

of solution of this equation is the SW differential. Using this SW data, one constructs the

Nekrasov function in the NS limit, ε2 → 0.
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Thus, the conformal blocks to compare are the 5-point spherical block and the toric

2-point block, both with one of the fields degenerate at the second level and the properly

adjusted intermediate dimensions [116]. We demonstrate that the differential equation for

the toric block reduces to a particular case of the spherical block differential equation. The

original four-point and one-point conformal blocks can afterwards be extracted from the

asymptotics of the solutions by a procedure presented in [116].

In the limit of ε2 → 0, the differential equation for the toric conformal block is [116]{
2πi

∂

∂τ0
− 4

ε1
ε2

[√
(X − e1)(X − e2)(X − e3)∂X

]2
+
µ(ε1 − µ)

ε1ε2
X

}
Ψ
(
τ0, X

)
= 0 (6.1)

where, as compared with [116, eq. (36)], we left only the terms essential in the limit ε2 → 0

and introduced the variable X = ℘(z|τ0), i.e. z = 1
2

∞∫
X

ds√
(s−e1)(s−e2)(s−e3)

, with

e1 =
π2

3
(2− x)θ4

3(τ0), e2 = −π
2

3
(1 + x)θ4

3(τ0), e3 = −π
2

3
(1− 2x)θ4

3(τ0), x =
θ4

2(τ0)

θ4
3(τ0)
(6.2)

The external dimension ∆ = µ(ε1−µ)
ε1ε2

parameterizes the mass µ of the adjoint matter hy-

permultiplet (adding this hypermultiplet corresponds to the toric conformal block in the

AGT framework).

Now, change of the variable X = e2 − t(e1 − e2) leads to the equation{
1

2
x(x− 1)∂x + t(t− 1)(t− x)

[
∂2
t −

1

2

(
1

t
+

1

t− 1
+

1

t− x

)]
+

µ(ε1 − µ)

4ε1ε2

(
t− 1

3
(1 + x)

)}
Ψ(x, t) = 0 (6.3)

By rescaling the wave function Ψ̃(t) = [t(t− 1)(t− x)]−
1
4 Ψ(t), one can eliminate the term

linear in ∂t, up to the order O(ε02). This procedure redefines the SW integral, with the

intermediate dimension ∆α = α(ε−α)
ε1ε2

), in accordance with

ε1
2πi

∮
A
dt log Ψ̃ =

ε1
2πi

∮
A
dt log Ψ− ε1

2
= α− ε1

2
= a

This equation coincides with that for the spherical conformal block [116, eqs. (85)-(86)]

in the limit ε2 → 0 provided one rescales the modular parameter τ0 → 2τ0 and the wave

function ψ = Ψ̃ [x(x− 1)]−
∆
12 :[

x(x− 1)∂x −
ε1
ε2
t(t− 1)(t− x)∂2

t −
µ(ε1 − µ)

4ε1ε2
(t− x)

]
ψ(x, t) = 0 (6.4)

Since the wave functions are the same for toric and spherical cases, the same is true for

the conformal blocks. Thus, we reproduce the answer of [90], but only in the limit ε2 → 0

Zsphere

(
∆1,2,3 = 0,∆4 =

∆

4

∣∣∣x =
θ4

2(2τ0)

θ4
3(2τ0)

)
= η−2∆(τ0)

(
θ8

3(2τ0)

θ4
2(2τ0)θ4

4(2τ0)

) ∆
12

Ztorus(∆|τ0)

(6.5)
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This means that the toric conformal block has the same transformation properties as the

spherical one, its modular/S-duality operator in the limit ε1,2 → 0 being

M(a, a′) = e
4πiaa′
ε1ε2 (6.6)

Note that we made the rescaling τ0 → 2τ0, thus this formula is in accordance with the

results of [5–8]. In section 4.2 we already encountered an explicit application of this result.

6.2 S-transformation of effective coupling constants

Throughout the paper we mostly concentrated on the modular kernel for the transformation

x → 1 − x, which turns to resemble the Fourier transform. One may also ask how the

effective coupling constant behaves under this transformation.

As we discussed above, the S-duality transformation of an effective charge matrix

defined as ||Tε1,ε2 ||i,j =
∂2Fε1,ε2
∂ai∂aj

, has the simple form in the SW case:

Ŝ(T0,0) = −(T0,0)−1 (6.7)

In fact, it is preserved in the once deformed case too:

Ŝ(Tε1,0) = −(Tε1,0)−1 (6.8)

The reason that this property survives the deformation is that in this case there still

exists the closed (Baxter or Schrödinger) equation for the SW differential so that one

can immediately construct the Bohr-Sommerfeld integrals to obtain the SW prepotential,

and the SW differential remains intact under duality transformations. However, this is

no longer the case when the both deformations are switched on. Indeed, in this case

the SW differential is determined only from the loop equations involving all multi-point

resolvents and

Ŝ(Tε1,ε2) 6= −(Tε1,ε2)−1 (6.9)

There is the following technical reason for this. Consider the space of coupling constants

x = e2πiτ0 and the fiber bundle of the Riemann surfaces over this space u(x) = 〈Trφ2〉.
With this bundle, one can construct the A- and B-periods of the 1-resolvent: a(x) = 〈φ〉,
b(x). As soon as the SW differential or the equation for it in the once deformed case

depends only on u(x), but not on its derivatives, one can locally interchange the cycles at

some point x0, i.e. just change the value of a(x) at this point x = x0, and it is completely

independent on the value of a(x) at any other point x. This property is broken, however,

by the matrix model corrections, since then the derivatives of u(x) manifestly enter the

differential (and the equations for it). On the other hand, we fix a(x) = const, b(x) is a

non-trivial function and one can no longer permute the cycles locally at some x0. To put

it differently, in order to completely fix the multi-resolvents in matrix model, one has to

impose some condition on their A-periods: for instance, to require that they vanish. This

manifestly breaks the symmetry under permutations of the A- and B-cycles, see figure 2.
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Figure 2. Family of effective tori defining the matrix model partition function

6.3 On the full duality group

We discussed so far only the S-transformation from the duality group. One may ask what

is the full duality group, i.e. when one adds the generator of the T -transformation. This

question was addressed in detail in numerous papers [17–27], still a few short remarks

deserve mentioning.

Note that so far we considered different groups of transformations. First of all, it is

the group of modular transformations of the conformal blocks. It is related by the AGT

relations with the S-duality group. The modular transformations are induced by the third

group, which relates different possibilities to arrange the brackets in the tensor products.

This group sometimes coincides with the group of permutations of points, as we discuss in

this section below.

6.3.1 SL(2,Z) and Racah identities

We start with the case of SU(2) gauge group, i.e. with the four-point conformal block.

Note that the associativity of the operator algebra implies an essential property of the

Racah-Wiegner coefficients: considering multiple products of representations and rear-

ranging brackets in different ways, one arrives at commutative diagrams. One of these is

(T1 ⊗ T2)⊗ T3
T̂−−−−→ (T2 ⊗ T1)⊗ T3

R̂−−−−→ T2 ⊗ (T1 ⊗ T3)yR̂ yF̂
T1 ⊗ (T2 ⊗ T3)

T̂←−−−− T1 ⊗ (T3 ⊗ T2)
R̂←−−−− (T1 ⊗ T3)⊗ T2

(6.10)

which imposes a nontrivial restriction T̂ R̂F̂ R̂T̂ = R̂ on the modular kernel. For the

modular and S-duality transformation with generators Ŝ and T̂ one has R̂ = T̂ Ŝ, F̂ = 1̂,

and the Racah relation is equivalent to (T̂ Ŝ)3 = 1. Along with Ŝ2 = 1 this implies that

these transformations generate SL(2,Z).

As we discussed in the previous subsection, one can realize these generators in the

NS limit either in terms of the effective coupling constant T on the gauge theory side

(S-duality) as

Ŝ : T 7→ −1/T , T̂ : T 7→ T + 1, (6.11)

– 19 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
7

or in terms of the double ratio (bare coupling constant in the gauge terms) of four points

on the CFT side (modular transformation) as

ˆ̄S : x 7→ 1− x, ˆ̄T : x 7→ x

x− 1
(6.12)

In the first representation, one obtains only two relations for the generators: Ŝ2 = 1

and (T̂ Ŝ)3 = 1, while in the second one there is the additional restriction ˆ̄T 2 = 1, i.e. the

generators, in this case, form a finite group of permutations S3. This seeming contradiction

with the AGT relation is resolved once one notice that the main object of our interest, the

conformal block also does not obey the relation T̂ 2 = 1 because of the singular behaviour:

B ∼ x∆−∆1−∆2 , x → 0. As a result, the action of T̂ 2 which carries the point q around

zero gives rise to a non-trivial monodromy factor, thus, the conformal block provides the

representation of SL(2,Z), not of S3.

6.3.2 Multi-point conformal blocks

This difference between the permutation and duality groups becomes more profound for

multi-point conformal blocks. Indeed, in this case not all possible modular transformations

(i.e. all possible ways to place brackets in the tensor products) can be associated with

permutations of points. This happens starting from the six-point conformal block.3 In the

case of the five-point conformal block this is still possible, and the modular transformations

can be described by the S4 group of permutations. The duality group in this case also has

nothing to do with the permutation group. The five-point conformal block described theory

with the gauge group SU(2) × SU(2), however, the duality group is not a direct product

of two SL(2,Z), see the detailed discussion in [27]. It is done there for SW theory, i.e. for

ε1, ε2 = 0, however, it is enough in this case, though one can definitely repeat the matrix

model calculations for arbitrary ε1 and ε2.4

The S-duality group contains two SL(2,Z) subgroups and an additional generator

mixing them, i.e. one can totally extract five generators: Ŝ1,2, T̂1,2 and the mixing generator

Q̂. As previously, one can construct the Racah relation, which in this case reads

R̂1T̂1R̂2R̂1 = Q̂R̂1R̂2 (6.13)

with the Racah coefficients given by R̂1,2 = T̂1T̂2Ŝ1,2. Since the S-duality group contains

SL(2,Z) subgroups, the relation
(
ŜT̂
)3

= 1 still holds.

3It is interesting to note that similarly an absolutely new, more complicated behaviour characterizes the

n-point gluon amplitudes within the Alday-Maldacena framework at n ≥ 6 as compared with n = 4, 5 [117].
4A counterpart of the spectral curve (5.7) in the case of generic multi-point conformal block is in the

massless limit

y2(z) =
∑
i

xi(xi − 1)∂xiF
z(z − xi)(z − 1)

and the SW (genus zero) differential is

Ω = y(z)dz

The bare coupling constants are related with the double ratios in this case via formulas like xk =

exp

(
2πi

N−k∑
i=1

τ i0

)
.
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As we mentioned, beginning with the six-point case the modular transformations are

not reduced to permutations of points. The reason is that the new diagram emerges, and

one has to describe within the modular transformation the map

0,∆1

x1,∆2 x2,∆3 x3,∆4 1,∆5

∞,∆6 −→
�
�
�

@
@
@

0,∆1

x1,∆2

x2,∆3 x3,∆4
1,∆5

∞,∆6

This implies that the modular and S-duality groups are different for these theories: this

transformation can not be described within the framework of the same SYM theory with

modified parameters. This issue requires further efforts to be understood.

7 Conclusion

In this paper, we reviewed the problem of constructing the fusion coefficients in 2d con-

formal field theory from the point of view of the AGT conjecture. We provided some

explicit formulas relating the modular map of the conformal blocks to the S-duality map

of the Ω-background-deformed prepotential or of the Nekrasov partition functions. We

demonstrated that S-duality transformation is actually the Fourier transform at β = 1,

but acquires non-trivial corrections for β 6= 1. These corrections can be found order-by-

order from the Virasoro constraints (loop equations) for the “conformal” β-ensemble (i.e.

with logarithmic potential) of [31–39].

Still more effort is needed to reproduce this result from the Uq(sl2)-algebra consid-

eration by B.Ponsot and J.Teschner. A generalization to multi-point conformal blocks,

deformed Virasoro algebras and WN -algebras are also open problems.
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