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1 Introduction

Precise predictions for cross sections in collider experiments require knowledge of scattering

amplitudes to a high loop order. Computations of this type, particularly in QCD, are

still unfortunately out of reach using known techniques. Unitarity cuts have shown to

be an enormously powerful tool for super-symmetric gauge and gravity theories with full

amplitudes now computed up to four loops [1, 2]. At three-loops, steps beyond maximally

super-symmetric amplitudes have also been considered in the recent computation of the

UV behaviour of graviton-graviton scattering in N = 4 supergravity [3]. For a recent

review of state of the techniques see [4] and references therein.

The success of unitarity [5, 6] and generalised unitarity [7] in automating multi-loop

one-loop corrections has sparked some recent interest in exploring the application of inte-

grand reduction (OPP-like [8]) methods at two-loops [9–14]. Very recently the possibility

of using computational algebraic geometry to overcome the traditional bottlenecks in am-

plitude computations has started to be explored [15, 16].

The traditional approach to a unitarity computation of a loop amplitude relies on the

knowledge of a basis of known integral functions. At two loops it has been possible to

derive sets of integration-by-parts identities [17, 18] that reduce amplitudes to a unitarity

compatible basis [19, 20]. Using an integrand parametrisation constrained by the ideal

generated from the propagators with help from Gram matrix identities we can also reduce

a unitarity compatible form of the amplitude to master integrals using the well known

Laporta algorithm [21] which is implemented in a number of public codes [22–25].

In this paper we consider the extension of the new integrand reduction techniques to

three-loop amplitudes. We derive a complete reduction to ten-propagator master integrals
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Figure 1. The momentum flow and propagator definitions for the three-loop planar triple box.

(MI) for the maximal cut of the three loop planar triple box with four massless external

legs. As a first application of the technique we compute the ten-propagator MI coefficients

for gluon scattering in Yang-Mills theory with adjoint fermions and scalars. The result

applies in both N = 4, 2, 1 and 0 super-symmetric theories.

2 Reduction of the massless triple box

In this paper we will study the three-loop planar triple box topology, shown in figure 1,

defined by:

I10
[

ÑD(ǫ, ki, pj)
]

=

∫

dDk1
(2π)D

∫

dDk2
(2π)D

∫

dDk3
(2π)D

ÑD(ǫ, ki, pj)
∏10

i=1 l
2
i

, (2.1)

where the ten propagators {li} are given by:

l1 = k1 , l2 = k1 − p1 , l3 = k1 − p1 − p2 , l4 = k3 + p1 + p2 ,

l5 = k2 + p1 + p2 , l6 = k2 − p4 , l7 = k2 , l8 = k3 ,

l9 = k1 + k3 , l10 = k2 − k3 . (2.2)

The external momenta, {pi}, and internal momenta, {li}, are considered massless.

Though the integral needs to be dimensionally regulated in D = 4− 2ǫ dimensions we will

only consider generalized unitarity cuts in four dimensions and therefore reconstruct only

the leading term of the numerator function, ÑD(ǫ, ki, pj) = Ñ(ki, pj) +O(ǫ).

We also consider the external momenta to be outgoing with the Mandelstam variables

defined by:

s = (p1 + p2)
2, t = (p1 + p4)

2, u = −s− t . (2.3)

Following a similar approach taken at two loops in our previous work [11], we will

proceed in three steps: firstly the on-shell constraints for the deca-cut will be solved.
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x1 x2 x3 x4

1 0 0 1− s
t
1+τ1
τ2

0

2 0 0 −u
t
(1 + τ1) 0

3 0 0 τ2 0

4 0 0 −u
t
(1 + τ1) 0

5 0 0 τ2 0

6 0 0 1 0

7 0 0 τ1 0

y1 y2 y3 y4

1 0 0 1 + τ2 0

2 0 0 0 −1 + s
u

1
τ1

3 0 0 0 −1− τ1

4 0 0 0 τ2

5 0 0 1 0

6 0 0 τ2 0

7 0 0 τ2 0

Table 1. Values of the coefficients in l2 and −l6 in (2.4).

Secondly, we invert a linear system to map the polynomial of the deca-cut defined by the

on-shell constraints onto the general integrand basis. Finally the integrand is reduced to

master integrals(MIs) using additional integration-by-parts(IBP) relations.

2.1 Solving the on-shell constraints

The parametrisation of the loop-momenta using two component Weyl spinors has been

chosen as follows:

l2 = x1p1 + x2p2 + x3
〈23〉

〈13〉

〈p1|γ
µ|p2]

2
+ x4

〈13〉

〈23〉

〈p2|γ
µ|p1]

2
,

−l6 = y1p3 + y2p4 + y3
〈41〉

〈31〉

〈p3|γ
µ|p4]

2
+ y4

〈31〉

〈41〉

〈p4|γ
µ|p3]

2
,

−l4 = z1p2 + z2p3 + z3
〈34〉

〈24〉

〈p2|γ
µ|p3]

2
+ z4

〈24〉

〈34〉

〈p3|γ
µ|p2]

2
. (2.4)

The ten cut-constraints l2i = 0 form a set of ideals. Following the recent method proposed

by Zhang [15], this system can be reduced using primary decomposition to find 14 inde-

pendent solutions. These solutions come in complex conjugate1 pairs and we label them

1–7 and 1′–7′. We find that all 14 solutions have the same dimension and therefore can be

parametrised with two variables which we call τ1 and τ2. For the solutions 1–7, explicit

forms for the coefficients in (2.4) can be written as in tables 1 and 2.

It is worth mentioning that the parametrisation is Laurent-polynomial, so that no

terms of the form 1
1+τ

appear. We will therefore be able to fit the integrand using an

efficient discrete Fourier projection just as used succesfully at one-loop [26, 27].

The conjugate solutions can be easily constructed from the above expressions using,

xs
′

1 = 0 xs
′

2 = 0 xs
′

3 =
u

t
xs4 xs

′

4 =
t

u
xs3

ys
′

1 = 0 ys
′

2 = 0 ys
′

3 =
u

t
ys4 ys

′

4 =
t

u
ys3

zs
′

1 = zs1 zs
′

2 = zs2 zs
′

3 =
u

s
zs4 zs

′

4 =
s

u
zs3 . (2.5)

Note that we have suppressed the functional dependence of the coefficients, e.g. xs3 ≡

xs3(τ1, τ2).

1Technically explicit complex conjugation is only valid for real external momenta. However, the solutions

1′–7′ are also valid for complex external momenta.
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z1 z2 z3 z4

1 s
t

(

1 + 1
τ1

)(

1 + 1
τ2

)

− s
t

(

1 + 1
τ1

)

+ τ2
τ1

−u
t

(

1 + 1
τ1

)

Z41

2 s
t

(

1 + τ2
)(

1− u
s
τ1
)

s
t

(

1 + 1
τ1

)

τ2
(

u
t
− s

t
1
τ1

)

τ2 − s
t
(1 + τ1)(1 + τ2)

3 s
t

(

1 + 1
τ1

)

0 0 s
t

(

s
u

1
τ1

− 1
)

4 0 − s
t

(

1 + 1
τ1

)

s
t
1
τ1

− u
t

0

5 τ1 0 0 s
u
(1 + τ1)

6 0 τ1 0 s
u
(1− τ1)

7 0 0 0 s
u

Table 2. Values of the coefficients in −l4 in (2.4). Z41 ≡ s
2

ut

(

1 + 1

τ1

)(

1 + 1

τ2

)

− s

u

1+τ2

τ1
.

2.2 Fitting the integrand basis

The space of loop momenta is spanned by three external momenta, which we choose to be

{p1, p2, p4}, and an additional orthogonal direction ω which is defined by,

ω ≡
1

2s

(

〈2|3|1]〈1|γµ|2]− 〈1|3|2]〈2|γµ|1]
)

. (2.6)

The integrand numerator N , can be parametrised in terms of seven irreducible scalar

products (ISPs) as follows:

N =
∑

αi

cα1...α7
(k1 · p4)

α1(k2 · p1)
α2(k3 · p4)

α3(k3 · p1)
α4

× (k1 · ω)
α5(k2 · ω)

α6(k3 · ω)
α7 . (2.7)

We can use renormalizability conditions to restrict the maximum powers of αi and

complete the reduction by using polynomial division with respect to a Gröbner basis con-

structed from the propagators constraints. This procedure is implemented in the Math-

ematica package BasisDet and we refer to [15] for full details of the method. The resul-

tant integrand naturally splits into 199 spurious (S) and 199 non-spurious (NS) terms of

the form:

NNS =
∑

αi

(k1 · p4)
α1(k2 · p1)

α2(k3 · p4)
α3(k3 · p1)

α4

×
(

cNS
α1...α40 + cNS

α1...α41(k1 · ω)(k2 · ω)
)

, (2.8)

NS =
∑

αi

(k1 · p4)
α1(k2 · p1)

α2(k3 · p4)
α3(k3 · p1)

α4

×
(

cSα1...α40(k1 · ω) + cSα1...α41(k2 · ω) + cSα1...α42(k3 · ω)
)

. (2.9)

The spurious terms will vanish after integration since they are linear in ki · ω.

Inserting the expressions for the loop-momenta given in (2.4) into the integrand N =

NNS +NS, defines 14 Laurent-polynomials of τ1 and τ2,

N |s =
∑

ij

dsijτ
i
1τ

j
2 , (2.10)

– 4 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
5

where s denotes one of the on-shell solutions either 1–7 or 1′–7′. In total we find 622 terms

in these expansions which we collect into a vector, d. After collecting the 398 coefficients

of (2.7) into a vector c we can define a Matrix M such that,

d =Mc . (2.11)

After inverting this matrix we can re-construct an arbitrary integrand by using the Lau-

rent expansion of the product of eight tree-level amplitudes to extract the values of the

coefficients, dsij .

Though in principle we could invert the matrix in its full 622 × 398 form this task is

quite complicated in practice. However, it is straightforward to separate the problem into

two pieces corresponding the spurious and non-spurious terms. We can show that,

ks(τ1, τ2) · p = ks
′

(τ1, τ2) · p , ks(τ1, τ2) · ω = −ks
′

(τ1, τ2) · ω . (2.12)

Therefore when we combine the paired solutions we find,

N |s +N |s′ = NNS|s +NNS|s′ = 2NNS|s , (2.13)

N |s −N |s′ = NS|s −NS|s′ = 2NS|s . (2.14)

After defining two new vectors, d±, where

ds± =
ds ± ds

′

2
, (2.15)

we find smaller matrices 311× 199, M±, satisfying

d+ =M+c
NS, d− =M−c

S. (2.16)

In this form it was possible to invert the matrices analytically using standard computer

algebra packages.

2.3 Alternative branch-by-branch fitting

In this section we describe a technique that allows each branch of the on-shell solutions to

be considered as a separate linear system, a natural extension of the strategy taken at the

end of the previous section when we separated spurious and non-spurious terms. This will

be achieved by first partially fitting the integrand on the 14 solutions to get 14 polynomials.

Then the 14 polynomials are combined together to get the full integrand, by a Gröbner

basis method. Some of the more mathematical details are described in the appendix A.

On each of the 14 solutions the integrand numerator N can be reduced further to

a polynomial Ni with much fewer monomials, by the multivariate division towards the

Gröbner basis of the corresponding branch. We note that Ni ≡ Ni({ISPs}) is distinct from

N |i ≡ N |i(τ1, τ2). The number of monomials of each Ni is listed in table 3.

For example, divided by the Gröbner basis of the second branch, the integrand is

reduced to a linear combination of 59 terms,
{

x4y4, x4y3, x3y4, x4z2, x4y2, x3z3, x3y3, x2z4, x2y4, x4z, x4y, x3z2,

x3y2, x2z3, x2y3, xz4, xy4, x4, x3z, x3y, x2z2, x2y2, xz3, xy3, z4, y4, x3,

x2z, x2y, xz2, xy2, z3, y3, x2, xz, xy, z2, y2, x, z, y, 1
}

, (2.17)

– 5 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
5

number of terms number of terms

1 75 1′ 75

2 59 2′ 59

3 42 3′ 42

4 42 4′ 42

5 22 5′ 22

6 22 6′ 22

7 25 7′ 25

Table 3. Number of terms for reduced integrand in each solution.

where x = k1 · p4, y = k2 · p1, z = k3 · p4. The coefficients are determined by polynomial

fitting techniques, at the second solution.

d
(2) =M (2)

c
(2), (2.18)

where c
(2) is the list of the 59 coefficients and d

(2) contains the Laurent expansion coeffi-

cients at the second solution. M (2) is a 62× 59 matrix, which is much smaller than M , so

it is easy to compute c
(2) and the reduced integrand N2.

Once all 14 Ni’s are obtained, we “merge” them together to get the integrand N . The

step is equivalent to solving congruence equations in a polynomial ring. It is automatically

done by a Macaulay2 program [28], based on a computation using Gröbner basis and ideal

intersection. A more detailed mathematical description of the procedure is outlined in

appendix A.

3 Results for gluon-gluon scattering in Yang Mills theories

The starting expression for the computation is the product of tree-level amplitudes:

N |s =
∑

fi

∑

hi

Ff1...f5(nf , ns)A
(0)
3

(

− l−h1

1,f1
, pλ1

1 , l
h2

2,f1

)

A
(0)
3

(

− l−h2

2,f1
, pλ2

2 , l
h3

3,f1

)

×A
(0)
3

(

− l−h3

3,f1
,−l−h4

4,f2
, lh9

9,f4

)

A
(0)
3

(

lh4

4,f2
,−l−h5

5,f3
, lh10

10,f5

)

A
(0)
3

(

lh5

5,f3
, pλ3

3 ,−l
−h6

6,f3

)

×A
(0)
3

(

lh6

6,f3
, pλ4

4 ,−l
−h7

7,f3

)

A
(0)
3

(

lh7

7,f3
,−l−h8

8,f2
,−l−h10

10,f5

)

A
(0)
3

(

lh8

8,f2
, lh1

1,f1
,−l−h9

9,f4

)

,

(3.1)

where li and pj are defined in (2.2). {hi} are the internal helicity states and {λi} are the

helicities of the external gluons. There are 34 distinct configurations of the internal flavours

{fi} each associated with a number of fermion flavours, nf and complex scalar flavours, ns.

The explicit expressions for the flavour coefficients Ff1...f5(nf , ns) are given in appendix B.

Complete expressions for all integrand coefficients have been found as functions of nf
and ns. Though each term is relatively compact, the full set of 398 coefficients makes

the expression rather lengthy so we only present the result after further reduction to MIs.

The full expressions for the integrands are available from the authors on request. We note

however that all coefficients in the Laurent expansion (2.10) with |i| or |j| > 4 vanish for all

– 6 –
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nf and ns demonstrating the general renormalization conditions for this case are simpler

than assumed when constructing the integrand in section 2.2.

IBP relations generated with Reduze2 [24, 25] reduced the 199 non-vanishing integrals

in the triple box integrand onto 3 Master Integrals, I10[1], I10[(k1+p4)
2] and I10[(k3−p4)

2].

The analytic expression for the scalar integral I10[1] has been known already for some

time [29]. We should be clear that to obtain the reduction of a full amplitude to all master

integrals the procedure must be carried out in two steps. Firstly the full integrand, without

applying IBPs, must be kept as a subtraction term for each lower propagator topology.

Secondly IBP relations, again including all lower propagator MIs, should be applied to the

complete amplitude.

In order to map the basis of 7 ISPs of (2.8) onto the 15 propagator2 integral topology

obeying IBP relations we must re-write the non-spurious term (k1·ω)(k2 ·ω) in terms of the

reducible quantity k1 · k2. This is achieved straightforwardly using the Gram determinant

identity generated by:

det

(

1 2 4 ω k1
1 2 4 ω k2

)

= 0 , (3.2)

which is re-written as:

(k1 · ω)(k2 · ω) = −
t2

4
+
t

2

(

(k1 · 4) + (k2 · 1)
)

+
tu

s
(k1 · k2) +

s+2t

s
(k1 · 4)(k2 · 1) . (3.3)

We note that this does not change the number of non-spurious integrals in the integrand

basis.

We write the 4-point 3-loop primitive amplitude for this ladder topology as:

A
(3)
4

(

1λ1 , 2λ2 , 3λ3 , 4λ4

)

= C1

(

1λ1 , 2λ2 , 3λ3 , 4λ4

)

I10[1]

+ C2

(

1λ1 , 2λ2 , 3λ3 , 4λ4

)

I10
[

(k1 + p4)
2
]

+ C3

(

1λ1 , 2λ2 , 3λ3 , 4λ4

)

I10
[

(k3 − p4)
2
]

+ . . . (3.4)

where the ellipses cover terms with less than ten propagators. We then define dimensionless

coefficients Ĉk by,

Ck

(

1λ1 , 2λ2 , 3λ3 , 4λ4

)

= s3tA
(0)
4

(

1λ1 , 2λ2 , 3λ3 , 4λ4

)

Ĉλ1λ2λ3λ4

k (s, t) , (3.5)

where A
(0)
4 are the tree-level helicity amplitudes (expressions for the tree-level amplitudes

are collected in appendix B for convenience). After following the procedure of computing

the Laurent series of (3.1), reconstructing the integrand and applying the IBPs we obtain

the following results for the three independent helicity configurations. The −−++ turns

out to be trivial,

Ĉ−−++
1 (s, t) = −1 , (3.6)

Ĉ−−++
2 (s, t) = 0 , (3.7)

Ĉ−−++
3 (s, t) = 0 . (3.8)

2For the purposes of the IBPs we consider both positive and negative powers of the propagators in

the topology hence the 15 propagators includes both the 10 denominators of eq. (2.1) and the 5 non-

spurious ISPs.

– 7 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
5

The −++− configuration is,

Ĉ−++−
1 (s, t) = −1− (4− nf )(3− ns)

s(t+ 2s)

2t2
+ (4− nf )

s(t+ 4s)

2t2

− (1 + ns − nf )
s

t3
(2t2 + 11st+ 10s2) , (3.9)

Ĉ−++−
2 (s, t) =

2

t
(1− Ĉ−++−

1 ) , (3.10)

Ĉ−++−
3 (s, t) = 0 , (3.11)

and finally the alternating −+−+,

Ĉ−+−+
1 (s, t) = −1 + (4− nf )

st

u2
− 2(1 + ns − nf )

s2t2

u4

+
(

2(1− 2ns) + nf
)

(4− nf )
s2t(2t− s)

4u4

−
(

nf (3− ns)
2 − 2(4− nf )

2
)st(t2 − 4st+ s2)

8u4
, (3.12)

Ĉ−+−+
2 (s, t) = −(4− nf )

s

u2
+ 2(1 + ns − nf )

s2t

u4

−
(

2(1− 2ns) + nf
)

(4− nf )
s2(2t− s)

u4

+
(

nf (3− ns)
2 − 2(4− nf )

2
)s(t2 − 4st+ s2)

2u4
, (3.13)

Ĉ−+−+
3 (s, t) = +

(

2(1− 2ns) + nf
)

(4− nf )
3s2(2t− s)

2u4

−
(

nf (3− ns)
2 − 2(4− nf )

2
)3s(t2 − 4st+ s2)

4u4
. (3.14)

It is easy to check that these coefficients correctly reproduce the known result in N = 4

super-symmetric Yang-Mills [30]. An expression valid for N > 0 super-symmetric gener-

ators can be found by setting nf = N and ns = N − 1. We also note that complicated

flavour structures that only appear in the −+−+ coefficients vanish in the N = 2 theory,

nf (3− ns)
2 − 2(4− nf )

2 → (N − 2)(N − 4)2, (3.15)

2(1− 2ns) + nf → −3(N − 2) . (3.16)

This shows that the integral basis for N = 2 is simpler than that of N = 1, a feature which

is new for four-dimensional maximal cuts at three-loops. At one-loop both N = 1 and

N = 2 have the same integral basis with no rational terms. At two-loops the two theories

could differ in the lower propagator integrals but not in the maximal cut terms. We have

also checked that by taking two-particle cuts the full integrand factorizes onto the two-loop

results for the full integrand [11].

4 Conclusions

In this paper we have shown that an integrand reduction technique based on computational

algebraic geometry techniques can be generalized to three-loop amplitudes. As a first step
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in this direction we considered maximal cuts in four dimensions for the planar triple box

topology contributing to massless 2 → 2 scattering.

By using primary decomposition the 14 independent branches of the 10 on-shell con-

ditions could be found automatically. An explicit parametrisation of these solutions was

found such that the integrand would take the form of a simple Laurent expansion in two free

variables. The integrand on each solution factorises into a product of ten tree amplitudes

which can be used to extract a set of 622 terms in the Laurent expansion.

Having derived a minimal parametrisation of the integrand in terms of 7 irreducible

scalar products we were able to construct an invertible matrix to map the coefficients of

the Laurent expansion to the coefficients of the ISPs. Though the matrix was quite large

it was possible to invert the system efficiently by using a branch-by-branch reconstruction

using Gröbner bases and the intersection of ideals.

Finally we were able to reduce the whole expression to master integrals using the

Reduze2 package for integration by parts identities. This whole procedure derives a com-

plete reduction for an arbitrary process valid in any renormalizable gauge theory. As an

application of the technique we computed the MI coefficients for gluon-gluon scattering in

Yang-Mills theory with adjoint scalars and fermions.

Though a long way from a complete four-point amplitude in QCD the computation

presented here can be seen as a small step in the right direction. We hope the techniques

presented here will be useful when making the necessary generalizations to D-dimensional

cuts and fewer particle cuts.
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A Branch-by-branch polynomial fitting method

Consider generalized unitarity for an L-loop diagram. Let R be the polynomial ring of

ISPs and I be the ideal generated by cut equations.

By the integrand-level reduction algorithm, the original integrand numerator is a poly-

nomial Ñ ∈ R, while [Ñ ] is its image in the quotient ring R/I. [Ñ ] can be expanded over

the integrand basis. The reduced integrand N , which is the simplest representative for

[N ], ([N ] = [Ñ ] in R/I), can be obtained by dividing Ñ towards the Gröbner basis G(I)

of I [15, 16] .

Often the cut solution have several branches. In other words, by primary decomposi-

tion, I is decomposed to the intersection of several primary ideals [15],

I =
n
⋂

i=1

Ii (A.1)

where n is the number of branches.
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Note that I ⊂ Ii, so Ii contains more constraints than I itself. Hence the integrand

can be reduced further on each branch. We have the map,

p : R/I → R/I1 ⊕ . . .⊕R/In ,

[N ] 7→
(

[N ]1, . . . , [N ]n
)

, (A.2)

where [. . .] and [. . .]i stand for the equivalence relations in R/I and R/Ii. If N is known, it

is straightforward to get the simplest representative Ni for [N ]i, by calculating the Gröbner

basis for each Ii. In general, Ni contains much fewer terms than N .

So it is much easier to fit each Ni than N , from the product of tree amplitudes. After

all Ni are fitted, the goal is to determine N from Ni’s. The existence of N is guaranteed by

the existence of the original numerator Ñ . We just need the following uniqueness condition:

Lemma 1. The map p is injective. In other words, if N exists, then N1, . . . , Nn uniquely

determine [N ].

Proof. Assume that there are two polynomials N and N ′ such that p(N) = p(N ′). So

[N ]i = [N ′]i = [Ni]i, ∀i. This means that N −N ′ ∈ Ii, ∀i and

N −N ′ ∈
n
⋂

i=1

Ii = I , (A.3)

so [N ] = [N ′] in R/I.

This is an analogy of Chinese remainder theorem, however we do not need the coprime

condition since the existence of N is guaranteed by physics. After [N ] is determined, it is

straightforward to find its simplest representative N by Gröbner basis G(I) of I.

In practice, we present the following algorithm to get N from N1, . . . , Nn. First, we

consider the case n = 2,

1. For two ideals I1 = 〈f1, . . . , fm1
〉 and I2 = 〈h1 . . . hm2

〉, calculate the Gröbner basis

G(I1 + I2) = {g1, . . . gm} for the ideal I1 + I2. Record the transform matrix,

gi =

m1
∑

j=1

aijfj +

m2
∑

k=1

bikhk . (A.4)

2. Divide N1 −N2 towards G(I1 + I2), where r is the remainder,

N1 −N2 =
m
∑

i=1

ψigi + r . (A.5)

3. If r = 0, rewrite

N1 −N2 =
∑

i

∑

j

ψiaijfj +
∑

i

∑

k

ψibikhk ≡ F1 + F2 , (A.6)

where F1 ∈ I1 and F2 ∈ I2. Then N̂ = N1 − F1. If r 6= 0, print warning message

and stop.
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4. Calculate the intersection I1∩ I2 and its Gröbner basis G(I1∩ I2). Divide N̂ towards

G(I1 ∩ I2) and the remainder is N .

The validity of this algorithm is self-evident since N̂ = N1 −F1 = N2 +F2 so [N̂ ]1 = [N1]1
and [N̂ ]2 = [N2]2. And as long as N exists, r must be zero.

For cases with more than 2 branches, we just need to repeat the above algorithm

for n− 1 times,

1. Let J = I1, f = N1.

2. For i = 1 to n− 1

• Carry out the 2-branch algorithm for polynomials (f,Ni+1) and the two ideals

(J, Ii+1). Then redefine f as the output polynomial.

• J = J ∩ Ii+1.

3. N = f .

The validity can be checked by induction. We realise this algorithm in a Macaulay2 pro-

gram [28].

B Flavour configurations in the triple box

The pre-factors of the 34 configurations appearing in (3.1) are given in table 4. We note

that by combining these configurations together with different colour factors the results

presented here would also be valid in QCD. The symmetry factor of −1 for each fermion

loop is included in the pre-factor.

For completeness we also present the well-known tree level amplitudes used in this

paper,

−iA
(0)
3 (1−g , 2

−
g , 3

+
g ) =

〈12〉3

〈23〉〈31〉
(B.1)

−iA
(0)
3 (1−q̄ , 2

+
q , 3

−
g ) =

〈13〉2

〈12〉
(B.2)

−iA
(0)
3 (1s̄, 2s, 3

−
g ) =

〈13〉〈23〉

〈12〉
(B.3)

−iA
(0)
3 (1−q , 2

+
q , 3s) = 〈12〉 (B.4)

−iA
(0)
4 (1−g , 2

−
g , 3

+
g , 4

+
g ) =

〈12〉3

〈23〉〈34〉〈41〉
(B.5)

−iA
(0)
4 (1−g , 2

+
g , 3

+
g , 4

−
g ) =

〈41〉3

〈12〉〈23〉〈34〉
(B.6)

−iA
(0)
4 (1−g , 2

+
g , 3

−
g , 4

+
g ) =

〈13〉4

〈12〉〈23〉〈34〉〈41〉
(B.7)
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f1 f2 f3 f4 f5 Ff1···f5 f1 f2 f3 f4 f5 Ff1···f5

g g g g g 1 g g q g q −nf
g q g q q −nf q g g q g −nf
g q q q g −nf q q g g q −nf
q q q g g −nf g g s g s ns

g s g s s ns s g g s g ns

g s s s g ns s s g g s ns

s s s g g ns g s q s q −nfns

s s q g q −nfns g q s q q −nfns

s q g q q −nfns q s s q g −nfns

q s g q s −nfns g q q q s −nfns

s q q q g −nfns q q s g q −nfns

q q g s q −nfns q q q g s −nfns

q q q s g −nfns s g q s q −nfns

q g s q s −nfns q g q q q n2f
s g s s s n2s s q s q q −nfns

s q q q s −nfns q q s s q −nfns

q q q s s −nfns q s q q q 2nfns

Table 4. The definitions of the flavour pre-factors in eq. (3.1).
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