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1 Introduction

There is a long literature on computing soliton solutions, of varying co-dimension, in both

non-supersymmetric [1, 2] and supersymmetric/superstring [3–6] theories of physical in-

terest. This was followed, in each of these contexts, by computations of the lowest order

Dirac-Born-Infeld (DBI) actions on the worldvolumes of these solitons [7–12]. More re-

cently, there has been interest in extending these calculations to include higher-dimensional

operators, involving both extrinsic and intrinsic curvature, in these effective actions. This

has been carried out with differing techniques, using both probe and back-reacted geome-

tries, for bosonic [13–19] and supersymmetric branes [20–28].

Apart from the inherent interest in computing these higher-order corrections to the

effective actions, the advent of Galileon theories has led to renewed interest in higher-

derivative terms. First brought to the forefront in the context of the decoupling limit of

the Dvali-Gabadadze-Porrati (DGP) brane-world scenario [29], where the Galileon scalar

is related to the brane bending mode, Galileon theories have since been generalized [36].

Galileons have two remarkable properties: first, despite the fact that their interactions

are higher-derivative, the corresponding equations of motion are nevertheless second or-

der, and second, these interactions possess extended non-linearly realized symmetries. The

construction of higher-derivative scalar field theories with second-order equations of mo-

tion goes back to Horndeski [30]. See [31] for a recent discussion and [32–35] for earlier

related work. The original Galileons of [36] possess another important property that justi-

fies treating them separately from the other possible non-Galileon higher-derivative terms

which possess the same symmetries. There can be non-linear solutions and regions of

momentum and field space for which Galileon terms are important relative to the kinetic

terms, and yet the non-Galileon terms are unimportant, allowing us to work with only the

finitely many non-linear Galileon terms rather than the whole effective field theory expan-

sion [37, 38]. Furthermore, Galileons can lead to stable (that is, ghost-free) violations of
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the Null Energy Condition [39, 40], akin to the ghost condensate [41]. In fact, supersym-

metric condensates naturally give rise to super-Galileons [42, 43]. This violation allows for

non-singular bounces in the early universe [39, 44–49] and cosmologies that expand from an

asymptotically-flat past [50]. These interesting solutions generally require the Galileon-like

terms to be important relative to the kinetic terms, so from an effective field theory point

of view, if other unknown higher-order terms are to be neglected, it is crucial that the

Galileons have the property described in the previous paragraph.

There are extensions of the original Galileons, the DBI Galileon, that arise naturally

in describing the brane-bending mode of co-dimension one and higher brane worldvol-

umes [51–53]. They arise from Lovelock terms and their boundary terms in the worldvolume

actions. The original Galileons are obtained after a certain small field limit. Non-Lovelock

terms on the worldvolume lead to non-Galileon terms. Since the DBI Galileons arise from

the point of view of a brane probing a relativistic spacetime, it is natural to ask whether

there can be regions of momentum and/or field space in which the DBI Galileons are im-

portant relative to the DBI kinetic term, yet still dominant over the non-Galileon terms, as

is the case for the original Galileons. If this is the case, then in these regimes, only a finite

number of higher-derivative terms in the worldvolume action would have to be computed

to completely determine the interesting non-linear dynamics. The DBI Galileons admit

superluminal propagation around non-trivial solutions [54] which, along with other argu-

ments, suggests that any UV completion, though not necessarily inconsistent, will not be

in the form of a local Lorentz invariant quantum field theory or string theory [55]. Thus, if

a low-energy worldvolume theory on a brane could be derived in which there were a sharp

limit where only the Galileons are important, it would mean that either the theory describ-

ing the brane does not have a UV description as a local Lorentz invariant quantum field

theory/string theory, or that the arguments concerning the connection between low-energy

superluminality and UV physics are somehow evaded.

Motivated by these reasons, and simply by the desire to have a consistent and general

method for calculating low-energy worldvolume actions for solitons in more general space-

times, we present here a calculation of the leading and subleading corrections to the DBI

worldvolume action of a scalar “kink” in anti-deSitter (AdS) spacetime. We consider AdS

spacetime for three reasons. First, “brane world” theories, introduced in [56, 57], provide

a possible explanation of the large hierarchy between standard model and gravitational

forces by embedding one or more co-dimension one branes inside of five-dimensional AdS

spacetime. Indeed, kink solitons involving a single scalar field have been explored within

this context [58–60]. However, the goal of these papers was to study the metric fluctuations

around generically curved kink backgrounds. The worldvolume action and, specifically, its

higher-dimensional contributions were not evaluated. Second, stable vacuum solutions of

perturbative supergravities naturally have a non-positive cosmological constant and, hence,

are either AdS or Minkowski. It follows that the BPS solitons of these theories and, specifi-

cally, co-dimension one branes are embedded in AdS spacetime. Since compactifications of

superstrings and M-theory can preserve supersymmetries, AdS spacetimes are relevant to

solitons in these theories as well. Third, the Galileon theories arising from a probe brane

in an AdS bulk are conformally invariant [51], and thus have an interesting structure.
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This is the first in a series of papers that will apply our extended method for comput-

ing higher-dimensional worldvolume actions to effective string solitons of physical interest.

There are a number of reasons for doing this. For example, evaluating the action of wrapped

five-branes in a UV complete theory, such as heterotic M-theory [61, 62], will allow one

to examine phenomena as diverse as the dynamics of “small instanton” transitions [63],

five-brane collisions with the observable sector and themselves that underlie ekpyrotic cos-

mology [64–66] and possible violations of the null energy condition during brane evolution

via “ghost condensation” [42]. Similar phenomena can occur within the context of other

string theories, such as for D-branes in Type II strings — see, for example, [27]. In a

series of papers [13, 16, 18], Gregory and collaborators presented a particularly compelling

approach to the problem of computing higher-order corrections to worldvolume actions,

within the context of flat space co-dimension one kink solitons. This involves a consistent

series expansion in a parameter ǫ, the ratio of the kink thickness to the typical worldvolume

fluctuation length. Using this formalism, the explicit worldvolume action of a probe kink in

a flat background bulk space was computed [16]. In this paper, we modify and extend this

formalism, using it to compute to second order in ǫ (and a second parameter δ) the explicit

worldvolume action of a kink soliton in AdS. This is carried out in two different ways,

first with respect to the original AdS metric and second using a rescaled flat metric. Both

lead to mutually consistent expressions for the worldvolume action including higher-order

extrinsic and intrinsic curvature terms. Although three terms are indeed conformal DBI

Galileons, a fourth term involving the square of the extrinsic scalar curvature explicitly

is not — nor are there any momenta for which this term is sub-dominant. We want to

emphasize that, following [16], our formalism computes the worldvolume action on probe

brane solitons in a fixed background geometry — without backreaction. It is, of course,

necessary to check that this probe brane limit consistently exists. We have done this ex-

plicitly in the AdS kink case, as well as in more complicated examples such as wrapped

five-brane kinks in heterotic M-theory geometry. Our formalism can, in principle, also be

applied to solitons backreacting on the geometry. However, such calculations become very

complicated and are beyond the scope of this paper.

The paper is structured as follows. In section 2, we briefly review the formalism

presented in [16] for computing the worldvolume action of a kink soliton of a real scalar

field in flat spacetime. As a prelude to the AdS calculation, and to set our notation, we

carry out the computation to second order in the expansion parameter ǫ. In section 3, anti-

deSitter spacetime is introduced, and the potential energy of the real scalar field is modified

so that its equation of motion admits a kink soliton of the same functional form as in flat

space. Kink solitons in AdS were also discussed in [58–60]. However, since their intent was

to simplify the equations for gravity fluctuations around generically curved worldvolumes,

these papers necessarily had to introduce relatively complicated potentials and kinks. To

study the worldvolume action, however, it suffices to consider the simple kink soliton in [16]

— now, however, extended to AdS spacetime.

We then generalize the formalism of [16] so as to allow a calculation of the effective

action on this kink worldvolume. The radius of AdS space introduces, in addition to ǫ, a

second expansion parameter δ. The extrinsic and intrinsic curvatures, the generalized solu-
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tion to the scalar equation of motion and the kink soliton worldvolume action are explicitly

computed to second order in both parameters. Working in AdS spacetime introduces a

number of technical issues, such as the appropriate “cut-off” of certain integrals, which are

treated in detail. The conformally flat metric gmn of AdS space leads to a non-vanishing

constant extrinsic scalar curvature that greatly complicates the above analysis. In the

second part of section 3, we explore, in detail, the implications of working in a rescaled

flat metric g̃mn with respect to which the lowest order extrinsic curvature vanishes. It is

shown how this simplifies the computation of the worldvolume geometric quantities, while

leaving the analysis of the solution of the scalar equation of motion and the kink world-

volume action essentially the same. All these quantities are explicitly calculated to second

order in ǫ, δ. Using the direct relationship between the two metrics, we then compare the

results of both approaches and show that they are identical, as they must be. We would

like to emphasize the importance of this rescaled flat metric formalism. Although in AdS

spacetime the computation of the worldvolume metric and extrinsic/intrinsic curvatures

can be carried out using the conformally flat metric, it is rather difficult as compared to

the rescaled flat metric calculation. This relative difficulty greatly increases when applying

our formalism to other spacetimes, such as the warped five-dimensional geometry of het-

erotic M-theory. In these cases, the rescaled formalism remains viable and straightforward,

whereas trying to calculate in the conformally flat metric can become prohibitively compli-

cated. So, despite the fact that both approaches must produce the same result, we view the

rescaled flat metric as an important advance in the formalism for computing worldvolume

actions. Hence, we discuss it in detail in this section.

In section 4, we analyze the worldvolume action computed in the previous section.

Going to a conventional gauge, each term in the action is expressed as an explicit function

of a real scalar field π — the brane-bending mode. The relationship of these results to

conformal Galileons [36] is discussed. In addition to the L2, L3 and L4 Galileons (the final

Galileon L5 appears at one order higher than our calculation), we find that there is a non-

Galileon term proportional to the square of the extrinsic curvature scalar. Importantly, it

is shown that that there is no region of momentum space for which this non-Galileon term

is sub-dominant. We conclude that, although important contributions, Galileons are not

the only relevant interactions on a kink/brane worldvolume. Finally, in appendix A we

prove that up to order ǫ3, and to all orders with no worldvolume gradient operators, the

worldvolume action can always be re-expressed purely in terms of Galileons by a specific

field redefinition. However, the “non-Galileon” physics does not disappear — it is now

non-trivially encoded in this field transformation.

2 Scalar kinks in d = 5 flat spacetime

The most general action for a real scalar field Φ with minimal kinetic term coupled to

gravity in d = 5 spacetime is given by

S =

∫

M5

d5x
√−g

(

1

2κ25
(R− 2Λ)− 1

2
gmn∂mΦ∂nΦ− V (Φ)

)

, (2.1)
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where indices m,n = 1, . . . 5, gmn is the five-dimension metric with signature (−++++),

κ5 is the dimension −3/2 Newton’s constant, Λ is a cosmological constant and V (Φ) is an

arbitrary potential. The associated Einstein equation is

Rmn − 1

2
gmnR+ Λgmn = κ25Tmn , (2.2)

where

Tmn = ∂mΦ∂nΦ− gmn

(

1

2
∂pΦ∂pΦ+ V (Φ)

)

. (2.3)

Assuming that neither the temporal/spatial gradient nor the potential of Φ depend on the

d = 5 Planck constant, in the limit that κ5 → 0 the Φ dynamics decouples from gravity.

Equation (2.2) then becomes

Rmn − 1

2
gmnR+ Λgmn = 0 , (2.4)

and the dynamics of the Φ field can be consistently discussed in this background spacetime

— the so-called “probe” limit — using the Lagrangian

L = −1

2
gmn∂mΦ∂nΦ− V (Φ) . (2.5)

In [16], Gregory and Carter used this probe limit to compute the induced worldvolume

Lagrangian of the domain wall associated with the “kink” solution of the Φ equation of

motion in flat spacetime. In this section, we briefly review their formalism. Begin by setting

Λ = 0 (2.6)

in (2.4) and taking the background spacetime to be be flat, denoting the metric by gmn =

ηmn. In Cartesian coordinates xm, m = 0, . . . , 4 the metric takes the diagonal form ηmn =

(−1, 1, 1, 1, 1). Now specify that

V (Φ) = λ(Φ2 − η2)2 , (2.7)

where λ is a positive constant of dimension −1, and η is a constant of dimension 3/2, both

independent of the d = 5 Planck mass. The associated field equation is

ηmn∂m∂nΦ− 4λΦ
(

Φ2 − η2
)

= 0 . (2.8)

Denoting the the fifth coordinate x5 = z, we seek a solution for Φ independent of the

remaining coordinates. The equation of motion (2.8) then reduces to

d2Φ

dz2
− 4λΦ

(

Φ2 − η2
)

= 0 . (2.9)

Demanding that Φ be positive for positive values of z, this has the well-known

“kink” solution

Φ = ηφ(0) , φ(0) = tanh(η
√
2λz) (2.10)
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of width

l =
1

η
√
2λ

. (2.11)

Since this solution is independent of the remaining coordinates, it describes a static domain

wall located at z = 0.

We would now like to generalize this to kink solutions that depend on the remaining

coordinates as well as z. This will be achieved as follows. Let L specify the typical

fluctuation length of the new solution along the remaining coordinates and define

ǫ =
l

L
. (2.12)

We will seek solutions for which ǫ ≪ 1 and, hence, can be obtained from (2.10) by a

perturbation expansion. As discussed in [16], this is most easily carried out in Gaussian

normal coordinates, defined as follows. Let Φ be the new solution and denote the associated

defect worldsheet by Σ. Let nm be a unit geodesic normal vector field to Σ, and generalize

z to be the proper length along the integral curves of nm. The remaining four worldsheet

coordinates of Σ will be denoted by σµ, µ = 0, . . . , 3. Each constant z surface then has a

unit normal nm, an intrinsic metric hmn and an extrinsic curvature Kmn defined by

hmn = ηmn − nmnn , Kmn = hpm∇pnn , (2.13)

respectively. These two quantities are not independent, satisfying the constraints

Lnhmn = 2Kmn , (2.14)

LnKmn = KmpK
p
n , (2.15)

where Ln is the Lie derivative along the nm vector field. With respect to Gaussian normal

coordinates, the equation of motion (2.8) can be written as

L2
nΦ+KLnΦ+ ηmnDmDnΦ− 4λΦ(Φ2 − η2) = 0 , (2.16)

where

K = hmnKmn , Dm = hpm∇p . (2.17)

Scaling to dimensionless variables by setting

u =
z

l
, σ′ =

σ

L
, Φ = ηφ, Kmn =

1

L
κmn (2.18)

equations (2.14), (2.15) and (2.16) become

h′mn = 2ǫκmn , (2.19)

κ′mn = ǫκmpκ
p
n , (2.20)

φ′′ + ǫκφ′ − 2φ(φ2 − 1) + ǫ2DmDmφ = 0 , (2.21)

– 6 –
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where ′ = ∂/∂u.1 These equations can now be solved by expanding each dimensionless

quantity as a power series in ǫ. That is, let

φ = φ(0) + ǫφ(1) +
ǫ2

2
φ(2) +O(ǫ3) , (2.22)

hmn = h(0)mn + ǫh(1)mn +
ǫ2

2
h(2)mn +O(ǫ3) , (2.23)

κmn =
1

ǫ
κ(0)mn + κ(1)mn +

ǫ

2
κ(2)mn +

ǫ2

6
κ(3)mn +O(ǫ3) , (2.24)

where each coefficient is generically a function of the coordinates (σµ, u). Substituting these

into (2.19), (2.20) and (2.21), one obtains equations for each coefficient function order by

order in ǫ.

Order ǫ
0. At this order nm = n5 and, hence, h(0)mn is an unspecified function of σµ

independent of u. It follows that equation (2.19) implies κ(0)mn vanishes and (2.20) is

trivially satisfied. That is,

h(0)mn = ĥ(0)mn(σ), κ(0)mn = 0 . (2.25)

Here, and henceforth, any quantity that depends only on the σµ coordinates with be

denoted with a “hat”. The equation of motion (2.21) becomes

φ′′
(0) − 2φ(0)

(

φ2
(0) − 1

)

= 0 . (2.26)

This is simply (2.9) written in the rescaled variable u = z/l and, hence, has the solution

φ(0) = tanh(u) . (2.27)

Order ǫ
1. At this order, it follows from (2.20) and then (2.19) that

h(1)mn = 2uκ̂(1)mn , κ(1)mn = κ̂(1)mn(σ) , (2.28)

with κ̂(1)mn unspecified. At order ǫ1, (2.21) becomes

φ′′
(1) − 2(3φ2

(0) − 1)φ(1) + κ̂(1)(σ)φ
′
(0) = 0 , (2.29)

where κ̂(1) = ĥmn
(0) κ̂(1)mn is arbitrary. Subject to the boundary conditions that Φ

u→±0−→ 0,

Φ
u→±∞−→ ±η and, hence,

φ(0) → 0 , φ(1) → 0 , . . . as u → ±0 , (2.30)

φ(0) → ±1 , φ(1) → 0 , . . . as u → ±∞ , (2.31)

there is a unique solution of (2.29) given by

φ(1) = κ̂(1)(σ)f(u) , (2.32)

1 For notational simplicity, we henceforth drop the prime on σ
′, the dimensionality of σ being clear from

the context.
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with

f(u) = −1

4
− 1

12
cosh(2u) +

1

3
sech2 u± 1

12

(

3u sech2 u+ sinh(2u) + 3 tanhu
)

. (2.33)

We conclude that to order ǫ, and restoring the dimensionful parameters,

Φ = η tanh
(z

l

)

+ ηl K̂(1)(σ)f
(z

l

)

+O(ǫ2) . (2.34)

As discussed in detail in [16], Φ is continuous, but not continuously differentiable, across

the z = 0 wall surface.

Order ǫ
2. To this order, one need only know the metric and extrinsic curvature. Solv-

ing (2.20) and then (2.19), we find that

h(2)mn = 2u2κ̂(1)mpκ̂
p
(1)n , κ(2)mn = uκ̂(1)mpκ̂

p
(1)n . (2.35)

Note that none of the purely σ dependent quantities — that is, none of the hatted functions

— have been determined by the above procedure. This will remain true to any order in

the ǫ-expansion. There is a fundamental reason for this; namely, prior to computing the

worldvolume action of the domain wall, one must leave unrestrained any degrees of freedom

intrinsic to the wall itself. These can only be determined by varying the worldvolume

action to get the equations of motion of the wall location. It follows that hmn and κmn

are off-shell and, hence, arbitrary functions of the intrinsic coordinates σµ at this stage of

the calculation.

The worldvolume effective action can now be calculated to any required accuracy in

the ǫ expansion. It is given by

S4 =

∫

M4

d4σ
√
−h|u=0L̂ (2.36)

where

L̂ =

∫

dzJL , J =

√−η√
−h|u=0

, (2.37)

and L is the original Lagrangian density given in (2.5), (2.7) evaluated for the solution of

the equation of motion given to order ǫ in (2.34). Taylor expanding
√−η around u = 0

and using (2.19), (2.20) to second order, one finds

J = 1 + ǫJ(1) +
ǫ2

2
J(2) +O(ǫ3) , (2.38)

with

J(1) = uκ̂(1) , J(2) = u2
(

κ̂2(1) − κ̂(1)mnκ̂
mn
(1)

)

. (2.39)

Similarly, inserting solution Φ in (2.34) into (2.5), (2.7), going to dimensionless variables

and using the equations of motion (2.26) and (2.29), it follows that

L = L(0) + ǫL(1) +
ǫ2

2
L(2) +O(ǫ3) , (2.40)
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where

L(0) = −2λη4φ′2
(0), L(1) = −2λη4(φ′

(0)φ(1))
′ (2.41)

L(2) = −2λη4
(

(φ′
(0)φ(2))

′ + (φ′
(1)φ(1))

′ + κ̂(1)φ
′
(0)φ(1)

)

.

Multiplying (2.38) and (2.40) then gives

JL
λη4

= −2φ′ 2
(0)

(

1 + ǫJ(1) +
ǫ2

2
J(2)

)

+ ǫ2κ̂(1)φ
′
(0)φ(1) (2.42)

−ǫ
(

φ′
(0)(2φ(1) + ǫφ(2)) + ǫ(φ′

(1) + 2κ̂(1)φ
′
(0)u)φ(1)

)′

+O(ǫ3)

in each of the separate domains −∞ < u < 0 and 0 < u < ∞. Note that the vanishing of

κ(0)mn allows one to equate

κ̂ = κ̂(1) (2.43)

to this order in the ǫ-expansion, which we do henceforth. The above stated boundary

conditions imply that when integrated over −∞ < u < ∞ the contribution of the to-

tal divergence term vanishes. Furthermore, J(1) in (2.39) is odd in u and also does not

contribute. Hence, inserting (2.42) into (2.37) using (2.39), z = lu and (2.11) one finds

L̂ = L̂(0) +
ǫ2

2
L̂(2) +O(ǫ3) , (2.44)

where

L̂(0) = −η2

l
II (2.45)

L̂(2) = −η2

l

(

κ̂2 − κ̂mnκ̂
mn
)

III +
η2

l
κ̂2IIII

and

II =

∫ +∞

−∞

du φ′ 2
(0) =

4

3
, III =

∫ +∞

−∞

du u2φ′ 2
(0) =

π2 − 6

9

IIII =

∫ +∞

−∞

du f φ′
(0) =

5

18
. (2.46)

Rewritten in dimensionful variables, truncating the expansion at order ǫ2 and using the

Gauss-Codazzi relation

R̂(4) = K̂2 − K̂n
mK̂m

n , (2.47)

the worldvolume Lagrangian is given by

L̂ = −4η2

3l

(

1 + CIR̂
(4) + CIIK̂

2
)

(2.48)

where

CI =
III
II

l2

2
=

(

π2 − 6

24

)

l2, CII = −IIII
II

l2

2
= − 5

48
l2 . (2.49)

This is the result presented by Gregory and Carter [16], after correcting some errors in

their manuscript.
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3 Scalar kinks in d = 5 AdS spacetime

In this section we will use, and extend, the Gregory/Carter formalism to compute the

worldvolume Lagrangian of a kink domain wall in d = 5 anti-deSitter spacetime. In this

case, we choose

Λ < 0 . (3.1)

Equation (2.4) then admits an AdS background solution with metric

ds2 = e
2z

R dxµdxνηµν + dz2 (3.2)

where Λ = − 6
R2 . The associated curvature tensors are given by

R(5) = − 20

R2
, R(5)

mn = − 4

R2
gmn, R(5)

mnpq = − 1

R2
(gmpgnq − gmqgnp) . (3.3)

In the “probe” limit, the dynamics of the Φ field can be consistently discussed in this AdS

background using the Lagrangian

L = −1

2
gmn∂mΦ∂nΦ− V (Φ) . (3.4)

In order for the equation of motion to admit a kink solution, we must modify poten-

tial (2.7) to

V (Φ) = λ(Φ2 − η2)2 +
4
√
2λ

R

(

η2Φ− 1

3
Φ3

)

. (3.5)

This modification to the potential is introduced solely for the purpose of simplifying the

calculations. As we will see shortly, the modification is such that the equations of motion

still admit a hyperbolic tangent solution even in this curved background. This trick is not

new, see e.g. [6, 67, 68]. Alternatively, one could leave the potential unaltered, but the

field profile would be more complicated. The associated field equation now becomes

gmn∇m∂nΦ− 4λΦ(Φ2 − η2)− 4
√
2λ

R
(

η2 − Φ2
)

= 0 . (3.6)

We seek a solution for Φ that depends on the fifth coordinate z but is independent of the

remaining coordinates. The equation of motion (3.6) then reduces to

d2Φ

dz2
+

4

R
dΦ

dz
− 4λΦ(Φ2 − η2)− 4

√
2λ

R
(

η2 − Φ2
)

= 0 . (3.7)

Despite the fact that we are now in AdS spacetime, (3.7) continues to admit

the kink solution

Φ = ηφ(0), φ(0) = tanh(η
√
2λz) (3.8)

of width

l =
1

η
√
2λ

. (3.9)

Since this solution is independent of the remaining coordinates, it describes a static domain

wall located at z = 0.
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We would now like to generalize this to kink solutions that depend on the remaining

coordinates as well as z. Specifying the typical fluctuation length along the remaining

coordinates as L, and defining

ǫ =
l

L
, (3.10)

this will again be achieved as a perturbative expansion around (3.8) in the small parameter

ǫ ≪ 1. As in the flat spacetime case, this is most easily carried out in the Gaussian normal

coordinates defined in section 2. Each constant z surface has a unit normal nm, with an

intrinsic metric hmn = gmn − nmnn and extrinsic curvature Kmn defined in (2.13). These

two quantities are not independent. As in flat spacetime, the metric and extrinsic curvature

continue to be related as

Lnhmn = 2Kmn , (3.11)

where Ln is the Lie derivative along the nm vector field. However, in a general curved

five-dimensional spacetime we note from a Gauss-Codazzi relation that

LnKmn = KmpK
p
n −R(5)

rspqn
snqhrmhpn . (3.12)

Using the expression for R
(5)
rspq in AdS spacetime given in (3.3) and the definition of hmn

in (2.13), we find

R(5)
rspqn

snqhrmhpn = − 1

R2
hmn (3.13)

and, hence, that

LnKmn = KmpK
p
n +

1

R2
hmn . (3.14)

Note that in the limit R → ∞, this equation reverts to the flat spacetime expression given

in (2.15). In Gaussian normal coordinates, the equation of motion (3.6) becomes

L2
nΦ+KLnΦ+DmDmΦ− 4λΦ(Φ2 − η2)− 4

√
2λ

R
(

η2 − Φ2
)

= 0 , (3.15)

where K and Dm are the extrinsic scalar curvature and worldvolume covariant derivative

defined in (2.17). Scaling to dimensionless variables by setting

u =
z

l
, Φ = ηφ, Kmn =

1

L
κmn (3.16)

equations (3.11), (3.14) and (3.15) become

h′mn = 2ǫκmn , (3.17)

ǫκ′mn = ǫ2κmpκ
p
n + δ2hmn , (3.18)

φ′′ + ǫκφ′ − 2(φ− 2δ)(φ2 − 1) + ǫ2DmDmφ = 0 (3.19)

where ′ = ∂
∂u and we have defined

δ =
l

R . (3.20)

– 11 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
5

These equations can now be solved by expanding each dimensionless quantity as a power

series in ǫ. That is, let

φ = φ(0) + ǫφ(1) +
ǫ2

2
φ(2) +O(ǫ3), (3.21)

hmn = h(0)mn + ǫh(1)mn +
ǫ2

2
h(2)mn +O(ǫ3), (3.22)

κmn =
1

ǫ
κ(0)mn + κ(1)mn +

ǫ

2
κ(2)mn +

ǫ2

6
κ(3)mn +O(ǫ3) (3.23)

where each coefficient is generically a function of the coordinates (σµ, u). Substituting these

into (3.17), (3.18) and (3.19), one obtains equations for each coefficient function order by

order in ǫ.

The non-zero curvature in the AdS analysis will require us to carefully examine the ǫ

expansion of the hmn and κmn equations. First consider the hmn equation (3.17). Substi-

tuting (3.22) and (3.23) into (3.17), we find to order ǫ0 and ǫ1 that

h′(0)mn = 2κ(0)mn , (3.24)

h′(1)mn = 2κ(1)mn (3.25)

respectively. Now examine the the κmn equation (3.18). Note that this can be written as

ǫκ′mn = ǫ2κmpκqnh
pq + δ2hmn (3.26)

where

hmqhqn = δmn . (3.27)

Expanding

hmn = hmn
(0) + ǫhmn

(1) +
ǫ2

2
hmn
(2) +O(ǫ3) , (3.28)

it follows from (3.22), (3.27) that

hmq
(0)h(0)qn = δmn , hmq

(0)h(1)qn + hmq
(1)h(0)qn = 0 . (3.29)

Substituting (3.22), (3.23) and (3.28) into the κmn equation (3.26), we find to order ǫ0 and

ǫ1 that

κ′(0)mn = κ(0)mpκ(0)qnh
pq
(0) + δ2h(0)mn , (3.30)

κ′(1)mn = κ(0)mpκ(1)qnh
pq
(0) + κ(1)mpκ(0)qnh

pq
(0) (3.31)

+κ(0)mpκ(0)qnh
pq
(1) + δ2h(1)mn .

Before continuing to the equation of motion, let us solve (3.24), (3.25) and (3.30), (3.31).

Order ǫ
0. Since at this order nm = n5, it follows from (3.2) that

h(0)mn = e2δuĥ(0)mn(σ) (3.32)

– 12 –
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with ĥ(0)mn unspecified. Hence, the h(0)mn equation (3.24) gives

κ(0)mn = δh(0)mn . (3.33)

For notational consistency, we write this as

κ(0)mn = e2δuκ̂(0)mn(σ), κ̂(0)mn(σ) = δĥ(0)mn(σ) . (3.34)

Using the first relation in (3.29), we find that the κ(0)mn equation (3.30) is trivially satisfied.

Order ǫ
1. Substituting (3.33) into the order ǫ1 κ(1)mn equation (3.31), and recognizing

that the second expression in (3.29) implies

h(0)mph(0)qnh
pq
(1) = −h(1)mn , (3.35)

we find that

κ′(1)mn = 2δκ(1)mn . (3.36)

This is solved by

κ(1)mn = e2δuκ̂(1)mn(σ) (3.37)

with unspecified κ̂(1)mn(σ). Putting this result into the order ǫ1 h(1)mn equation (3.25)

gives

h′(1)mn = 2e2δuκ̂(1)mn(σ) . (3.38)

This can be integrated to

h(1)mn =
1

δ

(

κ(1)mn − κ̂(1)mn(σ)
)

. (3.39)

To summarize: we have found that

h(0)mn =
1

δ
κ(0)mn, h(1)mn =

1

δ

(

κ(1)mn − κ̂(1)mn(σ)
)

(3.40)

κ(0)mn = e2δuκ̂(0)mn(σ), κ(1)mn = e2δuκ̂(1)mn(σ) (3.41)

where none of the “hatted” functions of σ are specified.

Now consider the φ equation of motion. To proceed, one must substi-

tute (3.21), (3.22), (3.23), (3.28) into (3.19) noting that it is the trace of κmn defined by

κ = hmnκmn (3.42)

that enters this equation. Expanding

κ =
κ(0)

ǫ
+ κ(1) +O(ǫ) , (3.43)

we find using (3.40), (3.41) and (3.29) that

κ(0) = 4δ, κ(1) = e−2δuκ̂(1)(σ) (3.44)

where κ̂(1) = ĥmn
(0) κ̂(1)mn. Inserting this along with (3.21), (3.22), (3.23) into (3.19), we find

to order ǫ0 and ǫ1 that

φ′′
(0) + κ(0)φ

′
(0) − 2φ(0)

(

φ2
(0) − 1

)

+ 4δ
(

φ2
(0) − 1

)

= 0 (3.45)

φ′′
(1) + κ(0)φ

′
(1) + κ(1)φ

′
(0) − 2

(

3φ2
(0) − 1

)

φ(1) + 8δφ(0)φ(1) = 0 . (3.46)
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Figure 1. Numerical solution for F with δ = 0.3.

Order ǫ
0. Using the first expression in (3.44), it is straightforward to show that (3.45)

has the same solution as in (3.8). That is,

φ(0) = tanh(u) . (3.47)

Order ǫ
1. Using (3.44), equation (3.46) becomes

φ′′
(1) + 4δφ′

(1) + e−2δuκ̂(1)(σ)φ
′
(0) − 2

(

3φ2
(0) − 1

)

φ(1) + 8δφ(0)φ(1) = 0 . (3.48)

Note that as R → ∞ and, hence, δ → 0, this reverts to the flat space equation (2.29). Let

us solve (3.48) using the ansatz

φ(1) = κ̂(1)(σ)F (u) . (3.49)

Inserting this into (3.48), the factor κ̂(1) cancels and one is left with an equation for F

given by

F ′′ + 4δF ′ + e−2δuφ′
(0) − 2

(

3φ2
(0) − 1

)

F + 8δφ(0)F = 0 . (3.50)

Using (3.47), this becomes

F ′′ − 2
(

3 tanh2(u)− 1
)

F + e−2δusech2(u) + 4δ
(

F ′ + 2 tanh(u) F
)

= 0 . (3.51)

This equation can be solved independently in each of the separate domains −∞ < u < 0

and 0 < u < ∞. Corresponding to (2.30), (2.31), one must also impose the boundary

conditions

F → 0 as u → ±0 , (3.52)

F → 0 as u → ±∞ . (3.53)

Subject to these conditions, there is a unique solution of (3.51) which one can solve for

numerically. For example, the solution with δ = 0.3 is presented in figure 1.

We conclude that to this order in ǫ, and restoring the dimensionful parameters,

Φ = η tanh
(z

l

)

+ ηl K̂(1)(σ)F
(z

l

)

+O(ǫ2) . (3.54)
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As in the flat spacetime case, Φ is continuous, but not continuously differentiable, across

the z = 0 wall surface.

The worldvolume effective action can now be calculated to any required accuracy in

the ǫ expansion using (2.36), where

L̂ =

∫

dzJL, J =

√−g√
−h|u=0

, (3.55)

gmn is the AdS metric (3.2) and L is the original Lagrangian density (3.4), (3.5) evaluated

for the solution of the equation of motion given to order ǫ in (3.54). Taylor expanding
√−g

around u = 0 using (3.17), (3.18) and the fact that

hmnn
mnn|u=0 = 0 , (3.56)

one finds that

J = 1 + ǫJ(1) +
ǫ2

2
J(2) +O(ǫ3) , (3.57)

with

J(1) = uκ|u=0, J(2) = u2
(

κ2 − κmnκ
mn + 4(δ/ǫ)2

)

|u=0 . (3.58)

Similarly, inserting solution Φ in (3.54) into (3.4), (3.5) and using the equations of mo-

tion (3.45), (3.48), it follows that

L = L(0) + ǫL(1) +
ǫ2

2
L(2) +O(ǫ3) , (3.59)

where

L(i) = Lflat(i) + δ∆(i) , (3.60)

the Lflat(i) are of the same functional form as the flat spacetime results in (2.41) and

∆(0) = −λη48

(

φ(0) −
1

3
φ3
(0)

)

, ∆(1) = −λη48φ′
(0)φ(1)

∆(2) = −λη48
(

φ′
(1)φ(1) + φ′

(0)φ(2)

)

. (3.61)

Note that δ in (3.60) arises from the interaction term in the Lagrangian and not from

a power series expansion in δ. Hence, φ(1), φ(2) in both Lflat(i) and ∆(i) contain explicit

dependence on δ through, for example, the function F . Multiplying (3.57) and (3.59) gives

JL = Lflat(0)

(

1 +
ǫ2

2
J(2)

)

+ ǫLflat(1)

(

1 + ǫJ(1)
)

+
ǫ2

2
Lflat(2)

+δ

(

ǫ(∆(0)J(1) +∆(1)) +
ǫ2

2
(∆(2) + 2∆(1)J(1))

)

+O(ǫ3) , (3.62)

where we have dropped three terms that are odd in u that will vanish when integrated

over the transverse coordinate. Note that the term proportional to Lflat(0) is identical to

the L̂(0) term in the flat spacetime result (2.42), and that the ǫ2δ terms — which contain
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φ(2) in ∆(2) — are subleading. To avoid having to calculate φ(2), we will, henceforth, work

only to lower order. Inserting the solution (3.49) for φ(1) and using the relation

κ̂(1) = κ|u=0 −
4δ

ǫ
, (3.63)

we find that the remaining terms are

ǫLflat(1)

(

1 + ǫJ(1)
)

+
ǫ2

2
Lflat(2) + ǫδ

(

∆(0)J(1) +∆(1)

)

= λη4
(

ǫ2κ|2u=0φ
′
(0)F − 8ǫδ

((

φ(0) −
1

3
φ3
(0)

)

u+ φ′
(0)F

)

κ|u=0 + 16δ2φ′
(0)F

)

(3.64)

plus a total derivative term. We have also “integrated by parts” in anticipation of inte-

grating JL over u. Putting everything together, (3.62) becomes

JL
λη4

= −2φ′ 2
(0) − ǫ2φ′ 2

(0)u
2
(

κ2 − κmnκ
mn + 4(δ/ǫ)2

)

|u=0 + ǫ2κ|2u=0φ
′
(0)F (3.65)

−8ǫδ

((

φ(0) −
1

3
φ3
(0)

)

u+ φ′
(0)F

)

κ|u=0 + 16δ2φ′
(0)F +O(ǫ3, ǫ2δ, ǫδ2, δ3)

plus a total divergence in each of the separate domains −∞ < u < 0 and 0 < u < ∞. To

be consistent with dropping the ǫ2δ terms above, we only work to quadratic order in the

expansion parameters. Since F in (3.65) is multiplied by either ǫ2, ǫδ or δ2, it must be

evaluated at order δ0 in (3.51). It is important to note from (3.44) and (3.63) that one

can equate

κ|u=0 = κ̂(σ) , (3.66)

which we do henceforth.

The previously discussed boundary conditions imply that when integrated over −∞ <

u < ∞ the contribution of the total divergence term vanishes. Hence, inserting (3.65)

into (3.55) using z = lu and (3.9), one finds

L̂ = L̂(0) + ǫL̂(1) +
ǫ2

2
L̂(2) +O(ǫ3, ǫ2δ, ǫδ2, δ3) , (3.67)

where

L̂(0) = −η2

l

(

II − 8δ2IIII
)

L̂(1) = −4

l
η2δκ̂ (Iǫδ + IIII) (3.68)

L̂(2) = −η2

l

(

κ̂2 − κ̂mnκ̂
mn + 4(δ/ǫ)2

)

III +
η2

l
κ̂2IIII

and

II =

∫ +∞

−∞

du φ′ 2
(0) =

4

3

Iǫδ =

∫ +∞

−∞

du u

(

φ(0) −
1

3
φ3
(0)

)

(3.69)
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III =

∫ +∞

−∞

du u2φ′ 2
(0) =

π2 − 6

9

IIII =

∫ +∞

−∞

du F φ′
(0) =

5

18
.

Note that, unlike II , III and IIII , the Iǫδ coefficient primitively diverges like u2 as u → ±∞
and, hence, must be carefully treated. Until now, we have loosely taken the range of u

to be −∞ < u < +∞. However, this is not strictly correct since the radial Gaussian

coordinate is only defined up to the point where the geodesics converge. In our present

case, this is either at L or at R, whichever is smallest. That is, the integral has a “cut-off”.

The effect of this cut-off on the convergent integrals II , III and IIII is negligable and we

will, henceforth, ignore it. However, Iǫδ is now cut-off at 1/ǫ2 or 1/δ2 respectively, thus

rendering it finite. We emphasize that this is completely consistent with taking both the

σµ independent (long wavelength) limit and the flat spacetime limits. In the first case,

one takes ǫ → 0 holding δ fixed. Hence, L > R and Iǫδ ∝ 1/δ2. It follows that all terms

in the worldvolume Lagrangian (3.67) vanish with the exception of L(0), and one recovers

the lowest order result in AdS spacetime. In the second case, δ → 0 holding ǫ fixed and,

hence, R > L and Iǫδ ∝ 1/ǫ2. Now only the second term in (3.67) vanishes, leaving the ǫ

expanded result in flat spacetime given in (2.44) of section 2.

Observe that the single-trace extrinsic curvature κ appears at each odd order in the

Taylor expansion of
√−g around u = 0 — naively with increasingly singular coefficients.

Hence, one might worry that the leading order coefficient Iǫδ given in (3.69) is a poor

approximation to the the actual value. Again, however, the specific cut-off structure of

the u-integrals solves this problem. At odd order n in the expansion of
√−g, there is a

primitively divergent integral in the coefficient of κ. One can show, however, that when

appropriately cut-off this becomes

I
(n)
ǫδ ∝











1/ǫ2 · 1
n! (δ/ǫ)

n−1 if δ < ǫ

1/δ2 · 1
n! if ǫ < δ

(3.70)

Note that for n = 1, this simply reduces to Iǫδ in either regime. For any odd n > 1, it

follows from (3.70) that in both regimes I
(n)
ǫδ ≪ Iǫδ, increasingly so as n grows. Thus such

terms are small compared to the leading term. Computing Iǫδ given in (3.69) with the

appropriate cut-offs, we find that

Iǫδ =
2

3
×
{

1/ǫ2 if δ < ǫ

1/δ2 if ǫ < δ
(3.71)

Rewritten in dimensionful variables, truncating the expansion at order ǫ2 and using

the Gauss-Codazzi relation

R̂(4) = K̂2 − K̂n
mK̂m

n − 12

R2
, (3.72)

the worldvolume Lagrangian is given by

L̂ = −4η2

3l
M4

0

(

1 + C0K̂ + CIR̂
(4) + CIIK̂

2
)

, (3.73)
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Figure 2. Numerical calculation of M4

0
, C0/l, CI/l

2 and CII/l
2 as functions of δ. Of the four

coefficients, only C0/l depends on Iǫδ and, hence, on the value of the cut-off ratio R

L
= ǫ

δ
. Therefore,

to evaluate C0/l we must specify a value for ǫ. In figure 2(B), we choose ǫ = 0.3. Note that C0/l

is defined piecewise and changes behavior at δ ∼ ǫ.

where

M4
0 = 1 + 6δ2(III − IIII) = 1 +

2δ2

3

(

π2 − 17

4

)

(3.74)

and

C0 = 3
(Iǫδ + IIII)

M4
0

lδ =

(

2×
{

1/ǫ2

1/δ2
+

5

6

)

lδ

M4
0

, (3.75)

CI =
III
M4

0

3l2

8
=

(

π2 − 6

24

)

l2

M4
0

, CII = −IIII
M4

0

3l2

8
= − 5

48

l2

M4
0

.

As discussed above, in the limit R → ∞ and, hence, δ → 0, Lagrangian (3.73) becomes the

flat spacetime Lagrangian given in (2.48), (2.49). Explicit values of the overall coefficient

M4
0, as well as the three coupling parameters C0/l, CI/l

2 and CII/l
2, can be plotted

numerically as functions of δ. These are shown as graphs (A), (B), (C)and (D) respectively

in figure 2. Note that C0 has the correct limiting value C0 → 0 as δ → 0.

A simplified “flat” metric approach. The non-vanishing curvature (3.3) of AdS space

considerably complicates the previous analysis; specifically, leading to a non-zero value for
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K(0)mn which then propagates through the calculation. However, recall that the met-

ric (3.2) is conformally flat. This is manifest in the new coordinate u′ = z′/l defined by

u′ =
1

δ

(

1− e−δu
)

, −∞ < u′ <
1

δ
(3.76)

with respect to which metric (3.2) becomes

ds2 = e2δu
(

dxµdxνηµν + dz′2
)

. (3.77)

This motivates us to repeat the AdS analysis in terms of the rescaled flat “metric”

g̃mn = e−2δugmn ⇒ h̃mn = e−2δuhmn , (3.78)

since we expect K̃(0)mn to vanish.

Inserting (3.78) into (3.11) we find

Lñh̃mn = 2K̃mn , (3.79)

where

K̃mn =

(

Kmn − 1

Rhmn

)

e−δu . (3.80)

Similarly, putting (3.80) into (3.14) gives

LñK̃mn = K̃mpK̃
p
n − 1

RK̃mne
δu . (3.81)

We note that the curvature term on the right-hand side of (3.14) cancels when going

to the flat metric. However, the conformal rescaling induces the term proportional to

1/R in (3.81). In addition to (3.79) and (3.81), one must also re-express the equation of

motion (3.15) with respect to the rescaled flat metric. We find that

L2
ñΦ+ K̃LñΦ+

3

ReδuLñΦ+DmDmΦ

−e2δu

(

4λΦ(Φ2 − η2) +
4
√
2λ

R
(

η2 − Φ2
)

)

= 0 . (3.82)

Going to dimensionless variables using (3.16), equations (3.79), (3.81) and (3.82) become

h̃′mn = 2ǫκ̃mn , (3.83)

κ̃′mn = ǫκ̃mpκ̃qnh̃
pq − δκ̃mne

δu , (3.84)

φ′′ +
(

ǫκ̃+ 3δeδu
)

φ′ − 2e2δu(φ− 2δ)(φ2 − 1) + ǫ2DmDmφ = 0 (3.85)

where, now, ′ = ∂
∂u′ .

These equations are solved using the ǫ-expansions in (3.21), (3.22), (3.23) and (3.28),

now expressed in terms of h̃mn and κ̃mn quantities. First consider the h̃mn equation (3.83).

We find to order ǫ0 and ǫ1 that

h̃′(0)mn = 2κ̃(0)mn , (3.86)

h̃′(1)mn = 2κ̃(1)mn (3.87)
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respectively. Similarly, expanding the κ̃mn equation (3.84) we find to order ǫ0 and ǫ1 that

κ̃′(0)mn = κ̃(0)mpκ̃(0)qnh̃
pq
(0) − δeδuκ̃(0)mn , (3.88)

κ̃′(1)mn = κ̃(0)mpκ̃(1)qnh̃
pq
(0) + κ̃(1)mpκ̃(0)qnh̃

pq
(0) (3.89)

+κ̃(0)mpκ̃(0)qnh̃
pq
(1) − δeδuκ̃(1)mn .

Before continuing to the equation of motion, let us solve (3.86), (3.87) and (3.88), (3.89).

Order ǫ
0. Since at this order ñm = ñ5, it follows from (3.77), (3.78) that

h̃(0)mn =
ˆ̃
h(0)mn(σ) (3.90)

with
ˆ̃
h(0)mn unspecified. Hence, the h̃(0)mn equation (3.86) gives

κ̃(0)mn = 0 , (3.91)

as expected. It follows immediately that the κ̃(0)mn equation (3.88) is trivially satisfied.

Order ǫ
1. Substituting (3.91) into the order ǫ1 κ̃mn equation (3.89), recalling that ′ = ∂

∂u′

and using (3.76), we find

κ̃(1)mn = e−δu ˆ̃κ(1)mn(σ) (3.92)

with ˆ̃κ(1) an arbitrary function of σµ-coordinates only. Finally, inserting this expression

into the h̃(1)mn equation (3.87) gives

h̃(1)mn = −1

δ

(

e−δuκ̃(1)mn − ˆ̃κ(1)mn(σ)
)

. (3.93)

Using the relation (3.80), these results are easily compared against the gmn metric results

summarized in (3.40), (3.41). Identifying the arbitrary functions

ˆ̃
h(0)mn(σ) =

1

δ
κ̂(0)mn(σ), ˆ̃κ(1)mn(σ) = κ̂(1)mn(σ) (3.94)

we find exact agreement.

Now consider the ǫ-expansion of the φ equation of motion (3.85). The trace

κ̃ = h̃mnκ̃mn (3.95)

enters this equation. Expanding

κ̃ =
κ̃(0)

ǫ
+ κ̃(1) +O(ǫ) , (3.96)

we find using (3.90)–(3.93) and (3.94) that

κ̃(0) = 0, κ̃(1) = e−δuκ̂(1)(σ) (3.97)
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where κ̂(1) = ĥmn
(0) κ̂(1)mn. Note from (3.78) and (3.80) that

κ̃ =

(

κ− 4δ

ǫ

)

eδu . (3.98)

It follows that (3.97) is completely consistent with the gmn metric results in (3.44). Insert-

ing (3.97) along with the ǫ-expansions of φ, h̃mn and κ̃mn into (3.85), we find to order ǫ0

and ǫ1 that

φ′′
(0) + 3δeδuφ′

(0) − 2e2δu
(

φ2
(0) − 1

)

(

φ(0) − 2δ
)

= 0 (3.99)

φ′′
(1) + 3δeδuφ′

(1) + e−δuκ̂(1)(σ)φ
′
(0) (3.100)

+ e2δu
(

−2
(

3φ2
(0) − 1

)

+ 8δφ(0)

)

φ(1) = 0 .

Order ǫ
0. It is straightforward to show that (3.99) has the same solution as equa-

tion (3.45), although expressed in the u′ coordinate. That is,

φ(0) = tanh(u), u = −1

δ
ln
(

1− δu′
)

(3.101)

where we have inverted expression (3.76).

Order ǫ
1. Let us solve (3.100) using the ansatz

φ(1) = κ̂(1)(σ)F̃ (u′) . (3.102)

Inserting this into (3.100), the factor κ̂(1) cancels and one is left with an equation for F̃

given by

F̃ ′′ + 3δeδuF̃ ′ + e−δuφ′
(0) + e2δu

(

−2
(

3φ2
(0) − 1

)

+ 8δφ(0)

)

F̃ = 0 (3.103)

with φ(0)(u
′) in (3.101). This equation can be solved independently in each of the separate

domains −∞ < u′ < 0 and 0 < u′ < 1
δ . Corresponding to (2.30), (2.31), one must also

impose the boundary conditions

F̃ → 0 as u′ → ±0 , (3.104)

F̃ → 0 as u′ → −∞,
1

δ
. (3.105)

Subject to these conditions, there is a unique solution of (3.103) which one can solve for

numerically. For example, the solution with δ = 0.3 is presented in figure 3.

Note that since the same factor κ̂(1)(σ) enters both (3.49) and (3.102), it follows that

when re-expressed in terms of the coordinate u using (3.76) one must find

F̃ (u′) = F (u) . (3.106)

Comparing the F̃ and F results for δ = 0.3 given in figures 1 and 3 respectively, we find

complete agreement. We conclude that to this order in ǫ, and restoring the dimensionful

parameters, one again finds

Φ = η tanh
(z

l

)

+ ηl K̂(1)(σ)F
(z

l

)

+O(ǫ2) . (3.107)
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Figure 3. Numerical solution for F̃ (u′) with δ = 0.3.

where
z

l
= −1

δ
ln

(

1− δ
z′

l

)

(3.108)

and Φ is continuous, but not continuously differentiable, across the z′ = 0 wall surface.

The worldvolume action can be calculated with respect to the rescaled g̃mn metric to

any desired degree of accuracy in the ǫ expansion. It follows from our previous discussion

that

L̂ =

∫

dz′J̃L̃, J̃ =

√−g̃
√

−h̃|u′=0

(3.109)

where L̃ is the Lagrange density which, when varied with respect to Φ, gives the equation

of motion (3.82). It is found to be

L̃ = e5δuL (3.110)

with L given by (3.4), (3.5) written in the z′ coordinate. In (3.109), L̃ is to be evaluated

for the solution of the equation of motion given, to order ǫ, in (3.107), (3.108). Taylor

expanding
√−g̃ around u′ = 0, we find

J̃ = 1 + ǫJ̃(1) +
ǫ2

2
J̃(2) +O(ǫ3) , (3.111)

with

J̃(1) = u′κ̃|u′=0, J̃(2) = u′2
(

κ̃2 − κ̃mnκ̃
mn − (δ/ǫ)κ̃

)

|u′=0 . (3.112)

To continue, we note that L is coordinate invariant and that Φ is most conveniently

expressed as a function of the coordinate z. It follows that the ǫ expansion of L is most

easily presented by going back to the coordinate z using (3.76). Noting that

u′ = u− δ

2
u2 + . . . , dz′eδu = dz (3.113)

we can write action (3.109), (3.110) as

L̂ =

∫

dze4δuJ̃L , (3.114)
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where the coefficients of the expansion (3.111) with respect to the u coordinate are

J̃(1) = uκ̃|u=0, J̃(2) = u2
(

κ̃2 − κ̃mnκ̃
mn − 2(δ/ǫ)κ̃

)

|u=0 . (3.115)

Similarly, inserting the solution Φ into (3.110) and using the equations of mo-

tion (3.99), (3.100) it follows that

L = L(0) + ǫL(1) +
ǫ2

2
L(2) +O(ǫ3) , (3.116)

where

L(i) = Lflat(i) + δ∆(i) . (3.117)

Lflat(i) are the flat spacetime results in (2.41), ∆(i) were given in (3.61) and all quantities

are functions of z. Finally, one must expand the exponential

e4δu = 1 + 4δu+ 8δ2u2 +O((δu)3) . (3.118)

Let us proceed order by order in the δu expansion, keeping only those terms that are

even under u → −u. The 1-term is of the same form as given in (3.62) of the proceeding

section, now, however, with the J(i) replaced by J̃(1),J̃(2) in (3.115). Furthermore, in the

present case κ̂(1) = κ̃|u=0. Hence, the constant term on the right side of (3.63) no longer

appears. We find that the 1-term in the δu expansion is given by

J̃L
λη4

∣

∣

1
= −2φ′ 2

(0) − ǫ2φ′ 2
(0)u

2
(

κ̃2 − κ̃mnκ̃
mn − 2(δ/ǫ)κ̃

)

|u=0 + ǫ2κ̃|2u=0φ
′
(0)F

−8ǫδ

((

φ(0) −
1

3
φ3
(0)

)

u+ φ′
(0)F

)

κ̃|u=0 +O(ǫ3, ǫ2δ, ǫδ2, δ3) . (3.119)

Next consider the δu-term. Using (2.41), (3.61) and (3.115), to the order we are working

J̃L
λη4

∣

∣

δu
= −32δ2

(

φ(0) −
1

3
φ3
(0)

)

u− 8ǫδ
(

φ′ 2
(0)u

2 − φ′
(0)F

)

κ̃|u=0 . (3.120)

Finally, the last term one need consider is the (δu)2-term. We find that

J̃L
λη4

∣

∣

(δu)2
= −16δ2φ′ 2

(0)u
2 . (3.121)

Adding these together, inserting them into (3.114), using z = lu, (3.9) and denoting

κ̃|u=0 = ˆ̃κ(σ) , (3.122)

we find that

L̂ = ˆ̃L(0) + ǫ ˆ̃L(1) +
ǫ2

2
ˆ̃L(2) +O(ǫ3, ǫ2δ, ǫδ2, δ3) , (3.123)

where

ˆ̃L(0) = −η2

l

(

II + 16δ2Iǫδ + 8δ2III
)

ˆ̃L(1) = −4η2

l
δ ˆ̃κ (Iǫδ + III) (3.124)

ˆ̃L(2) = −η2

l

(

ˆ̃κ
2 − ˆ̃κmn

ˆ̃κ
mn − 2(δ/ǫ)ˆ̃κ

)

III +
η2

l
ˆ̃κ
2
IIII

– 23 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
5

with the I-coefficients given in (3.69).

Rewritten in dimensionful variables and truncating the expansion at order ǫ2, the

worldvolume Lagrangian is given by

L̂
−η2/l

=
(

II + 8δ2(2Iǫδ + δ2III)
)

+ lδ (4Iǫδ + 3III)
ˆ̃K

+
l2

2
(III)

ˆ̃R
(4)

− l2

2
(IIII)

ˆ̃K
2
, (3.125)

where the Gauss-Codazzi relation

ˆ̃R
(4)

= ˆ̃K
2
− ˆ̃K

n

m
ˆ̃K
m

n (3.126)

has been used. Note that the ˆ̃K, ˆ̃R
(4)

and ˆ̃K
2
terms all appear in (3.125), although with

differing coefficients then in the previous section. What is the relationship of this expression

to the worldvolume Lagrangian (3.72) evaluated with respect to the gmn metric? Note

from (3.80) that at u = 0
ˆ̃Kmn = K̂mn − 1

Rhmn . (3.127)

Inserting this into (3.125), a careful calculation reveals that it is identical to (3.72), as it

must be.

4 The worldvolume action and galileons

It follows from the previous section that the worldvolume action of a d = 4 kink domain

wall embedded in d = 5 anti-deSitter spacetime, to second order in the ǫ-expansion, is

S4 =

∫

M4

d4σ
√
−h|u=0L̂ (4.1)

where

L̂ = −4η2

3l
M4

0

(

1 + C0K̂ + CIR̂
(4) + CIIK̂

2
)

. (4.2)

The coefficients M4
0 and C0, CI , CII are given in (3.74) and (3.75) respectively. Note that

C0 is proportional to the kink thickness l, whereas both CI and CII are proportional to

l2 — corresponding in dimensionless variables to ǫ and ǫ2 respectively. Recall that the

embedding of a d = 4 worldvolume in a d = 5 bulk space is specified by five worldvolume

scalar fields Xm(σ), m = 0, 1, . . . , 4. Choosing the gauge where

Xµ = σµ, µ = 0, 1, 2, 3 , X4 ≡ π(σ) (4.3)

we find that

√
−h|u=0 = e4π/R

√

1 + e−2π/R(∂π)2 , (4.4)

K̂ = −e−2π/Rγ̃

(

−�π + γ̃2e−2π/R[φ] +
γ̃2

R (∂π)2 +
4

Re2π/R
)

, (4.5)

– 24 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
5

R̂(4) = γ̃4e−4π/R

[

γ̃−2
(

(�π)2 − (∂µ∂νπ)
2
)

+ 2e−2π/R

(

[φ2]− (�π)[φ]

)

− 6

R2
e2π/R(∂π)2

(

1 + 2e−2π/R(∂π)2
)

(4.6)

+
8

R [φ]− 2

Re2π/R
(

3 + 4e−2π/R(∂π)2
)

�π

]

and

K̂2 = e−4π/Rγ̃2
(

−�π + γ̃2e−2π/R[φ] +
γ̃2

R (∂π)2 +
4

Re2π/R
)2

(4.7)

where � = ηµν∂µ∂ν , γ̃ = 1/
√

1 + e−2π/R(∂π)2, [φ] = ∂µπ∂µ∂
νπ∂νπ, [φ2] =

∂µπ∂
µ∂νπ∂

ν∂λπ∂
λπ and indices are raised and lowered with respect to the flat metric ηµν .

Note that
√
−h|u=0,

√
−h|u=0K̂ and

√
−h|u=0R̂

(4) correspond to the L2, L3 and L4 DBI

conformal Galileons introduced and calculated in [51], and lead to second order equations

of motion for π. The L5 Galileon is a higher-dimension operator — arising at cubic order

in the ǫ-expansion — and, hence, does not appear here. However, K̂2 given in (4.7) is not

a Galileon. It will lead to fourth-order equations of motion, but any ghosts or pathologies

associated with this operator will not appear in the range of validity of the ǫ-expansion,

since it was derived from a ghost free theory. Furthermore, carefully analyzing the above

expressions we find that there is no region of π or momentum space for which non-Galileon

terms such as the K̂2 term is sub-dominant to the Galileon terms. Thus, in any situation in

which the Galileons are important relative to the kinetic term and their non-linearities are

doing something interesting, the non-Galileon terms are important as well, and the entire

series expansion we are computing is breaking down. We conclude, to the order we have

calculated, that although Galileon terms appear in the explicitly computed worldvolume

action, there is an additional non-Galileon term which can not be neglected, and that to

justify stopping at some order in the expansion, all these terms must be subdominant to

the kinetic term.

Having specified this, it is interesting to note that, by an appropriate redefinition

of the π field, the effective action (4.1) can be written so that only Galileon operators

appear. We prove this in appendix A to cubic order in the ǫ-expansion — one order higher

than the results of this paper. Be this as it may, the non-Galileon K̂2 term, although

removed from L̂, is now manifest in the field redefinition. If one is interested in computing

quantities which are independent of field redefinitions, such as scattering amplitudes, then

it suffices to use only the Galileon interactions, and the non-Galileon terms do not affect

these quantities. However, if one is interested in quantities that do depend on the definition

of π, such as computing the physical location of the brane, the presence of the non-Galileon

terms matters.

5 Conclusion

In this paper, we developed a formalism for calculating higher-order corrections to the

worldvolume action of co-dimension one solitons in a warped background. Specifically, we

focused on an AdS bulk geometry, and derived a “kink” solution for a real scalar field
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minimally coupled to gravity. This allowed us to explicitly calculate the world-volume

action on the defect, up to quadratic order in two small expansion parameters measuring

respectively the hypersurface fluctuation length and the radius of AdS spacetime. The

method is general and can readily be extended to any conformally flat bulk space-time.

The resulting worldvolume action includes conformal Galileon interactions, as well as a

non-Galileon K2 term. Unlike the non-relativistic Galileons (obtain as a small-field limit),

where the non-Galileon terms can be consistently treated as small in certain circumstances,

the non-Galileon terms in the relativistic case are never sub-dominant. Nevertheless, as

argued in the appendix, the action can be brought into Galileon form through a field

redefinition of the brane-bending mode.

From an effective field theory standpoint, the form of our worldvolume action may not

be surprising — the result is organized as a derivative expansion, and at each derivative

order includes all diffeomorphism invariant curvature terms. The upshot of our formalism

is the ability to calculate exactly and systematically the coefficients of these terms from

the underlying kink solution. Although expected to occur on dimensional grounds, the

extrinsic curvature operators have been shown to be absent for distributional 3-branes of

odd codimension > 2 [69]. This underscores the importance of having a formalism for

computing the coefficients of these operators. The AdS example presented here constitutes

a stepping stone to more realistic string geometries. In forthcoming work [70], two of us will

apply this formalism to kinks in heterotic M-theory. As another future direction, we plan

to include the gravitational back-reaction of the kink, generalizing the approach of [18] to

the AdS case. Finally, it would be interesting to investigate to what extent the argument

for the universality of Galileon terms given in the appendix can be generalized to include

terms involving derivatives of curvature tensors.

A Field redefinitions

Field redefinitions: first a general argument about field redefinitions. Let L be a La-

grangian density for fields φi which is a formal series in some parameter λ,

L = L0 + λL1 + λ2L2 + · · · . (A.1)

Suppose that among the terms which appear in the O(λn) contribution, there is a term,

LR
n , which vanishes when the fields satisfy the equations of motion for the lowest-order

Lagrangian L0. In this case, we can by integration by parts always write

LR
n ≃ f i ([φ])

δELL0

δφi
. (A.2)

Here ≃ means equality up to a total derivative and f i is some function with [φ] standing

for dependence on the fields, their derivatives and possibly the coordinates.

Any such interaction LR
n can be removed, without altering any of the other terms at

lower or equal order, by performing a field redefinition. The required redefinition is

φi → φi − λnf i ([φ]) . (A.3)
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Under this redefinition, the O (λn) terms in the action change as

λnLn → λnLn − λnf i ([φ])
δELL0

δφi
+O

(

λn+1
)

. (A.4)

Hence, to O (λn), the only effect of this redefinition is to cancel LR
n .

The DBI action: we will, for simplicity, present our analysis within the context of a

flat bulk space. However, it is straightforward to prove that all arguments go through with

minimal modifications even for a curved bulk — such as AdS spacetime — and that the

final result does not change. In the gauge (4.3), the most general action for a d = 4 brane

embedded in a d = 5 bulk space is

S =

∫

d4x
√−gL

(

gµν ,∇µ, R
ρ
σµν ,Kµν

)

∣

∣

∣

∣

gµν=ηµν+∂µπ∂νπ

. (A.5)

where µ, ν, . . .= 0, . . . , 3. This will be a power series in some length scale l, which plays

the role of λ above. K and ∇ get one power of l, and R gets two powers. We can use the

Gauss-Codazzi relation,

Rµνρσ −KµρKνσ +KµσKνρ = 0, (A.6)

to eliminate all occurrences of R in favor of K, so the action becomes

S =

∫

d4x
√−gL (gµν ,∇µ,Kµν)

∣

∣

∣

∣

gµν=ηµν+∂µπ∂νπ

. (A.7)

Let us analyze the case where there are no ∇ operators. Then the most general

Lagrangian can be written in the form

L = M4
(

L0 + lL1 + l2L2 + l3L3 + · · ·
)

, (A.8)

where

L0 = A1,

L1 = A2 [K] ,

L2 = B1

[

K2
]

+B2 [K]2 ,

L3 = C1

[

K3
]

+ C2

[

K2
]

[K] + C3 [K]3 ,

L4 = D1

[

K4
]

+D2

[

K3
]

[K] +D3

[

K2
]2

+D4

[

K2
]

[K]2 +D5 [K]4 ,

L5 = F1

[

K5
]

+ F2

[

K4
]

[K] + F3

[

K3
]

[K]2 + F4

[

K3
] [

K2
]

+F5

[

K2
]2

[K] + F6

[

K2
]

[K]3 + F7 [K]5 ,

... (A.9)

These are simply all possible contractions of Kµν . The square bracket indicates a trace

with indices raised with gµν — that is, [K] = gµνKµν , [K
2] = gµαKαβg

βνKνµ, and so on.

The coefficients are generic dimensionless parameters.
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The π field redefinition: the zero-th order Lagrangian is

L0 =
√−g =

√

1 + (∂π)2. (A.10)

This leads to the zero-th order equation of motion

δELL0

δπ
= −γ�π + γ3∂µπ∂νπ∂µ∂νπ = [K], (A.11)

with γ ≡ 1/
√

1 + (∂π)2. Therefore, the lowest order equation of motion is simply [K] itself,

so any term proportional to trace of Kµν can be eliminated by field redefinition. The only

terms in a general Ln that are not of this form are the cyclic traces [Kn], of which there is

only one at each order n. All the other terms are proportional to [K] and their coefficients

are adjustable.

Now, at every order, there is a special contraction of K’s,

LG
1 (K) = [K],

LG
2 (K) = [K]2 − [K2],

LG
3 (K) = [K]3 − 3[K][K2] + 2[K3],

LG
4 (K) = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4],

... (A.12)

called the “characteristic polynomials”. These are terms in the expansion of the determi-

nant of 1 +K in powers of K,

det(1 +K) = 1 + LG
1 (K) +

1

2
LG
2 (K) +

1

3!
LG
3 (K) +

1

4!
LG
4 (K) + · · · (A.13)

The terms LG
n (K) are precisely the Galileons for n < 4, are a total derivative when n = 4

and vanish identically when n > 4. They can be written explicitly as [52]

LG
n (K) =

∑

p

(−1)p ηµ1p(ν1)ηµ2p(ν2) · · · ηµnp(νn) (Kµ1ν1Kµ2ν2 · · ·Kµnνn) . (A.14)

The sum is over all permutations of the ν indices, with (−1)p the sign of the permutation.

We see that the coefficient of [Kn] in these special combinations is non-vanishing at each

order. Thus, by using a field redefinition of π to adjust the coefficients of the terms (A.9)

which are proportional to [K], one can bring each of the Lagrangians Ln into the form of

the combinations (A.12). After this π redefinition, the action has a finite number of terms

— precisely the four Galileons. Therefore, to all orders in l, we have

L = M4
(

a0LG
0 + a1lLG

1 + a2l
2LG

2 + a3l
3LG

3

)

. (A.15)

The coefficients a0 · · · , a3 are now complicated functions of the original coefficients. Note

that the coefficient a1 remains adjustable. We remind the reader that we have proven (A.15)

for the case when L in (A.7) is independent of ∇.
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Now return to the possibility of having derivatives ∇ in the action (A.7). Note that

derivatives always have to come in pairs. Up through order l3, there is no way to write

any terms involving derivatives which is not a total derivative. Thus (A.15) is accurate up

through order l3, even when including the possibility of derivatives.

At order l4 and above, there seems to be a problem because there can be terms such

as Kµν�Kµν . These are not proportional to [K] and, hence, can not be eliminated by the

zero-th order equations. It could be, however, there are enough combinations like (A.12),

but now involving derivatives, into which these terms could be placed so that they become

total derivatives. We leave a study of these higher-order ∇ terms for future work.
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