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ABSTRACT: We perform an integral reduction for the 3-loop effective gauge coupling and
screening mass of QCD at high temperatures, defined as matching coefficients appearing
in the dimensionally reduced effective field theory (EQCD). Expressing both parameters
in terms of a set master (sum-) integrals, we show explicit gauge parameter independence.
The lack of suitable methods for solving the comparatively large number of master integrals
forbids the complete evaluation at the moment. Taking one generic class of masters as an
example, we highlight the calculational techniques involved. The full result would allow to
improve on one of the classic probes for the convergence of the weak-coupling expansion
at high temperatures, namely the comparison of full and effective theory determinations of
the spatial string tension. Furthermore, the full result would also allow to determine one
new contribution of order (9(97) to the pressure of hot QCD.
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1 Introduction

Thermal QCD at high temperatures (7') exhibits three different momentum scales. It has
been known [1, 2] for a long time that the “soft” static color-electric modes p ~ ¢gT', where
g is the gauge coupling, are responsible for the slow convergence whereas the “ultra-soft”
static color-magnetic modes p ~ ¢?T cause the well-known perturbative breakdown [3].
However, perturbation theory restricted to the “hard” scale p ~ 27T can be treated with
conventional weak-coupling methods, while the soft and ultra-soft scales are only accessi-
ble through improved analytic methods or non-perturbatively via lattice simulations, as
is especially the case for the ultra-soft ¢?7" scale. Here p denotes the characteristic mo-
mentum scale, g the gauge coupling and 7" the temperature. The infrared problems which
cause the breakdown of perturbation theory can be isolated into a three-dimensional (3D)
effective field theory called magnetostatic QCD (MQCD) and studied non-perturbatively
with lattice simulations. Before computing various quantities in this framework a num-
ber of perturbative “matching” computations are necessary [4, 5], in order to relate the
parameters of the effective theory with those of thermal QCD.



The plan of this paper is the following. In section 2 we review the most important
facts of the dimensionally reduced effective field theory framework and show how to sys-
tematically determine the effective gauge coupling gg and screening mass mg. In section 3
we explain some technical details about the integral reduction step, while in section 4 we
discuss the structure of the explicit result for the one-, two-, and three-loop corrections,
whose rather lengthy coefficients are detailed in the appendix. Section 5 contains the eval-
uation of a new class of master sum-integrals that appear in our result. We finally discuss
possible applications of our results in section 6, before we conclude in section 7.

2 Effective gauge coupling and screening mass

We consider QCD at finite temperature with the gauge group SU(V.) and N; massless
flavors of quarks. Before gauge fixing, the bare Euclidean Lagrangian in dimensional reg-
ularization reads

1/T
Socp :/ dr/ddchCD, (2.1)
0

1 _

where T is the temperature; d = 3 — 2¢ denotes the number of spatial dimensions, such that
Greek indices run as p,v = 0,...,d; Ff, = 0,A] — 9, A} + gf“bcAZAf/ and D, = 19, —
igAyT?, where the T are hermitian generators of SU(N¢) with normalization Tr[T°T"] =
6% /2; we use hermitian Dirac matrices 'y): = Y, {7V W} = 20; g is the bare gauge
coupling; and v carries Dirac, color, and flavor indices. For the group theory factors, we
use the standard symbols Cy = N¢, Cp = (N2 —1)/(2N.).

At sufficiently high temperatures, the long-distance physics of eq. (2.2) can be described
by a simpler, dimensionally reduced effective field theory [1, 2, 4, 5]:

Seqcp = /dda? LEqep (2.3)
1
Lrqep = JFFS + TrlDi, Bol* + miTe[BF) + ADTB + AP T(BY +... ., (24)

where i =1,....d, Fj; = 0;B] —&-B}I—FQEfabCBfB]C- and D; = 0; —igg B;. The electrostatic
gauge fields Bf and magnetostatic gauge fields B’ appearing in the theory above can be
related (up to normalization) to the zero modes of Af, of thermal QCD in eq. (2.2).

The effective parameters in eq. (2.4), which we are ultimately interested in, can be
obtained by matching. This means, we require the same result on the QCD and EQCD
side within the domain of validity. A convenient way to perform the matching computation
is to use a strict perturbation expansion in ¢g?. On both sides, the expansion is afflicted
with infrared divergences. These divergences are screened by plasma effects and can be
taken into account (at least for electrostatic gluons) by resumming an infinite set of dia-
grams. Screening of magnetostatic gluons is a completely non-perturbative effect. For the
matching computation, it is not necessary to worry about the infrared divergences because
the matching parameters are only sensitive to the effects of large momenta. All infrared
divergences which occur can be removed by choosing a convenient infrared cutoff. It is
essential to choose the same infrared cutoff in both theories.



2.1 Relation for m]%]

In order to establish a relation between the parameters of the theories egs. (2.2),(2.4),
consider the electric screening mass mej, defined in the full theory! by the pole of the static
o propagator,

0 = p* + oo (p?)| ) . (2.5)

po=0, p2=—m2

On the effective theory side, the electric screening mass is, equivalently, defined as the pole
of the 3d adjoint scalar By propagator,

0 = p* + mg + Heqep (PY)] (2.6)

— 2
p2__mel ’

where IIgqcep denotes the By self-energy on EQCD side.

Noting that the self-energies start at one-loop order, the leading-order solutions for mgl
will be suppressed by the respective coupling parameters, such that p? is to be regarded
perturbatively small, hence allowing for a Taylor expansion of the “on-shell” self-energies
around zero. For eq. (2.5), one needs (let us write IIg = Ilpp from now on)

g (—md) = Hg(0) — mJIE(0) + . ..

0o S
= ¢ Tga(0) —m% > ¢°" My, (0) + ..., (2.7)
n=1 n=1

where in a second step we have introduced the n-loop self-energy coefficients Ilg,. From
egs. (2.5) and (2.7), we can express the electric screening mass m? in terms of Taylor
coefficients up to next-to-next to leading order (NNLO)

ma = g°p1(0) + g* [Mg2(0) — I, (0)Ig (0)] + ¢° [Tgs(0) — I, (0)E2(0) —

— Tl (0) i1 (0) + I (0) (Tgn (0))° + Ty (0) (T (0))*] + O(g®) - (2.8)

Diagrams contributing to the various orders of Il are depicted in figure 1.

To complete the matching computation for mzl, we have to compute IIgqcp on the
EQCD side in a strict perturbative expansion. Again treating the “on-shell” momentum
p? (as well as the tree-level mass m%) as perturbatively small, due to the fact that the only
scale in HEQCD(p2) is p?, after Taylor expansion the dimensionally regularized integrals
(being scale-free) vanish identically.? From eq. (2.6) it hence follows that

mi =m?. (2.9)

2.2 Relation for g%

In order to relate the effective 3d gauge coupling g]% to the parameters of the full theory, we
can choose whether to go through a 3-point or a 4-point function, in addition to a 2-point

'In the presence of an infrared cut-off; otherwise, a non-perturbative definition is needed.
ZNote that this is not the case for the coefficients of eq. (2.7), since those are vacuum sum-integrals in
the full theory and hence know about the temperature scale T'.
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Figure 1. The 1-loop, 2-loop and some 3-loop self-energy diagrams in the background field gauge.
Wavy lines represent gauge fields, dotted lines ghosts, and solid lines fermions.

function. However, it is further possible to simplify this task to a single 2-point calculation
using the background field gauge method (see e.g. ref. [6]). Let us give the main argument
here, closely following ref. [7].

The effective Lagrangian eq. (2.4) follows from integrating out the hard (p ~ T') scales
which, symbolically, produces an expression of the form

Leg ~ ¢2(0B)? 4 ¢3g(0B)B? + c4g®B* + . .., (2.10)
where B denotes the background field potential and the coefficients ¢; = 1 + (9(92) . Re-
defining now the effective field as Bgﬁ = B2, from Leg ~ (0Begt)? + c3Cy 3/2 g(aBeﬂ‘)Bgﬁ +
cacy 2ng§H + ... we can read off the effective gauge coupling (considering the gauge in-

—3/2 1/2
4

variant structure F2) gog = c3Cy g =cy ey g. Furthermore, since the effective action is

gauge invariant with respect to both Beg as well as B [6], we have ca = ¢3 = ¢4. Finally
transforming to 3d notation, scaling the fields B — T'/2B% and comparing fol/ Tar Lqcp
with Lgqcp, it follows that

gE:T1/202_1/29. (2.11)

Now we proceed in the same way with the effective gauge coupling gr as for the
screening mass mg. From eq. (2.11) we thus obtain

g8 =T {g* = 6T (0) + ¢° [ (11 (0))” — Tip(0)] +

£ 210, 01T, (0) — (115, 0))” ~ Ty 0)] + 0(6) |, 212)

where IIT denotes the transverse part of the (spatial part of the) self-energy

pPiPj pPiPj
I, (p) = <5 _ p;) tla (o) + 251 (7). (2.13)




To understand the split-up of I, in more detail, note that we can choose the external
momentum p purely spatial, p = (0,p), while the rest frame of the heat bath is time-
like, with Euclidean four-velocity u = (1,0), such that w-u = 1,u-p = 0. In this case
I1,, has three independent components (IIp;, II;o vanish identically). The loop correc-
tions to the spatially longitudinal part ITy, also vanish (which we will however explicitly
check in our computations), such that only two non-trivial functions, IIg and IIp, remain
(recall IIg = Igp).

Noting that the class of background field gauges still allows for a general gauge pa-
rameter £ (we denote (€)pere = 1 — (§)standard), We use the gauge field propagator

5 v 14
e @is

and verify gauge parameter cancellation in the end of our computations.

ab __ gab
D,ul/(q) - 5 |:

3 The reduction

After the Taylor expansion and decoupling of scalar products with external momentum,
all integrals that contribute to the self-energies up to three-loop order that are needed for
egs. (2.8) and (2.12) can be written as

o :?f (P13 (Po)g (Ps)g
whedefienenes = fp p p, [PE PR [PR[(Py — P2)2)? [(Py — P))e (P2 — Py)?
(3.1)

where P? = (P;)3 + p? = [(2n; + ¢;)7T)? + p? for i € {1,2,3} are bosonic (fermionic) loop
momenta for ¢; = 0 (1). The sum-integral symbol in eq. (3.1) is a shorthand for

# %M%TZ/ prE (3.2)

where p is the minimal subtraction (MS) scheme scale parameter, and we take d = 3 — 2e.

An essential part of this work deals with the reduction of integrals of the type in
eq. (3.1) to a small set of master integrals. We use the well-known integration by parts
(IBP) identities and identities following from exchanges of integration variables. Both
are implemented in a Laporta algorithm [8] using FORM [9, 10]. Compared to the well-
established Laporta-type algorithms for zero-temperature reductions, one of the main dif-
ferences here is that the IBP relations act only within the continuum (spatial) part of our
sum-integrals. Another important difference is that in general, linear shifts or exchanges
of integration momenta can cause a flip of bosonic and fermionic signature of the loop
momenta, such that extra care must be taken for topology mapping. A precursor of this
reduction algorithm had already been tested in ref. [7].

The main difference between the outcome of the 1-loop and 2-loop calculation on the
one side and the 3-loop correction on the other side is that the former ones are expressible
in terms of 1-loop tadpole sum-integrals which are known explicitly, see appendix A. This
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Figure 2. Top row: non-trivial vacuum topologies at 1-loop, 2-loop and 3-loop. Bottom row: types
of bosonic and fermionic master integrals. Lines (arrow-lines) corresponds to bosonic (fermionic)
propagators, respectively.

is no longer the case at 3-loop order. The mercedes- and spectacles topology shown on the
first line of figure 2 can be expressed in terms of basketball-type sum-integrals as well as
products of 1-loop tadpoles.

4 Structure of the result

After reduction, we can express all quantities as a sum of 1- and 3-loop master integrals
(there are no master integrals at 2-loop order, see [5, 11]) of the generic types depicted on
the second row of figure 2, the structure being

H3:ZaiAi+ijBj7 (4.1)
( J

where A;=1-1-1 with [e {I[;,f{,’;b} (4.2)
and Bj = basketball € {J,K,L} . (4.3)

A detailed version is given in the appendix, cf. egs. (C.14) and (C.15).
We have performed a number of cross-checks to confirm the validity of our results: the
longitudinal parts of the self-energy vanish identically

M3 =11, =0 for £&°,...,¢%, (4.4)

and the specific combinations of (bare) self-energy coefficients that build up m% (cf. eq. (2.8))
and g% (cf. eq. (2.12)) are gauge-parameter independent up to three-loop order.

The one-, and two-loop calculations have already been performed in ref. [7] which we
use as another serious cross-check of our independent calculation. We obtain full agreement
when comparing our egs. (C.1)—(C.4) and egs. (C.7)—(C.10) with that reference.

There is considerable experience of how to calculate the genuine 3-loop integrals B; up
to the constant term (which can typically only be represented in terms of two-dimensional
parameter integrals and evaluated numerically), see [12-14]. In section 5, we add to this
available knowledge a specific class of 3-loop (basketball-type) sum-integrals which appear
in our reduced expressions egs. (C.14) and (C.15).

It turns out, however, that most of the pre-factors b; are singular when expanded
around d = 3 —2¢ dimensions. Hence, we need to expand the integrals B; beyond their con-
stant term (in fact, to O(e) for Ilg and to O(e?) for II/;). As the conventional techniques for



computing these basketball-type integrals rely on a careful subtraction of sub-divergences
on a case-by-case basis, it appears quite difficult to extend the known techniques in order
to evaluate higher terms in the epsilon expansion.

To make progress, it might be advantageous to perform a change of basis, see e.g. [15],
in order to avoid or at least reduce the number of divergent pre-factors. Due to the large
number of integrals contained in our reduction tables, an algorithmic approach trying
out all possible different combinations of basis elements might be somewhat involved, but
certainly possible.

5 Evaluation of classes of master sum-integrals

After the successful reduction step, a number of non-trivial three-loop master sum-integrals
will have to be evaluated. Noting that all bosonic and fermionic one-loop sum-integrals
I and I” that appear in eqs. (C.1)-(C.10) as well as in eqs. (C.14), (C.15) are known
analytically (see appendix A), and noting that furthermore all 2-loop structures have been
reduced to products of 1-loop integrals, let us tackle the first non-trivial sub-class of master
integrals, the bosonic basketball

QM
B _ IM,O,O . 0
N.M = +N10,0,1,1;0,00 —

PQR [QQ]N (P _ Q)Z R2 (P N R)2 ) (51)

with N, M > 2. After a careful subtraction of all UV and IR divergences (for more details
see [12, 13, 16, 17]) we can write eq. (5.1) as

BN,M = /3 [A(N7 €, 1)5M,0 +BINM—1+26 + Ilo I]]‘\;[-i-é] + B]IV‘,/M +

AII(P)dp,0
+2[? S(N,Ll;M,O) +¢PQ [QQ]]S/’ ()FJT QQ;Q

a0 + BN oo + BJIV,M ;o (5.2)

where 8 = G(1,1,d + 1) stands for the 4d massless 1-loop bubble and 3 = G(%, 1,d+1)
is the 4d 1-loop propagator, where the function G reads (s12 = s1 + s2 etc.)

d 1 F(d — 31)1“(4 — SQ)F(SlQ — d)
G(s1, s2,d) = (p? 512_2/ =2 2 22 5.3
Cron ) =W | PRl o @n T sl — o) )
and S stands for the two-loop tadpole at finite-temperature,
S(sl S9, S3; a1 a2) — i \Qo\al ’PO‘C’Q
) e P QR (P - QP
= Z IZQ 12123_a12/2_2~ 61(81, 592,583,041, a2, d) s (5.4)



where the coefficients e; follow from IBP relations (for an example, see eq. (5.18) below).
Furthermore, the abbreviation A(sq, s2, s3) stands for a specific 2-loop tadpole

800 2T%( (25125 — 2d
Alst, 02,53) = ?;Q QPP QP <2§(T>§f;3_2d ! Nsr,sz.0), (55)
- 1
N(s1,82,53) = /pq P2 + 15[ + 1]%[(p — ¢)2]*3
_ F(slg — %)F(Sgg — g)F(% — 83)F(8123 — d)

(47T)dF(51)F(SQ)F(d/2)F(81233 — d) (56)
In eq. (5.2) we make use of the one-loop subtracted quantities
B 1 15} 21
ALP) = iR RE(R-P)? [P P2 (5:7)
- 1 B 214
A = - - .
Q) ¥, o ~ @ @ o)
as well as the three pieces
I / AH(P)Q(J)\/[ IT _ -~ AH(P)5Q0
Bw=-%lgre-ar W -ELome-ar 69
v o ATIQ)QY

where the primed sums denote > = > 20- 1t turns out, however, that Bi contains
an additional IR divergence which can be taken into account either by means of IBP re-
duction [16] or by subtraction by hand [13, 17], adding the appropriate zeros (massless
tadpoles which vanish in dimensional regularization). Performing a transformation to co-
ordinate space in d = 3 dimensions and evaluating the remaining sums give the 1d integral

representations
T6—2N 2N—1 o oo
n _ n
BN’M‘EZO = W (27TT) /0 dT BN,M(T) AW(T) s (511)
N-2 '
Bloar(r) =Y enir™ 37 {Lin_oyionr(e7®") + coth(r) Lin_14i-ar(e ")} (5.12)
1=0
N—-2N-2+n
. P(N) an _ . _
TN _ n  N-2+ , 2
BN (T) - _7;) ; m on CN+4niT " leN—Z—H—n(e T), (513)
N-2 .
S e [ N—=1—1_. _ 1_. _
Bym(r) =Y enir™? Z{zr Liy_1yi-n(e 2T)—§L1N—2+z‘—M(e 27”)} , (5.14)
=0

with Am(r) = coth(r) — L — % and where the cy,; are Fourier coefficients given by

max(s—2,1—s)
2m &
m _ S,n 1
Ve Ky my = 3 (5.15)

n=0




and ay, can be obtained by IBP reduction of the inner sum-integral of eq. (5.9), see [16].
Putting all ingredients together for the special case B3 5 (which is needed for m%, being
the coefficient of a4 in eq. (C.14)), evaluating the finite pieces numerically,

T? 0 ) _op 1\,. , _on  coth(r) . _o
Bi?‘e:o = 2(47r)4/0 dr An(r) {Ll_l(e 2 )—i—(coth(r)—i—T)Llo(e 2 )—l—f Lij (e 2 )}
2
- .02 11 168(1 1
Syt X 0-0297T96TSTI0507967168(1), (5.16)
1° > 1 1 1
v _ : —2r : —2r . —2r
32l0 = (gt /0 dr Am(r) {—2 Li_j(e™ ") + % Lig(e™") + ﬁLll(e )}
2
— x 0.0020065925001817061293(1) , (5.17)
2 (4m)*

and using (from IBP, see eq. (5.4))

(d—4)?
(d—2)(d—5)(d—7)

€i(3,1,1,2,0,d) = 8i2 s (5.18)

we obtain as final result for this new master integral (with Z] = ¢/(—1)/¢(-1))

T2 (47T?) =3¢ 41
Byo=-— -’ _ |1 - 27! 70.32026114816592109(1) €2 + O () | .
2= Tptamgrer |1+ (5 + e 22 o We+o)

(5.19)

For an important cross-check of this result, see appendix B.

6 Applications

To emphasize the necessity to pursue the matching computations as outlined in this note,
let us briefly discuss two applications that would become relevant once full results are
available.

The first immediate application involves the Debye screening mass m% of section 2.1
and concerns higher-order perturbative contributions to basic thermodynamic observables,
such as the pressure of hot QCD. In fact, once the quantity IIg3(0) of eq. (C.14) has been
fully determined, the mass term of EQCD (cf. eq. (2.4)) is available at NNLO, m% ~
GFPT?1+g>+g* + O(g6) ], where g is the dimensionless gauge coupling of full QCD. Now,
in the context of the effective theory setup for hot QCD, it turns out that the lowest-order
EQCD contribution to the full pressure, coming from the quadratic part of Lrqcp, enters
as ~ T'm3, [5], which translates to T4g?[14 ¢*+g*+O(g®) ], such that our 3-loop coefficient
contributes to (’)(97) in the QCD pressure. According to the systematics of effective theory,
due to the fact that there are typically large logarithms, a systematic ¢® evaluation of the
pressure (almost completely known at present, only missing a well-defined perturbative
4-loop computation [5, 18, 19]) has actually been coined physical leading order, since it is
the first order where all three physical scales (hard/soft/ultra-soft) have contributed. In
this respect, the (9(97) term would simply be next-to-leading order, and allow for a first
serious investigation of convergence properties.



Leaving the incomplete 0(96) (for which there exist numerical estimates, however,
from comparisons with lattice data, see e.g. [20, 21]) aside for the moment, there are
other sources of 0(97) contributions, of course: from the the MQCD pressure plus NLO
matching of the 3d MQCD gauge coupling 91%/1? from the terms proportional to the quartic
coupling Ag in the 3-loop EQCD pressure; from the 5-loop EQCD pressure (at Ag = 0),
which entails one of the conceptually simplest (3d, super-renormalizable, massive, vacuum-
diagram) computations at the 5-loop level, for which techniques are presently developed
by several groups; and from the leading terms of some higher-order operators in the EQCD
Lagrangian, denoted by dots in eq. (2.4), but classified in [22]. All but the last two of these
additional g7 contributions are already known.

A second immediate application involves the 3d EQCD gauge coupling g]% of section 2.2
and concerns precision-tests of the dimensional reduction setup, such as for the spatial
string tension o4, which parameterizes the large-area behavior of rectangular spatial Wilson
loops. As has been demonstrated in ref. [7], it can be systematically determined, as a
function of the temperature 7', in the dimensionally reduced effective theory setup, and then
compared to non-perturbative 4d lattice measurements. It turned out that the NLO result
for g% as obtained in [7] represents a considerable improvement over a 1-loop comparison
— giving a sizable correction factor as well as a first estimate of (renormalization) scale
dependence — while leaving room for NNLO effects, for which our 3-loop result for II7.5(0)
of eq. (C.15) is the last missing building block.

7 Conclusions

We have successfully reduced the NNLO contributions to the matching parameters m]%j

and g]% to a sum of scalar sum-integrals. These matching parameters play an important
role in higher-order evaluations of basic thermodynamic observables and in precision-tests
of the dimensional reduction setup respectively, and hence are needed with high accu-
racy. Our result passes the non-trivial checks of transversality as well as gauge-parameter
independence.

In a next step, a number of master integrals have to be evaluated. Although we
managed to map all of them to the relatively simple class of basketball-type ones, the
somewhat large number of masters that we need demand a semi-automated evaluation
strategy, which still has to be developed. As a first and encouraging step towards this goal,
we have demonstrated a systematic method to evaluate a certain class of such basketball-
type sum-integrals.

Once full results for the matching coefficients discussed here become available, there
are immediate applications to quantities of phenomenological interest, such as the pressure
of hot QCD, or the spatial string tension, as discussed in section 6 above. However, these
concrete applications will have to await progress in the art of sum-integration for now.
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A One- and two-loop vacuum sum-integrals

The one-loop bosonic tadpole is known analytically and reads

n Pn 271'3/2T4 NQ ‘T (m—3 Te

whereas the fermionic tadpole can be related to the corresponding bosonic one via

A:)L@ = i PO — (22m—n—3+2e . 1)[” (AQ)
{

py (P2)™ "

As mentioned above, via integration-by-parts relations all two-loop integrals are express-
ible in terms of products of two one-loop tadpoles which means they are also available
analytically up to arbitrary order in e.

B Check of new sum-integrals

We can cross-check our new result given in section 5 using IBP reduction of the V-type
topology which gives

4 3d* — 24d + 47
_ 70,0,0
V= I171’1:17170§07070 = m {4B372 + w B2,0} ) (B]‘)

where V stands for the spectacles-type diagram given in [14]:

. 1
V= inR PPQZ(P— QP R2(P - RP?
T? (4nT2eve) =3¢
4 (4m)te?

{1—|—AK1€—|—AK262—|—O(63) } , (B.2)

with AK; = % +4vg + 277, while AK> is known only numerically. Writing the coefficients
of our basketball-results, given in eq. (5.19) above as well as eq. (26) of [16], as

T2 47TT2 —3e

B372 = 32(471‘)4)62 |:b320 + bgor€ + 1)32252 + 0(53) :| , (B3)
T2 47TT2 —3e

Bag = 8((47r)46)2 [1 + bore + byoe? + 0(63) ] , (B.4)

to match the leading term of V it follows that the linear relations
bsoo =1, bga1 =0bor+4, bza2=bog+4boy —8 (B.5)

have to be satisfied. Our results presented above do indeed confirm these relations, which
we take as a nice check of our generic parameterizations. Eq. (B.5) provides a welcome
check of our numerical constants.

— 11 —



C Expansion coefficients up to three loops

For convenience, we here repeat the one- and two-loop coefficients that were already com-
puted in [7], adding the second derivatives that are needed for eq. (2.8). The one-loop
coefficients up to second derivative read

IIr1(0) =0, (C.1)
M (0) = (d = 1)[Cald = DI = 2N 1Y) (C.2)
T, (0) = %fog + %(d —95)19, (C.3)
b0 = 2= o - o[BS L g g, ()
114, (0) = % [11(1) - %OdJr 2¢ — igﬂ 19— %fo, (C.5)
" (0) = % [253 —dy 110d2+§(d—3)+éz(d—6)} 1§+%(1_dyg. (C.6)

The two-loop coefficients up to first derivative are given by (see also [7])
IIT2(0) =0, (C.7)

T2 (0) = (d— 1)(d — 3){(1 + &) [2Ne D = (@ = 1)C 17| Ca T8 + 2 NGy [ 1] - 1Y AS} ,

(C.8)
/ _ (d—3)(d—4) L 2\ ~2 70 70
Ts(0) = - ma -y 4 2 S AR
2 0 70 d3 2 39
—4[4CF—|—(1—6d—|—d)CA]NfIQIQ— S —6d*+5d—6) Ca
— (=14 +41d — 12d® + d3)cp] NelY fg}
PGt I PP [(1 — d)CAIY + 2N, f“} Ca 10
3d(d—7) ! H1 3
— 4(d — 6)(d — 1)Cp Ny [I? - fﬂ fg} : (C.9)

/ o (d_?’)
20) = s - n @24

+2(d — 4)(d — 1)[(2 —5d + d%) Ca +80F}Nf13fg

{ (56 + 315d — 231d* + 57d* — 5d*) CX I 19

+(d=1)[ (24 Td? + &%) Cx — 2 (28 + 24 — T + &) CF}fogfg}

(d-3)¢ 2 2 3y |2 70 10
+m{3(16—13d+3d)5—4(44—29d+7d —d)}CAIQIQ
(@=3)d-1) 070, (d—1) a2 B

3 gcANf1212+6(d_7)d 4 (6 + 15d — 10d” + d”) x
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xCﬂWPf—ﬁPg+PQJ2+Md—Bf+dﬂ+2M—7M%
+w—7xd—m@ﬂ[u-1xaﬁ-aNﬁﬂch@}. (C.10)
For presenting the outcome of the reduction procedure for the three-loop contributions,

which constitutes the main result of this paper, we denote the master integrals as in
figure (2), i.e. I, 1 for the 1-loop tadpoles of egs. (A.1) and (A.2), and

767 — 757
Tobontet =Tabitie £000 (C.11)

757 — 7B7
Koyt =Tobihie 001 (C.12)
avﬂv’y — Ia7ﬁ7’y (C‘lg)

a,b,e,d,e,f — “ab,ede,f;1,1,0

are 3-loop basketball-type integrals in a slightly more compact notation than eq. (3.1). The
results needed for egs. (2.8) and (2.12) then read

3 0,0,0 0,0,2 0,2,0 2,0,0 1,3,0
IE3(0) = Cy [al‘]2,1,0,0,1,1 + O‘2*]2,2,0,0,1,1 + 0‘3J3,1,0,0,1,1 + O‘4‘]3,1,0,0,1,1 + 0‘5J4,1,0,0,1,1

6,0,0 070 70 07070
+0‘6*]510011“‘047J5300114‘048*]620011"‘04S3I1I1I:a + a1l 515

+ CANV; [allKlo,’%g,o,m + a12Ki’10”8707272 + a13K11,’11,’8,0,3,1 +aig 12,710,’8,0,3,1
+ 0415[(3:%8,0,1,1 + alGKgfi’(()),o,m + 0417K22,’%8,0,271 + 0‘18K3,711:8,0,3,1
+ O‘19Kg,’§,’§,0,1,1 + a20K21,’21,’8,0,1,1 + a21K22,’g,’8,0,1,1 + aZQKg,’%g,o,m
+ 0‘23K3?,712,’8,0,1,1 + a24K§,’11,78,0,1,1 + 0‘25K§7710,’g,0,1,1 + a26K§,’i’8,0,2,1
+ 0‘27K§,’§,’8,0,1,1 + O‘ZSKi,’ll,’g,o,m + 0‘29Kz},’i’g,0,1,1 + 0‘30Kz,’12,’g,0,1,1
+ 0431K2’?’80 1,1+ a32K2’§’80 11t 0433K§’,’i’8,0,1,1 + a3 é:?,’g,o,l,l
+ 0‘35[(5 1 0 01,1 0‘36K5 1 0 01,11 0437Kg’11’80 11T QBSKS,’?,’(()),OJJ
+ O‘39K6 1 0 0211 a40K6 1 0 021t 0‘41Kels01% 0,2,1 T Q42 g,’g,’8,0,1,1
+ O‘43K67270 01,11 C“44K7’1 70 01,1 T 0‘45K771 ’0 01,11 0‘46K$,’%,0,1,1
+ 0‘47K?1 0,011 T 0‘48K%01% 01,1 T 0‘49L2 1 o 0,1,1 T @50 :252%8,0,1,1
+ a1 IDIVTY + aso IV I9T9 + as3 IVISTY + asg 12191 + ass IV IV TY
+ase IV IV + asr NI TS + ass IV IV IS + asg IVIS T + 04601_12@[:?}

+CalN? {aﬁng’?’g 01,11 a62L3’3’3,o,1,1 +assLg 00,11 + 064510011
+ 0465L4 1 o 01,1 T 0466L5 1 0 01,1 T aﬁ?Lgé:g,O,m + aﬁSLé:gjg,o,m

+a@ﬁﬁ@+amhh%+anﬁ$£+amﬁgg}
P 0,0,0 0,0,2 0,2,0 2,0,0
+ Ny Cp [0‘731:2,1,0,0,1,1 +araly5h 010+ 5Ly 00110 6L 0011

+ 0‘77L 100 1,1+ ars IV VIS + arg IVIS IS + 0480[1[212}
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+ NiC# [aSlK?:?:g,O,Q,l + a82K12,’%8,0,2,2 + a83K11:11:870,3,1 + a84K§,’?:8,0,1,1
+ 0485K§,’12,’8,0,2,1 + 0‘86K22,’%8,0,2,1 + 0487K21,’21,’(?,0,1,1 + 0‘88K22,’g,’8,0,1,1
+ 0489K§,’12,’8,0,1,1 + a90K§,’11,’8,0,1,1 + 0‘91K§,’(1J,’8,0,1,1 + g2 3%,’%,’8,0,2,1
+ 0493K§’§780 11T 0‘94Ki7i)”80 11T 0495K2712780 11T Q%Ki’?:g,o,m
+ 0‘97K 2 0 01,1 T a98K5 1 0 01,11 a99K5 1 0 0,1,1 T @100 g:(l):g,(],l,l
+ 04101[/3;1:07071’1 + a102[1 Il I3 + 04103[1 [1 I3 + 041()4]1 12 I2
+ o105 P19 + o6 ITISTS + cror IV IV IS + nnos INIS IS + a0 I IV IS
+mNﬁg@+amﬁ@@]
+ CaNtCr [allQK?,’?:g,og,l + 04113K12,7?,’8,0,2,2 + 0‘114Kg,’?,’8,0,1,1 + a115K3,712,78,0,2,1
+ 0‘116K§,7%8,0,2,1 + 0‘117K21,721,’8,0,1,1 + 0‘118K§,7g,’g,0,1,1 + a119K§,’12,’8,0,1,1
+ 0‘120K§,’11,’8,0,1,1 + al?lKg,’?,’g,o,l,l + 04122K§,’f,’g,0,2,1 + 04123K§,’§,’8,o,1,1
+ O‘124Ki,’i78,0,1,1 + 04125Ki712,’8,0,1,1 + 04126K2,7?,’8,0,1,1 + a127K2’(2),’8,0,1,1
+ 198Ky V0011 + @129 L5 700,11 + 130L5 10 0,00 + s I IV TY
+ onso IVITS + cnss IVIS TS + cnga I IS + s IV I9IS + s IV 1919
+a137112fglg , (C.14)
T3(0) = CA[BI 888011+B2J???8011 "‘53*]??33011 + B4 2’12’(?011
+ B, 5?128011 + Bo g,?,(())l)ll + BrJ: 78?((3)011 + Bs 77??871,1,1
+ B 88228—1,1,1 + BrolVIVIY + BV 1513 + 512121212]
0,0,0 1,1,0
+ CXNg {513[(1 10022t 14K 19051 + 515K1,1,0 032+ BP16K11 0041
+ 517K1,1,0 04,1 T 518KS,’?,’8,0,2,1 + 519Kg’12’0 03,11 520K22,’?,’8,0,3,1
+ 521K2’1,’0,0,4 1+ 522K37g’80 11t /323K3’1 ’o 01,1 T 524K§,’12,’8,0,2,1
+ Pas ?}:11,’0 0,21 1 B2 K, 3 i 0 031 7T 5271(3 10,031 T 528[(:(3):8:3,071,1
+ B29K3’2’0 011t 530K3’2’0 o111 531K4’1 ’o 011 532K2’12,’8,0,1,1
+533K4,1,0011 + Baa K 4100,1,1 + B35 K 410021 + B36 238011
+ B37K4,’2,’0,0,1,1 + 538K5,’1,’0,0,1,1 + 539K5,’1,’0,0,1,1 + 540K5,’1,’0,0,1,1
+ 541K§,’i’8,0,1,1 + 542K§,711,’8,0,1,1 + 543K§,’?,’8,0,1,1 + 544ngi’8,0,1,1
+ 545Kg,’i’8,0,1,1 + B46Kg:?:8,0,1,1 + 547K68,’g,’8,o,1,1 + 548K$,’i’8,0,1,1
+ 549K$’?’020 11+ 550K;’11’80 11+ 551K§’?’80 1 1t »352K§,’22,’8,0,1,1

10,0,0 8,0,2
+ 553[(7 2 0 01,1 T 554K8 1, —1 021 T 055 K57 21021 1 B56K5710.0.11

9,0 9,1 10,0,0
+ B57K8 1 0 011 T 558K8 10011 1 B59Kg 70 0,1,1 + 560K8,2,—1 0,1,1
9,1 0,0,0 0,0,0 0,
+ Bo1 Ky, —1 011 T Be2Lo90011+ Beslgio011 + 564L5,1,0,0,1,1

+ Bes IVIVTY + Bos IV IS IS + Ber IVITY + Bos VIS IS + Beo 171919
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+ B?o—fffgfg + 571f12—7g—f:(5) + 572—@[3[2 + 573I?f?—f2 + 574I?—f912
+ Brs IV IS IS + Br6IVISTS + Brr IV VY + Brs IV 1913 + Bro IR IS
+ B0 RIS T + B IRISES + Buo 9IS + B 131313

2 0,0,0 0,2,0
+ Ca Vg ﬁ84L22,0011+585L310011+ﬁ86L320011+587L410011

+ B88L5 100,11 T 589L5 100,11 T 590L§Z(1):8,o,1,1 + 591L;§28,—1,1,1
+ 592L8z220,71,1,1 + Bos VIV I + Boa VIV + Bos IV IS + Bog IV 1913
+ Bor IV IS + Bos IS IS TS + Boo 191519

+ N#Cp [5100L83238,071,1 + 5101Lg:(1):g,0,1,1 + 5102ng(2):(2),0,1,1 + ﬁ103L2€:8,0,1,1
+ 5104L§f:8,0,1,1 + 510511;1:(1):8,0,1,1 + 5106L§:(1):8,0,1,1 + Bror VIV 1Y
+ Bros IV IS IS + Broo IV IS + Brao VIS IS + B 151919

+ N¢Ch [ﬁ112K?:?:8,0,2,2 + 5113K?:?,’8,0,3,1 + ﬁ114K11,’11,’8,0,4,1 + 5115K12,’?,’8,0,4,1
+ 5116K§’?’80 21T ﬂll?Kg’l?,’g,o,:s,l + 5118K§,7?,’8,073,1 + 5119K§,’S:8,0,1,1
+ 5120K3 1.0,0,1,1 T ﬂ121K§’12’80 91 T 5122K§’11’80 21t 5123K?},’i’8,0,3,1
+ 5124K3’1 70 03,1 T Bras Ky 2 0 0111 5126K§’21’0 0111 5127K2,712:8,0,1,1
+ 5128K4’1 ’o 01,1 T ﬁl29K4’1 ’0 01,1 T 5130[{4’1 ’0 02171 5131K2’§’8,0,1,1
+Bl?»ZK42001 1 +5133K51001 1 Jr51!34K5,1,()()11 Jr5135[{51001 1
+ 5136K5’1 ’o 011 T /6137K671 ’0 0111 ﬂ138K671 ’0 01,1 1 Bizg 6,7?:(()),0,1,1
+ 5140K6 2,0,0,1,1 T ﬁ141K7 1.0,0,1,1 1 5142K;,1,0 01,1 T 5143[/(2):(2):8,0,1,1
+ 5144[/3:1:0,0,1,1 + ﬁ145L5:1:0,0,1,1 + Bue IV VT + Brar I VTS
+ Bras IV TSI + Brag IV IOTS + Buso IV IS IS + Prsi IRIST + Biso IR IITY
+ Busa LIS + Bisa IV IV + Brss IV IS IS + Bus IV ITS + Brsr IV IV IS
+ Puss IV ISTS + Biso IRIITS + Biso IZ IS IS + Bror IS IS TS + Bia2 I I9TS

+ CaNtCr [5163}(?,’?:8,0,2,2 + 5164K?:?,’8,0,3,1 + 5165K12,’?,’g,0,3,2 + 5166[{12,’%8,0,4,1
+ 5167K§’?’80 217 5168Kg:12,7g,0,3,1 + 5169[{3,’?,’8,0,3,1 + 5170[(3:8:8,0,1,1
+ 5171K3 1,0,0,1,1 T 5172K§,’12,’g,0,2,1 + 5173K§,’11,’8,0,2,1 + 5174[{?},’?:8,0,3,1
+ 5175K3,’1,’o70,3,1 + /8176K??:22:8,0,1,1 + 5177K§,721,’g,0,1,1 + 5178K2,’12:8,0,1,1
+ 5179Ki’11’80 11T ﬁlSOKz’?’(?o 11T BlSlKif)’(())O 2.1 T 5182[(27;’80 1,1
+B183K420011 +5184K510011 + Piss 5,12,0011 +5186—’(510011
+ 5187K5’1 ’o 011 7T 5188K6’1 70 0111 5189[(6’1 ’o 0111 5190[(6:1,70,0,1,1
+ B191K6 2.0,0,1,1 T 5192K7 1.0,0,1,1 T 5193L2 2.0,0,1,1 T ﬁ194Lg:(1]:8,0,1,1
+ Bros L0 0,11 + Brocl IV IS + Brog IV IS + BrosIVIS TS + Broo I 1919
+ Bo00 21T + Boot IRISTS + Booo IS IS IS + Boos IV IV IS + Baoa I 19T
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+ Boos IVIOTS + Bone IVISTS + Boor IZISTY + Boos IPISIS + Bago IS IS IS
+ 52101318128} : (C.15)

Looking at the master integrals that are needed for the above two lengthy expressions
let us note that, while most of them have factors of Py etc. in the numerator, only eight
of them (those multiplying B(g 9 54,55,60,61,91,02)) contain irreducible scalar products in the
numerator and hence need methods for their evaluation that go beyond those presented in
appendix 5 (see, however, ref. [12, 23], where examples of such sum-integrals were treated).
Also, some of the masters (such as e.g. those multiplying 78} 6{8,9}) involve somewhat
large powers of propagators, which is a consequence of our ordering prescription. However,
as was shown in appendix 5 in terms of the generic power N, this does not seem to be a
particularly difficult obstacle.

We refrain from listing the coefficients a1 137 and B1. 210 here. They have the gen-
eral form ) &" pn(d)/qn(d), where £ is the gauge parameter (see eq. (2.14)) and p, ¢ are
polynomials in d. The full expressions for egs. (C.14) and (C.15) are provided in computer-
readable form on [24].
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