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1 Introduction

Thermal QCD at high temperatures (T ) exhibits three different momentum scales. It has

been known [1, 2] for a long time that the “soft” static color-electric modes p ∼ gT , where

g is the gauge coupling, are responsible for the slow convergence whereas the “ultra-soft”

static color-magnetic modes p ∼ g2T cause the well-known perturbative breakdown [3].

However, perturbation theory restricted to the “hard” scale p ∼ 2πT can be treated with

conventional weak-coupling methods, while the soft and ultra-soft scales are only accessi-

ble through improved analytic methods or non-perturbatively via lattice simulations, as

is especially the case for the ultra-soft g2T scale. Here p denotes the characteristic mo-

mentum scale, g the gauge coupling and T the temperature. The infrared problems which

cause the breakdown of perturbation theory can be isolated into a three-dimensional (3D)

effective field theory called magnetostatic QCD (MQCD) and studied non-perturbatively

with lattice simulations. Before computing various quantities in this framework a num-

ber of perturbative “matching” computations are necessary [4, 5], in order to relate the

parameters of the effective theory with those of thermal QCD.
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The plan of this paper is the following. In section 2 we review the most important

facts of the dimensionally reduced effective field theory framework and show how to sys-

tematically determine the effective gauge coupling gE and screening mass mE. In section 3

we explain some technical details about the integral reduction step, while in section 4 we

discuss the structure of the explicit result for the one-, two-, and three-loop corrections,

whose rather lengthy coefficients are detailed in the appendix. Section 5 contains the eval-

uation of a new class of master sum-integrals that appear in our result. We finally discuss

possible applications of our results in section 6, before we conclude in section 7.

2 Effective gauge coupling and screening mass

We consider QCD at finite temperature with the gauge group SU(Nc) and Nf massless

flavors of quarks. Before gauge fixing, the bare Euclidean Lagrangian in dimensional reg-

ularization reads

SQCD =

∫ 1/T

0
dτ

∫

ddxLQCD , (2.1)

LQCD =
1

4
F a
µνF

a
µν + ψ̄γµDµψ, (2.2)

where T is the temperature; d = 3−2ǫ denotes the number of spatial dimensions, such that

Greek indices run as µ, ν = 0, . . . , d; F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν and Dµ = 1∂µ −

igAa
µT

a, where the T a are hermitian generators of SU(Nc) with normalization Tr[T aT b] =

δab/2; we use hermitian Dirac matrices γ†µ = γµ, {γµ, γν} = 2δµν ; g is the bare gauge

coupling; and ψ carries Dirac, color, and flavor indices. For the group theory factors, we

use the standard symbols CA = Nc, CF = (N2
c − 1)/(2Nc).

At sufficiently high temperatures, the long-distance physics of eq. (2.2) can be described

by a simpler, dimensionally reduced effective field theory [1, 2, 4, 5]:

SEQCD =

∫

ddxLEQCD , (2.3)

LEQCD =
1

4
F a
ijF

a
ij +Tr[Di, B0]

2 +m2
ETr[B

2
0 ] + λ

(1)
E Tr[B2

0 ]
2 + λ

(2)
E Tr[B4

0 ] + . . . , (2.4)

where i = 1, . . . , d, F a
ij = ∂iB

a
j −∂iB

a
j +gEf

abcBb
iB

c
j and Di = ∂i− igEBi. The electrostatic

gauge fields Ba
0 and magnetostatic gauge fields Ba

i appearing in the theory above can be

related (up to normalization) to the zero modes of Aa
µ of thermal QCD in eq. (2.2).

The effective parameters in eq. (2.4), which we are ultimately interested in, can be

obtained by matching. This means, we require the same result on the QCD and EQCD

side within the domain of validity. A convenient way to perform the matching computation

is to use a strict perturbation expansion in g2. On both sides, the expansion is afflicted

with infrared divergences. These divergences are screened by plasma effects and can be

taken into account (at least for electrostatic gluons) by resumming an infinite set of dia-

grams. Screening of magnetostatic gluons is a completely non-perturbative effect. For the

matching computation, it is not necessary to worry about the infrared divergences because

the matching parameters are only sensitive to the effects of large momenta. All infrared

divergences which occur can be removed by choosing a convenient infrared cutoff. It is

essential to choose the same infrared cutoff in both theories.
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2.1 Relation for m
2
E

In order to establish a relation between the parameters of the theories eqs. (2.2),(2.4),

consider the electric screening mass mel, defined in the full theory1 by the pole of the static

Aa
0 propagator,

0 = p2 +Π00(p
2)
∣

∣

p0=0,p2=−m2

el

. (2.5)

On the effective theory side, the electric screening mass is, equivalently, defined as the pole

of the 3d adjoint scalar B0 propagator,

0 = p2 +m2
E +ΠEQCD(p

2)
∣

∣

p2=−m2

el

, (2.6)

where ΠEQCD denotes the B0 self-energy on EQCD side.

Noting that the self-energies start at one-loop order, the leading-order solutions for m2
el

will be suppressed by the respective coupling parameters, such that p2 is to be regarded

perturbatively small, hence allowing for a Taylor expansion of the “on-shell” self-energies

around zero. For eq. (2.5), one needs (let us write ΠE ≡ Π00 from now on)

ΠE(−m
2
el) = ΠE(0)−m2

elΠ
′
E(0) + . . .

=
∞
∑

n=1

g2nΠEn(0)−m2
el

∞
∑

n=1

g2nΠ′
En(0) + . . . , (2.7)

where in a second step we have introduced the n-loop self-energy coefficients ΠEn. From

eqs. (2.5) and (2.7), we can express the electric screening mass m2
el in terms of Taylor

coefficients up to next-to-next to leading order (NNLO)

m2
el = g2ΠE1(0) + g4

[

ΠE2(0)−Π′
E1(0)ΠE1(0)

]

+ g6
[

ΠE3(0)−Π′
E1(0)ΠE2(0) −

−Π′
E2(0)ΠE1(0) + Π′′

E1(0) (ΠE1(0))
2 +ΠE1(0)

(

Π′
E1(0)

)2 ]
+O

(

g8
)

. (2.8)

Diagrams contributing to the various orders of Π are depicted in figure 1.

To complete the matching computation for m2
el, we have to compute ΠEQCD on the

EQCD side in a strict perturbative expansion. Again treating the “on-shell” momentum

p2 (as well as the tree-level mass m2
E) as perturbatively small, due to the fact that the only

scale in ΠEQCD(p
2) is p2, after Taylor expansion the dimensionally regularized integrals

(being scale-free) vanish identically.2 From eq. (2.6) it hence follows that

m2
E = m2

el . (2.9)

2.2 Relation for g2E

In order to relate the effective 3d gauge coupling g2E to the parameters of the full theory, we

can choose whether to go through a 3-point or a 4-point function, in addition to a 2-point

1In the presence of an infrared cut-off; otherwise, a non-perturbative definition is needed.
2Note that this is not the case for the coefficients of eq. (2.7), since those are vacuum sum-integrals in

the full theory and hence know about the temperature scale T .
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1 ≡ 1
2 −1 −1 +1

2 −1 ,

2 ≡ 1
2 −1 −1 −1 −1 −1 −1

+1
2 +1

2 −1 −1 −2 −2 +1
4

+1
6 −1 +1

2 −1 −2 −1 −2

+1
2 +1

4 −1
2 −1 −1

2 +1
4 ,

3 ≡ 1 +1 +1
4 +1

4 +1
4 +1

2 + 441 diags .

Figure 1. The 1-loop, 2-loop and some 3-loop self-energy diagrams in the background field gauge.

Wavy lines represent gauge fields, dotted lines ghosts, and solid lines fermions.

function. However, it is further possible to simplify this task to a single 2-point calculation

using the background field gauge method (see e.g. ref. [6]). Let us give the main argument

here, closely following ref. [7].

The effective Lagrangian eq. (2.4) follows from integrating out the hard (p ∼ T ) scales

which, symbolically, produces an expression of the form

Leff ∼ c2(∂B)2 + c3g(∂B)B2 + c4g
2B4 + . . . , (2.10)

where B denotes the background field potential and the coefficients ci = 1 + O
(

g2
)

. Re-

defining now the effective field as B2
eff ≡ c2B

2, from Leff ∼ (∂Beff)
2 + c3c

−3/2
2 g(∂Beff)B

2
eff +

c4c
−2
2 g2B4

eff + . . . we can read off the effective gauge coupling (considering the gauge in-

variant structure F 2) geff = c3c
−3/2
2 g = c

1/2
4 c−1

2 g. Furthermore, since the effective action is

gauge invariant with respect to both Beff as well as B [6], we have c2 = c3 = c4. Finally

transforming to 3d notation, scaling the fields B→ T 1/2B2 and comparing
∫ 1/T
0 dτ LQCD

with LEQCD, it follows that

gE = T 1/2 c
−1/2
2 g . (2.11)

Now we proceed in the same way with the effective gauge coupling gE as for the

screening mass mE. From eq. (2.11) we thus obtain

g2E = T
{

g2 − g4ΠT1(0) + g6
[

(

Π′
T1(0)

)2
−Π′

T2(0)
]

+

+g8
[

2Π′
T1(0)Π

′
T2(0)−

(

Π′
T1(0)

)3
−Π′

T3(0)
]

+O
(

g10
)

}

, (2.12)

where ΠT denotes the transverse part of the (spatial part of the) self-energy

Πij(p) ≡

(

δij −
pipj
p2

)

ΠT(p
2) +

pipj
p2

ΠL(p
2) . (2.13)
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To understand the split-up of Πµν in more detail, note that we can choose the external

momentum p purely spatial, p = (0,p), while the rest frame of the heat bath is time-

like, with Euclidean four-velocity u = (1, 0), such that u · u = 1, u · p = 0. In this case

Πµν has three independent components (Π0i, Πi0 vanish identically). The loop correc-

tions to the spatially longitudinal part ΠL also vanish (which we will however explicitly

check in our computations), such that only two non-trivial functions, ΠE and ΠT, remain

(recall ΠE = Π00).

Noting that the class of background field gauges still allows for a general gauge pa-

rameter ξ (we denote (ξ)here = 1− (ξ)standard), we use the gauge field propagator

Dab
µν(q) = δab

[

δµν
q2

− ξ
qµqν
(q2)2

]

(2.14)

and verify gauge parameter cancellation in the end of our computations.

3 The reduction

After the Taylor expansion and decoupling of scalar products with external momentum,

all integrals that contribute to the self-energies up to three-loop order that are needed for

eqs. (2.8) and (2.12) can be written as

Iα,β,γa,b,c,d,e,f ; c1,c2,c3
≡

∑

∫

P1P2P3

(P1)
α
0 (P2)

β
0 (P3)

γ
0

[P 2
1 ]

a [P 2
2 ]

b [P 2
3 ]

c [(P1 − P2)2]d [(P1 − P3)2]e [(P2 − P3)2]f
,

(3.1)

where P 2
i = (Pi)

2
0 + p2

i = [(2ni + ci)πT ]
2 + p2

i for i ∈ {1, 2, 3} are bosonic (fermionic) loop

momenta for ci = 0 (1). The sum-integral symbol in eq. (3.1) is a shorthand for

∑

∫

P
→ µ2ǫT

∑

P0

∫

ddp

(2π)d
, (3.2)

where µ is the minimal subtraction (MS) scheme scale parameter, and we take d = 3− 2ǫ.

An essential part of this work deals with the reduction of integrals of the type in

eq. (3.1) to a small set of master integrals. We use the well-known integration by parts

(IBP) identities and identities following from exchanges of integration variables. Both

are implemented in a Laporta algorithm [8] using FORM [9, 10]. Compared to the well-

established Laporta-type algorithms for zero-temperature reductions, one of the main dif-

ferences here is that the IBP relations act only within the continuum (spatial) part of our

sum-integrals. Another important difference is that in general, linear shifts or exchanges

of integration momenta can cause a flip of bosonic and fermionic signature of the loop

momenta, such that extra care must be taken for topology mapping. A precursor of this

reduction algorithm had already been tested in ref. [7].

The main difference between the outcome of the 1-loop and 2-loop calculation on the

one side and the 3-loop correction on the other side is that the former ones are expressible

in terms of 1-loop tadpole sum-integrals which are known explicitly, see appendix A. This

– 5 –
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; ; , ,

I = , Î = ; J = , K = , L = .

Figure 2. Top row: non-trivial vacuum topologies at 1-loop, 2-loop and 3-loop. Bottom row: types

of bosonic and fermionic master integrals. Lines (arrow-lines) corresponds to bosonic (fermionic)

propagators, respectively.

is no longer the case at 3-loop order. The mercedes- and spectacles topology shown on the

first line of figure 2 can be expressed in terms of basketball-type sum-integrals as well as

products of 1-loop tadpoles.

4 Structure of the result

After reduction, we can express all quantities as a sum of 1- and 3-loop master integrals

(there are no master integrals at 2-loop order, see [5, 11]) of the generic types depicted on

the second row of figure 2, the structure being

Π3 =
∑

i

aiAi +
∑

j

bj Bj , (4.1)

where Ai = I · I · I with I ∈
{

Inm, Î
n
m

}

(4.2)

and Bj = basketball ∈ {J ,K,L} . (4.3)

A detailed version is given in the appendix, cf. eqs. (C.14) and (C.15).

We have performed a number of cross-checks to confirm the validity of our results: the

longitudinal parts of the self-energy vanish identically

ΠL3 = Π′
L3 = 0 for ξ0, . . . , ξ6 , (4.4)

and the specific combinations of (bare) self-energy coefficients that build upm2
E (cf. eq. (2.8))

and g2E (cf. eq. (2.12)) are gauge-parameter independent up to three-loop order.

The one-, and two-loop calculations have already been performed in ref. [7] which we

use as another serious cross-check of our independent calculation. We obtain full agreement

when comparing our eqs. (C.1)–(C.4) and eqs. (C.7)–(C.10) with that reference.

There is considerable experience of how to calculate the genuine 3-loop integrals Bj up

to the constant term (which can typically only be represented in terms of two-dimensional

parameter integrals and evaluated numerically), see [12–14]. In section 5, we add to this

available knowledge a specific class of 3-loop (basketball-type) sum-integrals which appear

in our reduced expressions eqs. (C.14) and (C.15).

It turns out, however, that most of the pre-factors bj are singular when expanded

around d = 3−2ǫ dimensions. Hence, we need to expand the integrals Bj beyond their con-

stant term (in fact, toO(ǫ) for ΠE and toO
(

ǫ2
)

for Π′
T). As the conventional techniques for

– 6 –
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computing these basketball-type integrals rely on a careful subtraction of sub-divergences

on a case-by-case basis, it appears quite difficult to extend the known techniques in order

to evaluate higher terms in the epsilon expansion.

To make progress, it might be advantageous to perform a change of basis, see e.g. [15],

in order to avoid or at least reduce the number of divergent pre-factors. Due to the large

number of integrals contained in our reduction tables, an algorithmic approach trying

out all possible different combinations of basis elements might be somewhat involved, but

certainly possible.

5 Evaluation of classes of master sum-integrals

After the successful reduction step, a number of non-trivial three-loop master sum-integrals

will have to be evaluated. Noting that all bosonic and fermionic one-loop sum-integrals

Inm and Înm that appear in eqs. (C.1)–(C.10) as well as in eqs. (C.14), (C.15) are known

analytically (see appendix A), and noting that furthermore all 2-loop structures have been

reduced to products of 1-loop integrals, let us tackle the first non-trivial sub-class of master

integrals, the bosonic basketball

BN,M ≡ IM,0,0
N,1,0,0,1,1; 0,0,0 =

∑

∫

PQR

QM
0

[Q2]N (P −Q)2R2 (P −R)2
, (5.1)

with N,M ≥ 2. After a careful subtraction of all UV and IR divergences (for more details

see [12, 13, 16, 17]) we can write eq. (5.1) as

BN,M = β
[

A(N, ǫ, 1)δM,0 + β̄IMN−1+2ǫ + I01 I
M
N+ǫ

]

+BIV
N,M +

+ 2I01 S(N, 1, 1;M, 0) +
∑

∫

PQ

∆Π(P )δP0
δQ0

[Q2]N (P −Q)2
δM,0 +BII

N δM,0 +BI
N,M , (5.2)

where β ≡ G(1, 1, d+1) stands for the 4d massless 1-loop bubble and β̄ ≡ G(3−d
2 , 1, d+1)

is the 4d 1-loop propagator, where the function G reads (s12 ≡ s1 + s2 etc.)

G(s1, s2, d) ≡ (p2)s12−
d

2

∫

q

1

[q2]s1 [(q − p)2]s2
=

Γ(d2 − s1)Γ(
d
2 − s2)Γ(s12 −

d
2)

(4π)d/2Γ(s1)Γ(s2)Γ(d− s12)
, (5.3)

and S stands for the two-loop tadpole at finite-temperature,

S(s1, s2, s3; a1, a2) ≡
∑

∫

PQ

|Q0|
a1 |P0|

a2

[P 2]s1 [Q2]s2 [(P −Q)2]s3

=
∑

i

I0i I
0
s123−a12/2−i ei(s1, s2, s3, a1, a2, d) , (5.4)

– 7 –
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where the coefficients ei follow from IBP relations (for an example, see eq. (5.18) below).

Furthermore, the abbreviation A(s1, s2, s3) stands for a specific 2-loop tadpole

A(s1, s2, s3) ≡
∑

∫

PQ

δQ0

[Q2]s1 [P 2]s2 [(P −Q)2]s3
=

2T 2ζ(2s123 − 2d)

(2πT )2s123−2d
N(s1, s2, s3) , (5.5)

N(s1, s2, s3) ≡

∫

pq

1

[p2 + 1]s1 [q2 + 1]s2 [(p− q)2]s3

=
Γ(s13 −

d
2)Γ(s23 −

d
2)Γ(

d
2 − s3)Γ(s123 − d)

(4π)dΓ(s1)Γ(s2)Γ(d/2)Γ(s1233 − d)
. (5.6)

In eq. (5.2) we make use of the one-loop subtracted quantities

∆Π(P ) =
∑

∫

R

1

R2 (R− P )2
−

β

[P 2]ǫ
−

2I1
P 2

, (5.7)

∆Π̃(Q) =
∑

∫

R

1

[R2]ǫ (R−Q)2
−

β̄

[Q2]2ǫ−1
−

2I1
[Q2]ǫ

, (5.8)

as well as the three pieces

BI
N,M =

∑

∫

P

∑′
∫

Q

∆Π(P )QM
0

[Q2]N (P −Q)2
, BII

N =
∑′
∫

P

∑

∫

Q

∆Π(P )δQ0

[Q2]N (P −Q)2
, (5.9)

BIV
N,M = β

∑′
∫

Q

∆Π̃(Q)QM
0

[Q2]N
, (5.10)

where the primed sums denote
∑′

n =
∑

n 6=0. It turns out, however, that BII
N contains

an additional IR divergence which can be taken into account either by means of IBP re-

duction [16] or by subtraction by hand [13, 17], adding the appropriate zeros (massless

tadpoles which vanish in dimensional regularization). Performing a transformation to co-

ordinate space in d = 3 dimensions and evaluating the remaining sums give the 1d integral

representations

Bn
N,M

∣

∣

ǫ=0
=
T 6−2N 2N−1

Γ(N) (4π)2N
(2πT )M

∫ ∞

0
dr B̂n

N,M (r)∆π(r) , (5.11)

B̂I
N,M (r) =

N−2
∑

i=0

cNi r
N−3−i

{

LiN−2+i−M (e−2r) + coth(r) LiN−1+i−M (e−2r)
}

, (5.12)

B̂II
N (r) = −

N−2
∑

n=0

N−2+n
∑

i=0

Γ(N)

Γ(N + n)

aN,n

2n
cN+n,i r

N−2+n−i LiN−2+i−n(e
−2r) , (5.13)

B̂IV
N,M (r) =

N−2
∑

i=0

cNi r
N−3−i

{

N−1−i

2r
LiN−1+i−M (e−2r)−

1

2
LiN−2+i−M (e−2r)

}

, (5.14)

with ∆π(r) ≡ coth(r)− 1
r −

r
3 and where the cN,i are Fourier coefficients given by

√

2m

π
emK3/2−s(m) =

max(s−2,1−s)
∑

n=0

cs,n
mn

(5.15)
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and aN,n can be obtained by IBP reduction of the inner sum-integral of eq. (5.9), see [16].

Putting all ingredients together for the special case B3,2 (which is needed form2
E, being

the coefficient of α4 in eq. (C.14)), evaluating the finite pieces numerically,

BI
3,2

∣

∣

ǫ=0
=

T 2

2(4π)4

∫ ∞

0
dr∆π(r)

{

Li−1(e
−2r)+

(

coth(r)+
1

r

)

Li0(e
−2r)+

coth(r)

r
Li1(e

−2r)

}

≈ −
T 2

2 (4π)4
× 0.029779678110507967168(1) , (5.16)

BIV
3,2

∣

∣

ǫ=0
=

T 2

2 (4π)4

∫ ∞

0
dr∆π(r)

{

−
1

2
Li−1(e

−2r) +
1

2r
Li0(e

−2r) +
1

2r2
Li1(e

−2r)

}

≈ −
T 2

2 (4π)4
× 0.0020065925001817061293(1) , (5.17)

and using (from IBP, see eq. (5.4))

ei(3, 1, 1, 2, 0, d) =
(d− 4)2

(d− 2)(d− 5)(d− 7)
δi,2 , (5.18)

we obtain as final result for this new master integral (with Z ′
1 ≡ ζ ′(−1)/ζ(−1))

B3,2 =
T 2 (4πT 2)−3ǫ

32 (4π)4 ǫ2

[

1 +

(

41

6
+ γE + 2Z ′

1

)

ǫ+ 70.32026114816592109(1) ǫ2 +O
(

ǫ3
)

]

.

(5.19)

For an important cross-check of this result, see appendix B.

6 Applications

To emphasize the necessity to pursue the matching computations as outlined in this note,

let us briefly discuss two applications that would become relevant once full results are

available.

The first immediate application involves the Debye screening mass m2
E of section 2.1

and concerns higher-order perturbative contributions to basic thermodynamic observables,

such as the pressure of hot QCD. In fact, once the quantity ΠE3(0) of eq. (C.14) has been

fully determined, the mass term of EQCD (cf. eq. (2.4)) is available at NNLO, m2
E ∼

g2T 2[1 + g2 + g4 +O
(

g6
)

], where g is the dimensionless gauge coupling of full QCD. Now,

in the context of the effective theory setup for hot QCD, it turns out that the lowest-order

EQCD contribution to the full pressure, coming from the quadratic part of LEQCD, enters

as ∼ Tm3
E [5], which translates to T 4g3[1+g2+g4+O

(

g6
)

], such that our 3-loop coefficient

contributes to O
(

g7
)

in the QCD pressure. According to the systematics of effective theory,

due to the fact that there are typically large logarithms, a systematic g6 evaluation of the

pressure (almost completely known at present, only missing a well-defined perturbative

4-loop computation [5, 18, 19]) has actually been coined physical leading order, since it is

the first order where all three physical scales (hard/soft/ultra-soft) have contributed. In

this respect, the O
(

g7
)

term would simply be next-to-leading order, and allow for a first

serious investigation of convergence properties.
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Leaving the incomplete O
(

g6
)

(for which there exist numerical estimates, however,

from comparisons with lattice data, see e.g. [20, 21]) aside for the moment, there are

other sources of O
(

g7
)

contributions, of course: from the the MQCD pressure plus NLO

matching of the 3d MQCD gauge coupling g2M; from the terms proportional to the quartic

coupling λE in the 3-loop EQCD pressure; from the 5-loop EQCD pressure (at λE = 0),

which entails one of the conceptually simplest (3d, super-renormalizable, massive, vacuum-

diagram) computations at the 5-loop level, for which techniques are presently developed

by several groups; and from the leading terms of some higher-order operators in the EQCD

Lagrangian, denoted by dots in eq. (2.4), but classified in [22]. All but the last two of these

additional g7 contributions are already known.

A second immediate application involves the 3d EQCD gauge coupling g2E of section 2.2

and concerns precision-tests of the dimensional reduction setup, such as for the spatial

string tension σs, which parameterizes the large-area behavior of rectangular spatial Wilson

loops. As has been demonstrated in ref. [7], it can be systematically determined, as a

function of the temperature T , in the dimensionally reduced effective theory setup, and then

compared to non-perturbative 4d lattice measurements. It turned out that the NLO result

for g2E as obtained in [7] represents a considerable improvement over a 1-loop comparison

— giving a sizable correction factor as well as a first estimate of (renormalization) scale

dependence — while leaving room for NNLO effects, for which our 3-loop result for Π′
T3(0)

of eq. (C.15) is the last missing building block.

7 Conclusions

We have successfully reduced the NNLO contributions to the matching parameters m2
E

and g2E to a sum of scalar sum-integrals. These matching parameters play an important

role in higher-order evaluations of basic thermodynamic observables and in precision-tests

of the dimensional reduction setup respectively, and hence are needed with high accu-

racy. Our result passes the non-trivial checks of transversality as well as gauge-parameter

independence.

In a next step, a number of master integrals have to be evaluated. Although we

managed to map all of them to the relatively simple class of basketball-type ones, the

somewhat large number of masters that we need demand a semi-automated evaluation

strategy, which still has to be developed. As a first and encouraging step towards this goal,

we have demonstrated a systematic method to evaluate a certain class of such basketball-

type sum-integrals.

Once full results for the matching coefficients discussed here become available, there

are immediate applications to quantities of phenomenological interest, such as the pressure

of hot QCD, or the spatial string tension, as discussed in section 6 above. However, these

concrete applications will have to await progress in the art of sum-integration for now.
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A One- and two-loop vacuum sum-integrals

The one-loop bosonic tadpole is known analytically and reads

Inm ≡
∑

∫

P

Pn
0

(P 2)m
=

2π3/2T 4

(2πT )2m−n

(

µ2

πT 2

)ǫ Γ
(

m− 3
2 + ǫ

)

Γ(m)
ζ(2m− n− 3 + 2ǫ) , (A.1)

whereas the fermionic tadpole can be related to the corresponding bosonic one via

Înm ≡
∑

∫

{P}

Pn
0

(P 2)m
= (22m−n−3+2ǫ − 1)Inm . (A.2)

As mentioned above, via integration-by-parts relations all two-loop integrals are express-

ible in terms of products of two one-loop tadpoles which means they are also available

analytically up to arbitrary order in ǫ.

B Check of new sum-integrals

We can cross-check our new result given in section 5 using IBP reduction of the V-type

topology which gives

V ≡ I0,0,01,1,1,1,1,0; 0,0,0 =
4

3(d− 3)2

{

4B3,2 +
3d2 − 24d+ 47

2(d− 4)
B2,0

}

, (B.1)

where V stands for the spectacles-type diagram given in [14]:

V ≡
∑

∫

PQR

1

P 2Q2 (P −Q)2R2 (P −R)2

= −
T 2 (4πT 2eγE)−3ǫ

4 (4π)4 ǫ2

{

1 +AK1ǫ+AK2ǫ
2 +O

(

ǫ3
)

}

, (B.2)

with AK1 =
4
3 +4γE +2Z ′

1, while AK2 is known only numerically. Writing the coefficients

of our basketball-results, given in eq. (5.19) above as well as eq. (26) of [16], as

B3,2 =
T 2 (4πT 2)−3ǫ

32(4π)4ǫ2

[

b320 + b321ǫ+ b322ǫ
2 +O

(

ǫ3
)

]

, (B.3)

B2,0 =
T 2 (4πT 2)−3ǫ

8(4π)4ǫ2

[

1 + b21ǫ+ b22ǫ
2 +O

(

ǫ3
)

]

, (B.4)

to match the leading term of V it follows that the linear relations

b320 = 1 , b321 = b21 + 4 , b322 = b22 + 4b21 − 8 (B.5)

have to be satisfied. Our results presented above do indeed confirm these relations, which

we take as a nice check of our generic parameterizations. Eq. (B.5) provides a welcome

check of our numerical constants.
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C Expansion coefficients up to three loops

For convenience, we here repeat the one- and two-loop coefficients that were already com-

puted in [7], adding the second derivatives that are needed for eq. (2.8). The one-loop

coefficients up to second derivative read

ΠT1(0) = 0 , (C.1)

ΠE1(0) = (d− 1)
[

CA(d− 1)I01 − 2Nf Î
0
1

]

, (C.2)

Π′
T1(0) =

2Nf

3
Î02 +

CA

6
(d− 25)I02 , (C.3)

Π′
E1(0) =

Nf

3
(d− 1)Î02 − CA

[

28− 5d+ d2

6
+ (d− 3)ξ

]

I02 , (C.4)

Π′′
T1(0) =

CA

3

[

41

10
−

1

10
d+ 2 ξ −

1

4
ξ2
]

I03 −
4Nf

15
Î03 , (C.5)

Π′′
E1(0) =

CA

3

[

23

5
−

7

10
d+

1

10
d2 + ξ (d− 3) +

ξ2

4
(d− 6)

]

I03 +
Nf

15
(1− d)Î03 . (C.6)

The two-loop coefficients up to first derivative are given by (see also [7])

ΠT2(0) = 0 , (C.7)

ΠE2(0) = (d− 1)(d− 3)

{

(1 + ξ)
[

2Nf Î
0
1 − (d− 1)CA I

0
1

]

CAI
0
2 + 2NfCF

[

I01 − Î01

]

Î02

}

,

(C.8)

Π′
T2(0) =

(d− 3)(d− 4)

(d− 7)(d− 5)(d− 2)d

{

(−14− 42d+ 8d2)C2
A I

0
2 I

0
2

− 4
[

4CF + (1− 6d+ d2)CA

]

NfI
0
2 Î

0
2 −

[(

d3

2
− 6d2 +

39

2
d− 6

)

CA

− (−14 + 41d− 12d2 + d3)CF

]

Nf Î
0
2 Î

0
2

}

+
(d− 1)

3d(d− 7)

{

(144− 31d+ d2)
[

(1− d)CAI
0
1 + 2Nf Î

0
1

]

CA I
0
3

− 4(d− 6)(d− 1)CFNf

[

I01 − Î01

]

Î03

}

, (C.9)

Π′
E2(0) =

(d− 3)

2(d− 7)(d− 5)(d− 2)d

{

(

56 + 315d− 231d2 + 57d3 − 5d4
)

C2
A I

0
2 I

0
2

+ 2(d− 4)(d− 1)
[

(

2− 5d+ d2
)

CA + 8CF

]

Nf I
0
2 Î

0
2

+ (d− 1)
[

(

24− 7d2 + d3
)

CA − 2
(

28 + 2d− 7d2 + d3
)

CF

]

Nf Î
0
2 Î

0
2

}

+
(d− 3) ξ

24(d− 2)

[

3
(

16− 13d+ 3d2
)

ξ − 4
(

44− 29d+ 7d2 − d3
)

]

C2
AI

0
2 I

0
2

−
(d− 3)(d− 1)

3
ξ CANf I

0
2 Î

0
2 +

(d− 1)

6(d− 7)d

{

4
(

6 + 15d− 10d2 + d3
)

×
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× CFNf

[

Î01 − I01

]

Î03 +
[

2
(

−72 + 42d− 13d2 + d3
)

+ 2(d− 7)d2ξ

+ (d− 7)(d− 6)dξ2
] [

(d− 1)CAI
0
1 − 2Nf Î

0
1

]

CAI
0
3

}

. (C.10)

For presenting the outcome of the reduction procedure for the three-loop contributions,

which constitutes the main result of this paper, we denote the master integrals as in

figure (2), i.e. I , Î for the 1-loop tadpoles of eqs. (A.1) and (A.2), and

Jα,β,γ
a,b,c,d,e,f ≡ Iα,β,γa,b,c,d,e,f ; 0,0,0 , (C.11)

Kα,β,γ
a,b,c,d,e,f ≡ Iα,β,γa,b,c,d,e,f ; 0,0,1 , (C.12)

Lα,β,γ
a,b,c,d,e,f ≡ Iα,β,γa,b,c,d,e,f ; 1,1,0 (C.13)

are 3-loop basketball-type integrals in a slightly more compact notation than eq. (3.1). The

results needed for eqs. (2.8) and (2.12) then read

ΠE3(0) = C3
A

[

α1J
0,0,0
2,1,0,0,1,1 + α2J

0,0,2
2,2,0,0,1,1 + α3J

0,2,0
3,1,0,0,1,1 + α4J

2,0,0
3,1,0,0,1,1 + α5J

1,3,0
4,1,0,0,1,1

+ α6J
6,0,0
5,1,0,0,1,1 + α7J

6,4,0
5,3,0,0,1,1 + α8J

7,3,0
6,2,0,0,1,1 + α9I

0
1I

0
1I

0
3 + α10I

0
1I

0
2I

0
2

]

+ C2
ANf

[

α11K
0,0,0
1,1,0,0,2,1 + α12K

2,0,0
1,1,0,0,2,2 + α13K

1,1,0
1,1,0,0,3,1 + α14K

2,0,0
1,1,0,0,3,1

+ α15K
0,0,0
2,1,0,0,1,1 + α16K

0,2,0
2,1,0,0,2,1 + α17K

2,0,0
2,1,0,0,2,1 + α18K

3,1,0
2,1,0,0,3,1

+ α19K
0,0,2
2,2,0,0,1,1 + α20K

1,1,0
2,2,0,0,1,1 + α21K

2,0,0
2,2,0,0,1,1 + α22K

0,0,2
3,1,0,0,1,1

+ α23K
0,2,0
3,1,0,0,1,1 + α24K

1,1,0
3,1,0,0,1,1 + α25K

2,0,0
3,1,0,0,1,1 + α26K

1,3,0
3,1,0,0,2,1

+ α27K
0,4,0
3,2,0,0,1,1 + α28K

1,1,2
4,1,0,0,1,1 + α29K

1,3,0
4,1,0,0,1,1 + α30K

2,2,0
4,1,0,0,1,1

+ α31K
4,0,0
4,1,0,0,1,1 + α32K

6,0,0
4,2,0,0,1,1 + α33K

3,3,0
5,1,0,0,1,1 + α34K

4,0,2
5,1,0,0,1,1

+ α35K
5,1,0
5,1,0,0,1,1 + α36K

6,0,0
5,1,0,0,1,1 + α37K

7,1,0
6,1,0,0,1,1 + α38K

8,0,0
6,1,0,0,1,1

+ α39K
7,0,3
6,1,0,0,2,1 + α40K

9,0,1
6,1,0,0,2,1 + α41K

10,0,0
6,1,0,0,2,1 + α42K

7,3,0
6,2,0,0,1,1

+ α43K
8,2,0
6,2,0,0,1,1 + α44K

8,0,2
7,1,0,0,1,1 + α45K

8,2,0
7,1,0,0,1,1 + α46K

9,0,1
7,1,0,0,1,1

+ α47K
9,1,0
7,1,0,0,1,1 + α48K

10,0,0
7,1,0,0,1,1 + α49L

0,0,0
2,1,0,0,1,1 + α50L

2,0,0
3,1,0,0,1,1

+ α51Î
0
1 Î

0
1I

0
3 + α52Î

0
1I

0
2 Î

0
2 + α53Î

0
1I

0
2I

0
2 + α54Î

2
1 Î

0
2I

0
3 + α55I

0
1 Î

0
1 Î

0
3

+ α56I
0
1 Î

0
1I

0
3 + α57I

0
1 Î

0
2 Î

0
2 + α58I

0
1I

0
1 Î

0
3 + α59I

0
1I

0
2 Î

0
2 + α60I

2
1 Î

0
2I

0
3

]

+ CAN
2
f

[

α61L
0,0,0
2,1,0,0,1,1 + α62L

0,0,2
2,2,0,0,1,1 + α63L

0,2,0
3,1,0,0,1,1 + α64L

2,0,0
3,1,0,0,1,1

+ α65L
1,3,0
4,1,0,0,1,1 + α66L

6,0,0
5,1,0,0,1,1 + α67L

6,4,0
5,3,0,0,1,1 + α68L

7,3,0
6,2,0,0,1,1

+ α69Î
0
1 Î

0
1 Î

0
3 + α70Î

0
1 Î

0
1I

0
3 + α71Î

0
1 Î

0
2 Î

0
2 + α72Î

0
1I

0
2 Î

0
2

]

+N2
f CF

[

α73L
0,0,0
2,1,0,0,1,1 + α74L

0,0,2
2,2,0,0,1,1 + α75L

0,2,0
3,1,0,0,1,1 + α76L

2,0,0
3,1,0,0,1,1

+ α77L
6,0,0
5,1,0,0,1,1 + α78Î

0
1 Î

0
1 Î

0
3 + α79Î

0
1 Î

0
2 Î

0
2 + α80Î

0
1I

0
2 Î

0
2

]
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+NfC
2
F

[

α81K
0,0,0
1,1,0,0,2,1 + α82K

2,0,0
1,1,0,0,2,2 + α83K

1,1,0
1,1,0,0,3,1 + α84K

0,0,0
2,1,0,0,1,1

+ α85K
0,2,0
2,1,0,0,2,1 + α86K

2,0,0
2,1,0,0,2,1 + α87K

1,1,0
2,2,0,0,1,1 + α88K

2,0,0
2,2,0,0,1,1

+ α89K
0,2,0
3,1,0,0,1,1 + α90K

1,1,0
3,1,0,0,1,1 + α91K

2,0,0
3,1,0,0,1,1 + α92K

1,3,0
3,1,0,0,2,1

+ α93K
0,4,0
3,2,0,0,1,1 + α94K

1,3,0
4,1,0,0,1,1 + α95K

2,2,0
4,1,0,0,1,1 + α96K

4,0,0
4,1,0,0,1,1

+ α97K
6,0,0
4,2,0,0,1,1 + α98K

3,3,0
5,1,0,0,1,1 + α99K

5,1,0
5,1,0,0,1,1 + α100L

0,0,0
2,1,0,0,1,1

+ α101L
2,0,0
3,1,0,0,1,1 + α102Î

0
1 Î

0
1 Î

0
3 + α103Î

0
1 Î

0
1I

0
3 + α104Î

0
1 Î

0
2 Î

0
2

+ α105Î
0
1I

0
2 Î

0
2 + α106Î

2
1 Î

0
2I

0
3 + α107I

0
1 Î

0
1 Î

0
3 + α108I

0
1 Î

0
2 Î

0
2 + α109I

0
1I

0
1 Î

0
3

+ α110I
0
1I

0
2 Î

0
2 + α111I

2
1 Î

0
2I

0
3

]

+ CANfCF

[

α112K
0,0,0
1,1,0,0,2,1 + α113K

2,0,0
1,1,0,0,2,2 + α114K

0,0,0
2,1,0,0,1,1 + α115K

0,2,0
2,1,0,0,2,1

+ α116K
2,0,0
2,1,0,0,2,1 + α117K

1,1,0
2,2,0,0,1,1 + α118K

2,0,0
2,2,0,0,1,1 + α119K

0,2,0
3,1,0,0,1,1

+ α120K
1,1,0
3,1,0,0,1,1 + α121K

2,0,0
3,1,0,0,1,1 + α122K

1,3,0
3,1,0,0,2,1 + α123K

0,4,0
3,2,0,0,1,1

+ α124K
1,3,0
4,1,0,0,1,1 + α125K

2,2,0
4,1,0,0,1,1 + α126K

4,0,0
4,1,0,0,1,1 + α127K

6,0,0
4,2,0,0,1,1

+ α128K
3,3,0
5,1,0,0,1,1 + α129L

0,0,0
2,1,0,0,1,1 + α130L

2,0,0
3,1,0,0,1,1 + α131Î

0
1 Î

0
1I

0
3

+ α132Î
0
1 Î

0
2 Î

0
2 + α133Î

0
1I

0
2 Î

0
2 + α134Î

2
1 Î

0
2I

0
3 + α135I

0
1 Î

0
2 Î

0
2 + α136I

0
1I

0
2 Î

0
2

+ α137I
2
1 Î

0
2I

0
3

]

, (C.14)

Π′
T3(0) = C3

A

[

β1J
0,0,0
2,2,0,0,1,1 + β2J

0,0,0
3,1,0,0,1,1 + β3J

0,0,2
3,2,0,0,1,1 + β4J

0,2,0
4,1,0,0,1,1

+ β5J
2,2,0
5,1,0,0,1,1 + β6J

4,0,0
5,1,0,0,1,1 + β7J

8,0,0
7,1,0,0,1,1 + β8J

7,3,0
7,3,0,−1,1,1

+ β9J
8,2,0
8,2,0,−1,1,1 + β10I

0
1I

0
1I

0
4 + β11I

0
1I

0
2I

0
3 + β12I

0
2I

0
2I

0
2

]

+ C2
ANf

[

β13K
0,0,0
1,1,0,0,2,2 + β14K

0,0,0
1,1,0,0,3,1 + β15K

2,0,0
1,1,0,0,3,2 + β16K

1,1,0
1,1,0,0,4,1

+ β17K
2,0,0
1,1,0,0,4,1 + β18K

0,0,0
2,1,0,0,2,1 + β19K

0,2,0
2,1,0,0,3,1 + β20K

2,0,0
2,1,0,0,3,1

+ β21K
4,0,0
2,1,0,0,4,1 + β22K

0,0,0
2,2,0,0,1,1 + β23K

0,0,0
3,1,0,0,1,1 + β24K

0,2,0
3,1,0,0,2,1

+ β25K
1,1,0
3,1,0,0,2,1 + β26K

1,3,0
3,1,0,0,3,1 + β27K

4,0,0
3,1,0,0,3,1 + β28K

0,0,2
3,2,0,0,1,1

+ β29K
0,2,0
3,2,0,0,1,1 + β30K

1,1,0
3,2,0,0,1,1 + β31K

0,0,2
4,1,0,0,1,1 + β32K

0,2,0
4,1,0,0,1,1

+ β33K
1,1,0
4,1,0,0,1,1 + β34K

2,0,0
4,1,0,0,1,1 + β35K

1,3,0
4,1,0,0,2,1 + β36K

0,4,0
4,2,0,0,1,1

+ β37K
4,0,0
4,2,0,0,1,1 + β38K

1,1,2
5,1,0,0,1,1 + β39K

1,3,0
5,1,0,0,1,1 + β40K

2,0,2
5,1,0,0,1,1

+ β41K
2,2,0
5,1,0,0,1,1 + β42K

3,1,0
5,1,0,0,1,1 + β43K

4,0,0
5,1,0,0,1,1 + β44K

3,3,0
6,1,0,0,1,1

+ β45K
4,2,0
6,1,0,0,1,1 + β46K

6,0,0
6,1,0,0,1,1 + β47K

8,0,0
6,2,0,0,1,1 + β48K

5,3,0
7,1,0,0,1,1

+ β49K
6,0,2
7,1,0,0,1,1 + β50K

7,1,0
7,1,0,0,1,1 + β51K

8,0,0
7,1,0,0,1,1 + β52K

8,2,0
7,2,0,0,1,1

+ β53K
9,1,0
7,2,0,0,1,1 + β54K

8,0,2
8,1,−1,0,2,1 + β55K

10,0,0
8,1,−1,0,2,1 + β56K

8,0,2
8,1,0,0,1,1

+ β57K
9,0,1
8,1,0,0,1,1 + β58K

9,1,0
8,1,0,0,1,1 + β59K

10,0,0
8,1,0,0,1,1 + β60K

8,1,1
8,2,−1,0,1,1

+ β61K
9,1,0
8,2,−1,0,1,1 + β62L

0,0,0
2,2,0,0,1,1 + β63L

0,0,0
3,1,0,0,1,1 + β64L

4,0,0
5,1,0,0,1,1

+ β65Î
0
1 Î

0
1I

0
4 + β66Î

0
1 Î

0
2I

0
3 + β67Î

0
1I

0
2 Î

0
3 + β68Î

0
1I

0
2I

0
3 + β69Î

2
1 Î

0
2I

0
4
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+ β70Î
2
1I

0
2 Î

0
4 + β71Î

2
1I

0
3 Î

0
3 + β72Î

0
2 Î

0
2 Î

0
2 + β73I

0
1 Î

0
1 Î

0
4 + β74I

0
1 Î

0
1I

0
4

+ β75I
0
1 Î

0
2 Î

0
3 + β76I

0
1 Î

0
2I

0
3 + β77I

0
1I

0
1 Î

0
4 + β78I

0
1I

0
2 Î

0
3 + β79I

2
1 Î

0
2I

0
4

+ β80I
2
1I

0
2 Î

0
4 + β81I

2
1I

0
3 Î

0
3 + β82I

0
2 Î

0
2 Î

0
2 + β83I

0
2I

0
2 Î

0
2

]

+ CAN
2
f

[

β84L
0,0,0
2,2,0,0,1,1 + β85L

0,0,0
3,1,0,0,1,1 + β86L

0,0,2
3,2,0,0,1,1 + β87L

0,2,0
4,1,0,0,1,1

+ β88L
2,2,0
5,1,0,0,1,1 + β89L

4,0,0
5,1,0,0,1,1 + β90L

8,0,0
7,1,0,0,1,1 + β91L

7,3,0
7,3,0,−1,1,1

+ β92L
8,2,0
8,2,0,−1,1,1 + β93Î

0
1 Î

0
1 Î

0
4 + β94Î

0
1 Î

0
1I

0
4 + β95Î

0
1 Î

0
2 Î

0
3 + β96Î

0
1 Î

0
2I

0
3

+ β97Î
0
1I

0
2 Î

0
3 + β98Î

0
2 Î

0
2 Î

0
2 + β99I

0
2 Î

0
2 Î

0
2

]

+N2
f CF

[

β100L
0,0,0
2,2,0,0,1,1 + β101L

0,0,0
3,1,0,0,1,1 + β102L

0,0,2
3,2,0,0,1,1 + β103L

0,2,0
4,1,0,0,1,1

+ β104L
2,2,0
5,1,0,0,1,1 + β105L

4,0,0
5,1,0,0,1,1 + β106L

8,0,0
7,1,0,0,1,1 + β107Î

0
1 Î

0
1 Î

0
4

+ β108Î
0
1 Î

0
2 Î

0
3 + β109Î

0
1 Î

0
2I

0
3 + β110Î

0
1I

0
2 Î

0
3 + β111Î

0
2 Î

0
2 Î

0
2

]

+NfC
2
F

[

β112K
0,0,0
1,1,0,0,2,2 + β113K

0,0,0
1,1,0,0,3,1 + β114K

1,1,0
1,1,0,0,4,1 + β115K

2,0,0
1,1,0,0,4,1

+ β116K
0,0,0
2,1,0,0,2,1 + β117K

0,2,0
2,1,0,0,3,1 + β118K

2,0,0
2,1,0,0,3,1 + β119K

0,0,0
2,2,0,0,1,1

+ β120K
0,0,0
3,1,0,0,1,1 + β121K

0,2,0
3,1,0,0,2,1 + β122K

1,1,0
3,1,0,0,2,1 + β123K

1,3,0
3,1,0,0,3,1

+ β124K
4,0,0
3,1,0,0,3,1 + β125K

0,2,0
3,2,0,0,1,1 + β126K

1,1,0
3,2,0,0,1,1 + β127K

0,2,0
4,1,0,0,1,1

+ β128K
1,1,0
4,1,0,0,1,1 + β129K

2,0,0
4,1,0,0,1,1 + β130K

1,3,0
4,1,0,0,2,1 + β131K

0,4,0
4,2,0,0,1,1

+ β132K
4,0,0
4,2,0,0,1,1 + β133K

1,3,0
5,1,0,0,1,1 + β134K

2,2,0
5,1,0,0,1,1 + β135K

3,1,0
5,1,0,0,1,1

+ β136K
4,0,0
5,1,0,0,1,1 + β137K

3,3,0
6,1,0,0,1,1 + β138K

4,2,0
6,1,0,0,1,1 + β139K

6,0,0
6,1,0,0,1,1

+ β140K
8,0,0
6,2,0,0,1,1 + β141K

5,3,0
7,1,0,0,1,1 + β142K

7,1,0
7,1,0,0,1,1 + β143L

0,0,0
2,2,0,0,1,1

+ β144L
0,0,0
3,1,0,0,1,1 + β145L

4,0,0
5,1,0,0,1,1 + β146Î

0
1 Î

0
1 Î

0
4 + β147Î

0
1 Î

0
1I

0
4

+ β148Î
0
1 Î

0
2 Î

0
3 + β149Î

0
1 Î

0
2I

0
3 + β150Î

0
1I

0
2 Î

0
3 + β151Î

2
1 Î

0
2I

0
4 + β152Î

2
1I

0
3 Î

0
3

+ β153Î
0
2 Î

0
2 Î

0
2 + β154I

0
1 Î

0
1 Î

0
4 + β155I

0
1 Î

0
2 Î

0
3 + β156I

0
1 Î

0
2I

0
3 + β157I

0
1I

0
1 Î

0
4

+ β158I
0
1I

0
2 Î

0
3 + β159I

2
1 Î

0
2I

0
4 + β160I

2
1I

0
3 Î

0
3 + β161I

0
2 Î

0
2 Î

0
2 + β162I

0
2I

0
2 Î

0
2

]

+ CANfCF

[

β163K
0,0,0
1,1,0,0,2,2 + β164K

0,0,0
1,1,0,0,3,1 + β165K

2,0,0
1,1,0,0,3,2 + β166K

2,0,0
1,1,0,0,4,1

+ β167K
0,0,0
2,1,0,0,2,1 + β168K

0,2,0
2,1,0,0,3,1 + β169K

2,0,0
2,1,0,0,3,1 + β170K

0,0,0
2,2,0,0,1,1

+ β171K
0,0,0
3,1,0,0,1,1 + β172K

0,2,0
3,1,0,0,2,1 + β173K

1,1,0
3,1,0,0,2,1 + β174K

1,3,0
3,1,0,0,3,1

+ β175K
4,0,0
3,1,0,0,3,1 + β176K

0,2,0
3,2,0,0,1,1 + β177K

1,1,0
3,2,0,0,1,1 + β178K

0,2,0
4,1,0,0,1,1

+ β179K
1,1,0
4,1,0,0,1,1 + β180K

2,0,0
4,1,0,0,1,1 + β181K

1,3,0
4,1,0,0,2,1 + β182K

0,4,0
4,2,0,0,1,1

+ β183K
4,0,0
4,2,0,0,1,1 + β184K

1,3,0
5,1,0,0,1,1 + β185K

2,2,0
5,1,0,0,1,1 + β186K

3,1,0
5,1,0,0,1,1

+ β187K
4,0,0
5,1,0,0,1,1 + β188K

3,3,0
6,1,0,0,1,1 + β189K

4,2,0
6,1,0,0,1,1 + β190K

6,0,0
6,1,0,0,1,1

+ β191K
8,0,0
6,2,0,0,1,1 + β192K

5,3,0
7,1,0,0,1,1 + β193L

0,0,0
2,2,0,0,1,1 + β194L

0,0,0
3,1,0,0,1,1

+ β195L
4,0,0
5,1,0,0,1,1 + β196Î

0
1 Î

0
1I

0
4 + β197Î

0
1 Î

0
2 Î

0
3 + β198Î

0
1 Î

0
2I

0
3 + β199Î

0
1I

0
2 Î

0
3

+ β200Î
2
1 Î

0
2I

0
4 + β201Î

2
1I

0
3 Î

0
3 + β202Î

0
2 Î

0
2 Î

0
2 + β203I

0
1 Î

0
1 Î

0
4 + β204I

0
1 Î

0
2 Î

0
3
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+ β205I
0
1 Î

0
2I

0
3 + β206I

0
1I

0
2 Î

0
3 + β207I

2
1 Î

0
2I

0
4 + β208I

2
1I

0
3 Î

0
3 + β209I

0
2 Î

0
2 Î

0
2

+ β210I
0
2I

0
2 Î

0
2

]

. (C.15)

Looking at the master integrals that are needed for the above two lengthy expressions

let us note that, while most of them have factors of P0 etc. in the numerator, only eight

of them (those multiplying β{8,9,54,55,60,61,91,92}) contain irreducible scalar products in the

numerator and hence need methods for their evaluation that go beyond those presented in

appendix 5 (see, however, ref. [12, 23], where examples of such sum-integrals were treated).

Also, some of the masters (such as e.g. those multiplying α{7,8}, β{8,9}) involve somewhat

large powers of propagators, which is a consequence of our ordering prescription. However,

as was shown in appendix 5 in terms of the generic power N , this does not seem to be a

particularly difficult obstacle.

We refrain from listing the coefficients α1...137 and β1...210 here. They have the gen-

eral form
∑

n ξ
n pn(d)/qn(d), where ξ is the gauge parameter (see eq. (2.14)) and p, q are

polynomials in d. The full expressions for eqs. (C.14) and (C.15) are provided in computer-

readable form on [24].
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[21] S. Borsányi, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, Precision SU(3) lattice

thermodynamics for a large temperature range, JHEP 07 (2012) 056 [arXiv:1204.6184]

[INSPIRE].

[22] S. Chapman, A new dimensionally reduced effective action for QCD at high temperature,

Phys. Rev. D 50 (1994) 5308 [hep-ph/9407313] [INSPIRE].

[23] P.B. Arnold and C.-x. Zhai, The three loop free energy for high temperature QED and QCD

with fermions, Phys. Rev. D 51 (1995) 1906 [hep-ph/9410360] [INSPIRE].

[24] http://www.physik.uni-bielefeld.de/theory/e6/BI-TP-2012-25.html.

– 17 –

http://dx.doi.org/10.1103/PhysRevD.50.7603
http://arxiv.org/abs/hep-ph/9408276
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9408276
http://dx.doi.org/10.1088/1126-6708/2007/04/094
http://arxiv.org/abs/hep-ph/0703307
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703307
http://dx.doi.org/10.1103/PhysRevD.78.076008
http://arxiv.org/abs/0805.4478
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.4478
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.030
http://arxiv.org/abs/hep-ph/0601165
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601165
http://dx.doi.org/10.1016/j.nuclphysBPS.2010.08.046
http://arxiv.org/abs/1007.1223
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1223
http://dx.doi.org/10.1103/PhysRevLett.86.10
http://arxiv.org/abs/hep-ph/0007109
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0007109
http://dx.doi.org/10.1103/PhysRevD.67.105008
http://arxiv.org/abs/hep-ph/0211321
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0211321
http://dx.doi.org/10.1103/PhysRevD.73.085009
http://arxiv.org/abs/hep-ph/0603048
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603048
http://dx.doi.org/10.1007/JHEP07(2012)056
http://arxiv.org/abs/1204.6184
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.6184
http://dx.doi.org/10.1103/PhysRevD.50.5308
http://arxiv.org/abs/hep-ph/9407313
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9407313
http://dx.doi.org/10.1103/PhysRevD.51.1906
http://arxiv.org/abs/hep-ph/9410360
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9410360
http://www.physik.uni-bielefeld.de/theory/e6/BI-TP-2012-25.html

	Introduction
	Effective gauge coupling and screening mass
	Relation for m(E)**2
	Relation for g(E)**2

	The reduction
	Structure of the result
	Evaluation of classes of master sum-integrals
	Applications
	Conclusions
	One- and two-loop vacuum sum-integrals
	Check of new sum-integrals
	Expansion coefficients up to three loops

