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Abstract: We study the dynamics of four dimensional gauge theories with adjoint

fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using

circle compactification with periodic boundary conditions for the fermions. There are new

gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups

are Higgsed by the gauge holonomy around the circle to a product of both abelian and

nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with

fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One

type are magnetic bions which carry net magnetic charge and induce a mass gap for gauge

fluctuations. Another type are neutral bions which are magnetically neutral, and their un-

derstanding requires a generalization of multi-instanton techniques in quantum mechanics

— which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified

field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts

a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing

large orders in peturbation theory) which is of order N times closer to the origin than the

leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge

group. The position of the bion-anti-bion singularity is thus qualitatively similar to that

of the 4-d IR renormalon singularity, and we conjecture that they are continuously re-

lated as the compactification radius is changed. By making use of transseries and Écalle’s

resurgence theory we argue that a non-perturbative continuum definition of a class of field

theories which admit semi-classical expansions may be possible.
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1 Introduction and results

Circle compactification with periodic fermions, as opposed to thermal compactification,

provides an effective framework to study the non-perturbative dynamics of four dimensional

gauge theories. In particular, it has been recently realized [1] that SU(N) gauge theory

with nf light adjoint representation fermions — commonly called QCD(adj)—compactified

on R3 × S1 does not undergo a center-symmetry changing phase transition provided the

fermions are endowed with periodic boundary conditions. Furthermore, at sufficiently

small circle size (with respect to the strong coupling scale of the 4-d theory) this theory is

weakly coupled and the gauge group abelianizes (is Higgsed down to U(1) gauge factors).

In this situation difficult properties such as confinement and the mass gap can be studied

analytically through semi-classical methods [2, 3]. At large N this theory on a small circle is

in the same universality class as the theory on R4, and provides a controlled approximation

for studying its gauge dynamics.

The Euclidean partition function with periodic fermions on a circle of circumference L

corresponds to a twisted (non-thermal) partition function, Z̃(L) = tr[e−LH(−1)F ], where

H is the gauge theory Hamiltonian and F is fermion number. For supersymmetric theories,

like QCD(adj) with nf = 1, this is the Witten index [4] which is famously independent

– 1 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

of L. Recent work has shown that there are also non-supersymmetric gauge theories, like

SU(N) QCD(adj) with nf > 1 and with large-enough N , which do not undergo any phase

transition as the radius of the circle is varied [5–7]. This is due to large-N volume inde-

pendence: at large N an SU(N) gauge theory on R4 is non-perturbatively equivalent to

its compactified version on T d × R4−d, where T d is a d-dimensional torus, provided cen-

ter and translation symmetries are unbroken [1, 8]. This implies, for example, a large-N

equivalence among a matrix quantum mechanics for small T 3×R, compactified field theory

on R3 × S1, and quantum field theory on R4. Furthermore, there is a large-N orientifold

equivalence between SU(N) QCD(adj) and SU(N) gauge theory with two-index antisym-

metric representation fermions, QCD(AS) [9], provided charge conjugation symmetry is

unbroken [10]. QCD(AS) is of special interest as it provides a different large-N limit of

SU(3) QCD with fundamental (or, equivalently, antisymmetric) Dirac fermions.

It is a natural hope that the interconnected ideas of center-stabilizing abelianizing

compactifications and large-N volume independence will provide effective alternative ways

to think about 4-d gauge dynamics in general, for example by using equivalent matrix

models. In this work we take a small step towards evaluating this idea by systematically

studying QCD(adj) for general simple gauge group G on R3 × S1. We uncover new gauge

phenomena compared to the G = SU(N) case. In particular, we find that although per-

turbative effects lead to center-stabilizing potentials for the gauge holonomy, their minima

do not always abelianize the gauge dynamics. We also argue that a topological molecule

that we refer to as a neutral bion with the same quantum numbers as the perturbative

vacuum gives important and calculable contributions to the holonomy effective potential.

This effect is also present in supersymmetric theories, the nf = 1 case, as explained in [11],

and can also be deduced from the bosonic potential which arises from the superpotential

for nf = 1 [12–14]. Finally, we argue that bion-anti-bion contributions to the semiclassi-

cal expansion of vacuum quantities are associated to poles in the Borel plane responsible

for the leading divergence of perturbation theory — the so-called IR renormalon diver-

gence. We show how an extension of methods used to control the semiclassical expansion

in double-well quantum mechanics can also be used to give unambiguous results for the

dilute 3-d monopole-instanton gas that appears in the semiclassical expansion

In the rest of this introduction, we review the perturbative and non-perturbative be-

havior of G = SU(N) QCD(adj) on a small circle, and summarize and contrast our results

for other choices of gauge group G.

1.1 Perturbation theory

In a 4-d gauge theory with gauge group G, nf massless adjoint fermions, and compactified

on a periodic circle of circumference L, denote the gauge holonomy (the open Wilson line)

around the circle by Ω := exp{2πiϕ} where ϕ is an element of the Lie algebra g associated to

G. Gauge transformations change ϕ by conjugation in g, so the gauge-invariant information

in the holonomy is the conjugacy class, [ϕ], of ϕ. One way of characterizing this conjugacy

class is by giving the set of eigenvalues, {ϕi}, of ϕ in a given representation of g. (In later

sections, though, we will use a more invariant description of [ϕ] that does not depend on a

choice of representation.) For SU(N), choosing the fundamental representation, the ϕi are
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G → H

SU(N+1) ' AN → U(1)N for N ≥ 1

SO(2N+1) ' BN → U(1)N−1 × SO(3) for N = 2, 3

→ SO(4)×U(1)N−3 × SO(3) for N ≥ 4

Sp(2N) ' CN → U(1)N for N ≥ 3

SO(2N) ' DN → SO(4)×U(1)N−4 × SO(4) for N ≥ 4

E6 → SU(3)× SU(3)× SU(3)

E7 → SU(2)× SU(4)× SU(4)

E8 → SU(2)× SU(3)× SU(6)

F4 → SU(3)× SU(2)×U(1)

G2 → SU(2)×U(1)

Table 1. Perturbative patterns of Higgsing of the gauge group G to an unbroken group H for

nf > 1 adjoint fermions with periodic boundary conditions on R3 × S1.

the N eigenvalues of ϕ which are defined only up to integer shifts and obey
∑N

i=1 ϕi ∈ Z;

equivalently, exp{2πiϕi} are N eigenphases of Ω which are constrained to multiply to one.

For pure Yang-Mills theory in the small-S1, weak coupling regime, the bosonic gauge

fluctuations induce an attraction between eigenvalues causing them to clump at ϕi =

0 [15]. When periodic adjoint fermions are added to the G = SU(N) theory, they generate

an eigenvalue interaction of the form
∑

1≤i<j≤N g(ϕi − ϕj) which is repulsive between

any pair of eigenvalues. The minimum of this potential is a uniform distribution of the

eigenphases over the unit circle, and is the unique configuration which is invariant under

the ZN center symmetry. Since Ω behaves as an adjoint Higgs field, this configuration leads

to the abelianization of long-distance gauge dynamics, Higgsing SU(N)→ U(1)N−1.

For general gauge group, adjoint fermions still induce an effect which negates that of the

bosonic fluctuations and favors ϕ which preserve the center symmetry. However for groups

other than SU(N) the fermion-induced eigenvalue repulsion is no longer uniform between

all pairs of eigenvalues, but has more structure, and, except for Sp(N), has the effect of

forcing some pairs of eigenvalues to coincide. When there are coincident eigenvalues, there

are nonabelian factors in the un-Higgsed gauge group. In particular, we find through a

combination of analytical and numerical techniques the gauge symmetry-breaking patterns

shown in table 1, valid at all orders in perturbation theory. The eigenvalue distributions

which minimize the perturbative potential for the rank-9 classical groups are plotted as

examples in figure 2 in section 3.1.

Note that the rank of the nonabelian factors does not grow with increasing N , and is

at most four for the SO(N) groups. Also, the unbroken nonabelian factors are all SU(n)

factors (since SO(4) ' SU(2) × SU(2) and SO(3) ' SU(2)). This may seem surprising,

since the SU(n) theories abelianize, but there is no contradiction since the unbroken SU(n)
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factors are in the low-energy effectively 3-d theory which already has integrated out the

Kaluza-Klein states that were responsible for generating the gauge holonomy potential in

the first place.

Importantly, a qualitative difference between the SU(N) groups and the other groups

is that the SU(N) ZN center symmetry group has order comparable to the rank of SU(N)

and uniquely determines the center-symmetric gauge holonomy, while all other groups have

small center symmetries (Z2, Z3, Z4, or Z2 × Z2) which do not grow with rank and for

which there are whole manifolds of center-symmetric holonomies. Despite the small order

of the center symmetry groups, the eigenvalues of the Wilson lines for the large-rank Lie

algebras are almost uniformly distributed, with O(1/N) spacing between the eigenphases.

The uniformity of eigenphases implies that at N =∞ the center symmetry for the infinite

Lie algebras may accidentally enhance to Z∞ ≡ U(1), much like in SU(N) QCD(AS) which

has an exact Z2 (for even N) or Z1 (for odd N) but an emergent Z∞ center symmetry at

large N [1, 16]. Both are a consequence of a large-N orientifold equivalence [9, 10].

On the other hand, the smallness of the centers of the SO(N) and Sp(2N) groups

implies that it is possible to engineer sequences of gauge theories (by choosing appropriate

fermion content or by adding Wilson line potentials) such that the eigenphase distribution

does not approach a uniform limit as N → ∞ even though the center symmetry remains

unbroken. This implies that for groups other than SU(N), unbroken center symmetry is

not a sufficient condition by itself for large-N volume independence.

Gauge symmetry breaking by Wilson lines has appeared previously in models of gauge-

Higgs unification in extra-dimensional model building [17], and examples of Higgsing pat-

terns with non-abelian gauge factors appeared in examination of phases with partial center-

symmetry breaking [18].

Fate of the non-abelianized theories. For QCD(adj) with gauge groups different from

SU(N) and Sp(2N), the 3-d couplings of the non-abelian factors quickly run to strong cou-

pling, rendering 3-d semiclassical methods ineffective. It seems likely that these 3-d versions

of QCD(adj) themselves confine; see, for example [19] for a discussion of the evidence from

small spatial circle compactification and large-N volume independence arguments (and of

the problems with continuing from small to large circle radius). This does suggest, how-

ever, that compactification of QCD(adj) on small 2-tori will result in a 2-d effective theory

amenable to a semi-classical treatment for all gauge groups G.

Note that abelianizing Wilson line dynamics can be arranged for gauge theories with

groups other than SU(N) and Sp(2N) by appropriately changing the fermion content or by

modifying the theory with single-trace Wilson line deformations. For instance, for SO(N)

gauge groups if one puts in ns = nad − 1 massless Majorana fermions in the symmetric-

traceless representation, where nad is the number in the adjoint representation, then a

uniform distribution of Wilson line eigenphases results.

1.2 Topological molecules

The long-distance dynamics of theories which abelianize in the small-L domain is analyt-

ically tractable. In this regime, a semi-classical treatment of elementary and molecular
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monopole-instanton events reveals the existence of a mass gap for gauge fluctuations and

confinement of electric charges. The semi-classical expansion is an expansion in the dilute-

ness (or fugacity) of these defects. The leading topological defects which play non-trivial

roles in the dynamics are

(i) monopole-instantons (or 3-d instantons and the twisted instanton) Mi,

(ii) magnetic bions Bij = [MiMj ],

(iii) neutral bions Bii = [MiMi], and

(iv) multi-bion molecular events [BijBji], [BiiBijBji] etc.

The index i, j is explained below. We describe the physics associated with the proliferation

of each type of topological defect briefly. The third type gives a new instanton effect in

compactified gauge theories, and the fourth type gives a semi-classical realization of IR

renormalons that we describe below.

Scales in the low-energy effective theory. First, though, we explain the separation

of scales,

rm � rb � dm-m � db-b, (1.1)

which makes the dilute gas of monopole-instantons and topological molecules and the

effective long-distance theory derived from them reliable. Here rm is the maximum size

of a monopole-instanton, rb is the size of a bion, dm-m is the inter-monopole-instanton

separation, and db-b is the inter-bion separation. The resulting picture of the Euclidean

vacuum structure of the abelianizing QCD(adj) theories is shown in figure 1.

This hierarchy arises as follows. The maximum size of a monopole-instanton is fixed

by the vev of the gauge holonomy. In an abelianizing theory this gives rm ∼ L, where L

is the size of the S1. This is unlike 4-d QCD-like theories where 4-d instantons come in

all sizes at no action cost, and there is no clear meaning to the long-distance description

of a Euclidean instanton gas. Because of this, 4-d instantons are unable to describe many

aspects of 4-d physics, for example the mass gap or the θ angle dependence of the vacuum

energy. On R3 × S1, however, the gauge symmetry breaking provides an IR cutoff to the

size of 4-d instanton events, rendering the semi-classical analysis reliable.

The Euclidean instanton gas is dilute when the monopole-instanton action is large,

S0 ∼ (g2N)−1 � 1, which is valid for small S1 in asymptotically free theories since then

the effective 4-d gauge coupling at the scale of the S1, g2 := g2
4(L), is small. The density of

monopole-instantons is proportional to e−S0 , so the typical separation between monopole-

instantons is dm-m ∼ LeS0/3 and they are rare in the limit of small fugacities e−S0 � 1 (or,

small S1).

The size of the magnetic bion is calculated in [3, 20] and found to be rb ∼ Lg−2. The

size of the neutral bion is calculated here through the BZJ-prescription, described below,

and is the same as the magnetic bion size. The typical bion action is twice the monopole-

instanton action, so the separation between bions is db-b ∼ Le2S0/3, and they are even rarer

than monopole-instantons.
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Figure 1. A cartoon of the leading topological defects and molecules in the small-S1 domain. Gray

and white circles represent monopole-instantons and anti-monopole-instantons. Unpaired arrows

represent fermion zero modes, paired monopole-instanton events are magnetic and neutral bions.

See text for explanations.

Monopoles and bions. There are rank(g) + 1 = N + 1 types of self-dual monopole-

instantons which can be associated with the simple roots αj , j = 1, . . . , N and the affine

(or lowest) root α0 of the gauge algebra. The first N are sometimes referred to as 3-

d instantons and the last one as the twisted instanton. The twisted instanton owes its

existence to the locally 4-d nature of the theory, and it would not exist in a microscopically

3-d theory. These defects carry a certain number of fermionic zero modes dictated by the

Nye-Singer index theorem [21, 22].1 Consequently, in theories with adjoint fermions, the

self-dual defects do not induce a mass gap or confinement [3].

At second order in the semi-classical expansion, there are correlated instanton-anti-

instanton events of various types. In Euclidean space, where 3-d instantons are viewed as

particles forming a dilute classical plasma, the correlated instanton-anti-instanton events

should be viewed as molecular structures. We refer to these topological molecules as bions,

as they are composites of two 3-d instantons. They fall into two classes both according to

their physical effects and according to their Lie-algebraic properties. In particular, we will

see that bions are in one-to-one correspondence with the the non-vanishing entries of the

extended (or untwisted affine) Cartan matrix, Âij 6= 0, data that one can easily read off

from the extended Dynkin diagram.

For each non-vanishing off-diagonal element, Âij < 0, there exists a magnetic bion.

These carry a net magnetic charge and no fermionic zero modes. The monopole-instanton

constituents of magnetic bions have both repulsive and attractive interactions which

counter-balance each other at a characteristic size much larger than that of the constituents

1See also [23, 24] on the boundary condition dependence of zero modes.
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themselves, and thus lead to a picture of the magnetic bion as a loosely bound topological

molecule [3, 20]. The plasma of magnetic bions induces a mass gap for gauge fluctuations

(which is strictly forbidden to all orders in perturbation theory) and hence confinement of

electric charge, similar to the way that instantons in the 3-d Polyakov model induce these

phenomena [25].

We refer to the bions associated with the diagonal elements of the extended Cartan

matrix, Âii > 0, as neutral bions. They are quite elusive in the sense that they carry neither

magnetic nor topological charge, just like the perturbative vacuum. Yet they induce a net

repulsion between pairs of gauge holonomy eigenvalues, and a center-stabilizing potential,

whose global minimum is at a point which leads to abelianization of the gauge group.

This is familiar from the supersymmetric (nf = 1) QCD(adj) theories where this non-

perturbative effect is the only contribution to the superpotential and effective bosonic

potential [11–14]. Since, for nf > 1, perturbative effects also induce a potential for the

gauge holonomy, the two effects mix. Note that this is unlike the potential for the dual

photons non-perturbatively induced by magnetic bions, which gets no contribution at any

order in perturbation theory.

It may at first seem hard to make sense out of neutral bions due to their mixing with

perturbation theory. Moreover, and as it turns out relatedly, the interaction between the

constituents of neutral bions are all attractive, seemingly making any notion of a topological

instanton-anti-instanton molecule meaningless. This does not turn out to be the case. We

give a detailed description of how neutral bions arise through a generalization of multi-

instanton techniques in quantum mechanics [26, 27] — that we refer to as the Bogomolny-

Zinn-Justin (BZJ) prescription — to compactified field theory on R3×S1. This prescription

tells us how to make sense of neutral bions through an analytic continuation in coupling

constant space. The result of the BZJ-prescription agrees with the WKB-approximation

in bosonic quantum mechanics [26, 27], and with exact results in supersymmetric quantum

mechanics [28, 29] and supersymmetric field theory on R4 [11, 30].

1.3 Resurgence and Borel-Écalle summability

We believe that the BZJ-prescription can be systematically extended to all orders of the

semi-classical expansion. At fourth order and beyond in the semi-classical expansion of

QCD(adj) a new gauge phenomenon appears. We find an ambiguity in the non-perturbative

bion-anti-bion [BijBji] contribution to the instanton expansion. According to Lipatov [31],

this predicts a divergence in the leading zeroth order part of the semi-classical expansion,

which is the purely perturbative part of the expansion around the perturbative vacuum.

This divergence corresponds to a singularity in the Borel plane which is of order N =

rank(G) closer to the origin than the one associated to the 4-d BPST instanton. This

is similar to the location of the “IR renormalon” singularity in 4-d gauge theories [32],

and we conjecture, as already reported in [33], that this singularity is in fact continuously

connected to the 4-d IR renormalon singularity.

If, furthermore, this is the leading singularity in the Borel plane of abelianizing

QCD(adj) on a small circle, then the extension of the BZJ prescription to all orders in

the instanton expansion together with the technique of resurgence and Borel-Écalle sum-
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mation of semi-classical transseries [34–37] offers the promise of a finite definition of this

class of field theories from their semi-classical expansions. Resurgence theory provides

detailed information on Borel transforms and sums, their inter-connection to Stokes phe-

nomena and a set of general summation rules for asymptotic perturbative expansions which

are otherwise known to be non-Borel summable.

Recently, in a class of matrix models which do not involve infrared renormalons, Mariño

showed that the BZJ prescription, used to cancel ambiguities, can indeed be systematically

extended to all orders via resurgence [38]. Schiappa et. al. provides a generalization of this

to any one-parameter transseries [39]. In theories with renormalons, the present work on

gauge theory on R3 × S1, and its companion paper on the CPN−1 model on R1 × S1 [40],

are the first attempts to combine the perturbative and semi-classical expansions into a

well-defined transseries expansion. However, it is currently not clear to us whether a one-

parameter transseries will suffice for the extension of the BZJ prescription to all orders, or

a multi-parameter transseries is needed.

The main physical idea underlying resurgence can be explained for ordinary integrals

with multiple saddle points. The most intuitive and physical explanation that we have

found is due to Berry and Howls [41]. A key point — and a surprising one — is that

our interpretation and analysis of the path integral of quantum field theory, in particular

QCD(adj), fits well with that of [41], despite the fact that a path integral is infinitely many

coupled ordinary integrals!

Consider an ordinary integral with a certain number of saddle points, and let Cn
denote a contour passing through the nth saddle point. The n = 0 saddle point may be

considered as a zero-dimensional analog of the perturbative vacuum, and we may set the

its action to zero to emulate the field theory construction. Each integral associated with

contour Cn can be treated by refining the method of steepest descent. The result for a

small expansion parameter λ (or large parameter 1/λ) is of the form exp(−nA/λ)Pn(λ) ∼
exp(−nA/λ)

∑∞
q=0 an,qλ

q where A is a positive constant. P0(λ) is thus the perturbative

expansion, and all the series Pn(λ) are asymptotic. Ref. [41] shows that the divergence of

the asymptotic series Pn(λ) is a consequence of the existence of other saddle points n′ 6= n,

through which the contour Cn does not pass. In particular, the non-perturbative data from

non-trivial (n 6= 0) saddle points (“instantons”) are encoded into the universal late terms

of the divergent series P0(λ). In other words, the late terms of the perturbative expansion

“knows” of the existence of all the other saddle points. For general n, again, the late

terms are dictated by the existence of the other saddle points, meaning that the late terms

of all series Pn(λ) are interconnected by the requirement mutual consistency. There is a

universality associated with late terms, regardless of what the value of n is, encoded in the

positions of all saddle points (or, the instanton actions). Thus, there is a sense in which

all perturbative fluctuations around all non-perturbative sectors are interconnected. The

perpetual reappearance of the universal form in the late terms of the asymptotic expansions

around non-trivial saddle points is called the principle of resurgence.

It seems to us that the concept of resurgence and resurgent functions is the natural

language of semi-classical expansions in quantum field theory. We anticipate that it will

play a crucial role in making sense of general continuum field theories, especially if the

theory admits a semi-classical expansion.

– 8 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

1.4 Outline of the rest of the paper

The organization of the paper is given in the table of contents. We have included some

review material to help make the paper more self-contained. In particular, sections 2, 4,

and appendix A are mostly review of standard results in effective gauge theories, BPS

instantons on R3 × S1, and in Lie algebras, respectively. However the argument in section

2.4 showing that the Higgsing pattern determined at 1-loop is not modified at any higher

order in perturbation theory is new, and the discussion of section 4 generalizes earlier

discussions for the supersymmetric case to non-supersymmetric theories.

Section 3 contains a combination of analytic arguments and numerical calculations to

determine the location of the minima of the one-loop potential for the Wilson line, and the

resulting mass spectra and patterns of gauge symmetry breaking. These calculations rely

on explicit descriptions of the gauge cells (affine Weyl chambers) of the simple Lie algebras

worked out in appendix B.

Section 5 reviews the description of magnetic bions, then explains and applies the BZJ

prescription to the calculation of the neutral bion and bion-anti-bion contributions to the

instanton expansion.

Section 6 briefly explains why there is no consistent regime in which the potential

induced by the neutral bion contribution, though giving rise to a strong Wilson line eigen-

value replusion, can overcome the perturbative contributions which force some pairs of

eigenvalues to coincide.

Section 7 discusses the implications of the semi-classical analysis for abelianizing

QCD(adj) theories on predictions for the mass gap, string tension, and chiral symmetry

realization in the 3-d effective theory. These results are qualitatively similar to previous

results obtained for SU(N) QCD(adj).

Finally, section 8 contains a preliminary discussion of the some of the systematics of

how the BZJ prescription and the machinery of Borel-Écalle resummation may be applied

to higher orders in the semi-classical expansion.

2 Gauge theory effective actions on R3 × S1

2.1 4-d theory

Consider an asymptotically free (AF) euclidean gauge theory with gauge group G with Lie

algebra g. The 4-d microscopic action is

LUV =
1

2g2
(Fµν , Fµν) +

2i

g2
(Ψf , σµDµΨf ) +

iθ

16π2
(Fµν , F̃µν), (2.1)

where f = 1, . . . , nf is an index that runs over Weyl fermions in irreps Rf , F̃µν :=
1
2εµνρσFρσ, and (·, ·) stands for the Killing form (invariant inner product) on g. For sim-

plicity we take g to be simple and do not include fermion masses or scalar fields. Since the

fermions are massless, we can use a chiral rotation to set the theta angle to zero, θ = 0.

For most calculations in later sections we will focus on the QCD(adj) theory with nf
fermions all in the adjoint representation, but will keep the fermion representation content

general for now.
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With the theta angle set to zero, there is no need to fix the normalization of the

Killing form since it can always be absorbed in the definition of the coupling g. In the next

few sections, where we focus on the perturbative properties of the theory, we will refrain

from fixing the normalization of the Killing form, and, in particular, will not identify

weight spaces with co-weight spaces. This helps to make the interesting GNO duality

structure of the effective theories on R3 × S1 clearer. In later sections where we focus on

the semi-classical nonperturbative properties of the theory, however, it is convenient to

choose the normalization of the Killing form in which the smallest instanton number is

1, or, equivalently, in which θ is periodic with period 2π in (2.1). This normalization is

discussed in appendix A.3.

The coupling g(µ) is a function of energy scale µ given at one loop in perturbation

theory by (Λ/µ)β0 = exp{−8π2g−2(µ)}, where Λ is the strong coupling scale and β0 is the

coefficient of the 1-loop beta function, given by

β0 =
1

6

[
11T (ad)− 2

∑
fT (Rf )−

∑
bT (Rb)

]
. (2.2)

Here T (R) is the Dynkin index of the representation R (see appendix A.3 for definition

and normalization), “ad” stands for the adjoint irrep, and the sums run over the irreps

Rf of Weyl fermions and Rb of complex scalars. For QCD(adj), where there are only nf
fermions in the adjoint irrep, the beta function becomes in the Killing form normalization

mentioned above

β0 = h∨
11− 2nf

3
, (2.3)

where h∨ is the dual Coxeter number of the gauge algebra, defined in appendix A.3. In

particular, AF requires nf ≤ 5.

We are interested in putting the theory on R3 × S1 with the S1 of size L in the x4

direction so that x4 ' x4 +L, and we impose periodic boundary conditions on the fermions.

Furthermore, we assume that L−1 � Λ so that our AF theory is weakly coupled at the

scale of the compactification, g(L−1) � 1. Most of the rest of this paper will analyze the

dynamics of the effective 3-d theory with a cut-off scale µ such that Λ� g/L� µ� 1/L,

where, from now on,

g := g(L−1) (2.4)

denotes the 4-d coupling at the compactification scale.

2.2 Classical 3-d effective action

Integrate out the Kaluza-Klein (KK) modes on the circle to get an effective 3-d action

at energy scale µ. Since the KK modes are all weakly coupled and massive (with masses

of order 2πn/L for positive integers n), they are integrated out simply by setting them

to zero.2 Only the zero modes of the fields (i.e., those constant on S1) are light, the

2This is not quite true; see the discussion around (2.13) below.

– 10 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

classical 3-d effective action is the 4-d action with all fields, φ, replaced by their 0-modes,

φ(xm) := L−1
∫ L

0 dx4φ(xm, x4), giving

L3d-class. =
L

g2

[
1

2
F 2
mn + |DmA4|2 + 2iΨf /DΨf − 2Ψfσ4A4Ψf

]
. (2.5)

Infinitesimal gauge transformations of the A4 0-mode are δA4 = L−1
∫ L

0 dx4D4h =

[A4, h0] for h(x) ∈ g and periodic around the S1, where h0 := L−1
∫ L

0 dx4h. These can be

used to rotate A4 to a given Cartan subalgebra (CSA) t ⊂ g, but do not shift A4 within

the CSA. So define the 3-d fields

A4(x) :=
2π

L
ϕ(x), ϕ ∈ t,

Am(x) := am(x) +Wm(x), am ∈ t, Wm ∈ t⊥. (2.6)

ϕ is a g-valued scalar field with gauge invariance δϕ = i[h, ϕ], i.e., ϕ transforms in the

adjoint representation of the gauge group, while the “W -boson” fields can be decomposed

as Wm =
∑

α eαW
α
m where {eα} is a basis of generators of g not in t which are in 1-to-1

correspondence with the roots, α ∈ Φ, of g. Then the 3-d classical action is, keeping only

quadratic terms,

L3d-class. =
L

2g2

(
fmn + d[mWn]

)2
+

4π2

g2L

(
∂mϕ+

∑
α∈Φ

α(ϕ)Wα
meα

)2

+
2L

g2

∑
f

∑
λ∈Rf

Ψλ[i/d− 2π

L
σ4λ(ϕ)]Ψλ + · · · . (2.7)

Here we have defined a CSA-valued gauge field strength, fmn := ∂[man], and covariant

derivative dm := ∂m + iam. The roots α and weights λ can be thought of as vectors of

charges of the Wm and Ψf fields with respect to the CSA gauge fields.

We will use a natural notation where, instead of denoting the weights as vectors, we

treat them as elements of the dual CSA, t∗. That is, they act as real linear maps on t:

λ : (ϕ ∈ t) 7→ (λ(ϕ) ∈ R). For example, we will write dmW
α
n = [∂m + iα(am)]Wα

n and

dmΨλ = [∂m + iλ(am)]Ψλ. When necessary, we can work with (dual) vector components

by going to a basis. So if {ei} is a basis of t∗ and {ei} is the dual basis of t (so that

ei(e
j) = δji ), then for arbitrary elements λ = λiei ∈ t∗ and ϕ = ϕje

j ∈ t (summations

understood, λi, ϕj ∈ R), then λ(ϕ) = λiϕi. Also, the squares in the first line of (2.7)

include not only Lorentz index contractions but also the Killing inner product on the Lie

algebra. (Appendix A reviews needed Lie algebra definitions and concepts.)

Since there is no potential for ϕ, the space of classical vacua are parameterized by

〈ϕ〉 ∈ t. This moduli space is actually compact, since points on t are further identified by

a remaining discrete group of gauge transformations, Ŵ = W n Γ∨r , so that

ϕ ∈ t/(W n Γ∨r ) :' T̂ . (2.8)

HereW is the discrete Weyl group of g and Γ∨r is the co-root lattice (or magnetic root lattice;

the definitions of these lattices are reviewed in appendix A.1.). These lattice identifications
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on ϕ, ϕ ' ϕ+µ with µ ∈ Γ∨r , arise from 4-d gauge transformations connected to the identity

A4 → g−1A4g − ig−1∂4g with g(x4) = exp{2πih(x4)} where t 3 h(x4 + L) = h(x4) + µ.

(These lattice identifications are independent of the choice of global from of the gauge

group, but do depend on choosing the the group of gauge transformations to include only

those continuously connected to the identity; see appendix A.2.) Note that t/Γ∨r is the

same as the maximal torus of G, TG ' t/Γ∗G only for G = G̃ the simply connected form of

the group; otherwise it is a cover of TG. The additional Weyl group identifications in (2.8)

are described in appendix A.4.

We call a fundamental domain in t of Ŵ a “gauge cell”, and denote a canonical choice

of gauge cell by T̂ . As we discuss in appendix A.4, the gauge cell is also known as an affine

Weyl chamber, and has a simple description as the region of t

T̂ := { ϕ | αi(ϕ) ≥ 0, i = 1, . . . , r, and − α0(ϕ) ≤ 1 }, (2.9)

where the αi are a basis of simple roots, and α0 is the lowest root with respect to this

basis. Here

r := rank(g). (2.10)

T̂ is a convex r-dimensional region bounded by the r + 1 hyperplanes αi(ϕ) = 0 and

α0(ϕ) = −1, an r-dimensional generalization of a tetrahedron. In particular, there are r+1

vertices, each of which is opposite to one of the hyperplanes and is where the remaining

r hyperplanes intersect. Some examples of gauge cells are given in figure 3 in section 3.1.

The gauge cells of all simple Lie algebras are explicitly described in appendix B.

So we take ϕ ∈ T̂ to parameterize the inequivalent vacua. ϕ can also be considered

as a gauge-invariant order parameter in the following sense. The gauge holonomy in the

4-d theory around the S1 (the open Wilson line) is Ω(x) := exp{i
∫ x+L
x A4} ∈ G. Under

a periodic gauge transformation g(x) ∈ G, Ω(x) → g−1(x)Ω(x)g(x), so the conjugacy

class of Ω(x) is a gauge-invariant order parameter distinguishing the different vacua. But

conjugation in G can take any element to a given maximal torus of G, so we can write a

representative in the conjugacy class of any holonomy as [Ω(x)] = exp{2πiϕ} with ϕ ∈ T̂ .

Thus we will treat ϕ as our gauge-invariant order parameter, even though it actually

depends on the gauge-dependent choice of CSA t ⊂ g and of a fundamental domain T̂ ⊂ t

of the remaining discrete gauge identifications.

At interior points of T̂ there are no roots for which α(ϕ) = 0 so the gauge group is

Higgsed to abelian factors,

ϕ : G→ U(1)r for ϕ ∈ interior(T̂ ). (2.11)

From (2.7) it follows that the W-bosons and fermions have masses

mWα =
2π

L
|α(ϕ)|, mΨλ =

2π

L
|λ(ϕ)|. (2.12)

We restrict ourselves to QCD(adj) — the theories with only adjoint fermions — for

the rest of the paper. In this case the fermions are in the adjoint representation, there
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will be r massless components of Ψ in the CSA — which we will denote by ψ — and the

remaining Ψα components will have the same masses as the Wα
m.

At boundary points of T̂ saturating one or more of the inequalities (2.9), the unbroken

gauge symmetry is enhanced to contain nonabelian factors, and some of the Wα-bosons

and Ψα fermions become massless. One slightly subtle point is that even at the lowest root

boundary, where α0(ϕ) = −1, Wα0-bosons and Ψα0 fermions will also become massless. It

is actually the first Kaluza-Klein mode of these fields which becomes massless there. The

proper formula for the mass gap in T̂ , replacing (2.12), is

mWα = mΨα =
2π

L
·min

{
|α(ϕ)| , 1−|α(ϕ)|

}
. (2.13)

Away from the boundaries of T̂ , the 3-d classical effective action for the massless modes

of QCD(adj) is then simply

Lint.
3d-class. =

L

2g2
(fmn , fmn) +

4π2

g2L
(∂mϕ , ∂mϕ) + i

2L

g2

(
ψf , /∂ψf

)
, (2.14)

where (·, ·) is the Killing form restricted to the CSA. This is a 3-d U(1)r gauge theory with r

real, massless, neutral scalars and Weyl fermions. Note, however, that at the boundaries of

T̂ the associated massless charged Wα’s and Ψα’s must be included as well in a consistent

effective action, giving rise to a nonabelian gauge theory.

Charge lattices. We now describe the spectrum of charged operators and probes in

QCD(adj) on R3 × S1.

The 4-d UV theory has fields charged in representations of the gauge group G and,

when G is Higgsed to U(1) factors — as when ϕ is in the interior of T̂ — the theory

also admits magnetic monopoles. These fields create states whose possible electric and

magnetic U(1) charges lie in lattices (i.e., are quantized). An external (massive) electrically

or magnetically charged source corresponds to the insertion of a Wilson or ’t Hooft line

operator, respectively, in the path integral. Upon compactification on a spatial circle, these

line operators will give rise to point and line operators in the effective 3-d U(1)r theory

that also carry quantized U(1) electric and magnetic charges.

We define electric (λ ∈ t∗) and magnetic (µ ∈ t) charges in a 4-d U(1)r theory by

λ :=

∫
S2
∞

∗F , µ :=
1

2π

∫
S2
∞

F , (2.15)

where F := 1
2Fµνdx

µ ∧ dxν ∈ t is the U(1)r field strength, and the dual field strength,

∗F := 1
2 F̃
∗
µνdx

µ ∧ dxν ∈ t∗, is both Hodge-dualized,

F̃µν :=
1

2
εµνρσFρσ, (2.16)

and dualized with respect to the Killing form

1

g2
( · , · ) (2.17)
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which appears in the microscopic Lagrangian (2.1). Thus,

F ∗(·) :=
1

g2
(F, ·). (2.18)

Thus a particle with worldline C and electric and magnetic charges λ, µ, has

F =
λ∗

4π

1

r2
dr ∧ dz +

µ

2
sin θdθ ∧ dφ, ∗F =

λ

4π
sin θdθ ∧ dφ+

µ∗

2

1

r2
dr ∧ dz, (2.19)

where z is a coordinate along C, r the coordinate perpendicular to C, and θ and φ are the

polar and azimuthal angles on the S2 linking C.

With the gauge field normalization of (2.1), electric charges defined in this way are

the same as the weights, λ, of representations that enter into the covariant derivative as

Dµ = ∂µ + iλ(Aµ). Note that a more conventional definition of electric charge would be

λ∗, not λ. Also, both the electric and magnetic charges are commonly divided by g to be

charges for canonically normalized gauge fields (i.e., without the g−2 factor multiplying

the action).

Electric operators and center symmetry. By the definition of the gauge group G, all

fields and probes transform in representations of G, and so have electric charges, λ, under

a U(1)r ⊂ G maximal torus which span the gauge lattice ΓG ⊂ t∗,

λ ∈ ΓG for all electric charges. (2.20)

For QCD(adj) where all dynamical fields are in the adjoint representation, the electric

charges of the fields are thus in the root lattice, Γr = ΓGad
(see appendix A.1 for the

definitions of and relations among the various possible charge lattices),

λ ∈ Γr for electric charges of dynamical fields in QCD(adj). (2.21)

When the gauge group G is taken to be larger than the adjoint group, Gad, then the group

lattice is larger (finer) than the root lattice, ΓG ⊃ Γr. In this case electric probe operators,

like E[λ, P ] and W [λ,C] defined below, are allowed in representations with weights other

than those of the adjoint representation (or, more generally, weights not in the root lattice).

We saw in (2.8) that in a gauge theory with gauge group G on R3 × S1, the 0-mode

of the A4 gauge field, ϕ ∈ t, is defined only up to gauge transformations which act as

translations in the co-root lattice, ϕ ' ϕ+ µ, µ ∈ Γ∨r . A Wilson loop wrapping the S1 at

a point P ∈ R3 (a.k.a. the gauge holonomy or Polyakov loop) descends in the 3-d effective

theory to the electric point operator

E[λ, P ] := exp 2πiλ(ϕ)(P ) (2.22)

for some λ ∈ ΓG.3 Likewise, an external (massive) electrically charged source with worldline

C ⊂ R3 (at a point on the S1 in the 4-d theory) is accompanied by the insertion of the

3We have ignored above, for simplicity, the discrete Weyl group of gauge equivalences. In fact, the

Wilson loop in the 4-d theory will be in some irrep R of G, trRPexp i
∫
S1 A, which gives in the 3-d effective

theory
∑
λ∈R exp 2πiλ(ϕ). The weights λ ∈ R fill out Weyl orbits, and the sum then enforces the invariance

of the electric operator under the Weyl group identifications on ϕ.
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Wilson line operator,

W [λ,C] = exp i

∫
C
λ(a), (2.23)

in the 3-d effective U(1)r theory, where again λ ∈ ΓG, and a := amdxm ∈ t is the one-form

U(1)r gauge potential.

As described in appendix A.2, the center symmetry acts by large gauge maps gc =

gµ given by (A.6), which are in the disconnected component c of the group of gauge

transformations according to c ' [µ] ∈ Γ∨w/Γ
∨
r . Repeating the argument after (2.8) with

g(x) = gc(x) shows that the action of the center symmetry on ϕ is to shift

ϕ→ ϕgc = ϕ+ µ with c ' [µ] ∈ Γ∨w/Γ
∨
r , (2.24)

which in turn multiplies the electric point operators by a phase,

gc : E[λ, P ]→ e2πiλ(µ)E[λ, P ], λ ∈ ΓG, c ' [µ] ∈ Γ∨w/Γ
∨
r . (2.25)

The electric operators E[λ, P ] can thus be taken as order parameters for the center sym-

metry. For example, for G = SU(N) and λ a weight of the fundamental representation,

say λ = ei − 1
N

∑
j ej in the basis of appendix B.1, then for µ a weight of the fundamental

representation of G∨, say µ = ek− 1
N

∑
j e

j , the phase in (2.25) is exp−2πi/N . The center

symmetry acts trivially on the Wilson loop operators W [λ,C] simply because they come

from 4-d operators which do not wrap the S1.

Magnetic operators and charges. A classical magnetic charge in the 4-d theory with

worldline C is represented by the insertion of a line operator along C. This operator is

described by boundary conditions for the gauge field along C corresponding to inserting a

GNO monopole [42, 43] (a Dirac monopole embedded in the gauge group G). Explicitly,

if θ and φ are the usual polar coordinates on a small S2 linking C, then the boundary

condition is that, up to a gauge transformation, the 4-d gauge potential has the singularity

lim
r→0

A± = −µ
2

(cos θ ∓ 1) dφ, µ ∈ t. (2.26)

The ± indices denote the 1 ≥ ± cos θ ≥ 0 coordinate patches (the northern and southern

hemispheres of the S2) respectively. Along the equatorial S1 overlap of the two patches at

θ = π
2 , A+ − A− = d(µφ) which is a continuous gauge transformation only if e2πiµ = 1 in

G, which is true when the magnetic charge is in the dual of the group lattice,

µ ∈ Γ∗G. (2.27)

This is the Dirac quantization condition [42, 44].4

For QCD(adj) if we take G = Gad, so that the group lattice is the root lattice, ΓG = Γr,

then allowed magnetic charges are in Γ∗G = Γ∗r = Γ∨w, the co-weight lattice. On the other

4The Weyl group of additional discrete gauge identifications on t implies that allowed µ are actually

classified by their Weyl orbits which can be put into one-to-one correspondence with highest weights of

irreducible representations of the GNO dual group G∨ [42].
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hand, if we choose G = G̃, so that massive sources are allowed to be charged in the larger

weight lattice, Γw, then the allowed magnetic charges can only be in Γ∗w = Γ∨r , the co-

root lattice. But arbitrarily massive probes decouple from the low energy dynamics, so

their presence or absence cannot affect the spectrum of light magnetic states in the theory.

Therefore the magnetic fields can only be charged in the co-root lattice, Γ∨r , which is smaller

(coarser) than the co-weight lattice, so in fact

µ ∈ Γ∨r for dynamical fields. (2.28)

Thus not all magnetic charges allowed by the Dirac quantization condition are necessarily

realized in the spectrum of light states: a dynamical field carrying a magnetic charge in

the finer Γ∨w lattice would imply a violation of decoupling of massive charged states.

In the theory on R3 × S1, the ’t Hooft line operator will descend to a point or line

operator in the 3-d effective theory depending on whether it wraps the S1 or not. If C

wraps the S1 at a point P ∈ R3, this becomes a monopole point operator at P in the 3-d

U(1)r theory,

M [µ, P ] creates a gauge field singularity at P such that

∫
S
f = 2πµ (2.29)

for any closed surface S which encloses P once, and where f := 1
2fmndxm∧dxn = da is the

U(1)r field strength. Note that if both a Wilson line operator W [λ,C] and a monopole oper-

ator M [µ, P ] are present, since
∫
C λ(a) =

∫
S λ(f) for any surface S with ∂S = C, and since

the Wilson line insertion (2.23) should be independent of the choice of S, exp 2πiλ(µ) = 1,

and the Dirac condition (2.27) follows.

A 4-d ’t Hooft loop operator of charge µ along a curve C ⊂ R3 and at a point on the

S1 will descend to a ’t Hooft operator T [µ,C] in the 3-d U(1)r theory. The 4-d operator is

characterized by having
∫
S f = 2πµ for any surface S linking C once in R3 × S1. Since C

is at a point on the S1, we can take S to be a 2-torus with one cycle wrapping the S1 and

the other a curve C ′ linking C in R3. Then
∫
S f = 2π

∫
C′ dϕ, so

T [µ,C] creates a monodromy ϕ→ ϕ+ µ around C. (2.30)

The center symmetry acts trivially on the magnetic operators since a large gauge map

gc = gµ̂ given by (A.6) does not change the singular part of the boundary conditions (2.26).

Inserting this magnetic probe operator in the path integral means that we should integrate

over all gauge fields with the boundary condition (2.26), so shifting the non-singular part

of the gauge field is just a shift in the integration variable.

2.3 3-d dual photon and dual center symmetry

The U(1)r CSA photon fields am(x) ∈ t can be dualized in 3-d as r derivatively coupled

scalars σ(x) ∈ t∗ [25, 45, 46]. This follows from considering a theory with, in addition to

the 3-d U(1)r gauge field am ∈ t with field strength fmn, a vector field bm ∈ t∗ and a scalar

σ ∈ t∗/Γr and partition function

Z =

∫
[dam][dbm][dσ] e−

∫
d3xL with L :=

g2

4L
(∂mσ + bm)2 +

i

2
εmnpbm(fnp), (2.31)
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where in the first term, both a space-time contraction and one on t∗ using the inverse

Killing form is understood. In addition to the usual U(1)r gauge invariance for am this

theory has an additional gauge invariance

σ → σ + σ′, bm → bm − ∂mσ′. (2.32)

Fixing this latter invariance by setting σ = 0 and then integrating out bm gives

Z =

∫
[dam] exp

{
− L

2g2

∫
d3x (fmn, fmn)

}
, (2.33)

which is the original U(1)r gauge theory (2.14) that we want to dualize. Note that the

chosen periodicity of σ, i.e. σ ∈ t∗/Γr, implies that holonomies of bm are also in t∗/Γr.

Then, upon integrating out bm, the periods of fmn can only take values in 2πΓ∨w, and so

allows the largest (finest) lattice of magnetic charges µ ∈ Γ∨w. By (2.27) physical (field or

probe) magnetic charges only appear in the Γ∗G lattice which may be smaller than Γ∨w.5

The choice of Γr as the periodicity of σ implies that there is a global discrete symmetry

Γw/Γr ' Z(G̃∨) ' Z(G̃) (2.34)

which acts on the low energy dual photon by

σ → σc := σ + λ with c ' [λ] ∈ Γw/Γr, (2.35)

similar to the action of center symmetry (2.24) on ϕ. (The outstanding difference from

center symmetry is that there is no microscopic description in terms of a non-abelian G∨

magnetic gauge theory, and so no microscopic derivation of this symmetry as coming from

large magnetic gauge transformations. It has nevertheless been argued [47, 48] to be an

exact symmetry of 3-d and 4-d gauge theories with adjoint matter, and not just a low-

energy accidental symmetry in 3-d abelianizing vacua.) We will call this symmetry the

dual center symmetry in what follows.6

Integrating out am instead sets db = 0, and then the gauge invariance (2.32) can be

used to set bm = 0, giving the dual formulation of the theory,

Z =

∫
[dσ] exp

{
− g

2

4L

∫
d3x (∂mσ, ∂mσ)

}
. (2.36)

Including the fermion and ϕ fields of (2.14) then gives the dual effective 3-d Lagrangian in

the interior of the gauge cell, T̂ , for the theory with nf adjoint fermions

Lint.
3d-mag. =

g2

4L
(∂mσ, ∂mσ) +

4π2

g2L
(∂mϕ , ∂mϕ) + i

2L

g2

(
ψf , /∂ψf

)
. (2.37)

Note that with this normalization, σ and ϕ are dimensionless, while ψf has dimension 3/2.

5Since the am ∈ t gauge fields are identified by the discrete Weyl group of gauge equivalences, σ will be

too, under the dual action of the Weyl group on t∗, so, in fact, σ ∈ t∗/(W n Γr).
6It does not seem to have a standard name. For G̃ = SU(N) it is called “topological global ZN symmetry”

in [47] and “magnetic ZN symmetry” in [48].
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Under this duality, operators map as follows. The operator ∂mσ is dual to − iL
g2 εmnpf

∗
np,

where f∗ ∈ t∗ is the dual of f with respect to the Killing form. This follows from inserting

∂mσ + bm in the path integral (2.31) and integrating out as in (2.33) and (2.36).

The point monopole operator (2.29) becomes the local operator

M [µ, P ] := exp 2πiσ(µ)(P ) (2.38)

in the dual variables. This follows from inserting into (2.31) the gauge-invariant operator

e2πiσ(µ)(P ) · exp{2πi
∫
C b(µ)} with the Dirac string C ending at P , and doing the duality

integrations. Integrating out am sets b = 0, giving (2.38), while gauge fixing σ = 0 and

integrating out bm gives (2.33) as before but with the restriction that f satisfies (2.29).

The dual center symmetry (2.35) acts on the point monopole operators by multiplication

by phases

Z(G̃∨) 3 c : M [µ, P ]→ e2πiλ(µ)M [µ, P ], c ' [λ] ∈ Γw/Γr, (2.39)

analogous to the action of the center symmetry on electric point operators (2.25).

A Wilson line operator (2.23) is dualized to the operator

W [λ,C] creates a monodromy σ → σ + λ around C. (2.40)

This follows since integrating am out of (2.31) with an insertion of (2.23) sets db to have

delta-function support on C such that
∫
C′ b = λ for any curve C ′ linking C once. Equiva-

lently, using the gauge invariance (2.32) we can set b = 0 at the expense of requiring σ to

have the monodromy (2.40).

The electric point operator (2.22) and the ’t Hooft loop operator (2.30) are unchanged,

since they do not involve the am fields.

Summary. We can summarize all this for QCD(adj) with gauge group G, gauge trans-

formations continuously connected to the identity, and vacuum in the interior of the gauge

cell as follows. The charges and basic operators in the dual 3-d effective theory are:

• Electric charges λ ∈ ΓG are allowed, but only λ ∈ Γr occur for dynamical fields.

• Magnetic charges µ ∈ Γ∗G are allowed, but only µ ∈ Γ∨r occur for dynamical fields.

• The holonomy field ϕ ∈ t/Γ∨r ,7 in addition to local operators made from its deriva-

tives, ∂mϕ, etc., can be used to construct

◦ electric operators E[λ, P ] which insert exp 2πiλ(ϕ) at P ,8 and

◦ ’t Hooft lines T [µ,C] which create ϕ→ ϕ+ µ monodromy around C.9

• The dual photon field σ ∈ t∗/Γr,
10 in addition to local operators made from its

derivatives, ∂mσ, etc., can be used to construct

7which descends from the 4-d A4 KK 0-mode.
8which descends from a 4-d Wilson line wrapping the S1.
9which descends from a 4-d ’t Hooft loop at a point on the S1.

10which descends from and is dual to the 4-d Ai KK 0-modes.
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◦ monopole operators M [µ, P ] which insert exp 2πiµ(σ) at P ,11 and

◦ Wilson lines W [λ,C] which create σ → σ + λ monodromy around C.12

The electric and monopole point operators are order parameters for the center and dual

center symmetries, respectively:

Z(G̃) 3 c : E[λ, P ]→ e2πiλ(µ)E[λ, P ] with c ' [µ] ∈ Γ∨w/Γ
∨
r

Z(G̃∨) 3 c∨ : M [µ, P ]→ e2πiλ(µ)M [µ, P ] with c∨ ' [λ] ∈ Γw/Γr. (2.41)

This presentation of the low energy dynamics in the interior of the gauge cell in terms

of ϕ and the dual photon σ makes the GNO-duality between the electric and magnetic

degrees of freedom manifest. This does not mean that the dynamics treats these two

sets of variables symmetrically. Indeed, the GNO-duality of the low energy descriptions

is a property of any theory with an adjoint Higgs phase, but only in special theories,

like N = 4 SYM where the dynamics is realized in a conformal phase, is GNO-duality

realized symmetrically.

For QCD(adj), as we will see in detail in later sections, the dynamics is not re-

alized in a GNO-symmetric way. In particular, neither perturbative nor semi-classical

non-perturbative effects spontaneously break center symmetry in QCD(adj); while non-

perturbatively the dual center symmetry is spontaneously broken in the effective the-

ory, leading to stable domain wall solitons interpolating between the different vacua re-

lated by the broken symmetry. These correspond to the electric flux tubes expected in a

confining phase.

The rest of this paper is devoted to computing the effective potential for the ϕ

and σ fields by computing semi-classical contributions from the electric and monopole

point operators.

2.4 Structure of perturbative corrections

The effective action of QCD(adj) in the interior of the gauge cell is given in (2.37). This

low energy theory has a large IR global symmetry group. It includes a U(1)rσ symmetry

under shifts of σ,

U(1)rσ : σ → σ + ε, ε ∈ t∗, (2.42)

a similar U(1)rϕ symmetry under shifts of ϕ, and a U(r nf ) flavor symmetry of the fermions.

These symmetries are mostly accidental IR symmetries of the classical (tree-level)

effective action, and as such will generically be broken by quantum corrections. For in-

stance, perturbative effects break the flavor symmetry of the adjoint fermion theory to the

U(nf ) = U(1)A × SU(nf ) chiral symmetry which is present in the microscopic 4-d theory.

The U(1)A factor is anomalous in the 4-d theory, broken to Z2h∨nf by instantons, where

h∨ is the dual Coxeter number of g. Thus the U(1)A → Z2h∨nf breaking will not occur

11which descends from a 4-d ’t Hooft loop wrapping the S1.
12which descends from a 4-d Wilson line at a point on the S1.
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at any order in perturbation theory, but will be seen in the 3-d effective theory only once

non-perturbative effects involving monopole-instantons are included.

Similarly, the σ shift symmetry of the dual photons is broken by coupling to magnetic

monopoles via the disorder operators (2.38). But since there are no magnetically charged

states in the microscopic theory, such terms will not arise at any order in perturbation

theory, and σ will remain derivatively coupled. We can thus classify states by an associated

conserved magnetic charge (pseudo) quantum number. But, once non-perturbative effects

are included, magnetic-charge non-conserving operators will enter the effective action, and

magnetic charge will not be a good quantum number.

On the other hand, the U(1)rϕ shift symmetry of the ϕ bosons is broken due to coupling

of electrically charged matter, so, in particular, perturbative effects in g can generate an

effective potential for ϕ.

In the special case where nf = 1, there is a supersymmetry relating ϕ and σ as the

real and imaginary parts of a complex scalar component of a supermultiplet, corresponding

to the enhancement of the U(1)r low energy gauge group to the complexified gauge group

acting on offshell superfields. This prohibits any perturbative potential from arising, and

so, in this case, there is also a perturbatively-conserved pseudo quantum number associated

to the ϕ shift symmetry (sometimes called “dilaton charge” [11, 49]).

For nf 6= 1, the effective potential for ϕ correcting the classical action (2.14) or its

magnetic dual (2.37) in perturbation theory has the structure

Vpert(ϕ) = L−3
(
v0(ϕ) + g2v2(ϕ) + g3v3(ϕ) + · · ·

)
(2.43)

where vn are dimensionless functions of ϕ. This effective 3-d potential comes from inte-

grating in loops the massive KK modes as well as the massive charged 0-modes in (2.5). To

consistently compute Vpert(ϕ) in an effective action at scales µ . L−1, we should only in-

tegrate out modes with masses greater than µ. In particular, some of the charged 0-modes

become massless at the boundaries of T̂ , as shown by the formula (2.13) for the charged

modes’ mass gap derived above. So, close to these boundaries these modes should not be

integrated in loops.

With no light or massless states being integrated in loops, the vn(ϕ) will locally be

analytic functions of ϕ, even at the boundaries of T̂ . “Locally” here means locally in T̂ .

There will be no global analytic expression for the vn(ϕ) valid on the whole of T̂ , since

massive modes which should be integrated out in some parts of T̂ may be too light to

be integrated out in other parts. We will see this explicitly in the 1-loop calculation in

section 3.

We emphasize that this local analytic behavior is a property of the potential in an

effective theory with a finite (nonvanishing) cutoff µ. By contrast, a 1PI effective potential

— corresponding to formally taking the cutoff µ → 0 in the effective theory — can have

nonanalyticities at the boundaries of T̂ . But this is not our situation: we are working in

the effective theory with cutoff µ ∼ L−1 � Λ, and cannot take µ → 0 without running

into strong coupling.

– 20 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

An analytic 1-loop contribution to the effective potential, v0, will have an expansion

around its minimum of the form

v0 ∼ (ϕ− ϕ0)∨ · v0,2 · (ϕ− ϕ0) +O(ϕ− ϕn)3 (2.44)

where ϕ0 is the position of the minimum, and v0,2 is some positive-definite matrix of

coefficients. Then higher order terms can only shift the 0-th order minimum point, ϕ0, by

amounts vanishing as a positive power of g. If some of the eigenvalues of the coefficient

matrix v0,2 happened to vanish at one loop, then higher order terms could shift the 0-th

order minimum point by amounts of order 1; however, we show in section 3 that v0,2 is, in

fact, positive-definite at the unique global minimum for all simple Lie algebras.

We will also see in the next section that for many gauge groups the minimum, ϕ0, of

the one-loop effective potential, v0(ϕ), is at a boundary of the gauge cell T̂ where the low

energy gauge group is not completely abelianized. These boundaries are fixed hyperplanes

of the group of affine Weyl gauge identifications, under which the effective potential is

symmetric. So if ξ is a coordinate in t measuring the perpendicular distance from one such

hyperplane at ξ = 0, we must have V (−ξ) = V (ξ). In particular, all analytic contributions

to the potential will be even in ξ, so

vn ∼ ξ2 +O(ξ4) (2.45)

for all n. Thus if the v0 minimum is at ξ = 0, it cannot be shifted away from this point by

any contributions at higher orders in perturbation theory.

Note that a similar argument also implies that if center symmetry is not spontaneously

broken at 1-loop, it cannot be broken at any higher order in perturbation theory.

Since the 1-loop effective potential in (2.43) has no g-dependence and depends on L

only through an overall factor of L−3, and since the kinetic term for ϕ in (2.14) has a factor

of (g2L)−1, the masses of the r components of ϕ at its minimum will all be of order

mϕ ∼
g

L
. (2.46)

(For large r = rank(G) we will see from explicit calculation in section 3 that the r ϕ masses

are distributed in the range g/(L
√
r) ∼ (g

√
r)/L.)

In summary, for nf > 1, the one-loop potential will pick a unique vacuum value of

ϕ. If that ϕ is in the interior of the gauge cell, then higher-order perturbative corrections

can only move the position of the minimum by terms of order g2, and so the vacuum will

remain in the interior to all orders of perturbation theory and the gauge group will be

fully abelianized,

G→ U(1)r, r = rank(G). (2.47)

If, on the other hand, the value of ϕ at the one-loop minimum is on some gauge cell walls,

where the gauge group is not fully abelianized,

G→ U(1)n ×H, H nonabelian, n = rank(G)− rank(H), (2.48)
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then higher-order perturbative corrections will not move it off those walls, and the unbroken

gauge group will remain as in (2.48) to all orders in perturbation theory.

Since the masses of the W and Ψ states charged under the U(1)n abelian gauge factors

are & L−1 while the neutral scalar masses are mϕ ∼ g/L, then below the cut-off scale µ

such that g/L� µ� 1/L, the effective U(1)n gauge theory can be dualized to n scalars σ

governed by the action (2.37) plus the perturbative effective potential (2.43) for ϕ. At this

scale any massive KK modes charged under the nonabelian gauge factor, H, are weakly

coupled and can be classically integrated out to give an effective 3-d QCD(adj) for gauge

group H. Its 3-d gauge coupling only becomes strong at scales . g2L−1. Thus, the theory

is weakly coupled U(1)n × H 3-d QCD(adj) at the scale µ ∼ g/L. We will have nothing

further to say about the non-abelian gauge factors in what follows (beyond the discussion

given in the introduction), and will concentrate only on the semi-classical expansion of the

effective action for the U(1)r gauge factors in the rest of the paper.

3 1-loop potential minimization

3.1 1-loop potential and summary of results

For a microscopic 4-d theory with massless complex scalars and Weyl fermions in repre-

sentations Rb and Rf , the 3-d one-loop effective potential for ϕ is

Vpert(ϕ) = − 1

V
ln

( ∏
f det(−D2

Rf
)

det(−D2
ad)
∏
b det(−D2

Rb
)

)
(3.1)

where V is the volume of R3. The covariant derivative in representation R acting on a field

ψλ in a basis labelled by the weights {λ} of R is(
Dµ
Rψ
)
λ

=

(
∂µδλλ′ +

2πi

L
δµ4R(ϕ)λλ′

)
ψλ′ =

(
∂µ +

2πi

L
δµ4λ(ϕ)

)
ψλ (3.2)

since, by definition, R(ϕ) is diagonal in this basis with eigenvalues given by λ(ϕ), the weight

vectors evaluated on the Cartan subalgebra element. Since all the φλ’s are independent,

ln det(−D2
R) =

∑
λ∈R

ln det

[
−~∂2 −

(
∂4 +

2πi

L
λ(ϕ)

)2
]

=
4π2V
3L3

∑
λ∈R

B4(λ(ϕ)) (3.3)

where the second equality comes from [10, 15] for periodic S1, and B4(x) is the shifted 4th

Bernoulli polynomial, which can be defined as

B4(x) := [x]2[−x]2 = [x]2(1− [x])2, (3.4)

= x4 − 2|x|3 + x2 for − 1

2
≤ x ≤ 1

2
and periodically extended,

where [x] is the fractional part of x, that is, [x] := x mod 1 so that 0 ≤ [x] < 1 for all x.

Note that B4 is non-analytic at x ∈ Z due to the |x|3 term, but is analytic everywhere else.

So the effective potential is

Vpert(ϕ) =
4π2

3L3

∑
λ∈ad

+
∑
b

∑
λ∈Rb

−
∑
f

∑
λ∈Rf

B4(λ(ϕ)). (3.5)
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For QCD(adj) where there are only nf massless (or light) adjoint Weyl fermions, then

Vpert(ϕ) =
8π2

3L3
(1− nf )

∑
α∈Φ+

B4(α(ϕ)), (3.6)

where Φ+ are the positive roots of g. The roots are the non-vanishing weights of

the adjoint representation; the exclusion of the zero weights is justified since B4(0) =

0. Also, the restriction to positive roots together with an extra factor of 2 is

justified since B4(−λ(ϕ)) = B4(λ(ϕ)).

The periodicity of the Bernoulli polynomial (3.4) under x→ x+ 1 implies the poten-

tial (3.6) is periodic under shifts ϕ → ϕ + µ such that α(µ) ∈ Z for all roots α. Since

the α integrally span the root lattice Γr, this means that µ ∈ Γ∨w (since Γ∨w is integrally

dual to Γr). A fortiori Vpert is therefore periodic under shifts by µ in the coarser lattice

Γ∨r . Also, the roots are permuted by the Weyl group making the potential invariant under

Weyl transformations, so t can be restricted to a gauge cell T̂ = t/(W n Γ∨r ). Further-

more, the invariance of Vpert under shifts in Γ∨w which are not in Γ∨r implies the finite

group Γ∨w/Γ
∨
r ' Z(G̃) acts as a symmetry. This shows how the restriction of ϕ to T̂ and

the action of the global discrete center symmetry, deduced earlier from gauge invariance,

emerges explicitly in perturbation theory.

Minimizing this quartic potential directly is often difficult. Instead, we rewrite it using

the identity

B4(x) = −48

∞∑
n=1

cos(2πnx)

(2πn)4
+

1

30
. (3.7)

Thus, defining the shorthands

g(x) :=
∞∑
n=1

cos(2πnx)

n4
, Ṽ :=

π2L3

8(nf − 1)
Vpert, (3.8)

we have, dropping a constant term,

Ṽ =
∑
α∈Φ+

g(α(ϕ)) =

∞∑
n=1

1

n4

∑
α∈Φ+

cos(2πnα(ϕ)). (3.9)

This shows that the potential is an infinite sum over n of terms bounded by dim(g) · n−4,

which therefore rapidly decrease with increasing n. Thus a trial minimum of the potential

can be found by minimizing these terms individually for low values of n. We carry this out

in section 3.3 below. We then have to check that the trial minimum is indeed a local and

global minimum of the potential. Some of these checks we do numerically.

Table 1 in the introduction and figure 2 below summarize the main properties of the

1-loop minima. The figure plots the gauge holonomy eigenvalues for the rank-9 classical

Lie algebras. We have slightly horizontally offset the degenerate eigenvalues for the BN
and DN theories so that they are apparent.

The center symmetry action on the holonomy eigenvalues can be read off from the

results of appendix B. For AN the ZN+1 center symmetry rotates the eigenvalues by
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AN
BN

CN DN

Figure 2. Gauge holonomy eigenvalues exp{2πiϕj} for the classical Lie algebras at rank N = 9.

The red circles are the ϕ∗ predicted minima and the black “+”’s mark the values found numerically.

The predicted minima are exact for AN and DN , and thought to be correct only in the large-N

limit for BN and CN .

2π/(N + 1); for BN the Z2 center symmetry reflects the eigenvalue closest to −1 through

the x-axis and leaves the other eigenvalues unchanged; for CN the Z2 center symmetry

reflects all the eigenvalues through the y-axis; and for DN (N odd) the Z4 reflects the

eigenvalue closest to +1 through the origin and reflects the rest through the y-axis. All

the distributions in the figure are center-symmetric.

Another way of visualising the holonomy eigenvalues is as a point in the gauge cell,

which for a rank r gauge group is an r-dimensional simplex, a region bounded by r +

1 faces (which are themselves (r−1)-dimensional simplices). The faces are defined by

eigenvalue distributions fixed by a Weyl group element (e.g., a pair of eigenvalues coincide)

and thus correspond to enhanced gauge symmetries. The pattern of the gauge symmetry

enhancement is described in appendix B. For rank-2 gauge groups the gauge cells are just

triangles, and are plotted in figure 3 in the coordinates used in appendix B. In this figure

we also show the sub-simplices of center-symmetric holonomies, fundamental domains for

the center action, as well as the locations of the minima of the 1-loop potentials.

3.2 1PI versus Wilsonian 1-loop potential

The 1-loop potential (3.6) found above is not always the correct effective potential for the

light fields (i.e., those with masses less than ∼ 1/L). The reason is that (3.6) is the 1PI

effective potential found from integrating all the fields in the loops in the presence of a
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1�3 2�3

-1�3

1�3

A2

Φ1

Φ2

1�4 1�2

1�4

1�2

C2

Φ1

Φ2

1�6 1�3

1�6

G2

Φ1

Φ2

1�2 1

1�2

B2

Φ1

Φ2

Figure 3. Gauge cells for the rank-2 Lie algebras in the coordinates of appendix B, shaded

according to the values of the 1-loop potential. Green and red lines enclose fundamental domains

for the action of the center Z(G̃) on T̂ , red lines or dots are points of unbroken center symmetry,

and blue dots are the minima of the 1-loop potential. The B2 and C2 cases are equivalent, but are

expressed in different coordinate systems.

constant background 〈ϕ〉. But to compute a consistent (Wilsonian) effective potential for

the light modes at a generic 〈ϕ〉 we should only integrate out the massive degrees of freedom.

Field components with non-zero weights, α, are charged under the U(1)r low energy

gauge group and have masses ∼ |α(ϕ)|/L as found in (2.13). For ϕ in the interior of the

gauge cell |α(ϕ)| ∼ 1, and all these modes are massive. The rest of the field components

have zero weights in the adjoint representation are so are neutral under the U(1)r low

energy gauge group and have masses at most ∼ g/L (from 1-loop effects). The 1-loop

potential (3.6) was computed as a 1PI effective potential, in which both the light neutral

as well as the heavy charged fields were integrated in the loop. But, since this is just a

1 loop computation with no internal vertices, neutral fields do not contribute to the ϕ-

dependence of Vpert; they only give a constant term, which is subtracted. Indeed, this is

reflected in the fact that in the expression (3.6) for Vpert only a sum over the roots (and

not the zero weights) appears. Thus the inclusion of the light neutral fields at 1 loop does

not invalidate the potential.

But at the boundaries of the gauge cell, some of the massive charged modes become

light (and are responsible for enlarging the low energy gauge group to contain nonabelian

factors). So, parametrically close to or at the boundaries, these light charged modes should

not be integrated in loops. Explicitly, when ϕ is near the boundary of the gauge cell

associated to the root α, the two 3-d gauge bosons W±αm and the 2nf adjoint fermions Ψ±α
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associated to the roots ±α become light with a common mass mα = (2π/L)|α(ϕ)|. Their

contribution to the 1-loop effective potential is

Vα(ϕ) =
2− 2nf
V

ln det
[
−~∂2 +m2

α

]
= −16π2

3L3
(1− nf ) |α(ϕ)|3. (3.10)

Subtracting this from (3.6) therefore increases the attraction to the α(ϕ) = 0 boundary of

the gauge cell. Thus, if the minimum of the 1PI Vpert is on a gauge cell wall, then correcting

to the Wilsonian effective potential does not move the minimum off the wall. Thus using the

1PI potential does not lead to an incorrect location of the potential minimum. Furthermore,

since the difference between the two is a cubic term, the masses computed in the 1PI and

Wilsonian potentials also agree at the minimum.

Finally, note that subtracting Vα precisely cancels the −2|x|3 term for x = α(ϕ) in B4,

so removing the non-analytic term from (3.6) at the boundary. Thus the 1-loop Wilsonian

effective potential is never non-analytic, but is also not well-defined (single-valued) over

the whole gauge cell. The analytic Wilsonian expression VWilsonian = Vpert − Vα must be

used whenever the Wα and Ψα masses are as light as the heaviest ϕ-mass. We will see

in the next subsection that (mϕ)max ∼
√
Ng/L where N is the rank of the gauge group.

Thus the effective 3d action with non-abelian gauge factors and the Wilsonian form of the

potential should be used whenever |α(ϕ)| .
√
Ng.

3.3 1-loop potential minima for nf > 1 adjoint fermions

In all of what follows {ei} is an orthonormal basis of RN ⊃ t∗ and {ei} is a basis of

(RN )∗ ⊃ t dual to the {ei} so that ei(e
j) = δji and the ei are also orthonormal. A general

point ϕ ∈ t will then have the coordinate expansion

ϕ =
∑
i

ϕie
i. (3.11)

Details of the coordinate systems that we use for the CSAs of the simple Lie algebras are

given in appendix B.

3.3.1 AN−1

The potential (3.9) is then given by

ṼAN−1
=

∑
1≤i<j≤N

g(ϕi − ϕj) with
∑

1≤i≤N
ϕi = 0, (3.12)

which can be rewritten by expanding out the cosines as

Ṽ =
∞∑
n=1

1

4n4

(
|xn|2 −N

)
where xn :=

∑
j

(e2πiϕj )n. (3.13)

So the potential should be minimized if xn = 0 for as many low values of n as possible.

The general solution for 1 ≤ n < N is that e2πiϕj are the N -th roots of unity shifted by
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a phase to satisfy the
∑

i ϕi = 0 constraint (which implies
∑

i[ϕi] ∈ Z for the fractional

parts), a simple solution of which is

ϕj =
N + 1− 2j

2N
:= ϕ?j , (3.14)

defining the (trial) minimum point ϕ? =
∑

j ϕ
?
je
j ∈ t. This has actually only determined

the fractional parts of the ϕj . Shifts by the co-weight lattice can be used to make arbitrary

integer shifts of the ϕj (preserving
∑

j ϕj = 0) which can be used to put ϕ?j in the affine

Weyl chamber. The solution given above is already in this chamber, so no further shifts

need be made.

To check that ϕ? is a local minimum of the potential, evaluate the exact Ṽ (H) =

−(π4/3)
∑

i<j [ϕi−ϕj ]2(1− [ϕi−ϕj ])2 near ϕ?. Take ϕj = ϕ?j − (εj/N) with
∑

j εj = 0 for

εj small. Then, since ϕi − ϕj = (j − i + εj − εi)/N is between 0 and 1 for i < j, we can

drop the fractional part [·] brackets to find

Ṽ = − π4

3N4

∑
i<j

(i− j + εi − εj)2(N + i− j + εi − εj)2

= −π
4(N4 − 1)

180N2
+

π4

3N2

N−1∑
i,j=1

Mijεiεj +O(ε3)

where Mij is the (N−1) × (N−1) symmetric matrix with Mij = 12i(N − j) −N(1 + δij)

for i ≤ j. Since the O(ε) terms vanish, it is an extremum, and since all the entries of Mij

are positive the ε2 term is positive-definite, so ϕ? is a local minimum of V .

A numerical search for N ≤ 20 supports that ϕ? is also the global minimum; see

figure 2.

Since ϕ? is not at a boundary of the affine Weyl cell, the low energy gauge group is

completely abelianized to U(1)N−1. Center symmetry is also unbroken, since ϕ? is the

unique center-symmetric vacuum derived in appendix B.

The eigenvalues {λi} of Mij have the approximate distribution λj ' 5
4N

3j−2+ 3
4j

2N−1,

for 1 ≤ j ≤ N − 1, implying a spectrum of ϕ masses (squared)

m2
ϕ '

(nf − 1)g2

6L2

(
5
N

j2
+ 3

j2

N3

)
1 ≤ j ≤ N − 1 (3.15)

which range from O(g2N) down to O(g2/N).

3.3.2 BN

The potential is

ṼBN =
∑

1≤i<j≤N
[g(ϕi − ϕj) + g(ϕi + ϕj)] +

∑
1≤i≤N

g(ϕi), (3.16)

and can be rewritten by expanding out the cosines as

Ṽ =
∞∑
n=1

1

4n4

{
(xn + x∗n)2 − (x2n + x∗2n) + 2(xn + x∗n)− 2N

}
=
∑
n odd

1

4n4

{
(xn+x∗n+1)2 − (2N+1)

}
+
∑
n even

1

4n4

{
(xn+x∗n−7)2 − (2N+49)

}
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where xn :=
∑

j(e
2πiϕj )n, and in the second line we have collected terms invloving xn’s of

like n and completed squares. This makes it plausible that the potential will be minimized if

xn + x∗n =

{
−1 for n odd,

+7 for n even,
(3.17)

for as many low values of n as possible. But |xn| ≤ N , so the +7 value for even n cannot

be achieved for small values of N (N = 2, 3). For large N the set of phases entering in

x1 + x∗1 should be unions of sets of all q distinct qth-roots-of-unity with each set possibly

shifted by an independent overall phase (since sums of their nth powers vanish for all n

up to q) plus the set of seven additional phases {−1,−1,−1,−1,+1,+1,+1} (since for n

odd they contribute a total of −1 to xn + x∗n, while for n even they contribute +7). So, to

satisfy (3.17) for as many n as possible, we should take q = 2N − 7 with overall phase 1,

giving the (trial) solution ϕ? := ϕ?
je
j ∈ t with

{ϕ?
j} =

{
1

2
,
1

2
,
N − 4

2N − 7
,
N − 5

2N − 7
, . . . ,

2

2N − 7
,

1

2N − 7
, 0, 0

}
. (3.18)

This solution only makes sense for N ≥ 4. (In any case, for 2 ≤ N ≤ 6 the exact minimum

can be found by brute force; see below.)

We check whether ϕ? is a local minimum of the potential by evaluating at ϕ = ϕ? the

first and second derivatives of the exact potential,

3

π4
Ṽ = −

∑
i<j

{
[ϕi−ϕj ]2(1−[ϕi−ϕj ])2 + [ϕi+ϕj ]

2(1−[ϕi+ϕj ])
2
}
−
∑
i

[ϕi]
2(1−[ϕi])

2.

First, label the ϕ?
j in decreasing order as in (3.18). Then, for nearby points ϕ = ϕ?+ε (with

certain choice of signs and relative sizes of the εj),
13 [ϕj ] = ϕj for all j and [ϕi±ϕj ] = ϕi±ϕj

for all i < j, so

3

π4
Ṽ = −

∑
i<j

(
(ϕi−ϕj)2(1−ϕi+ϕj)2 + (ϕi+ϕj)

2(1−ϕi−ϕj)2
)
−
∑
i

(ϕi)
2(1−ϕi)2

=
∑
i

(
(7−2N)ϕ4

i + (4N−4i+2)ϕ3
i + (1−2N)ϕ2

i

)
− 6

(∑
i

ϕ2
i

)2

+ 12
∑
i<j

ϕiϕ
2
j .

Then the first derivatives of the potential are

3

π4
∂kṼ = 4(7− 2N)ϕ3

k + 6(2N − 2k + 1)ϕ2
k + 2(1− 2N)ϕk

+ 12

(∑
i>k

ϕ2
i

)
+ 24ϕk

(∑
i<k

ϕi

)
− 24ϕk

(∑
i

ϕ2
i

)
(3.19)

13There is no loss in generality in assuming the εj have definite signs since the first and second derivatives

of [x]2(1 − [x])2 are continuous across the jump from [x] = 1 to [x] = 0. These derivatives are all that are

needed to assess whether ϕ? is a local minimum. (The third derivative, on the other hand, has a discontinuity

across the jump.)
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which implies that ∂kṼ |ϕ=ϕ? = 0 (for N ≥ 4) and shows that the trial minimum is an

extremum. But the second derivatives of the potential are

3

π4
∂k∂lṼ =

[
12(3− 2N)ϕ2

k − 24

(∑
i

ϕ2
i

)
+ 12(2N − 2k + 1)ϕk + 24

(∑
i<k

ϕi

)
+ 2(1− 2N)

]
δkl + 24ϕl(1− 2ϕk)θl>k + 24ϕk(1− 2ϕl)θl<k (3.20)

which evaluates at ϕ = ϕ? to

∂k∂lṼ ∝



1

2
(2N − 7)δkl k, l ∈ {1, 2}

12(2k−5)(N−1−l)− (24N2−118N+149)δkl k ≤ l ∈ {3, . . . , N−1}

−(24N2 − 118N + 149) k = l = N

0 otherwise

where the proportionality factor is 2π4

3 (2N−7)−2. This matrix has only positive eigenvalues

in the first 2 × 2 block (i.e., for the ϕ?
1 = ϕ?

2 = 1
2 values) and negative for the remaining

N − 2 eigenvalues. Thus ϕ? is not a minimum, but only a saddle point where the ϕ1,2

coordinates are stable, but the rest are not.

To see where the actual minimum of the potential is, we did a numerical search for

global minima for N ≤ 25. This gives the following global minima with coordinates ϕ̂j of

V in the gauge cell:

N = 1 : {ϕ̂j} =

{
1

2

}
. (exact)

N = 2 : {ϕ̂j} =

{
1

2
, 0

}
. (exact)

N = 3 : {ϕ̂j} =

{
1

2
,
2

5
, 0

}
(exact)

N = 4 : {ϕ̂j} =

{
1

2
,
1

2
,
1

7
, 0

}
(exact)

N = 5 : {ϕ̂j} =

{
1

2
,
1

2
, 0.3297, 0.0422, 0

}
N = 6 : {ϕ̂j} =

{
1

2
,
1

2
, 0.4002, 0.1980, 0.0253, 0

}
N = 7 : {ϕ̂j} =

{
1

2
,
1

2
, 0.4286, 0.2859, 0.1415, 0.0181, 0

}
N = 8 : {ϕ̂j} =

{
1

2
,
1

2
, 0.4444, 0.3333, 0.2223, 0.1100, 0.0141, 0

}
For 2 ≤ N ≤ 6 MathematicaTM can find exact algebraic expressions for these values. For

N = 5, 6 the decimal values shown are approximations to irrational numbers (roots of
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cubics or quartics). None of these agree with the ϕ?
j given in (3.18), but as N increases

they rapidly approach ϕ?j where

{ϕ?j} ≈
{

1

2
,
1

2
,
N−4

2N−7
,
N−5

2N−7
, . . . ,

2

2N−7
,

1

2N−7
,

1

8(2N−7)
, 0

}
; (3.21)

see figure 2. More accurately, ϕ? is given to six significant figures by

{ϕ?j} =

{
1

2
,
1

2
, . . . ,

3(0.999966)

2N−7
,
2(1.000500)

2N−7
,
(0.990203)

2N−7
,
(1.012080)

8(2N−7)
, 0

}
. (3.22)

(The first N − 5 ϕ?j equal ϕ?
j to this accuracy.)

Thus the evidence from the exact solutions for N ≤ 6 and the numerical solutions for

larger N is that the minima ϕ? have two ϕ?j = 1
2 and one ϕ?j = 0, exactly. This implies that

the ϕ? vacua are invariant under an SO(4) × U(1)N−3 × SO(3) nonabelian gauge group.

Also, because there is a ϕ?j = 1
2 , the Z2 center symmetry is not broken (see appendix B).

Evaluating (3.19) at the actual minima and diagonalizing gives an approximate spec-

trum of ϕ masses at large N which is the same as (3.15) found in the AN case for

1 ≤ j ≤ N − 4, plus four masses lighter by about a factor of 4 than the lightest of

the above spectrum. (More accurately, these four have masses about

m2
ϕ = λ

2(nf − 1)g2

3(2N − 7)L2
. (3.23)

with λ ∈ {1.6669, 1.0000, 1.0000, 0.8231}. The two with equal masses are associated to

the unbroken SO(4) ' SU(2)2 factors, while the lightest is associated with the unbroken

SO(3) factor.)

3.3.3 DN

In the coordinates of appendix B, the potential is

ṼDN =
∑

1≤i<j≤N
[g(ϕi − ϕj) + g(ϕi + ϕj)] (3.24)

which can be rewritten by expanding out the cosines and completing squares as

Ṽ =

∞∑
n=1

1

4n4

{
(xn + x∗n)2 − (x2n + x∗2n)− 2N

}
=
∑
n odd

1

4n4

{
(xn+x∗n)2 − 2N

}
+
∑
n even

1

4n4

{
(xn+x∗n − 8)2 − (2N+64)

}
where xn :=

∑
j(e

2πiϕj )n. This is clearly minimized if

xn + x∗n =

{
0 for n odd,

8 for n even,
(3.25)

for as many low n as possible. But |xn| ≤ N , so the +8 value for even n cannot be achieved

for N = 2, 3. For large N the set of phases entering in x1 + x∗1 should be the union of the
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set of all q distinct qth-roots-of-unity (possibly shifted by an overall phase) plus the set of

eight additional phases {−1,−1,−1,−1,+1,+1,+1,+1} (since for n odd they contribute a

total of 0 to xn+x∗n, while for n even they contribute +8). So, to satisfy (3.25) for as many

n as possible, we should take q = 2N − 8 with overall phase exp{2πi/(4N − 16)} (so that

the set is invariant under complex conjugation), giving the (trial) solution ϕ? = ϕ?
je
j ∈ t

with (for N ≥ 5)

{ϕ?
j} =

{
1

2
,
1

2
,

2N − 9

4(N − 4)
,

2N − 11

4(N − 4)
, . . . ,

1

4(N − 4)
, 0, 0

}
. (3.26)

It remains to see whether this trial solution is a minimum of the exact potential.

To check whether ϕ? is a local minimum of the potential, evaluate the exact potential

Ṽ (ϕ) = −π4

3

∑
i<j

(
[ϕi−ϕj ]2(1−[ϕi−ϕj ])2 + [ϕi+ϕj ]

2(1−[ϕi+ϕj ])
2
)
. Taking the ϕj in the

Weyl cell implies [ϕi ± ϕj ] = ϕi ± ϕj for all i < j, so

Ṽ = −π
4

3

∑
i<j

(
(ϕi−ϕj)2(1−ϕi+ϕj)2 + (ϕi+ϕj)

2(1−ϕi−ϕj)2
)

= −2π4

3

∑
i

(
(N−4)ϕ4

i − 2(N−i)ϕ3
i + (N−1)ϕ2

i

)
− 6π4

3

(∑
i

ϕ2
i

)2

+
12π4

3

∑
i<j

ϕiϕ
2
j .

Then

3

π4
∂kṼ = − 8(N − 4)ϕ3

k + 12(N − k)ϕ2
k − 4(N − 1)ϕk

− 24ϕk

(∑
i

ϕ2
i

)
+ 12

(∑
i>k

ϕ2
i

)
+ 24ϕk

(∑
i<k

ϕi

)
, (3.27)

which implies that ∂kṼ
∣∣
ϕ? = 0 (for N ≥ 5) and shows that the trial minimum is an

extremum. Also,

3

π4
∂k∂j Ṽ =

[
−24(N − 2)ϕ2

k − 24

(∑
i

ϕ2
i

)
+ 24(N − k)ϕk + 24

(∑
i<k

ϕi

)
− 4(N − 1)

]
δkj + 24ϕj(1− 2ϕk)θj>k + 24ϕk(1− 2ϕj)θj<k,

so

∂k∂j Ṽ
∣∣∣
ϕ=ϕ?

∝



1

2
(N−4)δkj k, j ∈ {1, 2, N−1, N}

12

(
k−5

2

)(
N+1−j−5

2

)
− (N−4)δkj k ≤ j ∈ {3, . . . , N−2}

0 otherwise

(3.28)

where the proportionality factor is π4

3 (N − 4)−2. This matrix is positive definite for all

N ≥ 5. Thus ϕ? is a local minimum.

To see where the global minimum of the potential is, we did a numerical search for

N ≤ 20. This gives to within numerical accuracy that the global minimum equals the trial

minimum given in (3.26),

ϕ? = ϕ? for N ≥ 5; (3.29)
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see figure 2. For the other values of N , we can determine the exact minima algebraically

to be

N = 2 : {ϕ?j} =

{
1

2
, 0

}
.

N = 3 : {ϕ?j} =

{
1

2
,
1

4
, 0

}
N = 4 : {ϕ?j} =

{
1

2
,
1

2
, 0, 0

}
The N = 2 and N = 3 cases show no gauge enhancement, and indeed coincide with the

results for SO(4) ' SU(2)× SU(2) and SO(6) ' SU(4), as expected.

This evidence implies that for N ≥ 4 the minima ϕ? have two ϕ?j = 1
2 and two ϕ?j = 0.

This implies that the ϕ? vacua are invariant under an SO(4)×U(1)N−4×SO(4) nonabelian

gauge group. Also, the full center symmetry (either Z4 or Z2 × Z2) is not broken by ϕ?.

Diagonalizing (3.28) gives an approximate spectrum of ϕ masses at large N which is

the same as (3.15) found in the AN case for 1 ≤ j ≤ N − 4, plus four equal masses lighter

by a factor of 4 than the lightest of the above spectrum. More precisely, these four have

the 1-loop exact mass

m2
ϕ =

(nf − 1)g2

3(N − 4)L2
, (3.30)

and are associated to the unbroken SO(4)2 ' SU(2)4 gauge factors.

3.3.4 CN

The potential is

ṼCN =
∑

1≤i<j≤N
[g(ϕi − ϕj) + g(ϕi + ϕj)] +

∑
1≤i≤N

g(2ϕi), (3.31)

which can be rewritten by expanding out the cosines as

Ṽ =

∞∑
n=1

1

4n4

{
(xn + x∗n)2 − (x2n + x∗2n) + 2(x2n + x∗2n)− 2N

}
(3.32)

=
∑
n odd

1

4n4

{
(xn + x∗n)2 − 2N

}
+
∑
n even

1

4n4

{
(xn + x∗n + 8)2 − (2N+64)

}
where xn :=

∑
j(e

2πiϕj )n, and in the second line we have collected terms invloving xn’s of

like n and completed squares. This is clearly minimized if

xn + x∗n =

{
0 for n odd,

−8 for n even,
(3.33)

for as many low n as possible. But |xn| ≤ N , so the −8 value for even n cannot be achieved

for small values of N (N = 2, 3). As in the BN and DN cases, we can try to satisfy these

constraints for n . N by choosing the set of phases entering in x1 + x∗1 as the union of the
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set of all q distinct qth-roots-of-unity (possibly shifted by an overall phase) plus the set of

additional phases to account for the −8 for even n. This can be done with q = 2N − 8

with an overall phase shift of exp{2πi/(4N−16)} together with the eight additional phases

{−i,−i,−i,−i,+i,+i,+i,+i} (since for n odd they contribute a total of 0 to xn+x∗n, while

for n even they contribute −8). This will then satisfy (3.33) up to about n = 2N − 8.

But because xn + x∗n is negative and even for even n, there is another way of (approx-

imately) satisfying (3.33) but for higher values of n: instead of adding additional phases,

choose a larger value of q, q = 2N + 8, (with an overall phase shift of exp{2πi/(4N + 16)}
to keep the set invariant under complex conjugation) and remove the four phases closest to

+1 and the four closest to −1. In this way, for odd n < 2N + 8 (3.33) will be exactly sat-

isfied, and for even n we will have subtracted approximately (4)2 + (−4)2 = 8, thus closely

satisfying (3.33) for even n < 2N + 8. This gives the (trial) solution ϕ? = ϕ?
je
j ∈ t with

{ϕ?
j} =

{
2N + 3

4(N + 4)
, . . . ,

2(N − j) + 5

4(N + 4)
, . . . ,

5

4(N + 4)

}
. (3.34)

It remains to see whether this trial solution is a minimum of the exact potential.

Evaluate the exact potential,

V (ϕ) ∼ −
∑
i<j

(
[ϕi−ϕj ]2(1−[ϕi−ϕj ])2 + [ϕi+ϕj ]

2(1−[ϕi+ϕj ])
2
)

+
∑
i

[2ϕi]
2(1−[2ϕi])

2,

by taking the ϕj in the gauge cell determined in appendix B, so that [2ϕj ] = 2ϕj for all

j and [ϕi ± ϕj ] = ϕi ± ϕj for all i < j. Minimizing this numerically for N ≤ 20 gives the

following global minima ϕ?:

N = 1 : {ϕ?j} =

{
1

4

}
. (exact)

N = 2 : {ϕ?j} =

{
1

4
,
1

4

}
. (exact)

N = 3 : {ϕ?j} =

{
0.2885,

1

4
, 0.2115

}
N = 4 : {ϕ?j} =

{
0.3149, 0.2815, 0.2185, 0.1851

}
N = 5 : {ϕ?j} =

{
0.3354, 0.3058,

1

4
, 0.1942, 0.1646

}
N = 6 : {ϕ?j} =

{
0.3519, 0.3252, 0.2750, 0.2250, 0.1748, 0.1481

}
N = 7 : {ϕ?j} =

{
0.3654, 0.3411, 0.2954,

1

4
, 0.2046, 0.1589, 0.1346

}
N = 8 : {ϕ?j} =

{
0.3766, 0.3544, 0.3125, 0.2709, 0.2291, 0.1875, 0.1457, 0.1234

}
.

None of these agree with the ϕ?
j given in (3.34), but as N increases they approach the ϕ?

j

more closely except for j = 1 and j = N which are consistently pushed away from 1
2 and

– 33 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

0:

{ϕ?j} ≈
N�1

{
N + 1

2(N + 4)
,

2N + 1

4(N + 4)
, . . . ,

2(N − j) + 5

4(N + 4)
, . . . ,

7

4(N + 4)
,

3

2(N + 4)

}
; (3.35)

see figure 2.

For N > 2 there is no gauge enhancement, though the Z2 center symmetry is unbroken

at these minima.

3.3.5 G2

In the coordinates of appendix B, the potential in the gauge cell is

Ṽ = g[3ϕ1] + g[3ϕ2] + g[3ϕ1 + 3ϕ2] + g[ϕ1 − ϕ2] + g[2ϕ1 + ϕ2] + g[ϕ1 + 2ϕ2]

= −180(ϕ4
1 + 2ϕ3

1ϕ2 + 3ϕ2
1ϕ

2
2 + 2ϕ1ϕ

3
2 + ϕ4

2)

+ 4(32ϕ3
1 + 48ϕ2

1ϕ2 + 51ϕ1ϕ
2
2 + 28ϕ3

2)− 24(ϕ2
2 + ϕ1ϕ2 + ϕ2

1).

The exact minimum is at

ϕ? = {ϕ1 = 2/15 , ϕ2 = 2/15} (3.36)

which is at a boundary of the gauge cell, and so has an enhanced SU(2) × U(1) gauge

invariance.

3.3.6 F4

In the coordinates of appendix B, the potential in the gauge cell is

Ṽ = −
∑
i

g[ϕi]−
∑
i<j

(g[ϕi−ϕj ] + g[ϕi+ϕj ])−
∑
a,b,c

g

[
1

2

(
ϕ1+(−)aϕ2+(−)bϕ3+(−)cϕ4

)]
= − 15

2
(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4)2 − 9(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) + 16ϕ3

1 + 10ϕ3
2 + 6ϕ3

3 + 2ϕ3
4

+ 18ϕ1(ϕ2
2 + ϕ2

3 + ϕ2
4) + 12ϕ2(ϕ2

3 + ϕ2
4) + 12ϕ3ϕ

2
4.

The global minimum appears to be

ϕ? := {ϕ1 = 3/5, ϕ2 = 2/5, ϕ3 = 1/5, ϕ4 = 0}, (3.37)

to within numerical accuracy. It is at a boundary of the gauge cell since it saturates

ϕ1 = ϕ2 + ϕ3 + ϕ4, ϕ4 = 0, and ϕ1 + ϕ2 = 1 corresponding to vanishing vevs for the

two short simple roots and one long root (orthogonal to the short roots), implying an

SU(3)× SU(2)×U(1) enhanced gauge symmetry.

3.3.7 EN

For the EN exceptional groups the global minima of the potentials (whose expressions are

too long to reproduce here) are found to be, within numerical precision,

E6 : ϕ? = {ϕ1 = 1/2 , ϕ2 = ϕ3 = ϕ4 = −1/6 , ϕ5 = ϕ6 = 1/6 }
E7 : ϕ? = {ϕ1 = ϕ2 = ϕ3 = 1/4 , ϕ4 = ϕ5 = ϕ6 = ϕ7 = 0 } (3.38)

E8 : ϕ? = {ϕ1 = 5/6 , ϕ2 = ϕ3 = ϕ4 = ϕ5 = ϕ6 = 1/6 , ϕ7 = ϕ8 = 0 }
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in the coordinates described in appendix B. These minima are easily checked to correspond

to the minimal breakings

E8 ⊃ SU(2)× SU(3)× SU(6),

E7 ⊃ SU(2)× SU(4)× SU(4),

E6 ⊃ SU(3)× SU(3)× SU(3). (3.39)

These vacua all preserve the center symmetry (though the center symmetry is trivial

for E8).

4 Self-dual topological configurations on R3 × S1

So far we have argued that in QCD(adj) on R3 × S1 the gauge holonomy, ϕ, at interior

points of the gauge cell Higgses G → U(1)r at a scale mWα ∼ L−1, where L is the size of

the S1. The 3-d effective action with a cutoff scale µ such that g/L� µ� L−1 and in the

interior of the gauge cell is given in perturbation theory by

L0 =
g2

4L
(∂mσ, ∂mσ) +

4π2

g2L
(∂mϕ , ∂mϕ) + i

2L

g2

(
ψf , /∂ψf

)
+ Vpert(ϕ), (4.1)

where Vpert is given by (3.6) plus corrections smaller by powers of g2 which do not shift

the minimum of Vpert qualitatively. Interactions involving the dual photon, σ, are not

generated at any order in perturbation theory.

To understand whether and what effective interactions for σ are generated, we must

go beyond perturbation theory. So we now turn to computing the semi-classical expansion,

L = L0 + L1 + L2 + · · · , (4.2)

of the 3-d effective action, where we will see that the typical size of the nth order term in

this expansion is, very approximately,

Ln ≈ exp{−nSIν(ϕ)}, (4.3)

where SI := 8π2/g2 is the 4-d instanton action, and ν(ϕ) are fractional instanton charges

which depend on the vacuum value of ϕ. For generic values of ϕ in the interior of the

gauge cell,

ν(ϕ) ∼ 1

h∨
, (4.4)

where h∨ is the dual Coxeter number of the gauge algebra (a number on the order of

the rank of the algebra). In particular, in this case the semi-classical expansion will be

dominated by contributions with fractional instanton number.

In cases where ϕ is on a boundary of the gauge cell, some ν(ϕ) vanish, and the semi-

classical expansion becomes invalid, as does the abelian effective action (4.1) itself. As

computed in the previous section, this actually occurs in QCD(adj) for all gauge groups
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except SU(N) and Sp(2N). So the following discussion of the semi-classical expansion is

only strictly valid for those groups.

The remainder of this section reviews, following [14, 50], the elementary semi-classical

configurations, and derives the first order corrections to the effective Lagrangian. The next

section will be devoted to higher-order corrections, which, though much smaller, lead to

qualitatively new effects.

Finite action field configurations on R3 × S1 are classified according to two pseudo

quantum numbers, the magnetic charge (vector) µ ∈ t and the topological charge (or

instanton number) ν:

µ :=
1

2π

∫
S2
∞

f, ν :=
1

16π2

∫
R3×S1

(Fµν , F̃µν). (4.5)

The magnetic charge is defined here in terms of the low energy 3-d effective U(1)r 2-form

field strength, f , while the topological charge is given in terms of the microscopic 4-d Yang-

Mills field strength. The Killing form is normalized so that the smallest instanton number

on R4 is 1, and corresponds to the normalization where the lengths-squared of long roots

are 2. These quantum numbers are protected to all orders in perturbation theory, but their

conservation can be violated non-perturbatively. The perturbative vacuum has µ = ν = 0.

4.1 Monopole-instantons

A subclass of the finite action topological configurations on R3 × S1 arises as solutions to

the self-duality equation

Fµν = F̃µν :=
1

2
εµνρσFρσ. (4.6)

The Higgsing of the gauge group by a compact adjoint Higgs field — in our case the

gauge holonomy ϕ around the S1 — implies the existence of r + 1 types of elementary

monopole-instantons. These are solutions to the Bogomolny equation,

Fmn = εmnpDpA4 =
2π

L
εmnpDpϕ, (4.7)

which is the dimensional reduction of the self-duality equation (4.6), found by assuming the

gauge fields are x4-independent. Ordinarily, one expects only r elementary monopoles due

to the Higgsing to U(1)r, each associated with a simple root αj , j = 1, . . . , r of the gauge

algebra. But since the adjoint Higgs field is compact, there is an extra monopole associated

with the affine (or lowest) root α0. The magnetic charge, µ(j), of the monopole-instanton

of type j is, in the normalization of section 2.2,

µ(j) = α∨j , j = 0, . . . , r, (4.8)

where α∨j are the affine or simple co-roots, defined in (A.11). Since the electric charge of

a W -boson of type j is the affine or simple root αj , j = 0, . . . , r, and since αi(α
∨
j ) = Âi,j

is the integer-valued extended Cartan matrix — defined in appendix A.3 — one checks

that the Dirac quantization condition is satisfied. Thus in the long distance 3-d theory,
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the 3-d instantons are monopoles. As described around (2.38), a magnetic source at point

x in the dual path integral is accompanied by the insertion of the disorder or monopole

operator, exp{2πiσ(α∨j )}.
In the microscopic 4-d theory, these monopole-instantons are semi-classical field con-

figurations with finite action,

Sj(ϕ) = SI · |ν(j)|, (4.9)

where SI := 8π2/g2 is the action of a single 4-d instanton, and where the monopole-

instanton fractional topological charges are

ν(j) = (α∨j , ϕ) + δj,0 =


2αj(ϕ)

(αj , αj)
j = 1, . . . , r

α0(ϕ) + 1 j = 0

(4.10)

for ϕ in the fundamental G̃-cell, where they are all positive. In the second equality we

have used the normalization of the Killing form mentioned above, for which long roots —

and so in particular α0 — have length-squared 2. Recall that the fundamental G̃-cell is

defined (2.9) by the inequalities δj,0 +αj(ϕ) ≥ 0. These functions on the G̃-cell will appear

often in what follows, so we define the special notation,

αj(ϕ) := αj(ϕ) + δj,0. (4.11)

Then the monopole-instanton topological charges are

ν(j) =
2

(αj , αj)
αj(ϕ). (4.12)

Also, the masses of the lightest massive W-bosons and fermions in the G̃-cell (2.13) are

given by

mWαj = mΨαj
=

2π

L
αj(ϕ). (4.13)

At the specific vacua found in section 3 by minimizing the 1-loop potential for ϕ in

QCD(adj), one finds for the classical groups at large rank (and exactly for SU(N) and

SO(2N)) the values shown in table 2. The vanishing entries for SO(N) correspond to the

unbroken nonabelian SU(2) gauge factors at the perturbative vacuum.

Each monopole-instanton also has four bosonic zero modes, a ∈ R3 is its position and

φ ∈ U(1) is the internal angle of the monopole. Global electric U(1) gauge transformations

(in the U(1) subgroup associated with the type-j monopole-instanton) shift φ. Since the

monopole-instanton is electrically neutral, its φ-dependence is trivial.

Since 3-d monopole-instantons have finite action, they will have finite space-time den-

sity in the vacuum as in the Polyakov model: in a given three-volume V3 in R3 there

will be approximately V3L
−3e−Sj instantons. But, unlike what happens in the Polyakov

model, a dilute gas of monopole-instantons does not cause a mass gap for gauge fluctua-

tions. The reason is that they carry a certain number of fermion zero modes given by the
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Ar = SU(r + 1) Cr = Sp(2r) Br = SO(2r + 1) Dr = SO(2r)

h∨ r + 1 r + 1 2r − 1 2r − 2

ν(0) (h∨)−1 3(h∨ + 3)−1 0 0

ν(1) (h∨)−1 1
2(h∨ + 3)−1 0 0

ν(2) (h∨)−1 (h∨ + 3)−1 1
2(h∨ − 6)−1 1

2(h∨ − 6)−1

...
...

...
...

...

ν(j) (h∨)−1 (h∨ + 3)−1 (h∨ − 6)−1 (h∨ − 6)−1

...
...

...
...

...

ν(r−2) (h∨)−1 (h∨ + 3)−1 7
8(h∨ − 6)−1 1

2(h∨ − 6)−1

ν(r−1) (h∨)−1 1
2(h∨ + 3)−1 1

8(h∨ − 6)−1 0

ν(r) (h∨)−1 3(h∨ + 3)−1 0 0

Table 2. Fractional instanton numbers of fundamental monopole-instantons for QCD(adj) with

classical gauge groups. These are exact for Ar and Dr, but only approximate for large r for Br

and Cr. The dual Coxeter number for each group is also shown.

Nye-Singer index theorem [21, 22] (which is a generalization of the Atiyah-Singer index

theorem to a manifold with boundary, and thus applicable to R3×S1). In QCD(adj) each

monopole-instanton has 2nf fermionic zero modes.

Putting these ingredients together one expects the gas of type-j monopole-instantons

to induce an operator

Mj = Cj exp
[
−Sj(ϕ) + 2πiσ(α∨j )

]
det
f,f ′

[
αj(ψf ) · αj(ψf ′)

]
(4.14)

in the effective 3-d theory in the interior of the gauge cell, where the light fields are the

holonomy ϕ ∈ t, the r dual photons σ ∈ t∗, and the nf fermions ψf ∈ t. This form of Mj ,

as well as its ϕ-dependent coefficient Cj will, be determined below from a careful analysis of

the path integral zero-mode measure. We will refer toMj as the type-j monopole operator

in what follows. Note that Mj preserves a global SU(nf ) symmetry. An anti-monopole-

instanton,Mj , has the opposite magnetic and topological charges as a monopole-instanton,

and its operator is the complex conjugate of the monopole operator.

4.2 4-d instanton as a composite at long distances

Since the theory at short distances is a 4-d gauge theory, it also has 4-d instantons obeying

the self-duality equation (4.6) which carry topological charge one and zero magnetic charge.

The action of a single (ν = 1) 4-d instanton is

SI :=
1

2g2

∫
(Fµν , Fµν) =

1

2g2

∫
(Fµν , F̃µν) =

8π2

g2
. (4.15)
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This self-dual field configuration is not independent of the monopole-instantons de-

scribed above.

It is instructive to see how this defect arises as a composite of the elementary monopole-

instantons. There exists a unique positive integral linear relation among the simple and

affine co-roots,
∑r

j=0 k
∨
j α
∨
j = 0, with k∨0 = 1. The k∨j are the co-marks or dual Kac labels,

and are described in appendix A.3. Thus, the smallest magnetically neutral combination of

the monopole-instantons is given by combining k∨j monopole-instantons of typeMj for j =

0, . . . , r. Schematically, if the instanton-induced operator is I, then I ∼
∏r
j=0[Mj ]

k∨j . Since∑r
j=0 k

∨
j = h∨, the dual Coxeter number, this presents the 4-d instanton as a combination

of h∨ monopole-instantons. The values of h∨ for the simple Lie algebras are given in table 4

in appendix A.3. It follows from (4.12) that the instanton number of this combination is

then ν =
∑r

j=0 k
∨
j ν

(j) = 1, irrespective of the vacuum value of ϕ.

The 4-d instanton has 4h∨ bosonic zero modes which matches the counting of the zero

modes of the h∨ monopole-instantons. The 4-d instanton zero modes are associated with

the classical symmetries of the self-duality equation: 4 are the position of the instanton

(aI ∈ R4) and arise due to translation invariance, one is the size modulus (ρ ∈ R+) and

is associated with invariance under dilatations, and the remaining 4h∨ − 5 are angular

coordinates in the gauge group (U ∈ Gstability) associated with new solutions obtained

under the action of the stability group, see [52] for a review:

4h∨
short-distance−−−−−−−−→ 4 + 1 + (4h∨ − 5) = (aI ∈ R4) + (ρ ∈ R+) + (U ∈ Gstability). (4.16)

In unHiggsed gauge theories the existence of the size modulus ρ implies that the in-

stanton comes in arbitrarily large sizes at no cost in action, and prevents a meaningful

long-wavelength description of a dilute instanton gas from first principles. But since the

small R3×S1 regime of QCD(adj) is in a Higgs phase, instantons have a maximal size and

an effective coupling associated with the scale of the Higgsing. At long distances where the

4-d instanton is described as a composite of h∨ 3-d monopole-instantons, we have

4h∨
long-distance−−−−−−−−→ h∨[3 + 1] = h∨[(a ∈ R3) + (φ ∈ U(1))]. (4.17)

In particular the 4-d instanton size modulus is no longer present in the long distance

description of QCD(adj) on small R3×S1. This permits a meaningful dilute gas expansion;

however, the 4-d instanton plays a negligible role in the semi-classical expansion since the

constituent monopole-instantons have smaller action.

We can also easily check that the counting of the fermionic zero modes match. A

4-d instanton has 2h∨nf fermionic zero modes and an associated instanton operator,

I ∼ e−SI [detf,f ′(ψf , ψf ′)]
h∨ , which is invariant under an SU(nf ) continuous symmetry. Al-

ternatively, since
∑r

j=0 k
∨
j = h∨, the 2nf fermionic zero modes of each monopole-instanton

give the same total number as for a 4-d instanton.

Finally, the 4-d instantons reduce the classical U(1)A symmetry down to a Z2nfh∨

discrete chiral symmetry of the quantum theory. We will discuss the realization of this

symmetry in section 7 after we construct the low-energy effective Lagrangian.
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4.3 Collective coordinates of monopole-instantons

The appropriate one-loop measure for integrating over configurations of a single type-j

monopole-instanton is14

dµBdµF = e−Sj · d
3a dφ

(2π)2

nf∏
f=1

d2ξf · µ4−nf · JaJφ(Jξ)
−nf ·

[
det′(−D2)adj

]nf−1
.

• a ∈ R3 is the monopole-instanton position, φ ∈ U(1) is the global electric angle

of the monopole, ξf are the Grassmann-valued fermionic zero modes. Since all the

3-d effective fields and defects in QCD(adj) are electrically neutral, there is no φ-

dependence in the integrand and so the integral over φ just gives a factor of 2π.

• µ is the (Pauli-Villars) renormalization scale. The factor of µ4 can be viewed as

the contribution of the Pauli-Villars regulator fields associated with the 4 bosonic

zero modes. Similarly, µ−nf can be viewed as the contribution of the Pauli-Villars

regulator fields associated with the 2nf fermionic zero modes.

• The J ’s are the collective coordinate Jacobians, Ja = S
3/2
j , Jφ = LS

1/2
j [2παj(ϕ)]−1,

and Jξ = 2Sj . (Our value for Jφ differs from that given in [14] by the substitution

αj(ϕ)→ αj(ϕ).)

• The primed determinant comes from integrating over the Gaussian fluctuations of the

non-zero modes. Because in a self-dual background [det′(−D2δµν − 2Fµν)adj]
−1/2 =

[det′(−D2)adj]
−2 and det′( /D)adj = det′(−D2)adj, the contributions from the Gaussian

integrals over all bosonic and fermionic fluctuations other than zero modes combine

to give

[det′(−D2δµν − 2Fµν)adj]
−1/2︸ ︷︷ ︸

gauge bosons

×det′(−D2)adj︸ ︷︷ ︸
ghosts

× [det′( /D)adj]
nf︸ ︷︷ ︸

fermions

=[det′(−D2)adj]
nf−1 .

Note that when nf = 1, the bosonic and fermionic primed determinants cancel pre-

cisely due to supersymmetry and absence of non-compact scalars.15

The dependence of the regularized scalar determinant on the renormalization scale is

determined by the counterterm for the gauge action due to the scalar field fluctuations,

which has the form δL = −(8π2)−1(T (R)/12)(Fµν , Fµν) lnµ for complex scalars in the

representation R (as in the 1-loop beta function (2.2)). In the adjoint representation

T (ad) = 2h∨. Exponentiating this in a Euclidean type-j monopole-instanton background

gives exp{ln(µ)h∨Sj(ϕ)/(3SI)} = exp{ln(µ)h∨ν(j)/3}. Thus det′(−D2)adj ∼ µh
∨ν(j)/3.

For SU(N) gauge group, h∨ν(j) = 1 for all j, but for the other simple groups the exponent

will vary with j according to table 2.

14The following summary is an adaptation of the appendix of [14], which treats the monopole measure

in supersymmetric Yang-Mills theory.
15In supersymmetric theories with non-compact scalars the fluctuation determinants may not cancel due

to possible differing continuum state densities.
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The fields of a type-j monopole-instanton are embedded entirely within the regular

SU(2) subgroup of G associated with the root αj . The only scale which appears in the

classical equations for the type-j monopole-instanton is 2παj(ϕ)/L, the mass of the W -

boson associated with αj . Since the determinant is dimensionless, it must therefore have

the form

[det′(−D2)adj]
nf−1 =

(
1

2
(αj , αj)Cj

)nf−1 ( µL

αj(ϕ)

)(nf−1)h∨ν(j)/3

, (4.18)

where Cj is a pure number presumably of order one. (The factor of (αj , αj)/2 is to simplify

some later formulas.) Cj may have some N - and ϕ-dependence. It could, in principle, be

computed along the lines of [53], but we will not attempt that calculation here.

Putting this all together, the one-loop type-j monopole-instanton measure becomes

dµBdµF =
C
nf−1
j

32π2

(
µL

αj(ϕ)

)β(j) (
L

αj(ϕ)

)nf−3 (4Sj)
2−nf

(αj , αj)1−nf e
−Sj d3a

nf∏
f=1

d2ξf , (4.19)

where

β(j) :=
1

3
[(12− h∨ν(j))− (3− h∨ν(j))nf ]. (4.20)

Note that
∑r

j=0 k
∨
j β

(j) = β0, the 1-loop beta function (2.3). This was expected since

the 4-d instanton is a combination of h∨ monopole-instantons (k∨j of type j), and the 4-d

instanton measure is proportional to µβ0 .

Monopole operator induced in the 3-d effective Lagrangian. The long-distance

asymptotics of the fermionic zero mode profile for a type-j monopole-instanton located at

a ∈ R3 is

ψ
(j)
f (x) = Fmn(x− a)σmnξf

long-distance−−−−−−−−→ 4πSF (x− a)ξf α
∨
j , (4.21)

where SF (x) = σmxm/(4π|x|3) is the free fermion propagator. We deduce that in the long

wavelength effective theory〈 nf∏
f=1

ψ
(j)
f · ψ

(j)
f

〉
=

∫
dµBdµF (α∨j )⊗2nf

nf∏
f=1

(4πSF (x− a)ξf ) · (4πSF (x− a)ξf ) ,

where the dot denotes spinor index contraction. The integration over the Grassmann-valued

collective coordinates, ξf , gives a product of free fermion Green’s functions and factors

involving the co-roots. Such a correlator is reproduced by adding to the perturbative 3-d

effective Lagrangian, L0 (4.1), the interactions

L1 =

r∑
j=0

(Mj + h.c.) , Mj := Ãj e−Sj(ϕ)+2πiσ(α∨j )

nf∏
f=1

(α∨j , ψf )2, (4.22)
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where

Ãj :=

(
2L

g2

)2nf

(4π)2nf
C
nf−1
j

32π2

(
µL

αj(ϕ)

)β(j) (
L

αj(ϕ)

)nf−3 (4Sj(ϕ))2−nf

(αj , αj)nf−1 . (4.23)

The (2L/g2)2nf factor reflects our normalization of the kinetic term in (4.1). The dual

photon field, σ, dependence follows from the long-distance coupling (2.38) to a point mag-

netic charge α∨j .

Using Fierz identities, the fermion product in Mj can be rewritten as

nf∏
f=1

(α∨j , ψf )2 =
2nf

(n+ 1)!
det
f,f ′

[
(α∨j , ψf ) · (α∨j , ψf ′)

]
, (4.24)

which makes apparent the fact that Mj is invariant under an SU(nf ) global symmetry.

Since (α∨j , ψf ) = 2αj(ψf )/(αj , αj), and recalling the expressions (4.9) and (4.12) for the

monopole-instanton action Sj(ϕ), we can rewrite (4.22) as

Mj = Aj e−Sj(ϕ)+2πiσ(α∨j )

nf∏
f=1

[αj(ψf )]2, with (4.25)

Aj = Lnf−3

(
2L

g2

)2nf

(g2)nf−2 128π2

(αj , αj)3
C
nf−1
j (αj(ϕ))5−2nf

(
µL

αj(ϕ)

)β(j)

,

to make the ϕ- and g2-dependence more explicit. We will refer to Mj as the type-j

monopole operator.

Alternatively, (4.22) can be obtained by considering a dilute gas of monopole-instantons

and by summing over all such events. Treating the scalars as background fields, the grand-

canonical ensemble of a dilute gas of 3-d instantons can be recast into a Lagrangian, as

was shown by ’t Hooft in the context of 4-d-instantons [54].

5 Topological molecules (non-self-dual configurations)

Since the fundamental (self-dual) monopole-instantons have fermionic zero modes, they

cannot generate a mass gap for gauge fluctuations [2, 3]. Instead, they generate multi-

fermion dual photon interactions as shown in (4.22).

In order to generate a mass gap for gauge fluctuations, we need a potential purely in

terms of dual photon fields, similar to the Polyakov model where an e−SI cosσ term induces

a mass gap and, equivalently, confinement of electric charge. Such a bosonic potential is

induced at second order — L2 in the semi-classical expansion (4.2) — from semi-classical

configurations involving a monopole-instanton and an anti-monopole-instanton. In the

language of the Euclidean dilute monopole-anti-monopole gas, these appear as topological

“molecules”, since the second-order terms in the semi-classical expansion arise from the

interactions of between the monopoles and anti-monopoles.

There are two types of topological molecules. One type, the “magnetic bion”, has been

discussed in [2, 3] for SU(N) gauge group. Here, we generalize that discussion to all gauge
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groups. We also emphasize the existence and properties of a second type of bion, which

has non-trivial implication for the Wilson line dynamics.

The topological molecules appearing at second order in the semi-classical expansion

are in one-to-one correspondence with the non-vanishing entries of the extended Cartan

matrix, Âij := αi(α
∨
j ) ∝ (αi, αj). Its diagonal elements are all positive, and its off-diagonal

elements are either negative or vanish. In particular, for i 6= j, (αi, αj) 6= 0 whenever the

i and jth nodes of the extended Dynkin diagram are connected by a link. The extended

Dynkin diagrams for the simple Lie algebras are shown in figure 7 in appendix B. The key

properties of the two types of bions are as follows.

• Magnetic bions: for each pair (i, j) such that (αi, αj) < 0, there exists a magnetic

bion [MiMj ] with magnetic and topological charges

(µ, ν) =
(
α∨i − α∨j , ν(i) − ν(j)

)
, (5.1)

associated with an operator in the effective action proportional to

Bij ∼ e−Si(ϕ)−Sj(ϕ)e2πiσ(α∨i −α∨j ), (5.2)

• Neutral bions: for each i there exists a bion [MiMi] with magnetic and topological

charges

(µ, ν) = (0, 0), (5.3)

associated with an operator proportional to

Bii ∼ e−2Si(ϕ). (5.4)

The magnetic bions carry non-zero magnetic (and possibly also topological) charge, so are

distinguishable from the perturbative vacuum. The neutral bions, on the other hand, are

indistinguishable from the perturbative vacuum in that sense.

Since these topological molecules are not solutions to the first order Bogomol’nyi-

Prasad-Sommerfield equations in a simple way, we need to show their stability due to

dynamics.16 This requires a careful study of the zero and quasi-zero modes of the molecules.

The magnetic bions provide an example of stable semi-classically calculable bound states

of a monopole-instanton and an anti-monopole-instanton.

5.1 Zero and quasi-zero modes of the topological molecules

In the path-integral formalism one sums over fluctuations around the topological defect

field configuration. This requires the study of the eigen-spectrum of the small fluctuation

operator (corresponding to the second derivative of the action in the background of the

defect). The eigenvalues are of two types: i) Zero modes, reflecting the symmetries of the

system, which do not cost extra action; the corresponding integrals are trivial. ii) Non-zero

modes or small fluctuations in a semi-classical analysis; the corresponding integrals can be
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(b)magnetic bion

0 0

Non−zero modes

Zero modes

Quasi−zero modes

(a) monopole−instanton

Figure 4. Typical eigen-spectrum of the small-fluctuation operator (a) for a monopole-instanton,

and (b) for a topological molecule, e.g., a magnetic bion. To get the correct prefactor for the

magnetic bions, the quasi-zero modes integrals need to be done exactly.

dealt with within a Gaussian approximation. A review of this material can be found in,

e.g., [55].

If the eigen-spectrum of the small fluctuation operator involves a mode parametrically

separated from the non-zero modes, the situation is more subtle. Such modes cannot

be treated in the Gaussian approximation as they are not normal Gaussian modes, and

they are not exact zero modes either. The integrals over them need to be done exactly

in the path integral formalism to get the correct results. Therefore, it is appropriate to

consider in the eigen-spectrum a third type of eigenvalue in the above classification: iii)

Quasi-zero modes.

Quasi-zero modes are typical when one considers topological molecules such as

instanton-anti-instanton pairs. In such examples, the separation between the defects is

a quasi-zero mode. The way to see this is to consider these defects at asymptotically large

separation, where they interact only weakly. For example, consider an instanton I(t− τ/2)

and anti-instanton I(t+τ/2) pair where τ is the separation between the two in the quantum

mechanical double-well problem. The action of the pair is S = 2SI − ce−ωτ where ω−1 is

the instanton size and c is numerical factor. In the regime where ωτ � 1, changing τ has

a very small impact on the action, and hence it is a quasi-zero mode. On the other hand,

the “center of mass” position t is an exact zero mode as the action does not depend on it.

Similarly, in QCD(adj) a change in the separation between a monopole-instanton and

an anti-monopole-instanton corresponds to a quasi-zero mode. Long range interactions

between the two defects induced by the light fields (ϕ, σ, and ψf ) lift this mode slightly

to become a quasi-zero mode. When these long-range interactions are attractive, they

indicate the existence of new, higher-order terms in the semi-classical expansion of the

effective action.

The path integral of the effective 3-d theory to first order in the semi-classical

expansion,

Z =

∫
[DϕDσDψf ]e−

∫
d3x(L0+L1), (5.5)

16The analogous instanton-anti-instanton molecules in quantum mechanics are the (complex) analytic

continuation of bounce solutions. Perhaps there is a generalization of this to quantum field theory; see [29].
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is the partition function for a grand-canonical ensemble describing a dilute monopole

plasma. Expanding the exponential of the first-order terms,

e−
∫
d3xL1 = 1−

∫
d3xL1 +

1

2

(∫
d3xL1

)2

+ · · · (5.6)

induces terms at second order including the terms

+
∑
ij

∫
d3x

∫
d3yMi(~x)Mj(~y) =

∑
ij

∫
d3R

∫
d3rMi

(
~R+

1

2
~r

)
Mj

(
~R− 1

2
~r

)
,

where we have pulled out the integration over the exact “center of mass” zero mode ~R. This

induces an effective second-order term in the semi-classical expansion of the effective action,

L2 ⊃
∑
ij

Bij := −
∑
ij

∫
d3r

〈
Mi

(
~R+

1

2
~r

)
Mj

(
~R− 1

2
~r

)〉
, (5.7)

where the brackets denote a connected correlator in the perturbative vacuum. If the correla-

tor is mainly supported at separations r < rb for some length scale rb, then it is consistent

to treat Bij as independent operators in an effective action valid on length scales much

larger than rb. We will call the Bij “bion operators”.

From the explicit form of the monopole operatorsMi given in (4.25) and the connected

correlators〈
e−Si(ϕ)+2πiσ(α∨i )

(
1

2
~r

)
e−Sj(ϕ)−2πiσ(α∨j )

(
− 1

2
~r

)〉
= exp

[
(2π)2 2L

g2

(α∨i , α
∨
j )(1 + e−mϕr)

4πr

]
,

〈 nf∏
f=1

[αi(ψf )]2(~x)

nf∏
f=1

[αj(ψf )]2(~y)
〉

=

(
g2

2L

)2nf (αi, αj)
2nf

(2π)2nf r4nf
,

we obtain

Bij = −Aije−Si(ϕ)−Sj(ϕ)e2πiσ(α∨i −α∨j ), (5.8)

where

Aij = AiAj
(
g2

2L

)2nf (αi, αj)
2nf

(2π)2nf

∫
d3r e−V

ij
eff(r), (5.9)

and

V ij
eff(r) = −(α∨i , α

∨
j )

2π

g2
(1 + e−mϕr)

L

r
+ 4nf ln(r). (5.10)

Here mϕ is the mass of ϕ in the perturbative vacuum and the Ai are given in (4.25).

Note, first of all, that by virtue of the factors of (αi, αj) in (5.8), no bion operator is

generated if (αi, αj) = 0. Secondly, the sign of the first term in (5.10) depends on the sign

of (αi, αj), while the second term does not.

V ij
eff has a straightforward physical interpretation as a monopole-anti-monopole effective

potential in the Euclidean monopole plasma picture. The second term in (5.10) is an
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attractive force induced by fermion zero mode exchange, while the first term in (5.10) is

the Coulomb interaction between a monopole and anti-monopole, which is repulsive for

(αi, αj) < 0 and attractive for (αi, αj) > 0. The 1/r part of the first term is due to

exchange of the dual photon scalar σ. Recall that σ remains massless to all orders in

perturbation theory. The e−mϕr/r term is due to the exchange of the ϕ-scalar. Since

mϕ ∼ g/L at one loop in perturbation theory for nf > 1 (as we computed in section 3),

this force is short range. When nf = 1, however, it is massless to all orders in perturbation

theory. (This is because for nf = 1 QCD(adj) is supersymmetric and ϕ and σ are in the

same supermultiplet.) In other words, for the purpose of a long distance effective theory, ϕ

decouples for nf > 1, whereas it should be kept when nf = 1. For this reason, we introduce

ζ :=

{
1 for nf = 1,

0 for 2 ≤ nf ≤ 5,
(5.11)

and replace

e−mϕr → ζ (5.12)

in V ij
eff .

5.2 Magnetic bions

The previous discussion makes it clear that there will be qualitative differences between

the Bij bions with i 6= j, which we call magnetic bions, and the Bii which we call neutral

bions. We start with the magnetic bions.

For i 6= j such that (αi, αj) < 0 (which correspond to linked nodes of the extended

Dynkin diagram), the prefactor of the magnetic bion amplitude (5.8) evaluates to

Aij = − (αi, αj)
3−2nf

g8L3
· 213π2

1 + ζ
· C̃iC̃j · I(g2, nf ) (5.13)

where

I(g2, nf ) =

∫ ∞
0
dz exp

[
− 1

g2z
− (4nf − 2) ln z

]
=

(
1

g2

)3−4nf

Γ(4nf − 3) (5.14)

and

C̃j :=

[
(αj , αj)

4Cj
(4π)3(1 + ζ)2

]nf−1
αj(ϕ)5−2nf

(αj , αj)2

(
µL

αj(ϕ)

)β(j)

. (5.15)

Note that Aij is positive since (αi, αj) < 0. The I(g2, nf ) factor arises as the integral

over exp(−Veff) in (5.9) in rescaled variables. The short-distance Coulomb repulsion and

the long-distance fermion-induced attraction in Veff means that the integrand of I(g2, nf )

is peaked as shown in the physical units in figure 5. The integral is over the quasi-zero

mode and is dominated by the scale rb ∼ L/g2. Separations between an instanton and

anti-instanton less than L/g2 are virtually forbidden by a Coulomb blockade, e−rb/r. At
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4 ΠL � g2 r

ã-VHrL

Figure 5. The integral over the quasi-zero mode — the separation between Mi and Mj — is

dominated by separations r ∼ L/g2. In Euclidean space for i 6= j the interaction between the two

monopole-instantons is repulsive at short distances due to Coulomb repulsion and attractive at long

distances due to fermion zero-mode exchange, leading to the stable saddle.

large separation, the integral is cut off by the fermion zero mode exchange in a power law

manner. (See [20] for an alternative derivation).

The existence of magnetic bions is reliable within the region of validity of semi-classical

analysis because of the clear separation of all the scales involved:

rm � rb � dm−m � db−b,

↓ ↓ ↓ ↓
L � L

g2 � LeS0/3 � Le2S0/3.

(5.16)

At first order in the semi-classical expansion, we have monopole-instantons with typical

size rm ∼ L set by the scale of Higgsing of the microscopic gauge group. These monopoles

are rare because of their large action, S0 ∼ (g2N)−1. Their mean separation is dm−m ∼
n
−1/3
m = LeS0/3 where nm is the monopole density. At second order in the semi-classical

expansion are magnetic bions which we have just shown have typical size rb ∼ L/g2. Thus

rm � rb � dm−m, which allows us to consistently interpret magnetic bions as a second-

order effect in a semi-classical expansion which are clearly distinct from the first-order

dilute monopole plasma. The density of bions is nb ∼ e−2S0 and the mean separation

between these molecules is db−b ∼ n
−1/3
b = e2S0/3. Evidently, bions are much rarer than

monopoles, but, as we explain in section 7, they are the leading topological defects to give

rise to a non-perturbative mass term to gauge fluctuations.

There are a few basic consistency checks on the form of the magnetic bion induced

terms in the action. Keeping only the parametric dependence of the bion amplitude on the

coupling, compactification scale L, and cut off µ, we have

Bij ∼ L−3g8nf−14(µL)2β(j)
. (5.17)

The factor of 1/L3 means that our analysis is dimensionally correct. The power of µ

leads to the correct appearance of the leading order beta function coefficient for instanton

operators, as explained after (4.19). Finally, the power of the coupling for nf = 1 is g−6,
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agreeing with power of g appearing in the bosonic potential of N=1 superYang-Mills [14].

For the non-supersymmetric theory, the same power has recently been obtained in [20]

through a different method.

5.3 Neutral bions and the BZJ prescription

When i = j, both terms in (5.10) induce an attractive interaction since (αi, αi) > 0. Since

the magnetic charges of the monopole and the anti-monopole are opposite in this case, we

call such configurations neutral bions. The contribution of the neutral bion operator to the

effective action is, formally,∫
d3xBii(~x) = −

∫
d3xAii e−2Si(ϕ) (5.18)

where the integral over the quasi-zero mode gives

Aii = +
(αi, αi)

3−2nf

g8L3
· 213π2

1 + ζ
· (C̃i)2 · Ĩ(g2, nf ) (5.19)

where

Ĩ(g2, nf ) =

∫ ∞
0

dz exp

(
+

1

g2z
− (4nf − 2) log(z)

)
. (5.20)

The main differences from the magnetic bion induced term are that: i) the neutral bion

operator (5.18) has no σ-dependence so contributes only to the effective potential for the

gauge holonomy, ϕ; and ii) the sign of the Coulomb interaction term in the quasi-zero mode

integral (5.20) changes. Note that since (αi, αi) > 0 the overall sign of the prefactors of Ĩ

in Aii is positive, just as in the magnetic bion case.

But an apparent problem is that the quasi-zero mode integral (5.20) is badly divergent

at small z. Even worse, the small-separation region, z � 1/g2 (or r � rb in physical units),

which dominates the integral is the region where the effective monopole-anti-monopole

interaction (5.10) is actually incorrect as it becomes strong and there are other strong

corrections which we cannot control. Therefore, in this regime the notion of a [MiMi]

molecular configuration seems meaningless.

A second, apparently unrelated, problem is that since the [MiMi] configuration has

both vanishing magnetic and topological charges, µ = ν = 0, it is indistinguishable from

the perturbative vacuum. This raises the question of whether a well-defined semi-classical

expansion even exists in this sector. In particular, the perturbative U(1)rσ symmetry men-

tioned in section 2.4 prohibits the appearance of magnetic bion-like operators Bij ∼ e2πiσ(µ)

which violate magnetic charge conservation, but not neutral bion-like ones. Indeed, the

neutral bion operator (5.18) induces a potential for ϕ qualitatively similar to the pertur-

batively induced potential (3.9).

We claim that these two problems are, in fact, intimately related and are related to

the large-order behavior and IR divergences of gauge theory perturbation theory. Un-

derstanding these relations leads to a quantitatively precise definition of the neutral bion

contribution to the semi-classical expansion.
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These problems we are encountering with neutral bions are not new; in fact, the

analog of this field theory obstacle has already been met and understood in quantum

mechanics [26, 27]. But a generalization to general field theories has not yet been achieved,

and this is a necessary step to make sense out of neutral bions and other neutral molecule

configurations. We will undertake this step below.

The analog of the neutral bion problem was first discussed by Bogomolny [26] for

double-well quantum mechanics, and Zinn-Justin realized the relation of Bogomolny’s pre-

scription to the large-order behavior of perturbation theory and Borel summability [27].

Because of the combined deep insights that these two authors brought to this problem, we

will refer to their procedure as the Bogomolny-Zinn-Justin (BZJ) prescription. The BZJ

prescription was applied by Balitsky and Yung to supersymmetric quantum mechanics and

a few supersymmetric field theories [28–30].

There are a few cases where the result of the BZJ prescription can be cross-checked by

other reliable methods. For example, for bosonic non-supersymmetric quantum mechanics

Bogomolny and Zinn-Justin provided evidence for the correctness of this prescription by

comparing the results with the WKB approximation. Yung [30] evaluates the bosonic po-

tential which is induced by a 4-d instanton-anti-instanton pair — unlike the superpotential

which is induced by an instanton — directly using the BZJ prescription giving a result

identical to the bosonic potential derived from the superpotential. On R3 × S1 Poppitz

and one of us (M.Ü) were able to provide a consistency check for the prescription for N=1

superYang-Mills [11].

In what follows we will use the same prescription for non-supersymmetric quantum field

theory. Currently, we do not know how to cross-check our results with another technique.

It is desirable to find such an alternative technique, i.e., a generalization of the WKB

approximation to the Hamiltonian formulation of gauge theory, or a new method.

The BZJ prescription. Bogomolny proposes to do integrals over the quasi-zero modes

of instanton-anti-instanton molecules as follows. Deform the contour of integration over

the complexified quasi-zero mode so that the instanton-anti-instanton interaction becomes

repulsive. Then evaluate the integral by using the steepest descent path exactly. In practice

this is equivalent to changing the sign of the coupling g2 in the instanton-anti-instanton

interaction. This turns the attractive Coulomb force into a repulsive one. One then cal-

culates the resulting integral exactly, without any gaussian approximations as emphasized

in section 5.1. Finally, analytically continue the final result back to positive g2. We will

describe Zinn-Justin’s important insights in connection with large orders in perturbation

theory and Borel resummation in the next subsection.

Following this prescription, we modify Ĩ(g2, nf ) → Ĩ(−g2, nf ) so that the Coulomb

interaction becomes repulsive and the integral converges. Note that Ĩ(−g2, nf ) = I(g2, nf ),

the quasi-zero mode integral (5.14) that we already evaluated for the magnetic bion. Next,

we substitute g2 → −g2 giving

Ĩ(g2, nf )→ I(−g2, nf ) =

(
− 1

g2

)3−4nf

Γ(4nf − 3) = −I(g2, nf ). (5.21)
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The last equality is only valid for integer nf . Thus the BZJ prescription makes the neutral

bion quasi-zero mode integral the same as for the magnetic bion integral, but gives an

overall relative sign between the magnetic and neutral bion amplitudes.

This predicted relative sign is physically relevant. In the nf = 1 theory which is

supersymmetric and for which no perturbative potential is generated, the effective potential

for the ϕ and σ scalars are due to both the magnetic and neutral bion amplitudes Bij and

Bii. The relative sign between these terms from the BZJ prescription accounts for the

vanishing vacuum energy in the supersymmetric theory. A more detailed comparison of

our result for nf = 1 with the bosonic potential obtained through the superpotential in

supersymmetric theory [14] shows that they coincide.

The power and importance of the BZJ prescription for our purposes is that it transcends

supersymmetry. It can be applied to non-supersymmetric theories, and it yields correct

results for supersymmetric theories without recourse to supersymmetric selection rules and

non-renormalization theorems.

5.4 High orders in perturbation theory, Borel summation and neutral

molecules

Bogomolny’s directive to analytically continue quasi-zero mode integrals from negative to

positive g2 gives convergent answers when applied to instanton-anti-instanton pairs, but

would render the already convergent integrals for instanton-instanton pairs divergent. Zinn-

Justin [27] gives a justification for applying Bogomolny’s prescription only to instanton-

anti-instanton pairs, and improves upon it when Bogomolny’s analytic continuation gives

complex (as opposed to real) answers which depend on the choice of path of analytic

continuation in the complex g2-plane.

As Zinn-Justin’s argument depends on the structure of the high-order behavior of

perturbation theory, let us review that briefly. There are other equivalent descriptions of

what we will outline below; for a review, see [56].

It is well known that in theories with degenerate minima perturbation theory gives

an asymptotic expansion, and hence is divergent. In such theories, the perturbation series

(even after being regularized and renormalized properly) is not even Borel resummable.

There are cases in which perturbation series become Borel resummable if the expansion

parameter in the sum is taken to be negative, g2 < 0. This occurs, for example, in double-

well quantum mechanics. Let us call the resulting Borel resummed series B0(g2). We then

define the perturbative sum as the analytic continuation of B0(g2) in the g2 complex plane

from negative coupling, g2 < 0, to the the positive real axis, g2 > 0. The fact that the

original (g2 > 0) series was not Borel resummable implies that the function B0(g2) has a

branch point at g2 = 0. Upon analytically continuing from g2 < 0 to the positive real axis

B0(g2) develops an imaginary part whose sign is ambiguous, depending on whether one

approaches the real axis from below or above,

B0(|g2| ± iε) = ReB0(|g2|)± iImB0(|g2|) (5.22)
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where ImB0(|g2|) ∼ πe−2S0 , and is inherently non-perturbative. Thus the Borel resumma-

tion prescription for perturbation theory, i) produces a two-fold ambiguous result, and ii)

produces complex results for what should be real observables.

The Bogomolny prescription for the semi-classical expansion has similar problems: for

instanton-anti-instanton amplitudes it also induces a complex answer with a branch point

at g2 = 0. This structure is to some extent shown for the neutral bion molecule in (5.21)

for non-integer nf . Of course, for QCD(adj), nf is an integer, in which case the analytic

continuation gives a real and unambiguous answer. But this is an exception to a general

rule: as we discuss in the next subsection, a branch point at g2 = 0 is encountered for

general neutral topological molecules so that an imaginary part with ambiguous sign is

generated upon continuation to positive real g2. The size of this imaginary part is ∼ e−2S0 ,

just as in the Borel resummed perturbative series.

Zinn-Justin states that these two ambiguous imaginary contributions — one from

the perturbative Borel resummation prescription and one from the semi-classical (non-

perturbative) Bogomolny prescription for quasi-zero mode integration — cancel. This can

be checked explicitly in some quantum mechanical examples, but also makes sense on more

general grounds: both are contributions to the same physical quantity, so only their sum

need be real and unambiguous. So Zinn-Justin’s prescription is that, for g2 small and

negative, we should calculate both the sum of the perturbation series and the relevant

instanton-anti-instanton contributions, and perform an analytic continuation to positive

g2 for both quantities in the same way. Therefore, from this point of view, Bogomolny’s

prescription is required for the consistency of the Borel resummation prescription.

How do we decide to which topological defects this BZJ prescription should be applied?

In the double-well quantum mechanics example, instanton-anti-instanton amplitudes have

vanishing topological charge and so can contribute to the same quantities as the pertur-

bation series. In more general quantum mechanical examples where there is only one

topological quantum number, vanishing of the topological charge is a sufficient condition

for selecting the appropriate topological defects to include in the BZJ prescription. But in

gauge theories on R3×S1 in a vacuum in which the gauge group is Higgsed G→ U(1)N , the

topological defects carry two types of quantum number, magnetic and topological charge

(µ, ν), instead of just a single topological charge (instanton number). We have seen that

the semi-classical expansion of QCD(adj) on R3 × S1 is organized in powers of e−S0 , the

fugacity or diluteness of the monopole-instanton, and incorporates effects from topological

defects of all different combinations of charges, e.g.,

• e−S0 : monopole-instantons with µ 6= 0 and ν 6= 0,

• e−2S0 : magnetic bions with µ 6= 0 and ν ≈ 0,

• e−2S0 : neutral bions with µ = 0 and ν = 0,

• e−NS0 : 4-d instantons with µ = 0 and ν 6= 0,

• e−2NS0 : 4-d instanton-anti-instanton pairs with µ = 0 and ν = 0.
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It only makes sense to combine a perturbation series around the vacuum with semi-classical

contributions from topological defects, such as neutral bions or instanton-anti-instanton

pairs, with all topological charges vanishing, i.e., (µ, ν) = (0, 0). So we propose the

following slight sharpening of the Bogomolny-Zinn-Justin prescription which applies, in

particular, to topological defects on R3 × S1.

Refined BZJ prescription: for g2 small and negative, one should calculate

both the sum of the perturbation series and the sum of all neutral topological

molecule and multi-instanton contributions with quantum numbers the same as

those of perturbative vacuum, and perform an analytic continuation to positive

g2 of the sum of these two quantities.

Furthermore, we suggest a sectorial dynamics in gauge theory. The imaginary part that

arises from the analytic continuation of a perturbation series around the vacuum (5.22) can

never be related to a magnetic bion or any other object which has a non-vanishing topo-

logical charge, but can be cancelled by neutral molecular defects. Likewise, the magnetic

bion,Mi, which may have zero topological charge but has non-vanishing magnetic charge,

already gave a sensible answer at positive g2 by itself. It gives the leading contribution to

quantities in this topological charge sector. There can be perturbative corrections to these

quantities whose Borel resummation may give imaginary parts upon continuation which

should be cancelled by higher-action topological defects in the same charge sector, such as

[MiMjMj ] or more complicated molecules.

5.5 High orders in perturbation theory and exotic topological molecules

The key point of the above discussion was that, based on general arguments about pertur-

bation theory for theories with degenerate minima, one expects the contribution of neutral

molecules to be complex so that they will cancel the imaginary part of Borel resummed

perturbation theory. But the amplitude that we obtained for a neutral bion through the

BZJ prescription, I(−g2) ∼ (−1/g2)3−4nf , is real for integer nf and complex otherwise.

And, of course, non-integer nf is unphysical. This is not a contradiction as long as the

imaginary part of the Borel resummed perturbation series is of order e−4S0 or smaller so

that they can be cancelled by neutral topological molecules at higher order in the semi-

classical expansion.

A study of various examples shows a connection between whether or not a given type of

neutral topological molecule induces an imaginary part through the BZJ prescription and

the occurrence of fermion zero modes in its constituent topological defects. The following

pattern holds for all quantum mechanical and quantum field theories we have examined,

although we state our observations in a language appropriate for gauge theories on R3×S1.

1. In purely bosonic theories with topological defects (instantons, monopole-instantons,

etc.), the topologically neutral molecules induce an imaginary part proportional to

the 2-defect fugacity, ±e−2S0 .

2. If the theory has fermions, there are two cases depending on whether a given defect

has a fermionic zero mode or not.
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a. If it has a zero mode, the associated topologically neutral defect-anti-defect

molecule does not induce an imaginary part for integer number of fermion fla-

vors.17

b. If it does not have a zero mode, then its associated topologically neutral molecule

will induce an imaginary part as in case 1.

3. If the theory has fermions, and if all defects have fermionic zero modes, then there

will be topologically non-neutral molecular events without any zero modes, which

we can call 2-defects. Then there are topologically neutral molecules made out of

these 2-defects as in case 2b which induce an imaginary part as in case 1, but now

proportional to ±e−4S0 .

4. Cases 1 and 3 generalize to higher molecules, with induced imaginary parts e−2nS0 ,

n = 1, 2, . . . and e−4nS0 , n = 1, 2, . . ., respectively.

Examples of some of these cases are: the 3-d Polyakov model for case 1, where the

defects are monopole-instantons; and QCD(adj) on R3×S1 for case 2a, where the defects are

again monopole-instantons. We can illustrate cases 3 (and 2b) in QCD(adj) by considering

a neutral molecule composed of two magnetic bions. Denote a magnetic bion by Bij =

[MiMj ]. Then at 4th order in the semi-classical expansion there can be amplitudes of

the form

[BijBji] := [BB], and [BijBij ] := [BB], (5.23)

both giving contributions ∼ e−4S0 . Since the bions have no fermion zero modes the associ-

ated amplitudes only involve bosonic fields. These are permitted by the symmetries of the

effective Lagrangian and there is no reason for them not to be generated. Note, however,

that for i 6= j the [BB] configuration is not magnetically (or topologically) neutral while

[BB] always is. Thus these will contribute to different “charge sectors” in the sense of the

discussion at the end of section 5.4.

(We focus on the two 4th-order configurations in (5.23) just for illustrative purposes.

There are more general molecules at 4th order, such as [BijBkl] with all indices different.

Note that if there is no interaction between, say, Bij and Bkl, as determined by the inner

product of their associated root vectors, they cannot form correlated molecular instan-

ton events. The following discussion of the quasi-zero mode integrals can in principle be

generalized to arbitrary topological molecules.)

According to our general discussion in the previous section, the integral over the quasi-

zero modes between these molecules should not yield an imaginary part for [BB] and should

17Ref. [28] has an example which at first sight seems to contradict to this claim. They deform the Yukawa

term in supersymmetric quantum mechanics into pW ′′ψψ where W is the superpotential and the theory

is supersymmetric for p = 1, and they find that the quasi-zero mode integral is proportional to (−1)p.

However, one can show rigorously that this system describes the ground state properties of a multi-fermion

flavor (non-supersymmetric) quantum mechanics where p acquires an interpretation as nf .
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yield an imaginary part for [BB]. The quasi-zero mode integrals are of the form

I(g2) =

∫
d3r exp (−V (r)) for [BB], and (5.24)

Ĩ(g2) =

∫
d3r exp (+V (r)) for [BB], (5.25)

where

V (r) = (µB, µB)
2π

g2

L

r
(5.26)

and µB = α∨i −α∨j is the magnetic charge of the magnetic bion Bij . There are two problems

with these integrals: first, both integrals diverge at large separation; and second, the [BB]

integral diverges at small r.

The first problem appears for bosonic molecules because the integrals are no longer

cut off by fermion zero mode exchange. Such an effect is also seen in quantum mechanics

by Bogomolny [26], who instructs us that if the separation between pairs is asymptotically

large, we should count them as independent (uncorrelated) events, not as composites. In

our case, if the bions are distant, their effects are already accounted for in the dilute plasma

of bions. Therefore, we should subtract the large-separation divergence to prevent double

counting. In fact, we have already calculated in (5.14) the integral for general nf . All we

need to do is to take the nf = ε→ 0 limit in a meaningful way.

For the [BB] integral we have

I(g2) = 4π [(µB, µB)2πL]3 I(g2, ε) ≡ C I(g2, ε) (5.27)

where we recall that

I(g2, ε) =

∫ ∞
0

dz exp

(
− 1

g2z
− (4ε− 2) ln z

)
= g8ε−6 Γ(4ε− 3). (5.28)

Expanding around the pole at ε = 0, we obtain

g6I(g2, ε) = g−8εΓ(4ε− 3) = − 1

24ε
+

1

6

[
ln(g2) + γ − 11

6

]
+O(ε). (5.29)

Our subtraction scheme, which gets rid of the double counting of independent bion events,

is to drop the 1/ε pole term, and leads to

I(g2) =
C

6

(
1

g2

)3 [
ln(g2) + γ − 11

6

]
, (5.30)

a real and finite answer.

Now consider the [BB] case. Since the constituents of the molecule are attractive

at short distances and the composite is topologically neutral, we have to follow the BZJ

prescription. Hence, as a first step, we take g2 → −g2, leading to Ĩ(g2)→ Ĩ(−g2) = I(g2).

Now the interaction is repulsive at short distances, and the resulting integral is the one we

just did above. Finally, we have to continue back to positive g2 in Ĩ(g2) which gives

Ĩ(g2) = −C
6

(
1

g2

)3 [
ln(−g2) + γ − 11

6

]
= −I(g2)∓ iπC

6

(
1

g2

)3

. (5.31)
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Thus the BZJ prescription gives an imaginary part to the [BB] amplitude of the form

±iπe−4S0 . The sign ambiguity arises because the logarithm is multi-valued.

Since it is topologically neutral, the [BB] amplitude gives a contribution to the vacuum

energy density (times the circumference L) of the theory. Previously we have argued that

the Borel resummation and analytic continuation prescription for perturbation theory gives

a result, B0(g2), which also has an imaginary part of ambiguous sign. This result, therefore,

is meaningless by itself, because the vacuum energy density is real. Let us write g2 = |g2|eiθ,
where θ is the phase of the complexified coupling. The imaginary parts on the two sides

must cancel in order for the theory to make sense,

ImB0,θ=0± + Im[BB]θ=0± = 0. (5.32)

As θ goes from 0− to 0+, there is a “jump” in B0,θ. The interesting thing is that the [BB]θ
amplitude also undergoes a similar jump, in the opposite direction, so that the physical

observable, which ought to be real, remains real as θ → 0. From our calculation of Im[BB]

above, this implies

ImB0,θ=0± ± π
C

6

(
1

g2

)3

A2
ije
−4S0 = 0, (5.33)

where the prefactor of the magnetic bion amplitude, Aij , is calculated in (5.13) and S0 is the

typical size of the monopole-instanton action. Recall that the monopole-instanton action

actually depends on its magnetic charge as shown for example in table 2 in section 4.1.

To keep the discussion simple, we will just use the average monopole-instanton action

S0 = SI/h
∨ where SI = 8π2/g2 is the 4-d instanton action and h∨ is the dual Coxeter

number of the gauge group; for SU(N), h∨ = N .

We thus get a prediction for the size of the imaginary part of the Borel resummed per-

turbation series, which in turn determines the size of the large-order terms in the original

perturbation series. This prediction could, in principle, be checked by studying infinite

sequences of Feynman diagrams to give estimates of the size of large-order terms in pertur-

bation theory. The large-order behavior of the perturbation series determines the location

of the singularities (branch points) of the Borel transform of the series. Recall that the

Borel transform of a perturbative series, G(g2) =
∑∞

n=0 ang
2n, is BG(t) =

∑∞
n=0(an/n!)tn,

and the Borel resummation of G is

B(g2) =

∫ ∞
0

BG(tg2)e−tdt . (5.34)

The complex t-plane is called the Borel plane. The Borel transform has singularities at

values of t corresponding to g2 times the action of classical Euclidean topologically neutral

solutions, and can have singularities at other places as well. A Borel-plane singularity at

positive real t = t0 contributes to a branch point in B(g2) at the origin with a resulting

branch cut along the positive real g2 axis across which ImB is discontinuous by exp{−t0/g2}
(typically times some analytic function of g2). See [57] section 20.7 and [32] for lucid

explanations of these facts.
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For SU(N) gauge theory, for example, since S0 = SI/N = 8π2/(Ng2), the e−4S0

term in (5.33) implies a singularity in the Borel plane at t = 32π2/N . By contrast, a 4-d

instanton-anti-instanton configuration has action SI−I = 2SI = 2NS0, and so gives a Borel

plane singularity 2N times further from the origin. It should be noted that this prediction

of the position of the Borel-plane singularity from (5.33) only reflects the cancellation of the

leading imaginary part of Borel resummed perturbation theory. Sub-leading ambiguities

in perturbation theory must cancel with neutral topological molecules with higher action.

We also note that in a bosonic center-symmetric theory on small S1 × R3 (e.g., pure

Yang-Mills appropriately deformed by holonomy double trace operators), the counterpart of

the above cancellation occurs at order e−2S0 , and the counterpart of the relation (5.32) reads

ImB0,θ=0± + Im[MiMi]θ=0± = 0. (5.35)

We comment on the implications of this in the next subsection.

5.6 Neutral bions as the semi-classical realization of renormalons?

We now argue that the neutral bion molecules discussed above are intimately related to ’t

Hooft’s renormalons on R4. They are, very plausibly, their weak coupling incarnation in a

sense we will make precise. We will illustrate our arguments just using SU(N) QCD(adj)

for simplicity.

Let us review the (conjectural) distribution of Borel plane singularities for QCD-like

theories on R4, shown in the upper figure in figure 6. 4-d instanton-anti-instanton molecules

are known to produce singularities at [58]

tR4 = nSI−Ig
2 = 2nSIg

2 = 16π2n, n ∈ Z+. (5.36)

These give the leading Borel-plane singularities (i.e., those closest to the origin on the pos-

itive real axis) associated to semi-classical configurations. But in renormalizable asymp-

totically free gauge theories, the large-order behavior of perturbation theory seems to be

dominated by what are called renormalon divergences [32] which are associated to singu-

larities closer to the origin of the Borel plane. For example, for SU(N) QCD(adj) on R4

the IR renormalon singularities are at

tR4 =
16π2

β0
n =

48π2

N(11− 2nf )
n n = 2, 3, . . . , (5.37)

which are closer to the origin by a factor of order N .

The Borel plane IR renormalon singularities are associated with divergent sub-series in

perturbation theory whose terms get their main contribution from processes at the strong-

coupling scale of the theory, therefore at a much lower energy than the cut-off scale. They

render the theory non-Borel summable. They induce a branch cut on the positive g2 axis

and associated imaginary parts ImB0(g2) ∼ ± exp{−16π2n/β0}, just like the sub-leading

singularities (5.36) induce small imaginary parts ImB0 ∼ ± exp{−16π2n}. But a crucial

difference between the two is that there are semi-classical solutions with action 16π2n/g2

(namely, n instanton-anti-instanton pairs) whereas there are no semi-classical solutions
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t = 16

t = −16 0

renormalons:
/βn2π
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t = −16 0

renormalons:
/βn2π

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

�
�
�
�

�
�
�
�

IR renormalons:
t = 16π n /β (n=2,3,...)2

0

Neutral topological molecules:
π2

QCD on Rt

t QCD on R xS3 1

4

n/N      (n=2,3,...)

UV

Figure 6. Upper figure: the conjectural structure of the Borel plane for a QCD-like gauge theory

on R4. Lower figure: the semi-classical poles associated with QCD(adj) with massless fermions on

small S1 × R3.

with action 16π2n/(β0g
2). This means that the BZJ prescription can be used to cancel

the ambiguous imaginary parts associated with the former, but no precise prescription is

known to cancel the IR renormalon divergences.

By contrast, our analysis of gauge theory on R3×S1 explicitly demonstrates that there

are semi-classically calculable poles in the Borel plane much closer to the origin than the 4-d

instanton-anti-instanton poles. Perturbation theory mixes with molecules such as [BijBji],
[BijBjkBki] and related molecules with action S = nSI−I/N , n = 2, 3, . . . in QCD(adj) and

correspond to Borel-plane singularities at

tR3×S1 =
16π2

N
n, n = 2, 3, . . . , for massless or small-mass QCD(adj). (5.38)

The resulting distribution of singularities in the Borel plane is shown in the lower figure of

figure 6. This picture of the Borel plane for gauge theories on small S1 ×R3 is new and is

a result of our semi-classical analysis together with the BZJ prescription.

Also, from our discussion of exotic topological molecules for general theories in the

last subsection, we can easily extend this picture to other gauge theories on small S1 ×R3

whose gauge group Higgses to abelian factors. For example, we have already seen that the

neutral bion molecule [MiMi] also has the same quantum numbers as the perturbative

vacuum, but does not induce an imaginary part in the BZJ prescription for theories with

massless fermions. (More precisely, this type of molecule does not produce an imaginary

part provided that eachMi has fermionic zero modes. In QCD(adj), this is always the case,
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whereas in QCD with fundamental fermions or in pure Yang-Mills this is not the case. The

situation for general matter representations is controlled by an index theorem [21, 22].)

But, in a bosonic theory such as trace-deformed Yang-Mills (dYM) or in a theory in

which fermions are heavy, the leading pole in the Borel plane is due to the mixing of

perturbation theory with [MiMi] and related molecules in the semi-classical domain with

action S = nSI−I/N . These correspond to Borel-plane singularities at

tR3×S1 =
16π2

N
n, n ∈ Z+ for large-mass QCD(adj) or dYM. (5.39)

These are again more relevant than 4-d BPST instanton-anti-instantons molecules. They

are twice as dense as the singularities (5.38) of massless QCD(adj) theory on R3 × S1.

Clearly, the singularities in the Borel plane associated with these neutral gauge theory

molecules on small S1 × R3 are of the same order as the elusive renormalons on R4 in the

sense of counting powers of N , the rank of the gauge group. We conjecture that the neutral

bion and related molecules are the weak coupling incarnation of IR renormalons.

Starting with an asymptotically free theory on R4 with IR renormalons, if we compact-

ify it on R3 × S1 in such a way as to avoid phase transitions as the circle shrinks,18 then

we expect the positions of the Borel plane singularities to change continuously with radius.

When the radius of the circle, L, is much larger than the strong-coupling length scale, Λ−1,

the location of the renormalon singularities will be independent of radius, and universal

for a given theory. When the theory reaches the semi-classical domain where L� Λ−1, by

continuity the renormalon singularities must acquire a semi-classical interpretation.

For asymptotically free theories on R4, IR renormalons arise from processes which

get a large contribution from energies (momentum transfers) of order the strong coupling

scale, Λ. In these theories this is precisely the regime where perturbative and semi-classical

methods break down. By contrast, in the small S1 × R3 limit in theories like QCD(adj)

in which the gauge group is Higgsed to abelian factors at a scale well above Λ, the IR

dynamics is weakly coupled. Thus, it must be possible to describe the remnant of the IR

renormalon in these theories by semi-classical physics on R3 × S1.

The expectation that the positions of the Borel plane singularities will change contin-

uously for our class of theories as the radius of compactification is changed is supported

in the large-N limit by the fact that these theories exhibit volume independence [1] in the

N = ∞ limit. Large-N volume independence (also called Eguchi-Kawai reduction) states

that perturbation theory on a compact space, provided the theory does not break its center

symmetry spontaneously, reproduces perturbation theory in infinite volume as N → ∞.

Heuristically, in these theories it is LN and not L which provides the effective compactifi-

cation volume. Therefore, in the large-N limit, both UV and IR renormalon singularities

must be present on small S1 × R3.

This identification of topologically neutral semi-classical configurations on R3 × S1

as the origin of IR renormalons on R4 gives a new perspective on some old problems.

It suggests that for the class of field theories we are considering, it may be possible to

18I.e., prevent center symmetry changing phase transitions by judicious choice of boundary conditions as

in QCD(adj), or by using double-trace deformations as in dYM.
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give a complete non-perturbative continuum definition of the field theory, at least in the

semi-classical domain, on R3 × S1.

Furthermore, it suggests that by studying the large-order behavior of perturbation

series for compactified center-symmetric theories, it may be possible to understand the IR

renormalons of the theory on R4, i.e., to understand the 4-d prescription for how to remove

the ambiguity in the Borel resummed perturbation series that IR renormalons induce. This

is an important issue which we leave for future work.

Finally, we are led to a sharpening of an old conjecture. Some time ago, ’t Hooft

speculated that IR renormalons may be related to the quark confinement mechanism; see

for example [32]. In the semi-classical domain on R3×S1 where confinement and mass gap

are calculable, ’t Hooft’s speculation is not correct, but it is very close to being correct.

For example, in QCD(adj) it is not the neutral [BijBji] molecule (which is the realization of

the IR renormalon in the semi-classical domain), but the proliferation of their constituent

magnetic bions, Bij , which leads to quark confinement [3]. (This will be reviewed in

section 7 below). Analogously, in QCD(adj) with heavy fermions or in deformed Yang-

Mills theory, the realization of IR renormalons is [MiMi] while confinement is generated

by the proliferation of monopole-instantons Mi in the semi-classical domain.

6 Effects of the neutral bion-induced potential

The bion operators, entering at second order in the semi-classical expansion (4.2), give

purely bosonic potential terms for the ϕ and σ scalars in the interior of the gauge cell.

Thus the leading terms in the 3-d bosonic effective lagrangian are

Lbosonic =
g2

4L
(∂mσ, ∂mσ) +

4π2

g2L
(∂mϕ , ∂mϕ) + Vpert.(ϕ) + Vn.p.(ϕ, σ). (6.1)

Here Vpert is the one-loop perturbative potential given by (3.6) plus higher-order correc-

tions in perturbation theory. To all orders in perturbation theory, it has no σ-dependence,

and the minimum in the gauge cell for ϕ is given by the minima for the one-loop poten-

tial described in section 3 up to small corrections which do not move the minimum off a

gauge cell wall if it is there at one loop. Vn.p. is the semi-classical non-perturbative po-

tential induced by a dilute gas of bion defects, and, from (5.7), (5.8), (5.13), and the BZJ

prescription sign (5.21), is given by

Vn.p.(ϕ, σ) =
∑
i

|Aii|e−2Si(ϕ) −
∑

{i,j|(αi,αj)<0}

|Aij |e−Si(ϕ)−Sj(ϕ)e2πiσ(α∨i −α∨j ). (6.2)

The positive terms in this sum come from neutral bions while the negative ones are from

magnetic bions. The magnetic bion terms induce a potential for σ, which will be discussed

in the next section (along with the fermionic terms).

In this section we concentrate on the effect of the bion potential terms for ϕ, ignoring

their σ-dependence. The expectation is that in the semi-classical regime where this poten-

tial is calculable, the perturbative potential will control the location of the minimum and
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the non-perturbative terms will only give small corrections. But there are theories where

this is not the case.

QCD(adj) with nf = 1 massless fermion has Vpert ≡ 0 to all orders in perturbation

theory (enforced by the N=1 supersymmetry this model has). The non-perturbative po-

tential then gives the leading effect. The bion-induced potential exactly reproduces the one

derived from the N=1 superYang-Mills superpotential. This potential has been analyzed

in [14] who show that it is minimized at the geometric “center” of the gauge cell, namely

the point where αj(ϕ) = 1/h∨ for all j = 0, . . . , r.

One can also deform this theory, breaking the supersymmetry slightly, by adding a

bare fermion mass, m. This generates a perturbative potential whose size is proportional

to m2. In the small-m limit, the vacuum is determined by a competition between the

perturbative and non-perturbative contributions to the potential.

We have seen in section 3 that for massless QCD(adj) with nf > 1 the perturbative

potential is not, in general, minimized at the center of the gauge cell (except for SU(N)

gauge group); see table 2. Furthermore, except for SU(N) and Sp(2N) gauge groups,

the minimum is on a boundary of the gauge cell, implying that the effective 3-d theory

perturbative vacuum has a few unbroken non-abelian (typically SU(2)) gauge factors. Since

an arbitrarily small shift of the minimum off the gauge cell wall would lead to a qualitative

change in the low energy behavior of the theory, it is interesting to ask whether in these

non-abelian cases the non-perturbative bion-induced potential can abelianize the theory

by shifting the minimum slightly.

In section 2.4 we showed that in the cut-off theory analyticity in the background field

ϕ of the effective potential keeps higher-order perturbative effects from moving a minimum

off the gauge cell wall. But in the semi-classical expansion, non-analytic dependence on

ϕ is introduced by the integral over the monopole-instanton collective coordinates and

fluctuation determinants, as reviewed in section 4.3. In particular, the ϕ-dependence of

the bion terms in (6.2) is of the general form

Vn.p. ∼ ±αj(ϕ)−p e−SIαk(ϕ) (6.3)

where SI = 8π2/g2 is the 4-d BPST instanton action, and p is some positive constant.

Recalling that in the gauge cell αj(ϕ) ≥ 0 and that the cell walls are where one or more

αj(ϕ) = 0, we see that these terms, though suppressed by the SI in the exponent, never-

theless diverge at the cell walls. In particular, the neutral bion terms which come with the

positive sign give rise to a potential which is strongly repulsive from the cell walls.

Of course, the calculation of the bion-induced effective potential is not valid precisely

at the gauge cell walls where it diverges: the semi-classical expansion breaks down since

topologically-protected monopole-instanton solutions do not exist when the effective gauge

group is non-abelian, and there are presumably no semi-classical saddle point solutions

either. Thus we look for a self-consistent minimum of V = Vpert + Vn.p.. This means that

the minimum must be at ϕ = ϕmin such that

• ϕmin is not at a gauge cell wall, so that Vn.p. is well-defined, and
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• the value of the ϕ mass, mϕ, and the W-boson mass, mW , satisfy mϕ < mW , so that

there can exist an intermediate scale mϕ < µ < mW at which to define an effective

abelian theory where the W-bosons are integrated out, but the ϕ fields are light.

The ϕ mass is determined by the curvature of the potential at the minimum, L2m2
ϕ ∼

L3V ′′(ϕmin), while the W-boson associated with root α has mass LmW ∼ α(ϕmin) by (4.13),

and is thus determined by the distance of ϕmin from the cell walls.

But, it is not too difficult to show that no such self-consistent abelianizing minimum

exists, at least near to a gauge cell wall. It is enough to keep track of the powers of the

coupling, of the size of the gauge group, and of the number of fermion flavors to understand

the behavior of the potential near a cell wall. So define

N := rank(G), λ :=
Ng2

8π2
, ν :=

2

3
(nf − 1). (6.4)

Thus λ is the ’t Hooft coupling, and the large-N limit should be taken holding λ fixed.

Also, note that N/λ = 8π2/g2 is the BPST instanton action, and that 1/λ is approximately

the monopole-instanton action for vacua not near any cell walls (where α(ϕ) ∼ 1/N). But

near the α-wall, α(ϕ)� 1/N , and the monopole instanton action is ∼ Nα(ϕ)/λ. Thus the

dilute monopole-instanton gas approximation requires λ� Nα(ϕ).

We are interested in the component of ϕ perpendicular to the cell wall where the

perturbative minimum is located. This is ϕ⊥ := α(ϕ) where α is the simple root associated

to that wall. In particular, ϕ⊥ ≥ 0 to be in the gauge cell, and vanishes at the cell wall.

The other components of ϕ parallel to the cell wall, ϕ|| ∼ β(ϕ) for other roots β, must also

be positive to be in the gauge cell. Recall that the geometric center of the gauge cell is at

αj(ϕ) = 1/h∨ ∼ 1/N for all αj . Thus for the minimum of V to be close to the original cell

wall we must have

0 ≤ ϕ⊥ � 1/N and ϕ|| ∼ 1/N. (6.5)

The form of the leading quadratic part of perturbative potential is

L3Vpert ∼
1

N
ϕ2
⊥ +

1

N

(
ϕ|| −

1

N

)2

, (6.6)

which tends to drive ϕ⊥ → 0 and ϕ|| → 1/N . Its normalization corresponds to the

perturbative value of the ϕ mass, L2m2
ϕ−pert ∼ λ/N2, found in sec 3. (A factor of g2 ∼ λ/N

comes from canonically normalizing ϕ as in (6.1).)

The form of a magnetic bion-induced potential term which involves ϕ⊥ is (neglecting

the σ-dependence)

L3Vmag. bion ∼ −(λ/N)6ν−3ϕ−2ν
|| ϕ−2ν

⊥ e−Nϕ||/λe−Nϕ⊥/λ. (6.7)

The negative sign means it tends to push ϕ⊥ → 0 with an inverse power at short ranges

ϕ⊥ . λ/N due to the exponential cut off. The prefactor and the exponential dependence

mean that this term is very small compared to the perturbative potential for points in the
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interior of the gauge cell (ϕ ∼ 1/N). This justifies looking only near the cell wall for a

minimum, and justifies neglecting the fluctuations of ϕ||. Thus (6.7) becomes

L3Vmag. bion ∼ −(λ/N)6ν−3N2νϕ−2ν
⊥ e−1/λe−Nϕ⊥/λ. (6.8)

The form of the neutral bion-induced potential term for ϕ⊥ is

L3Vneut. bion ∼ +(λ/N)6ν−3ϕ−4ν
⊥ e−2Nϕ⊥/λ. (6.9)

Its positive sign means it tends to push ϕ⊥ away from the gauge cell wall. Even though

it has a shorter range than the magnetic bion term, it has a stronger power-law behavior,

so dominates in most of the gauge cell. Indeed, the magnetic bion term only becomes

comparable to the neutral bion term for ϕ⊥ ∼ 1/N which is near the center of the gauge

cell. Thus we can safely ignore the magnetic bion terms.

The resulting potential with just the leading perturbative and neutral bion terms is

L3V = (1/N)ϕ2
⊥ + (λ/N)6ν−3ϕ−4ν

⊥ e−2Nϕ⊥/λ. (6.10)

This always has a minimum for positive ϕ⊥. The only question is whether it simultane-

ously satisfies

λ� Nϕ⊥ (dilute monopole-instanton gas approximation), (6.11)

0 < ϕ⊥ . 1/N (minimum inside gauge cell), (6.12)

2 ≤ nf ≤ 5 (non-vanishing Vpert. and asymptotic freedom), (6.13)

mϕ � mW (consistency of the effective action). (6.14)

The minimum of (6.10) satisfies ϕ4ν+1
⊥ e2Nϕ⊥/λ ∼ N5−6νλ6ν−4, at which point the W -mass

from (4.13) and the ϕ-mass from the curvature at the minimum are

L2m2
W ≈ ϕ2

⊥, L2m2
ϕ ≈ ϕ⊥/N, (6.15)

where we have used (6.11). But then (6.14) cannot be satisfied for any ϕ⊥ satisfying (6.12).

Thus there is no self-consistent abelianizing minimum induced by the bion poten-

tial. Physically, the minima coming from the competition of the perturbative and non-

perturbative pieces consistent with the semi-classical approximation can only occur so

close to the cell walls that it gives a mass for the W -boson (which we were trying to

integrate out) much smaller than the mass for ϕ (which we were trying to keep in the

effective action).

This discussion is an oversimplification for all the non-abelian minima except for the

one with gauge group G2. The reason is that for all the others the perturbative minimum

is not just at a wall of the gauge cell, but at a corner, where several walls meet. Thus

in these theories there are several relevant variables — an independent ϕ⊥ for each wall

that meets at the corner of interest. The neutral bion terms do not couple these different

variables, but the magnetic bion ones do.

Furthermore, in the cases where the relevant walls are not orthogonal (the nodes

associated to their roots are connected by a link in the extended Dynkin diagram), our

argument above for the smallness of the magnetic bion terms relative to the neutral bion

terms no longer holds. This case, which only occurs for the exceptional groups E6,7,8 and

F4, would require a truly multidimensional analysis, which we will not attempt here.
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7 Long-distance effective theory and confinement

We now set ϕ to its perturbative minimum, and look at the physical implications of the

effective action for the σ scalar fields (which are the dual 3-d photons) and the nf light

fermions, ψf . The results of sections 3 and 6 imply that this is only valid for SU(N)

and Sp(2N) QCD(adj) for which the vacuum Higgses the gauge group completely to U(1)

factors. For other gauge groups where there are unbroken nonabelian gauge group factors,

some other method is needed to analyze the effective 3d dynamics.

The Euclidean non-perturbative long distance effective theory in the case where the

gauge group abelianizes, G→ U(1)r, is governed by the proliferation of topological defects,

as illustrated in figure 1. In particular, as we have discussed above in detail, the Euclidean

vacuum may be seen as a grand-canonical ensemble of topological defects and molecules,

which may be written as

Z =

∫
[dσ][dφ]

 nf∏
f=1

[dψf ][dψf ]

 exp

[
−
∫
R3

L
]

(7.1)

where

L = L0 + L1 + L2 + . . . (7.2)

with

L0 =
g2

4L
(∂mσ, ∂mσ) +

4π2

g2L
(∂mϕ , ∂mϕ) + i

2L

g2

(
ψf , /∂ψf

)
+ Vpert(ϕ), (7.3)

L1 =
r∑
j=0

(
Aj e−Sj(ϕ)+2πiσ(α∨j )

nf∏
f=1

[αj(ψf )]2,+h.c.

)
, (7.4)

L2 =
∑
i

|Aii|e−2Si(ϕ) −
∑

{i,j|(αi,αj)<0}

|Aij |e−Si(ϕ)−Sj(ϕ)e2πiσ(α∨i −α∨j ), (7.5)

where the Ai are given in (4.25), the Aij in (5.13), and the Aii in (5.19).

The proliferation of the monopole-instanton events corresponds to operators in (7.4),

while neutral bion events and magnetic bions are associated with, respectively, the first

and second classes of operators in (7.5). The dual description (7.2) is valid for distances

large compared to the inverse W -boson mass m−1
W /g2. The theory exhibits a mass gap for

gauge fluctuations and confinement via the magnetic bion mechanism.

7.1 Mass gap for gauge fluctuations

Consider the bosonic part of the long-distance effective theory (7.2). In the small-S1

regime, bosonic fluctuations are ϕ and σ associated with the gauge holonomy and the dual

photons. These two types of fluctuations have different masses at weak coupling for nf 6= 1

QCD(adj). m2
ϕ receives contributions both from perturbation theory around the pertur-

bative vacuum, and non-perturbative contributions due to neutral and magnetic bions. In

contradistinction, the mass gap for σ fluctuations is zero to all orders in perturbation the-

ory, and is induced at m2
σL

2 ∼ e−2S0 order due to magnetic bions, where S0 ∼ 8π2/(g2N) is
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the typical bion action. The leading O(g2) one-loop result for the mass of ϕ-fluctuations is

given in (3.15), and there are also perturbative corrections from all orders in perturbation

theory. The leading non-perturbative contribution to the m2
ϕ appears at order O(e−2S0)

and is due to bions.

Thus we may write, schematically, the following mass formula

m2
ϕ = m2

pert. +m2
n.p.=

[
(nf − 1)O(g2) +O(e−2S0)

]
L−2,

m2
σ = m2

n.p. = O(e−2S0)L−2. (7.6)

For example, for SU(2) gauge theory, using the one-loop beta function and dimensional

transmutation, and ignoring logarithmic corrections momentarily, the mass spectrum for

ϕ and σ fluctuations takes the form

m2
ϕ = Λ2

[
(nf − 1)(ΛL)−2 + (ΛL)(8−2nf )/3

]
,

m2
σ = Λ2(ΛL)(8−2nf )/3. (7.7)

The semi-classical domain corresponds to LΛ . 1. In the next subsection we will write a

similar formula for the string tension.

How seriously should we take the L-scaling given in formulas like (7.6) and (7.7)? For

example, if we calculate such observables by using numerical lattice simulations, should we

expect to confirm these predictions? The concern is that, in fact, the perturbative term

that we have written as O(g2), when extended to all orders in perturbation theory, is an

asymptotic series. The whole series is divergent, and is non-Borel summable. The term due

to neutral bions, Bii := [MiMi], also multiplies an asymptotic series, which is also non-

Borel summable. We are then entitled to ask what this mass formula really means and what

does it really approximate? Below, we argue that the result (7.7) is actually physical and

meaningful due to the BZJ prescription and its extension, as described in section 5.5. In

section 8 we give a more extended discussion of the mathematical framework of transseries

and Borel-Écalle summation [34–36] and how it can serve to make expressions like (7.6)

and (7.7) the leading terms in a convergent expansion.

An expansion for the mass of the ϕ-fluctuations, which may actually make sense, is

L2m2
ϕ =

∞∑
q=0

a0,qg
2q + e−2S0g−2r1

∞∑
q=0

a1,qg
2q + e−4S0g−2r2

∞∑
q=0

a2,qg
2q + . . . , (7.8)

where in an,q, n labels the topological sector of a given saddle point and q is an index

counting the order of perturbation theory for fluctuations around that saddle point. The

rn are some exponents which are determined from quasi-zero mode integrations of multi-

instanton configurations as discussed in section 5. (We have simplified things by setting

the action of all n-bion configurations to 2nS0 where it should more properly be a sum of

2n Sj(ϕ)’s given in section 4.1.)

The first term in (7.8) is the contribution of perturbation theory around the perturba-

tive vacuum. This would be the usual text-book result for the mass for the ϕ fluctuations,

and is the analog of the usual Rayleigh-Schrödinger perturbation theory in quantum me-

chanical systems with degenerate minima. However, by itself, the first sum is meaningless:
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it is not Borel summable, and unless we think of it as part of some larger structure, it is

devoid of meaning.

The second term in (7.8) is sourced from the dilute gas of neutral and magnetic bions

Bij := [MiMj ] times perturbative corrections to all orders in perturbation theory around

it. The third term is due to the dilute gas of 2-bion molecular events such as [BijBk`] (times

perturbative fluctuations), and so forth.

The basic idea for how to give meaning to such a series of asymptotic series with

exponentially decreasing factors (known as “transseries” in the math literature) is basically

to iterate the BZJ prescription to all orders in the instanton expansion (known as Borel-

Écalle summation of transseries in the math literature). For example, since the first series

in (7.8) is not Borel summable, it must lead to an ambiguous imaginary part, which we

expect to be of the form ±ie−4S0 due to the large-order behavior of perturbation theory.

However, the third term in the series is also ambiguous as per our prescription for the

[BijBji] amplitude discussed in section 5.5, and produces an imaginary part proportional

to ±ie−4S0 . We expect that these two ambiguities must cancel and we must recover an

unambiguous result at order e−4S0 , as in (5.33). We also expect the sub-leading ambiguities

in the Borel sum to be cancelled by neutral topological molecules with higher actions.

Let Bn,θ=0± denote the Borel resummations of the perturbative series
∑∞

q=0 an,qg
2q

for complex g2 with phase θ = 0 ± ε. Then our expectation is that the imaginary parts

of B0,θ=0± should cancel with the imaginary parts that we obtain through the refined

BZJ-prescription, namely,

0 = Im
(
B0,θ=0± + B1,θ=0± [Bii] + B2,θ=0± [BijBji]θ=0± + B3,θ=0± [BijBjkBki]θ=0± + . . .

)
.

(7.9)

Note that only magnetically neutral multi-bion configurations are included in (7.9) since

only this charge sector can mix with the perturbative vacuum sector to which B0 belongs.

Also, we have suppressed sums over the repeated i, j, k monopole indices in (7.9); note

that for each distinct choice of these indices, the associated perturbative series arising

from fluctuations around that multi-bion saddle point may be different, and so their Bn
resummations should also properly carry i, j, k monopole indices. Finally, note that

the θ = 0± subscript is left off the n = 1 neutral bion amplitude since, as discussed in

sections 5.3 and 5.5, [Bii] is unambiguous by itself. Explicit illustrations of these types of

cancellations in the context of matrix models, which are instrumental for an unambiguous

non-perturbative definition, are presented in [38, 39].

Going beyond the refined BZJ prescription, it is clear that for a consistent, unambigu-

ous interpretation of the expansion (7.8) to exist there must be (infinitely many) cancella-

tions in addition to (7.9). For instance, the second term in (7.8) receives contributions not

only from neutral bions, but also from magnetic bions [Bij ], with i 6= j. The ambiguity in

the Borel resummation, B1,θ=0± , of the perturbative fluctuations around them, should be

cured by the imaginary part coming from the appropriate 2-bion molecules in that charge

sector, and so forth, giving

0 = Im
(

[Bij ]B1,θ=0± + [BikBkj ]θ=0±B2,θ=0± + [BikBk`B`j ]θ=0±B3,θ=0± + . . .
)

(7.10)
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for given i, j (and with the repeated k, `, . . . indices summed over). In section 8 we review

and discuss the idea of “resurgence” which systematizes the infinite set of consistency rela-

tions generalizing (7.9) and (7.10) necessary for Borel-Écalle resummation of a transseries

like (7.8).

The expression for the mass of σ fluctuations is very similar. The main difference is

that it does not receive any contributions to all orders in perturbation theory nor at the

leading order in the semi-classical expansion, and so it is an intrinsically non-perturbative

second order effect in semi-classics. The analog of (7.8) for mσ is then given by

L2m2
σ = e−2S0g−2s1

∞∑
q=0

b1,qg
2q + e−4S0g−2s2

∞∑
q=0

b2,qg
2q + . . . (7.11)

for some exponents sn and coefficients bn,q. Letting B̃n,θ=0± denote the Borel resummations

of the perturbative series
∑∞

q=0 bn,qg
2q, the condition for the ambiguity in the leading

term, B̃1, to cancel is precisely (7.10) again, but with Bn replaced by B̃n.

Once the cancellation of the ambiguous imaginary parts is assured, the finite results

for the ϕ mass and for the mass gap for gauge fluctuations given in (7.6) becomes physical,

in that it is an approximation to the physical result

L2m2
ϕ = ReB0(|g2|) + g−2r1e−2S0ReB1(|g2|) + . . . (7.12)

L2m2
σ = g−2s1e−2S0ReB̃1(|g2|) + g−2s2e−4S0ReB̃2(|g2|) + . . .

Thus the scaling for the mass gap for gauge fluctuations given in (7.7) is the leading

structure of the L scaling, and up to our understanding of QCD(adj), is actually physical.

7.2 Confinement

As described in section 2, the dual photon in QCD(adj) lives in

σ ∈ t∗/(W n Γr) (7.13)

and is periodic under translation by electric charges, σ → σ+α, α ∈ Γr. Apart from this pe-

riodicity, the potential∼ −
∑

i,j cos[2πσ(α∨i −α∨j )] in (7.5) also possess an invariance under

σ → σ + ωi, ωi ∈ Γw. (7.14)

since ωi(α
∨
j ) = δij . The presence of the symmetry (7.14) in the dual formulation is as-

sociated with the fact that the vacuum of the original (electric) theory can be probed by

external electric charges distinguished by their (non-vanishing) charges under the center,

Z(G̃) = Γw/Γr , (7.15)

listed in table 3.

A well-known probe of confinement is the area law for large Wilson loops. Consider

the insertion of a Wilson loop W [C,ω] (2.23) associated with some charge (weight vector)

ω ∈ Γw. As was explained in (2.40), the insertion of the Wilson loop in terms of original
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electric variables, is equivalent, in terms of dual magnetic variables to the requirement that

the dual scalar field acquires a non-trivial monodromy,∮
C′
dσ = 2πω ∈ Γw, `(C,C ′) = 1 , (7.16)

where `(C,C ′) is the linking number of the two closed curves. The evaluation of the Wilson

loop reduces to the minimization of the dual action in the space of field configurations

satisfying the monodromy condition (7.16). Consider a loop C = ∂Σ bounding a surface

Σ lying in the xy-plane. Then, the string tension associated with the non-trivial charge ω

can be evaluated as

T (ω) = min
σ(z)

lim
Σ→R2

∆S

Area(Σ)

∣∣∣
∆σ=2πω

. (7.17)

Because of translational invariance in the xy-plane, the evaluation of the string tension

reduces to finding the action of kink configurations in the corresponding one-dimensional

problem (obtained after dimensional reduction of the xy-directions). We find the tension,

in the semi-classical domain LNΛ . 1,

T (ω) = Λ2(ΛLN)(5−2nf )/3f(ω), (7.18)

where f(ω) is a function that only depends on the conjugacy class of irrep ω ∈ Γw.

Physically, in a Euclidean description, confinement is due to the Debye mechanism, as

in the Polyakov model [25], but with one major difference. The role of the monopole plasma

is now played by the magnetic bion plasma. The Wilson loop in the xy-plane generates a

magnetic field in z direction. The magnetic field has a finite penetration depth into the

magnetic conductor, which in turn, implies the area law of confinement.

7.3 Discrete χSB by topological disorder operators

The zero mode structure of the monopole operators in (7.4), also given in (4.24), is a sin-

glet under SU(nf ), but transforms under Z2h∨nf by a Zh∨-valued phase as detf,f ′(· · · ) →
e2πik/h∨ detf,f ′(· · · ). Since Z2h∨nf is an exact symmetry of the quantum theory, the topo-

logical operators must respect it. This means, the invariance of (7.4) demands that the

magnetic flux part of Mj transforms as

Zh∨ : σ → σ − k

h∨
ρ, k = 1, . . . , h∨, (7.19)

where ρ := 1
2

∑
α∈Φ+

α is the Weyl vector, which satisfies ρ(α∨j ) = 1. In the semi-classical

small-S1 domain, this implies that the topological disorder operator exp[2πiσ(α∨j )] is an

equally good operator to probe the discrete chiral symmetry Zh∨ realization.

The magnetic bion induced potential ∼ −
∑

i,j cos[2πσ(α∨i − α∨j )] in (7.5) is invariant

under the Zh∨ chiral symmetry and possess h∨ isolated vacua. In the small S1 domain, the

topological disorder operator acquires a vev and breaks the Zh∨ chiral symmetry completely.

The theory has h∨ isolated vacua |Θk〉, for which, in Hamiltonian formulation, we may write

〈Θk| exp[2πiσ(α∨j )]|Θk〉 = e2πik/h∨ , k = 1, . . . , h∨. (7.20)
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The values of h∨ for all simple gauge groups G are given in table 4.

This is to some extent a surprising result. The discrete χSB, which is expected to

be dynamical in the strong coupling domain in terms of electric variables, maps to a

spontaneous breaking by a tree level scalar potential in the weak coupling domain in the

dual magnetic formulation. This shows that discrete χSB can also take place at weak

coupling, and is sourced by the condensation of topological disorder operators.

We also note that this is how chiral symmetry is broken in N=1 superYang-Mills,

the nf = 1 QCD(adj). This interpretation disagrees with that of [14]. In the one-flavor

theory, since a monopole operator has two zero modes, the symmetry breaking as in (7.20)

generates a chirally asymmetric mass term for fermions. Omitting inessential factors,

for example,

e−S0,j 〈e2πiσ(α∨j )〉αj(ψ)αj(ψ) = e−S0,jαj(ψ)αj(ψ) (7.21)

in one of the isolated vacua, say, k = 0. This induces a mass for fermionic fluctuations

mψ ∼ Λ(ΛLN)2.

In supersymmetric gauge theories with supersymmetric boundary conditions, there is

compelling reason to believe that the physics is analytic as a function of the radius. We

have just seen that chiral symmetry breaking in the small S1 phase is due to condensation

of the disorder operators. On the other hand, at large S1, the gauge dynamics cannot

be described in terms of abelian photons, due to absence of abelianization, and the chiral

symmetry breaking is expected to be due to condensation of ordinary fermion-bilinear

〈trψψ〉 6= 0. This does not present a puzzle since the h∨ vacua of the theory in the small

S1 domain can smoothly interpolate to the h∨ vacua in the large S1 domain. The expected

phase diagram of the theory is thus

〈eiσ(α∨j )〉 6= 0,
L//

〈trλλ〉 6= 0

〈trΩ〉 = 0, 〈trΩ〉 = 0,

∞ (7.22)

with no phase transition.

For multi-flavor theories, nf > 1, since monopole-instanton induced operators have

2nf zero modes, the discrete χSB does not induce a mass term for fermions. Instead, at

distances larger than the inverse dual photon mass, the theory is described by a Nambu-

Jona-Lasinio type model, with a chirally symmetric 2nf -fermion interaction, to be de-

scribed below.

7.4 Continuous χS realization

QCD(adj) with nf > 1 also possesses a continuous chiral symmetry, SU(nf ). In the small-

S1 regime (rLΛ . 1) and at asymptotically large distances (larger than m−1
σ ), the fermionic

theory is described by the Lagrangian

Lfermionic = i
2L

g2

(
ψf , /∂ψf

)
+

r+1∑
i=1

(
Aie−S0,i det

f,f ′
[αi(ψf )αi(ψf ′)] + h.c.

)
. (7.23)

Let us first consider 2 ≤ nf ≤ n∗f where n∗f is the lower boundary of the conformal window.
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2 ≤ nf ≤ n∗
f . In the small S1 regime, the asymptotically long distance theory is an NJL-

type model in the weak coupling regime. At weak coupling, the 2nf -fermion interaction

does not break chiral symmetry. Thus, the theory at small S1 exhibits confinement without

continuous χSB. At large S1, it is expected to exhibit confinement with continuous χSB,

with a breaking pattern: SU(nf ) → SO(nf ). There is strong evidence that the scale of

continuous χSB is an unconventional one, given by

LcχSB = cΛ−1/r (7.24)

moving to zero radius as r := rank(g)→∞. In this limit, the region of validity of the dual

magnetic lagrangian (7.2) shrinks to zero as well. In other words, QCD(adj) at r = ∞
never becomes weakly coupled regardless of of the size of compactification radius. This is a

consequence of large-N volume independence of center symmetric theories. We expect that

the phase diagram of the finite rank theory to be, according to three types of symmetry

realization, as follows:

•〈eiσ(α∨j )〉 6= 0 〈trλIλJ〉 = 0
L//

〈trλIλJ〉 6= 0

〈trΩ〉 = 0 〈trΩ〉 = 0

∞LcχSB
(7.25)

If we add a small mass for fermions, then, the continuous chiral symmetry will become

an approximate symmetry. Consequently, the low-energy physics as a function of radius

will be a smooth interpolation between a small-S1 regime of light fermions and a large-S1

regime of pseudo-Goldstone bosons.

n∗
f ≤ nf ≤ 5.5. The theories in this range are expected to flow to CFTs in the R4

limit. If the theory has a weakly-coupled fixed point, then the separation of scales that the

dual Lagrangian (7.2) relies on is still valid (at distances larger than m−1
W ) even at large

radius. Thus one can take the arbitrarily large S1 limit while using (7.2). Consequently,

we expect that continuous χSB does not occur. The vacua associated with discrete chiral

symmetry breaking, upon proper normalization, are seen to be of runaway type in the R4

limit. Consequently, the theory on R4 is not expected to break any of its global symmetries.

8 Resurgence theory and the transseries framework

In this section, without aiming to be complete, we would like to point out the interconnec-

tions of some of our ideas in QFT, in particular semi-classically calculable 4-d gauge theory

on R3 × S1, to resurgence theory and the transseries framework developed by Écalle [34].

Resurgence theory provides detailed information on Borel transforms and sums, their inter-

connection to Stokes phenomena and a set of general summation rules along the directions

in the Borel plane where there are singularities. For a quantum field theorist, perhaps the

most interesting aspect of this framework is Borel-Écalle (BE) summability, which provides

tools for dealing with non-Borel summable series [36]. We believe our findings in gauge

theory — in particular, what we called the refined BZJ-prescription — is the first step of

BE resummation applied to QFT.
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An intimately related and important idea is hyperasymptotics as developed by Berry

and collaborators [41, 59, 60], building upon earlier ideas of Stokes and Dingle on asymp-

totics, see [61]. The usual Poincaré asymptotics corresponds to summing an asymptotic

series up to a fixed order, call it M∗, in the expansion parameter (λ := g2r, the ’t Hooft

coupling in our QFT example where r = rank g). This gives an error bounded by λ−M
∗−1.

Superasymptotics is a much more accurate approximation achieved by summing up to the

least term in the series. This optimal truncation reduces the error to e−A/λ where A is

positive constant. This optimal truncation can be repeated for the remainder, where e−A/λ

multiplies another asymptotic series. This leads to a nested structure of superasymptotics,

and the sequence of these defines hyperasymptotics [41]. Although at first sight it looks like

this process continues ad infinitum, it turns out not to be so. Berry and Howls showed that

in practice, for a finite λ, this process terminates after log(1/λ) stages. The error in hyper-

asymptotics is given by e−(1+2 log 2)A/λ = e−2.386A/λ. This is still a significant improvement

over superasymptotics.

But this also makes it clear that hyperasymptotics and resurgence differ. Our approach

to gauge theory on R3 × S1 is part of the resurgence framework. For example, in certain

gauge theories, we can show that a mass gap for gauge fluctuations is induced by order

e−3A/λ or e−5A/λ effects, where e−A/λ is a monopole-instanton factor; see [62] for a list.

This cannot be easily extracted from hyperasymptotics for finite λ, but in principle, it

can be extracted in the semi-classical resurgence framework. The fact that one can do

considerably better within resurgence formalism compared to hyperasymptotics is pointed

out in [63].

Poincaré asymptotics or superasymptotics are often used in QFT or quantum me-

chanics. However, both hyperasymptotics and BE resummation are much more powerful

techniques, and there are cases with ordinary and partial non-linear differential equations,

as well as with integral equation examples in which the asymptotic transseries expansions

supplemented with BE resummation gives the exact result. We do not know if this is the

case in QFTs, but we can be optimistic.

8.1 Intuitive explanation of resurgence in QFT

The semi-classical analysis of a typical bosonic observable, O(λ), in QFT on small S1×R3 is

a double expansion — a transseries in the resurgence framework — which is a combination

of a perturbative expansion in λ and a non-perturbative expansion in e−2A/λ:

O(λ) =

∞∑
n=0

e−2nA/λλ−rn [log(±λ)]r̃nPn(λ), with Pn(λ) =

∞∑
q=0

an,qλ
q. (8.1)

We can consider a real observable O(λ) so that all the an,q perturbative coefficients are

real. In the current application, the exponentials are the (multi-)monopole-instanton fac-

tors from various saddle point contributions and the Pn(λ) come from the perturbative

fluctuations around a given saddle point. So n labels the saddle points and q counts the

order of perturbation theory. P0 is thus the usual perturbation theory series around the

perturbative vacuum. For SU(r + 1) QCD(adj), for example, A = 8π2 and only multiples
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of 2A appear in (8.1) since only (multi-)monopole-anti-monopole saddle points can con-

tribute to bosonic observables in this theory. Then the prefactors of the Pn(λ) series are

the multi-bion amplitudes [BB · · · ] discussed in section 5, heuristically

[Bn] = an,0e
−2nA/λλ−rn [log(±λ)]r̃n . (8.2)

(More detailed examples of transseries appeared in the expressions for the scalar masses

in section 7.1 where the dependence on the different magnetic charge sectors was spelled

out. In this section, for the sake of simplicity, we will ignore these complications and

pretend the saddle points are organized by a single integer n, counting the number of

bions.) The exponents rn, r̃n are determined from quasi-zero mode integrations of multi-

bion configurations as discussed in section 5.

The main outcome of resurgence, which we wish to explain in more detail in this

section, is:

All the divergent series Pn(λ) appearing in the transseries (8.1) are interrelated.

The parameters an,q are related, in a calculable way, to an′,q′ for topological

sectors n′ > n: the an,q for large values of q are determined by the an′,q′ for

small values of q′.19 In particular, the large-q asymptotics for an observable

in the perturbative vacuum, a0,q, is dictated by the exponential (monopole-

instanton) factors.

In a quantum field theory, we are then led to expect that the perturbative expansions

around all non-perturbative sectors are actually related in a systematic way. The fact

that the perturbative expansion around the perturbative vacuum reappears in a slightly

modified manner as a perturbative expansion around an instanton sector, and so forth,

was called resurgence by Écalle. A transseries expansion is therefore sometimes called a

resurgent expansion.

In the semi-classical transseries expansion of quantum field theory (8.1), there are two

types of non-perturbative ambiguities:

• the ambiguity in the Borel resummation of perturbation theory around the perturba-

tive vacuum, or around an instanton or multi-instanton saddle point; and

• the ambiguity in the definition of the non-perturbative amplitudes (8.2) associ-

ated with neutral topological molecules, or molecules which include neutral sub-

components.

The main idea of resurgence in QFT is that these ambiguities are related in such a way

that the physical observables are ambiguity-free.

The ambiguity in the Borel resummation of perturbation theory. Let BPn(t)

denote the Borel transform of an asymptotic perturbative series Pn(λ),

BPn(t) :=
∞∑
q=0

an,q
q!

λq. (8.3)

19In theories with fermions, as in QCD(adj), the leading singularity in the Borel plane may cancel, so

only topological sectors n′ − n = 2, 3, . . . have related perturbative expansions. The general circumstances

where this happens can be deduced from our discussion in section 5.5.
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We assume that the formal power series Pn(λ) all satisfy the “Gevrey-1” condition [35, 36],

|an,q| ≤ CnR
q
nq! for some positive constants Cn and Rn, so that the BPn(t) all have finite

radius of convergence around the origin. Thus the BPn(t) can be analytically continued

away from the origin of the complex t-plane. We assume, furthermore, that the the set

of Borel transforms {BPn(t)} are “endlessly continuable”, which basically means that as

a set they have only discrete singularities on all Riemann sheets of their continuations in

t. There are plausible reasons to expect that the Gevrey-1 condition will be satisfied by

QFT perturbation expansions [32], but the condition of endless continuability of their Borel

transforms, which requires the absence of natural barriers in the Borel plane, seems less

easy to justify a priori.

Assume that a number of the singularities of the set {BPn(t)} are located on the ray

R+ in the Borel plane, i.e., that they are at some points t = tm indexed by m ∈ Z+ with tm
an increasing sequence of positive real numbers. Then the first ambiguity manifests itself

as the “jumps” in the directional Borel sum,

Bn,θ(λ) =

∫ ∞·eiθ
0

BPn(tλ)e−tdt, (8.4)

as the angle θ of the contour of integration passes through θ = 0. The function Bn± :=

Bn,θ=0±(λ), associated with contours just above and just below a ray of singular points,

are also called “lateral Borel sums”. Equivalently, one can think of Bn(λ) as an analytic

function in the complex λ-plane with a branch cut along the positive real axis, and Bn±(λ)

as the values of this function as λ approaches the cut from above or from below.

The discontinuity of Bn across R+, or the jump in the lateral Borel sums, can be written

DiscBn(λ) := Bn+(λ)− Bn−(λ) = 2πi

∞∑
m=1

fn,m(λ)e−tm/λ, (8.5)

where the fn,m(λ) are some real analytic functions (for positive real λ); so

ImBn± = ±π
∞∑
m=1

fn,m(λ)e−tm/λ. (8.6)

This follows from (8.4) by a contour deformation argument so that each term picks up the

contribution due to a single singularity tm and from the reality of the an,q. Since there

are (infinitely) many singularities on R+, there are many different choices for how to do

the contour deformation. No single contour deformation respects the reality of O(λ) (i.e.,

the symmetry under λ → λ), so this must be restored by taking appropriate averages of

different contour deformations. The different ways of doing this translate into different

functions fn,m(λ); they are not uniquely defined by (8.5) since they can differ by pieces

which are asymptotically small, ∼ exp{−tm̃/λ} with m̃ > m, as λ→ 0.

Note that Bn+(λ) and Bn−(λ) are different functions of λ with the same asymptotic

behavior since they differ only by exponentially suppressed terms. The different behavior

of Bn,θ(λ) in different θ sectors and the ensuing jumps as one crosses a ray of singularities
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in the Borel t-plane is associated with Stokes lines and Stokes jumps in the complex λ-

plane. The jump in (8.5) and the connection of sectorial solutions is encoded in the “Stokes

automorphism” in resurgence terminology.

Finally, it will be useful to note that the discontinuity, DiscBn(λ), in the Borel re-

summation of Pn(λ) can be related to the coefficients an,q of Pn(λ) =
∑∞

q=0 an,qλ
q by a

dispersion relation. Since Bn(λ) has a cut along the positive real axis, we may use Cauchy’s

theorem and a contour deformation to write

Bn(λ) =
1

2πi

∫ ∞
0

dλ′
DiscBn(λ′)

λ′ − λ
− 1

2πi

∮
C∞

Bn(λ′)

λ′ − λ
(8.7)

where C∞ is a loop at infinity and λ is a point off the positive real axis. Since the Taylor

series of Bn around the origin gives the asymptotic series Pn(λ), the coefficients of Pn(λ)

can be found by taking derivatives with respect to λ and sending λ → 0. This is justified

as long as Bn(λ) grows more slowly than 1/λ as λ → 0. Also, the contribution from the

contour at infinity does not contribute as long as Bn descreases faster than 1/λ as λ→∞.

These two conditions can be met by making appropriate subtractions of leading terms of

Bn and dividing by an appropriate power of λ; see, e.g., [64]. This then allows us to express

the coefficients of Pn(λ) as

an,q =
1

2πi

∫ ∞
0

dλ
DiscBn
λq+1

for q ≥ few, (8.8)

where the exact value of “few” depends on the above-mentioned subtractions needed.

Aside on the behavior of Bn at infinity. If Bn grows exponentially as λ → ∞, no

division by a power of λ will remove the contribution of the integral at infinity. In many

cases in quantum mechanics a scaling argument assures the power-law behavior of Bn at

infinity [65, 66], but in QFT the situation is a priori not clear. Consider the gauge theory

on R3 × S1 further compactified down to quantum mechanics on R × T 2 × S1 such that

the T 2 is much larger than the S1 (so abelianized dynamics is operative at the scale of the

T 2), but smaller than inter-monopole separations on R3 such that within the volume of

the T 2 there will typically be a single monopole-instanton event. The monopole-instanton

in QFT descends to flux-changing events in the associated quantum mechanics, where the

flux is defined as Φ(t) =
∫
T 2 B and flux-changing events are valued in the co-root lattice

Γ∨r . There is ample evidence that this quantum mechanics is continuously connected to the

QFT on R3 × S1, and a fair amount of non-perturbative data of the 4-d theory is encoded

within this class of quantum mechanical systems. (This connection between quantum field

theory and quantum mechanics is new and will be explored in a separate work.) In this

reduced quantum mechanics, we were able to show that the integral around infinity does not

contribute by using scaling arguments. By continuity, we expect that the same conclusion

is also valid for QFT.

The ambiguity in the definition of the non-perturbative amplitudes. The second

ambiguity arises from the choice of path of analytic continuation in λ needed to define the

quasi-zero mode integrals appearing in the evaluation of saddle point contributions. At
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least for the simplest cases, it is easy to see [33] that this ambiguity in choice of path in

the complex λ-plane can be mapped onto the ambiguity in choice of path — the directions

θ = 0± of the ray in the Borel plane — in the directional Borel sums (8.4). So the Stokes

automorphism also acts on the amplitudes of neutral topological molecules.

For example, as we discussed in section 5 for QCD(adj), the one- and two-bion ampli-

tudes have leading forms for small real λ

[B1] = a1,0e
−2A/λλ−r1 , [B2] = a2,0e

−4A/λλ−r2 log(−λ), (8.9)

with r1 = 7 − 4nf and r2 = 3; see (5.18), (5.21), and (5.31). Thus, upon continuing from

negative to positive λ either above or below the origin, there is no ambiguity in the [B]

amplitude, while there is one for the [B2] amplitude,

[B1]+ − [B1]− = 0, [B2]+ − [B2]− = 2πia2,0λ
−r2e−4A/λ. (8.10)

A natural extension of that discussion leads to the expectation that the higher saddle

point contributions will have the form given in (8.2). In general, the values of the saddle

points will vary in a complicated way as a function of complex λ. In particular, there

typically occur “focal points” in the complex λ-plane where the values of different saddle

points coincide, and emanating from these focal points are “Stokes lines” where the real

parts of different saddle point values coincide. These are important since on either side of

these lines different saddle points dominate the transseries expansion. More importantly,

upon continuing λ around a closed path encircling focal points, and therefore crossing a

number of Stokes lines, the saddle points will typically undergo a permutation. As we will

see below, this global information about the behavior of the saddle points under analytic

continuation plays a key role in resurgence.

For definiteness (just so we have a simple toy model in which to illustrate resurgence),

we will assume that r̃n = 1 for n > 1 and that the rn are all integers, so that

[Bn]± = [log(λ)± iπ] an,0λ
−rne−2nA/λ for n = 2, 3, . . . (8.11)

But we should note that this simple form for the saddle point values probably does not

actually arise from the saddle points of any analytic action functional.

Cancellation of the ambiguities. For the field theory to have a sensible non-

perturbative definition in the continuum, we must have a cancellation of these two types

of non-perturbative ambiguity. For an observable O(λ) as in (8.1) which is real, and for

which the ambiguity of the saddle point contributions are always imaginary as in (8.11),

then this cancellation condition is simply the vanishing of the imaginary parts of the Borel

sums of the perturbation series against those of the multi-bion amplitudes,

0 = Im
(
B0± + [B]± B1± + [B2]±B2± + [B3]±B3± + . . .

)
. (8.12)

This is just a rewriting of the condition that ImO(λ) = 0.

Since as λ→ 0 the n-bion amplitude is dominated by the exp{−2nA/λ} exponent (8.2),

an asymptotic expansion of this cancellation condition using (8.6) implies that the singu-

larities of the BPn in the Borel plane must be at tm = 2mA.
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Now, the positions of the singularities of the BPn determine the large-order behavior

of the Pn series. This follows from a theorem by Darboux (see chapters 1 and 7 of [61])

which states that two different functions with pole or branch point singularities (but not

essential singularities) at the same locations exhibits a universal behavior in the late terms

of its Taylor series expansion around origin which is independent of the kind of singularity.

As illustration, consider a simple function with Taylor expansion

BP (t) :=

(
1− t

A

)α
=
∞∑
n=0

(n− α− 1)!

n!(−α− 1)!

(
t

A

)n
. (8.13)

BP (t) has a pole or branch point at t = A when α is not a non-negative integer, but

regardless of this value of α, the leading behavior of the Taylor coefficients as n→∞ are

all alike. They are dictated only by the position of the singularity in the Borel plane, and

are independent of the nature of the singularity. The inverse Borel transform of BP (t) is

P (λ) =

∞∑
n=0

(n− α− 1)!

(−α− 1)!

(
λ

A

)n
. (8.14)

So the late terms of the asymptotic series P (λ), just like the Taylor series for BP (t), are

also universal and only dictated by the positions of the singularities in the Borel plane.

Thus the result that the values of the saddle points, 2mA/λ, are the locations of the

singularities in the Borel plane means that consistency of the transseries expansion of O(λ)

relates the multi-bion amplitudes to the perturbative expansions. We will now explain how

this relation is made much more precise using resurgence relations.

Upon inserting the multi-bion amplitudes (8.11), the consistency condition (8.12) reads

0 = ImB0± + λ−r1e−2A/λ ImB1± +

∞∑
n=2

λ−rne−2nA/λ (log λ ImBn± ± π ReBn±) . (8.15)

Now using the transseries expansion of ImBn± in (8.6) and the identification tm = 2mA,

as well as the formal identification of ReBn± with its (defining) asymptotic expansion,

ReBn± ∼ Pn(λ), (8.15) becomes

0 =
∞∑
m=1

f0,m(λ)e−2mA/λ + λ−r1e−2A/λ
∞∑
m=1

f1,m(λ)e−2mA/λ

+

∞∑
n=2

λ−rne−2nA/λ

(
log λ

∞∑
m=1

fn,m(λ)e−2mA/λ + Pn(λ)

)
. (8.16)

Collecting powers of e2A/λ then gives

0 = f0,1

0 = f0,2 + P2λ
−r2 + f1,1λ

−r1 (8.17)

0 = f0,m + Pmλ
−rm + f1,m−1λ

−r1 +

m−2∑
n=1

(log λ)fm−n,nλ
−rm−n for m ≥ 3,

– 75 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

expressing DiscB0 in terms of Pn≥2 and DiscBn≥1.

What may be less obvious is that (8.12) is not the only consistency condition following

from demanding an unambiguous O(λ). As discussed after (8.6), there is not a unique

definition of the real analytic functions fn,m(λ) appearing in DiscBn. So (8.17) applies

equally to all choices of fn,m arising from different contour choices in the Borel plane.

Furthermore, these different contour choices are related to one another by the condition

that the (Borel-Écalle resummed) O(λ) be a single-valued function in the complex λ-plane.

For then as λ is continued around focal points, the saddle points contributing to [Bn] will

be permuted. Since these saddle point values determine the locations of the singularities

in the Borel plane, a monodromy in λ is accompanied by a motion permuting the Borel

plane singularities. This in turn drags the contours used in the definiton of the fn,m into a

new set of contours. The single-valuedness of O(λ) then implies additional relations among

the fn,m. These are encoded in the “resurgence relations” or “bridge equations” and give

a set of equations of the form (8.17) expressing DiscBm in terms of Pn≥2 and DiscBn≥m+1

for all m.

For example, for m = 1, the equations take the form

0 = f1,1λ
−r1 (8.18)

0 = f1,mλ
−r1 + Pm+1λ

−rm+1 +

m−1∑
n=1

(log λ)fm−n+1,nλ
−rm−n+1 for m ≥ 2.

Then, combining (8.5) with (8.17) and (8.18) gives to leading order

DiscB0 = −2πiλ−r2P2e
−4A/λ +O(e−6A/λ),

DiscB1 = −2πiλ−r3+r1P3e
−4A/λ +O(e−6A/λ). (8.19)

We can now use these in the dispersion relation (8.8) to derive relations between the

coefficients of the P0(λ) and P1(λ) asymptotic expansions and those of the Pn>1(λ). Just

keeping the leading-order terms shown in (8.19), we obtain

a0,q =
∞∑
q′=0

a2,q′
Γ(q + r2 − q′)
(4A)q+r2−q′

, a1,q =

∞∑
q′=0

a3,q′
Γ(q + r3 − r1 − q′)

(4A)q+r3−r1−q′
, (8.20)

implying the leading large-order behaviors

P0(λ) ∼ a2,0

(4A)r2

∞∑
q=0

(q + r2 − 1)!

(
λ

4A

)q
,

P1(λ) ∼ a3,0

(4A)r3−r1

∞∑
q=0

(q + r3 − r1 − 1)!

(
λ

4A

)q
. (8.21)

Thus the large-order behaviors of P0 and P1 are determined by the early terms of the P2

and P3 series, respectively: the knowledge of a one-loop fluctuation determinant around

the bion-anti-bion background determines the leading order of the asymptotic expansion

around the perturbative vacuum. Keeping additional terms from (8.20) corresponds to
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sub-leading asymptotics: e.g., two-loop fluctuations determine the 1/q correction propor-

tional to a2,1. Recall that P0 and P1 are asymptotic expansions around different sectors,

respectively the perturbative vacuum and the vacuum populated by neutral bion events.

Despite the drastic difference in the background, the asymptotics of the perturbative ex-

pansions around their respective sectors have a universal behavior. This is in accord with

Darboux’s theorem and Dingle’s ideas about asymptotics, described above. Indeed, (8.21)

can be identified with (8.14) by an obvious mapping of the location of the singularities and

by matching α with r2 and r3 − r1, respectively.

The relations relating P0 to P2 and P1 to P3 in (8.20) came from only keeping the

leading terms in the resurgence relations for f0,m and f1,m in (8.17) and (8.18). Such

leading-term asymptotics is essentially the content of the BZJ prescription described in

section 5. For example, in the quantum mechanics of the anharmonic quartic oscillator,

this argument has been used to connect large orders in perturbation theory to the bounce

or instanton-anti-instanton amplitude in the unstable quartic theory, see [64]. (The large

order prediction obtained in this manner is identical to that of Bender and Wu [65], which

was obtained by other methods.)

But this by no means captures the full content of the resurgence relations. With

sufficiently precise knowledge of the global behavior (monodromies) of the [Bn] saddle

point values in the complex λ-plane, one can incorporate their contributions to obtain an

infinite sum over all multi-bion sectors of the typical form

a0,q =

∞∑
n=1

∞∑
q′=0

a2n,q′
Γ(q + r2n − q′)
(4nA)q+r2n−q′

. (8.22)

Writing out a few of the leading terms,

a0,q = (4A)−q−r2Γ(q + r2)

[
a2,0 +

a2,1(4A)

q + r2 − 1
+

a2,2(4A)2

(q + r2 − 1)(q + r2 − 2)
+ . . .

]
+ (8A)−q−r4Γ(q + r4)

[
a4,0 +

a4,1(8A)

q + r4 − 1
+

a4,2(8A)2

(q + r4 − 1)(q + r4 − 2)
+ . . .

]
+ . . . , (8.23)

makes it clear that the one-loop fluctuation determinant around the [B2n] saddle point

determines leading pieces of sub-series exponentially suppressed by a factor (2n)−q.

We note that similar expressions have appeared in the context of matrix models and

topological string theory [38, 67] and by using the bridge equations in the context of

resurgence theory in [39]. In our current example, the difference stem from the fact that the

monopole-instanton is actually a fraction of a 4-d instanton, indeed, 4A ∼ 4·S4d/N = 4
N ·

8π2

g2

for SU(N) gauge group. On the other hand, the fact that these results are almost the same

is not a surprise, and reflects universal aspects of the instanton calculus.

As emphasized in [39], the powerful relations (8.22) come about by the straightforward

incorporation of all multi-instanton (multi-bion in our case) sectors in the asymptotic

formulas. In [39] these are derived by using Écalle’s “alien calculus”; in our case, this

result came about from our improved knowledge of the topological molecule and neutral

bion amplitudes.
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Implications of resurgence for extended supersymmetric theories. Note that

there are also theories whose symmetries or dynamics prevent neutral topological molecules

from being generated. Two examples are 4-d N=2 and N=4 superYang-Mills compactified

on R3 × S1. No superpotential is generated on the Coulomb branch and thus no neutral

bion effects are present. Since in the Borel-Écalle framework, the possible ambiguities in

perturbation theory are cancelled by the ambiguities of the neutral bion amplitudes, the

absence of neutral molecules in N=2 and N=4 superYang-Mills implies a better behaved

perturbative expansion. More precisely, the existence of monopole-instantons indicates

that the perturbation theory gives a divergent asymptotic series. However, it does not

tell us whether the series is alternating (Borel summable) or non-alternating (non-Borel

summable). This latter, more delicate issue, is tied to the presence or absence of neutral

topological molecules. The absence of the neutral molecules in N=2 and N=4 superYang-

Mills implies that both the expansion around the perturbative vacuum as well as the

perturbation series around the instanton sectors are Borel summable. This argument is

complementary to and in agreement with exact results in certain extended supersymmetric

theories [68].

8.2 Can we non-perturbatively define QFTs in the continuum?

Currently the only general non-perturbative definition of QFTs is through a lattice for-

mulation. Lattice field theory is indeed a remarkable resource for QFTs; however, it has

well-known difficulties with theories with chiral fermion content, with general supersym-

metric theories, and with the topological θ-term. Furthermore, to the extent that it relies

on the notion of an RG universality class, it is an indirect definition.

We would like to know if a general non-perturbative continuum definition of an inter-

acting QFT is possible on Rd, d ≥ 2. Establishing that this is so is an outstanding problem

of mathematical physics. So far non-perturbative continuum definitions are only known for

a restricted set of minimal conformal or integrable models in two dimensions. But these

definitions take the form of self-consistent solutions for complete S-matrices or operator

algebras, and it seems doubtful that the bootstrap techniques that underlie these solutions

can be applied to general classes of theories (e.g., with a number of adjustable parameters).

Resurgence theory is a relatively new and powerful mathematical and physical idea.

The combination of generalizing the BZJ prescription to all orders in the instanton ex-

pansion together with the technique of Borel-Écalle summation of transseries offers the

promise of a finite definition of this class of field theories from their semi-classical expan-

sions. Furthermore, small-circle compactifications of 4-d asymptotically free gauge theories

give a large class of theories with well-defined semi-classical expansions. Also, large-N vol-

ume independence indicates that the small-radius semi-classical behavior may be smoothly

continuable to large radii in a large subset of these theories. Together all these ingredients

serve at the very least to give a new perspective on the meaning of continuum field theory.

The BZJ prescription in quantum mechanics was more or less concurrently discovered

with Écalle’s work in the late 1970’s and early 1980’s. Since its discovery, resurgence has

had many fruitful applications in diverse parts of physics and mathematics, including linear

and non-linear ordinary differential equations, WKB methods, Navier-Stokes equations

– 78 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

of fluid dynamics, discrete dynamical systems, separatrix splitting, Kolmogorov-Arnold-

Moser theory, optics, statistical mechanics — i.e., any field which benefits from a saddle

point approximation and its improvements. (See, for example, [36, 37, 60, 69].)

The realization of the utility and importance of resurgent functions in quantum field

theory and string theory, however, is quite recent. A few interesting works have appeared re-

cently, predominantly in the context of matrix models and minimal strings by Mariño, Schi-

appa, and collaborators [38, 39, 63]. All these works address theories without renormalons.

In the context of asymptotically free confining field theories with renormalons, the

current work and its two-dimensional companion [40], to our knowledge, are the first ones

combining ideas about resurgence and semi-classical analysis of gauge field theories. Ad-

mittedly, in the present work, we have not used the full power of the resurgence formalism.

By contrast, the very recent work [39] benefits more from the formalism by extending

the theory into the complex coupling constant plane, and by studying singularities in the

whole complex Borel plane for complex values of coupling constant. The study of the “alien

(or singularity) calculus” and the bridge equations provides crucial non-perturbative data

needed to give a non-perturbative definition of the theory.

In QCD(adj), the lack of development of the machinery of bridge equations and resur-

gence relations is partly compensated for by our knowledge of the elementary and molecular

topological defects. At present, we have a fair knowledge of the non-perturbative saddle

points in gauge theory on small R3×S1 due to a program that began in [3] where magnetic

bions were understood. In this work we throughly analyzed neutral bions and molecular

bion-anti-bion events through the BZJ prescription. The ambiguity associated with certain

neutral topological defects is the extra bit of non-perturbative information that we have,

in order to define the theory for the real positive coupling and its infinitesimal imaginary

neighborhood. In this regime, whenever the Borel sum exhibits a Stokes’ jump, a topo-

logical molecule amplitude also exhibits a jump in the opposite direction rendering the

physical observables, such as mass gap and string tension, real and meaningful.
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A Properties of simple Lie algebras and groups

We assemble here some basic facts about Lie algebras and their associated compact groups

that are useful for the body of the paper. We also include a number of comments on the

relation of some of the mathematical language to terminology and conventions appearing

in the physics literature. Some texts covering this subject that we found useful are [70–72].
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A.1 Compact groups with simple Lie algebras and charge lattices

For each simple Lie algebra, g, there is a simply-connected compact Lie group, G̃. There

are other compact Lie groups, G, with Lie algebra g, given by quotients of G̃ by various

subgroups of its center, Z(G̃). Z(G̃) is always a finite abelian group; the possibilities are

listed in table 3 below. Any subgroup C ⊂ Z(G̃) is a normal subgroup of G̃, so defines

another group G := G̃/C. G has the same Lie algebra as G̃, but G has smaller center,

Z(G) := Z(G̃)/C, and is not simply connected, but has π1(G) = C. Thus, in particular,

for any group G, Z(G) n π1(G) = Z(G̃).

Any irreducible representation of G̃ (other than the trivial representation) represents all

the elements of G̃ faithfully except perhaps for a subgroup of the center which is represented

by the identity element. So only those irreps which represent Z(G̃)/Z(G) by the identity

are irreps of a given global form G.

The set of irreps of a Lie group G is reflected in the set of allowed weights of their Lie

algebra generators. In physical terms, these weights correspond to the set of allowed

electric charges of fields and sources that can appear in the theory in a Higgs phase

where G→ U(1)r.

A generic Lie algebra element h ∈ g determines a unique Cartan subalgebra (CSA)

t ⊂ g containing h. A CSA is a maximal commuting subspace of g and is always of

dimension r = rank(g). Any two CSAs can be mapped to each other by conjugation by

some Lie algebra element. In a given irrep R, the representation matrices of h ∈ t can be

simultaneously diagonalized giving vectors λ ∈ t∗ of simultaneous eigenvalues so that λ(h)

is an eigenvalue of R(h). The set {λ} are called the weights of R, and their integral span

generates a lattice ΓR ⊂ t∗, the weight lattice of R. Here t∗ is the real linear dual of t (i.e.,

the space of linear maps from t to R) and Γ∗ will denote the lattice integrally dual to Γ

(i.e., Γ is the space of linear maps from Γ∗ to Z).

The group lattice, ΓG, is defined to be the union of the weight lattices for all irreps R

of G, ΓG := ∪RΓR, (though, in fact, the union of only a finite number of irreps suffices).

Exponentiation identifies a given CSA, t ⊂ g, with a maximal torus TG ' U(1)r ⊂ G.

In particular, the eigenvalues in irrepR of a given element g ∈ TG are given by exp{2πiλ(h)}
for some h ∈ t and for λ ∈ ΓR. The periodicities of the maximal torus are reflected in the

lattice of points in the CSA which are mapped to the identity under exponentiation. For

irrep R, these points are those h ∈ t such that λ(h) ∈ Z for all λ ∈ ΓR. These h define the

dual lattice Γ∗R ⊂ t. The periodicity common to all irreps of G then defines the dual group

lattice Γ∗G = ∩RΓ∗R, and the exponential map identifies TG ' t/Γ∗G.

The smallest (coarsest) possible group lattice is the root lattice, Γr, which is the weight

lattice of the adjoint irrep of g. It occurs as the group lattice of the “adjoint group” which

is the compact form of the group which has trivial center

Gad := G̃/Z(G̃). (A.1)

The largest (finest) possible lattice is called the weight lattice of g, Γw, and is the group

lattice of the unique simply-connected covering group G̃.

From these definitions it follows that the group lattice, ΓG, is intermediate between

the root and weight lattices of g and determines the center and fundamental groups of G,
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g G̃ Gad := G̃/Z(G̃) π1(Gad) = Z(G̃)

AN−1 SU(N) PSU(N) ZN
BN Spin(2N + 1) SO(2N + 1) Z2

CN Sp(N) or USp(2N) PSp(N) Z2

D2N Spin(4N) PSO(4N) Z2 × Z2

D2N+1 Spin(4N + 2) PSO(4N + 2) Z4

E6 E6 E−78
6 Z3

E7 E7 E−133
7 Z2

E8 E8 E8 1

F4 F4 F4 1

G2 G2 G2 1

Table 3. The simple Lie algebras g together with common names for their associated compact

simply-connected Lie groups G̃ and the compact adjoint Lie groups Gad.

Z(G) and π1(G) respectively, by

Γr ⊂ ΓG ⊂ Γw ⊂ t∗

l ∗ l ∗ l ∗
t ⊃ Γ∨w ⊃ Γ∗G ⊃ Γ∨r

with


Z(G) = ΓG/Γr = Γ∨w/Γ

∗
G

π1(G) = Γw/ΓG = Γ∗G/Γ
∨
r

, (A.2)

where the lattices connected by vertical arrows are integrally dual. We call the various

lattices

Γw = weight lattice, Γ∨w = co-weight lattice,

Γr = root lattice, Γ∨r = co-root lattice,

ΓG = group lattice, Γ∗G = dual group lattice,

though other names are often used, e.g., “magnetic weight lattice” for “co-weight lattice”,

and “weight lattice of G” for “group lattice”.

Sometimes, rather confusingly, the co-lattices are called dual lattices; in these cases

“dual” refers to the more special notion of Goddard-Nuyts-Olive (GNO) duality (also

known as electric-magnetic or Langlands duality). GNO duality has its expression in the

lattice isomorphisms

Γw(g) ' Γ∨w(g∨) and Γr(g) ' Γ∨r (g∨) (A.3)

where

g∨ := g, g ∈ {An, Dn, En, F4, G2}, but (Bn)∨ := Cn and (Cn)∨ := Bn. (A.4)

The isomorphisms in (A.3) are as lattices with inner product up to overall scaling and

rotation. It can be extended to the group lattices,

Γ∗G ' ΓG∨ , (A.5)
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where the GNO-dual group, G∨, is the compact Lie group with Lie algebra g∨ such that

Z(G∨) = π1(G) and π1(G∨) = Z(G). It follows, in particular, that (G∨)∨ = G and

(G̃)∨ = (G∨)ad and (Gad)∨ = G̃∨.

A.2 Gauge groups, gauge transformations, and center symmetry

In a theory with gauge algebra g, which compact form of the gauge group, G, appears

is determined by which representations of the Lie algebra both the dynamical fields in

the theory as well as any non-dynamical (or very massive) sources belong to. We will

refer to the dynamical fields just as “fields” and the non-dynamical sources as “probes” in

what follows.

G has to be at least large enough to admit all the representations of the fields. Choosing

a larger G allows the inclusion of probes in representations other than those of the fields.

Including such probes (enlarging the gauge group) is a matter of choice, reflecting what

questions we are allowed to ask of the theory, but should have no effect on the dynamics

of the fields.

In the case of QCD(adj) where all the fields are in the adjoint representation, the

smallest allowed gauge group is G = Gad. The G̃ form of the QCD(adj) theory admits

probes, such as Wilson line operators, in arbitrary representations, while the Gad theory

only admits probes in the adjoint representation (or in representations with weights in the

root lattice). Note that the action of G̃ on the fields of QCD(adj) is not faithful since Z(G̃)

acts trivially on all adjoint fields. On the other hand, the action of Gad on QCD(adj) is

faithful: for any h ∈ Gad (and h 6= 1), there is some field value Ψ such that h ·Ψ 6= Ψ.

In addition to the choice of the compact form of the gauge group, G, there is a separate

choice of the group, G, of gauge transformations. G consists of maps g(x) from space-time

M into G that leaves the theory’s action invariant when acting point-wise on the fields.

G is a group under point-wise multiplication, g · g′(x) = g(x) · g′(x), and has a point-wise

action on the fields, Ψ, of the theory, g · Ψ(x) = g(x) · Ψ(x), where the multiplication on

the right is the group action of G on the representation space that Ψ is valued in. Unless

M is just a point, G is much larger than G; e.g. G = GN for a lattice theory with N lattice

points, and is infinite dimensional in the continuum case. Furthermore, G depends not only

on G, M , and on the theory in question, but can also depend on some discrete choices. For

example, one can choose G = G0 to consist of only those maps g(x) which are continuously

connected to the identity map, or, at the opposite extreme, take G = G̃, the union of all

the connected components of the group of maps.

Consider first the extreme choices where the gauge group G is taken to be either the

largest possible, G̃, or the smallest possible, Gad. These are already distinct for G̃ = SU(2);

for G̃ = SU(NM) or Spin(2N), there are more possibilities intermediate between these

extremes, since then the center of G̃ has proper subgroups.

Adjoint group. When G = Gad and M = R3 × S1, then G̃ is the set of all continuous

maps from M to G. Discontinuous maps from M to G cannot be included in the set of

gauge transformations since if g were discontinuous at x by some h ∈ Gad (h 6=1), i.e.,

limε→0[g(x+ε) = h · g(x−ε)], then since Gad acts faithfully on QCD(adj), such a gauge
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transformation would map a continuous field configuration Ψ(x) to a discontinuous one

where h ·Ψ(x) 6= Ψ(x).

G̃ has disconnected components labelled by the elements of π1(Gad) since any map g :

M → Gad can be continuously deformed to a map g′ : S1 → Gad (since R3 is contractible)

and the homotopy classes of these maps are labelled by elements of π1(Gad). Denote by

gc(x) a map in the homotopy class corresponding to c ∈ π1(Gad). If c 6= 1, such maps are

called “large gauge transformations”. G0 is the component of G̃ connected to the identity

map g(x) = 1. As groups, G̃/G0 ' π1(Gad).

Convenient representative gauge maps gc(x) are the following maps that take values

solely in a maximal torus exp(it):

gµ(ξ) := exp iξµ, µ ∈ Γ∨w, (A.6)

where ξ := 2πx4/L is the angular variable around the S1. Since Γ∨w = Γ∗r , exp 2πiµ = 1

in Gad, so gµ(ξ) simply maps the S1 to a non-trivial cycle of the maximal torus. The

homotopy class c ∈ π1(Gad) is given by c ' [µ] ∈ Γ∨w/Γ
∨
r , the coset that µ belongs to.

If we choose G0 as the group of gauge transformations, then the large gauge maps in

the other components of G̃ are not gauged. In particular G̃/G0 ' π1(Gad) will act on the

theory as a global discrete symmetry, and enlarging the group of gauge transformations to

be G̃ is equivalent to gauging this discrete symmetry, i.e., projecting the Hilbert space of

the theory onto only the discrete symmetry singlet states.

Covering group. When G = G̃ and M = R3 × S1, then G̃ is the set of all potentially

discontinuous maps from M to G but which map all continuous fields to continuous fields.

Since only the center, Z(G̃), of G̃ acts trivially on the fields of QCD(adj), the only allowed

discontinuities in G̃ are by elements of Z(G̃).

G0 is the component of G̃ which is continuously connected to the identity map. Note

that discontinuous maps can still be continuously connected to the identity. Any20 discon-

tinuous map g from R3 × S1 → G̃ with jumps only in Z(G̃) can be deformed to a map

g′ where the locus of all discontinuities is shrunk to an arbitrarily small neighborhood of

R3 × p where p is a point on the S1. At any given point of this locus there will be a net

discontinuity which will be an element c ∈ Z(G̃). Since Z(G̃) is discrete and since away

from the R3 × p locus g′ is continuous, it follows that c must be the same along the whole

of R3 × p. If c = 1 then g′ is continuous and is deformable to the identity in G̃ since

π1(G̃) = 1; while if c 6= 1 then g′ is not deformable to the identity. In summary, the discon-

nected components of G̃ are labelled by elements c of Z(G̃), and can all be characterized as

maps gc(x, ξ) which are discontinuous by c around the S1: gc(x, ξ + 2π) = c · gc(x, ξ). As

groups, G̃/G0 ' Z(G̃). Convenient representative maps can again be taken to be the gµ(ξ)

in (A.6) which are now discontinuous when µ belongs to non-trivial cosets 0 6= [µ] ∈ Γ∨w/Γ
∨
r ,

and [µ] ' c ∈ Z(G̃).

20The following argument assumes that the locus of discontinuity of the maps in G̃ is nowhere dense in

M . For if not, then upon doing the deformation to R3 × p there can be an accumulation of an infinite

number of discontinuities whose product may not converge to a definite net discontinuity. Issues like this

may give a reason to prefer using the smallest gauge group, faithful on the fields, over non-faithful ones like

G̃ for QCD(adj).
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If we choose G0 as our group of gauge transformations, then the large transformations

in the other components of G̃ are not gauged. In particular G̃/G0 ' Z(G̃) will act on the

theory as a global discrete symmetry, and enlarging the group of gauge transformations to

be G̃ is equivalent to gauging this discrete symmetry.

General group. The general compact form of the group can have both a non-trivial

fundamental group π1(G) and center group Z(G). In this case there are both large and

discontinuous gauge transformations, and there is a global discrete symmetry G̃/G0 '
Z(G) n π1(G). Thus in all cases the discrete symmetry is isomorphic to the center of

the covering group, Z(G̃), with representative gauge maps gc, c ∈ Z(G̃) given by (A.6)

with c ' [µ] ∈ Γ∨w/Γ
∨
r . This discrete symmetry is called the center symmetry of

QCD(adj). Enlarging the group of gauge transformations to G̃ is equivalent to gauging

the center symmetry.

As discussed in section 2.2, the center symmetry acts on point electric operators of the

effective 3-d theory in the interior of the gauge cell. (There is also a separate dual center

symmetry which acts on magnetic operators of the effective theory.)

A.3 Roots, Kac labels, Killing form, and co-roots

The roots, Φ, are the non-zero weights of the adjoint representation of g. They are a set of

special non-zero elements of the root lattice, {α}, which are in 1-to-1 correspondence with

a basis of generators of g not in t. Φ has the property that one can choose (not uniquely)

a subset of r = rank(g) simple roots, Φs := {αi, i = 1, . . . , r}, which are a basis of Γr and

which separate the roots into two disjoint sets: the positive roots, Φ+, which are those

roots which can be written as non-negative integer linear combinations of the simple roots;

and the negative roots, Φ−, which are the negatives of the positive roots.

Given a choice of simple roots, Φs, there is a unique lowest root, α0, such that all other

roots are found by adding non-negative integer sums of simple roots to α0. This procedure

in fact determines the root system Φ from Φs and α0. Thus

r∑
i=0

kiαi = 0, k0 := 1, (A.7)

for some non-negative integers ki called the Kac labels (or marks, or sometimes Coxeter

labels) of the αi. The sum of the Kac labels,

h :=

r∑
i=0

ki, (A.8)

is called the Coxeter number.

In addition to its linear structure, t comes with a positive definite real inner product

inherited from the Killing form on g: (e, f) := tr(ad(e)ad(f)) for e, f ∈ g. Upon restricting

to a CSA t, one finds that (µ, ν) =
∑

α∈Φ α(µ)α(ν) for µ, ν ∈ t. This inner product is

defined up to a single overall normalization for simple g.
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Choosing a normalization, the inner product can be used to select a canonical identi-

fication between t and its dual t∗. In particular, to each λ ∈ t∗, define λ∗ ∈ t by

(λ∗, ϕ) := λ(ϕ) ∀ϕ ∈ t. (A.9)

Likewise, t∗ inherits an inner product from t via the duality map:

(λ, µ) := (λ∗, µ∗) = λ(µ∗) ∀λ, µ ∈ t∗. (A.10)

(Note that we are using the same symbol for the Killing form on t as for the inverse Killing

form on t∗.)

Co-roots, α∨, are elements of t associated to each root, and are defined by

α∨ :=
2α∗

(α, α)
, (A.11)

which is independent of the normalization of the Killing form. When α, β ∈ Φ, then β(α∨)

are integers for all simple Lie algebras.

Aij := αi(α
∨
j ), αi ∈ Φs, (A.12)

are the elements of the Cartan matrix of the algebra. By including a row and column for

the lowest root α0 in the same way, one defines the extended Cartan matrix.

The charge lattices described in the last subsection can be computed as follows. The

root lattice, Γr, is the integral span of the simple roots {αi}. The co-root lattice, Γ∨r ,

is spanned by the simple co-roots {α∨i }. The weight lattice, Γw is spanned by the fun-

damental weights {ωi} defined by ωi(α
∨
j ) = δij . Finally the co-weight lattice, Γ∨w, is

spanned by the fundamental co-weights {ω∨i } defined by αi(ω
∨
j ) = δij , or, equivalently,

by ω∨i = 2ω∗i /(αi, αi).

The extended Dynkin diagram associated to a Lie algebra consists of nodes corre-

sponding to each simple root and to the lowest root, together with AijAji lines linking the

ith and jth nodes. The extended Dynkin diagrams with the Kac labels for all simple Lie

algebras are shown in figure 7.

The dual Kac labels (co-marks), k∨i , are defined analogously to the Kac labels by

r∑
i=0

k∨i α
∨
i = 0, k∨0 := 1, (A.13)

and the dual Coxeter number is their sum

h∨ :=

r∑
i=1

k∨i . (A.14)

For simply-laced algebras, the Kac labels and their duals are the same. For non-simply-

laced algebras, if the ratio of the lengths-squared of the long roots to the short roots is p,

then the dual Kac labels for the short roots are 1/p times their Kac labels, and are the

same for the long roots. The dual Kac labels are integers by virtue of the integrality of the
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g Ar Br>1 Cr Dr>2 E6 E7 E8 F4 G2

h r+1 2r 2r 2r−2 12 18 30 12 6

h∨ r+1 2r−1 r+1 2r−2 12 18 30 9 4

Table 4. Coxeter and dual Coxeter numbers of the simple Lie algebras.

Cartan matrix. The Coxeter numbers and dual Coxeter numbers for all simple Lie algebras

are given in table 4. The dual Coexeter numbers also satisfy the identity

rh∨ = nL + (S/L)2 nS (A.15)

where r := rank(g), nL,S := number of long and short roots, and L, S := lengths of long

and short roots.

The Killing form only appears in the gauge theory lagrangian (2.1) multiplied by 1/g2,

so its normalization can always be absorbed in a rescaling of the gauge coupling. The

instanton number can be written in a normalization-independent way as [73]

ν :=
(α0, α0)

4

1

(2π)2

∫
(F∧,F ) =

(α0, α0)

32π2

∫
d4x (Fµν , F̃µν) ∈ Z, (A.16)

where α0 is a long root. (This is normalization-independent since α0 ∈ t∗ and Fµν ∈ t,

so the two Killing forms are inverses of one another.) With this definition, the instanton

number, ν, is an integer for finite action configurations on R4 and a ν = 1 configuration

exists for all g. Then with the theta-angle term in the action, Sθ := iθν, θ has period 2π.

Nevertheless, when considering instanton configurations it is convenient (and conven-

tional) to fix a particular normalization of the Killing form (or, equivalently, of the coupling

constant) such that the one-instanton action is 8π2/g2. This normalization corresponds to

the one in which long roots have length
√

2:

(α0, α0) = 2. (A.17)

The Dynkin index of the representation R, denoted T (R), is expressed in terms of the

weights, λ, of R by

T (R) =
1

r

∑
λ∈R

(λ, λ). (A.18)

In the above normalization, the index of the adjoint representation is given by the dual

Coxeter number,

T (ad) = 2h∨, (A.19)

and, in general, with this normalization T (R) is an integer which counts the number of

zero modes of the Dirac equation for spin-1/2 fermions in the representation R in a 1-

instanton background.
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A.4 Affine Weyl chambers and gauge cells

Further gauge identifications on t are provided by the Weyl group, W (g). W is the group

of real linear transformations on t which preserves Φ (i.e., permutes the roots). It includes

a reflection σα for each α ∈ Φ which acts on t∗ as σα(µ) := µ − µ(α∨)α for µ ∈ t∗. W is

generated by σα with α ∈ Φs. W acts on t by defining σα(µ)(ϕ) = µ(σα(ϕ)), which gives

σα(ϕ) := ϕ− 2α(ϕ)α∗, for ϕ ∈ t. (A.20)

This reflection fixes the hyperplane α(ϕ) = 0 through the origin in t perpendicular to

the root α.

t is identified under gauge transformations generated by Γ∨r lattice translations and W

transformations, which together generate the residual discrete gauge group,

Ŵ := W n Γ∨r . (A.21)

We call a fundamental domain of the action of Ŵ on t a “gauge cell” and denote it by

T̂ ' t/Ŵ . (A.22)

A fundamental domain of the action of Ŵ on t is also called an affine Weyl chamber. A

conveneint choice of affine Weyl chamber is

T̂ := {ϕ ∈ t | 0 ≤ α(ϕ) for all α ∈ Φs, and − α0(ϕ) ≤ 1} ' t/Ŵ , (A.23)

where α0 is the lowest root [74]. The α0(ϕ) = −1 wall of T̂ are those ϕ fixed by a

combination of a Γ∨r translation and a σα0 Weyl reflection.

The gauge cell T̂ is the object we are interested in, since it is the CSA modulo gauge

equivalences. At points in the interior of T̂ the unbroken gauge group is U(1)r, while at

points on its boundary (i.e., points fixed by some element of Ŵ ) the unbroken gauge group

will be enhanced.

B Explicit root systems and gauge cells for the simple Lie algebras

The extended (or untwisted affine) Dynkin diagrams for all simple Lie algebras are shown

in figure 7, with an arbitrary labeling of the simple roots (we follow Dynkin) and the lowest

root together with their Kac labels. The extended Dynkin diagrams have multiple uses.

(Indeed, the whole associated Lie algebra can be reconstructed from them.) Below we will

use them to construct the roots systems of the simple Lie algebras in an explicit basis, and

give a coordinate description of their gauge cells.

It is also useful to note that the center of G̃ can be read off from the extended Dynkin

diagram as the group of diagram symmetries (i.e., disregarding node labels) modulo the

symmetry group of the Dynkin diagram with the lowest root node eliminated. For example,

the Ê6 diagram symmetry is S3, permuting the three “legs” of the diagram, while the

E6 diagram symmetry (without the 0-node) is Z2, switching the 1-2 nodes with the 5-

4 nodes. Thus Z(Ẽ6) = S3/Z2 = Z3. Furthermore, the Z(G̃) symmetry action on the
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Figure 7. Extended Dynkin diagrams for the simple Lie algebras. Numbers inside the nodes label

the simple roots, while the red node with label “0” is the lowest root. Numbers besides the nodes

are the Kac labels.

diagram nodes can be translated directly to translations of the root lattice by weight

vectors using the notion of fundamental weights associated to the Dynkin nodes (which we

do not describe here).

Finally, the pattern of gauge symmetry breaking due to a given 〈ϕ〉 can be easily read

off from the extended Dynkin diagram. If the minimum of the 1-loop potential is at ϕ ∈ T̂ ,

then eliminate from the extended Dynkin diagram those nodes i such that αi(ϕ) /∈ Z.

The remaining nodes form the Dynkin diagram of the unbroken semi-simple subgroup;

there are also as many unbroken U(1) factors as needed for the rank of the total unbroken

subgroup to be r.

In what follows we write the simple roots for the Lie algebras in a convenient basis,

and then derive the associated gauge cells. The bases we use for the classical Lie algebras

are standard ones (perhaps up to a relabeling) found, e.g., in [75, 76]. For the E6 and E7

exceptional algebras we use the somewhat more convenient bases used by [77].

In all of what follows {ei} is an orthonormal basis of RN ⊃ t∗ and {ei} is a basis of

(RN )∗ ⊃ t dual to the {ei} so that ei(e
j) = δji and the ei are also orthonormal. Thus,

with respect to this inner product, e∗i = ei, and a general element ϕ ∈ t then has the
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coordinate expansion

ϕ = ϕie
i. (B.1)

The normalization of the root systems constructed below is chosen for notational conve-

nience (i.e., keeping coordinates rational) and in particular corresponds to lengths-squared

of the long roots being 2 for all algebras except CN and G2 for which instead the short

roots have lengths-squared 2.

We start with the familiar AN−1 = SU(N) algebra for which we give some details to

show the method, and then just summarize the results for the other algebras.

B.1 AN−1

A convenient choice of coordinates realizing the simple roots and highest root (the negative

of the lowest root) invariantly summarized in the affine Dynkin diagram in figure 7 is

Φs = {αi := ei − ei+1 , 1 ≤ i ≤ N − 1},

−α0 = e1 − eN =

N−1∑
i=1

αi. (B.2)

Subtracting simple roots from the highest root then generates the positive roots

Φ+ = {ei − ej , 1 ≤ i < j ≤ N}. (B.3)

Note that in these coordinates the roots span only the t∗ ' RN−1 hyperplane consisting of

elements ϕ∗ := ϕiei ∈ RN such that
∑

i ϕ
i = 0. Then

t = {ϕ = ϕie
i |
∑

iϕi = 0}. (B.4)

Given the root lattice, the weight lattice and co-root and co-weight lattices can be

deduced from the lattice isomorphisms (A.2) and (A.3). The basis of co-weights {ω∨j}
dual to the simple roots, defined by αi(ω

∨j) = δji , is ω∨j = (
∑

i≤j e
i) − j

N

∑
i e
i. They

generate the lattice Γ∨w ∈ t with simpler basis Γ∨w = span{ei− 1
N

∑
j e

j}. By GNO-duality, a

basis {α∨i} of the co-root lattice is given by the co-root map (A.11) α∨i = (αi)
∨ = ei−ei+1.

These generate the co-root lattice Γ∨r = span
{
ei − ej

}
. The basis of the weight lattice dual

to the simple co-roots is ωj = (
∑

i≤j ei) −
j
N

∑
i ei. They generate the weight lattice Γw

with simpler basis Γw = span{ei− 1
N

∑
j ej}. (Note that, despite our notation, ω∨i 6= (ωi)

∨.

The co-root map (A.11) only maps roots to co-roots.)

The gauge cell (or affine Weyl chamber) (A.23) is then given by

T̂ =
{

1 + ϕN ≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN and
∑

iϕi = 0
}
, (B.5)

which implies that 0 ≥ ϕN ≥ 1
N −1. The center symmetry Z(G̃) ' π1(Gad) ' Γ∨w/Γ

∨
r ' ZN

acts by translations by elements of Γ∨w modulo Ŵ , equivalence classes of which are given

by ωj , j ∈ {1, . . . , N} where the Ŵ = W n Γ∨r action is given by combinations of Γ∨r
translations (i.e., by integral linear combinations of the co-roots) and Weyl group elements
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which act as permutations on the 1 ≤ i, j ≤ N indices. Thus the ZN center symmetry is

generated by ρ = [ω1] (or ωN−1) acting as ρ : ϕj → ϕπ(j) + δπ(j),1 − 1
N + nj for arbitrary

permutation π of the indices and integers ni such that
∑
nj = 0. Choosing π to be a

generator of the cyclic permutation of all N indices, we have

ρ : ϕj → ϕ′j =


ϕN + 1− 1

N
for j = 1,

ϕj−1 −
1

N
for j > 1,

(B.6)

which is easily checked to map T̂
G̃

to itself, and to obey ρN = 1. A fundamental domain

of the action of ρ on T̂ , and can be chosen to be

T̂ /Z(G̃) =

{
N − 1

2N
≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN ≥ −

N − 1

2N
and

∑
iϕi = 0

}
. (B.7)

A center-symmetric vacuum is one which is a fixed point of the ZN action, ρ(ϕ) = ϕ,

for which there is a unique solution:

f.p.(ρ) =

{
ϕ

∣∣∣∣ ϕj =
N + 1− 2j

2N

}
. (B.8)

(When N is not prime there can exist manifolds of points invariant under non-trivial proper

subgroups of ZN as well.)

B.2 BN

The BN root system and gauge cell are

Φs = {αi = ei − ei+1 , 1 ≤ i ≤ N − 1, and αN = eN},

Φ+ = {ei ± ej , 1 ≤ i < j ≤ N, and ei , 1 ≤ i ≤ N},

−α0 = e1 + e2 = α1 +

N∑
i=2

2αi.

T̂ = {1− ϕ2 ≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN ≥ 0},

T̂ /Z(G̃) =

{
1

2
≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN ≥ 0

}
.

The center symmetry Z(G̃) ' Z2 is generated by ρ which maps T̂ to itself with action and

fixed points

ρ : ϕj →

{
1− ϕ1 for j = 1,

ϕj for j > 1,
f.p.(ρ) =

{
ϕ

∣∣∣∣ ϕ1 =
1

2

}
. (B.9)

Thus the center-symmetric fixed point set has dimension N − 1. Points on the boundaries

of T̂ have the enhanced gauge symmetries

ϕj = ϕj+1 = · · · = ϕj+n−1


= 0 ⇒ ∃ unbroken SO(2n+ 1),

= 1
2 ⇒ ∃ unbroken SO(2n),

6= 0, 1
2 ⇒ ∃ unbroken U(n).

(B.10)
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B.3 CN

The CN root system and gauge cell are

Φs = {α1 = ei − ei+1 , 1 ≤ i ≤ N − 1, and αN = 2eN},

Φ+ = {ei ± ej , 1 ≤ i < j ≤ N, and 2ei , 1 ≤ i ≤ N},

−α0 = 2e1 =
N−1∑
i=1

2αi + αN .

T̂ =

{
1

2
≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN ≥ 0

}
.

T̂ /Z(G̃) =

{
1

2
− ϕN ≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN

}
.

Z(G̃) ' Z2 is generated by ρ which has action and fixed points

ρ : ϕj →
1

2
− ϕN+1−j , f.p.(ρ) =

{
ϕ

∣∣∣∣ ϕj + ϕN+1−j =
1

2

}
. (B.11)

The center-symmetric fixed point set has dimension bN2 c. Points on the boundaries of the

gauge cell have the enhanced gauge symmetries

ϕj = ϕj+1 = · · · = ϕj+n−1


= 0 ⇒ ∃ unbroken Sp(2n),

=
1

2
⇒ ∃ unbroken SO(2n),

6= 0,
1

2
⇒ ∃ unbroken U(n).

(B.12)

B.4 DN

The DN root system and gauge cell are

Φs = {αi = ei − ei+1 , 1 ≤ i ≤ N − 1, and αN = eN−1 + eN},

Φ+ = {ei ± ej , 1 ≤ i < j ≤ N},

−α0 = e1 + e2 = α1 +

N−2∑
i=2

2αi + αN−1 + αN .

T̂ = {1− ϕ2 ≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN−1 ≥ |ϕN |},

T̂ /Z(G̃) =

{
1

2
≥ ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN ≥ 0

}
.
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Z(G̃) ' Z4 or Z2 × Z2, depending on whether N is odd or even, respectively. If N is odd,

then a generator σ of Z4 which maps the gauge cell to itself has action and fixed point sets

σ : ϕj →


1

2
+ ϕN for j = 1,

1

2
− ϕN+1−j for j > 1,

f.p.(σ) =

{
ϕ

∣∣∣∣ ϕ1 =
1

2
, ϕj + ϕN+1−j =

1

2
, ϕN = 0

}
,

f.p.(σ2) =

{
ϕ

∣∣∣∣ ϕ1 =
1

2
, ϕN = 0

}
, (B.13)

which are dimension (N−3)/2 and (N−2) subsets of T̂ , respectively. If N is even, then

generators σ± of each Z2 factor which map the gauge cell to itself have action and fixed

point sets

σ± : ϕj →



1

2
± ϕN for j = 1,

1

2
− ϕN+1−j for 1 < j < N ,

±1

2
± ϕ1 for j = N ,

f.p.(σ±) =

{
ϕ

∣∣∣∣ ϕ1 ± ϕN = ϕj + ϕN+1−j =
1

2
, 1 < j < N

}
,

f.p.(σ+σ−) =

{
ϕ

∣∣∣∣ ϕ1 =
1

2
, ϕN = 0

}
, (B.14)

which are dimension N/2 and (N−2) subsets of T̂
G̃

, respectively. Note that points on the

boundaries at ϕ1 = 1
2 or ϕN = 0 do not necessarily preserve all or even part of the center

symmetry. Points on the boundaries of T̂ have enhanced gauge symmetry,

ϕj = ϕj+1 = · · · = ϕj+n−1


= 0 or

1

2
⇒ ∃ unbroken SO(2n),

6= 0,
1

2
⇒ ∃ unbroken U(n).

(B.15)

B.5 Exceptional algebras

E8. There is no center symmetry and

Φs =

{
αi = ei+1 − ei+2 (1 ≤ i ≤ 6) , α7 =

1

2

(
e1 −

∑7
i=2ei + e8

)
, α8 = e7 + e8

}
Φ+ =

{
1

2

(
e1 +

8∑
i=2

(−)niei

)
(sum ni even) , ei ± ej (1 ≤ i < j ≤ 8)

}
−α0 = e1 + e2 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

T̂ =

{
1 ≥ ϕ1 + ϕ2 , ϕ1 + ϕ8 ≥

7∑
i=2

ϕi , ϕ2 ≥ · · · ≥ ϕ7 ≥ |ϕ8|
}
.

– 92 –



J
H
E
P
0
8
(
2
0
1
2
)
0
6
3

E7. The weights are all orthogonal to
∑8

i=1 ei in R8, so ϕie
i ∈ t have

∑8
i=1 ϕi = 0, which

we use to eliminate ϕ1 in the description of the gauge cell:

Φs =

{
αi = ei+1 − ei+2 (1 ≤ i ≤ 6) , α7 =

1

2

(
−

4∑
i=1

ei +
8∑
i=5

ei

)}

Φ+ =

{
1

2

(
−e1+

8∑
i=2

(−)niei

)
(three ni odd), ei−ej (2 ≤ i<j≤ 8), ei−e1 (2 ≤ i≤ 8)

}
−α0 = e2 − e1 = 2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α6 + 2α7

T̂ =

{
1−

8∑
i=2

ϕi ≥ ϕ2 ≥ · · · ≥ ϕ8 ,
8∑
i=5

ϕi ≥ 0

}

T̂ /Z(G̃) =

{
1−

8∑
i=2

ϕi ≥ ϕ2 ≥ ϕ3 ≥ ϕ4 ≥
1

8
≥ ϕ5 ≥ · · · ≥ ϕ8 ,

8∑
i=5

ϕi ≥ 0

}
.

Z(G̃) ' Z2 is generated by ρ which maps T̂ to itself with action and fixed points

ρ : ϕj →


−ϕ9−j −

3

4
for j = 1, 8,

−ϕ9−j +
1

4
for 2 ≤ j ≤ 7,

f.p.(ρ) =

{
ϕ

∣∣∣∣ ϕj + ϕ9−j =
1

4
, 2 ≤ j ≤ 7

}
. (B.16)

The center-symmetric fixed point set is a 4-dimensional subset of T̂ .

E6. The weights are all orthogonal to
∑8

i=1 ei and to e1 + e8 in R8, so ϕie
i ∈ t have

ϕ1 + ϕ8 =
∑7

i=2 ϕi = 0, which we can use to eliminate ϕ7 and ϕ8 in the description of the

gauge cell:

Φs =

{
αi = ei+2 − ei+1 (1 ≥ i ≥ 5) , α6 =

1

2

( 4∑
i=1

ei −
8∑
i=5

ei

)}

Φ+ =

{
1

2

(
e1+

7∑
i=2

(−)niei − e8

)
(three odd ni), ei − ej (7 ≥ i > j ≥ 2), e1 − e8

}
−α0 = e1 − e8 = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6

T̂ =

{
1

2
≥ ϕ1 ≥ −

4∑
i=2

ϕi, −
6∑
i=2

ϕi ≥ ϕ6 ≥ · · · ≥ ϕ3 ≥ ϕ2

}

T̂ /Z(G̃) =

{
ϕ ∈ T̂

G̃

∣∣∣∣ 1−2ϕ1 ≥ ϕ3−ϕ2 ≥ −2ϕ6−
5∑
i=2

ϕi

and ϕ4−ϕ3 ≥ ϕ6−ϕ5 ≥
4∑
i=1

ϕi

}
.
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Z(G̃) ' Z3 is generated by ρ which maps the affine Weyl chamber to itself with action and

fixed points

ρ :



ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6


→



1
2 + 1

2ϕ2 − 1
2ϕ3

−1
6 + 1

2ϕ2 + 1
2ϕ3 +

∑6
i=4 ϕi

−1
6 −

1
2ϕ2 − 1

2ϕ3 − ϕ6

−1
6 −

1
2ϕ2 − 1

2ϕ3 − ϕ5

−1
6 −

1
2ϕ2 − 1

2ϕ3 − ϕ4

−1
6 + 1

2ϕ2 + 1
2ϕ3 + ϕ1


(B.17)

f.p.(ρ) =

{
ϕ

∣∣∣∣ ϕ2 = −2

3
+ ϕ1, ϕ3 = −ϕ6 =

1

3
− ϕ1, ϕ5 = −ϕ4

}
.

The center-symmetric fixed point set is a 2-dimensional subset of T̂ .

F4. There is no center symmetry and

Φs =

{
α1 = e2−e3 , α2 = e3−e4 , α3 = e4 , α4 =

1

2
(e1−e2−e3−e4)

}
,

Φ+ =

{
ei , ei ± ej ,

1

2
(e1±e2±e3±e4)

}
−α0 = e1+e2 = 2α1 + 3α2 + 4α3 + 2α4.

T̂ = {1 ≥ ϕ1 + ϕ2 , ϕ1 ≥ ϕ2 + ϕ3 + ϕ4 , ϕ2 ≥ ϕ3 ≥ ϕ4 ≥ 0}.

G2. There is no center symmetry and the root system and gauge cell in a plane orthogonal

to e1 + e2 + e3 in R3 are given by

Φs = {α1 = 2e2−e1−e3 , α2 = e1−e2},

Φ+ = {e1−e2 , e2−e3 , e1−e3 , 2e1−e2−e3 , 2e2−e1−e3 , e1+e2−2e3},

−α0 = e1+e2−2e3 = 2α1 + 3α2.

T̂ =

{
1

3
≥ ϕ1 + ϕ2 , ϕ1 ≥ ϕ2 ≥ 0 , and ϕ1 + ϕ2 + ϕ3 = 0

}
.
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