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1 Introduction

An interesting feature of maximal supergravity theories is that they include p-form gauge

fields of varying degrees. This set of fields includes some of the physical fields, their duals

and further non-physical fields for which the potential forms have degree (D − 1) and D.

These sets of forms can be understood in terms of duality symmetries and supersymmetry

alone, but they also have nice algebraic interpretations [1, 2]. It was subsequently shown

that these can be understood in terms of (truncated, super) Borcherds algebras [3, 4], and

also that the spectrum of forms could be obtained from E11 [5–9]. In a recent article [10] it

was shown that one can deduce the former from the latter, at least for forms with degrees

that do not exceed the spacetime dimension. In this article we shall discuss these related

topics in a superspace setting which has the advantage that there is no limit to the degrees

of the forms that one can consider. A second advantage is that one can work in a manifestly

covariant way in terms of the field strengths and this also allows one to see the algebraic

structure in a rather direct fashion, along the lines of that proposed some time ago [1, 2].

The superspace approach is straightforward. One starts off with a set of physical forms,

including the duals, and then asks how many further forms can be constructed that satisfy

consistent Bianchi identities, of the type dF = F 2, and that also transform under appropri-

ate representations of the duality group, when present. Here, consistency just means that
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applying a second d must give zero on the left of the Bianchi identity and hence also on

the right. One thus obtains an expression cubic in the F s on the right which must vanish.

Thus, if we couple each field strength to an appropriate generator, the Bianchi identity

will determine an antisymmetric product for these generators while the cubic consistency

condition gives rise to the Jacobi identity which makes this algebraic structure into a Lie

(super)-algebra.

In general, field strength forms with degree greater than (D+1) vanish in supergravity,

but this does not mean that these forms are not of interest. There are some examples of

non-vanishing (D + 2) forms, including in IIA supergravity in D = 10, while other forms

may have interesting Bianchi identities of the form dF = F 2 where the two F s on the

right-hand side do not vanish even though the left side does identically. An example of this

occurs in the IIB theory where there are thirteen-forms whose Bianchi identities involve

non-zero lower-degree forms on the right. More importantly, perhaps, it might be that

these forms could become non-zero in the presence of higher-order string effects.

In this paper we restrict our attention to maximal supergravity in D = 10. The full set

of forms were constructed explicitly in components in [11] for IIA, in [12] for IIB, and in IIB

superspace in [13]. In [14] a minor discrepancy in the earlier component results was sorted

out and the IIA case given in superspace. We begin, in the next section, by re-examining

these forms in a superspace setting and show that the derivations of these results can

be considerably simplified by making use of superspace cohomology. In section three we

discuss the Bianchi identities beyond the spacetime limit and explicitly exhibit the SL(2, R)

representations (for IIB) and their multiplicities up to degree fifteen. We also include a

short discussion of the IIA case up to degree thirteen and show that there is a non-zero RR

twelve-form field strength. In section four we briefly review the Borcherds algebras for IIA

and IIB and show how the algebra of forms can be understood in terms of this algebraic

framework. There are two appendices, on Borcherds algebras and superspace supergravity.

2 The forms of type II supergravity

2.1 IIB

The bosonic spectrum of the IIB theory consists of the graviton, two scalar fields, the

dilaton and axion, a pair of two-form potentials and a four-form potential whose five-form

field strength is self-dual. To these we can add their duals, a doublet of seven-form field

strengths and a triplet of nine-forms. The latter are dual to the field strengths for the

scalars and transform under the triplet representation of SL(2, R) even though there are

only two scalars. This can be achieved by means of a constraint on the field strength that

ensures that there are only two dynamical dual eight-form potentials. This set can then

be extended by a quadruplet and a doublet of eleven-forms, corresponding to the ten-form

potentials studied in [12].1 The set of forms is then {FR
3 , F5, F

R
7 , FRS

9 , FRST
11 , FR

11}, together

1The existence of these forms was known to the authors of [3]; see [15–17].
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with the one-form field strengths for the scalars. The Bianchi identities for these forms are:

dFR
3 = 0

dF5 = εRSFR
3 FS

3

dFR
7 = FR

3 F5

dFRS
9 = F

(R
3 F

S)
7

dFRST
11 = F

(R
3 F

ST )
9

dFR
11 = εST FS

3 F TR
9 +

3

4
F5F

R
7 . (2.1)

The scalar potentials can be described by an element Vr
R of SL(2, R) modulo local

U(1) gauge transformations, where r is a local SO(2) vector index. The Maurer-Cartan

form dVV−1 = P + Q, where Q is the U(1) connection and P can be considered as the

one-form field strength for the scalar potentials. It carries local SO(2) indices and satisfies

DP = 0, but we can convert these indices to global ones by multiplying by two factors of

V to form the SL(2, R) triplet of one-forms FRS
1 := δrtPt

sVr
RVs

S . The Bianchi identity

for FRS
1 is simply dFRS

1 = 0, and indeed one can solve it by setting FRS
1 = 1

2dMRS , where

MRS := δrsVr
RVs

S.

It is a simple matter to check that the Bianchi identities (2.1) are indeed consistent.

Furthermore, the full set is determined from the first two (for the physical fields) by consis-

tency and SL(2, R) symmetry. We shall now show that they can be solved straightforwardly,

and that there are no further gauge-trivial identities (dF = 0). To do this we shall use

superspace cohomology which we now briefly explain.

In superspace the tangent bundle T splits invariantly into even and odd parts, T0⊕T1,

and it is therefore useful to consider forms with even and odd degrees. Thus the space of

n-forms, Ωn, splits into a sum of spaces of (p, q)-forms, Ωp,q, where p + q = n. In a similar

way the exterior derivative splits into components with different bi-degrees:

d = d0 + d1 + t0 + t1 , (2.2)

where the bidegrees are (1, 0), (0, 1), (−1, 2) and (2,−1) respectively. The first two, d0 and

d1, are essentially even and odd differential operators, while the other two are algebraic

operators formed with the dimension-zero and dimension three-halves torsion respectively.

In particular,

(t0ωp,q)a2...apβ1...βq
∝ T(β1β2

a1ωa1|a2...ap|β3...βq+2) , (2.3)

where Tαβ
c is the dimension-zero torsion which takes its flat space form, i.e. a gamma

matrix, in supergravity.

The equation d2 = 0 splits into various parts according to the bi-degrees amongst

which one has

(t0)
2 = 0 (2.4)

t0d1 + d1t0 = 0 (2.5)

d2
1 + t0d0 + d0t0 = 0 . (2.6)
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The first of these enables us the define the cohomology groups H
p,q
t , the space of t0-

closed (p, q)-forms modulo the exact ones [18]. The other two then allow one to define the

spinorial cohomology groups H
p,q
s [19, 20]. These groups make use of a derivative ds which

is essentially d1 acting on H
p,q
t , but they will not be needed these in this paper. In ten and

eleven dimensions these cohomology groups are related to spaces of pure spinors and pure

spinor cohomology respectively [21–23]. A key result, which we will make repeated use of

below, is that, in N = 2,D = 10 supersymmetry, the groups H
p,q
t vanish for p > 1 [24].

In IIB there are two non-trivial t0-closed (1, 2)-forms which occur in the solution to the

Bianchi identities for the three-forms, whereas in IIA there is only one such form. Using

these forms one can construct elements of H
1,q
t in terms of (0, q − 2) forms.

Now suppose that we have a closed n-form whose lowest-dimensional non-vanishing

component (i.e. the one with least even and greatest odd degree) is ωp,q where p + q = n.

The first three components of the equation dωn = 0 are

t0ωp,q = 0

d1ωp,q + t0ωp+1,q−1 = 0

d0ωp,q + d1ωp+1,q−1 + t0ωp−2,q−2 = 0 (2.7)

The lowest component ωp,q is therefore t0-closed, and hence, unless it is exact, will

determine an element of the cohomology group H
p,q
t . As we shall see, when combined

with the fact that these groups are zero for p > 1, this makes the analysis of the Bianchi

identities rather simple.

We shall also need some elementary dimensional analysis. In geometrical units (of

mass) the dimension of the purely even component of any field strength form Fn is [Fn,0] = 1

(excluding the basis forms) and this implies that [Fn−q,q] = 1− q
2 . In on-shell supergravity

there are no scalar or tensor fields with negative dimensions and hence the only non-zero

components of any Fn are Fn−2,2, Fn−1,1 and Fn,0 with dimensions 0, 1
2 and 1 respectively.

Let us write any of the Bianchi identities above in the form

IX
n+1 = dFX

n − (FF )Xn+1 , (2.8)

where X denotes the representation of SL(2, R) under which Fn transforms. Even if a

particular Bianchi is not satisfied, consistency means that dIX
n+1 = 0 modulo other lower-

degree Is. Since there are no fields in supergravity that have negative dimensions, the lowest

non-vanishing component of any I also has dimension zero and is given by IX
n−3,4. This must

be t0-closed and will therefore be t0-exact if n ≥ 5. Now we know that the Bianchi identities

are satisfied for all of the physical fields, so we can deduce from this that for all of the other

forms, the physical duals and the non-physical eleven forms, the lowest components of the

corresponding Bianchi identities are t0-exact.2 Thus we will have IX
n−3,4 = t0J

X
n−2,2 for some

JX
n−2,2. But JX

n−2,2 has precisely the same index structure as the lowest non-zero component

of Fn, namely FX
n−2,2 , and hence setting JX

n−2,2 = 0 allows one to solve for FX
n−2,2 in terms

of the physical fields without imposing any further constraints. We can therefore do this

2This has to be done sequentially so that the lower-dgree Is can be ignored.
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and turn our attention to the next level, IX
n−2,3, which is also t0-exact and which has the

right number of components to allow us to solve for FX
n−1,1. Going one step further in a

similar fashion we see that we will be able to solve for FX
n,0 and hence for the whole of FX

n .

To make this more explicit we consider the example of the IIB seven-forms FR
7 . We have

IR
8 = dFR

7 − FR
3 F5 , (2.9)

and we assume that the Bianchi identities for FR
3 and F5 are satisfied. The lowest compo-

nent of IR
8 that is not trivially satisfied on dimensional grounds is IR

4,4. Since dIR
8 = 0 we

have t0I
R
4,4 = 0, and so, by the vanishing of H

4,4
t , we find

IR
4,4 = t0J

R
5,2 . (2.10)

Now

IR
4,4 = t0F

R
5,2 − (FR

3 F5)4,4 , (2.11)

and because of (2.10) we know that the second term on the right is itself expressible as

t0 acting on some (5, 2)-form which we can call [FR
3 · F5]5,2. The (4, 4) component of this

Bianchi identity is clearly solved by setting JR
5,2 = 0 which means that we can choose FR

5,2

to be given by

FR
5,2 = [FR

3 · F5]5,2 . (2.12)

In principle we could add to this a t0-exact term of the form t0G
R
6,0, but this can

be ignored as there are no dimension-zero gauge-invariant possibilities for GR
6,0. In other

words, the dimension-zero Bianchi identity determines the dimension-zero component of

FR
7 , i.e. FR

5,2 , in terms of the dimension-zero components of the lower-degree forms which

are known quantities. Having solved IR
4,4 we can then apply similar arguments to IR

5,3 and

IR
6,2 in order to solve for FR

6,1 and FR
7,0 in terms of the components of FR

3 and F5. At the next

order, if t0I
R
7,1 = 0 then automatically IR

7,1 = 0, and similarly for IR
8,0. Thus the Bianchi

identity IR
8 contains precisely enough information to solve for FR

7 in terms of FR
3 and F5

and does not imply any additional constraints. We can then apply the same analysis to the

higher-degree forms in sequence. The upshot of this cohomological analysis is that we do

not have to solve for the components of any of the higher-degree forms explicitly in order

to verify that solutions to their Bianchi identities are guaranteed to exist. Nevertheless,

it is not difficult to find these solutions; they are given explicitly in a local SO(2) basis

in [13]. The dimension-zero components are constructed from Lorentz- and SO(2)-invariant

tensors, such as gamma-matrices, the dimension-one-half components are proportional to

the physical fermion fields (dilatinos), while the dimension-one components can be physical

field-strength tensors or bi-linears in the physical fermions.

To summarise, when the Bianchi identities for the physical fields are satisfied in on-

shell IIB supergravity, there is no obstruction to their being solved for the higher-rank form

fields provided that the Bianchi identities themselves are formally consistent. In addition,

we can show that there are no gauge-trivial forms, i.e. with dF = 0 Bianchi identities, ex-

cept with degree eleven. In IIB this could in principle be any of the duals or non-physical

forms if it were to turn out that the right-hand sides of any of equations (2.1) could be set

– 5 –
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to zero. We can see this by applying a similar argument to the one used for the Bianchi

identites which implies that the lowest component of such an F , Fn−2,2, has to be exact,

Fn−2,2 = t0Gn−1,0, since (n − 2) > 2. Iterating this one finds that F itself must be exact,

Fn = dGn−1, say. But the only non-zero component of Gn−1 is Gn−1,0 which has to have

dimension zero. This can only be some Lorentz-invariant tensor times a function of the

scalars, and could therefore only be εa1...a10
, or ε10,0 in form notation. Thus there is an

exact gauge-trivial eleven-form that is a singlet under the duality group. This form is

trivial in the sense that it is simply the exterior derivative of the bosonic volume form,

and we shall not consider such forms as part of the set of forms that take part in the alge-

bra. Note also that, in particular, this argument implies that there can be no gauge-trivial

eleven-forms in the doublet representation of SL(2, R) in agreement with the superspace

discussion in [13] and the component discussion in [14].

2.2 IIA

The situation in IIA is similar, but there are two differences: there is no duality group and

the forms can have both even and odd degree. The physical forms are the RR two- and

four-forms, and the NS three-forms; their duals are RR six- and eight-forms and an NS

seven-form, together with a nine-form which is dual to the one-form field strength of the

dilaton. The RR Bianchi identities, including one for the ten-form, are

dG2n+2 = H3G2n for n = 0, 1, 2, 3, 4 , (2.13)

where G0 is taken to be zero for the standard IIA theory. The Bianchi identities for the

NS forms up to degree nine are

dH3 = 0 ,

dH7 =
1

2
G2

4 − G2G6 ,

dH9 = −H3H7 +
1

2
G4G6 −

3

2
G2G8 . (2.14)

Now consider the possible eleven-form field strengths. There are two allowable Bianchi

identities that can be combined into one:

dH11 = A

(

H3H9 +
3

2
G2G10 −

1

4
G2

6

)

+B

(

− G2G10 + G4G8 −
1

2
G2

6

)

, (2.15)

where A and B are real constants.

All of these Bianchi identities are consistent [14], and so we can use the same argument

that we used in IIB to prove that they will all be satisfied given that the physical ones are

(i.e. those for the two-, three- and four-forms). In IIA H
p,q
t = 0 if p > 1, and if p = 1 the

basic non-trivial element is Γ̃1,2 ∈ H
1,2
t , where Γp,2 denotes a symmetric gamma-matrix with

p spacetime indices and the tilde indicates the presence of a factor of Γ11. One possibility

for the eleven-forms is that both A and B are zero. In this case we have a gauge-trivial

eleven-form, but by the same cohomological argument that we used in IIB, it is exact.
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It is easy to verify that there are two gauge non-trivial eleven-forms by looking at the

dimension-zero components. For

H9,2 = −iKe−2φΓ9,2 , (2.16)

with K constant, we find that (2.15) is satisfied if 2A + 8B = K, so that there are indeed

two independent gauge non-trivial eleven-forms. The other possibility, namely H9,2 ∼ iΓ̃9,2

corresponds to the gauge-trivial case and so requires A = B = 0. It is exact, i.e. propor-

tional to t0ε10,0.

The above analysis can easily be extended to the massive case. To do this one simply

has to include a zero-form “RR” field strength G0 = m where m is the mass in the Romans

deformation of IIA supergravity [25]. The Bianchi identities for the RR forms take the

same form as in (2.13), but now

dG2 = G0H3 , (2.17)

while dH3 = 0 as before. The remaining Bianchi identities also hold provided that one re-

places the terms G2G2n , n ≥ 3, with G2G2n−G0G2n+2. This has been discussed previously

in components in [26] for forms up to degree nine.

3 Beyond the spacetime limit

3.1 IIB

We start by considering the thirteen-forms in IIB supergravity. There are three possibilities

corresponding to the five-, three- and one-dimensional representations of SL(2, R):

dFRSTU
13 = F

(R
3 F

STU)
11

dFRS
13 = εUV FU

3 F V RS
11 +

8

15
F

(R
3 F

S)
11 +

2

5
F5F

RS
9

dF13 = εRSFR
3 FS

11 +
3

8
εRSFR

7 FS
7 . (3.1)

Using (2.1) one can easily see that the first of these is consistent. The other two re-

quire a bit more work but turn out to be consistent for the given choice of constants. Any

thirteen-form must be zero in supergravity since by dimensional analysis the only possi-

ble non-zero components are F11,2 , F12,1 and F13,0 and these all vanish by antisymmetry.

However, all of the forms appearing on the right-hand side of the above equations are

non-zero. Moreover, the dimension-zero component of any of the Bianchi identities has the

form I10,4 and so need not vanish identically. Nevertheless, since the Bianchi identities are

consistent, it follows that t0I10,4 = 0. This implies that I10,4 = 0 because a cohomologi-

cally trivial (10, 4)-form must vanish as the superspace has ten even dimensions. Therefore

these Bianchi identities are guaranteed to be satisfied. The point of this discussion is that

it might have been the case that these higher-degree forms should not be considered at

all, but these examples give at least a minor indication that it does make sense to include

them. One can show by direct computation that the right-hand sides of the I10,4 identities

vanish, but this is not trivially obvious unless one invokes the cohomological argument.

– 7 –
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Moving on to the fifteen-forms, we find the following set of possibilities

dFRSTUV
15 = F

(R
3 F

STUV )
13 (3.2)

dFRST
15 = aεUV FU

3 F V RST
13 + bF

(R
3 F

ST )
13 + cF5F

RST
11 + dF

(R
7 F

ST )
9 (3.3)

dFR
15 = eεST FS

3 F TR
13 + fFR

3 F13 + gF5F
R
11 + hεST FS

7 F TR
9 . (3.4)

Applying d to the second of these we find two constraints on the constants a, b, c, d

coming from terms with εUV FU
3 F V

3 FRST
11 and F5F

(R
3 F

ST )
9 so that we can eliminate two of

them, say c and d. We therefore find that there are two independent fifteen-forms in this

representation whose Bianchi identities can be combined into

dFRST
15 = a

(

εUV FU
3 F V RST

13 +
5

8
F5F

RST
11 −

5

8
F

(R
7 F

ST )
9

)

+

+b

(

F
(R
3 F

ST )
13 −

1

2
F5F

RST
11 +

9

10
F

(R
7 F

ST )
9

)

. (3.5)

For the doublet representation (3.4) we find three possible consistency conditions from

terms with εST FS
3 F T

3 FR
11, εST FS

3 F5F
TR
9 and FR

3 εST FS
7 F T

7 . However, only two of them are

independent and we therefore have two fifteen-forms in the doublet representation. Their

Bianchi identities can be written

dFR
15 = e

(

εST FS
3 F TR

13 +
2

5
F5F

R
11

)

+

+c

(

F
(R
3 F13 −

1

2
F5F

R
11 +

1

2
εST FS

7 F TR
9

)

. (3.6)

The fifteen-forms vanish identically in supergravity, but not all of the forms on the

right-hand side are zero. However, in this case the dimension-zero component of a Bianchi

identity has the form I12,4 and so must vanish by antisymmetry.

This analysis shows that at each level the number of representations that can arise

increases, and that, from degree fifteen onwards, there are also multiplicities in some of the

representations.

3.2 IIA

For the IIA case we observe first that the Bianchi identities (2.13) for the RR forms are

consistent for any value of n. For the most part these are trivial in supergravity, but there

is a non-zero RR twelve-form with dimension-zero component

G10,2 = −iKe−φΓ10,2 (3.7)

for some real non-zero constant K. In fact the Bianchi identity dG12 = H3G10 is auto-

matically soluble, by cohomology, the solution being given by the above expression. (The

higher-dimensional components of G12 are identically zero.)

One can also have non-trivial thirteen-form Bianchi identities in IIA. The consistent

ones turn out to be

dH13 = A

(

−
5

4
G2G12 −

1

4
G4G10 +

1

4
G6G8

)

+B

(

5

2
G2G12 −

3

2
G4G10 +

1

2
G6G8

)

+H3H11 .

(3.8)
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where A and B are the two constants that appear in (2.15). Since there are two H11s

depending on the choice of these, there are also two independent thirteen-form Bianchi

identities.

As in the IIB case, the left-hand side of this equation is identically zero in supergravity,

and the fact that the right-hand side vanishes as well, even though the individual forms

that appear there do not, follows from cohomology.

4 The Borcherds connection

The relation of the forms to Borcherds algebras [27] was discussed in [3, 4]. In ten dimen-

sions, it has been shown that the Borcherds algebra for IIB is the same as one investigated

earlier in a different context [28], while the IIA algebra is a superalgebra. Both algebras

have 3× 2 generators. There is also an intriguing relation with del Pezzo surfaces which is

discussed in [3, 4]. In this section we shall relate these algebras to the algebras generated

by the forms. The definition of a Borcherds algebra can be found in appendix A.

4.1 IIB

The Borcherds algebra for IIB is purely even since all of the field-strengths have odd degree.

The Cartan matrix is
(

0 −1

−1 2

)

, (4.1)

so that the fundamental commutation relations between the generators are

[h0, e0] = 0 [h1, e0] = −e0

[h0, e1] = −e1 [h1, e1] = 2e1 . (4.2)

There are two more generators {f0, f1} (see appendix A for the full algebra), and we

also have

(ad e1)
2e0 = 0 , (4.3)

while {f1, h1, e1} forms a basis for sl(2). The vectors e0, e1 are eigenvectors associated with

the positive simple roots, α0, α1, respectively.

It is clear from the discussion of the previous section that the algebra of forms is

generated from the three-form field strengths. We shall associate a generator with each

potential form, so the three-form generators will be denoted e2
R, the five-forms by e4 and

so on. In IIB these are all even generators. We write the sum of all the field-strengths as

F =
∑

(FX
n en−1

X ) where X denotes the appropriate representation of sl(2), so that all of

the Bianchi identities can be combined into

dF =
1

2
[F, F] , (4.4)

where the commutator denotes the commutator of the basis elements, and where due care

has to be taken with signs. The generators e2
R form an sl(2) doublet, so if we identify the

lowest weight e2
1 with e0, the second one can be obtained from it by the raising operator
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Level Form degree sl(2) representation(s)

1 3 2

2 5 1

3 7 2

4 9 3

5 11 4+2

6 13 5+3+1

7 15 6+4(2)+2(2)

Table 1. Low-lying levels in IIB.

e1, so e2
2 = [e0, e1] := e01. This cannot be raised any further so that we have the rela-

tion (4.3), (ad e1)
2e0 = 0. To make further progress we investigate some of the states that

are generated. For F5 and FR
7 we have

e4 = [e0, e01]

e6
1 = [e0, [e0, e01]]

e6
2 = [e01, [e0, e01]] . (4.5)

Continuing in this way we find, for form degree 2n+1, a state of the form (ad e0)
n−1e01,

and this series can increase without limit. Moreover, it is clear that each state will be

characterised by a corresponding root, although one should be aware that these can occur

with multiplicities. Each (2n + 1)-form is associated with the roots α = nα0 + mα1 where

m = 1, . . . (n − 1), although there can be multiplicities starting from n = 5. It is easy to

see that one recovers the previously known results up to level 5, i.e. the forms of degree

eleven that saturate the spacetime limit (ten-form potentials). However, the positive roots

have been tabulated beyond this level [28], so that we can easily compare our results from

section three to the Borcherds prediction up to level 7, i.e. fifteen-forms. This is given in

table 1 above. The form degrees here are those of the field strengths while the figures in

brackets in the last entry in the third column indicate that these representations appear

with multiplicity two. Comparing with the Bianchi identities in section three we find exact

agreement including the correct multiplicities for the fifteen-forms. It is also easy to see that

the roots are correctly given. For example, the vector (ad e0)
ne1 is the lowest weight state

of the largest representation at level n corresponding to the root vector nα0 + α1. Indeed,

this result is not surprising because it is clear that the algebra of forms must be isomorphic

to the positive root algebra N+ modulo the one-dimensional space generated by e1.

It is also clear that the Borcherds algebra determined by (4.2) is the smallest Borcherds

algebra that can accommodate the IIB form algebra. The existence of an sl(2) subalgebra

implies that a11 = 2 while (4.3) tells us that a01 = −1 (and hence, by symmetry, that

a10 = −1). The fact that one can have arbitrary powers of ad e0 means that a00 cannot

be positive. If it was negative there would be a second sl(2) subalgebra with infinite-

– 10 –
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dimensional representations within the Borcherds algebra, but this is not possible because

there is only a finite number of forms of a given degree. So a00 = 0 and we are thus led to

the Cartan matrix (4.2).

4.2 IIA

The Cartan matrix for IIA is given by
(

0 −1

−1 0

)

. (4.6)

The super-algebra has generators {f0, f1, h0, h1, e0, e1}, where e1, f1 are odd, which

obey the basic commutation relations

[h0, e0] = 0

[h0, e1] = −1

[h1, e0] = −1

[h1, e1] = 0 . (4.7)

Since a00 = a11 = 0, the subalgebras associated with both sets of generators are of

Heisenberg type.

The form algebra is generated from G2 and H3 so we shall associate elements of this

algebra with them. For G2 this is the odd element, e1, while for H3 it is the even element

e0. The first point to notice is that the e0 component of (4.4) is

dH3 e0 =
1

2
G2G2[e1, e1] . (4.8)

For this to agree with the correct identity, i.e. dH3 = 0, we must have the relation

[e1, e1] = 0. But this is also required from the general rules for a Borcherds superalgebra

in the appendix.

For the RR forms the situation is very simple. G4 is associated with [e0, e1] := e01, G6

with [e0, e01] := e001 and so on. For G2n the element of the algebra is (ad e0)
n−1e1, and

this series can increase without limit since a00 = 0.

For the NS forms the situation is slightly more complicated, but can be obtained di-

rectly from the Bianchi identities. For the seven-form one has only one possibility, namely

[e01, e01], while for the nine-form one has [e0, [e01, e01]]. However, for the eleven-forms one

finds two possibilities, [e0, [e0, [e01, e01]]] and [e001, e001]. (Note that all of the vectors e00..1

for any number of zeroes are odd.) For the thirteen-forms there are again two possibil-

ities, (ad e0)
3[e01, e01] and ad e0[e001, e001]. These results are in agreement with those of

section three. This pattern continues to higher levels, so that there is a series of terms

of this type obtained by acting with ad e0 on vectors of the form [(ad e0)
ke1, (ad e0)

ke1].

The situation can be summarised rather simply. For the RR forms, G2n, n ≥ 1, the roots

are (n − 1)α0 + α1, all with multiplicity one. For the NS forms, one has H3 with root

α0 and two series (both with n ≥ 1): the (4n + 3)-forms, which correspond to the roots

2nα0 + 2α1, and which have multiplicity n, and the (4n + 5)-forms, which correspond

– 11 –
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to the roots (2n + 1)α0 + 2α1 and which also have multiplicity n. These results for the

multiplicities can be seen directly by inspection or by means of the Peterson formula for

super-Borcherds algebras which is briefly summarised in appendix A.

In the IIA case the algebra of forms is clearly isomorphic to the positive part, N+, of

the Borcherds superalgebra. It is also clear that this Borcherds superalgebra is the smallest

one that can accommodate the form algebra. Since [e1, e1] = 0 it follows that a11 = 0 while

a00 must be zero for similar reasons to the IIB case. It is then possible to normalise the

generators so that a01 = a10 = −1.

5 Discussion

In this article we have seen that the use of superspace techniques for maximal supergravity

in D = 10 simplifies the discussion of the forms in the theory. Because the odd basis forms

in superspace are commutative there is no limit to the degrees that forms can have. This

means that we can avoid the use of potentials for the ten-forms, and that we can continue

beyond the spacetime limit. The resulting formalism is manifestly covariant and auto-

matically determines a Lie-(super)algebraic structure because the forms satisfy Bianchi

identities of the form dF = F 2, which determines a graded antisymmetric multiplication,

while the consistency conditions for the Bianchis are equivalent to the Jacobi identity. The

algebras determined by the infinite set of possible forms are infinite-dimensional and are

given by the positive elements of Borcherds algebras. In the IIB case the generator e1 is

associated to the axion [3, 4].

In [10] it was shown that these algebras, for all maximal supergravities, can be derived

from E11 after suitable tensoring with an appropriate Grassmann algebra. However, it is

not so clear how the higher-degree forms can be accommodated in this formalism. It might

be that there is some extension of E11 that could account for them, or it might be the case

that these forms should simply be disregarded.

In N = 2,D = 10 supergravity nearly all of the forms with degree greater than eleven

are zero, the exception being the IIA RR twelve-form that was mentioned in section three.

However, it might be that these forms could be non-zero when string-theory corrections

are switched on. This is not an easy problem to investigate because one is faced with

group-theoretic difficulties in whichever dimension one chooses to work with. In D = 10,

for example, one could have α′3 corrections in the (0, 13) components of the thirteen-forms

that would have to be linear in the dilatinos. The problem here is that one is faced with

representations of the spin group involving the tensor product of thirteen spinors. On the

other hand, in D = 3 there can be non-zero five-forms [29] whose lowest components would

have to be α′3 multiplied by dimension nine-halves functions of the fields, again not easy

to analyse.

The fact that one can have forms with higher degrees than the spacetime dimension

is implicit in the construction of the hierarchies of forms that appear in the context of

gauged maximal supergravity theories in lower-dimensional spacetimes. Indeed, the possi-

bility that the hierachy could in principle be continued indefinitely was mentioned in [30].

However, it is only in the superspace context that the Bianchi identities for these forms re-
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ally make sense, and only in superspace that such forms can actually be non-zero. Perhaps

the simplest example of this occurs in the maximal D = 3 gauged theory where there are

five-forms that are non-zero even in the lowest-order theory [29] and which are necessary

in the gauged Bianchi identites.

The higher-degree forms would not seem to have any sort of brane interpretation. For

example, the notion of an eleven-brane in ten-dimensional spacetime seems rather counter-

intuitive. On the other hand, the fact that there is a non-zero RR twelve-form might lead

one to ask whether it could have any geometrical significance beyond its algebraic rôle in

the Borcherds context.
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A Borcherds algebras

The definition of a Borcherds (or generalised Kac-Moody) (super)-algebra starts with a

generalised symmetric Cartan matrix, (aij), i.j = 1 . . . N , where some subset of the in-

dices can be odd, which is non-degenerate and for which the following rules hold. The

diagonal elements aii (no sum) can be positive, negative or zero, while the off-diagonal

elements, aij, i 6= j, are less or equal to zero. In the case that aii > 0, then
2aij

aii
∈ Z,∀j,

while if i is also odd
aij

aii
∈ Z,∀j.

The Borcherds algebra A associated with (aij) is then determined by 3N generators

{hi, ei, fi}, i = 1 . . . N , satisfying the following conditions:

[hi, hj ] = 0 (A.1)

[hi, ej ] = aijej , [hi, fj ] = −aijej , [ei, fj] = δijhi (A.2)

(ad ei)
1−

2aij

aii ej = 0, for aii > 0 and i 6= j (A.3)

[ei, ej ] = 0 when aij = 0 , (A.4)

with the last two conditions remaining valid if ei, ej are replaced by fi, fj. The generators

hi are even, and the generator fi is even or odd if ei is. If aii > 0 the integer
2aij

aii
is

negative, and if i is odd, it is also even.

In a Borcherds algebra there is still a triangular decomposition of the form A =

N− ⊕ H ⊕ N+, and it is still possible to define roots as in the Kac-Moody case. Fur-

thermore, if aii > 0, the algebra generated by {fi, hi, ei} for i even, or by these together

with [fi, fi] and [ei, ei] when i is odd, are isomorphic to sl(2) or osp(1|2), respectively,

and the algebra can be decomposed into finite dimensional representations of these (su-

per)algebras. When aii < 0, one has the same algebras but the Borcherds algebra contains

infinite-dimensional representations of them. In the case that aii = 0, the sub-algebra

generated by {fi, hi, ei} is isomorphic to the Heisenberg (super)algebra.
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The multiplicities of the roots for Borcherds algebras may be computed using the

Peterson formula [31, 32]. We found the discussion in [33] to be useful, especially for the

super case. Let β be an element of the positive root lattice Q+, i.e. a linear combination

of the positive simple roots (in both of the cases we discuss in the text, α0 and α1,)

with non-negative integral coefficients. And let gβ be the subalgebra of the Borcherds

algebra corresponding to a root β. The super-dimension of such a subalgebra is defined by

sdim gβ = (−1)deg βdim gβ, where the degree is zero or one according to whether β is even

or odd. The ordinary dimension is the multiplicity. The Peterson formula is

(β|β − 2ρ)c(β) =
∑

(β′|β′′)c(β′)c(β′′) , (A.5)

where the sum is over all elements such that β = β′ + β′′, ρ is a special combination of the

simple roots and the quantities c(β) are determined by the formula

c(β) =
∑

n

1

n
sdim

(

β

n

)

, (A.6)

n being a positive integer. The quantity ρ is determined by requiring that the left-hand-

side of (A.5) should be zero for the positive simple roots; for IIB, ρ = −α0 while for IIA,

ρ = 0. The round brackets denote the scalar product determined by the Cartan matrix,

with (αi|αj) = aij for the positive simple roots. In the sum in (A.6) the dimension of

an element β of Q+ that is not a root is zero, although this does not mean that the cor-

responding c(β) vanishes because β may be a multiple of a root. Note that (A.6) only

has more than one term if β is an integral multiple of a root. The c(β)s, and hence the

multiplicities, can be computed from these two formulae in an iterative fashion.

B Superspace supergravity

Although the details of the superspace descriptions of N = 2,D = 10 supergravities are

not needed for the discussion in the main text we collect here a few basics and references.

The complete IIB supergravity (for the physical fields) was written down in superspace

in [34], the component version having been given in [35]. The dual forms were added

in [36, 37], and all of the forms up to degree eleven in [13]. The conventions we follow

here are those of [13] although we have slightly changed the normalisations of some of the

forms and written them with upper SL(2, R) indices. One can transform from these to

those of [13] by means of the ε-tensor. In the original paper a complex U(1) notation was

used for the spinors, but it is probably more convenient to use a real SO(2) notation, as

in [38], where the relation between the conventions of [34] and [13] can be found.

The dimension-zero torsion is given by

Tαiβj
c = iδij(γ

c)αβ , (B.1)

where i, j = 1, 2 are SO(2) spinor indices (we use r, s, . . . for vector indices). The geometric

tensors cannot contain the scalar fields, as the formalism is SL(2, R) covariant, as well as

having a local U(1) symmetry for which the gauge field is a composite constructed from the
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scalars in the usual manner. The spin one-half fields are found in the dimension-one-half

torsion, while the other physical field strengths arise at higher dimension, although the

(bosonic) five-form does not appear directly.

In the text we gave the forms in an SL(2, R) basis, but it is sometimes convenient to

use the SO(2) basis, the two being related by the scalar matrix Vr
R. In this basis the

Bianchi identities take the form

DF = FF − F ∧ P (B.2)

where D is covariant with respect to SO(2), FF denotes the same term that occurs in

the SL(2, R) basis, except that the indices are now lower case, and P denotes the matrix

of one-forms in the representation appropriate to the form F on the left. One advantage

of this basis is that the scalars cannot appear undifferentiated so that the dimension-zero

components are simply given by products of (16×16) gamma-matrices and SO(2) gamma-

matrices, (τ r)ij (symmetric, traceless), δij or εij . We refer the reader to [13] for details.

The IIA theory was written down in components in [39] and in superspace in [40]. It

was also derived by superspace dimensional reduction from D = 11 in [41].3 The version

we use here was briefly outlined in [14]. We use thirty-two component Majorana spinors.

The dimension-zero torsion is

Tαβ
c = −i(Γc)αβ . (B.3)

The string frame is used, so that the dimension-zero component of H3 has no factor

of the dilaton, H1,2 ∝ Γ̃1,2, while the dimension-zero components of the RR forms all have

a factor of e−φ, multiplied by appropriate gamma-matrices. Since dG2n+2 = H3G2n, this

implies that the dimension-zero components of the RR forms have a factor of Γ11 for n

even, but not for n odd.
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